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Preface

This volume contains the papers presented at the 6th International Conference
on Independent Component Analysis (ICA) and Blind Source Separation (BSS)
organized in historic Charleston, SC, USA, March 5-8, 2006.

The sixth edition of the conference has brought the latest developments in one
of the most exciting areas of statistical signal processing/unsupervised machine
learning. ICA theory has received attention from several research communities
including machine learning, neural networks, statistical signal processing and
Bayesian modeling. ICA/BSS has applications at the intersection of many sci-
ence and engineering disciplines concerned with understanding and extracting
useful information from data as diverse as neuronal activity and brain images,
bioinformatics, communications, the world wide-web, audio, video, sensor sig-
nals, or time series.

Papers were solicited in all areas of independent component analysis and blind
source separation, including the following: algorithms and architectures (e.g. sta-
tistical learning algorithms based on ICA and BSS using linear/nonlinear mix-
ture models, convolutive and noisy models, extensions of basic models,
combinatorial optimization, kernel methods, graphical models), applications
(innovative applications or fielded systems that use ICA and BSS, including
systems for acoustic signal separation, time series prediction, data mining,
multimedia processing, telecommunications), medical applications (e.g., bioinfor-
matics, neuroimaging, processing of electrocardiograms, electroencephalograms,
magnetoencephalograms, and functional magnetic resonance imaging), speech
and signal processing (e.g., computational auditory speech analysis, source sep-
aration, auditory perception, coding, recognition, synthesis, denoising, segmenta-
tion, dynamic and temporal models), theory (e.g., information theory,
estimation methods, complex methods, time/frequency representations, opti-
mization, sparse representations, asymptotic analysis, unsupervised learning,
coding), visual and sensory processing (e.g., image processing and coding, seg-
mentation, object detection and recognition, motion detection and tracking,
visual scene analysis and interpretation).

Accepted papers covered these topics well, and as a result this volume has
a simple organization based on the six sections: Algorithms and Architectures,
Applications, Medical Applications, Speech and Signal Processing, Theory, and
Visual and Sensory Processing. Within each section, papers were organized al-
phabetically by the first author’s last name. Several topics are widely represented
in the present volume such as audio source separation, bioinformatics, convolu-
tive models of ICA, denoising, estimation methods, linear/nonlinear mixture
models, optimization in ICA/BSS, time/frequency representations, sparse rep-
resentations, and statistical learning.



VI Preface

The 2006 event introduced several innovations compared to previous meet-
ings. The paper review/acceptance system relied on the Program Committee
members’ responsibility in assigning papers for review and drawing acceptance
decisions. For the first time two tutorials were included in the program about
outstanding developments in the area: “Neural theory and neural analysis using
ICA,” lectured by Tony Bell of the University of California at Berkeley, and
“Bayesian machine learning for signal processing,” lectured by Hagai T. Attias
of Golden Metallic, Inc. The conference offered Student Best Paper Awards and
travel support to participating students.

The interest in the conference was demonstrated by the large number of
author registrations and the healthy submission rate. The conference database
included 183 submissions. The review process was more selective than at the
previous conferences and many meritourious submissions could not be accepted
for the final program. In the end, the Program Committee selected 64% of the
papers for inclusion in this volume. The vast majority of papers benefited from
at least four reviews. The authors of accepted papers had the opportunity to
upgrade their manuscripts based on the peer review feedback.

The conference had a combination of high-quality tutorials, research papers,
applications papers, posters, and invited talks, which demonstrated that ICA has
become a mature conference and the main venue for researchers and practitioners
in this area.

Many people deserve credit for their hard work on behalf of the conference.
Thanks go to all paper authors in this volume. In addition we thank the members
of the Program Committee and the reviewers for their efforts in organizing the
reviews, and for reviewing and selecting the papers to be included in this volume.
We are also grateful to the organizers of the special sessions for their work in
inviting, selecting presentations, and putting together the sessions. All these
efforts have been essential in compiling a high-quality scientific program.

Special acknowledgements go to many people whose effort and dedication
contributed to the success of the conference. We thank Jose Principe for his
efforts in organizing the conference, the staff of the University of Florida for
the support with various phases of the process, Thomas Preuss for designing
and helping with the excellent web submission and conference database engine
ConfMaster, and Antonio Paiva for acting as webmaster of the conference. We
thank the members of the ICA Steering Committee for their advice and for
assigning the job to the present team.

Last but not least, the cooperation with Springer in preparation of this vol-
ume and the CD-ROM proceedings was outstanding. We hope you will find the
proceedings interesting and stimulating.

January 2006 Justinian Rosca
Deniz Erdogmus

Jose Principe
Simon Haykin
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Juan-Manuel Górriz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Two Applications of Independent Component Analysis for
Non-destructive Evaluation by Ultrasounds

Addisson Salazar, Jorge Gosálbez, Jorge Igual, Raul Llinares,
Luis Vergara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Blind Spatial Multiplexing Using Order Statistics for Time-Varying
Channels

Santiago Sazo, Yolanda Blanco-Archilla, Lino Garćıa . . . . . . . . . . . . . . 414
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Carlos Vayá, David Moratal-Perez, Juan Manuel Sanchis . . . . . . . . . . 478

Wavelet Denoising as Preprocessing Stage to Improve ICA Performance
in Atrial Fibrillation Analysis
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Carlos Vayá, José Joaqúın Rieta, César Sánchez,
David Moratal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Brains and Phantoms: An ICA Study of fMRI
Jarkko Ylipaavalniemi, Seppo Mattila, Antti Tarkiainen,
Ricardo Vigário . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Comparison of ICA Algorithms for the Isolation of Biological Artifacts
in Magnetoencephalography

Heriberto Zavala-Fernández, Tilmann H. Sander, Martin Burghoff,
Reinhold Orglmeister, Lutz Trahms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Automatic De-noising of Doppler Ultrasound Signals Using Matching
Pursuit Method

Yufeng Zhang, Le Wang, Yali Gao, Jianhua Chen,
Xinling Shi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519



Table of Contents XVII

Speech and Signal Processing

A Novel Normalization and Regularization Scheme for Broadband
Convolutive Blind Source Separation

Robert Aichner, Herbert Buchner, Walter Kellermann . . . . . . . . . . . . . 527

A Robust Method to Count and Locate Audio Sources in a Stereophonic
Linear Instantaneous Mixture
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Pedro Gómez Vilda, Francisco Dı́az, Rafael Mart́ınez, Raul Malutan,
Victoria Rodellar, Carlos G. Puntonet . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

Single-Channel Mixture Decomposition Using Bayesian Harmonic
Models

Emmanuel Vincent, Mark D. Plumbley . . . . . . . . . . . . . . . . . . . . . . . . . . 722

Enhancement of Source Independence for Blind Source Separation
Kun Zhang, Lai-Wan Chan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

Speech Enhancement Using ICA with EMD-Based Reference
Yongrui Zheng, Qiuhua Lin, Fuliang Yin, Hualou Liang . . . . . . . . . . . 739

Theory

Zero-Entropy Minimization for Blind Extraction of Bounded Sources
(BEBS)

Frédéric Vrins, Deniz Erdogmus, Christian Jutten,
Michel Verleysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

On the Identifiability Testing in Blind Source Separation Using
Resampling Technique

Abdeldjalil Aı̈ssa-El-Bey, Karim Abed-Meraim, Yves Grenier . . . . . . . 755

On a Sparse Component Analysis Approach to Blind Source
Separation

Chunqi Chang, Peter C.W. Fung, Yeung Sam Hung . . . . . . . . . . . . . . . 765

Post-nonlinear Underdetermined ICA by Bayesian Statistics
Chen Wei, Li Chin Khor, Wai Lok Woo, Satnam Singh Dlay . . . . . . . 773

Relationships Between the FastICA Algorithm and the Rayleigh
Quotient Iteration

Scott C. Douglas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Average Convergence Behavior of the FastICA Algorithm for Blind
Source Separation

Scott C. Douglas, Zhijian Yuan, Erkki Oja . . . . . . . . . . . . . . . . . . . . . . . 790



XX Table of Contents

Multivariate Scale Mixture of Gaussians Modeling
Torbjørn Eltoft, Taesu Kim, Te-Won Lee . . . . . . . . . . . . . . . . . . . . . . . . 799

Sparse Deflations in Blind Signal Separation
Pando Georgiev, Danielle Nuzillard, Anca Ralescu . . . . . . . . . . . . . . . . 807

Global Analysis of Log Likelihood Criterion
Gen Hori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

A Comparison of Linear ICA and Local Linear ICA for Mutual
Information Based Feature Ranking

Tian Lan, Yonghong Huang, Deniz Erdogmus . . . . . . . . . . . . . . . . . . . . 823

Analysis of Source Sparsity and Recoverability for SCA Based Blind
Source Separation

Yuanqing Li, Andrzej Cichocki, Shun-ichi Amari,
Cuntai Guan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Analysis of Feasible Solutions of the ICA Problem Under the
One-Bit-Matching Condition

Jinwen Ma, Zhe Chen, Shun-ichi Amari . . . . . . . . . . . . . . . . . . . . . . . . . 838

Kernel Principal Components Are Maximum Entropy Projections
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Abstract. A class of simple Jacobi-type algorithms for non-orthogonal
matrix joint diagonalization based on the LU or QR factorization is in-
troduced. By appropriate parametrization of the underlying manifolds,
i.e. using triangular and orthogonal Jacobi matrices we replace a high di-
mensional minimization problem by a sequence of simple one dimensional
minimization problems. In addition, a new scale-invariant cost function
for non-orthogonal joint diagonalization is employed. These algorithms
are step-size free. Numerical simulations demonstrate the efficiency of
the methods.

1 Introduction

The problem of matrix (approximate) Joint Diagonalization (JD) has found ap-
plications in many blind signal processing algorithms, see for example [4,6]. In
one formulation it can be presented as: given a set of n× n symmetric matrices
{Ci}Ni=1 find a non-singular B such that the matrices {BCiB

T }Ni=1 are “as diago-
nal as possible”. We call such a B a joint diagonalizer. In general diagonalization
can happen only approximately. If B is restricted to the set of orthogonal n× n
matrices O(n), the problem is referred to as orthogonal JD. Here, we are inter-
ested in non-orthogonal JD or NOJD, i.e. where B is in the set of non-singular
n × n matrices GL(n). The reader is referred to [2,8] for further references on
this subject. We remind that in [7] the NOJD problem is formulated differently.

A natural and effective cost function for orthogonal JD is [4]:

J1(Θ) =
n∑
i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T )
∥∥2
F

(1)

where diag(X) is the diagonal part of matrix X, ‖.‖F is the Frobenius norm and
Θ ∈O(n). The algorithm introduced in [4], which is a part of the JADE algo-
rithm, to minimize J1(Θ) is an iterative minimization method using orthogonal
Jacobi matrices. This algorithm breaks the n(n−1)

2 dimensional minimization
problem to a sequence of one dimensional minimization problems and also uses
the group structure of O(n) by using multiplicative updates. Here, we extend
this idea to the NOJD problem.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 1–7, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 B. Afsari

In many cases, such as noisy ICA, the joint diagonalizer sought can not as-
sumed to be orthogonal. The NOJD problem is more challenging than orthogonal
JD. It is natural to consider the NOJD as a minimization problem. Motivating
physical problems such as ICA and BSS suggest that a good cost function J for
NOJD should be invariant under permutation Π and under scaling by a non-
singular diagonal matrix Λ, i.e. J(ΛΠB) = J(B)1. If we extend J1 to GL(n)
then clearly J1(ΛB) �= J1(B). In fact by reducing the norm of B we can reduce
J1(B) arbitrarily. In order to still use J1 we can extend J1 to a smaller subgroup
of GL(n) such as SL(n) [3] or as in [3,8] we can restrict the “reduction” of J1 only
to the directions that do not correspond to multiplication by diagonal matrices.
The latter results in updates of the form:

Bk+1 = (I + Δk)Bk (2)

where I is the n × n identity matrix, diag(Δk) = 0 and Δk is found such that
J1(Bk+1) is reduced at each step. This can be done, for example, from a gradient
descent step as in [3]. One consequence of the update in (2) is that if the norm of
Δk is small enough [8] we can guarantee invertibility of Bk+1. Also if we choose
Δk to be a triangular matrix with diag(Δk) = 0 and if B0 = I then detBk+1 = 1
for all k and hence ‖Bk+1‖2 ≥ 1. The significance of the latter is that it ensures
that the cost J1 is not reduced merely due to reducing the norm of Bk. In this
article we consider triangular Δk with only one non-zero element and we refer to
I +Δk as a Jacobi triangular matrix. In Section 2, we describe a class of NOJD
methods using orthogonal and triangular Jacobi matrices which are based on
the LU or QR factorization of the sought diagonalizer.

Another idea in devising NOJD algorithms is to use cost functions other than
J1. In [8,2] some different cost functions are mentioned. In [1] a scale-invariant
cost function is used for NOJD which has the form:

J2(B) =
N∑
i=1

∥∥Ci −B−1diag(BCiB
T )B−T∥∥2

F
(3)

Note that J2(ΛB) = J2(B) for diagonal Λ and that J2(Θ) = J1(Θ) for Θ ∈ O(n).
J2 is the normalized version of J1 in the sense that:

J1(B)
n‖B‖2F

≤ J2(B) ≤ n‖B−1‖2FJ1(B) (4)

A drawback of J2 is that in its calculation we need to compute the inverse of
B. In Section 3 we propose a simple algorithm for minimization of J2, too. In
Section 4 we test the developed methods numerically and provide a comparison
with one existing efficient NOJD method.

2 Use of LU and QR Factorizations in Minimization of J1

Any non-singular matrix B admits the LU factorization:

B = ΠΛLU (5)
1 Intuitively, we do not expect that ΛΠCiΠ

T Λ can become more diagonal than Ci.
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where Π is a permutation matrix, Λ is a non-singular diagonal matrix and L
and U are n × n unit lower and upper triangular matrices, respectively. By a
unit triangular matrix we mean a triangular matrix with diagonal elements of
one [5]. The factorization in (5) exactly matches the invariances in NOJD. On
the other hand the SVD factorization, for example, can not match this. Unit
lower and upper triangular matrices of dimension n, form Lie groups denoted by
L(n) and U(n), respectively. This fact simplifies the minimization process a lot.
B also admits the QR factorization:

B = ΛLΘ (6)

where Θ ∈O(n) and L ∈ L(n). The idea is to find L and U separately in the
LU form or L and Θ in the QR form such that J1 is reduced at each step
and repeat this till convergence. If the initial condition is the identity matrix,
by construction, the solution’s determinant will remain unity. Furthermore, we
replace each of these n(n−1)

2 dimensional minimization problems by a sequence
of simple one-dimensional problems by using triangular and orthogonal Jacobi
matrices.

2.1 Triangular and Orthogonal Jacobi Matrices

A lower triangular Jacobi matrix with parameter a corresponding to the position
(i, j), i > j is denoted by Lij(a). Lij(a) is an element of L(n) whose (i, j)th

entry is a and the rest of its off-diagonal entries are zero. In a similar fashion
we define the upper triangular Jacobi matrix with parameter a corresponding
to the position (i, j), i < j and denote it by Uij(a). Any element of L(n) (U(n))
can be represented as a product of lower (upper) triangular Jacobi matrices.
We replace the problem of minimization of J1(L) with L ∈ L(n) which is a
high dimensional problem with a sequence of simple one-dimensional quadratic
problems of finding the parameter of triangular Jacobi matrices for minimizing
J1. The following simple proposition solves the one-dimensional problem. For
brevity the proof is omitted.

Notation: (MATLAB’s indexing) For matrix A, A(k, index) where index is
a row vector denotes a row-vector whose elements are from the kth row of A
indexed by index. A(index, l) is defined similarly. Specificality we are interested
in vectors like A(l, [1 : i− 1, i + 1 : n]).

Proposition 1. If â is such that:

â = −
∑N
i=1 Ci(k, [1 : l − 1, l + 1 : n])Ci(l, [1 : l − 1, l + 1 : n])T∑N

i=1 ‖Ci(k, [1 : l − 1, l + 1, : n])‖2F
(7)

then: with k < l, â minimizes J1(Llk(a)) and with k > l, â minimizes J1(Ulk(a)).
If
∑N
i=1 ‖Ci(k, [1 : l − 1, l + 1, : n])‖2F = 0 set â = 0, i.e. J1 can not be reduced

by that particular Llk or Ulk.

Similarly, if Θkl(θ) is the Jacobi rotation matrix corresponding to the position
(k, l) and a counter-clockwise rotation by θ, then we have that[4]:
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Proposition 2. If θkl is such that �v = [cos 2θkl sin 2θkl]T is a unit-norm eigen
vector corresponding to the larger eigen value of the matrix GTklGkl where Gkl is
an N×2 matrix defined as Gkl(i, 1) = Ci(k, k)−Ci(l, l) and Gkl(i, 2) = 2Ci(k, l)
for 1 ≤ i ≤ N , then θkl minimizes J1(Θkl(θ)).

Based on these two propositions we can have two algorithms LUJ1D and QRJ1D.
We juxtapose the two algorithms together:

Algorithm LUJ1D (QRJ1D)

1. set B = I. set ε.
2. U-phase (Q-Phase): set U = I(Θ = I). for 1 ≤ l < k ≤ n:

– Find alk = arg mina J1(Ulk(a)) (θlk = arg minθ J1(Θlk(θ))) from Propo-
sition 1 (Proposition 2)

– Ci ← Ulk(alk)CiUlk(alk)T ( Ci ← Θlk(θlk)CiΘlk(θlk)T ) and U ←
Ulk(alk)U (Θ ← Θlk(θlk)Θ)

3. L-phase (R-Phase): set L = I. for 1 ≤ l < k ≤ n:
– Find akl = arg mina J1(Lkl(a)) from Proposition 1
– Update Ci ← Lkl(akl)CiLkl(akl)T and L← Lkl(akl)L

4. if ‖LU − I‖F > ε (‖LΘ− I‖F > ε), then B ← LUB (B ← LΘB) and goto
2, else end

We could use other stoping criteria such as keeping track of J1 or J2. The
LUJ1D (as well as QRJ1D) algorithm is iterative in the sense that we find
the L and U matrices repetitively, and it is sequential in the sense that the
problem of finding a triangular matrix minimizing J1 has been replaced (or
approximated) by a finite sequence of one dimensional problems. Note that for
updating Ci, the matrix multiplications can be realized by few vector scalings
and vector additions. We also mention that, as other Jacobi methods, these
methods are suitable for parallel implementation. For parallel implementation
we may combine (multiply) all the lower triangular matrices corresponding to
the same column and find the minimizing parameters of this new matrix at
one shot 2.

2.2 Row Balancing

In practice, if the rows of the large matrix C = [C1, ...CN ] are not balanced in
their norms, especially when n and N are large, the value found for a can be
inaccurate (see for example (7)). To alleviate this, after every few iterations, we
use updates Ci ← DCiD and B ← DBD where D is a diagonal matrix that
approximately balances the rows of C. We choose D(k, k) = 1√

‖C(k,:)‖F

where

C(k, :) is the kth row of C. With this modification, the algorithms perform
desirably. As mentioned we could keep track of the values of a cost function
(either J1 or J2) as a stopping criterion. Since J1 is not scale invariant and it
can change dramatically as a result of row balancing, J2 is more preferable in
this case.
2 This unit triangular matrix is also known as the Gauss transformation [5].
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3 Minimization of J2 for Joint Diagonalization

Now, we introduce LU and QR based algorithms using Jacobi matrices for mini-
mization of J2. The inverse of a Jacobi matrix is a linear function of its elements.
For example, the inverse of Lij(a) ∈ L is Lij(−a). This fact can mitigate the
effect of the presence of B−1 in J2. We, again, replace the high dimensional
minimization problem with a sequence of one dimensional problems involving
parameters of Jacobi matrices in LU or QR factorizations. The difference is that
here J2(Lij(a)) is a quadric function of a and in order to minimize it we need
to employ either an iterative scheme or the known formulae to find the roots of
the cubic polynomial ∂J2(Lij(a))

∂a . Proposition 3 gives J2(Llk(a)) and J2(Ulk(a))
in terms of the elements of Ci’s:

Proposition 3. If k < l then: J2(Llk(a)) = a4a
4 + a3a

3 + a2a
2 + a1a + a0 and

if k > l then J2(Ulk(a)) = a4a
4 + a3a

3 + a2a
2 + a1a + a0 , where:

a4 = 4
N∑
i=1

Ci(k, k)2, a3 = 8
N∑
i=1

Ci(k, k)Ci(k, l), a2 = 2
N∑
i=1

Ci(k, k)2+2Ci(k, l)2

and:

a1 = 4
N∑
i=1

Ci(k, l)Ci(k, k), a0 = 2
N∑
i=1

Ci(k, l)2 (8)

As mentioned the corresponding minimization is a straight forward task. Similar
to QRJ1D and LUJ1D we can have QRJ2D and LUJ2D algorithms by replacing
steps referring to Proposition 1 with steps referring to Proposition 3. As it can be
seen from the above formula the value of a in minimization of J2(Llk(a)) depends
only on the elements of the matrices {Ci}Ni=1 at positions (k, k) and (k, l). Note
that a for minimization of J1(Llk(a)) depends on the elements of {Ci} at other
positions too. As a result, assuming the computation cost in minimization of
J2(Llk(a)) is mainly due to calculating the coefficients, we can see that the
complexity of calculating a is of the order O(N), whereas for J1(Llk(a)) it is of
the order O(Nn). However, the complexity of one iteration (including the costly
update of the Ci’s) for all the methods is of the order O(Nn3). We mention that
here also row balancing proves to be useful.

4 Numerical Experiments

We examine the performance of the developed methods by joint diagonalization
of a set of matrices that are generated as:

Ci = AΛiA
T + tNi, Λi = diag(randperm(n))

where diag(x) for a vector x denotes a diagonal matrix whose diagonal is x,
randperm(n) denotes a random permutation of the set {1, 2, ..., n}, Ni is the
symmetric part of a matrix whose elements are i.i.d standard normal random
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variables and t measures the noise contribution. We try n = 10, N = 100 with
values for t = 0 and t = 0.1. A is randomly generated. We apply QRJ1D, LUJ1D,
QRJ2D and LUJ2D methods 3 with row balancing to find B. The row balancing
is performed once per each three iterations. The index:

Index(P ) =
n∑
i=1

(
n∑
j=1

|pij |
maxk |pik|

− 1) +
n∑
j=1

(
n∑
i=1

|pij |
maxk |pkj |

− 1) (9)

which measures how far P = BA is from being permuted diagonal is used to
measure the performance. Plots (1.a) and (1.b) show the result. Note that for
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Fig. 1. (a), (b) The performance index Index(BA) for different methods with two noise
levels t = 0 and t = 0.1, respectively. (c) Performance index vs. number of iterations
for QRJ2D and FFDIAG with noise level t = 0.1.

t = 0 the index values are very small. Of course, t = 0.1 is a more realistic case
for which the convergence is faster. For both t = 0 and t = 0.1 the QRJ2D
and LUJ2D outperform the J1 based methods. Yet, since in simulations this has
not been consistently observed we refrain from any comparison of the methods.
In another experiment we compare the QRJ2D method and the FFDIAG [8]
algorithm for which the available MATLAB code has been used. With t = 0.1
we repeat the previous example and apply both the algorithms. Plot (1.c) shows
the index for the two methods. QRJ2D outperform FFDIAG little bit, both
in terms of speed and performance. Again, this situation may vary in different
experiments. However, we can confirm comparable performance for FFDIAG
and the developed methods.
3 Matlab code is available at http://www.isr.umd.edu/Labs/ISL/ICA2006/
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5 Conclusion

We presented simple NOJD algorithms based on the QR and LU factorizations.
Using Jacobi matrices we replaced high dimensional minimization problems with
a sequence of simple one-dimensional problems. Also a new scale invariant cost
function has been introduced and used for developing NOJD algorithms. A com-
parison with one efficient existing method shows the competence of the developed
methods. The idea of resorting to a matrix factorization and solving a sequence
of minimization sub-problems over one-parameter subgroups can be useful in
other minimization problems over matrix groups.
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Abstract. The denoising source separation framework is extended to
nonlinear separation of image mixtures. MLP networks are used to model
the nonlinear unmixing mapping. Learning is guided by a denoising func-
tion which uses prior knowledge about the sparsity of the edges in images.
The main benefit of the method is that it is simple and computationally
efficient. Separation results on a real-world image mixture proved to be
comparable to those achieved with MISEP.

1 Introduction

Nonlinear source separation refers to separation of sources from their nonlinear
mixtures (for reviews, see [1, 2]). It is much harder than linear source separation
because the problem is highly ill-posed. In practice, some type of regularisa-
tion is needed. It is, for instance, possible to require that the nonlinear mixing
or unmixing mapping is smooth or belongs to a restricted class of nonlinear
functions. Alternatively, it is possible to impose restrictions on the extracted
sources. In any case, it is important to reduce the number of available degrees
of freedom.

Denoising source separation (DSS, [3]) has been introduced as a framework for
source separation algorithms, where separation is constructed around denoising
procedures. DSS algorithms can range from almost blind to highly tuned separa-
tion with detailed prior knowledge. The framework has already been successful
in several applications such as biomedical signal processing [3], CDMA signal
recovery [4] and climatology [5].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 8–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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So far, DSS has been applied to linear separation only, but in this paper
we show that nonlinear separation is possible, too. In the DSS framework, it
is easy to use detailed prior information. This means that separation becomes
possible even if the nonlinear mappings are not carefully regularised. This is a
significant benefit because this translates to significant savings in computational
complexity, particularly in large problems with many sources and mixtures.

The rest of the paper is organised as follows. The nonlinear DSS method
is introduced in Sec. 2. In many respects the separation procedure is exactly
like linear separation except that decorrelation and scaling of the sources need
to be embedded into the denoising whereas in linear separation this can be
implemented by orthogonalising the mixing matrix.

In the rest of the paper, we demonstrate the nonlinear DSS in a real-world
nonlinear separation problem introduced by [6]. The problem is to separate two
images which have been printed on opposite sides of a paper. Due to partial
transparency of the paper, both images are visible from each side, corresponding
to two nonlinear mixtures of the source images. In the DSS framework, separation
is built around a denoising procedure which can be tailored to the problem at
hand. A suitable denoising function which utilises the sparsity of image edges is
introduced in Sec. 3 and separation results are reported in Sec. 4.

Finally, in Sec. 5, we discuss the relation of the proposed nonlinear DSS frame-
work with other nonlinear separation methods and also discuss possible future
research directions.

2 Nonlinear DSS Method

In DSS, separation consists of the following steps:

1. estimation of the current sources using current mapping,
2. denoising of the sources and
3. adaptation of the mapping to match the denoised sources.

Note that the procedure bears resemblance to the EM algorithm: the first two
steps correspond roughly to the E-step and the last step to the M-step. The main
difference is that the EM algorithm is a generative approach where the mixing
mapping is estimated. With generative models assuming uncorrelated sources,
the sources will automatically become approximately uncorrelated due to the
so-called explaining-away phenomenon. This needs to be emulated in DSS using
some type of competition mechanism (see, e.g., [7] for discussion about emulating
explaining away by lateral inhibition).

In linear separation, decorrelation and scaling can be realised by prewhitening
the data and orthogonalising and scaling the projection vectors in the last step.
In nonlinear DSS, this option is not available as there is, in general, no easy
way to make sure that the outputs of a nonlinear mapping are orthogonal and
suitably scaled. Instead, the decorrelation and scaling must be embedded in the
denoising step. Besides this, the basic principle in nonlinear DSS is exactly the
same as in linear DSS.
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Fig. 1. Schematic representation of the nonlinear DSS method

The method that we have used for nonlinear separation is illustrated in Fig. 1,
for the case of separation of a two-source mixture.

The principle of operation is as follows. The mixture vector X is fed into two
multilayer perceptrons (MLP1 and MLP2), which yield the current estimates of
the sources S as their outputs (step 1). The estimates are then denoised (step 2).
Finally the MLP networks are adapted to the denoised source estimates Sden1
and Sden2 (step 3). Provided that the denoising step is well chosen, iterating
these three steps will result in the separation of the mixed sources.

3 Denoising for Image Separation

The crucial element in DSS, with linear or nonlinear mapping, is the choice of
the denoising function. A lengthy discussion of denoising functions and their
properties can be found in [3]. In brief, removing noise helps identify the signal
subspace and removing the interference from other sources promotes separation.
In this paper, we focus on the case where there is an equal number of sources
and mixtures. Therefore, the most important thing is to reduce the interference
from other sources.

3.1 Mixing Process

The image mixtures that were studied correspond to a well known practical situ-
ation: when an image of a paper document is acquired, the back page sometimes
shows through. The paper that was used was onion skin, which leads to a strong
mixture, which is significantly nonlinear. This separation problem has first been
introduced by [6]. We show the effectiveness of the proposed DSS method using
the first, the second and the fifth mixtures from that paper. The source images,
which were printed on the onion skin paper, are shown in Fig. 3a. The acquired
images (mixtures) are shown in Fig. 3b. For more detailed description of the
data aquisition, see [6].
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3.2 Edge Denoising

Looking at the last two pair of mixtures in Fig. 3b, it is evident that despite
strong nonlinear mixtures, a human being can easily separate the images, i.e.,
can tell which features or objects belong in which image, even without knowing
the original images. What features could be used for separating, i.e., denoising,
the images?

A characteristic feature of most natural images is the sparsity of edges. When
an edge is found in the same place in both mixtures, it probably originates from
only one of the source images. Decision about which source the edge belongs to
can be based on the relative strength of the edges in the mixtures. Hence, we
suggest the following denoising scheme:

1. Represent each of the source estimates by their edges.
2. Induce a competition between the edges in different images in such a way

that stronger edges tend to eliminate weaker ones.

Note that the edge features in different natural images are usually almost inde-
pendent, which is not necessarily true for low-frequency features. Consider for
instance natural images of faces.

Edge detection in images. A crude approach for edge detection that already
leads to somewhat acceptable results, is to use simple high-pass filtering to ex-
tract the edges. Another, more advanced possibility is to use wavelet analysis.
We decided to use a wavelet family that forms a spatio-frequency representation
of an image separately with horizontal, vertical and diagonal components (H, V
and D). The representation results in a hierarchy of increasing frequencies. A
schematic illustration of the wavelet transform that was used, is depicted on the
left side of Fig. 2.

Fig. 2. Diagram of the wavelet-based denoising operation
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(a
)

(b
)

(c
)

Fig. 3. a) Source images b) mixture (acquired) images c) separation results
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Competition between the edges. Once the edges of both source estimates
have been extracted, one should decide which edge belongs to which image.
On average, edges of the foreground image appear stronger on the foreground
mixture. Hence strong edges on the foreground images should be privileged for
the foreground source estimate. This has been achieved by using a soft winner-
take-all operation, which assigned most of the energy to the stronger component.
The competition was induced in each level of the wavelet transform, except for
the first one that represents the slowest frequencies (see the right side of Fig. 2).

Additionally, the artificial nature of the first pair of mixtures (Fig. 3c, top-
row), was taken into account. Since one of the source images contained only
vertical and the other one only horizontal edges, the horizontal (H) components
were set to zero in one of the images, prior to reconstruction, and the vertical
(V) ones in the other image.

4 Results

The multilayer perceptrons that were used had a hidden layer with five sigmoidal
units. They also haddirect ”shortcut” connections between inputs and output, and
their output units were linear. With this structure they were able to implement lin-
ear operations. These perceptrons were initialised to perform an approximate lin-
ear whitening (also called sphering) of the mixture data, subject to the restriction
of being symmetrical (processing the two input components equally). Training was
performed with the adaptive step sizes speedup method [8]. Fifty training epochs
were performed, within each iteration of the global nonlinear DSS procedure. Two-
level description was used in the wavelet decomposition.

Figure 3c shows the results obtained after 10 iterations of the nonlinear DSS.
For comparison, the results obtained with the MISEP technique of nonlinear
ICA can be consulted in [6].

For an objective quality assessment, the four quality measures defined in [6]
were computed. Q1 is simply the signal-to-noise ratio (SNR). Q2 is also an SNR
measure, but with a correction for possible nonlinear distortions of the inten-
sity scale of the separated images. Q3 is the mutual information between each
separated component and the corresponding source. Finally, Q4 is the mutual
information between each separated component and the opposite source. For Q1,
Q2 and Q3, higher values are better, while for Q4 lower values are better. See [6]
for more details. Table 1 shows the results, together with the results obtained
with the MISEP method, for comparison (the latter were obtained from [6]).

In the first pair, nonlinear DSS performed better than MISEP. This is prob-
ably due to the specific denoising operation that was used, which is very well
suited to this pair of sources. In the second image pair, nonlinear DSS and
MISEP performed approximately equally on the right-hand image, and MISEP
performed better on the left-hand image. In the third pair, nonlinear DSS per-
formed globally better. This pair of sources is not independent (see [6]), and
therefore nonlinear DSS is probably more suited to handle it than MISEP, which
is an independence based method.
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Table 1. Quality measures. For each pair (Nonlinear DSS and MISEP, for the same
source), the best result is shown in bold. For Q1, Q2 and Q3 higher results are better,
while for Q4 lower results are better.

Nonlinear DSS MISEP
Image pair Quality measure source 1 source 2 source 1 source 2

Q1 (dB) 14.6 14.1 13.8 13.1
1 Q2 (dB) 15.3 14.7 14.7 14.2

Q3 (bit) 2.57 2.50 2.45 2.39
Q4 (bit) 0.29 0.27 0.23 0.26
Q1 (dB) 6.4 13.6 9.3 13.9

2 Q2 (dB) 9.5 15.1 11.0 15.0
Q3 (bit) 1.62 1.93 1.83 1.95
Q4 (bit) 0.44 0.39 0.24 0.40
Q1 (dB) 13.5 9.2 14.2 6.4

3 Q2 (dB) 15.5 9.9 15.3 7.8
Q3 (bit) 2.23 1.62 2.19 1.29
Q4 (bit) 0.74 0.56 0.56 0.49

5 Discussion

In this paper, we reported the first results about nonlinear separation with DSS.
As the results show, separation was relatively successful but still far from perfect.
For instance, from the extracted image pair in the middle of Fig. 3c, it is evident
that the contrast on the image on the left depends on the intensity of the image
on the right (lighter on the right implies better contrast on the left). Furthermore,
we had to resort to early stopping in the separation of the mixtures of natural
images. Such problems could be avoided by improving the denoising function,
for example by introducing a local normalisation of image contrast, or by using
more prior information about the mixing process to restrict the parametric form
of the unmixing mapping.

Of the existing nonlinear separation techniques, MISEP is similar to the one
proposed here in that it, too, estimates a separating MLP network. The main
advantage over MISEP is that the learning procedure is simpler and computa-
tionally more efficient. In MISEP, the Jacobian matrix of the nonlinear mapping
needs to be computed for every sample, inverted and then propagated back
through the MLP network. For two-dimensional case this is not of importance
and MISEP was actually faster in these simulations. However, it means that
MISEP cannot be extended to problems with a large number of sources.

Slow-feature analysis (SFA, [9]) resembles nonlinear DSS in its use of denoising
for guiding separation. In SFA, the denoising is implemented by low-pass filtering
(see [3] for details) and therefore assumes that the sources have slowly changing
temporal or spatial structure. In DSS, the denoising can be more general and
tuned to the problem at hand, such as the presented edge-based denoising for
separating images. Interestingly, SFA has been shown to be applicable to very
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large problems when the set of nonlinearities is fixed and only a linear mapping
is learned [9]. It should therefore be possible to apply nonlinear DSS in very
large problems using a similar restricted mapping.

6 Conclusion

We have presented a nonlinear separation method based on the denoising source
separation framework. The method uses a competition-based denoising stage
which performs a partial separation of the sources, the partially separated com-
ponents being used to iteratively re-train a set of nonlinear separators. The
method was applied to real-life nonlinear mixtures of images, and proved to be
competitive with ICA-based nonlinear separation.
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Abstract. The case of sources that generate multidimensional signals, filling a
subspace of dimensionality K, is considered. Different coordinate axes of the
subspace (“subspace channels”) correspond to different signal portions generated
by each source, e.g., data from different spectral bands or different modalities
may be assigned to different subspace channels. The mixing system that gener-
ates observed signals from the underlying sources is modeled as superimposing
within each subspace channel the contributions of the different sources. This mix-
ing system is constrained as it allows no mixing of data that occurs in different
subspace channels. An algorithm based on second order statistics is given which
leads to a solution in closed form for the separating system. Correlations across
different subspace channels are utilized by the algorithm, whereas properties such
as higher-order statistics or spectral characteristics within subspace channels are
not considered. A permutation problem of aligning different sources’ subspace
channels is solved based on ordering of eigenvalues derived from the separating
system. Effectiveness of the algorithm is demonstrated by application to multidi-
mensional temporally i.i.d. Gaussian signals.

1 Introduction

The notion of multi-dimensional or subspace ICA has been developed in [3] and [6] to
account for the fact that not all sources may reasonably be modeled as one-dimensional
processes with mutual independence. Rather, some sources may generate signals that
fill a multi-dimensional subspace that resists decomposition into one-dimensional mu-
tually independent sources. This can occur both in situations where underlying sources
are unknown and rather a plausible model of the observed data is sought for, and in sit-
uations where analytical reasons dictate a multi-dimensional character of the sources,
such as separation of spectral domain speech, which has originally motivated this work.

The present work suggests a second-order approach to the separation of multidimen-
sional sources and considers a constrained version of the general linear mixing system.

2 Multidimensional Sources and Constrained Mixing

The multidimensional signal generated by source i (i = 1, . . . , N ) is denoted by sfi (t).
The source is regarded as stationary and ergodic with respect to parameter t, t =

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 16–23, 2006.
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t1, . . . , tL, i.e., expectation values can be estimated as sample means w.r.t. t. E.g., t
may denote time or spatial position in an image, provided stationarity may be assumed
w.r.t. these variables. Without loss of generality, we limit our treatment to zero mean
sources.

Index f spans the subspace of dimensionality K that is filled by the source, with
f = 1, . . . ,K denoting the “subspace channels” (or “channels”) of the source. Source
statistics w.r.t. individual channels f �= f ′ may differ, hence, expectations cannot be
computed as sample averages across f . Subspace channels, e.g., may correspond to dif-
ferent frequency bands for which data of an audio source or multispectral image data
has been collected. More generally, subspace channels may also correspond to differ-
ent modalities of recorded data, e.g., audio and video data may be stored in different
channels. Another example would be data with non-constant mixing, e.g., image data
with position-dependent mixing parameters; here, different subspace channels could
correspond to different spatial positions.

As they are generated by the same source, data in different subspace channels f �= f ′

of a single source may in general covary,

E
{
sfi (t) (sf

′
i (t))∗

}
�= 0. (1)

Data from different sources i �= j must be uncorrelated since the sources are assumed
to be independent systems. If correlations are computed from source components at two
subspace channels, the result is zero for all pairs of channels (f, f ′),

E
{
sfi (t) (sf

′
j (t))∗

}
= 0 ∀i �= j, ∀f, f ′. (2)

Mixing of sources is assumed to be separable in the sense that the mixing system
only mixes data from corresponding subspace channels of different sources, but does
not mix data “across” different channels. Gathering data from the f -th subspace channel
of all N sources into a single vector sf (t) = [sf1 (t), . . . , sfN(t)]T , mixing is written as

xfi (t) =
N∑
j=1

afij s
f
j (t) ⇐⇒ xf (t) = Af sf (t) (3)

This model is compatible with the mixing scenarios in the examples mentioned above.
E.g., multimodal data may plausibly be explained by superposition of basis-patterns
within each modality. A-priori, intermingling of data from different subspace channels
may be regarded as a less significant process and may be ruled out completely in some
applications (e.g., frequency-domain separation of convolutive audio mixtures) on the
grounds of known physics.

From knowledge of the mixed signals xf (t), only, it is aimed to find an estimate Âf

of the mixing matrix so that unmixed signals

uf (t) = [Âf ]−1 xf (t) (4)

can be obtained which resemble the source signals.
The simplest approach to solve system (3) would be to perform ICA or second-order

source separation separately for each subspace channel f . For two reasons this approach
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might not be optimal. First, by neglecting information present in the across-channel cor-
relations (Eq.s 1, 2), the obtained separation quality may not be optimal, e.g., because
the data in individual channels might be lacking sufficient higher-order or spectral cues.
In the evaluation (Sec. 4), we demonstrate that across-channel correlations make it pos-
sible to separate data that have no spectral, higher-order or non-stationarity cues.

Second, care has to be taken to reconstruct coherent subspaces, each pertaining to
one source process. When treating Eq. 3 as N individual source separation problems,
the permutation invariance inherent to blind source separation algorithm applies indi-
vidually to each one, so that gathering the subspace channels for each source process
is a non-trivial issue. A similar problem is frequently encountered in frequency-domain
approaches to convolutive blind source separation. It is shown that across-channel cor-
relations as in Eq.s 1, 2 can be exploited to this end.

3 Solution Based on Correlations Across Subspace Channels

Defining the sources’ cross-covariance matrix Rff ′
s computed from channels f and f ′

as
Rff ′
s = E

{
sf (t) (sf

′
(t))H

}
, (5)

equations (2) and (1) can be restated such that Rff ′
s is diagonal for all (ff ′),[

Rff ′
s

]
ij

= δijE
{
sfi (t) (sf

′
i (t))∗

}
, (6)

where δij is the Kronecker symbol.
Since the mixed signals are not independent, their covariance matrix Rff ′

x ,

Rff ′
x = E

{
xf (t) (xf

′
(t))H

}
, (7)

is not diagonal. It can be expressed in terms of the sources’ covariance matrix as

Rff ′
x = Af Rff ′

s

(
Af ′)H

. (8)

If the mixing system was identical in both subspace channels, Af = Af ′
, then an

eigenvalue equation could be derived in exactly the same manner as presented by [7].
However, since in general Af �= Af ′

, the analog derivation is not possible.
It is observed that by forming the products

Qff ′
s = Rff ′

s [Rf ′f ′
s ]−1 Rf ′f

s (9)

Qff ′
x = Rff ′

x [Rf ′f ′
x ]−1 Rf ′f

x (10)

the algebraic relation between the sources’ Qff ′
s and the mixed signals’ Qff ′

x involves
matrix Af , but not Af ′

,

Qff ′
s = [Af ]−1 Qff ′

x [Af ]−H (11)
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Hence, [Af ]−1 diagonalizes Qff ′
x for all f ′.

An eigenvalue equation for Af can be derived from (11) by forming the product

Qff ′
x [Qff

x ]−1, (12)

yielding
Af Λff

′
= Qff ′

x [Qff
x ]−1 Af , (13)

where
Λff

′
= Qff ′

s [Qff
s ]−1 (14)

is diagonal and contains the eigenvalues of Qff ′
x [Qff

x ]−1.
Similarly, Af ′

is obtained from the Eigenvalue equation

Af ′
Λf

′f = Qf ′f
x [Qf ′f ′

x ]−1 Af ′
. (15)

3.1 Conditions for Identifiability

Equation (13) has a unique solution if all eigenvalues on the diagonal of Λff
′

are dif-
ferent. Similarly, for (15) it must hold that the diagonal elements of Λf

′f are different.
Since Rff ′

s is diagonal and Rff ′
s = [Rf ′f

s ]H , we obtain

Λff
′

= Λf
′f = (16)

Rff ′
s [Rff ′

s ]H [Rff
s ]−1 [Rf ′f ′

s ]−1.

Hence, together with (6) it follows that for Af and Af ′
to be identifiable it must be

fulfilled that ∀i �= j∣∣∣E{sfi (t) (sf
′
i (t))∗

}∣∣∣2
E
{∣∣∣sfi (t)∣∣∣2}E{∣∣∣sf ′

i (t)
∣∣∣2} �=

∣∣E{sfj (t) (sf
′
j (t))∗

}∣∣2
E
{∣∣∣sfj (t)∣∣∣2}E{∣∣∣sf ′

j (t)
∣∣∣2} . (17)

3.2 Solving the Permutation Problem

Since the eigenvectors corresponding to the solution of (13) are unambiguous only upto
their order and a scale factor, the mixing matrix Af cannot be determined uniquely.
Rather, any matrix Ãf which can be expressed as

Ãf = Af Df Pf , (18)

where Df is a diagonal matrix and Pf a permutation matrix, represents a solution
of (13). Hence, it is only possible to determine Af upto an unknown rescaling and
permutation of its columns by Df and Pf , respectively. This corresponds to the well-
known invariances inherent to all blind source separation algorithms.

For one-dimensional source signals this is usually not a problem. With multidimen-
sional sources, the components belonging to a single source are reconstructed with
disparate (unknown) order and scale in different subspace channels f �= f ′ if the corre-
sponding channel-specific permutation and diagonal matrices differ, i.e.,
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Pf �= Pf
′

Df �= Df ′
. (19)

Thus, a coherent picture of each source’s activity cannot be obtained.
No solution is given for the invariance with respect to varied scaling in different

channels. Instead, each row of the estimated unmixing matrix [Âf ]−1 is rescaled to
have unit norm.

The solution to the permutation problem is based on the observation that transforma-
tion (18) results in rearranged eigenvalues Λ̃ff

′
,

Λ̃ff
′
= [Pf ]T Λff

′
Pf . (20)

That is, the column permutation of Af results in a corresponding permutation of the
eigenvalues’ order on the diagonal of Λ̃ff

′
.

Denote by Âf and Âf ′
the estimates of the true mixing matrices Af and Af ′

, re-
spectively. Without loss of generality, we assume

Âf = Af Âf ′
= Af ′

P, (21)

so that the estimates Λ̂ff
′

and Λ̂f
′f of the true eigenvalue matrices Λff

′
and Λf

′f ,
respectively, are

Λ̂ff
′
= Λff

′
(22)

Λ̂f
′f = PTΛf

′fP (23)

Since, according to (16) we have Λf
′f = Λff

′
, it follows

Λ̂f
′f = PTΛff

′
P = PT Λ̂ff

′
P. (24)

Therefore, the permutation matrix P can be directly read from the relative ordering
of the eigenvalues on the diagonals of Λ̂ff

′
and Λ̂f

′f . Permutations are corrected by
replacing Âf ′

by Âf ′
PT whose columns are ordered in accordance with Âf .

3.3 More Than Two Subspace Channels

Separation. If channels f = 1, . . . ,K , K ≥ 2, are to be used for separation, the
mixing matrix Af is obtained as the matrix which simultaneously solves the K diago-
nalization equations

Qf,1
s = [Af ]−1 Qf,1

x [Af ]−H (25)

Qf,2
s = [Af ]−1 Qf,2

x [Af ]−H

...

Qf,K
s = [Af ]−1 Qf,K

x [Af ]−H .

The solution can be obtained by using numerical techniques for simultaneous diagonal-
ization [4].
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Identifiability. Equations (25) have a unique solution (up to rescaling and permutation)
if, analogous to Eq. (17), for each f = 1, . . . ,K there exists at least one subspace
channel f ′ for which it is fulfilled that ∀i �= j∣∣∣E{sfi (t) (sf

′
i (t))∗

}∣∣∣2
E
{∣∣∣sfi (t)∣∣∣2}E{∣∣∣sf ′

i (t)
∣∣∣2} �=

∣∣E{sfj (t) (sf
′
j (t))∗

}∣∣2
E
{∣∣∣sfj (t)∣∣∣2}E{∣∣∣sf ′

j (t)
∣∣∣2} . (26)

Permutations. The permutations must be sorted for each pair of subspace channels
(f, f ′) by using the method outlined in section 3.2.

4 Evaluation

A synthetic data set of Gaussian i.i.d. noise in two channels is separated. Since the data
in each subspace channel is purely Gaussian, these data cannot be separated by looking
at a single channel only.

The data consisted of four sources sf1 (t), . . . , sf4(t), each containing a two-
dimensional subspace with channels, f = 1, 2, and time-points t = 1, . . . , 10000.
Within each subspace channel of each source, the data was chosen to be i.i.d. noise
with Gaussian distribution. To enable separation by the proposed algorithm, correlations
were introduced between the data in different channels of each source by composing the
signals as the sum

sfi (t) = ξfi (t) + ζi(t) (27)

of channel-dependent and channel-independent Gaussian random variables ξfi (t) and
ζi(t), respectively.

Since the data within each subspace channel contained neither cues related to higher-
order statistics, nor cues related to auto-correlation information or non-stationarity, it is
inseparable for any algorithm looking at isolated channels. Only integrating information
across different channels makes separation feasible.

The correlations within each source and the independence of the different sources
are reflected by the covariance matrices Rff ′

s ,

R1,1
s =

⎛⎜⎜⎝
1.99 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

⎞⎟⎟⎠ R1,2
s =

⎛⎜⎜⎝
1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

⎞⎟⎟⎠ (28)

R2,1
s =

⎛⎜⎜⎝
1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

⎞⎟⎟⎠ R2,2
s =

⎛⎜⎜⎝
2.00 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

⎞⎟⎟⎠ . (29)

Since the different sources are independent, the off-diagonal terms of all covariance
matrices are zero. The diagonals of R1,2

s and R2,1
s are non-zero due to the correlations

across channels within each source subspace.
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The eigenvalues of equation (16) are computed as

diagΛ1,2 = (Λ1,2
1 , . . . , Λ1,2

4 ) = ( 0.25, 0.51, 0.64, 1.00 ). (30)

Since all eigenvalues are different, the condition for identifiability (17) is fulfilled.
The 4× 4 mixing matrices A1 and A2 were chosen at random. Covariance matrices

of the mixed signals were processed by the proposed algorithm using the eigenvalue
method, yielding the combined mixing-unmixing system [Âf ]−1Af

[Â1]−1A1 =

−3.11 −0.03 0.01 −0.02
0.00 0.01 −2.43 −0.02

−0.01 2.39 0.04 −0.01
0.00 0.00 0.00 2.23

[Â2]−1A2 =

0.00 0.00 0.00 −1.50
1.69 0.01 −0.03 −0.02

−0.01 1.49 0.02 0.02
0.00 0.00 −1.43 −0.01

Since each row of the combined system contains only one significant non-zero ele-
ment, the algorithm has successfully separated the signals. The increase in signal-to-
interference ratio from before to after separation amounts to 37.8 dB.

Sources’ components are reconstructed in a different order in the two frequency
channels, as can be seen from the different positions of the non-zero elements of
(Â−1A)(1) and (Â−1A)(2). Therefore, the method for sorting permutations described
in section 3.2 must be employed. To this end, the estimated eigenvalue matrices Λ̂(1, 2)
and Λ̂(2, 1) obtained from solving the eigenvalue problems (13) and (15), respect-
ively, are

Λ̂(1, 2) =

0.25 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.51 0.00
0.00 0.00 0.00 1.00

Λ̂(2, 1) =

1.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00
0.00 0.00 0.51 0.00
0.00 0.00 0.00 0.64

. (31)

By permuting the eigenvalues on the diagonals of Λ̂(1, 2) and Λ̂(2, 1) to occur in the
same order in both matrices, and by performing the same permutations for the rows
of Â−1(1) and Â−1(2), respectively, it is ensured that the sources’ components are
reconstructed in the same order in both frequencies.

5 Discussion

We have proposed a solution to the BSS problem when sources generate subspaces
with second-order dependencies within each source subspace. Under the assumption of
a constrained mixing system, that can be separated into one linear instantaneous mixing
system per subspace channel, an eigenvalue/joint diagonalization based approach has
been developed for source identification and correct assignment of subspace dimensions
across different sources.

Under additional assumptions, existing second-order separation methods are recov-
ered as special cases of our method. If different subspace channels are derived from
underlying one-dimensional sources by temporal shifting, approaches like SOBI [2],
Molgedey-Schuster [7] and TDSEP [8] are recovered. In this case, the signal sfi (t)
would be constructed from a one-dimensional signal si(t) as sfi (t) = si(t + τf ), for
time-shifts τ1, . . . , τK , and constant mixing matrices Af = A would be assumed.
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In the two-input-two-output (TITO) case with a whitening preprocessing step, the
separation equations of our algorithm boil down to the TITO identification of FIR chan-
nels proposed by [5] (while the permutation alignment step of both algorithms remains
different).

It is straight-forward to combine the techniques outlined here with standard second-
order separation techniques that can employ spectral cues or non-stationarity of vari-
ance within each source subspace channel. Such a combination approach yields a large
number of equations for simultaneous diagonalization that are expected to lead to de-
cent signal separation.

The developed method may be useful in two applications. For the separation of data
with multiple spectral bands, e.g., spectrogram sound data or spectral image data, cor-
relations across different frequency-channels constitute a criterion for source separation
that can be used on its own, or in addition to existing methods of decorrelation with re-
spect to time- or spatial shifts. By using this additional source of information, it should
be possible to improve on the performance of source separation algorithms in a similar
way as, e.g., decorrelation with multiple time-delays can improve over decorrelation
with only a single time-delay.

Concerning separation of time-varying mixtures, present approaches average over
short time segments to estimate the averaged unmixing system. The presented method
may improve the quality of separation since it allows to estimate the unmixing system
for time t taking into account data from time t + τ even though the unmixing system
at both times is different, and without necessarily averaging over the entire temporal
range t . . . t + τ .
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Abstract. We develop a super-fast kernel density estimation algorithm
(FastKDE) and based on this a fast kernel independent component anal-
ysis algorithm (KDICA). FastKDE calculates the kernel density estima-
tor exactly and its computation only requires sorting n numbers plus
roughly 2n evaluations of the exponential function, where n is the sam-
ple size. KDICA converges as quickly as parametric ICA algorithms such
as FastICA. By comparing with state-of-the-art ICA algorithms, simula-
tion studies show that KDICA is promising for practical usages due to its
computational efficiency as well as statistical efficiency. Some statistical
properties of KDICA are analyzed.

Keywords: independent component analysis, kernel density estimation,
nonparametric methods.

1 Introduction

Independent component analysis (ICA) has been a powerful tool for blind source
separation inmany applications such as image andacoustic signal processing, brain
imaging analysis (Hyvarinen, Karhunen and Oja 2001). Suppose that an observ-
able signal, say X, can be modeled as an unknown linear mixture of m mutually
independent hidden sources (S1, · · · , Sm). Denote S ≡ (S1, · · · , Sm)T , so

X = AS (1)

for some matrix A. Assume that {X(t) : 1 ≤ t ≤ n} are n i.i.d. observations of
X, where t is the time index. That is, at time t the hidden sources produce signals
S(t) ≡ (S1(t), · · · , Sm(t))T that are observed as X(t) = AS(t). The problem is
to recover {S(t) : 1 ≤ t ≤ T } without knowing either A or the distributions of
S. In order to solve this problem, it is necessary that dim(X) ≥ m. Without loss
of generality, we may assume that the dimension of X is the same as S and that
A is an m×m nonsingular matrix. It is well-known that W = A−1 (called the
unmixing matrix) is identifiable up to permutation and scale transformations of
the rows of A if S has at most one Gaussian component (Comon, 1994). The
order and scale can be controlled such that W is unique. The ICA problem
becomes to estimate W.

Classical ICA algorithms such as FastICA fit parametric models for the
hidden sources and thus are limited to particular families of hidden sources

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 24–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(Cardoso 1998). It has been realized that the unknown distributions of hidden
sources can be estimated by nonparametric methods, which can be applied to a
wide range of distribution families. For example, Hastie and Tibshirani (2002)
proposed penalized maximal likelihood based on log-spline density estimation.
Miller and Fisher (2003) proposed the RADICAL algorithm based on the neigh-
borhood density estimator. Vlassis & Motomura (2001), Boscolo et al. (2004) and
recently Shwartz et al. (2005) used kernel density estimation to deal with the
unknown source distributions. These nonparametric algorithms are in general
more accurate and more robust but on the other side are computationally much
heavier than classical parametric ICA algorithms such as FastICA. The compu-
tational bottleneck is the nonparametric density estimators1. There exists other
nonparametric ICA algorithms such as KCCA, KGV (Bach & Jordan 2002),
CFICA (Eriksson & Koivunen 2003), PCFICA (Chen & Bickel 2005) and kernel
mutual information (Gretten et al 2005), which do not deal with the source den-
sity functions directly. Among different nonparametric density estimators, the
kernel density estimator (KDE) is most popular. But naive implementation re-
quires O(n2) complexity, where n is the sample size. In the statistical literature,
the binning and clustering techniques have been used to reduce the complexity,
see Silverman (1986). For example, Pham (2004) applied the binning technique
in the ICA literature. Fast Gauss transform (Greengard & Strain 1991) and
the dual-tree algorithm by Gray & Moore (2003) are alternative fast algorithms
for KDE. All these KDE algorithms are based on different approximation tech-
niques and are faster than O(n2). But these techniques require careful choices
of certain tuning parameters in order to balance computational speed-up and
approximation errors, and occasionally are as slow as O(n2) in order to achieve
good performance.

In this paper, we develop a super-fast kernel density estimation algorithm
(FastICA) and based on this a fast kernel ICA algorithm (KDICA). The remain-
ing of the paper is structured as follows. In Section 2, the FastKDE algorithm is
developed. In Section 3, the KDICA algorithm is described. In Section 4, some
simulation studies are used to show both computational and statistical efficiency
of KDICA. In Section 4, some statistical properties of KDICA are analyzed. Sec-
tion 5 concludes the paper. From now on, vectors and matrices are in bold and
capital. Wk denotes the kth row vector of W.

2 The FastKDE Algorithm

Let {xi : 1 ≤ i ≤ n} ⊂ R be from a density function p(·). The kernel density
estimator of p(·) is defined by

p̂(x) =
1
nh

n∑
i=1

K(
xi − x

h
), (2)

1 The neighborhood density estimator used by RADICAL only requires n log n com-
plexity, but it does not produce a continuous objective function w.r.t. W.
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where K(·) is a kernel density function and h is the bin width, usually h =
O(n−1/5). Popular choices of K(·) are symmetric density functions such as Gaus-
sian kernel, Laplacian kernel, Uniform, Epanechnikov, etc. We need to evaluate
p̂(x) for x ∈ {xi : i = 1, · · · , n}. Direct evaluation requires O(n2) complexity, and
alternative algorithms based on approximation are available with complexity less
than O(n2), but are not fast enough for ICA.

It is known that the choice of K is not crucial for KDE. Here we use the
Laplacian kernel and develop a simple fast algorithm. The Laplacian kernel is
K(x) = 1

2e
−|x|, x ∈ R. Although K(x) is not differentiable at x = 0, p̂(x) ≈∫

p(x + th)K(t)dt is differentiable wherever p(x) is.
First the sample points {xi} are sorted. Sorting n numbers can be performed

very quickly, for example the quick sort algorithm has complexity in the worst
case O(n log n) and the bucket sort algorithm requires linear time only. Without
loss of generality, let x1 ≤ · · · ≤ xn. It is not hard to show that for k = 1, · · · , n,

p̂(xk) =
1

2nh
{exp(

xk
h

)
n∑

i=k+1

exp(−xi
h

) + exp(−xk
h

)
k∑
i=1

exp(
xi
h

)}.

Then FastKDE can now be described as follows.

Algorithm. FastKDE (given h and x1 ≤ · · · ≤ xn)

1. Initialize s1 = ex1/h and sn = 0, then calculate for i = 2, · · · , n,

si = si−1 + exp(
xi
h

) and sn−i+1 = sn−i+2 + exp(−xn−i+2

h
).

2. For i = 1, · · · , n, compute

p̂(xi) =
1

2nh
{si exp(−xi

h
) + si exp(

xi
h

)}.

The exponential values {(exp(xi/h), exp(−xi/h)) : 1 ≤ i ≤ n} only need to be
computed once and saved for both Step 1 and Step 2. Then Step 1 and Step 2
require about 3n summations in total. Thus the total complexity of FastKDE is
about 2n exponential evaluations. The bin width h is chosen for simplicity by the
reference method which minimizes

∫
(p̂(x) − p(x))2dx and gives h = O(n−1/5)

(Silverman 1986). We recommend to use

ĥ = 0.6σ̂n−1/5 (3)

where σ̂ is the sample standard deviation of {xi}.

3 The KDICA Algorithms

In this section we develop the KDICA algorithm, for which the FastKDE al-
gorithm as the key technology is implemented. We use the maximum profile
likelihood and later establish its relationship with criteria derived from informa-
tion theory in Section 5.
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3.1 Maximum Profile Likelihood

Suppose each Sk has a density function rk(·), for k = 1, · · · ,m. Then the
density function of X can be expressed as pX(x) = | det(W)|

∏m
k=1 rk(Wkx),

where Wk is the kth row of W. The classical maximum likelihood estimator
(MLE) maximizes the likelihood of observations of X with respect to all the
parameters (W, r1, · · · , rm). However, since (r1, · · · , rm) are unknown functions,
model (1) is called semiparametric (Bickel et al. 1993) and direct implemen-
tation of MLE does not work by using finite samples. In this scenario, maxi-
mum profile likelihood (MPLE) can serve as an alternative of MLE (see Murphy
and van der Vaart 2000). If W is known, then rk is identical to the density
function of WkX. Thus rk can be estimated by the kernel density estimator
r̂Wk

(x) = (nh)−1∑n
t=1 K((WkX(t) − x)/h), where for the KDICA algorithm

the Laplacian kernel is used for K. The profile likelihood, say lp, is to modify
the likelihood function by replacing rk by r̂Wk

, that is,

lp(W) =
1
n

n∑
t=1

m∑
k=1

log r̂Wk
(WkX(t)) + log | det(W)|. (4)

Since lp(W) is just a function of W, the maximum profile likelihood estimator
(MPLE) is defined by

Ŵ = argmax lp(W). (5)

Obviously the computational bottleneck of MPLE is to evaluate {r̂Wk

(WkX(t)) : t = 1, · · · , n}mk=1. By using the FastKDE algorithm developed above,
the complexity of MPLE is reduced to O(mn).

3.2 Algorithm

This subsection describes the KDICA algorithm which implements the estimator
(5). Since prewhitening can reduce computational complexity while keeps statisti-
cal consistency (Chen & Bickel 2005), we use this technique to preprocess the data.
That is, let X̃(t) = Σ̂

−1/2
x X(t) for t = 1, · · · , n, where Σ̂x is the sample variance-

covariancematrix ofX(t).By assuming unitary variances forS, X̃canbe separated
by a rotation matrix. Then we seek for a rotation matrix Ô, such that

Ô = arg min
O∈O(m)

F (O), (6)

where F (O) = −
∑m
k=1

1
n

∑n
t=1 log r̃Ok

(OkX̃(t)), and r̃Ok
(s) = 1

nh

∑n
t=1

K((OkX̃(t) − s)/h) is the Laplacian kernel density estimator for OkX̃. O(m)
is the set of m ×m rotation matrices. Since OkX̃ has unitary variance, by (3),
h = 0.6n−1/5.

The optimization of (6) can be done efficiently by using the gradient algorithm
on the Stiefel manifold (Edelman, Arias & Smith 1999). We refer to Bach &
Jordan (2002) for how to implement it. The KDICA algorithm then has three
steps as follows. Note that the KDICA does not need any tuning parameters.
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Algorithm. KDICA (hn = 0.6n−1/5)

1. Prewhiten : X̃(t) = Σ̂
−1/2
x X(t) for t = 1, · · · , n, where Σ̂x is the sample

variance-covariance matrix of {X(t) : 1 ≤ t ≤ n}.
2. Optimize Ô = arg maxO∈O(m) F (O) using the gradient algorithm.
3. Output Ŵ = ÔΣ̂

−1/2
x .

4 Simulation Studies

We compare KDICA with several well-known ICA algorithms such as the gen-
eralized FastICA (Hyvarinen 1999), JADE (Cardoso 1999) and KGV (Bach and
Jordan 2002). Some recent algorithms such as NPICA (Boscolo et al 2004) and
EFFICA (Chen 2004) are also included for comparison. FastICA is used to
initialize KGV, NPICA, EFFICA and KDICA. We used m = 4 and m = 8
sources with different sample sizes 1000 and 4000. The 8 sources were gener-
ated from: N (0, 1), exp(1), t(3), lognorm(1,1), t(5), logistic(0,1), Weibull(3,1),
and exp(10)+N (0, 1). When m = 4, the first four distributions were used for
hidden sources. Each experiment was replicated 100 times and the boxplots
of Amari errors were reported. Figure 1 shows that KDICA is comparable to
EFFICA which has been proven to be asymptotically efficient under mild con-
ditions, and like other nonparametric algorithms, KDICA performs much better
than FastICA and JADE. The right panel of Figure 1 reports the average run-
ning time of all algorithms. The plot shows that KDICA is more than 20 times
faster than NPICA which uses the FFT based KDE algorithm and 50 times
faster than KGV. KDICA is about 10 times slower than but comparable to
FastICA and JADE. The KDICA algorithm exhibits very good simulation per-
formance. But due to space limitation, we are not allowed to report further simul-
ation studies.

We next apply the KDICA algorithm for blind separation of mixtures of im-
ages. Two natural images and a Gaussian noise image are given in the first row
of Figure 2, each of size 80 × 70 pixels (black/white). First, each pixel matrix
is reshaped into a column and each column is normalized by its sample stan-
dard deviation. Second, a random 3 × 3 matrix W ∈ Ω is inverted to obtain
three columns {X(t) ∈ R3 : 1 ≤ t ≤ 5600} and each column is reshaped into a
matrix of size 80 × 70. This gives three contaminated images, as shown in the
second row of Figure 2. Third, {X(t)} is separated into three vectors by using
KDICA, and each vector is reshaped into an image with 80× 70 pixels. Three
random restarting points were used in KDICA. It is surprising that human eyes
can hardly tell the difference between natural images and separated images. This
type of experiments have also been done by several different researchers in the
ICA literature (e.g. Yang and Amari 1997).

We ran this experiment 10 times with random W by using KDICA and several
other ICA algorithms. The average running times for the generalized FastICA,
JADE, and KDICA are 0.05, 0.03 and 1.82 seconds separately. Other nonpara-
metric algorithms such as NPICA and KGV take more than one minute.
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Fig. 1. Left panel: Comparison of KDICA and other ICA algorithms in terms of the
Amari errors, where the numbers below the x-labels are the average running time
(seconds/per experiment) of the corresponding algorithms. Right panel: Comparison
of running time of different ICA algorithms.

Fig. 2. Face identification by KDICA, where the three original, mixed and separated
images are given in the three rows separately

5 Statistical Consistency and Efficiency of KDICA

In this Section, we study the statistical properties of the estimator (5). Obviously
as n ↑ ∞, r̂Wk

→ rWk
, the density function of WkX . Thus for n = ∞, the

profile likelihood is equal to lp(W) = E
∑m
k=1 log rWk

(WkX) + log | det(W)|.
Let pW(·) be the joint density function of (W1X, · · · ,WmX), then pW(Wx) =
pX(x)/| det(W)|. Thus the mutual information of (W1X, · · · ,WmX) is equal to
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I(W) = E log
pW(WX)∏m
k=1 rWk

(WkX)
= E log pX(X) − lp(W).

Notice that E log pX(X) does not depend on the parameter W. The above equa-
tion implies that the profile likelihood criteria is equivalent to the mutual infor-
mation criteria which has been popularly used in the ICA literature. Thus we
would expect the statistical performance of KDICA to be similar to or better
than other nonparametric ICA algorithms. General connection between likeli-
hood inference and information theory criteria has been studied by Lee, Giro-
lami, Bell & Sejnowski (2000). We obtain statistical consistency of the KDICA
algorithm as summarized in Theorem 1, whose technical conditions and proof
are omitted here due to space limitation but refer to Chen (2004).

Theorem 1. Suppose that W is identifiable and the density functions of the hidden
sources are continuous and satisfy mild smoothness conditions. If hn = O(n−1/5).
Then the estimator Ŵ given by (5) is consistent, that is, ||Ŵ −WP || = oP (1),
where WP is the true unmixing matrix.

6 Concluding Remarks

In this paper, we have presented the FastKDE and KDICA algorithms. Due to
its computational and statistical efficiency, KDICA makes nonparametric ICA
applicable for large size problems of blind source separation. We conjecture that
FastKDE will make it convenient to deal with nonlinear independent component
analysis (Jutten et. al, 2004) in a truly nonparametric manner.
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Abstract. In this paper we discus a wide class of loss (cost) functions
for non-negative matrix factorization (NMF) and derive several novel
algorithms with improved efficiency and robustness to noise and out-
liers. We review several approaches which allow us to obtain generalized
forms of multiplicative NMF algorithms and unify some existing algo-
rithms. We give also the flexible and relaxed form of the NMF algorithms
to increase convergence speed and impose some desired constraints such
as sparsity and smoothness of components. Moreover, the effects of vari-
ous regularization terms and constraints are clearly shown. The scope of
these results is vast since the proposed generalized divergence functions
include quite large number of useful loss functions such as the squared
Euclidean distance,Kulback-Leibler divergence, Itakura-Saito, Hellinger,
Pearson’s chi-square, and Neyman’s chi-square distances, etc. We have
applied successfully the developed algorithms to blind (or semi blind)
source separation (BSS) where sources can be generally statistically de-
pendent, however they satisfy some other conditions or additional con-
straints such as nonnegativity, sparsity and/or smoothness.

1 Introduction and Problem Formulation

The non-negative matrix factorization (NMF approach is promising in many
applications from engineering to neuroscience since it is designed to capture al-
ternative structures inherent in the data and, possibly to provide more biological
insight [1, 2, 3, 4, 5, 6]. Lee and Seung introduced NMF in its modern formulation
as a method to decompose patterns or images [3, 7].

In this paper we impose nonnegativity constraints and other penalties such
as sparseness and/or smoothness. The NMF decomposes the data matrix Y =
[y(1),y(2), . . . ,y(N)] ∈ Rm×N as a product of two matrices A ∈ Rm×n and X =
[x(1),x(2), . . . ,x(N)] ∈ Rn×N having only non-negative elements. Although
some decompositions or matrix factorizations provide an exact reconstruction
of the data (i.e., Y = AX), we shall consider here decompositions which are
approximative in nature, i.e.,
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Y = AX + V , A ≥ 0, X ≥ 0 (1)

or equivalently y(k) = Ax(k) + v(k), k = 1, 2, . . . , N or in a scalar form
as yi(k) =

∑n
j=1 aijxj(k) +νi(k), i = 1, . . . ,m, where V ∈ Rm×N rep-

resents noise or error matrix, y(k) = [y1(k), . . . , ym(k)]T is a vector of the
observed signals (typically nonnegative) at the discrete time instants k while
x(k) = [x1(k), . . . , xn(k)]T is a vector of components or source signals at the
same time instant [8]. Our objective is to estimate the mixing (basis) matrix
A and sources X subject to nonnegativity constraints on all entries. Usually,
in BSS applications it is assumed that N >> m ≥ n and n is known or can
be relatively easily estimated using SVD or PCA. Throughout this paper, we
use the following notations: xj(k) = xjk, yi(k) = yik and zik = [AX]ik means
ik-element of the matrix (AX), the ij-th element of the matrix A is denoted
by aij .

The basic approach to NMF is alternating minimization or alternating pro-
jection: the specified loss function is alternately minimized with respect to two
sets of parameters {xjk} and {aij}, each time optimizing one set of arguments
while keeping the other one fixed [2, 3, 8].

The most popular adaptive multiplicative algorithms for NMF are based on
two loss functions: 1. square Euclidean distance expressed by the Frobenius norm:

DF (A,X) =
1
2
‖Y −AX‖2F =

1
2

m∑
i=1

N∑
k=1

|yik − [AX] ik|2

s. t. aij ≥ 0, xj(k) = xjk ≥ 0 ∀ i, j, k, (2)

which is optimal for a Gaussian distributed noise). Based on of this cost function
Lee and Seung proposed the following multiplicative algorithm:

aij ← aij
[Y XT ] ij

[AX XT ] ij
, xjk ← xjk

[AT Y ] jk
[ATAX] jk

. (3)

which is an extension of the well known ISRA (Image Space Reconstruction
Algorithm) algorithm [9]. Alternative mostly used loss function that intrinsically
ensures non-negativity constraints and it is related to the Poisson likelihood is
a functional based on the Kullback-Leibler divergence [3, 5]:

DKL(Y ||[AX]) =
∑
ik

(
yik log

yik
[AX]ik

+ [AX]ik − yik

)
(4)

s. t. xjk ≥ 0, aij ≥ 0, ‖aj‖1 =
m∑
i=1

aij = 1.

Using the alternating minimization approach, Lee and Seung derived the follow-
ing multiplicative learning rules:

xjk ← xjk

∑m
i=1 aij (yik/[AX]ik)∑m

q=1 aqj
, aij ← aij

∑N
k=1 xjk (yik/[AX] ik)∑N

p=1 xjp
, (5)
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which are extensions (by alternating minimization) of the well known EMML or
Richardson-Lucy algorithm (RLA) [9].

It should be noted that he most existing NMF algorithms perform blind source
separation rather very poorly due to the non-uniqueness of solution and/or the
lack of additional constraints which should be satisfied. The main objective of this
contribution is to propose flexible and improved NMF algorithms that general-
ize or combine several different criteria in order to extract physically meaningful
sources, especially for biomedical signal applications such as EEG and MEG.

2 Generalized Divergences for NMF

There are three large classes of generalized divergences which can be potentially
useful for developing new flexible algorithms for NMF: the Bregman divergences,
Amari’s alpha divergence [1] and the Csiszár’s ϕ-divergences [10]. In this con-
tribution we limit our discussion to the Csiszár’s divergences and as the special
case the alpha divergence. The Csiszár’s ϕ-divergence s defined as

DC(z||y) =
N∑
k=1

zkϕ(
yk
zk

) (6)

where yk ≥ 0, zk ≥ 0 and ϕ : [0,∞) → (−∞,∞) is a function which is convex
on (0,∞) and continuous at zero. Depending on the application, we can impose
different restrictions on ϕ. In order to use the Csiszár’s divergence as a distance
measure, we assume that ϕ(1) = 0 and that it is strictly convex at 1.

Several basic examples include (uik = yik/zik):

1. If ϕ(u) = (
√
u− 1)2, then DC−H =

∑
ik(
√
y
ik
−
√
zik)

2 -Hellinger distance;
2. If ϕ(u) = (u − 1)2, then DC−P =

∑
ik(yik − zik)2/zik -Pearson’s distance;

3. For ϕ(u) = u(uβ−1 − 1)/(β2 − β) + (1 − u)/β we have a family of Amari’s
alpha divergences:

D
(β)
A (AX||Y ) =

∑
ik

yik
(yik/zik)β−1 − 1

β(β − 1)
+

zik − yik
β

, zik = [AX]ik, (7)

where β = (1 + α)/2 [1] (see also Ali-Sllvey, Liese & Vajda, Cressie-Read dis-
parity, Eguchi beta divergence,Kompass) [11, 12]. It is interesting to note that
in the special cases for β = 2, 0.5,−1, we obtain Pearson’s, Hellinger and Ney-
man’s chi-square distances, respectively (while for the cases β = 1 and β = 0
the divergences have to be defined as limiting cases as β → 1 and β → 0, re-
spectively). When these limits are evaluated one gets for β → 1 the generalized
Kullback-Leibler divergence (called I-divergence) defined by equations (4) and
for β → 0 the dual generalized KL divergence:

DKL(AX||Y ) =
∑
ik

(
[AX]ik log

[AX]ik
yik

− [AX]ik + yik

)
(8)
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As an illustrative example, let us derive a new multiplicative learning rule for
the loss function (8). By applying multiplicative exponentiated gradient (EG)
descent updates:

xjk ← xjk exp
(
−ηj

∂DKL
∂xjk

)
, aij ← aij exp

(
−η̃j

∂DKL
∂aij

)
, (9)

we obtain new simple multiplicative learning rules for NMF

xjk ← xjk exp

(
m∑
i=1

ηjaij log(
yik

[AX]ik
)

)
= xjk

m∏
i=1

(
yik

[AX]ik

)ηjaij

, (10)

aij ← aij exp

(
N∑
k=1

η̃jxjk log(
yik

[AX]ik
)

)
= aij

N∏
k=1

(
yik

[AX]ik

)η̃jxjk

, (11)

The nonnegative learning rates ηj , η̃j can take different forms. Typically, in order
to guarantee stability of the algorithm we assume that ηj = ω (

∑m
i=1 aij)

−1,
η̃j = ω (

∑N
k=1 xjk)

−1, where ω ∈ (0, 2) is an over-relaxation parameter. The
above algorithm can be considered as an alternating minimization/projection
extension of the well known SMART (Simultaneous Multiplicative Algebraic
Reconstruction Technique) [9].

Similarly, for β �= 0 we have developed the following new algorithm (the proof
is omitted due to the lack of space)

xjk ← xjk

(
m∑
i=1

aij (yik/[AX]ik)
β

)1/β

, aij ← aij

(
N∑
k=1

(yik/[AX ]ik)
β
xjk

)1/β

with normalization of columns of A in each iteration to unit length: aij ←
aij/
∑
p apj . The algorithm can be written in a compact matrix form using some

MATLAB notations:

X ←X . ∗
(
AT ((Y + ε)./ (AX + ε)).β

)
.1/β (12)

A← A . ∗
(
((Y + ε)./ (AX + ε)).βXT

)
.1/β , A← A diag{1./sum(A, 1)},

where in practice a small constant ε = 10−9 is introduced in order to ensure
non-negativity constraints and avoid possible division by zero.

3 Modified Multiplicative NMF Algorithms with
Regularization, Sparsity and/or Smoothing

Although the standard NMF (without any auxiliary constraints) provides sparse-
ness of its components, we can achieve some control of this sparsity by imposing
additional constraints in addition to non-negativity constraints. In fact, we can
incorporate smoothness or sparsity constraints in several ways. As an illustrative
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example, let us consider a modified alpha divergence with regularization terms
(which is an extension of the generalized divergence proposed recently by Raul
Kompass [12]):

DKo(Y ||AX) =
∑
ik

(
yik

yβ−1
ik − [AX ]β−1

ik

β(β − 1)
+ [AX]β−1

ik

[AX]ik − yik
β

)
+αXfX(X) + αAfA(A), (13)

where regularization parameters and terms fA(A) and fX(X) are introduced
to enforce a certain application-dependent characteristic of solutions such as
smoothness or sparsity. For example, in order to achieve sparse representation
we usually choose fX(xj) = xj with constraints xj ≥ 0.

It is interesting to note that such defined divergence for αX = αA = 0 and
β = 2 simplifies to the Frobenius norm (2); for β → 0 it tends to Itakura -Saito
distance, and for β → 1 reduces to the Kullback-Leibler divergence (4).

Applying the standard gradient descent to (13) we have

xjk ← xjk − ηjk

(
m∑
i=1

aij

(
[AX]β−1

ik − yik/[AX ]2−βik

)
− αXψX(X)

)
(14)

aij ← aij − ηij

(
N∑
k=1

(
[AX]β−1

ik − yik/[AX]2−βik

)
xjk − αAψA(A)

)
, (15)

where the functions ψA(A) and ψX(X) are defined as

ψA(A) =
∂fA(A)
∂aij

, ψX(X) =
∂fX(X)
∂xjk

. (16)

Similar to the Lee and Seung approach, by choosing suitable learning rates:

ηjk =
xjk∑m

i=1 aij [AX]β−1
ik

, ηij =
aij∑N

k=1[AX]β−1
ik xjk

, (17)

we obtain multiplicative update rules:

xjk ← xjk
[
∑m
i=1 aij (yik/[AX ]2−βik )− αXψX(X)]ε∑m

i=1 aij [AX]β−1
ik

, (18)

aij ← aij
[
∑N
k=1(yik/[AX]2−βik ) xjk − αAψA(A)]ε∑N

k=1[AX]β−1
ik xjk

, (19)

where the additional nonlinear operator is introduced in practice defined as
[x]ε = max{ε, x} with a small ε in order to avoid zero and negative values.

Another simple approach which can be used for control of sparsification of es-
timated variables is to apply nonlinear projections via suitable nonlinear mono-
tonic functions which increase or decrease the sparseness. In this paper we have
applied a very simple nonlinear transformation xjk ← (xjk)

1+αsX , ∀k, where
αsX is a small coefficient typically, from 0.001 to 0.005 and it is positive if we
want to increase sparseness of an estimated component and negative if we want
to decrease the sparseness (see Table 1 for practical implementations).
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Table 1. New Multiplicative NMF algorithms with regularization and/or sparsity con-
straints

Minimization of loss function Iterative Learning Algorithm

subject to aij ≥ 0 and xjk ≥ 0 Relaxation parameter ω ∈ (0, 2)

Alpha divergence, β �= 0, β �= 1 xjk ← xjk
m
i=1 aij (

yik

[A X ]ik
)β

ω/β 1+αsX

ik

yβ
ikz1−β

ik − βyik + (β − 1)zik

β(β − 1)
aij ← aij

N
k=1 xjk (

yik

[A X ]ik
)β

ω/β 1+αsA

aij ← aij/ p apj ,

Pearson and Hellinger distances

ik

(yik − [AX ]ik)2

[AX ]ik
, (β = 2)

ik

[AX ]ik − √
yik

2
, (β = 0.5)

Kulback-Leibler divergence xjk ← xjk

m

i=1

aij
yik

[A X ]ik

ω 1+αsX

ik

(yik log
yik

[AX ]ik
− yik + [AX ]ik) aij ← aij

N

k=1

xjk
yik

[A X ] ik

ω 1+αsA

(β = 1) aij ← aij/(
p

apj)

K-L divergence (dual) xjk ← xjk

m

i=1

yik

[AX ]ik

ω aij
1+αsX

ik

([AX ]ik log
[AX ]ik

yik
+ yik − [AX ]ik) aij ← aij

N

k=1

yik

[AX ]ik

η̃jxjk
1+αsA

(β = 0) aij ← aij/(
p

apj), η̃j = ω (
k

xjk)−1

Euclidean distance xjk ← xjk

[AT Y ]ik − αX ψX(X)
ε

[AT A X ]ik + ε

‖Y − [AX ]‖2
F + αXfX(X) + αAfA(A) aij ← aij

[Y XT ]ij − αA ψA(A)
ε

[A X XT ]ij + ε

Kompass generalized divergence xjk ← xjk
[ m

i=1 aij (yik/[AX ]2−β
ik ) − αXψX(X)]ε

m
i=1 aij [AX ]β−1

ik + ε

ik

(yik
yβ−1

ik − [AX ]β−1
ik

β(β − 1)
+ aij ← aij

[ N
k=1 xjk (yik/[AX ]2−β

ik )]ε
N
k=1 xjk [AX ]β−1

ik + ε

1+αsA

+[AX ]β−1
ik

[AX ]ik − yik

β
) + αXfX(X) aij ← aij/(

p

apj), β ∈ [0, 2]
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4 Simulation Results

All the NMF algorithms discussed in this paper (see Table 1) have been exten-
sively tested for many difficult benchmarks for sparse signals and images with
various statistical distributions. The simulation results confirmed that the de-
veloped algorithms are stable, efficient and provide consistent results for a wide
set of parameters. Due to the limit of space we give here only one illustrative
example: Nine nonnegative sparse signals (some of them are statistically depen-
dent) shown in Fig.1 (a) have been mixed by randomly generated nonnegative
matrix A ∈ R18×9. To the mixture we added an uniform distributed noise with
SNR=20 dB. The mixed signals are shown in Fig.1 (b). Using the known stan-
dard NMF algorithm (5) we failed to estimate the original sources (see Fig.1 (c)).
However, for the new algorithms we reconstructed successfully all the sources.
Fig. 1 (d) illustrates the results obtained by using algorithm (12) with β = 2
and the nonlinear projection with αsX = αsA = 0.002 (see also Table 1). Similar

(a) (b)

(c) (d)

Fig. 1. Example 1: (a) The original 9 source signals, (b) observed 18 mixed signals, (c)
Estimated sources using standard Lee-Seung algorithm (5) (d) Estimated source signals
using the new algorithm (12) for β = 2 with nonlinear projection αsX = αsA = 0.002
with SIR=32dB, 20dB, 19dB, 18dB, 23dB, 25dB, 27dB, 26dB, 19dB, for individual
sources respectively
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or even slightly better performance we achieved by applying the other proposed
algorithms with regularization/projection (Table 1).

5 Conclusions and Discussion

In this paper we discuss loss functions which allow to derive us a very large class
of flexible, robust and efficient NMF adaptive algorithms. The optimal choice
of β depends on the distribution of data and a priori knowledge about noise. If
such knowledge is not available, we may run NMF algorithms for various sets of
parameters to find an optimal solution. For some tasks and distributions there
are particular divergence measures that are uniquely suited. On the other hand,
if the approximating model fits the true distribution well, then it does not matter
which divergence measure is used, since all of them will give similar results. The
discussed loss functions are jointly convex. This property is stronger than the
individual convexity in {yik} and {zik}. However, it very difficult to prove the
global convergence of the derived NMF algorithms. Our simulation experiments
indicate that for m >> n, typically m > 5n and N = 103 ∼ 104, we usually
avoid stucking in poor local minima. We found by extensive simulations that reg-
ularization/projections techniques play a key role in improving the performance
of blind source separation by using the NMF approach.
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Abstract. In this paper we show that the underdetermined ICA prob-
lem can be solved using a set of spatial covariance matrices, in case the
sources have sufficiently different temporal autocovariance functions. The
result is based on a link with the decomposition of higher-order tensors
in rank-one terms. We discuss two algorithms and present theoretical
bounds on the number of sources that can be allowed.

1 Introduction

Let us use the following notation for the basic Independent Component Analysis
(ICA) model:

xt = Ast + nt, (1)

in which the observation vector xt ∈ CJ , the noise vector nt ∈ CJ and the source
vector st ∈ CR are zero-mean. The mixing matrix A ∈ CJ×R. The goal is to
exploit the assumed mutual statistical independence of the source components
to estimate the mixing matrix and/or the source signals from the observations.
The literature on ICA addresses for the most part the so-called overdetermined
case, where J � R. Here, we consider the underdetermined or overcomplete case,
where J < R.

A large class of algorithms for underdetermined ICA starts from the assump-
tion that the sources are (quite) sparse [2, 12, 15, 22]. In this case, the scatter plot
typically shows high signal values in the directions of the mixing vectors. These
extrema may be localized by maximization of some clustering measure [2, 12].
Some of these techniques are based on an exhaustive search in the mixing vector
space, and are therefore very expensive when there are more than two observa-
tion channels. In a preprocessing step a linear transform may be applied such
that the new representation of the data is sparser (e.g. short-time Fourier trans-
form in the case of audio signals) [2].
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There are two aspects to ICA: estimation of the mixing matrix and separa-
tion of the sources. In the overdetermined case, sources are usually separated
by multiplying the observations with the pseudo-inverse of the mixing matrix
estimate. This is no longer possible in the case of underdetermined mixtures:
for each sample xt, the corresponding source sample st that satisfies xt = Ast
is only known to belong to an affine variety of dimension J − R — hence the
term “underdetermined”. One could estimate the sources and the mixing matrix
simultaneously by exploiting prior knowledge on the sources [15, 22]. An other
approach is to estimate the mixing matrix first, and then estimate the sources.
In this paper we will show that the estimation of the mixing matrix is actually
an overdetermined subproblem, even in the case of underdetermined mixtures.
If the source densities are known, then st may subsequently be estimated by
maximizing the log posterior likelihood [15]. In the case of Laplacian probability
densities, modelling sparse sources, this can be formulated in terms of a linear
programming problem [2, 15]. In the case of finite alphabet signals in telecommu-
nication, one may perform an exhaustive search over all possible combinations.
In this paper we will focus on the estimation of the mixing matrix.

This paper presents new contributions to the class of algebraic algorithms
for underdetermined ICA. In [6, 7, 8] algorithms are derived for the case of two
mixtures and three sources. An arbitrary number of mixing vectors can be esti-
mated from two observation channels by sampling derivatives of sufficiently high
order of the second characteristic function [19]. Algebraic underdetermined ICA
is based on the decomposition of a higher-order tensor in a sum of rank-1 terms.
Some links with the literature on homogeneous polynomials are discussed in [5].

In this paper we assume that the sources are individually correlated in time.
The spatial covariance matrices of the observations then satisfy [1]:

C1 ≡ E{xtxHt+τ1} = A ·D1 ·AH

...
CK ≡ E{xtxHt+τK

} = A ·DK ·AH (2)

in which Dk ≡ E{stsHt+τk
} is diagonal, k = 1, . . . ,K. For simplicity, we have

dropped the noise terms; they can be considered as a perturbation of (2).
Let us stack the matrices C1, . . . , CK in Eq. (2) in a tensor C ∈ CJ×J×K .

Define a matrix D ∈ CK×R by (D)kr ≡ (Dk)rr, k = 1, . . . ,K, r = 1, . . . , R.
Then we have

cijk =
R∑
r=1

aira
∗
jrdkr, (3)

which we write as

C =
R∑
r=1

ar ◦ a∗
r ◦ dr, (4)

in which ◦ denotes the tensor outer product and in which {ar} and {dr} are
the columns of A and D, respectively. Eq. (4) is a decomposition of tensor C in
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a sum of R rank-1 terms. In the literature, this is called a “Canonical Decom-
position” (CANDECOMP) [4] or a “Parallel Factors Model” (PARAFAC) [13].
The minimal number of rank-1 tensors in which a higher-order tensor can be
decomposed, is called its rank. Note that each rank-1 term in (4) consists of the
contribution of one distinct source to C. Hence, in terms of this tensor, “source
separation” amounts to the computation of decomposition (4), provided it is
unique. In contrast to the matrix case, PARAFAC can be unique (up to some
trivial indeterminacies) even when (i) the rank-1 terms are not mutually orthog-
onal and (ii) the rank is greater than the smallest tensor dimension. This allows
for the determination of the mixing matrix (up to a scaling and permutation of
its columns) in the overcomplete case.

Uniqueness issues are discussed in Section 2. Section 3 and 4 present algo-
rithms for the computation of decomposition (4). Section 3 deals with the case
where R > K. More powerful results are obtained for the case where R � K in
Section 4. Section 5 shows the results of some simulations. The presentation is
in terms of complex signals. Whenever the results cannot be directly applied to
real data, this will be explicitly mentioned.

This paper is a short version of [11]. The foundations of Section 4 were laid
in [3]. Some mathematical aspects are developed in more detail in [10].

2 PARAFAC Uniqueness

PARAFAC can only be unique up to permutation of the rank-1 terms and scaling
and counterscaling of the factors of the rank-1 terms. We call the decomposition
in (4) essentially unique if any other matrix pair A′ and D′ that satisfies (4), is
related to A and D via

A = A′ ·P ·Ω1 D = D′ ·P ·Ω2, (5)

with Ω1, Ω2 diagonal matrices, satisfying Ω1 ·Ω∗
1 ·Ω2 = I, and P a permutation

matrix.
A first uniqueness result requires the notion of Kruskal-rank or k-rank k(A)

of a matrix A [14]. It is defined as the maximal number k such that any set of
k columns of A is linearly independent. From [14, 18] we have then immediately
that decomposition (4) is essentially unique when

2k(A) + k(D) � 2(R + 1). (6)

For a second uniqueness condition we assume that the number of sources R
does not exceed the number of covariance matrices K. We call decomposition
(4) generic when the (noiseless) entries of A and D can be considered drawn
from continuous probability densities. It turns out that in the complex case the
generic decomposition is essentially unique when 2R(R−1) � J2(J−1)2 [10, 11].
For real-valued tensors, we have uniqueness if R � Rmax, given by [18]:

J 2 3 4 5 6 7 8
Rmax 2 4 6 10 15 20 26



Second-Order Blind Identification of Underdetermined Mixtures 43

3 Case 1: R > K

Generically, a matrix is full rank and full k-rank. Hence, in practice, k(A) =
min(J,R) = J and k(D) = min(K,R) = K if R > K. Eq. (6) then guarantees
identifiability if 2J +K � 2R+ 2, i.e., when the number of sources R � J − 1 +
K/2.

The standard way to compute PARAFAC, is by means of an “Alternating
Least Squares” (ALS) algorithm [13]. The aim is to minimize the (squared)
Frobenius norm of the difference between C and its estimated decomposition in
rank-1 terms by means of an iteration in which each step consists of fixing a
subset of unknown parameters to their current estimates, and optimizing w.r.t.
the remaining unknowns, followed by fixing an other subset of parameters, and
optimizing w.r.t. the complimentary set, etc. (Like for matrices, the squared
Frobenius norm of a tensor is the sum of the squared moduli of its entries.)
More specifically, one optimizes the cost function

f(U,V,D) = ‖C −
R∑
r=1

ur ◦ v∗
r ◦ dr‖2. (7)

Due to the multi-linearity of the model, estimation of one of the arguments,
given the other two, is a classical linear least squares problem. One alternates
between updates of U, V and D. After updating U and V, their columns are
rescaled to unit length, to avoid under- and overflow. Although during the iter-
ation the symmetry of the problem is broken, one supposes that eventually U
and V both converge to A. If some difference remains, then the mixing vector
ar can be estimated as the dominant left singular vector of the matrix [ur vr ],
r = 1, . . . , R. The rank of C is estimated by trial-and-error. In [16] an exact line
search is proposed to enhance the convergence of the ALS algorithm.

4 Case 2: R � K

In this case, one can still work as in the previous section. However, more pow-
erful results can be derived. We assume that the second uniqueness condition in
Section 2 is satisfied. This implies in particular that R < J2.

We stack the entries of tensor C in a (J2 ×K) matrix C as follows:

(C)(i−1)J+j,k = cijk, i ∈ [1, J ], j ∈ [1, J ], k ∈ [1,K].

Eq. (4) can be written in a matrix format as:

C = (A�A∗) ·DT , (8)

in which � denotes the Khatri-Rao or column-wise Kronecker product, i.e., A�
A∗ ≡ [a1⊗a∗

1, . . . ,aR⊗a∗
R]. If R � min(J2,K), then A�A∗ and S are generically

full rank [10]. This implies that the number of sources R is simply equal to the
rank of C. Instead of determining it by trial-and-error, as in the previous section,
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it can be estimated as the number of significant singular values of C. Let the
“economy size” Singular Value Decomposition (SVD) of C be given by:

C = U ·Σ ·VH , (9)

in which U ∈ CJ
2×R and V ∈ CK×R are column-wise orthonormal matrices and

in which Σ ∈ RR×R is positive diagonal. We deduce from (8) and (9) that there
exists an a priori unknown matrix F ∈ CR×R that satisfies:

A�A∗ = U ·Σ · F. (10)

If we would know F, then the mixing matrix A would immediately follow. Stack
the entries of the columns mr of A � A∗ in (J × J) matrices Mr as follows:
(Mr)ij ≡ (mr)(i−1)J+j , i, j = 1, . . . , J . Then Mr is theoretically a rank-one
matrix: Mr = araHr . This means that ar can, up to an irrelevant scaling factor,
be determined as the left singular vector associated with the largest singular
value of Mr, r = 1, . . . , R.

We will now explain how the matrix F in (10) can be found. Let Er be a
(J × J) matrix in which the rth column of matrix UΣ is stacked as above. We
have

Er =
R∑
k=1

(
akaHk

)
(F−1)kr . (11)

This means that the matrices Er consist of linear combinations of the rank-one
matrices akaHk and that the linear combinations are the entries of the nonsingular
matrix F−1. It would be helpful to have a tool that allows us to determine
whether a matrix is rank-one or not. Such a tool is offered by the following
theorem [3, 10].

Theorem 1. Consider the mapping Φ: (X,Y) ∈ CJ×J × CJ×J �−→ Φ(X,Y) =
P ∈ CJ×J×J×J defined by:

pijkl = xijykl + yijxkl − xilykj − yilxkj

for all index values. Given X ∈ CJ×J , Φ(X,X) = 0 if and only if the rank of X
is at most one.

From the matrix UΣ in the SVD (9) we construct the set of R2 tensors {Prs ≡
Φ (Er,Es)}r,s∈[1,R]. It can now be proved [3, 10, 11] that generically there exist
exactly R linearly independent symmetric matrices Br ∈ CR×R that satisfy:

R∑
t,u=1

Ptu(Br)tu = 0. (12)

Moreover, these matrices can all be diagonalized by F:

B1 = F ·Λ1 · FT
...

BR = F ·ΛR ·FT (13)
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in which Λ1, . . . ,ΛR are diagonal. Eqs. (12) and (13) provide the means to find
F. Eq. (12) is just a linear set of equations, from which the matrices Br may
be computed. Note that, in the absence of noise, F already follows from the
Eigenvalue Decomposition (EVD)

B1 ·B−1
2 = F · (Λ1 ·Λ−1

2 ) ·F−1.

In practice, it is more reliable to take all matrices in (13) into account. The
set can be simultaneously diagonalized by means of the algorithms presented in
[9, 13, 20, 21].

5 Simulations

We conduct a Monte-Carlo experiment consisting of 100 runs. In each run, signal
values are drawn from a standardized complex Gaussian distribution and subse-
quently passed through a filter of which the coefficients are rows of a (16× 16)
Hadamard matrix. (More specifically, rows 1, 2, 4, 7, 8 and 13 are considered.)
The resulting sources are mixed by means of a matrix of which the entries are
also drawn from a standardized complex Gaussian distribution and additive
Gaussian noise is added.

In the first experiment, we assume J = 4 observation channels and R = 5
sources. Covariance matrices are computed for τ = 0, . . . , 3. This problem is
quite difficult since two of the (4×4) submatrices of D have a condition number
of about 30, which indicates some lack of “diversity” for these submatrices. The
number of samples T = 10000. The mixing matrix is computed by means of the
ALS algorithm described in Section 3. In Fig. 1 we plot the mean relative error
E{‖A− Â‖/‖A‖}, in which the norm is the Frobenius-norm. (The columns of
A are normalized to unit length and Â represents the optimally ordered and
scaled estimate.)

In the second experiment, we compute 12 covariance matrices (τ = 0, . . . , 11).
This makes the problem better conditioned. We consider R = 5 or 6 sources.
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Fig. 1. Relative error in the first experiment (K = 4)
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Fig. 2. Relative error in the second experiment (K = 12)

The number of samples T = 5000. The mixing matrix is computed by means
of the algorithm described in Section 4, where we used the algorithm derived in
[20] for the simultaneous diagonalization. The mean relative error is shown in
Fig. 2. Note that the mixing matrix is estimated with an accuracy of two digits.

To have a reference, we also computed the solution by means of the AC-DC
algorithm proposed in [21]. In neither experiment, AC-DC yielded a reliable
estimate of the mixing matrix.

6 Conclusion

In this paper we exploited differences in autocovariance to solve the underde-
termined ICA problem. The joint decomposition of a set of spatial covariance
matrices was interpreted as the decomposition in rank-one terms of the third-
order tensor in which these matrices can be stacked. We distinguished between
two cases, depending on whether the number of covariance matrices K exceeds
the number of sources R or not. For both cases, we presented theoretical bounds
on the number of sources that can be allowed and discussed algebraic algorithms.
We explained that, in the case K > R, the noise-free solution can be obtained by
means of an EVD. The same approach can be used for nonstationary sources, by
considering spatial covariance matrices at different time instances, sets of spatial
time-frequency distributions, etc.
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Abstract. This paper concerns underdetermined linear instantaneous
blind source separation (BSS), i.e. the case when the number P of ob-
served mixed signals is lower than the number N of sources. We pro-
pose a partial BSS method, which separates P supposedly non-stationary
sources of interest one from the others (while keeping residual compo-
nents for the other N − P , supposedly stationary, ”noise” sources). This
method is based on the general differential BSS concept that we in-
troduced before. Unlike our previous basic application of that concept,
this improved method consists of a differential extension of the FastICA
method (which does not apply to underdetermined mixtures), thus keep-
ing the attractive features of the latter algorithm. Our approach is there-
fore based on a differential sphering, followed by the optimization of the
differential kurtosis that we introduce in this paper. Experimental tests
show that this differential method is much more robust to noise than
standard FastICA.

1 Introduction

Blind source separation (BSS) methods [9] aim at restoring a set of N unknown
source signals sj(n) from a set of P observed signals xi(n). The latter signals
are linear instantaneous mixtures of the source signals in the basic case, i.e.

x(n) = As(n) (1)

where s(n) = [s1(n) . . . sN (n)]T and x(n) = [x1(n) . . . xP (n)]T are the source and
observation vectors, and A is a constant mixing matrix. We here assume that the
signals and mixing matrix are real-valued and that the sources are centered and
statistically independent. Moreover, we consider the underdetermined case, i.e.
P < N , and we require that P ≥ 2. Some analyses and statistical BSS methods
have been reported for this difficult case (see e.g. [2],[3],[4],[7],[10]). However, they
set major restrictions on the source properties (discrete sources are especially
considered) and/or on the mixing conditions. Other reported approaches use
in several ways the assumed sparsity of the sources (see e.g. [1] and references

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 48–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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therein). In [6], we introduced a general differential BSS concept for processing
underdetermined mixtures. In its standard version, we consider the situation
when (at most) P of the N mixed sources are non-stationary while the other
N − P sources (at least) are stationary. The P non-stationary sources are the
signals of interest in this approach, while the N − P stationary sources are
considered as ”noise sources”. Our differential BSS concept then achieves the
”partial BSS” of the P sources of interest, i.e. it yields output signals which
each contain contributions from only one of these P sources, still superimposed
with some residual components from the noise sources (this is described in [6]).

Although we first defined this differential BSS concept in a quite general
framework in [6], we then only applied it to a simple but restrictive BSS method,
which is especially limited to P = 2 mixtures and based on slow-convergence al-
gorithms. We here introduce a much more powerful BSS criterion and associated
algorithms, based on differential BSS. This method is obtained by extending
to underdetermined mixtures the kurtotic separation criterion [5] and the as-
sociated, fast converging, fixed-point, FastICA algorithm [8], thus keeping the
attractive features of the latter algorithm.

2 Proposed Differential BSS Method

2.1 A New BSS Criterion Based on Differential Kurtosis

The standard FastICA method [8], which is only applicable to the case when
P = N (or P > N), extracts a source by means of a two-stage procedure. The
first stage consists in transferring the observation vector x(n) through a real
PxP matrix M , which yields the vector

z(n) = Mx(n). (2)

In the standard FastICA method, M is selected so as to sphere the observations,
i.e. so as to spatially whiten and normalize them. The second stage of that
standard method then consists in deriving an output signal yi(n) as a linear
instantaneous combination of the signals contained by z(n), i.e

yi(n) = wT z(n) (3)

where w is a vector, which is constrained so that ‖ w ‖= 1. This vector w is
selected so as to optimize the (non-normalized) kurtosis of yi(n), defined as its
zero-lag 4th-order cumulant

Kyi(n) = cum(yi(n), yi(n), yi(n), yi(n)). (4)

Now consider the underdetermined case, i.e. P < N . We again derive an output
signal yi(n) according to (2) and (3). We aim at defining how to select M and
w, in order to achieve the above-defined partial BSS of the P sources of interest.
To this end, we apply the general differential BSS concept that we described
in [6] to the specific kurtotic criterion used in the standard FastICA method.
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We therefore consider two times n1 and n2. We then introduce the differential
(non-normalized) kurtosis that we associate to (4) for these times. We define
this parameter as

DKyi(n1, n2) = Kyi(n2)−Kyi(n1). (5)

Let us show that, whereas the standard parameter Kyi(n) depends on all sources,
its differential version DKyi(n1, n2) only depends on the non-stationary sources.
Eq. (1), (2) and (3) yield

yi(n) = vT s(n) (6)

where the vector
v = (MA)Tw (7)

includes the effects of the mixing and separating stages. Denoting vq, with q =
1 . . .N , the entries of v, (6) implies that the output signal yi(n) may be expressed
with respect to all sources as

yi(n) =
N∑
q=1

vqsq(n). (8)

Using cumulant properties and the assumed independence of all sources, one
derives easily

Kyi(n) =
N∑
q=1

v4
qKsq(n) (9)

where Ksq(n) is the kurtosis of source sq(n), again defined according to (4). The
standard output kurtosis (9) therefore actually depends on the kurtoses of all
sources. The corresponding differential output kurtosis, defined in (5), may then
be expressed as

DKyi(n1, n2) =
N∑
q=1

v4
qDKsq(n1, n2) (10)

where we define the differential kurtosis DKsq(n1, n2) of source sq(n) in the same
way as in (5). Let us now take into account the assumption that P sources are
non-stationary, while the other sources are stationary. We denote by I the set
containing the P unknown indices of the non-stationary sources. The standard
kurtosis Ksq(n) of any source sq(n) with q /∈ I then takes the same values for
n = n1 and n = n2, so that DKsq(n1, n2) = 0 1. Eq. (10) then reduces to

DKyi(n1, n2) =
∑
q∈I

v4
qDKsq(n1, n2). (11)

1 Note that the ”complete” stationarity of the sources sq(n) with q /∈ I is sufficient
for, but not required by, our method: we only need their differential kurtoses (and
their differential powers below) to be zero for the considered times.
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This shows explicitly that this differential parameter only depends on the non-
stationary sources. Moreover, for given sources and times n1 and n2, it may be
seen as a function f(.) of the set of variables {vq, q ∈ I}, i.e DKyi(n1, n2) is
equal to

f(vq, q ∈ I) =
∑
q∈I

v4
qαq (12)

where the parameters αq are here equal to the differential kurtoses DKsq(n1, n2)
of the non-stationary sources. The type of function defined in (12) has been
widely studied in the framework of standard kurtotic BSS methods, i.e. methods
for the case when P = N , because the standard kurtosis used as a BSS criterion
in that case may also be expressed according to (12) 2. The following result
has been established (see [9] p. 173 for the basic 2-source configuration and [5]
for a general proof). Assume that all parameters αq with q ∈ I are non-zero,
i.e. that all non-stationary sources have non-zero differential kurtoses for the
considered times n1 and n2. Consider the variations of the function in (12) on
the P - dimensional unit sphere, i.e. for {vq, q ∈ I} such that∑

q∈I
v2
q = 1. (13)

The results obtained in [5],[9] imply in our case that the maxima of the absolute
value of f(vq, q ∈ I) on the unit sphere are all the points such that only one of
the variables vq, with q ∈ I, is non zero. Eq. (8) shows that the output signal
yi(n) then contains a contribution from only one non-stationary source (and
contributions from all stationary sources). We thus reach the target partial BSS
for one of the non-stationary sources.

The last aspect of our method that must be defined is how to select the matrix
M and to constrain the vector w (which is the parameter controlled in practice,
unlike v) so that the variables {vq, q ∈ I} meet condition (13). To this end, we
define the differential correlation matrix of z(n) as

DRz(n1, n2) = Rz(n2)−Rz(n1) (14)

where Rz(n) = E{z(n)z(n)T } is its standard correlation matrix. The differential
correlation matrix DRs(n1, n2) of the sources is defined in the same way. It is
diagonal, since the sources are assumed to be uncorrelated and centered, and its
non-zero entries are the differential powers of the non-stationary sources, i.e.

DPsq (n1, n2) = E{s2
q(n2)} − E{s2

q(n1)}. (15)

The BSS scale indeterminacy makes it possible to rescale these differential powers
up to positive factors. Therefore, provided the diagonal elements of DRs(n1, n2)

2 In standard approaches, the summation for q ∈ I in (12) is performed over all P = N
sources and the parameters αq are equal to the standard kurtoses Ksq (n) of all these
sources. However, this has no influence on the discussion below, which is based on
the general properties of the type of functions defined by (12).
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corresponding to the P sources of interest are strictly positive for the considered
times n1 and n2, they may be assumed to be equal to 1 without loss of generality.
We then select the matrix M so that

DRz(n1, n2) = I (16)

and we control w so as to meet ‖ w ‖= 1. This method is the differential extension
of the sphering stage of the FastICA approach. As shown in Appendix A, these
conditions on M and w guarantee that the constraint (13) is satisfied.

2.2 Summary of Proposed Method

The practical method which results from the above analysis operates as follows:

Step 1 Select two non-overlapping bounded time intervals (which correspond
to n1 and n2 in the above theoretical analysis) such that all non-stationary3

sources have non-zero differential kurtoses and positive differential powers (15).
These intervals may be derived by only resorting to the observed signals, xi(n),
e.g. as explained in [6].
Step 2 Compute an estimate D̂Rx(n1, n2) of the differential correlation ma-

trix of the observations, defined in the same way as in (14). Then perform the
eigendecomposition of that matrix. This yields a matrix Ω whose columns are
the unit-norm eigenvectors of D̂Rx(n1, n2) and a diagonal matrix Λ which con-
tains the eigenvalues of D̂Rx(n1, n2). Then derive the matrix M = Λ−1/2ΩT .
This matrix performs a ”differential sphering” of the observations, i.e. it yields
a vector z(n) defined by (2) which meets (16).
Step 3 Create an output signal yi(n) defined by (3), where w is a vector which

satisfies ‖ w ‖= 1 and which is adapted so as to maximize the absolute value
of the differential kurtosis of yi(n), defined by (5). Various algorithms may be
used to achieve this optimization, especially by developing differential versions
of algorithms which were previously proposed for the case when P = N . The
most classical approach is based on gradient ascent [9]. We here preferably de-
rive an improved method from the standard fixed-point FastICA algorithm [8],
which yields several advantages with respect to the gradient-based approach,
i.e. fast convergence and no tunable parameters. Our differential fast fixed-
point algorithm then consists in iteratively performing the following couple of
operations:

3 ”non-stationary” here means ”long-term non-stationary”. More precisely, all sources
should be stationary inside each of the two time intervals considered here, so that
their statistics may be estimated for each of these intervals, by time averaging. This
corresponds to ”short-term stationarity”. The above-mentioned ”sources of interest”
(resp. ”noise sources”) then consist of source signals whose statistics are requested
to vary (resp. not to vary) from one of the considered time intervals to the other one,
i.e. sources which are ”long-term non-stationary” (resp. ”long-term stationary”).
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1) Differential update of w

w =
[
E{z(wT z)3} − 3w

]
n2
−
[
E{z(wT z)3} − 3w

]
n1

(17)

=
[
E{z(wT z)3}

]
n2
−
[
E{z(wT z)3}

]
n1

(18)

where the expressions
[
E{z(wT z)3}

]
ni

are resp. estimated over the two consid-
ered time intervals.
2) Normalization of w, to meet condition ‖ w ‖= 1, i.e

w = w/||w||. (19)

Step 4 The non-stationary source signal extracted as yi(n) in Step 3 is then
used to subtract its contributions from all observed signals. The resulting signals
are then processed by using again the above complete procedure, thus extracting
another source, and so on until all non-stationary sources have been extracted.
This corresponds to a deflation procedure, as in the standard FastICA method
[8], except that a differential version of this procedure is required here again.
This differential deflation operates in the same way as the standard deflation,
except that the statistical parameters are replaced by their differential versions,
as in (17). Here again, a parallel (differential) approach [8] could be considered
instead of deflation.

3 Experimental Results

We now illustrate the performance of the proposed method for a configuration
involving 2 linear instantaneous mixtures of 3 artificial sources. Each of the 2 non-
stationary sources s1(n) and s2(n) consists of two 5000-sample time windows.
Both sources have a Laplacian distribution p(x) = 1/2 exp(−|x|) in the first
window and a uniform distribution over [−0.5, 0.5] in the second window. The
”noise” source s3(n) has the same distribution over all 10000 samples.

The overall relationship between the original sources and the outputs of our
BSS system reads y(n) = Cs(n), where C = [cij ] is here a 2x3 matrix. If s1(n)
and s2(n) appear without permutation in y(n), c12 and c21 correspond to the
undesired residual components of s2(n) and s1(n) resp. in y1(n) and y2(n) and
should ideally be equal to zero. The ”error” associated to the partial BSS of
s1(n) and s2(n) may then be measured by the parameter (E{c212} + E{c221}),
where the expectations E{.} are estimated over a set of 100 tests hereafter.
Equivalently, the quality of this partial BSS may be measured by the inverse of
the above error criterion, i.e

Q =
1

E{c212}+ E{c221}
. (20)

We investigated the evolution of this criterion with respect to the input Signal
to Noise Ratio (SNR) associated to the observed mixed signals, defined as

SNRin =
√
SNR1

in . SNR2
in (21)

where the input SNR associated to each mixed signal xi(n) reads
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SNRiin =
ai1E{s2

1}+ ai2E{s2
2}

ai3E{s2
3}

i ∈ {1, 2}. (22)

The input SNR was varied in our tests by changing the magnitude of the noise
source s3(n). Fig. 1 shows the performance of the proposed differential BSS
method and of the standard FastICA algorithm. This proves the effectiveness of
our differential approach, since its quality criterion Q remains almost unchanged
down to quite low input SNRs, i.e less than 5 dB, whereas the performance of
standard FastICA already starts to degrade around 30 dB input SNR4.

4 Conclusion

In this paper, we considered underdermined BSS. By using our differential BSS
concept, we proposed a partial BSS method which has the same general struc-
ture as the kurtotic methods (especially FastICA) which have been developed
for the case when P = N : it consists of a first stage which uses the second-order
statistics of the signals, followed by a second stage which takes advantage of their
fourth-order statistics. However, these stages are here based on new statistical
parameters, that we introduce as the differential versions of the standard param-
eters. The proposed BSS method thus basically consists of a differential sphering,
followed by the optimization of the differential kurtosis of an output signal. This
optimization may especially be performed by using our differential version of the
fast fixed-point algorithm which has been introduced in the standard FastICA
approach, thus keeping the advantages of the latter algorithm. This has been
4 For very high input SNRs (which is not the target situation for our approach !)

standard FastICA performs slightly better than its differential counterpart. This
probably occurs because the differential statistical parameters involved in the latter
approach are estimated with a slightly lower accuracy than their standard version,
partly because each expectation in the differential parameters is only estimated over
one half of the available signal realization.
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confirmed by our experimental tests, which show that our method is much more
robust to noise than standard FastICA. Our future investigations will especially
aim at extending our differential BSS method to convolutive mixtures.
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A Proof of Condition (13)

We first introduce the matrix H , defined as the diagonal matrix with entries
equal to 1 for indices q ∈ I and 0 otherwise. We then define the vector

ṽ = Hv (23)

which is such that
||ṽ||2 =

∑
q∈I

v2
q . (24)

Besides, Eq. (23) and (7) yield

||ṽ||2 = wT (MA)H(MA)Tw. (25)

Moreover, Eq. (1) and (2) yield

DRz(n1, n2) = (MA)DRs(n1, n2)(MA)T . (26)
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In addition, the properties of DRs(n1, n2) provided in Section 2.1 mean that
DRs(n1, n2) = H . Eq. (26) and (25) then yield

||ṽ||2 = wTDRz(n1, n2)w. (27)

Therefore, (27) and (24) show that, if M is selected so that (16) is met and w is
controlled so as to meet ‖ w ‖= 1, then the requested condition (13) is met.
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Abstract. For complex-valued multidimensional signals, conventional
decorrelation methods do not completely specify the covariance struc-
ture of the whitened measurements. In recent work [1,2], the concept
of strong-uncorrelation and its importance for complex-valued indepen-
dent component analysis has been identified. Few algorithms for esti-
mating the strong-uncorrelating transform currently exist. This paper
presents two novel algorithms for estimating and computing the strong
uncorrelating transform. The first algorithm uses estimated covariance
and pseudo-covariance matrices, and the second algorithm estimates the
strong uncorrelating transform directly from measurements. An analy-
sis shows that the only stable stationary point of both algorithms pro-
duces the strong uncorrelating transform when the circularity coefficients
of the sources are distinct and positive. Simulations show the efficacy of
the approach in a source clustering task for wireless communications.

1 Introduction

In most treatments of blind source separation and independent component anal-
ysis, the signals are assumed to be real-valued. In a number of practical appli-
cations, however, measurements are naturally represented using complex linear
models. In wireless communications, multiantenna or multiple-input, multiple-
output systems can be conveniently described using a complex-valued mixture
model. Multiple-sensor recordings in various biological signal processing applica-
tions are also well-represented in complex form [3]. These applications motivate
the study of m-dimensional complex-valued signal mixtures of the form

x(k) = As(k), (1)

where A is an arbitrary complex-valued (m ×m) matrix and the source signal
vector sequence s(k) contains statistically-independent complex-valued elements.

Recently, work in complex ICA has uncovered a statistical structure that is
unlike the real-valued case [1,2]. In particular, it is possible in some cases to
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identify A in (1) using only second-order statistics from x(k) at time k, a situa-
tion that is distinct from the real-valued case. The key construct in these results
is the strong-uncorrelating transform, which we now describe. Without loss of
generality, assume that the source covariance and pseudo-covariance matrices
are E{s(k)sH(k)} = I and E{s(k)sT (k)} = Λ, respectively, where Λ is a diago-
nal matrix of ordered real-valued entries between zero and one called circularity
coefficients {λi}, i ∈ {1, . . . ,m}. Define the covariance and pseudo-covariance
matrices of x(k) as

R = E{x(k)xH(k)} = AAH and P = E{x(k)xT (k)} = AΛAT , (2)

respectively. Then, the strong-uncorrelating transform W is a matrix satisfying

WRWH = I and WPWT = Λ. (3)

If the {λi} values are distinct, then a matrix W satisfying (3) is also a separating
matrix for the mixing model in (1). Additional results for the strong-uncorrelating
transform are in [1,2], and [9] uses the transform to derive kurtosis-based fixed-
point algorithms for complex signal mixtures.

In [1], a technique for computing the strong uncorrelating transform for given
values of R and P is described. This technique employs both an eigenvalue
decomposition of a Hermitian symmetric matrix and the Takagi factorization of
a complex symmetric matrix, the latter of which requires specialized numerical
code [5]. A Jacobi-type rotation method for the Takagi factorization is outlined
in [6], but its numerical and convergence properties are not established. Both
of these methods are computationally-complex and not amenable to situations
in which the second-order data statistics are slowly-varying. Since few methods
for computing the strong-uncorrelation transform currently exist, it is of great
interest to derive simple algorithms for the strong-uncorrelating transform that
could be employed in adaptive estimation and tracking tasks.

This paper describes two simple iterative procedures for computing the strong
uncorrelating transform adaptively. Both procedures can be viewed as extensions
of the method in [7]. The first procedure employs sample estimates of the covari-
ance and pseudo-covariance matrices and is equivariant with respect to the mix-
ing system A when sample-based averages of these matrices are used. The second
equivariant procedure estimates the strong-uncorrelating transform directly from
measurements. Both techniques have the significant advantage of not requiring
estimates of the circularity coefficients {λi} for their successful operation. Sim-
ulations show the abilities of the methods to perform strong-uncorrelation in a
source clustering task for wireless communications.

2 An Adaptive Algorithm for the Strong Uncorrelating
Transform

The simple algorithms described in this paper adapt a row-scaled version of W,
termed W(k), to compute the strong uncorrelating transform. In the interest of
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algorithm simplicity, and because overall output signal scaling is often not an
issue, we define the space of allowable solutions for W(k) as

lim
k→∞

W(k)RWH(k) = D̃ and lim
k→∞

W(k)PWT (k) = D̃Λ, (4)

where D̃ is an arbitrary diagonal matrix of positively-valued diagonal entries. If
R is available or can be estimated, then a W(k) satisfying (4) can be turned
into a W satisfying (3) using W = D̃− 1

2 W(k).
Our first proposed algorithm for adaptively computing the strong-

uncorrelating transform is

W(k+1)=W(k)+μ
(
I−W(k)R̂(k)WH(k)−tri[W(k)P̂(k)WT (k)]

)
W(k), (5)

where R̂(k) and P̂(k) are sample estimates of R and P and tri[M] denotes
a matrix whose lower triangular portion is identical to that of M and whose
strictly-upper triangular portion is zero.

The following three theorems describe important theoretical and practical
convergence properties of this algorithm, the proofs of which are in the Appendix.

Theorem 1. The algorithm in (5) is equivariant with respect to the mixing matrix
A under the data model in (1).

Remark. Although the algorithm is equivariant with respect to the mixing
matrixA, its performance is affected by the values in Λ that depend on the sources.
Thus, convergence of the algorithm may be fast or slow depending on Λ.

Theorem 2. The space of stationary points for the algorithm in (5) are W = 0
and the set of matrices that satisfy

WRWH = I−D and WPWT = D, (6)

where D is a diagonal matrix of real-valued unordered entries that are all less
than or equal to one.

Theorem 3. Suppose the diagonal entries of Λ are distinct and positive. Then,
the only locally-stable stationary point of the algorithm in (5) is the unique matrix
W that yields the solution

WRWH = (I + Λ)−1 and WPWT = (I + Λ)−1Λ. (7)

Remark. We could have λi = 0 or λi = λj for some diagonal entries of Λ.
In such cases, there is not one unique stationary point for the algorithm. This
situation is similar to that for the strong uncorrelated transform, in which a
unique solution is not guaranteed. Experience shows that the algorithm still
accurately computes a strong uncorrelating transform satisfying (4) despite the
fact that this transform may not be unique.
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3 A Simple Algorithm for Tracking the Strong
Uncorrelating Transform

In many applications, tracking versions of algorithms are desired. We seek a
simpler version of (5) for tracking a strong-uncorrelating transform solution given
a measured sequence x(k). Our second proposed algorithm replaces R̂(k) and
P̂(k) in (5) with their instantaneous values x(k)xH(k) and x(k)xT (k) to yield

y(k)=W(k)x(k) (8)

W(k + 1)=W(k) + μ(k)[W(k)−y(k)yH(k)W(k)−tri[y(k)yT (k)]W(k)]. (9)

This algorithm is particularly simple, requiring approximately 5m2 complex-
valued multiply/adds at each iteration if an order-recursive procedure is used
to compute tri[y(k)yT (k)]W(k). As in all similar adaptive algorithms, the step
size sequence μ(k) controls both the data-averaging of the x(k) terms and the
convergence performance of W(k). Care must be taken in choosing μ(k).

The algorithm in (8)–(9) is equivariant with respect to the mixing matrix A
in (1). Moreover, because the discrete-time and differential averaged versions
of (8)–(9) are the same as those for the updates in (5) and (17), respectively,
Theorems 2 and 3 also apply to (8)–(9). Provided a suitably small step size is
chosen and x(k) is a stationary input signal with distinct non-zero circularity
coefficients, the only stable stationary point of (8)–(9) satisfies (7).

Eqns. (8)–(9) are closely related to simple decorrelation methods for real-
valued signals [8]. One could view (8)–(9) as the complex extension of the nat-
ural gradient method in [8], with the additional feature that it computes the
strong uncorrelating transform if P �= 0. In situations where x(k) is circularly-
symmetric (i.e. P = Λ = 0), then E{tri[y(k)yT (k)]} ≈ 0, such that (8)–(9)
becomes a natural gradient algorithm for ordinary whitening of complex signals.

For source separation or clustering based on non-circularity, both (5) and
(8)–(9) have the nice property that the sources {si(k)} are grouped in y(k) in
the order of their decreasing circularity coefficients. This property is maintained
despite the fact that the algorithm does not estimate the circularity coefficients
of the sources explicitly. A similar feature was noted for the algorithm in [7].

4 Simulations

We now explore the behaviors of the two proposed algorithms via simulations.
The first set of simulations illustrate the algorithms’ convergence behaviors when
A is identifiable through the strong-uncorrelating transform. Let s(k) contain six
zero-mean, unit-variance, uncorrelated, and non-circular Gaussian sources with
distinct circularity coefficients {λ1, λ2, λ3, λ4, λ5, λ6}={1, 0.8, 0.6, 0.4, 0.2, 0.1}.
One hundred simulations are run, in which A is generated as a random mixing
matrix with jointly-Gaussian real and imaginary elements. Both exponential
(α = 0.999), denoted by ’exp’, and growing-window, denoted by ’lin’, averaging
of the sequences x(k)xH(k) and x(k)xT (k) with R̂(0) = P̂(0) = 0.01I were
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Fig. 1. Convergence of E{γP(k)} and E{γs(k)} in the first simulation example showing
the proposed algorithms’ successful estimation of the strong-uncorrelating transform

used to estimate R̂(k) and P̂(k) for two versions of (5). The combined system
coefficient vector C(k) = W(k)A is computed and used to evaluate two metrics:

1. Pseudo-covariance Diagonalization: This cost verifies that the algorithms
diagonalize the pseudo-covariance and is given by

γP(k) =
||C(k)ΛCT (k)− diag[C(k)ΛCT (k)]||2F

||diag[C(k)ΛCT (k)]||2F
. (10)

2. Source Separation Without De-rotation: This cost is the average of the
inter-channel interferences of the combined system matrices C(k) and CT (k), as

γs(k) =
1

2m

(
n∑
i=1

n∑
l=1

|cil(k)|2
max1≤i≤n |cil(k)|2 +

|cil(k)|2
max1≤l≤n |cli(k)|2

)
− 1. (11)

Shown in Figure 1(a) and (b) are the evolutions of E{γP(k)} and E{γs(k)} for
the various algorithms with their associated data averaging methods, where μ =
μ(k) = 0.007 for (5) and (8)–(9). As can be seen, all versions of the algorithms
diagonalize the pseudo-covariance matrix over time, and they also perform source
separation for this scenario.

We now illustrate the behaviors of the simple algorithm in (8)–(9) in a more-
practical setting. Let s(k) contain two BPSK and one 16-QAM source signals.
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Fig. 2. Output signal constellations obtained by (8)–(9) for a source clustering task in
wireless communications

The circularity coefficients in this situation are {λ1, λ2, λ3} = {1, 1, 0}. The
strong-uncorrelating transform applied to mixtures of these sources creates a
combined system matrix C(k) = W(k)A in which the first two rows (resp.
columns) are nearly orthogonal to the third row (resp. column). Thus, y1(k)
and y2(k) largely contain mixtures of the two real-valued BPSK sources, and
y3(k) largely contains the 16-QAM source. Shown in Figure 2 are the output
signal constellations from yi(k), i ∈ {1, 2, 3}, 20000 ≤ n ≤ 25000, obtained by
applying (8)–(9) with μ = 0.0001 to noisy mixtures of these sources, in which
A contains jointly circular Gaussian entries with variance 2 and the (complex
circular Gaussian) additive noise has variance 0.001. The first two outputs clearly
show mixtures of the two real BPSK sources, whereas the last output contains
the 16-QAM source.

5 Conclusions

The strong-uncorrelating transform is an important linear transform in complex
independent component analysis. This paper describes two simple algorithms for
adaptively estimating the strong-uncorrelating transform from known covariance
and pseudo-covariance matrices and from measured signals, respectively. The al-
gorithms are equivariant to the mixing system, and local stability analyses verify
that they perform strong-uncorrelation reliably. Simulations illustrate their per-
formances in separation and source clustering tasks.
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Appendix

Proof of Theorem 1. Substituting the expressions for R and P in (2) for R̂(k)
and P̂(k) in (5) and defining C(k) = W(k)A, an equivalent expression for (5) is

C(k + 1) = C(k) + μ
(
I−C(k)CH(k)− tri[C(k)ΛCT (k)]

)
C(k), (12)

which does not depend on W(k) or A individually.

Proof of Theorem 2. The stationary points of the algorithm are defined by(
I−WRWH − tri[WPWT ]

)
W = 0. (13)

Clearly, W = 0 defines one stationary point. The other stationary points are
determined by the solutions of M = 0, where

M = tri[WPWT ] + WRWH − I. (14)

Consider the symmetric and anti-symmetric parts of M separately. The anti-
symmetric part of M is

Ma =
1
2
(M−MH) =

1
2
(
tri[WPWT ]− tri[WPWT ]H

)
. (15)

For Ma = 0, we must have that WPWT = D, where D has real-valued but
potentially-unordered entries. Under this condition, the symmetric part of M is

Ms =
1
2
(M + MH) = WRWH − I + D. (16)

For Ms = 0 to hold, we must have WRWH = I−D, which verifies (6). Moreover,
since R is non-negative definite, the diagonal entries of I−D are non-negative,
and the diagonal entries of D must satisfy 0 < di ≤ 1.
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Proof of Theorem 3. Consider the differential form of the update in (5):

dW
dt

= W −WRWHW − tri[WPWT ]W. (17)

Substituting the expressions for R and P in (2) into (17) and post-multiplying
both sides of (17) by A, we re-write (17) in the combined matrix C = WA as

dC
dt

= C−CCHC− tri[CΛCT ]C. (18)

First, assume that C is near a stationary point corresponding to W = 0, and
let C = Δ, where Δ is a matrix of small complex-valued entries. Then, we can
rewrite the update in (18) in the entries of Δ as

dΔ

dt
= Δ +O(Δ2

ij) (19)

where O(Δ2
ij) denotes terms that are second and higher-order in the entries of

Δ. Eq. (19) is exponentially unstable; W = 0 is not a stable stationary point.
Now, assume that C is near a stationary point such that CsCHs = I−D and

CsΛCTs = D, where D is a diagonal matrix of real-valued scaling factors {di}
satisfying 0 < di ≤ 1, and let C = (I + Δ)Cs, where Δ is a matrix of small
complex-valued entries. Then, we can rewrite the update in (18) in the entries
of Δ as

dΔ

dt
= −Δ(I−D)− (I−D)ΔH − tri[ΔD + DΔT ] +O(Δ2

ij). (20)

Ignoring second and higher-order terms, the diagonal entries of Δ evolve as

dΔii
dt

= −2Δii, (21)

and they are exponentially convergent. The off-diagonal entries of Δ evolve in a
pairwise coupled manner and for i < j satisfy

dΔij
dt

= (−1 + dj)Δij + (−1 + di)Δ∗
ji (22)

dΔji
dt

= −Δij + (−1 + di)Δ∗
ji − diΔji (23)

Considering the real and imaginary parts of Δij = ΔR,ij + jΔI,ij and Δji =
ΔR,ji + jΔI,ji jointly, we have

d

dt

⎡⎢⎢⎣
ΔR,ij
ΔR,ji
ΔI,ij
ΔI,ji

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1 + dj −1 + di 0 0
−1 −1 0 0
0 0 −1 + dj 1− di
0 0 −1 1− 2di

⎤⎥⎥⎦
⎡⎢⎢⎣
ΔR,ij
ΔR,ji
ΔI,ij
ΔI,ji

⎤⎥⎥⎦ . (24)

For these terms to be convergent, the (2×2) dominant sub-matrices in the above
transition matrix must have negative real parts. Recall that 0 < dl ≤ 1 for all
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1 ≤ l ≤ m by the stationary point condition. Then, the eigenvalue of the first
dominant (2× 2) matrix with the largest real part is

r(1)
max =

2− dj
2

(
−1 +

√
1− 4

di − dj
(2− dj)2

)
. (25)

For �e[r(1)
max] < 0, we require that di > dj . With this result, the eigenvalue of

the second dominant (2× 2) matrix with the largest real part is

r(2)
max =

2di − dj
2

(
−1 +

√
1− 4

di + dj − 2didj
(2di − dj)2

)
, (26)

which for di > dj is guaranteed to satisfy �e[r(2)
max] < 0. Thus, the only stable

stationary point of the algorithm is when d1 > d2 > · · · > dm.
Now, consider the only stable stationary point solution in (6). Define W =

(I−D)−1/2W such that

WRWH = I and WPWT = (I−D)−1D. (27)

It is straightforward to show that di > dj implies di/(1−di) > dj/(1−dj), such
that (I−D)−1D has ordered entries. Eqn. (27) is exactly the strong uncorrelating
transform, such that (I−D)−1D = Λ, or D = (I+Λ)−1Λ and I−D = (I+Λ)−1.
This proves the theorem.
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Abstract. In this work, we address the problem of source separation
of post-nonlinear mixtures based on mutual information minimization.
There are two main problems related to the training of separating sys-
tems in this case: the requirement of entropy estimation and the risk
of local convergence. In order to overcome both difficulties, we propose
a training paradigm based on entropy estimation through order statis-
tics and on an evolutionary-based learning algorithm. Simulation results
indicate the validity of the novel approach.

1 Introduction

The problem of blind source separation (BSS) is related to the idea of recovering
a set of source signals from samples that are mixtures of these original signals.
Until the end of the last decade, the majority of the proposed techniques [1]
were designed to solve the standard linear and instantaneous mixture problem.
However, in some applications [2], as a consequence of the nonlinear character of
the sensors, the use of linear BSS algorithms may lead to unsatisfactory results,
which motivates the use of nonlinear mixing models.

An inherent difficulty associated with the separation of nonlinear mixtures
comes from the fact that, in contrast to the linear case, there is no guarantee
that it be always possible to recover the sources solely by means of independent
component analysis (ICA). Nonetheless, the ICA framework still holds in the so-
called Post-Nonlinear (PNL) model as pointed out in [2], and further analyzed
in [3].

In [2], Taleb and Jutten proposed a solid paradigm for inverting the action
of a PNL mixture system that was based on the minimization of the mutual
information between the source estimates. Despite its theoretical solidness, this
approach suffers from two major practical drawbacks. The first one comes from
the fact that the evaluation of the mutual information demands estimation of
the marginal entropies, which may be a rather complex task. The second one is

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 66–73, 2006.
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related with the presence of local minima in the mutual information-based cost
function [4], which poses a problem to the adaptation of the separating system
via gradient-based algorithms.

In view of interesting results obtained in entropy estimation using order statis-
tics [6, 7] and of the inherent ability of evolutionary algorithms to perform multi-
modal optimization tasks, in this work we propose a novel paradigm for training
separating systems for PNL mixtures based on these approaches. Related efforts
can be found in [4, 5], in which standard genetic algorithms (GA) are employed
in the learning process. The present proposal differs from them in two aspects:
firstly, we deal with a class of evolutionary techniques that are more robust to
suboptimal convergence than the GA, as observed, for instance, in [8]; secondly,
a significantly different mutual information estimator is adopted in this work.

The work is structured as follows. In Section 2, the fundamentals of the prob-
lem of separating PNL mixtures are discussed. In Section 3, we discuss the major
problems present in the treatment of PNL mixture model and expose the training
algorithm. The simulation results are shown and discussed in Section 4. Finally,
in Section 5, we present the concluding remarks.

2 Problem Statement

Let s(t) = [s1(t), s2(t), . . . , sN (t)]T denote N mutually independent sources and
x(t) = [x1(t), x2(t), . . . , xN (t)]T be the N mixtures of the source signals, i.e.,
x(t) = φ(s(t)). The aim of a BSS technique is to recover the source signals based
solely on the observed samples of the mixtures.

The simplest form of BSS problem takes place when the mixture process is
modeled as a linear and instantaneous system, i.e., x(t) = As(t), where A de-
notes the mixing matrix. In this case, separation can be achieved by multiplying
the mixture vector by a separating matrix W, i.e. y(t) = Wx(t), so that the
elements of y(t) be mutually statistically independent. This approach, known as
Independent Component Analysis (ICA), allows the recovery of the sources up
to scaling and permutation ambiguities [1].

A natural extension of the standard BSS problem is to consider a nonlinear
mixture process. In such case, the independence hypothesis may no longer be
enough to obtain the original sources, indicating that, in general, the solution
of the nonlinear BSS problem goes beyond the scope of ICA, in the sense that
a priori information about the sources and/or the mixture model is necessary.
Thus, one possible approach to deal with nonlinear BSS would be to restrain the
nonlinear mixing model to a class of separable models, i.e., mixing systems in
which statistical independence of the outputs leads to a perfect recovery of the
sources.

The most representative example of nonlinear separable mixture model is the
PNL system (Fig. 1), where the mixture process is given by x(t) = f(As(t)),
where f(·) = [f1(·), f2(·), . . . , fn(·)]T denotes the nonlinearities applied to each
output of the linear mixing stage.
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Mixing System
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Fig. 1. The PNL problem structure

In [2], source separation of PNL mixtures was achieved by considering the
separating system y(t) = Wg(x(t)), where g(·) = [g1(·), g2(·), . . . , gn(·)]T is a
set of nonlinear functions that must be carefully adjusted to invert the action
of f(·), and A corresponds to the linear separating matrix. In [2] it has been
shown that it is possible, under some mild conditions over A, W, f(·) and g(·),
to perform source separation in this sort of system relying exclusively on the
ICA framework.

2.1 Source Separation Based on the Minimization of Mutual
Information

According to the previous discussion, independence between the components of
the estimated vector y leads to source separation. Consequently, one possible
criterion to recover the source signals is to minimize the mutual information
between the components of y, given by

I(y) =
∑

i
H(yi)−H(y), (1)

where H(y) represents the joint entropy of y and H(yi) the entropy of each one
of its components. Considering the separating structure depicted in Fig. 1, it is
possible to express the mutual information as [2]

I(y) =
∑

i
H(yi)−H(x)− log |detW| −E

{
log
∏

i
|g′i(xi)|

}
, (2)

with g′i(·) denoting the first derivative of the nonlinearity gi(·). It is important
to note that Eq. (2) holds only if the functions gi(·) are invertible, a restriction
that must be taken into account in the development of the learning algorithm.

Eq. (2) states that accurate estimation of the mutual information relies on
proper estimation of both H(yi) and H(x). However, it should be observed
that H(x) does not depend on the parameters of the separating system, and,
moreover, is constant for static mixing systems. As a consequence, it can be
ignored in the learning process, since our goal is to minimize Eq.(2) with respect
to the parameters of the separating system.

On the other hand, H(yi) is closely related with the system under adaptation,
and therefore must be efficiently calculated. In this context, an attractive method
for entropy estimation is that based on order statistics [6], which will be employed
in our proposal.
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3 Proposed Technique

As discussed in the previous section, the mutual information between the esti-
mates of the sources is a consistent cost function. In nonlinear BSS, however,
the problem of convergence to local minima becomes more patent, as we are
adapting a nonlinear system to separate the sources. Hence, the use of more
robust optimization tools is required. In addition to that, the evaluation of the
cost function demands effective methods for estimating the marginal entropies
of each output yi.

In the present work, we employ an evolutionary algorithm, the opt-aiNet,
to locate the global optimum of the cost function. The opt-aiNet has a good
performance in the optimization of multimodal cost functions, as indicated in
[8]. With respect to the entropy estimation task, we adopted a solution based on
order statistics, which is a good compromise between accuracy and complexity.

In the following, we describe the fundamentals of entropy estimation based
on order statistics and the employed search algorithm.

3.1 Entropy Estimation Using Order Statistics

Entropy estimation based on order statistics has been successfully used in blind
source separation of instantaneous mixtures [6, 7]. An attractive feature associated
with this approach is its low computational complexity when compared, for in-
stance, to density estimation methods. However, the use of order statistics does not
easily yield gradient-based algorithms [6], and therefore other optimization tools,
such as the evolutionary algorithm presented in section 3.2, must be employed.

Consider a set of T samples of the variable Y organized as

y(1:T ) ≤ y(2:T ) ≤ · · · ≤ y(T :T ), (3)

where y(k:T ), called kth order statistic [6], is the kth value, in ascending order,
among the T available samples.

In order clarify the applicability of order statistics to the problem of entropy
estimation, let us rewrite the entropy of a random variable Y in terms of its
quantile function QY (u) = inf {y ∈ � : P (Y ≤ y) ≥ u}, which is, in fact, the
inverse of the cumulative distribution function FY (y) = P (Y ≤ y). Using this
definition, it is possible to show that [6]

H (y) =
∫ ∞

−∞
fY (τ) logQ

′
Y [FY (τ)] dτ =

∫ 1

0
logQ′

Y (u)du, (4)

where fY (y) and Q
′
Y (y) denote the probability density function and the deriva-

tive of the quantile function of y, respectively.
For practical reasons, in order to evaluate the entropy of a given signal yi, it

is necessary to obtain a discretized form of (4), which is given by

H (yi) ≈
L∑
k=2

log
[
QYi (uk)−QYi (uk−1)

uk − uk−1

]
uk − uk−1

uL − u1
(5)

with {u1, u2, . . . , uL} denoting a set of increasing number in the interval [0, 1].
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The link between entropy estimation and order statistics relies on the close re-
lationship between order statistics and the quantile function. In fact, an estimate
of the value of QY ( k

T+1 ), called empirical quantile function, is given by kth or-
der statistic y(k:T ) [6]. Therefore, we approximate the value of QY (·) in Eq. (5) by
QYi (u) ≈ y(k:T ), for k such that k

T+1 is the closest point to u. This simplification
results in a fast algorithm for entropy estimation, which is a desirable character-
istic when dealing with optimization using evolutionary algorithms.

3.2 Evolutionary Optimization Technique

The research field of evolutionary computation encompasses a number of opti-
mization techniques whose modus operandi is based on the idea of evolution. In
this work, we shall concentrate our attention on a member of the class of artifi-
cial immune systems (AIS): the opt-aiNet (Optimization version of an Artificial
Immune Network) [9], which can be defined as a multimodal optimization algo-
rithm founded on two theoretical constructs, viz., the notions of clonal selection
and affinity maturation and the idea of immune network.

Under the conceptual framework of clonal selection and affinity maturation,
the immune system is understood as being composed of cells and molecules that
carry receptors for antigens (disease-causing agents). In simple terms, when these
receptors recognize a given antigen, they are stimulated to proliferate. During
the process, controlled mutation takes place, and, thereafter, the individuals
are subjected to a natural selection mechanism that tends to preserve the most
adapted.

A different view on the defense system is provided by the immune network
theory, which states that it is possible for the immune cells and molecules to
interact with each other in a way that engenders “eigen-behaviors” even in the
absence of antigens. As a consequence, the “invasion” could be thought of as a
sort of ”perturbation” of a well-organized state of things.

In order to transform these ideas into an efficient optimization technique, it
is imperative that some parallels be established: the function to be optimized
represents a measure of affinity between antibody and antigen (fitness), each
solution corresponds to the information contained in a given receptor (network
cell), and, finally, the affinity between cells is quantified with the aid of a simple
Euclidean distance measure. Having these concepts in mind, let us expose the
algorithm.

1. Initialization: randomly create initial network cells;
2. Local search: while stopping criterion is not met, do:

(a) Clonal expansion: for each network cell, determine its fitness (an objec-
tive function to be optimized). Generate a set of Nc antibodies, named
clones, which are the exact copies of their parent cell;

(b) Affinity maturation: mutate each clone with a rate that is inversely pro-
portional to the fitness of its parent antibody, which itself is kept unmu-
tated. The mutation follows

c′ = c + αN(0, 1), with α = β−1 exp (−f∗) (6)
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where c′ and c represent the mutated and the original individual, re-
spectively; β is a free parameter that controls the decay of the inverse
exponential function, and f∗ is the fitness of an individual. For each mu-
tated clone, select the one with highest fitness and calculate the average
fitness of the selected cells;

(c) Local convergence: if the average fitness of the population does not vary
significantly from one iteration to the other, go to the next step; else,
return to Step 2;

3. Network interactions: determine the similarity between each pair of network
antibodies;

4. Network suppression: eliminate all but one of the network cells whose affinity
with each other is lower than a pre-specified threshold σs, and determine the
number of remaining cells in the network;

5. Diversity: introduce a number of new randomly generated cells into the net-
work and return to Step 2.

After initialization, Step 2 is responsible for performing a process of local
search that is based on a fitness-dependent mutation operator; Steps 3 and 4
account for the “immune network character” of the technique, a consequence of
which is the emergence of a method for controlling the population size; at last,
Step 5 allows that new features be introduced in the population. The combina-
tion of these stages produces an algorithm that allies a good balance between
exploration and exploitation with the notion of seeking a parsimonious use of
the available resources.

4 Results

In order to evaluate our technique, we conducted simulations under two different
scenarios. In the first one, two sources with uniform distribution between [−1, 1]
were mixed through a system with

A =
[

1 0.6
0.5 1

]
and f1(e1) = tanh(2e1)

f2(e2) = 2 5
√
e2

. (7)

The second scenario is composed of three uniform sources and a mixing system
defined by

A =

⎡⎣ 1 0.6 0.5
0.5 1 0.4
0.4 0.6 1

⎤⎦ and
f1(e1) = 2 3

√
e1

f2(e2) = 2 3
√
e2

f3(e3) = 2 3
√
e3

. (8)

In both cases, the separating system to be optimized consists of a square
matrix W and a polynomial of order 5, only with odd powers, i.e., y = ax5 +
bx3 + cx. In view of the fact that the separability property [2] of the PNL model
requires that g(f(·)) be a monotonic function, the coefficients of each polynomial
were restricted to be positive. The parameters of the opt-aiNet were adjusted
after several experiments, and for both cases we considered the following set:
N = 10, Nc = 7, β = 60 and σs = 2.
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In Fig. 2(a), the joint distribution of the mixture signals in the first case is
shown. For this situation, 2000 samples of the mixtures were considered in the
training stage. The joint distribution of the recovered is depicted in Fig. 2(b),
where it can be noted that, despite some residual nonlinear distortion (which
is expected, given that it is impossible to invert the hyperbolic tangent using
a polynomial), the obtained distribution is also uniform, indicating that the
separation task was fulfilled.

−2 −1 0 1 2
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−0.5

0

0.5

1

(a) Mixed signals.

−2 −1 0 1 2
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−3

−2

−1
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3

4

(b) Recovered signals.

Fig. 2. First scenario

The application of our proposal has also led to accurate source estimates in the
second scenario, as it can be seen in Fig. 3, in which one source and its estimated
version are depicted. In this case, the mean-square error (MSE) between these
signals (after variance normalization) was 0.0335. For the other two sources, the
obtained MSEs were 0.011 and 0.015.
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Fig. 3. Second scenario - one of the recovered sources:(−) original source; (· − ·) esti-
mated source
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5 Final Comments and Conclusions

In this work, a new training method for PNL separating systems was presented.
The proposal has a twofold motivation: 1) to avoid local convergence, a menace
originated by nonlinear BSS cost functions; and 2) to obtain a fast and effective
method for evaluating the chosen function. In order to meet these requirements,
the proposed technique was founded on two pillars: 1) an evolutionary optimiza-
tion tool, the opt-aiNet, specially-tailored to solve multimodal problems; and 2)
an entropy estimation method based on order statistics. Two sets of simulation
results attest the efficacy of the proposed methodology in representative PNL
scenarios. Finally, a possible extension of this work is to analyze the possibility
of employing more flexible functions in the separating system.
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Abstract. The CICAAR algorithm (convolutive independent compo-
nent analysis with an auto-regressive inverse model) allows separation
of white (i.i.d) source signals from convolutive mixtures. We introduce a
source color model as a simple extension to the CICAAR which allows
for a more parsimonious representation in many practical mixtures. The
new filter-CICAAR allows Bayesian model selection and can help answer
questions like: ’Are we actually dealing with a convolutive mixture?’. We
try to answer this question for EEG data.

1 Introduction

Convolutive ICA (CICA) is a topic of high current interest and several schemes
are now available for recovering mixing matrices and sources signals from
convolutive mixtures, see e.g., [7]. Convolutive models are more complex than
conventional instantaneous models, hence, the issue of model optimization is
important. Convolutive ICA in its basic form concerns reconstruction of the
L+1 mixing matrices Aτ and the N source signal vectors st of dimension K,
from a D-dimensional convolutive mixture

xt =
L∑
τ=0

Aτst−τ (1)

Here we focus, for simplicity, on the case where the number of sources equals
the number of sensors, D = K.

We have earlier proposed the CICAAR approach for convolutive ICA [4] as a
generalization of Infomax [3] to convolutive mixtures. The CICAAR exploits the
relatively simple structure of the un-mixing system resulting when the inverse
mixing is represented as an autoregressive process. In the original derivation we
were forced to assume white (i.d.d) sources, i.e., that all temporal correlation in
the mixture signals appeared through the convolutive mixing process. A more
economic representation is obtained, however, if we explicitly introduce filters to
represent possible auto-correlation of sources. This added degree of freedom also
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carries another benefit, it allows for optimizing the model structure: How much
correlation should be accounted for by the source filters, and how much should
be accounted for by the convolutive mixture? Explicit source auto-correlation
modeling using filtered white noise has been proposed earlier by several authors,
see e.g., [12,11,2].

2 Modelling Convolutive ICA with Auto-correlated
Sources

We introduce a model for each of the sources

sk(t) =
M∑
λ=0

hk(λ)zk(t− λ) (2)

where zk(t) represents a whitened version of the source signal. The negative log
likelihood for the model combining (1) and (2) is given by

L = N log |detA0|+ N
∑
k

log |hk(0)| −
N∑
t=1

log p(ẑt) (3)

where ẑt is a vector of whitened source signal estimates at time t using an
operator that represents the inverse of (2). We can without loss of generality set
hk(0) = 1, then

L = N log |detA0| −
N∑
t=1

log p(ẑt) (4)

The number of parameters in this model is D2(L+1)+DM , and it can thus be
minimized if M is increased so as to explain the source auto-correlations allowing
L to be reduced in return. An algorithm for convolutive ICA which includes the
source model can be derived by making a relative straight forward modification
to the equations of the CICAAR algorithm found in [4], see appendix A.

3 Model Selection Protocol

Let M represent a specific choice of model structure (L,M). The Bayes Infor-
mation Criterion (BIC) is given by log p(M|X) ≈ log p(X|θθθ0,M)−dimθθθ

2 logN
where dimθθθ is the number of parameters in the model, and θθθ0 are the maximum
likelihood parameters [13]. BIC has previously been used in context of ICA, see
e.g. [5,8,6].

We propose a simple protocol for the dimensions (L,M) of the convolutional-
and source-filters. First, expand the convolution length L without a source model
(i.e. keeping M = 0). This will model the total temporal dependency structure
of the system. The optimal L, denote it Lmax, is found by monitoring BIC. Next,
expand the dimensions M of the source model filters while keeping the temporal
dependency constant, i.e. keeping (L + M) = Lmax.
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3.1 Simulation Example

The first experiment is designed to illustrate the protocol for determining the
dimensions of the convolution and the source filters. We create a 2 × 2 system
with known source filters M = 15 and known convolution L = 10. . .

1

0

 0  5  10  15

Source-1

 

 

 

 0  5  10  15

Source-2

(a) Source color filters, M = 15.
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(b) Convolutive mixing system, L = 10.

Fig. 1. Filters for generating synthetic data. First, two i.i.d. signals are colored through
their respective filters (a). Then, the colored signals are convolutively mixed using a
distinct filter for each source-sensor path (b).
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(b) Estimated by algorithm (L, M) =
(10, 15)
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(c) Estimated by algorithm (L, M) = (5, 20)
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(d) BIC optimal is (L, M) = (5, 20).

Fig. 2. Mixing filters convolved with respective color filters. (a) for the generating
model. (b) for an estimated model with the ’true’ L and M . (c) for the Bayes optimal
model with (L, M) = (5, 20). (d) shows the BIC for various models, and (L,M)=(5,20)
is found optimal.
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Data — Two signals are generated by filtering temporally white signals us-
ing the filters shown on Figure-1(a). The signals are then mixed using the
2× 2× 10 system shown on Figure-1(b). The generating model has thus (L,M)
= (10, 15).

Result — First we note, the model is in itself ambiguous; an arbitrary filter can
be applied to a color filter if the inverse filter is applied to the respective column
of mixing filters. Therefore, to compare results we inspect the system as a whole,
i.e. source color convolved with a column of mixing filters.

Figure-2 displays convolutive mixing systems where each mixing channel has
been convolved with the respective color filter; (a) for the true generating model;
(b) a run with the algorithm using N = 300000 training samples and using the
(L,M) of the generating model. The result is perfect up to sign and scaling
ICA ambiguities; (c) shows a run with the algorithm using N = 100000 and the
Bayes optimal choice of (L,M) = (5, 20) c.f. (d), in the finite data the protocol
has found a parsimonious model with similar overall transfer function. We first
study the learning curves, i.e., how does the training set dimension N , influence
learning. We use the likelihood evaluated on a test set to measure the learning of
different models. We now compare learning curves for three models; one which
is the generating model (L,M) = (10, 15), one (L,M) = (25, 0) which is more
complex but fully capable of imitating the first model, and (L,M) = (5, 20)
which is optimal according to BIC. Figure-3 shows learning curves of the three
models, the test set is Ntest = 300000 samples. The uniform improvements in
generalization of the ‘optimal model’ further underlines the importance of model
selection in the context of convolutive mixing.
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Fig. 3. Learning curves for three models: The generating model (L, M) = (10, 15), a
model with (L, M) = (25, 0) which is more complex but fully capable of ‘imitating’ the
first model, and the model (L, M) = (5, 20) which was found Bayes optimal according
to BIC. The generalization error is estimated as the likelihood of a test set (Ntest =
300000). The uniform improvements in generalization of the ‘optimal model’ further
underlines the importance of model selection in the context.
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3.2 Rejecting Convolution in an Instantaneous Mixture

We will now illustrate the importance of the source color filters when dealing with
the following fundamental question: ’Do we learn anything by using Convolutive
ICA instead of instantaneous ICA?’—or put in another way: ’should L be larger
than zero?’.

Data — To produce an instantaneous mixture we now mix the two colored
sources from before using a random matrix.

Result — Figure-4(a) shows the result of using Bayesian model selection without
allowing for a filter (M = 0). This corresponds to model selection in a conven-
tional convolutive model. Since the signals are non-white L is detected and the
model BIC simply increases as function of L up to the maximum which is at-
tained at a value of L = 15. Next, in Figure-4(b) we fix L + M = 15. Models
with a greater L have at least the same capability as a model with a lower L;
but as expected lower L are preferable because the models has fewer parameters.
Thus, thanks to the filters, we now get the correct answer: ’There is no evidence
of convolutive ICA’.
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Fig. 4. (a) the result of using Bayesian model selection without allowing for a filter
(M = 0). Since the signals are non-white L is detected at a value of L = 15. (b) We
fix L + M = 15, and now get the correct answer: L = 0 — ’There is no evidence of
convolutive ICA’.

4 Is Convolutive ICA Relevant for EEG?

The EEG signals from the entire brain superimpose onto every EEG electrode
instantaneously; there are no delays or echoes, hence, the mixing of the electro-
magnetic activity is definitely not a convolutive process. However, the question
is whether the convolutive mixing model is relevant as a model for the brain
activity itself, see also [1]. It is well known that EEG activity exhibits rich
spatio-temporal dynamics and that different tasks of the brain combine different
regions in different frequency bands, and so, we expect the Bayes optimal model
to potentially include some convolutive mixing L > 0.
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Data — 20 minutes of a 71-channel human EEG recording downsampled to a 50-
Hz sampling rate after filtering between 1 and 25 Hz with phase-indifferent FIR
filters. First, the recorded (channels-by-times) data matrix (X) was decomposed
using extended infomax ICA [3,9] into 71 maximally independent components
whose (’activation’) time series were contained in (components-by-times) ma-
trix SICA and whose (’scalp map’) projections to the sensors were specified in
(channels-by-components) mixing matrix AICA, assuming instantaneous linear
mixing X = AICASICA. Three of the resulting independent components were
selected for further analysis on the basis of event-related coherence results that
showed a transient partial collapse of component independence following the
subject button presses [10]. Their scalp maps (the relevant three columns of
AICA) are shown on Figure 5(a).

Convolutive ICA analysis — Next, convolutive ICA decomposition was applied
to the three component activation time series (relevant three rows of SICA) which
we shall refer to as channels ch1, ch2 and ch3. Following our proposed protocol,
we find Lmax = 110, then L = 9 as shown on Figure-5(c) — so, we are in fact
dealing with a convolutive mixture. Figure-5(b) shows, for one of the resulting
convolutive ICA components, cross correlation functions between its contribution
to the channels (with each a scalp map associated). Clearly, there are delayed
correlation between the different brain regions, and this is not possible to model
with an instantaneous ICA model, hence the need for convolutive mixing.
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Fig. 5. (a) Scalp maps for the three ICA components. (b) For one of the resulting
convolutive ICA components, cross correlation functions between its contribution to
the channels. (c) Finding L = 9 for the EEG data.

5 Conclusion

We have incorporated filters for modelling possible source auto-correlations into
an existing algorithm for convolutive ICA. We have proposed a protocol for
determining the dimension L of a convolutive mixture utilizing the filters. We
have shown that convolutive ICA is relevant for real EEG data.
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Appendix A: Source Modeling with the CICAAR
Algorithm

For notational convenience we introduce the following matrix notation instead
of (2), handling all sources in one matrix equation

st =
M∑
λ=0

Hλzt−λ (5)

where the Hλ’s are diagonal matrices defined by (Hλ)ii = hi(λ).
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Given a current estimate of the mixing matrices Aτ and the source filter
coefficients hk(λ), First apply equation 7 of [4] to obtain ŝt. Then apply the
inverse source coloring operator

ẑt = ŝt −
M∑
λ=1

Hλẑt−λ (6)

which must replace ŝt in [4] (in equations 6,8,9 and 11). This involves the fol-
lowing partial derivatives which in turn uses the result from [4] (from equations
7,10,12)

∂(ẑt)k
∂(Bτ )ij

=
∂(̂st)k
∂(Bτ )ij

−
M∑
λ=1

Hλ
∂(ẑt−λ)k
∂(Bτ )ij

(7)

where Bτ = Aτ for τ > 0 and B0 = A−1
0 . Furthermore

∂(ẑt)k
∂(Hλ)ii

= −δ(k − i)(ẑt−λ)i −
(

M∑
λ′=1

Hλ′
∂ẑt−λ′

∂(Hλ)ii

)
k

. (8)

The work involved in this plug-in is minimal due to the diagonal structure of
the Hλ matrices. Finally,

∂L
∂(Hλ)ii

= −
N∑
t=1

ψψψTt
∂ẑt

∂(Hλ)ii
(9)

where (ψψψt)k = p′((ẑt)k)/p((ẑt)k).
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Abstract. In this paper, we propose a fast and accurate approximation to the in-
formation potential of Information Theoretic Learning (ITL) using the Fast 
Gauss Transform (FGT). We exemplify here the case of the Minimum Error 
Entropy criterion to train adaptive systems. The FGT reduces the complexity of 
the estimation from O(N2) to O(pkN) where p is the order of the Hermite ap-
proximation and k the number of clusters utilized in FGT. Further, we show that 
FGT converges to the actual entropy value rapidly with increasing order p 
unlike the Stochastic Information Gradient, the present O(pN) approximation to 
reduce the computational complexity in ITL. We test the performance of these 
FGT methods on System Identification with encouraging results. 

1   Introduction 

Information Theoretic Learning (ITL) is a methodology to non-parametrically esti-
mate entropy and divergence directly from data, with direct applications to adaptive 
systems training [1]. The centerpiece of the theory is a new estimator for Renyi’s 
quadratic entropy that avoids the explicit estimation of the probability density func-
tion. The argument of the logarithm of Renyi’s entropy is called the Information Po-
tential (IP), and since the logarithm is a monotonic function, it is sufficient to use the 
IP in training [2]. ITL has been used in ICA [3], blind equalization [4], clustering [5], 
and projections that preserve discriminability [6]. One of the difficulties of ITL is that 
the calculation of the IP is O(N2), which may become prohibitive for large data sets. A 
stochastic approximation of the IP called the Stochastic Information Gradient (SIG) 
[7] decreases the complexity to O(N), but slows down training due to the noise in the 
estimate. This paper presents an effort to make the estimation faster and more accu-
rate using the Fast Gauss Transform (FGT).  The FGT is one of a class of very  
interesting and important new families of fast evaluation algorithms that have been 
developed over the past dozen years to enable rapid calculation of approximations at 
arbitrary accuracy to matrix-vector products of the form Ad where aij =  (|xi − xj |) 
and  is a particular special function. These sums first arose in astrophysical observa-
tions where the function  was the gravitational field. The basic idea is to cluster the 
sources and target points using appropriate data structures, and to replace the sums 
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with smaller summations that are equivalent to a given level of precision. We will use 
here the FGT algorithm proposed by Greengard and Strain [8] and the farthest-point 
clustering proposed by Gonzalez [9] for evaluating Gaussian sums.  

The paper will be organized as follows. First we will briefly describe one of the 
simplest ITL algorithms that minimize the error entropy between a desired response 
and the adaptive filter output. Next, we present the FGT algorithm and its interaction 
with the MEE criterion, followed by some simulation results and conclusions.   

2   Minimum Error Entropy (MEE) 

Suppose that the adaptive system is an FIR structure with a weight vector .w  The 
error samples are 

k
T
kkk de uw−= , where 

kd is the desired response, and 
ku  is the 

input vector. The error PDF is estimated using Parzen windows as  
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where )(⋅σk is kernel function with a kernel size σ . So, Renyi’s quadratic entropy 

estimator for a set of discrete data samples becomes: 
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Minimizing the entropy in (2) is equivalent to maximizing the information poten-
tial since the log is a monotonic function. Thus, the weight update of MEE is 
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where for a Gaussian kernel the gradient is, 
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For online training methods, the information potential can be estimated using the 
Stochastic Information Gradient (SIG) as shown in (6), where the sum is over the 
most recent L samples at time k. Thus for a filter order of length M, the complexity of 
MEE is equal to O(ML) per weight update,  
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where 
i
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kii de uw−= , for kiLk ≤≤− .  
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3   MEE Using the Fast Gauss Transform 

For efficient computation of information potential, we use the principle of Fast Gauss 
Transform. Direct evaluation of the information potential (3) requires O(N2). We 
apply the FGT idea by using the following expansions for the Gaussian in one dimen-
sion (the method can be easily extended to multiple dimensions): 
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where the Hermite function ( )xhn  is defined by 

( ) ( ) ( )( )2exp1 x
dx

d
xh

n

n
n

n −−= . (8) 

In practice a single expansion about one center is not always valid or accurate over 
the entire domain. A space subdivision scheme is applied in the FGT and the Gaussian 
functions are expanded at multiple centers. To efficiently subdivide the space, we use a 
very simple greedy algorithm, called farthest-point clustering that computes a data 
partition with a maximum radius at most twice the optimum. The direct implementa-
tion of farthest-point clustering has running time O(kN), which k is the number of clus-
ters. Thus, the information potential )(eV  is given as 
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where B is a cluster with center Bs  and ( )BCn  is defined by 
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From the above equation, we can see that the total number of operations required is  
O(pkN) per data dimension. The truncation order p depends on the desired accuracy 
alone, and is independent of N. 

The gradient of the information potential with respect to the weights is given as 

( ) ( )
=

−

=
+ ∇⋅

−
+⋅

−
=∇

N

j B

p

n
n

Bj
nn

jBj
n BC

se
hBC

se
h

nN
eV

1

1

0
12 222!

1

2

1
)(

σσσπσ
u  (11) 

where ( )BCn∇  is defined by 
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4   Simulations 

4.1   Entropy Estimation Using Fast Gauss Transform 

We start by analyzing the accuracy of the FGT in the calculation of the IP for the 
Gaussian and Uniform distributions, using the original definition (3), the SIG (6) and 
the FGT approximation (9) for two sample sizes (100 and 1,000 samples). For a com-
parison between SIG and FGT we use p = L in all our simulations. We fix the radius 
of the farthest point clustering algorithm at σ=r . This radius is related to the number 
of clusters, i.e., as the radius increases, the number of clusters (hence the computation 
time) decreases, but the approximation accuracy may suffer. Results are depicted in 
Fig. 1 and 2.  
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Fig. 1. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen 
window for a Gaussian distribution with 100 and 1000 samples 
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Fig. 2. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen 
window for a uniform distribution with 100 and 1000 samples 

As can be observed in Fig.1 and 2, the absolute error between the IP and the FGT 
estimation decreases with the order p of the Hermite expansion to very small values, 
while that of the SIG fluctuates around 0.005 (100 samples) and 0.001 (1000 sam-
ples). We can conclude that from a strictly absolute error point of view, a FGT with 
order p >3 outperforms the SIG method for all cases. 
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Fig. 3. Plot of the average number of clusters in FGT when estimating the IP for the Gaussian 
and uniform distribution with 100 and 1000 samples (40 times Monte Carlo)  
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Fig. 4. Plot of the absolute error for a given p (=2, 4, 8 and 16) as the radius of the farthest-point 
clustering algorithm ( σ×= hr ) for Gaussian and uniform distribution with 1000 samples  

Fig. 3 shows the relation between FGT estimation and the number of clusters. Ac-
cording to data size, the number of clusters does not vary for the uniform distribution, 
while for the Gaussian distribution the number of cluster is larger as the number of 
data samples increases. 

We also fix the number of points to N=1000 and vary the radius r for clustering 
from σ1.0  to σ2  and plot the absolute error for a given p (= 2, 4, 8 and 16) in Fig. 4. 
The results show that the error of the FGT is reduced as the radius decreases, as ex-
pected such that the user can control the approximation error to IP. 

However, for our ITL application, the accuracy of the IP is not the primary objec-
tive. Indeed, in ITL we would like to train adaptive systems using gradient informa-
tion, so the smoothness of the cost function is perhaps more important.   

4.2   System Identification 

We next consider the system identification of a moving-average model with a 9th order 
transfer function given by  
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using the minimization of the error entropy [10]. Although the true advantage of MEE 
is for nonlinear system identification with nonlinear filters, here the goal is to com-
pare adaptation accuracy and speed so we elected to use a linear plant and a FIR adap-
tive filter with the same plant order (zero achievable error). A standard method of 
comparing the performance in system identification problems is to plot the weight 
error norm since this is directly related to misadjustment. In each case the power of 
the weight noise was plotted versus the number of epochs performed. In this simula-
tion, the inputs to both the plant and the adaptive filter are also white Gaussian or 
uniform noise. We choose a proper kernel size by using Silverman’s rule (  = 0.707) 
the radius of the farthest point clustering algorithm r= . 
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Fig. 5. Comparison of different methods for system identification with Gaussian and uniform 
noise, using (S) = 1000 samples 

As can be observed in Fig. 5, all the versions of IP produce converging filters. 
However, the speed of convergence and the actual value of the final error are differ-
ent. The FGT method performs better in training the adaptive system as compared to 
SIG. A SIG with 16 samples approaches the FGT with p=2, and the FGT with p=16 is 
virtually identical to the true IP. The case of the uniform input noise does not change 
the conclusions.  

Fig. 6. shows the plot of the number of clusters during adaptation. Since the error is 
decreasing at each epoch, the number of clusters gets progressively smaller.  In this case, 
where the achievable error is zero, the number reduces to one cluster after 5 epochs. 
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Fig. 6. Plot of the average number of clusters during adaptation in system identification 
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5   Conclusions 

Information Theoretic Learning and in particular the Minimum Error Entropy crite-
rion has been recently proposed as a more principled approach for training adaptive 
systems. But, a major bottleneck in this method is the high computational complexity 
of O(N2) per epoch, thus limiting its use for many practical applications in signal 
processing, communications and machine learning. The method of the Fast Gaussian 
Transform helps alleviate this problem by accurate and efficient computation of en-
tropy using the Hermite series expansion in O(pN) operations. Furthermore, since this 
series converges rapidly, a small order p gives a very good approximation of the IP 
and can therefore provide accurate and fast converging optimal filters. Indeed we 
have shown that the FGT has a performance virtually identical to the exact informa-
tion potential for p=16. The FGT seems therefore to be preferable to the SIG algo-
rithm we have been using. 

We still need to quantify the performance of FGT for training MIMO (multiple in-
put multiple output) systems such in ICA or discriminative projections. In these cases 
ITL algorithms will be applied to multidimensional signals and the computation be-
comes prohibitive. A straight application of the algorithm presented in this paper will 
raise p to the number of dimensions in the complexity calculation. However, recent 
results show that it is possible to avoid the multiplicative factor in complexity brought 
by the dimensionality of the space of interactions [11]. If further testing corroborates 
these initial results, the class of FGT algorithms may very well take away the compu-
tational drawback of ITL versus the MSE criterion to adapt nonlinear models both in 
Adaptive Systems and Pattern Recognition applications. 
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Abstract. In this paper we introduce a simple distance measure from a m-
dimensional point a hyper-line in the complex-valued domain. Based on this 
distance measure, the K-EVD clustering algorithm is proposed for estimating 
the basis matrix A  in sparse representation model = +X AS N . Compared to 
existing clustering algorithms, the proposed one has advantages in two aspects: 
it is very fast; furthermore, when the number of basis vectors is overestimated, 
this algorithm can estimate and identify the significant basis vectors which 
represent a basis matrix, thus the number of sources can be also precisely 
estimated. We have applied the proposed approach for blind source separation. 
The simulations show that the proposed algorithm is reliable and of high 
accuracy, even when the number of sources is unknown and/or overestimated. 

1   Introduction 

Clustering is one of the most widely used techniques for exploratory data analysis. For 
example, it can be used for signal compression, blind source separation, feature 
extraction, regularization in inverse problems, and so on. Especially in the applications 
of sparse representation and undetermined blind source separation, the basis matrix 
usually needs to be identified in advance using line orientation clustering algorithms 
such as K-SVD method [1], K-means method [10], Georgiev, Theis and Cichocki 
method [2][14], potential-function method [9], time-frequency mask method [13], the 
extension method of DUET and TIFROM [3][4], soft-LOST [7], hard-LOST [8]. After 
the basis matrix is estimated, some algorithms, such as FOCUSS algorithms [11], 
shortest-path-decomposition [9] or its extension [12], linear programming [3][4][10] 
etc, can be employed to estimate the matrix S  representing unknown source signals. 
In our approach the hyper-line orientation clustering plays a key role in sparse 
representation under assumption that all sources are sufficiently reach represented and 
they are all sparse, i.e., each source for many samples achieves dominant value, while 
other sources at the same time are negligibly small [2][14]. If the basis matrix is not 
well estimated, it’s impossible to find the source signals. 

For above mentioned clustering algorithms, it is usually assumed that the number 
of sources is known. However, in some applications such as BSS, we do not know the 
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number of source signals in advance and their number is usually overestimated. It’s 
very difficult to accurately estimate the number of source signals. On the other side, if 
one underestimates the number of source signals, the estimated source signals could 
be completely different from the true sources. One possible approach is to 
overestimate the number of source signals and in the next stage to remove possibly all 
redundant or spurious basis vectors ˆia  of the overestimated basis matrix Â . 

For this purpose, in this paper we discuss K-EVD clustering method for complex 
valued data based on the distance measure presented in Section 2. In contrast to the 
K-SVD which estimates the clustering centroid matrix by Singular Value 
Decomposition (SVD) for long matrix, our approach achieve the same goal by Eigen-
Value Decomposition (EVD) for smaller dimension matrices. 

2   The Distance Formula from a Point to a Hyper-line 

Consider a point ( )1, , mP p p  (see Figure 1) and hyper-line in the m-dimensional 

complex domain. We attempt to calculate the distance from the point P  to the hyper-
line L , whose direction vector is ( )1, ,

T

ml l=l . This problem can be converted to 

searching an optimal point 
*Z  (located on the hyper-line L ), which is closest to P , 

i.e., we can formulate this problem as the following optimization problem:  

( ) 2

1

1

min ,

subject to : ,m

m

d

zz

l l

= −

= =

z
z p z

 
(1) 

where ( )1 2, , ,
T m

mz z z C= ∈z , ( )1 2, , ,
T m

mp p p C= ∈p , C  denotes complex valued 

number and ( )min d
z

z  denotes minimizing with respect to vector argument z . 
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Fig. 1. The distance from a point P  to a line L  
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From equation (2), optimization problem (1) can be described as 

( ) 2

* *

min ,

, , , ,

, , , , ,

k C
d k k k k

k k k k

k k kk

∈
= − = − −

= − − +

= − − +

p l p l p l

p p p l l p l l

p p p l l p l l

 
(3) 

where ,  stands for inner product. For any real valued function ( )f z  of a complex 

valued variable z  the gradients with respect to the real and imaginary part are 
obtained by taking derivatives formally with respect to the conjugate quantities *z , 
ignoring the nonconjugate occurrences of z  [5][6], i.e.,  

( )
( )

( )
( )

( )
*

2
f z f z f z

i
R z I z z

∂ ∂ ∂
+ =

∂ ∂ ∂
. (4) 

Therefore the derivative of cost function ( )d  with respect to *k  is 

( )
*

, ,
d

k
k

∂
= − +

∂
l p l l . (5) 

Let ( )
*

0
d

k

∂
=

∂
, we get 

,

,
k =

l p

l l
. (6) 

Substitute equation (6) and equation (2) into (1), we have 

( ) , ,
, ,

,
d

⋅
= −

l p p l
p l p p

l l
. (7) 

3   K-EVD Clustering for Estimating the Basis Matrix A  

In this paper, we assume that sources are very sparse in the sense that each source for 
many samples is dominant. In such case the observed data ( )tx  builds up hyper-lines. 

Of course not all observed datum belongs to any hyper-line. So, our objective is to 
detect and estimate directions of all hyper-lines where there are many outliers and 
noise. Roughly speaking, we obtain easily some preliminary K clusters representing 
vectors ˆ , 1 ,k k K=a . Usually, due to noise and many outliers the number of clusters 

is much larger than the number of sparse sources. 
K-EVD clustering algorithm for estimating A  (where =X AS  or equivalently 

( ) ( ) , 1, ,t t t T= =x As ) can be outlined as follows: 

(1)  Initialize the clustering matrix A  as ˆ m KC ×∈A , where K n≥ , we assume that only 
matrix m TC ×∈X  is known. 

(2) Partition stage: Assign the sample points in observation matrix 

( ) ( )1 , , m TT C ×= ∈X x x  into K  different clusters ( )ˆ , 1, ,i i Kθ =a , where ( )ˆiθ a  is a 
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data vector set. The estimation of line orientation of set ( )ˆiθ a  is ˆ , 1, ,i i K=a  (here 

[ ]1
ˆ ˆ ˆ, , K=A a a ). According to distance formula (7), we can compute each distance 

( )( )ˆ, id tx a  from observation point ( ) , 1, ,t t T=x  to cluster center line ˆ , 1, ,i i K=a . 

The observation point ( ) ( )ˆ
it θ∈x a  if and only if it satisfies 

( )( ) ( )( ){ }ˆ ˆ, min , , 1, ,i jd t d t j K= =x a x a . 

(3)   Update the cluster centroid matrix stage: for 1, ,i K=  

Consider each cluster ( )ˆ
iθ a , assume it contains ( )iT  entries ( ) ( ) ( ) ( )1 , ,i i iTx x , which 

compose a matrix ( ) ( ) ( ) ( ) ( )( )1 , ,i i i iT=X x x . For the entries of cluster ( )ˆiθ a , apply 

EVD decomposition ( )( ) ( )1 H
i i H

T
=X X VDV . Suppose ( )

1
id  is the largest eigenvalue, we 

update the line orientation of cluster ( )ˆ
iθ a  by ( )

1
iv , i.e., ( )

1ˆ i
i =a v , [ ]1

ˆ ˆ ˆ, , K=A a a . 

(4)   Return to step (2) and repeat until Â  converges. 
(5)  Without the loss of generality, we assume ( ) ( )1

1 1, , Kd d  such that ( ) ( )1
1 1

l lKd d≥ ≥ . We 

rank column vectors 
1ˆ ˆ, , Ka a  by the order 1, ,l lK . 

(6)  Output the clustering centroid matrix [ ]* 1ˆ ˆ, ,l lK=A a a . 

Remark. Similar to the K-SVD [1], we call this algorithm “K-EVD” in analogy to the 
standard clustering K-means. In above algorithm we at most need to perform the EVD 
decomposition for a set of m m×  symmetrical matrices. In contrast sometimes the K-
SVD algorithm even needs to do SVD decomposition for a set of large m T×  matrice. 
Since in BSS applications T m>> , the proposed K-EVD algorithm is much faster 
than the K-SVD. Additionally for the K-EVD, sorting eigenvalues are used to speed 
up the convergence. 

As mentioned in section 1, usually we have no information about how many 
clusters we should discriminate from the observation X . So we usually overestimate 
the number of clusters. To reduce the overestimated basis vectors, it’s necessary to 
evaluate which basis vectors are significant, i.e. which represent true vectors. The K  
maximum eigenvalues ( ) ( )1

1 1, , Kd d  can be used to identify such vectors. We can rank 

vectors 
1ˆ ˆ, , Ka a  by the values of corresponding eigenvalues. In other words, we 

choose only those K  basis vectors which correspond to the largest ( )
1d . Our algorithm 

is especially useful for such applications where the number of source is unknown and 
we can overestimate their number. 

The full description of sparse representation algorithm is given as follows: 

(1)  Estimate the extended basis matrix 
*A  (with spurious vectors) and corresponding 

eigenvalues ( ) ( )1
1 1, ,l lKd d  using K-EVD algorithm and next, we can only choose the 

first n  basis vectors [ ]* 1
ˆ ˆ ˆ, ,l ln=A a a  corresponding to n  largest eigenvalues 

( ) ( )1
1 1, ,l lnd d . The optimal threshold is still an open problem, but some information 

criteria can be used here. 
(2)  Estimate the coefficients of matrix S  using shortest-path-decomposition method [9]. 
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4   Numerical Experiments and Comparison 

In order to demonstrate the validity and very good performance of the K-EVD 
algorithm, here we give an example how sparse representation is used for BSS. The 
basis matrix A  is corresponding to the mixing matrix of the BSS and the rows of 
matrix S  are corresponding to the source signals. 

To check how well the mixing matrix is estimated, we introduce the following 
Biased Angle (BA) as a performance index (i.e., the angle between the column vector 

ia (of mixing matrix) and its corresponding estimation ˆ
ia ): 

( )ˆ ˆ, ,i i i iBA acos=a a a a , (8) 

where ( )acos  denotes the inverse cosine function, ,  denotes the inner product and 

[ ]1, , n=A a a . 
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Fig. 2. Source signals 

In addition, the Signal to Interference Ratio (SIR) is employed to measure the 
accuracy of the estimated source signals. 

( )
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ˆ, 10log
ˆ
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SIR s s

s s

=

=

=
−

 (dB). 
(9) 

In the BSS a separated signal ŝ  may have an arbitrary nonzero scale constant factor 

( )0c c ≠ , we suitably rescaled the estimated sources in order to optimally match them 

to the original sources. Usually, when SIR is larger than 18dB, the source signal is 
considered to be successfully estimated. 
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In the following two experiments, the 3 by 4 (full row rank) mixing matrix is 
generated randomly and normalized to unit length vectors. The sparse source matrix 

4 5000R ×∈S  is generated by the following MATLAB command:  

( )( ) ( )( )( )log , .*max 0, ,rand n T sign rand n T p= − −S . (10) 

 
Table 1. The results of K-SVD clustering tests 

K Â  ( ) ( )1
1 1, ,l lKd d  ( )ˆ,i iBA a a  

4 

0.3351    0.1164    0.7361   -0.4133

-0.8367    0.7810   -0.1214   -0.4917

0.4333    0.6136     0.6659    0.7665

 

0.6172 
0.5309 
0.5304 
0.3974 

0.2067 
0.0405 
0.2202 
0.1882 

5 

 0.3449    0.1122    0.7574   -0.4208   0.2310

-0.8286    0.7856   -0.0999   -0.4931   -0.2486

 0.4410    0.6085    0.6453     0.7614   0.9407

 

0.6205 
0.5339 
0.5100 
0.3942 

0.1500(small) 

0.1785 
0.0373 
0.2278 
0.1827 

6 

 0.3465    0.0955    0.7573   -0.4203   0.2310    0.4435

-0.8305    0.7662   -0.1000   -0.4924   -0.2486    0.8863

 0.4361    0.6355    0.6453    0.7622   0.9407    0.1331

 

0.6221 
0.5176 
0.5101 
0.3940 

0.1500(small) 
0.1485(small) 

0.1786 
0.0326 
0.2013 
0.1828 

In Table 1, the “small” ( )
1d  mean that the corresponding basis vectors are spurious. 

 

0 100 200 300 400 500
-5

0

5

0 100 200 300 400 500
-5

0

5

0 100 200 300 400 500
-5

0

5

 

Fig. 3. Observed signals 

In expression (10), by choosing different parameter ( )0 1p p≤ ≤ , we can obtain the 

source signals with different sparseness degree. The larger the parameter p  is, the 
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sparser the sources signals generated by equation (10) are. Here 4, 5000, 0.55n T p= = = . 

It should be noted that the source signals are not very sparse, but we still can estimate 
matrix A  and recover the original sources. 

Example 1. When the number of source signals is overestimated, in this example we 
demonstrate how to prior choose those basis vectors with large reliability. 

We choose 4,5,6K = , respectively, to perform the tests. All tests were convergent 

for less than 20 iterations. The detailed results are shown in Table 1. 

Example 2. We compare the K-EVD algorithm with K-SVD algorithm [1] in this 
example. Here we mainly compare the speed of these two algorithms. For the 4K =  
case of example 1, in the same simulation environment, K-EVD took about 0.6000 
seconds, while K-SVD cost about 26.8890 seconds. Obviously, K-EVD is much faster 
than K-SVD. 

In addition, in this case, all SIRs of the estimated signals are larger than 18dB, and 
are 18.8872dB, 21.3923dB, 21.8182dB, 19.6349dB, respectively. 
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Fig. 4. Separated signals 

5   Conclusions 

We proposed a simple distance measure. Based on this distance formula, the K-EVD 
algorithm is presented for estimating the basis matrix A  in very sparse 
representation. When the number of basis vectors is overestimated, K-EVD can 
evaluate which basis vectors are most reliable by their corresponding principal 
eigenvalues ( )

1d . The simulation experiments illustrate the validity and some 

advantages of the proposed algorithm. In fact the K-EVD algorithm can be applied 
not only for real but also to sparse representation for the complex valued data. For 
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signals that are not sparse in the time domain but sparse in the frequency domain, the 
proposed algorithm can work. Here we limited our considerations to real valued data 
due to the space limit. 
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Abstract. A maximum likelihood blind source separation algorithm is
developed. The temporal dependencies are explained by assuming that
each source is an AR process and the distribution of the associated i.i.d.
innovations process is described using a Mixture of Gaussians (MOG).
Unlike most maximum likelihood methods the proposed algorithm takes
into account both spatial and temporal information, optimization is per-
formed using the Expectation-Maximization method, and the source
model is learned along with the demixing parameters.

1 Introduction

Blind source separation (BSS) involves the application of a linear transformation
to an observed set of M mixtures, x, in an attempt to extract the original M
(unmixed) sources, s. Two of the main types of BSS methods for stationary data
include decorrelation approaches and approaches based on Independent Compo-
nents Analysis (ICA). Methods based on decorrelation minimize the squared
cross-correlation between all possible pairs of source estimates at two or more
lags [1], [2], [3]. Methods based on ICA attempt to make the source estimates
statistically independent at lag 0 [4], [5], [6]. Herein it is assumed that the sources
are mutually statistically independent, the mixing matrix is invertible, and there
are as many sensors as there are sources. If, in addition, at most one source has
a Gaussian probability density function (pdf) then ICA methods are appropri-
ate for BSS even if all the sources have identical spectra, whereas this is not
the case for decorrelation methods. Similarly, if the M sources possess sufficient
spectral diversity then decorrelation methods are appropriate for BSS even if
all the sources are Gaussian-distributed, whereas this is not the case for ICA
methods. Consequently, the appropriate BSS algorithm for a given application
depends on the spatial and temporal structure of the sources in question.

The approach presented here, AR-MOG, differs from most ML methods [7],
[8], [9] in three important ways. First, the proposed criterion makes use of both
the spatial and temporal structure of the sources. Consequently, AR-MOG may
be used in situations for which either of the above two types of BSS algorithms
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are appropriate. Second, AR-MOG is formulated in terms of latent variables
so that it can be optimized using the Expectation-Maximization (EM) method.
Third, instead of assuming the target distributions are known, the proposed
method learns the target distributions directly from the observations.

2 Generative Model

It is assumed that there are M mutually statistically independent sources, each
of which are N samples in length. The variable s represents the (M ×N) source
matrix, sm,1:N represents the (1 × N) vector of the mth row of s, and s1:M,n
represents the (M × 1) vector of the nth column of s. Each source, sm,n, is as-
sumed to be an autoregressive (AR) process that is generated from a temporally
i.i.d. innovations process, um,n. The relationship between a given source and the
associated innovations process is assumed to be um,n=

∑Kg

k=0 gm,ksm,n−k, where
gm,0 =1 m ∈ {1, 2, . . . ,M}, gm,k is an element of the (M ×Kg + 1) matrix g of
AR coefficients, and Kg is the order of each of the AR filters. The sources are
therefore given by

sm,n = −
Kg∑
k=1

gm,ksm,n−k + um,n . (1)

The M observations at time n are assumed to be generated from the sources by
means of a linear, memory-less (M ×M) mixing matrix, i.e., xn=Asn.

The pdf of each innovations process is assumed to be parameterized by a
Mixture of Gaussians (MOG),

pUm,n
(um,n)=

KQ∑
q=1

pUm,n|Qm,n
(um,n|Qm,n=q)pQm,n

(Qm,n=q)

=
KQ∑
q=1

N (um,n|μm,q, νm,q)πm,q ,

(2)

which should not be confused with pŪm,n
(um,n) (the target pdf of each innova-

tions process) or pÛm,n
(ûm,n) (the actual pdf of the estimate of the innovations),

and where pUm,n|Qm,n
(um,n|Qm,n = q) has a normal distribution, μm,q is the

mean of the qth component (or state) of the mth source, νm,q is the correspond-
ing precision, πm,q ≡ pQm,n

(Qm,n = q) is the corresponding prior probability
(constrained such that

∑KQ

q=1 πm,q = 1 ∀m), and Qm,n ∈ {1, 2, . . . ,KQ} repre-
sents the state (latent variable) of the mth source at the nth time point. This
particular generative model is able to describe both the non-Gaussianity and the
temporal dependencies of the sources.

3 Criterion

Let pUm,n
(um,n) denote the marginal pdf of a particular innovations process and

let pU(u) and pU1:M,n
(u1:M,n) denote the order-MN and order-M joint pdf’s
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of the innovations, respectively. It is assumed that all variables are identically
distributed in time (although this is not valid for the outputs of the IIR filter sm,n
until after the transients have died out). Using this notation and the preceding
generative model the data likelihood is given by

pX(x)=
N∏
n=1

pX1:M,n|X1:M,1:n−1
(x1:M,n|x1:M,1:n−1)= |W |N

M∏
m=1

N∏
n=1

pUm,n
(um,n) ,

(3)
where W = A−1 (hence, sn = Wxn), it is understood that the set of all pa-
rameters, {W , g,μ,ν,π, KQ,Kg}, is given for each pdf, and where um,n =∑Kg

k=0
∑M
l=1 Wm,lgm,kxl,n−k. Hence, the log likelihood is given by

L = N ln |W |+
M∑
m=1

N∑
n=1

ln pUm,n
(um,n)

=N ln|W |+
M∑
m=1

N∑
n=1

KQ∑
q=1

γm,n,q ln
pUm,n,Qm,n

(um,n,Qm,n=q)
γm,n,q

,

(4)

where the latter expression is given as a function of the posterior state probabili-
ties, γm,n,q ≡ pQm,n|X(Qm,n=q|x). Adaptation using EM, which is guaranteed to
converge (possibly to a local maximum), involves maximizing (4) by alternating
between the E-step and the M-step.

4 EM Algorithm for AR-MOG

In this section we present an EM algorithm for inferring the model from the data
and extracting independent sources.

4.1 E-Step

The E-step maximizes the log likelihood w.r.t. the posteriors, γm,n,q, while keep-
ing the parameters fixed. The estimates of the posteriors are given by

γ̂m,n,q =
pŪm,n|Q̂m,n

(ûm,n|Q̂m,n = q)π̂m,q
ξm,n

, (5)

where ξm,n ensures that
∑KQ

q=1 γ̂m,n,q=1 ∀m,n, the true pdf’s (conditioned on
the state) have been replaced with the target pdf’s, and all other quantities have
been replaced with their estimates (denoted using the hat symbol).

4.2 M-Step

The M-step maximizes the log likelihood w.r.t. the parameter estimates {Ŵ , ĝ,
μ̂, ν̂, π̂} while keeping the posteriors fixed. The two parameters that are not
learned by AR-MOG, {K̂Q, K̂g}, are assumed to be known. The update of Ŵ
is performed using multiple iterations of gradient ascent where
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∂L
∂Ŵm,l

=
M∑
i=1

(
NIm,i −

N∑
n=1

K̂Q∑
q=1

K̂g∑
k=0

γ̂m,n,q(ûm,n−μ̂m,q)ν̂m,q ĝm,kŝi,n−k
)
Ŵi,l , (6)

which makes use of the natural gradient [10] (also known as the relative gradient
[11]). The solution for the matrix of AR coefficients is

Φm,k =
N∑
n=1

KQ∑
q=1

γ̂m,n,q ν̂m,q(μ̂m,q − ŝm,n)ŝm,n−k

Ψm,k,k′ =
N∑
n=1

KQ∑
q=1

γ̂m,n,q ν̂m,q ŝm,n−kŝm,n−k′

ĝm,1:N = Φm,1:M(Ψm,1:M,1:M)−1

(7)

for m ∈ {1, . . . ,M}. The solutions for the parameters that constitute the target
distributions are

μ̂m,q =
∑N
n=1 ûm,nγ̂m,n,q∑N
n=1 γ̂m,n,q

ν̂m,q =
∑N
n=1 γ̂m,n,q∑N

n=1(ûm,n − μ̂m,q)2γ̂m,n,q

π̂m,q =
∑N
n=1 γ̂m,n,q∑N

n=1
∑K̂Q

q′=1 γ̂m,n,q′
.

(8)

5 Experiments

Several different experiments are performed in order to assess the separation
performance of AR-MOG. Separation performance is gauged using the signal-
to-interference ratio (SIR), which is defined by

SIR =
1
M

M∑
m=1

10 log10

∑N
n=1(Ŵm,1:MA1:M,msm,n)2∑M

m′=1
(m′ �=m)

∑N
n=1(Ŵm,1:MA1:M,m′sm′,n)2

(dB) .

Unless otherwise specified the data is drawn from the same model that is used by
AR-MOG, the innovations are assumed to have the same distribution, M =2, and
N = 104. The error bars represent one standard error. When they are included
the mean results represent the average of 10 Monte Carlo trials. Results from
JADE [12], which does not use temporal dependencies (K̂g = 0), and MRMI-
SIG [6], which essentially uses K̂g=1, are also included as benchmarks.

Figure 1a shows the mean separation performance of AR-MOG as a function
of K̂g, where Kg=10 and K̂Q=KQ=4. The means, precisions, and priors are not
adapted in this experiment or the next experiment so that the change in perfor-
mance due to the addition of the AR filters may be better quantified. For K̂g=0
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(a) Experiment 1 (b) Experiment 2

Fig. 1. Separation performance as a function of K̂g. (a) Experiment 1. The inset shows
pUm,n(um,n) and a Gaussian distribution (dashed line) having the same mean and
variance. (b) Experiment 2. The inset shows pSm,n(sm,n) and a Gaussian distribution
(dashed line) having the same mean and variance.

AR-MOG defaults to the case where no AR model is used, i.e., û = ŝ. When
no temporal dependencies are used the AR-MOG method performs similarly,
but slightly better, than JADE and MRMI-SIG. For K̂g ≥ 4 the performance
improvement of AR-MOG is approximately 15-20 dB.

The separation results in Fig. 1a represent a best case scenario for AR-MOG
since the data are drawn from the model. The results shown in Fig. 1b use
(artificially-mixed) real speech data not drawn from the AR-MOG model. Per-
formance is shown as a function of K̂g where K̂Q = 3. The target distribution
pŪm,n

(um,n) is chosen to be unimodal and super-Gaussian since speech is known
to be approximately Laplacian. For the speech data the performance of both
AR-MOG and JADE are reduced by approximately 5-8 dB with respect to the
first experiment. Figure 1b shows that it is not strictly necessary for the sources
to be stationary processes for AR-MOG to perform well (speech is commonly
assumed to be stationary, but only for very short segments [13]).

The third experiment shows the sensitivity of the three BSS algorithms to
an increase in the temporal correlation of the sources. For this experiment N =
3∗104, K̂Q=KQ=3, K̂g=4, and each sm,1:N is related to the associated um,1:N
by means of a moving average (MA) filter, hm,1:Kh+1. Performance is shown in
Fig. 2a as the order of this filter, Kh, is varied (increasing Kh increases the overall
correlation at an exponentially decreasing rate). Unlike the previous experiments
the means and variances are adapted. For this dataset increasing the temporal
correlation (i.e., Kh) causes the separation performance of JADE and MRMI-
SIG to decrease by roughly 30 dB and 6 dB, respectively. The performance of
AR-MOG is not affected by the change in temporal correlation.

The fourth experiment attempts to measure the separation performance as a
function of the initialization of pŪm,n

(um,n). For each case considered the separa-
tion performance is given when the parameters that constitute pŪm,n

(um,n) are



An EM Method for Spatio-temporal Blind Source Separation 103

(a) Experiment 3 (b) Experiment 4

Fig. 2. (a) Separation performance as a function of Kh (the length of each hm)
for Experiment 3. (b) Initial (dashed line) and final pŪm,n(um,n) distributions and
pUm,n(um,n) for Experiment 4. Upper-left: Case 1. Upper-right: Case 2. Lower-left:
Case 3. Lower-right: Case 4.

adapted and when they are fixed. The resulting SIR values are shown in Table I,
where the left column corresponds to when pŪm,n(um,n) is adapted, whereas the
right column keeps pŪm,n

(um,n) fixed at the distribution used for initialization
of the left column results. The initial and final pŪm,n

(um,n) distributions and
the true distribution, pUm,n(um,n), are shown in Fig. 2b. For Cases 1 & 2 the ini-
tial innovations distribution and the true distribution are similar and for Cases 3
& 4 the assumed (initial) innovations distribution is far from correct. Likewise, for
Cases 1 & 3 K̂g=Kg=0 and for Cases 2 & 4 K̂g=Kg=4. When the initial inno-
vations distribution is similar to the true distribution the separation performance
is excellent independent of whether or not pŪm,n

(um,n) is adapted. When they are
not similar, based on these results, it is advantageous to adapt pŪm,n(um,n). No-
tice that pŪm,n

(um,n) gets trapped in a local maximum for Cases 3 and 4. This
is indicated by the fact that the target distribution converges to a bimodal solu-
tion for Case 3 and a unimodal solution for Case 4. If AR-MOG is initialized with
the true distribution the final SIR is 62.9 and 67.7 dB, respectively, and the target
distributions for both cases converge to a trimodal solution. The fact that the fi-
nal target distribution is incorrect does not necessarily preclude the possibility of

Table 1. Final SIR separation performance for Experiment 4

Case Adapt
pŪm,n(um,n)

Fixed
pŪm,n(um,n)

1 45.6 dB 46.3 dB
2 59.5 dB 47.1 dB
3 44.2 dB 0.0 dB
4 51.0 dB 39.5 dB
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achieving good separationperformance, as indicated inTable I, because it is neither
sufficient nor necessary for good separation performance that the final pŪm,n(um,n)
approximates pUm,n

(um,n). What is necessarily required (but is not sufficient, e.g.,
for Gaussian distributions) is that pŜm,n

(sm,n) approximates pSm,n
(sm,n) for each

m (and allowing for possible permutations). The ability of AR-MOG to separate
sources even if pŪm,n(um,n) is incorrect is identical to the well-known fact that ML
methods that assume the cumulative density function (cdf) is sigmoidal are often-
times able to separate sources even if the cdf of each source is not sigmoidal [4],
[11], [14], [15], [16], [17]. There is no assurance that AR-MOG will be able to find
a solution for pŪm,n

(um,n) that allows for good separation, but Table I indicates
that it may be advantageous to try to improve on the original assumptions.

6 Conclusions

This paper develops a BSS algorithm that is based on maximizing the data
likelihood where each source is assumed to be an AR process and the innovations
are described using a MOG distribution. It differs from most ML methods in that
it uses both spatial and temporal information, the EM algorithm is used as the
optimization method, and the parameters that constitute the source model are
adapted to maximize the criterion. Due to the combination of the AR process
and the MOG model, the update equations for each parameter has a very simple
form. The separation performance was compared to several other methods, one
that does not take into account temporal information and one that does. The
proposed method outperforms both. Future work will focus on incorporating
noise directly into the model in a manner similar to that used for the Independent
Factor Analysis method [18].
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Abstract. We recently proposed a markovian image separation method.
The proposed algorithm is however very time consuming so that it cannot
be applied to large-size real-world images. In this paper, we propose
two major modifications i.e. utilization of a low-cost parametric score
function estimator and derivation of a modified equivariant version of
Newton-Raphson algorithm for solving the estimating equations. These
modifications make the algorithm much faster and allow us to perform
more experiments with artificial and real data which are presented in
the paper.

1 Introduction

We recently proposed [1] a quasi-efficient Maximum Likelihood (ML) approach
for blindly separating mixtures of temporally correlated, mono-dimensional inde-
pendent sources where a Markov model was used to simplify the joint Probability
Density Functions (PDF) of successive samples of each source. This approach
exploits both source non-gaussianity and autocorrelation in a quasi-optimal
manner.

In [2], we extended this idea to bi-dimensional sources (in particular images),
where the spatial autocorrelation of each source was described using a second-
order Markov Random Field (MRF). The idea of using MRF for image sepa-
ration has recently been exploited by other authors [3], where the source PDF
are supposed to be known, and are used to choose the Gibbs priors. In [2],
however, we made no assumption about the source PDF so that the method
remains quasi-efficient whatever the source distributions. The first experimen-
tal results reported in [2] confirmed the better performance of our method with
respect to the ML methods which ignore the source autocorrelation [4] and the
autocorrelation-based methods which ignore the source non-gaussianity [5], [6].

The algorithm used in [2] is however very slow: its implementation requires
the estimation of some 5-dimensional conditional score functions using a non-
parametric estimator and the maximization of a likelihood function using a time
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consuming gradient method. In the present paper, we propose a parametric poly-
nomial estimator of the conditional score functions which is much faster than
the non-parametric estimator. We also derive a modified equivariant Newton-
Raphson algorithm which considerably reduces the computational cost of the
optimization procedure. Using this fast algorithm, we performed more simula-
tions with artificial and real-world data to compare our method with classical
approaches.

2 ML Method for Separating Markovian Images

Assume we have N = N1 × N2 samples of a K-dimensional vector x(n1, n2)
resulting from a linear transformation x(n1, n2) = As(n1, n2), where s(n1, n2)
is the vector of independent image sources si(n1, n2), each one of dimension
N1 × N2 and possibly spatially autocorrelated, and A is a K × K invertible
matrix. Our objective is to estimate the separating matrix B = A−1 up to a
diagonal matrix and a permutation matrix.

The ML method consists in maximizing the joint PDF of all the samples of
all the components of the vector x (all the observations), with respect to the
separating matrix B. We denote this PDF

fx(x1(1, 1), · · · , xK(1, 1), · · · , x1(N1, N2), · · · , xK(N1, N2)) (1)

Under the assumption of independence of the sources, this function is equal to

(
1

|det(B−1)| )
N
K∏
i=1

fsi
(si(1, 1), · · · , si(N1, N2)) (2)

where fsi
(.) represents the joint PDF ofN samples of the source si. Each joint PDF

can be decomposed using Bayes rule in many different manners following different
sweeping trajectories within the image corresponding to source si (Fig. 1). These
schemes being essentially equivalent, we chose the horizontal sweeping. Then, the
joint PDF of source si can be decomposed using Bayes rule to obtain

fsi
(si(1, 1))fsi

(si(1, 2)|si(1, 1))fsi
(si(1, 3)|si(1, 2), si(1, 1)) · · · · · ·

fsi
(si(1, N2)|si(1, N2 − 1), · · · , si(1, 1))fsi

(si(2, 1)|si(1, N2), · · · , si(1, 1)) · · · · · ·
fsi

(si(N1, N2)|si(N1, N2 − 1), · · · , si(1, 1)) (3)

This equation may be simplified by assuming a Markov model for the sources.
We suppose hereafter that the sources are second-order Markov random fields,
i.e. the conditional PDF of a pixel s(n1, n2) given all the other pixels is equal to
its conditional PDF given its 8 nearest neighbors (Fig. 2). From this assumption,
it is clear that the conditional PDF of a pixel not situated on the boundaries,
given all its predecessors (in the sense of sweeping trajectory) is equal to its
conditional PDF given its three top neighbors and its left neighbor (squares in
Fig. 2). In other words, if Dn1,n2 is the set of pixel values si(k, l) such that
{k < n1} or {k = n1, l < n2}, then
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(1) (2) (3)

Fig. 1. Different sweeping possibilities
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Fig. 2. Second-order Markov random field

fsi
(si(n1, n2)|Dn1,n2) = fsi

(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),
si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (4)

If N is sufficiently large, the conditional PDF of the pixels located on the left,
top and right image boundaries (for which, the 4 mentioned neighbors are not
available) may be neglected in (3). Supposing that the sources are stationary so
that the conditional PDF (4) does not depend on n1 and n2, it follows from (4)
that the decomposed joint PDF (3) can be rewritten as

fsi
(si(1, 1), si(1, 2), · · · , si(1, N2), si(2, 1), · · · , si(N1, N2)) �

N1∏
n1=2

N2−1∏
n2=2

fsi
(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1))

The log-likelihood function may be obtained by replacing the above PDF in (2)
and taking the logarithm:

N log(|det(B)|) +
K∑
i=1

N1∑
n1=2

N2−1∑
n2=2

log fsi
(si(n1, n2)|si(n1, n2 − 1),

si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (5)

Dividing the above cost function by N and defining the spatial average operator
EN [.] = 1

N

∑N1
n1=2

∑N2−1
n2=2 [.], Equation (5) may be rewritten in the following

simpler form

L1 = log(|det(B)|) + EN [
K∑
i=1

log fsi
(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),

si(n1 − 1, n2), si(n1 − 1, n2 − 1))]
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In [2], the separating matrix B was obtained by maximizing the above cost
function using a relative gradient ascent algorithm which is very time consuming.
Here, we choose another approach which consists in solving the equation ∂L1

∂B = 0
using a modified equivariant Newton-Raphson algorithm.

3 Estimating Equations and Their Solution

As shown in [2], the gradient of the cost function L1 is equal to

∂L1

∂B
= B−T − EN [

∑
(k,l)∈Υ

Ψ (k,l)
s (n1, n2).xT (n1 − k, n2 − l)] (6)

where Υ = {(0, 0), (0, 1), (1,−1), (1, 0), (1, 1)} and the vector Ψ (k,l)
s (n1, n2)

contains the conditional score functions of the K sources, which are denoted
ψ

(k,l)
si (n1, n2) hereafter for simplicity, and which read explicitly

ψ(k,l)
si

(n1, n2) = ψ(k,l)
si

(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),

si(n1 − 1, n2), si(n1 − 1, n2 − 1)) =
−∂

∂si(n1 − k, n2 − l)
log fsi

(si(n1, n2)|

si(n1, n2 − 1), si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (7)

Setting (6) to zero, then post-multiplying by BT we obtain

EN [
∑

(k,l)∈Υ
Ψ (k,l)

s (n1, n2).sT (n1 − k, n2 − l)] = I (8)

This yields the K(K − 1) estimating equations

EN [
∑

(k,l)∈Υ
ψ(k,l)
si

(n1, n2).sj(n1 − k, n2 − l)] = 0 i �= j = 1, · · · ,K (9)

which determine B up to a diagonal and a permutation matrix. The other K

equations EN [
∑

(k,l)∈Υ ψ
(k,l)
si (n1, n2).si(n1 − k, n2 − l)] = 1 i = 1, · · · ,K are

not important and can be replaced by any other scaling convention.
The system of equations (9) may be solved using the Newton-Raphson algo-

rithm. We propose a modified version of this algorithm which has the equivari-
ance property, i.e. its performance does not depend on the mixing matrix.

To ensure the equivariance property, the adaptation gain must be proportional
to the previous value of B. Let B̃ be an initial estimation of B. We want to find
a matrix Δ so that the estimation B̂ = (I+Δ)B̃ be a solution of (9). To simplify
the notations, we here only consider the case K = 2 but the same approach may
be used for higher values of K. In the appendix, we show that the off-diagonal
entries of Δ, δ12 and δ21, are the solutions of the following linear system of
equations
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EN [
∑

(k,l)∈Υ
ψ

(k,l)
ŝ1

(n1, n2).s̃1(n1 − k, n2 − l)]δ21

+EN [
∑

(k,l)∈Υ
{
∑

(i,j)∈Υ

∂ψ
(k,l)
ŝ1

(n1, n2)
∂s1(n1 − i, n2 − j)

s̃2(n1 − i, n2 − j)}.s̃2(n1 − k, n2 − l)]δ12

= −EN [
∑

(k,l)∈Υ
ψ

(k,l)
ŝ1

(n1, n2).s̃2(n1 − k, n2 − l)]

EN [
∑

(k,l)∈Υ
ψ

(k,l)
ŝ2

(n1, n2).s̃2(n1 − k, n2 − l)]δ12

+EN [
∑

(k,l)∈Υ
{
∑

(i,j)∈Υ

∂ψ
(k,l)
ŝ2

(n1, n2)
∂s2(n1 − i, n2 − j)

s̃1(n1 − i, n2 − j)}.s̃1(n1 − k, n2 − l)]δ21

= −EN [
∑

(k,l)∈Υ
ψ

(k,l)
ŝ2

(n1, n2).s̃1(n1 − k, n2 − l)] (10)

The computation of the coefficients δ12 and δ21 requires the estimation of the con-
ditional score functions and their derivatives. In [2], we used a non-parametric
method proposed in [7] involving the estimation of joint entropies using a discrete
Riemann sum and third-order cardinal spline kernels. This estimator is very time
and memory consuming and does not provide the derivatives of the score func-
tions required for Newton-Raphson algorithm. In the following section, we pro-
pose another solution based on a third order polynomial parametric estimation
of the score functions which is very fast and directly provides the derivatives of
the score functions. Then, the terms δ12 and δ21 can be obtained by solving (10).
The diagonal entries of Δ are not important because they influence only the scale
factors. Thus, we can fix them arbitrarily to zero.

4 Parametric Estimation of the Score Functions

Our parametric estimator of the conditional score functions is based on the
following theorem, proved in [8] in the scalar case:

Theorem. If limyi→±∞ fy(y0, · · · , yq)g(y0, · · · , yq) = 0 1 where fy is the joint
PDF of y0, · · · .yq and g is an arbitrary function of these variables, then

E[−∂ log fy(y0, · · · , yq)
∂yi

g(y0, · · · , yq)] = E[
∂g(y0, · · · , yq)

∂yi
] (11)

Following this theorem, if g(y0, · · · , yq,W) is a mean-square parametric estima-
tor of the joint score function ψyi

(y0, · · · , yq) = −∂ log fy(y0,··· ,yq)
∂yi

, its parameter
vector W, can be found from
1 When g(.) is bounded, this condition is satisfied for every real-world signal because

its joint PDF tends to zero at infinity.
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W = argmin{E[g2(y0, · · · , yq,W)]− 2E[
∂g(y0, · · · , yq,W)

∂yi
]} (12)

Note that the function to be minimized does not explicitly depend on the score
function itself. In our problem, we want to estimate the conditional score func-
tions. Each conditional score function can be written as the difference between
two joint score functions:

ψyi
(y0|y1, · · · , yq) = −∂ log fy(y0, · · · , yq)

∂yi
+

∂ log fy(y1, · · · , yq)
∂yi

= ψyi
(y0, · · · , yq)− ψyi

(y1, · · · , yq) (13)

Each of two joint score functions in the above equation can be estimated using
a parametric estimator which may be realized in different manners. In our work,
we used the polynomial functions because of their linearity with respect to the
parameters which simplifies the computations.

The conditional score functions used in our work being of dimension 5, they
may be written as the difference between two joint score functions of dimensions
5 and 4 respectively. We used third-order polynomial functions for estimating
them. The polynomial function modeling the 5-dimensional joint score function
must contain all the possible terms in {1, (y0, y1, y2, y3, y4), (y0, y1, y2, y3, y4)2,
(y0, y1, y2, y3, y4)3}. Hence, it contains

∑3
k=0

(5+k−1
k

)
= 56 coefficients. In the

same manner, the polynomial function modeling the 4-dimensional joint score
function contains

∑3
k=0

(4+k−1
k

)
= 35 coefficients.

Our tests confirm that the above parametric estimator is much more faster,
roughly 100 times, than the non-parametric estimator used in [2] and leads to
the same performance.

5 Simulation Results

In the following experiments, we compare our method with two well-known al-
gorithms: SOBI [6] and Pham-Garat [4]. SOBI is a second-order method which
consists in jointly diagonalizing several covariance matrices evaluated at different
lags. The Pham-Garat algorithm is based on a maximum likelihood approach
which supposes that the sources are i.i.d. and therefore does not take into ac-
count their possible autocorrelation. For each experiment, the output Signal to
Interference Ratio (in dB) was computed by SIR = 0.5

∑2
i=1 10 log10

E[s2i ]
E[(ŝi−si)2]

,
after normalizing the estimated sources, ŝi(n1, n2), so that they have the same
variances and signs as the source signals, si(n1, n2).

In the first experiment, we use artificial image sources of size 100×100 which sat-
isfy exactly the considered Markov model. Two independent non-autocorrelated
and uniformly distributed image noises, e1(n1, n2) and e2(n1, n2), are filtered by
two autoregressive (AR) filters using the following formula:

si(n1, n2) = ei(n1, n2) + ρ0,1si(n1, n2 − 1) + ρ1,−1si(n1 − 1, n2 + 1)
+ρ1,0si(n1 − 1, n2) + ρ1,1si(n1 − 1, n2 − 1) (14)
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The coefficients ρi,j are chosen to guarantee a sufficient stability condition.
Thus, the coefficients of the first and the second filters are respectively fixed to
{−0.5, 0.4, 0.5, 0.3} and {−0.5, ρ1,−1, 0.5, 0.3}. The coefficient ρ1,−1 of the second
filter may change in its stability interval, i.e. [0.2, 0.6]. Then, the source images

si(n1, n2) are mixed by the mixing matrix A =
(

1 0.99
0.99 1

)
. The mean of SIR

over 100 Monte Carlo simulations as a function of the coefficient ρ1,−1 of the
second AR filter is shown in Fig. 3-a. Our algorithm outperforms the other two,
whatever ρ1,−1.

In the second experiment, the same non-autocorrelated and uniformly dis-
tributed image noises, e1(n1, n2) and e2(n1, n2), were generated and one of them
was filtered by a symmetrical FIR filter. It is evident that the filtered signal is
no longer a 2nd-order MRF. Then, the signals were mixed by the same matrix
as in the first experiment. The mean of SIR as a function of the selectivity of the
FIR filter is shown in Fig. 3-b. The performance of our method is always better
than SOBI. It also outperforms Pham-Garat unless the filter selectivity is small
so that the filtered signal is nearly uncorrelated. In the last experiment, the two
real images of dimension 230 × 270 pixels, shown in Fig. 4, were mixed by the
same matrix. It is clear that the working hypotheses are no longer true because
the images are not stationary and cannot be described by 2nd-order MRFs.
However, the images are autocorrelated and nearly cyclostationary because the
correlation profiles on different circles are similar. Thus, the conditional score
functions on different circles are nearly similar. Once more, the three mentioned
algorithms were used for separating the sources. Our algorithm led to 57-dB SIR
while SOBI and Pham-Garat led to 23-dB and 12-dB SIR respectively.
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6 Conclusion

In this paper, we made two major modifications in our markovian blind image
separation algorithm i.e. utilization of a low-cost parametric score function es-
timator instead of the non-parametric estimator, and derivation of a modified
equivariant Newton-Raphson algorithm for solving the estimating equations in-
stead of maximizing the log-likelihood function by a relative gradient algorithm.
These modifications led to a much faster algorithm and allowed us to perform
more experiments using artificial and real-world data. These experiments con-
firmed the better performance of our method in comparison to the classical
methods which ignore spatial autocorrelation or non-gaussianity of data.
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Appendix. Derivation of Equations (10)

Post-multiplying B̂ = (I + Δ)B̃ by x we obtain ŝ = (I + Δ)s̃. Denoting Δ =(
δ11 δ12
δ21 δ22

)
, it implies that ŝ1(n1, n2) = s̃1(n1, n2)+ δ11s̃1(n1, n2)+ δ12s̃2(n1, n2)

and ŝ2(n1, n2) = s̃2(n1, n2) + δ21s̃1(n1, n2) + δ22s̃2(n1, n2). Since ŝ1 and ŝ2 must
satisfy the estimating equations (9), by replacing the above relations in the first
estimating equation and considering (7) we obtain
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E
[ ∑

(k,l)∈Υ

{
ψ

(k,l)
ŝ1

(
s̃1(n1, n2) + δ11s̃1(n1, n2) + δ12s̃2(n1, n2)|s̃1(n1, n2 − 1)

+δ11s̃1(n1, n2 − 1) + δ12s̃2(n1, n2 − 1), . . . , s̃1(n1 − 1, n2 − 1)
+δ11s̃1(n1 − 1, n2 − 1) + δ12s̃2(n1 − 1, n2 − 1)

)}
.
{
s̃2(n1 − k, n2 − l)

+δ21s̃1(n1 − k, n2 − l) + δ22s̃2(n1 − k, n2 − l)
}]

= 0(15)

Using a first-order Taylor development of the score function, noting that the
separated sources are independent at the vicinity of the solution, neglecting the
terms containing the products of δij , and neglecting δ22 with respect to 1, we
obtain by some simple calculus the first equation in (10). The second equation
can be derived by symmetry.
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Abstract. Causal discovery is the task of finding plausible causal re-
lationships from statistical data [1,2]. Such methods rely on various as-
sumptions about the data generating process to identify it from
uncontrolled observations. We have recently proposed a causal discovery
method based on independent component analysis (ICA) called LiNGAM
[3], showing how to completely identify the data generating process under
the assumptions of linearity, non-gaussianity, and no hidden variables. In
this paper, after briefly recapitulating this approach, we focus on the al-
gorithmic problems encountered when the number of variables considered
is large. Thus we extend the applicability of the method to data sets with
tens of variables or more. Experiments confirm the performance of the
proposed algorithms, implemented as part of the latest version of our
freely available Matlab/Octave LiNGAM package.

1 Introduction

Several authors [1,2] have recently formalized concepts related to causality using
probability distributions defined on directed acyclic graphs. This line of research
emphasizes the importance of understanding the process which generated the
data, rather than only characterizing the joint distribution of the observed vari-
ables. The reasoning is that a causal understanding of the data is essential to be
able to predict the consequences of interventions, such as setting a given variable
to some specified value.

An interesting question within this theoretical framework is: ‘Under what
circumstances and in what way can one determine causal structure on the basis
of observational data alone?’. In many cases it is impossible or too expensive to
perform controlled experiments, and hence methods for discovering likely causal
relations from uncontrolled data would be very valuable.

For continuous-valued data the main approach has been based on assump-
tions of linearity and gaussianity [1,2]. Those assumptions generally lead only to
a set of possible models equivalent in their conditional correlation structure. We
have recently showed [3] that an assumption of non-gaussianity in fact allows
the full model to be identified using a method based on independent component
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analysis (ICA). However, this new method poses some challenging computa-
tional problems. In this paper we describe and solve these problems, allowing
the application of the method to problems of high dimensionality.

The paper is structured as follows. In Section 2 we briefly describe the basics
of LiNGAM, before focusing on the computational problems in Section 3. The
proposed algorithms are empirically evaluated in Section 4. Conclusions are given
in Section 5.

2 LiNGAM

Assume that we observe data generated from a process with the following
properties:

1. The observed variables xi, i = {1 . . . n} can be arranged in a causal order
k(i), defined to be an ordering of the variables such that no later variable in
the order participates in generating the value of any earlier variable. That
is, the generating process is recursive [4], meaning it can be represented
graphically by a directed acyclic graph (DAG) [2,1].

2. The value assigned to each variable xi is a linear function of the values
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term ei,
and plus an optional constant term ci, that is

xi =
∑

k(j)<k(i)

bijxj + ei + ci. (1)

3. The disturbances ei are all continuous random variables having non-gaussian
distributions with non-zero variances, and the ei are independent of each
other, i.e. p(e1, . . . , en) =

∏
i pi(ei).

A model with these three properties we call a Linear, Non-Gaussian, Acyclic
Model, abbreviated LiNGAM.

We assume that we observe a large number of data vectors x (containing the
components xi), and each is generated according to the above described process,
with the same causal order k(i), same coefficients bij , same constants ci, and
the disturbances ei sampled independently from the same distributions. Note
that the above assumptions imply that there are no unobserved confounders [2]
(hidden variables). Spirtes et al. [1] call this the causally sufficient case.

To see how we can identify the parameters of the model from the set of data
vectors x, we start by subtracting out the mean of each variable xi, leaving us
with the following system of equations:

x = Bx + e, (2)

where B is a matrix that contains the coefficients bij and that could be permuted
(by simultaneous equal row and column permutations) to strict lower triangular-
ity if one knew a causal ordering k(i) of the variables. (Strict lower triangularity
is here defined as lower triangular with all zeros on the diagonal.) Solving for x
one obtains

x = Ae, (3)



New Permutation Algorithms for Causal Discovery Using ICA 117

where A = (I − B)−1. Again, A could be permuted to lower triangularity (al-
though not strict lower triangularity, actually in this case all diagonal elements
will be non-zero) with an appropriate permutation k(i). Taken together, equa-
tion (3) and the independence and non-gaussianity of the components of e define
the standard linear independent component analysis (ICA) model [5,6], which is
known to be identifiable.

While ICA is essentially able to estimate A (and W = A−1), there are
two important indeterminacies that ICA cannot solve: First and foremost, the
order of the independent components is in no way defined or fixed. Thus, we
could reorder the independent components and, correspondingly, the columns
of A (and rows of W) and get an equivalent ICA model (the same probability
density for the data). In most applications of ICA, this indeterminacy is of no
significance and can be ignored, but in LiNGAM, we can and we have to find
the correct permutation as described in Section 3 below.

The second indeterminancy of ICA concerns the scaling of the independent
components. In ICA, this is usually handled by assuming all independent com-
ponents to have unit variance, and scaling W and A appropriately. On the other
hand, in LiNGAM (as in structural equation modeling, SEM [4]) we allow the
disturbance variables to have arbitrary (non-zero) variances, but fix their weight
(connection strength) to their corresponding observed variable to unity. This re-
quires us to re-normalize the rows of W so that all the diagonal elements equal
unity, before computing B.

Our LiNGAM discovery algorithm [3] can thus be briefly summarized: First,
use a standard ICA algorithm to obtain an estimate of the demixing matrix W,
permute its rows such that there are no zeros on its diagonal, rescale each row
by dividing by the element on the diagonal, and finally compute B = I −W′,
where W′ denotes the permuted and rescaled W.

To find a causal order k(i) we must subsequently find a second permutation,
to be applied equally both to the rows and columns of B, which yields strict
lower triangularity.

3 Algorithms for Solving the Permutation Problems

3.1 Permuting the Rows of W

As pointed out above, because of the permutation indeterminancy of ICA, the
rows of W will be in random order. This means that we do not yet have the
correct correspondence between the disturbance variables ei and the observed
variables xi. The former correspond to the rows of W while the latter correspond
to the columns of W. Thus, our first task is to permute the rows to obtain a cor-
respondence between the rows and columns. If W were estimated exactly, there
would exist one (and only one!) row permutation that would give a matrix with
no zeros on the diagonal, and this permutation gives the correct correspondence
[3]. Furthermore, finding the correct permutation would be trivial.

In practice, however, ICA algorithms applied on finite data sets will yield
estimates which are only approximately zero for those elements which should be
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exactly zero. Thus, we need to search for the correct permutation by minimizing
a cost function which heavily penalizes small absolute values in the diagonal,
such as

∑
i 1/|W̃ii|, where W̃ denotes the row-permuted W.

An exhaustive search over all possible row-permutations is feasible only in
relatively small dimensions [3]. For larger problems other optimization meth-
ods are needed. Fortunately, it turns out that the optimization problem can be
written in the form of the classical linear assignment problem. To see this set
Cij = 1/|Wij |, in which case the problem can be written as the minimization of

n∑
i=1

Cφ(i),i (4)

where φ denotes the permutation to be optimized over. A great number of al-
gorithms exist for this problem, with the best achieving worst-case complexity
of O(n3) where n is the number of variables, see e.g. [7]. In our current imple-
mentation though, we simply use general-purpose linear programming software
to find the optimum, which is good enough to solve problems involving tens of
variables. Future implementations will use the more efficient algorithms.

3.2 Permuting B to Get a Causal Order

Once we have obtained the correct correspondence between rows and columns of
the ICA decomposition, calculating estimates of the bij is straightforward. First,
we normalize the rows of the permuted matrix to yield W′, and then calculate
B = I−W′ as described in Section 2 [3].

Although we now have initial estimates of all coefficients bij we do not yet
have available a causal ordering k(i) of the variables. Such an ordering (in general
there may exist many if the generating network is not fully connected) is needed
to achieve a directed acyclic graph, thus completing the estimation process.
Essentially, after the ordering we can force half of the coefficients to equal zero
such that the resulting network has no directed cycles.

A causal ordering can be found by permuting both rows and columns (using
the same permutation) of the matrix B (containing the initial estimated connec-
tion strengths) to yield a strictly lower triangular matrix. If the estimates were
exact, this would be a trivial task, using the following algorithm:

Algorithm A: Testing for DAGness, and returning a causal order if true

1. Initialize the permutation p to be an empty list
2. Repeat until B contains no more elements:

(a) Find a row i of B containing all zeros, if not possible return false
(b) Append i to the end of the list p
(c) Remove the i:th row and the i:th column from B

3. Return true and the found permutation p
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However, since our estimates will not contain exact zeros, we will have to find
a permutation such that setting the upper triangular elements to zero changes
the matrix as little as possible. For instance, we could define our objective to
be to minimize the sum of squares of elements on and above the diagonal, that
is
∑
i≤j B̃

2
ij where B̃ = PBPT denotes the permuted B, and P denotes the

permutation matrix representing the sought permutation. In low dimensions,
the optimal permutation can be found by exhaustive search. However, for larger
problems this is obviously infeasible. Since we are not aware of any efficient
method for exactly solving this combinatorial problem, we have taken another
approach to handling the high-dimensional case.

Our approach is based on setting small (absolute) valued elements to zero,
and testing whether the resulting matrix can be permuted to strict lower trian-
gularity. Thus, the algorithm is:

Algorithm B: Finding a permutation of B by iterative pruning and testing

1. Set the n(n + 1)/2 smallest (in absolute value) elements of B to zero
2. Repeat

(a) Test if B can be permuted to strict lower triangularity (using Algorithm A
above). If the answer is yes, stop and return the permuted B

(b) Additionally set the next smallest (in absolute value) element of B to zero

If in the problem, all the true zeros resulted in estimates smaller than all
of the true non-zeros, this algorithm finds the optimal permutation. In general,
however, the result is not optimal in terms of the above proposed objective;
more elements are usually set to zero than would be needed. Fortunately, this
is not a big problem because in sparse networks there are many more zeros in
the coefficients than required by the acyclicity of the model, hence we would
nevertheless like to prune out the small values from the estimated coefficients.
See [3] for some discussion on pruning the estimated coefficients.

4 Experiments

In [3] we empirically verified the basic concept of LiNGAM by generating data
from such models and estimating them using our method. However, because of
the lack of efficient permutation algorithms we were limited to problems with
small numbers of variables (8 variables or less). In the present paper we demon-
strate that the method also works well in high dimensions by employing the
permutation algorithms discussed in Section 3. All experimental code (including
the precise code to produce Figure 1) is included in the LiNGAM code package,
available at:

http://www.cs.helsinki.fi/group/neuroinf/lingam/



120 P.O. Hoyer et al.

Fig. 1. Scatterplots of the estimated bij versus the original (generating) values. The
different plots correspond to different numbers of variables and different numbers of
data vectors. Although for small data sizes the estimation often fails, when there is
sufficient data the estimation works essentially flawlessly, as evidenced by the grouping
of the points along the diagonal.

We repeatedly performed the following experiment:

1. First, we randomly constructed a strictly lower-triangular matrix B. Various
dimensionalities (10, 30, and 50) were used. Both fully connected (no zeros
in the strictly lower triangular part) and sparse networks (many zeros) were
tested. We also randomly selected variances of the disturbance variables and
values for the constants ci.

2. Next, we generated data by independently drawing the disturbance variables
ei from gaussian distributions and subsequently passing them through a
power non-linearity (raising the absolute value to an exponent in the interval
[0.5, 0.8] or [1.2, 2.0], but keeping the original sign) to make them non-
gaussian. Various data set sizes were tested. The ei were then scaled to yield
the desired variances, and the observed data X was generated according to
the assumed recursive process (1).

3. Before feeding the data to the LiNGAM algorithm, we randomly permuted
the rows of the data matrix X to hide the causal order with which the data
was generated. At this point, we also permuted the generating coefficients,
the ci, as well as the variances of the disturbance variables to match the new
order in the data.

4. Finally, we fed the data to our discovery algorithm, and compared the es-
timated parameters to the generating parameters. In particular, we made a
scatterplot of the entries in the estimated matrix B against the correspond-
ing generating coefficients.
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Fig. 2. Left: example original network. Right: estimated network. Graphs plotted us-
ing the latest version of the LiNGAM package which connects seamlessly to the free
Graphviz software, a sophisticated tool for plotting graphs.

Since the number of different possible parameter configurations is limitless,
we feel that the reader is best convinced by personally running the simulations
using various settings. This can be easily done by anyone by downloading our
software and running it using Matlab or the freely available Octave software.
Nevertheless, we here show some representative results.

Figure 1 gives combined scatterplots of the elements of B versus the gen-
erating coefficients. The different plots correspond to different dimensionalities
(numbers of variables) and different data sizes (numbers of data vectors), where
each plot combines the data for a number of different network sparseness lev-
els and non-linearities. Although for very small data sizes the estimation often
fails, when the data size grows the estimation works practically flawlessly, as
evidenced by the grouping of the datapoints onto the main diagonal.

In summary, the experiments verify that the new algorithms are able to find
the appropriate permutations even in high dimensions, and demonstrate that
reliable estimation is possible even when the number of variables is large. Com-
paring with the experiments in [3] we note that for larger dimensions we clearly
need more data, but the amounts of data required are still reasonable.

5 Conclusions

Developing methods for causal inference from non-experimental data (data which
does not come from controlled, randomized experiments) is a fundamental prob-
lem with a very large number of potential applications. Although one can never
fully prove the validity of a causal model from observational data alone, such
methods are nevertheless crucial in cases where it is impossible or very costly to
perform experiments.

The estimation of linear causal models can be based purely on the covariance
structure of the data [4,1,2] but such methods cannot in most cases distinguish
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between multiple equally possible causal models that all imply the same condi-
tional correlation structure. We have recently shown [3] that an assumption of
non-gaussianity of the disturbance variables allows the full causal model to be
identified, and provided an algorithm for this estimation. The method is essen-
tially a post-processing method of ICA results.

In this paper we have shown how to solve one of the main remaining problems
with our LiNGAM method, that of finding the appropriate permutations when
the number of variables is large. The proposed algorithms have been implemented
in our freely available software package, and tested in thorough experiments.
The code package has also been extended to include graph plotting capability
(in combination with Graphviz), as Figure 2 demonstrates.

How well real-world causal processes fit our assumptions, in particular that of
linearity, will be crucial to the success or failure of applications of LiNGAM. We
are currently involved in testing the method on real-world data and comparing its
power and usefulness with other causal discovery methods, such as those based
purely on conditional correlation structure. For the most recent developments,
please see the project webpage.
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Abstract. This paper describes blind source separation (BSS) problems
in the frequency domain using an eigenvector algorithm (EVA) with ref-
erence signals. The proposed EVA has such an attractive feature that all
source signals are separated simultaneously from their mixtures. This is
an advantage against the methods using deflation process (e.g., super-
exponential method), because those methods sometimes do not work so
as to converge to desired solutions, due to deflation failure. Computer
simulation demonstrates the validity of the proposed EVA.

1 Introduction

This paper deals with the blind source separation (BSS) problem for a multiple-
input multiple-output (MIMO) static system driven by independent source sig-
nals. To solve this problem, we draw on the ideas of eigenvector algorithms
(EVAs) with reference signals. Jelonnek et al. have proposed EVAs derived from
a criterion using a reference signal, in order to solve blind equalization of single-
input single-output (SISO) systems [1,2]. They have shown that the equalizer
can be derived from the eigenvectors of a fourth-order cumulant matrix. In this
paper, the EVA derived from a criterion with reference signals is used for solv-
ing the BSS problem of MIMO static systems. The proposed EVA has such an
attractive feature that all source signals are separated simultaneously from their
mixtures, while the other methods using deflation process extract signals one by
one. If the deflation process fails, all the signals cannot be separated. However,
the EVA with reference signals enables us to extract all the sources without any
deflation methods.

Through computer simulations and real environment experiments, we show
the effectiveness of the proposed methods.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 123–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Problem Formulation

Throughout this paper, let us consider the following MIMO static system with
n inputs and m outputs, a convolutive mixture model with additive noise (See
figure 1.);

s(t) y(t)

n(t)

+ z(t)

x(t)
reference signal

output signal
H

f

w

Fig. 1. The composite system of an unknown system and a filter, and reference system

y(t) =
∑
k

H(k)s(t− k) + n(t), (1)

where y(t) represents an m-column output vector called the observed signal, s(t)
represents an n-column input vector called the source signal, n(t) represents an
m-column noise vector and H(t) is an m× n(m ≥ n) mixing matrix.

To achieve the blind source separation for the system (1), a convolutive mix-
ture in the time domain is converted into instantaneous mixtures in the frequency
domain with the short-time Fourier transform (STFT),

Y(f, t) = H(f)S(f, t) + N(f, t). (2)

The following n filters, which are m-input single-output (MISO) static systems
driven by the observed signals, are used for each frequency bin:

Zl(f, t) = wHl (f)Y(f, t), l = 1, 2, . . . , n, (3)

where superscript H denotes the conjugate transpose (Hermitian) of a ma-
trix or a vector and Zl(f, t) is the lth output of the filter, wl(f) =
[wl1(f),wl2(f), . . . ,wlm]H is an m-column vector representing the m coefficients
of the filter in frequency bin f . Substituting (2) into (3), we obtain

Zl(f, t) = wHl (f)H(f)S(f, t) + wHl (f)N(f, t),
= gHl (f)S(f, t) + wHl (f)N(f, t), l = 1, 2, . . . , n, (4)

where gl(f) = [gl1(f), gl2(f), . . . , gln(f)]H = HH(f)wl(f) is an n-column
vector. The BSS problem considered in this paper can be formulated as follows:
Find n filters wl(f)’s denoted by w̃l(f)’s satisfying the following condition, with-
out the knowledge of H(f), even if the Gaussian noise N(f, t) is added to the
observed signal Y(f, t),

g̃l(f) = HH(f)w̃l(f) = δ̃l(f), l = 1, 2, . . . , n, (5)

where δ̃l(f) is an n-column vector whose elements δ̃lr(f)(r = 1, 2, . . . , n) are
equal to zero except for ρl(f)th element.
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To solve the blind separation problem, we put the following assumptions on
the system and the source signals.

A1) The matrix H(f) in (2) has full column rank.
A2) The input sequence {S(f, t)} is a zero-mean, non-Gaussian vector whose

element processes {Si(f, t)} , i = 1, 2, . . . , n, are mutually statistically inde-
pendent and have nonzero variance, σ2

si
(f) and nonzero fourth-order cumu-

lants, γi(f), i = 1, 2, . . . , n.
A3) The noise sequence {N(f, t)} is stationary process vector, whose elements,

{Ni(f, t)} , i = 1, 2, . . . ,m are Gaussian processes with zero mean.
A4) The two vector sequences {N(f, t)} and {S(f, t)} are mutually independent.

3 Eigenvector Algorithms (EVAs)

3.1 Analysis of EVAs with the Reference Signal for MIMO Static
Systems

In this subsection we assume that there is no noise n(t) in the output y(t). Next
we propose the eigenvector algorithm with the reference signal. To solve the BSS
problem, the following cross-cumulant between Zl(f, t) and the reference signal
X(f, t) is defined:

CZX(f) = cum{Zl(f, t),Z∗
l (f, t),X(f, t),X∗(f, t)}, (6)

where ∗ denotes the complex conjugate and the reference signal X(f, t) is given
by fH(f)Y(f, t) = fH(f)H(f)S(f, t) = aH(f)S(f, t) (aH(f) = fH(f)H(f) is a
vector whose elements are a1(f), a2(f), . . . , an(f)), using an appropriate filter
f(f). The filter f(f) is called a reference system. Moreover we define the con-
strain σ2

Zl
(f) = σ2

Sρl
(f), where σ2

Zl
(f) and σ2

Sρl
(f) denote the variance of the

output Zl(f, t) and a source signal Sρl
(f, t), respectively. In the case of SISO sys-

tems, Jelonnek et al. [1,2] have shown that the maximization of |CZX(f)| under
σ2

Zl
(f) = σ2

Sρl
(f) leads to a closed-form expression as the following generalized

eigenvector problem:

CYX(f)wl(f) = λR(f)wl(f). (7)

Then they utilize the facts that CZX(f) and σ2
Zl

(f) can be expressed in terms of
the vector wl(f) as, respectively,

CZX(f) = wHl (f)CYX(f)wl(f), (8)
σ2

Zl
(f) = wHl (f)R(f)wl(f), (9)

where CYX(f) is a matrix whose (i, j)th element is calculated by
cum{Yi(f, t),Y∗

j (f, t),X(f, t),X∗(f, t)}, R(f) = E[Y(f, t)YH(f, t)] is the co-
variance matrix of m-column vector Y(f, t) and λ is an eigenvalue of
R†(f)CYX(f), where † denotes the pseudo-inverse operation of a matrix. More-
over they have shown that the eigenvector corresponding to the maximum eigen-
value of R†(f)CYX(f) becomes the solution of the blind equalization problem in
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[1,2], which is referred to as an eigenvector algorithm (EVA). However, the algo-
rithm proposed by Jelonnek et al. is for SISO or SIMO infinite impulse response
channel. Therefore, we want to show how the eigenvector algorithm (7) works
for the BSS in the case of the MIMO static system in the frequency domain. To
this end, we use following equalities:

R(f) = H(f)Σ(f)HH(f), (10)
CYX(f) = H(f)Λ(f)HH(f), (11)

where Σ(f) is a diagonal matrix whose elements are σ2
si

(f), i = 1, 2, . . . , n and
Λ(f) is a diagonal matrix whose elements are |ai(f)|2γi(f), i = 1, 2, . . . , n. Then
we obtain the following theorem.

Theorem 1. Suppose the values |ai(f)|2γi(f)/σ2
si

(f), i = 1, 2, . . . , n are all
nonzero and distinct. If the noise N(f, t) is absent in (2), the n eigenvectors
corresponding to n nonzero eigenvalues of R†(f)CYX(f) become the the vectors
w̃l(f)’s satisfying (5).

Proof. Based on (7), we consider the following eigenvector problem:

R†(f)CYX(f)wl(f) = λwl(f). (12)

Then substituting (10) and (11) into (12), we obtain

HH†(f)Σ−1(f)H†(f)H(f)Λ(f)HH(f)wl(f) = λwl(f). (13)

Since H(f) has full column rank, using a property of the pseudo-inverse
operation([3], p.433),

HH†(f)Σ−1(f)Λ(f)HH(f)wl(f) = λwl(f). (14)

Multiplying (14) by HH(f) from left side and using a property of the pseudo-
inverse operation again, (14) becomes

Σ−1(f)Λ(f)HH(f)wl(f) = λHH(f)wl(f). (15)

By noting that Σ−1(f)Λ(f) is a diagonal matrix whose elements,
|ai(f)|2γi(f)/σ2

si
(f), i = 1, 2, . . . , n are all nonzero and distinct, if gl(f) =

HH(f)wl(f) �= 0, then the eigenvector gl(f) obtained from (15) becomes the
vector g̃l(f) satisfying (5). Namely, the n eigenvectors wl(f) corresponding to
n nonzero eigenvalues of R†(f)CYX(f) obtained from (12) become the vectors
w̃l(f) satisfying (5). ��

3.2 Robust Eigenvector Algorithm (REVA)

In the previous subsection, we assume that there are no noises in the output
signals. In this subsection, we shall show such an eigenvector algorithm that the
solutions (5) can be obtained, even if the noise n(t) is present in the output
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y(t). To this end, we introduce fourth-order cumulants matrices of m-column
vector process {Y(f, t)}, which constitute a set of m×m matrices CY,i(f), i =
1, 2, . . . ,m. The matrix CY,i(f) is defined by

[CY,i(f)]q,r = cum {Yq(f, t),Y∗
r(f, t),Yi(f, t),Y

∗
i (f, t)} , (16)

where [·]q,r denotes the (q, r)th element of the matrix CY,i(f). Then we consider
an m×m matrix Q(f) expressed by

Q(f) =
m∑
i=1

CY,i(f). (17)

It is shown by a simple calculation (see [4]) that (17) becomes

Q(f) = H(f)Λ̃(f)HH(f), (18)

where Λ̃(f) is a diagonal matrix defined by

Λ̃(f) = diag{γ1(f)ã1(f), γ2(f)ã2(f), . . . , γn(f)ãn(f)}, (19)

ãr(f) =
m∑
i=1

hir(f)h∗
ir(f), r = 1, 2, . . . , n, (20)

and diag{· · ·} denotes a diagonal matrix with the diagonal elements built from
its arguments, hir(f) is the (i, r)th element of H(f).

Here, as a constraint, we take the following value:

|CZY(f)| =
∣∣∣∣∣
m∑
i=1

cum{Zl(f, t),Z∗
l (f, t),Yi(f, t),Y

∗
i (f, t)}

∣∣∣∣∣ = ∣∣wHl (f)Q(f)wl(f)
∣∣

=

∣∣∣∣∣
m∑
i=1

ãi(f)γi(f)gli(f)g∗li(f)

∣∣∣∣∣ . (21)

Then, we consider solving the problem that the fourth-order cumulants |CZX(f)|
is maximized under the condition that |CZY(f)| = |ãρl

(f)γρl
(f)|. Then by the

Lagrangian method, the following generalized eigenvector problem is derived
from the problem:

CYX(f)wl(f) = λ̃Q(f)wl. (22)

From the following theorem, by solving the eigenvector problem of the matrix
Q†(f)CYX(f), the n eigenvectors wl(f)(l = 1, 2, . . . , n) correspond to the vectors
w̃l(f)(l = 1, 2, . . . , n) in (5).

Theorem 2. Suppose the values |ai(f)|2/ãi(f), i = 1, 2, . . . , n are all nonzero
and distinct. The n eigenvectors corresponding to n nonzero eigenvalues of
Q†(f)CYX(f) become the the vectors w̃l(f)’s satisfying (5).

Proof. We omit the proof because it is easily proved as well as Theorem 1.
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Remark 1. Since the matrix Q†(f)CYX(f) consists of only the fourth-order cu-
mulants, the eigenvector derived from the matrix can be obtained with as little
influence of Gaussian noises as possible, which is referred as a robust eigenvector
algorithm (REVA).

4 Adaptive Version of REVA

REVA can be implemented adaptively. To this end we must specify the depen-
dency of each time t and omit frequency bin f for simplicity. We show the update
procedure in the case of 2-input 2-output static system.

Q̃(t), which is the estimator of Q at time t is calculated by

Q̃(t) = αQ̃(t− 1)

+(1− α)
{(

C1(t)− C̃1(t)− tr{C̃1(t)}
)

C1(t)− C̃2(t)C∗
2(t)
}
, (23)

where α is a forgetting factor close to, but less than 1 and tr{X} denotes the
trace of matrix X.

Here C1(t) and C2(t) in (23) are defined by C1(t) = Y(t)YH(t) and C2(t) =
Y∗(t)YH(t), respectively. C̃1(t) and C̃2(t) are the moving averages of C1(t) and
C2(t), respectively, which are calculated by

C̃1(t) = βC̃1(t− 1) + (1− β)C1(t), (24)
C̃2(t) = βC̃2(t− 1) + (1− β)C2(t), (25)

where β is also a forgetting factor close to, but less than 1 and α > β.
C̃YX(t), which is the estimator of CYX at time t is calculated by

C̃YX(t) = αC̃YX(t− 1) + (1− α){Y(t)YH(t)X(t)X∗(t)−Y(t)YH(t)ṼX(t)
−Y(t)X(t)ṼY1(t)−Y(t)X∗(t)ṼY2(t)}, (26)

where ṼX(t) and ṼYi
(t), i = 1, 2 are the moving averages of VX(t) and VYi

(t)
defined by

ṼX(t) = βṼX(t− 1) + (1− β)VX(t), (27)
ṼYi

(t) = βṼYi
(t− 1) + (1− β)VYi

(t), i = 1, 2, (28)

where VX(t) = X(t)X∗(t), VY1(t) = YH(t)X∗(t) and VY2(t) = YH(t)X(t).
Then the separator wl(t) is calculated by solving eigenvector problem (7).

5 Experiments

5.1 Simulation

We conducted a simulation experiment. H(z), which is z-transform of the mixing
matrix H(t), is defined as:

H(z) =
(

1− 0.4z−1 0.5z−1 − 0.2z−2

0.5z−1 − 0.2z−2 1− 0.4z−1

)
. (29)
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Fig. 2. MISIs of EVA
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Fig. 3. MISIs of SEM

The BSS problem is solved by adaptive REVA. To measure the separation
performance, multichannel intersymbol-interference (MISI) was used, which is
defined as

MISI =
2∑
i=1

(∑2
j=1 |gij |

2

maxj |gij |2
− 1

)
+

2∑
j=1

(∑2
i=1 |gij |

2

maxi |gij |2
− 1

)
. (30)

The MISI becomes zero if g̃l’s satisfying (5) are obtained. The smaller the
MISI value is, the closer the obtained solution is to the desired one. Figure 2
shows the MISIs of some frequency bins using EVA with the reference signal and
Figure 3 shows those of SEM [5], which uses the deflation process. Obviously
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Fig. 4. Waveforms of source, separated and enhanced signals



130 M. Ito et al.

using SEM the deflation process failed in a frequency bin, while EVA with the
reference signal could converge to the desired solution in all frequency bins.

Remark 2. REVA utilizes the fourth-order cumulants. To estimate the fourth-
order cumulants accurately a large number of samples are generally needed.
Therefore it takes a rather long time to converge using REVA.

5.2 Real Environment

In an office room, we conducted separation experiments using REVA. Because
the reference signal is needed, the number of microphones is three, while the
number of source is two, one of the observed signals is used as a reference signal.
Manually 5dB Gaussian noises are added to the observed signals to show that
the proposed REVA works in a noisy environment. Figure 4 shows a set of
waveforms of the source signals, the separated signals and the enhanced signals
which were given by the ES 202 050 software [6]. In the enhanced signals additive
Gaussian noises were reduced. We can see that REVA can extract independent
but distorted source signals.

6 Conclusion

We described the BSS problem in the frequency domain. We proposed the eigen-
vector algorithm (EVA) with reference signals. The proposed method has such
an attractive property that all source signal are extracted simultaneously with-
out the deflation process. EVA can be robust to Gaussian noises using only the
higher-order cumulants (REVA). We have also shown the adaptive version of
REVA.

The computer simulations and real environment experiments have clarified
the validity of the proposed methods.
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Abstract. In this paper, we address the convolutive blind source sep-
aration (BSS) problem with a sparse independent component analysis
(ICA) method, which uses ICA to find a set of basis vectors from the
observed data, followed by clustering to identify the original sources. We
show that, thanks to the temporally localised basis vectors that result,
phase information is easily exploited to determine the clusters, using an
unsupervised clustering method. Experimental results show that good
performance is obtained with the proposed approach, even for short ba-
sis vectors.

1 Introduction

The convolutive blind audio source separation problem arises when an array
of microphones records mixtures of a set of sound sources that are convolved
with the impulse response between each source and sensor. The problem is often
addressed in the frequency domain, through the short-time fourier transform
(STFT), where the statistics of the sources are sparser, so that ICA algorithms
achieve better performance [1], and the approximations of convolutions by mul-
tiplications yield reduced computational complexity. Source separation is then
performed separately at each frequency bin, resulting in the introduction of the
well-known problem of frequency permutations [2], whose solution amounts to
clustering the frequency components of the recovered sources, using additional
information about the mixing system or the sources. The most successful meth-
ods in this context have perhaps been beamforming approaches [2-5], which
exploit phase information contained in the de-mixing filters identified by the
source separation algorithm, but suffer from phase ambiguities in the upper fre-
quencies, since phase is defined exclusively up to 2π. An alternative approach to
convolutive BSS was proposed in [7], and is based on the use of sparse coding to
identify the mixing matrix from the observed data. No assumptions are required
on the number of microphones, or the type of mixing (eg. instantaneous or con-
volutive) in the underlying model, but the recovered matrix implicitly encodes
� This work was funded by EPSRC grants GR/S85900/01, GR/R54620/01, and

GR/S82213/01.
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these characteristics of the system. Thus, it could even potentially deal with
the more sources than sensors case. The subspaces corresponding to the original
sources are then identified using clustering techniques. In this paper we investi-
gate the performance of the frequency domain ICA (FD-ICA) and sparse coding
approaches. We find that the latter yields mostly temporally localised basis vec-
tors, that do not suffer from the phase ambiguity encountered in the frequency
domain. Hence, in contrast to the approach in [7], which uses manual clustering,
we propose an unsupervised clustering method that exploits phase information
to separate the sources. The structure of this paper is as follows: the convolutive
BSS problem is described in section 2, together with an overview of FD-ICA;
the sparse coding method is summarised in section 3. The clustering technique
proposed is discussed in section 4, where the performance of the sparse coding
and FD-ICA methods are also compared. Conclusions are drawn in section 5.

2 Problem Formulation

We consider the problem of separating 2 sampled real-valued speech signals,
s(n), from 2 convolutive mixtures, x(n), recorded from an array of microphones,
so that the signal recorded at the q-th microphone, xq(n), is

xq(n) =
2∑
p=1

L∑
l=1

aqp(l)sp(n− l), q = 1, 2 (1)

where sp(n) is the p-th source signal, aqp(l) denotes the impulse response from
source p to sensor q, and L is the maximum length of all impulse responses [2].
The aim of blind source separation is to find estimates for the unmixing filters
wqp(l), using only the sensor measurements, and to reconstruct the sources from

yp(n) =
2∑
q=1

L∑
l=1

wqp(l)xq(n− l), p = 1, 2 (2)

where yp(n) is the p-th recovered source. Typically, the N -point STFT is evalu-
ated, and the mixing and separating models in (1) and (2) become, respectively
X(f, t) = A(f)S(f, t) and Y(f, t) = W(f)X(f, t) where t denotes the STFT
block index. The resulting N instantaneous BSS problems, are addressed inde-
pendently in each subband with an ICA algorithm, and the problem of frequency
permutations that is introduced is solved essentially by clustering the frequency
components of the recovered sources. This is often done using beamforming tech-
niques, such as in [2-5], where the direction of arrival (DOA) of the sources are
evaluated from the beamformer directivity patterns

Fp(f, θ) =
2∑
q=1

W ICA
qp (f)ej2πfd sin θp/c, p = 1, 2 (3)

where W ICA
qp is the ICA de-mixing filter from the q-th sensor to the p-th output,

d is the spacing between two sensors, θp is the angle of arrival of the p-th source
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signal, and c ≈ 340m/s is the speed of sound in air. The frequency permutations
are then determined by ensuring that the directivity pattern for each beam-
former is approximately aligned along the frequency axis. There exists, however,
an ambiguity in the DOA estimation, due to the restriction on the phase differ-
ence to lie between −π and π, which results in the creation of additional nulls in
the directivity pattern of magnitude similar to that corresponding to the angle
of arrival [5]. The distance between two microphones should satisfy d ≤ c/2fmax,
in order to avoid spatial aliasing [2]; when this condition is not met, ambigu-
ities in the position of the nulls are introduced, resulting in inaccurate DOA
estimates, and the frequency, fM, above which multiple nulls are expected is
fM = c/2d.

3 Overview of Sparse ICA

The aim of sparse coding is to find sparse dictionaries from the mixtures, so
that only a small number of coefficients, s(n), are needed to encode the observed
data, x(n) [6]. The convolutive BSS problem was first addressed within this
framework in [7], by finding a set of basis vectors for the observed data, followed
by clustering to identify the subspaces corresponding to the original sources.
The approach does not explicitly model the mixing process nor the number of
mixtures, but is based on the assumption that the recordings are generated by
signals that are sparse in the dictionary domain. Prior to estimating the ba-
sis vectors, the observed vector is reshaped into a K × kmax matrix on which
learning is performed. A frame of K/2 samples is taken from each mixture,
with an overlap of T samples. Thus, the (i, k)-th element of the new matrix,
X̃, is

X̃i,k =

{
x1
[
(k − 1)Z + i+1

2

]
: i odd

x2
[
(k − 1)Z + i

2

]
: i even

(4)

Fig. 1. Reshaping of the sensor vector prior to training with ICA
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Fig. 2. Examples of basis vectors extracted with the sparse ICA algorithm

where Z = K/2−T , and i ∈ {1, . . . ,K/2}, and k ∈ {1, . . . , kmax}. The reshaping
of the sensor vector x(n) is illustrated in figure 1. The basis vectors are learned
from the resulting matrix, and with any ICA algorithm using a sparse prior.
Here we use [7]

ΔW = η
(
I− E{f(y)yT }

)
W (5)

where η is the learning rate, and f(y) is the activation function. Details for its
choice can be found in [7]. The algorithm (5) operates upon y = WX̃, where
the time index n has been dropped for the sake of clarity, and W ∈ IRK×K .
The reshaping of x(n) into the matrix X̃(n) emphasises the correlations be-
tween the sources at the two microphones. Stacking the columns of x(n) ensures
that features relating to temporally correlated signals from each recording are
extracted, leading to basis pairs that encode information about the mixing chan-
nel, as can be seen from the basis pairs plotted in figure 2, where a time-delay is
clearly visible in several of the vector pairs. The strong directionality observed
indicates that each basis pair relates to a particular source, and thus the pro-
posed method is based on the property of spatial diversity. However, should
the sources be aligned along the same DOA, the technique cannot be used.

4 Frequency Domain Versus Sparse ICA

In this section, we consider the separation of two speech signals, one each from
a male and a female speaker, from two mixtures recorded in a university lecture
room, and sampled at 16kHz. Further details of the experimental set up can be
found in [10]. The sources were also recorded separately, so that they could be
used for performance evaluation. The performance of the sparse ICA approach is
compared to a representative FD-ICA method [10] (MD2003) since, due to their
inherent similarities, we expect other FD-ICA algorithms to have comparable
performance. The sparse ICA approach was first used to learn the basis vectors
from the real data; the mixtures were buffered into frames of 512 samples, so
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that 256 samples from each mixture were taken, as shown in figure 1, and the al-
gorithm (5) was used for training. The learned basis vector pairs are found in the
columns of W−1, examples of which are shown in figure 2. This figure illustrates
that the basis vector pairs encode how the extracted features are received at
the microphones and, therefore, they capture information about time-delay and
amplitude differences that characterise the mixing channel. Moreover, most of
the basis vectors have the additional property of being localised in time, which
implies that time delays can be estimated more accurately. Reconstruction of
the two original signals is achieved with ŝ1 = W−1H(1)y, and ŝ2 = W−1H(2)y
where H(1) is a diagonal matrix whose diagonal elements are ones or zeros de-
pending on whether a component belongs to the first source, and similarly for
H(2) [7]. We propose clustering the basis vector pairs, and therefore determine
the diagonal elements of H(1) and H(2), according to the following algorithm:

1 For each basis pair k find the time delay τk between the vectors
2 Form the histogram of τk, and use k-means to find the peaks, τk1 and τk2

corresponding to the sources

3 h
(p)
kk =

{
1, if (τkp

− τδ) ≤ τk ≤ (τkp
+ τδ),

0, otherwise

for p = 1, 2, where h
(p)
kk is the kk-th element of H(p). The inclusion of the τδ

allows the algorithm to perform a degree of de-noising. We estimate the time
delay between sensor pairs using the popular generalised cross-correlation with
phase transform (GCC-PHAT) algorithm, originally proposed in [9], Ra1a2(τ) =∫∞
−∞A1(ω)A∗

2(ω)/(|A1(ω)A∗
2(ω)|)ejωτdω, where A1(ω), A2(ω) are the Fourier

transforms of the basis vectors. The function Ra1a2(τ), typically exhibits a sharp
peak at the lag corresponding to the time delay between the two signals. Figure
3(a) depicts the time-delay estimates obtained with GCC-PHAT, for all basis
vector pairs, and figure 3(b) shows their histogram; values of τk1 and τk2 were
obtained with k-means as 10.04 and −9.03 samples, and τδ was set to 2 samples.
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(b) Directivity pattern for source ŝ2.

Fig. 4. Directivity patterns for the outputs of FD-ICA, after permutation alignment

Frequency domain separation was performed with the algorithm in [10] using
the 256 and 2048-point STFT, and permutations were aligned as in [3]. MD2003
with the latter frame length has been shown to successfully achieve separation on
this data in [10]. Figure 4 shows a plot of the directivity pattern of the outputs
evaluated at all frequencies with (3), following permutation alignment. The plots
show that permutations are correctly aligned in the low frequency bands, while
the behaviour of the algorithm is less clear in the higher frequencies, where time
delay estimation is less accurate. The DOAs estimated from the plots were found
to be 12◦ and −11◦, corresponding to time delays of approximately 10 and −9
samples. The sample delay at a frequency f is estimated from the directions of
arrival by τ = 2πf sin θfs/c, where fs is the sampling frequency.

Tables 1 and 2 show the global performance of the two methods, as evaluated
from [11]. The evaluation criteria allows for the recovered sources to be mod-
ified by a permitted distortion. In Table 1, we consider a time-invariant gain
distortion, and the sources recovered at the two channels are compared to the

Table 1. Global performance measures when a gain distortion is allowed. SDR, SIR,
and SAR measures are respectively the signal-to-distortion, signal-to-interference, and
signal-to-artifact ratios.

Channel 1

Method SDR (dB) SIR (dB) SAR (dB)
ŝM ŝF ŝM ŝF ŝM ŝF

MD2003256 −5.13 −8.61 2.73 1.83 −2.49 −6.01

MD20032048 −5.24 −6.26 4.69 6.17 −3.50 −5.07

Sparse ICA −8.69 −10.09 1.59 2.74 −5.98 −8.00

Channel 2

MD2003256 −8.29 −6.09 −0.81 2.64 −4.00 −3.58

MD20032048 −6.94 −3.42 3.86 7.24 −5.06 −2.28

Sparse ICA −6.76 −11.61 −0.41 7.40 −2.40 −10.83
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Table 2. Global performance measures when a filter distortion is allowed

Channel 1

Method SDR (dB) SIR (dB) SAR (dB)
ŝM ŝF ŝM ŝF ŝM ŝF

MD2003256 −7.12 −8.25 2.47 2.01 −4.66 −5.69

MD20032048 −6.27 −7.07 7.82 9.26 −5.43 −6.48

Sparse ICA −7.77 −10.50 3.94 3.55 −6.00 −8.74

Channel 2

MD2003256 −10.33 −8.03 −0.37 2.21 −6.67 −5.55

MD20032048 −8.15 −5.62 6.52 9.99 −7.12 −5.08

Sparse ICA −8.27 −9.40 1.29 12.00 −5.35 −9.10

original sources recorded at the microphones. Negative SIR values indicate that
the interfering source is larger than the target source, and the algorithm has
failed to recover the target. Large negative SAR values, with SAR ≈ SDR, in-
dicate that large artifacts are present, and dominate distortion [11]. The results
suggest that sparse ICA and MD2003256 have similar performance, and both fail
to recover the source ŝM at channel 2. An informal listening test indicates, how-
ever, that the objective assessment in Table 1 is not a good guide to the audible
performance. The test reveals that MD2003 separates the sources with a frame of
2048 samples, while it fails with a short frame of 256 samples. This is in contrast
to sparse ICA which uses a frame of 256 samples, and whose outputs are clearly
separated, although the interfering source is still audible. Interestingly, the algo-
rithm seems also to have performed some de-reverberation, which is particularly
audible for the female source, ŝF, at the second channel. Moreover, the outputs
sound quite natural and large artifacts do not appear to be present. This is in
disagreement with the large negative SAR values which suggest that sparse ICA
introduces large artifacts. To obtain a more meaningful objective assessment, a
time-invariant filter distortion is allowed, with a 64 taps filter. The results are
shown in Table 2, where the recovered sources are compared to the original sig-
nals at the speakers. In this case, it was found that the objective assessment is
more closely in agreement with the informal listening test, but still overcritical
of sparse ICA. The results in this section also show how the STFT length is a
crucial parameter for FD-ICA. Since modeling of real room transfer functions
typically requires long frame sizes, better separation is achieved with a frame
size of 2048 samples. Sparse ICA, on the other hand, provides good separation
even with a very short frame size.

5 Conclusions

In this paper, we have shown that most of the basis vectors extracted with sparse
coding are temporally localised functions that do not suffer from phase ambi-
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guities encountered in the frequency domain. A simple unsupervised clustering
technique that exploits this property has been proposed. The performance of the
algorithm with real data has been investigated, and informal listening tests have
suggested that it separates the signals with short basis vectors, in contrast to
FD-ICA, which requires long basis vectors. Currently available objective testing
methods fail to verify this, so further subjective listening tests are planned to
formally substantiate this performance.
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Abstract. We address the problem of interactive feature construction
and denoising of binary data. To this end, we develop a variational ICA
method, employing a multivariate Bernoulli likelihood and independent
Beta source densities. We relate this to other binary data models, demon-
strating its advantages in two application domains.

1 Introduction

Binary data becomes more and more abundant, arising from areas as diverse
as bioinformatics, e-businesses and paleontological research. The processing of
binary data requires appropriate tools and methods for tasks such as exploratory
analysis, feature construction and denoising. These necessarily must follow the
specific distributional characteristics of the data and cannot be accomplished
with tools that exist for continuous valued data analysis.

Previous successes of Independent Component Analysis (ICA) [5] make it an
important statistical principle worthy of investigation for tackling such prob-
lems. However, contrarily to continuous-valued signals, work on ICA methods
for binary data has been very scarce [4,3]. A few methods exist, though, that
seek binary sources [9,10] from continuous data. Due to the discrete combinato-
rial nature of the problem, these latter works resort to search heuristics [10] or
indeed an exhaustive search [9], that are, at best, computationally intensive.

In this paper we develop a linear ICA model for binary data. We employ a
probabilistic framework and make use of the variational methodology to alleviate
the computational demand. Application examples will demonstrate the workings
of our approach and its advantages over other binary data models.

2 Binary ICA with Beta Sources

Consider an independent factor model for binary data x, having a Bernoulli
likelihood model and independent Beta latent priors.

P (xn) =
∫

P (xn|b)
∏
k

p(bk)dbk (1)

� Part of this work has been done while visiting HIIT BRU, Helsinki, Finland.
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=
∫ ∏

t

(
∑
k

atkbk)xtn(1−
∑
k

atkbk)1−xtn

∏
k

B(bk|α0
k, β

0
k)dbk (2)

where B(b|α, β) = Γ (α+β)
Γ (α)Γ (β) (1−b)β−1bα−1 is the Beta density [1]. This is defined

on the [0, 1] domain, which is desirable for our purposes, since we may be able
to interpret the components as grey-scale representations of the binary data. In
addition, the particularly flexible shape of the Beta density is advantageous.

Further, a linear-convex mixing process will be assumed, so that the mixing
coefficients are all non-negative and satisfy

∑
k atk = 1,∀t = 1 : T . This is mainly

due to computational convenience, since then it follows that
∑
k atkbk will neces-

sarily fall into [0, 1] so that we do not need any further nonlinear transformation
to obtain the mean parameter of the Bernoulli likelihood. While nonlinear mod-
els are also of interest, here we seek the 0-s and 1-s to be exchangeable within the
model, and this would not be possible if a nonlinearity is applied to non-negative
variables. Thus, a Dirichlet prior may be assumed for the mixing coefficients, to
make the specification fully Bayesian.

2.1 Inference and Estimation

In order to make the problem tractable, we will employ the well-known Jensen’s
inequality to lower bound the data probability, and we make use of the factorial
posterior approximation to simplify the computations:

log
∫

P (xn|b)
∏
k

B(bk|α0
k, β0

k)dbk ≥
∫ ∏

k

qn(bk)log
∏

t P (xtn|b)
∏

k B(bk|α0
k, β0

k)∏
k qn(bk)

dbk

where
∏
k qn(bk) is the factorial variational posterior.

Due to the Bernoulli likelihood term P (xtn|b), this integral is still intractable,
therefore the ultimate lower bound will be obtained by a further application of
Jensen’s inequality. The convexity constraint imposed on the mixing proportions
comes in useful, as the likelihood term can be rewritten and lower bounded:

log P (xtn|b) = log

{
(
∑

k

atkbk)xtn(1 −
∑

k

atkbk)1−xtn

}

= log

{∑
k

atkbxtn
k (1 − bk)1−xtn

}
≥
∑

k

Qk|t,n,xtn log
atkbxtn

k (1 − bk)1−xtn

Qk|t,n,xtn

(3)

Here Qk|t,n,xtn
≥ 0,
∑
kQk|t,n,xtn

= 1 is a discrete variational distribution with
values in {1, ..K}, where K denotes the number of components.

Using (3) we obtain a lower bound on the log likelihood, which is tractable
and will be referred to as Lbound.

2.2 Variational Solution

Let qn(bk) = B(bk|αkn, βkn) be parameterised Beta variational posteriors with
variational parameters αkn, βkn. Then, maximising Lbound yields the following
update equations for the variational parameters
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αkn = α0
k +
∑
t

xtnQk|t,n,xtn=0 = α0
k + e〈log bkn〉∑

t

xtnatk∑
k atke

〈log bkn〉 (4)

βkn = β0
k +
∑
t

(1− xtn)Qk|t,n,xtn=1 = β0
k + e〈log(1−bkn)〉∑

t

(1− xtn)atk∑
k atke

〈log(1−bkn)〉

(5)
where

Qk|t,n,xtn
∝ atk(e〈log bkn〉)xtn(e〈log(1−bkn)〉)1−xtn (6)

is obtained by maximising Lbound w.r.t. Qk|t,n,xtn
and this has been replaced

into the expressions of all variational parameter estimates above.
The required variational posterior expectations are easily evaluated as

〈log bkn〉 ≡ Eqn(bk)[log bk] = ψ(αkn) − ψ(αkn + βkn) and 〈log(1 − bkn)〉 ≡
Eqn(bk)[log(1− bk)] = ψ(βkn)− ψ(αkn + βkn).

Maximising Lbound in atk under the constraint that
∑
k atk = 1 and replacing

the expression of Qk|t,n,xtn
as before, yields the update equation below.

atk ∝ atk

{∑
n

xtn∑
k atke

〈log bkn〉 e
〈log bkn〉 +

1− xtn∑
k atke

〈log(1−bkn)〉 e
〈log(1−bkn)〉

}
(7)

Finally, the prior parameters α0
k and β0

k will both be set to one, in order to
express a uniform prior.

To make some connections with earlier work, it can easily be shown that
a maximum likelihood estimator for our model (2) would yield equations that
(after some algebra) are identical to the aspect Bernoulli (AB) algorithm in
[7]. Vice-versa, the above construction offers an interpretation of AB as an ICA
model. By analogy, other popular aspect models [2,3] may also be related to
ICA in a similar manner, and this is different from, and complementary to the
connection initially envisaged in [3].

2.3 Bayesian Model Selection

As already mentioned, a prior may also be naturally specified for the mixing
coefficients, and due to the imposed convexity constraint, a Dirichlet is appro-
priate. As a result, the optimal number of components can determined simply
by choosing the model order that maximises the log of the data evidence bound

Eqt(a)[Lbound] + Eqt(a)[logDir(a|γ0)]− Eqt(a)[log qt(a)] (8)

where qt(a) = Dir(a|γt) is the variational posterior of the mixing variable.
The modification this brings to the previously presented estimation procedure

is minimal — denoting by γtk the additional variational parameters associated
with atk and omitting the straightforward algebra, the parameters atk in (4) will
need to be replaced by e〈log γtk〉 and instead of eq (5) we will have:

γtk = γ0
k+e〈log atk〉

{∑
n

xtne
〈log bkn〉∑

k e
〈log atk〉e〈log bkn〉 +

(1− xtn)e〈log(1−bkn)〉∑
k e

〈log atk〉e〈log(1−bkn)〉

}
(9)
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The parameter of the Dirichlet prior, γ0
tk will again be set to 1 to express a

uniform prior, and the remaining posterior expectation in (9) is computed as
〈log atk〉 ≡ Eqt(a)[log ak] = ψ(γtk)− ψ(

∑
k′ γtk′).

3 Analyst Input and Posterior Data Reconstruction

Perhaps the greatest reason for the popularity of ICA methods for exploratory
data analysis is that the independent components are often easier to compre-
hend and interpret by humans separately, rather than in their mixture. This has
been exploited in numerous applications, most notably for signal denoising [6].
Once the independent signals of different genuine and artifact sources are sepa-
rated from the data, artifact-corrected signals may be derived by eliminating the
contributions of the artifact sources. Our methodology is conceptually similar,
although the formalism differs according to our probabilistic framework.

Let us denote the posterior means obtained from our algorithm by 〈atk〉
and 〈bkn〉: 〈bkn〉 = Eqn(bk)[bk] =

∫
dbkbkB(bk|αkn, βkn) = αkn

αkn+βkn
and anal-

ogously 〈atk〉 = γtk∑
k′ γtk′ . These are themselves discrete probabilities, so that∑

k〈atk〉 = 1. After inspecting the independent components 〈bk〉, the elimination
of undesired components may now be accomplished by specifying a probability
value, P (u|k), for each component and using these to modify our unsupervised
estimates. Denoting by Pt(k) the posterior expectations 〈atk〉, for each t, the
Bayes rule will provide us the post-processed data representation.

〈atk〉postproc := Pt(k|u) =
Pt(k)P (u|k)∑
k′ Pt(k′)P (u|k′) (10)

Typically a 0 probability will be specified for components that are capturing
undesirable noise, while 1 will specify a clearly meaningful component. Clearly,
if for a component k a value of p(u|k) = 0 was specified, then 〈atk〉postproc = 0
will become zero for all t. Naturally, the formalism straightforwardly permits
the specification of analyst inputs at more detailed levels. E.g. nothing prevents
us from specifying a separate set of probabilities, P (u|k, t), for each t. However,
we may typically expect human experts to feed back on the components’ level,
since those are hoped to provide some interpretable representations.

For computing the posterior data reconstruction, we re-express the above in
terms of a conditional posterior: qt(a|u) := Dir(a|γt◦P (u|.)), whose expectation
is exactly 〈atk|u〉 = 〈atk〉postproc. Here, ◦ denotes element-wise product and u
is the random vector of u|k when k = 1 : K. Then the posterior post-processed
data reconstruction can be computed as follows (omitting the algebra):

P (x̂tn|X,u) =
∫

dadbP (x̂tn|a, b)qt(a|u)
∏
k

qn(bk) (11)

= (
∑
k

〈atk|u〉〈bkn〉)x̂tn(1−
∑
k

〈atk|u〉〈bkn〉)1−x̂tn (12)
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In consequence, the grey-scale posterior reconstruction of the (t, n)-th data
entry is

〈x̂tn|u〉 = p(x̂tn = 1|X, u) =
∑
k

〈atk|u〉〈bkn〉 (13)

and so the binary reconstruction is given by thresholding this value.

4 Experiments

4.1 Restoration of Corrupted Binary Images

For the first set of experiments we use a data set of handwritten digit images1.
The subset of the first five digits were taken, each having 200 examples, which
totals 1,000 image instances. We artificially created a corrupted version of this
data set, by simulating a uniformly varying process of degradation, which turns off
some of the pixels that were initially ’on’. Fifteen randomly chosen examples are
shown from the initial data set, along with their corrupted version, on Figure 1.
Figure 2 then shows the ICA representation obtained: several components can
clearly be recognised as typical digits, and one other – completely blank – sep-
arates out the corruption factor. Inspecting the mixing proportions for the data
instances shown earlier, it is clear that the white component is indeed present
in those images that suffered a degradation. To remove the noise component, we
apply the procedure described earlier. The results can be followed on Figure 3:
The grey-scale posterior reconstruction of the data has indeed filtered out the
degradation source and presents a smoothed reconstruction of the initial clean
data. The grey levels correspond to probabilities of pixels being ’on’. Threshold-
ing these probabilities at 0.5 gives us the binary reconstruction of the data shown
on the right-hand plot. The degradation has now been eliminated.

A comparative set of experiments has then been conducted in order to objec-
tively and quantitatively assess the performance of our method in reconstructing
the clean data from its corrupted version. We included a comprehensive set of
binary data analysis methods in this comparison: mixtures of Bernoulli (MB),
Bernoulli (logistic) PCA [11] (LPCA), our binary ICA with and without post-
processing (BICA-postproc and BICA respectively), and a Bernoulli version of
non-negative matrix factorisation [8], that we created for the purpose of this
comparison (BNMF). (For the latter, a shifted and rescaled sigmoid nonlinear-
ity was used, which transforms the non-negatively constrained factors and mix-
ing proportions into the [0,1] interval.) None of the methods except BICA was
able to separate out the noise factor. In consequence no obvious correction post-
processing is applicable to the other methods. In this experiment, 500 corrupted
images were used for training and another 500 corrupted images formed an inde-
pendent test set. For the previously unseen data instances, the required posteri-
ors were first estimated. In the case of BNMF we just implemented a Maximum
Likelihood estimation method and in this case the required parameter matrix was

1 http://www.ics.uci.edu/mlearn/MLSummary.html
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Fig. 1. Examples of clean (left) and corrupted (right) images
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Fig. 2. Right: Independent components estimated from the corrupted binary image
data set; Left: The mixing coefficients associated with the examples shown on the right
hand plot of Fig.1. Small arrow heads point to the mixing coefficients associated with
the noise component.

Fig. 3. Reconstructed grey-scale (left) and binary (right) images after the post-
processing

estimated anew for the previously unseen test data. The upper plots of Figure 4
show the areas under the ROC curve of the posterior data reconstruction (both
grey-scale and black&white, using a threshold of 0.5), averaged over all pixels
of the corrupted test set. LPCA is the overall winner in reconstructing the cor-
rupted test data set. The lower plots of the same figure, in turn, show the AUC
values averaged over the blank pixels of the test images, but computed against the
pixel values of the true, uncorrupted test set (not used anywhere else). As we can
see, the proposed post-processing, by the removal of the automatically separated
noise component, BICA becomes the most successful in this exercise – compa-
rable with the nonlinear and time-consuming LPCA at grey-scale reconstruction
and net superior at binary reconstruction.

4.2 Age Discovery and Missingness Detection in Paleontological
Data

We now demonstrate our method in paleontological data2. The data consists of
findings of 139 mammals among 501 sites of excavation and is seen in Figure 5
2 NOW database, http://www.helsinki.fi/science/now/, a public resource based on

collaboration between mammal paleontologists.
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Fig. 4. Comparison of BICA with other binary data models on test inputs. Since both
the training and the test data sets are corrupted, all methods try to reconstruct the
data including the corruptions, LPCA being the best (upper plots). However, by the
described post-processing, BICA stops reconstructing the corrupted regions, instead it
becomes net superior in terms of restoration of the uncorrupted images (lower plots).
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Fig. 5. From left to right: The palaeontological data, both the sites and the remains of
mammals are ordered by age, for the ease of visual analysis of the results; Distributions
of ages of mammals, weighted by 〈bkn〉, for each component; Binary reconstruction of
the absences in the data after having removed the noise component, using a threshold
of 0.5 – these are superimposed with the observed presences; Binary reconstruction,
when using an estimated threshold

(leftmost plot). Four components have been estimated, out of which three turned
out to capture contiguous disjoint time periods. The fourth component in turn
is completely blank — having all elements nearly zero. The second left plot of
Figure 5 shows the box plots of the ages of remains3, weighted by bkn. The
Kolmogorov-Smirnov test indicates that these distributions are indeed distinct:

3 The age information is auxiliary and it is not used during the parameter estimation.
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the P values range between 5 · 10−13 and 3 · 10−4. The blank component is the
one shrunken to zero on this figure – clearly it does not contribute to the age
discovery. In turn, its presence indicates that not all zero observations are due
to age, but another reason for absence of remains exists.

Often, remains of a mammal are not observed at a site even though it probably
lived there, as the preservation, recovery and identification of fossils are subject
to random effects. According to palaeontologists4, an indication of missingness
can be derived from the age order of the sites: if a mammal is observed at two
sites but not at an intermediate site, it is possible (although not certain) that
an observation at the intermediate site is missing. This may be the additional
independent noise factor that our method has separated out, and in order to
verify this, we will now remove this noise factor from the data. Employing the
probabilistic post-processing procedure described previously, and thresholding
at 0.5 (see Figure 5, third plot from the left), we obtain a significant decrease
in such intermediate, ”probably missing” values: 1369 of them will be filled in.
Furthermore, by thresholding at a smaller value of 0.3481 (obtained by consid-
ering all such intermediate values as missing, and dividing the number of 1s plus
missing values by the size of the data) the decrease in ”probably missing” values
raises to 3642. The continuity of mammals as recovered by our binary ICA is
now quite apparent on the rightmost plot of Figure 5.

5 Conclusions

We have devised a variational ICA method for binary data, employing indepen-
dent Beta latent densities. This turned out to be a flexible model and has allowed
us to include human input in a principled manner. We demonstrated the use of
our approach on two application examples.
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Abstract. In this article, we consider high-dimensional data which contains a
low-dimensional non-Gaussian structure contaminated with Gaussian noise and
propose a new linear method to identify the non-Gaussian subspace. Our method
NGCA (Non-Gaussian Component Analysis) is based on a very general semi-
parametric framework and has a theoretical guarantee that the estimation error of
finding the non-Gaussian components tends to zero at a parametric rate. NGCA
can be used not only as preprocessing for ICA, but also for extracting and visu-
alizing more general structures like clusters. A numerical study demonstrates the
usefulness of our method.

1 Introduction

Suppose that we are given a set of i.i.d. observations xi ∈ Rd, (i = 1, . . . , n) obtained
as a sum of a signal s ∈ Rm (m ≤ d) with an unknown non-Gaussian distribution and
an independent Gaussian noise component n ∈ Rd :

x = As + n, (1)

where A is a d × m matrix and n ∼ N(0, Γ ). The rationale behind this model is
that in most real-world applications the ‘signal’ or ‘information’ contained in the high-
dimensional data is essentially non-Gaussian while the ‘rest’ can be interpreted as high-
dimensional Gaussian noise. We want to emphasize that we do not assume the Gaussian
components to be of smaller order of magnitude than the signal components. This set-
ting therefore excludes the use of common (nonlinear) dimensionality reduction meth-
ods such as PCA, Isomap [12] and LLE [11] that are based on the assumption that the
data lies, say, on a lower dimensional manifold, up to some small noise distortion.

If the non-Gaussian components si’s are mutually independent, the model turns out
to be the under-complete noisy ICA [9]. Although some algorithms have been proposed,
combinations of dimension reduction like PCA or Factor Analysis and noise-free ICA
methods are often used, when the number m of the sources is relatively small. How-
ever, the classical methods for dimension reduction are based on second order statistics

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 149–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and do not consider non-Gaussianity of the sources. In this research, we will construct
a dimension reduction procedure called NGCA (Non-Gaussian Component Analysis)
which extracts the non-Gaussian subspace by higher order statistics. Since mutual in-
dependence of the sources is not assumed, our NGCA method can be used not only as
preprocessing for ICA, but also for searching more general and dependent non-Gaussian
structures (cf. [10]).

The NGCA approach is built upon a very general semi-parametric framework where
the density of the sources is not specified at all. We will present an implementation
here which is close in spirit to Projection Pursuit (PP) [5, 7, 8, 9] for visualization of
interesting structures in high-dimensional data. However, the philosophy that we would
like to promote in this paper is in a sense different: in fact we do not specify what we
are interested in, but we rather define what is not interesting. To be more precise, in PP
methods, a single index which measures the non-Gaussianity (or ’interestingness’) of
a projection direction has to be fixed and optimized , while NGCA takes many various
indices into account at the same time. Therefore it can outperform PP algorithms, if the
data contains say, both super- and sub-Gaussian components.

In the following section we will outline a novel semi-parametric theory for linear
dimension reduction and theoretical guarantees of the NGCA procedure. The algorithm
will be presented in Section 3 and simulation results underline the usefulness of NGCA;
finally a brief conclusion is given.

2 Theoretical Framework

The probability density function p(x) of the observations defined by the mixing model
(1) can be put under the following semi-parametric form:

p(x) = g(Tx)φΓ (x), (2)

where T is an unknown linear mapping from Rd to another subspace Rm, g is an un-
known function on Rm related to the distribution of the source s and φΓ is a centered
Gaussian density with unknown covariance matrix Γ . The model (2) includes as partic-
ular cases both the pure parametric (m = 0 ) and pure non-parametric (m = d ) models.
In practice we are interested in an intermediate case where d is large andm is rather small.

Note that the decomposition (2) is non-unique, but we will show that the following
m -dimensional linear subspace I of Rd is identifiable:

I = Ker(T )⊥ = Range(T�) .

We call I the non-Gaussian index space. Its geometrical meaning is the following: in
the model (1), the noise term can be decomposed into two components, n = n1 +
n2, where n1 = Aη ∈ Range(A) and n2 is restricted in the (d − m)-dimensional
complementary subspace s.t. Cov(n1,n2) = 0 (i.e. n1 and n2 are independent). Thus,
we have the representation

x = As̃ + n2, (3)

where s̃ := s+η and the noise term n2 distributes with a (d−m)-dimensional degen-
erated Gaussian independent of s̃. The subspace I is then the orthogonal complement
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of the (d−m)-dimensional subspace containing the independent Gaussian component
n2. Once we can estimate the index space I, we can project out the noise n2 by pro-
jecting the data x onto I. In the representation (2) we can assume that TA = Im and
Tx = s̃ without loss of generality, in which case T corresponds to the demixing matrix
in under-complete ICA, but here we are not interested in the individual directions of the
components s̃i (which are not assumed to be independent).

The main idea underlying our approach is summed up in the following Proposition
(proof in Appendix). Whenever the variable x has covariance matrix identity, this result
allows, from an arbitrary smooth real function h on Rd, to find a vector β(h) ∈ I.

Proposition 1. Let x be a random variable whose density function p(x) satisfies (2)
and suppose that h(x) is a smooth real function on Rd . Assume furthermore that Σ =
E
[
xx�] = Id. Then under mild regularity conditions the following vector belongs to

the target space I:
β(h) = Ex [∇h(x)− xh(x)] . (4)

Since an expectation over the unknown density p(x) is used to define β by Eq.(4), in
practice, it must be approximated using empirical expectation over the available data:

β̂(h) =
1
n

n∑
i=1

{∇h(xi)− xih(xi) .} (5)
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Fig. 1. The NGCA principle idea: from a varied family of real functions h, compute a family of
vectors β̂ belonging to the target space up to small estimation error

In the extended version of this paper [3], we show a probabilistic confidence bound of
estimation error of our NGCA method under certain regularity conditions.

• If we assume E
[
xx�] = Id, the empirical estimator β̂(h) converges at a rate

O(n−1/2) to a vector in the index space I.
• In the general case where E

[
xx�] is an arbitrary positive definite matrix, we

consider a “whitening” step, computing ŷi = Σ̂−1/2xi beforehand, where Σ̂ :=
1
n

∑n
i=1 xix

�
i . Taking into account the extra error introduced by this step, we can

bound the the convergence rate of γ(h) := Σ̂−1/2β̂y(h) to the index space I by

O(
√
d logn/n) .

• The entire index space I can be estimated from a family of vectors β̂k (see
Fig. 1) for a large set of functions {hk}Lk=1 and applying PCA to the set {β̂k}Lk=1.
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• Thanks to an exponential deviation inequality for the convergence rate of single
functions, a union bound over L functions leads to a uniform convergence bound
over the whole set of functions with rate of order O(

√
d logn/n +

√
logL/n).

Therefore, taking, e.g., L = O(nd) we still have insurance that convergence holds.

3 The NGCA Algorithm

As is briefly mentioned in the last section, in our NGCA procedure, basically we cal-
culate a family of vectors β̂k for a large family of such functions {hk}Lk=1 and apply
PCA to the set {β̂k}Lk=1 to find out the m-dimensional subspace Î which gives the least
approximation error. Although the principle of NGCA is very simple, there are some
implementation issues.

• The theoretical results guarantee that the convergence order is achieved for any
smooth functions {hk}Lk=1 with mild regularity conditions. However, in practice, it
is important to find out good functions which provide a lot of information on the
index space I and make the estimator Î more accurate, because there exist many
uninformative functions.

• Since the mapping h �→ β(h) is linear, we need an appropriate renormalization
of h or β(h), otherwise it is meaningless to combine many vectors {βk} from
various functions {hk} by PCA. Here we propose renormalizing by the trace of the
variance Var{β̂(h)}. Under this condition the norm of each vector is proportional
to its signal-to-noise ratio so that longer vectors are more informative, while vectors
with too small a norm are uninformative and can be discarded.

In the proposed algorithm we will restrict our attention to functions of the form
hf,ω(x) = f(〈ω,x〉), where ω ∈ Rd, ‖ω‖ = 1, and f belongs to a finite family F of
smooth real functions of real variable. Our theoretical setting allows to ensure that the
approximation error remains small uniformly over F and ω . However it is not feasible
in practice to sample the whole parameter space for ω as soon as it has more than a few
dimensions. To overcome this difficulty we advocate using a well-known PP algorithm,
FastICA [8], as a heuristic to find good candidates for ωf for a fixed f . We remark that
FastICA, as a standalone procedure, requires to fix the “index function” f beforehand.
The new point of our method is that we provide a theoretical setting and a methodology
which allows to combine the results of this Projection Pursuit method when used over
a possibly large spectrum of arbitrary index functions f .

Summing up, the NGCA algorithm then consists of the following steps: (1) Data
whitening, (2) Applying FastICA to each function f ∈ F to find a promising candi-
date value for ωf , (3) Computing the corresponding family of vectors (β̂(hf,ωf

))f∈F
(using Eq. (5)), (4) Normalize the vectors appropriately; threshold and throw out un-
informative ones, (5) apply PCA, (6) Pull back in original space (cf. Pseudocode).
Note that the PCA step could be replaced by other, more refined principal directions
extraction methods. In the implementation tested, we have used the following forms
of the functions fk: f (1)

σ (z) = z3 exp(−z2/2σ2) (Gauss-Pow3), f (2)
b (z) = tanh(bz)

(Hyperbolic Tangent), f (3)
a (z) = {sin, cos} (az) (Fourier). More precisely, we consider
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PSEUDOCODE FOR THE NGCA ALGORITHM

Input: Data points (xi) ∈ Rd, dimension m of target subspace.
Parameters: Number Tmax of FastICA iterations; threshold ε; family of real functions (fk).
Whitening.

The data xi is recentered by subtracting the empirical mean.
Let Σ̂ denote the empirical covariance matrix of the data sample (xi) ;

put ŷi = Σ̂− 1
2 xi the empirically whitened data.

Main Procedure.
Loop on k = 1, . . . , L:

Draw ω0 at random on the unit sphere of Rd.
Loop on t = 1, . . . , Tmax: [FastICA loop]

Put β̂t ← 1
n

n∑
i=1

(
ŷifk(〈ωt−1, ŷi〉) − f ′

k(〈ωt−1, ŷi〉)ωt−1
)
.

Put ωt ← β̂t/‖β̂t‖.
End Loop on t

Let Ni be the trace of the empirical covariance matrix of β̂Tmax
:

Ni =
1
n

n∑
i=1

∥∥ŷifk(〈ωTmax−1, ŷi〉) − f ′
k(〈ωTmax−1, ŷi〉)ωTmax−1

∥∥2 −
∥∥∥β̂Tmax

∥∥∥2 .

Store v(k) ← β̂Tmax
∗√n/Ni. [Normalization]

End Loop on k
Thresholding.

From the family v(k), throw away vectors having norm smaller than threshold ε.
PCA step.

Perform PCA on the set of remaining v(k).
Let Vm be the space spanned by the first m principal directions.

Pull back in original space.
Output: Wm = Σ̂− 1

2 Vm.

discretized ranges for a ∈ [0, A], b ∈ [0, B], σ ∈ [σmin, σmax], which gives rise to a fi-
nite family (fk) (which includes simultaneously functions of the three different above
families).

4 Numerical Results

All the experiments presented where obtained with exactly the same set of parameters:
a ∈ [0, 4] for the Fourier functions; b ∈ [0, 5] for the Hyperbolic Tangent functions;
σ2 ∈ [0.5, 5] for the Gauss-pow3 functions. Each of these ranges was divided into 1000
equispaced values, thus yielding a family (fk) of size 4000 (Fourier functions count
twice because of the sine and cosine parts). Some preliminary calibration suggested to
take ε = 1.5 as the threshold under which vectors are not informative. Finally we fixed
the number of FastICA iterations Tmax = 10. With this choice of parameters, with 1000
points of data the computation time is typically of the order of 10 seconds on a modern
PC under a Matlab implementation.
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Fig. 2. Boxplots of the error criterion E(Î, I) over 100 training samples of size 1000

Tests in a controlled setting. We performed numerical experiments using various syn-
thetic data. We report exemplary results using 4 data sets. Each data set includes 1000
samples in 10 dimensions, and consists of 8-dimensional independent standard Gaus-
sian and 2 non-Gaussian components as follows:

(A) Simple Gaussian Mixture: 2-dimensional independent bimodal Gaussian mix-
tures;
(B) Dependent super-Gaussian: 2-dimensional density is proportional to exp(−‖x‖);
(C) Dependent sub-Gaussian: 2-dimensional uniform on the unit circle;
(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with density pro-
portional to exp(−|xLap|) and 1-dimensional dependent uniform U(c, c + 1), where
c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

We compare the NGCA method against standalone FastICA with two different index
functions. Figure 2 shows boxplots, over 100 samples, of the error criterion E(Î, I) =
m−1∑m

i=1 ‖(Id − ΠI)v̂i‖2, where {v̂i}mi=1 is an orthonormal basis of Î, Id is the
identity matrix, and ΠI denotes the orthogonal projection on I. In datasets (A),(B),(C),
NGCA appears to be on par with the best FastICA method. As expected the best index
for FastICA is data-dependent: the ’tanh’ index is more suited to the super-Gaussian
data (B) while the ’pow3’ index works best with the sub-Gaussian data (C) (although in
this case FastICA with this index has a tendency to get caught in local minima, leading
to a disastrous result for about 25% of the samples. Note that NGCA does not suffer
from this problem). Finally, the advantage of the implicit index adaptation feature of
NGCA can be clearly observed in the data set (D), which includes both sub- and super-
Gaussian components. In this case neither of the two FastICA index functions taken
alone does well and NGCA gives significantly lower error than either FastICA flavor.

Example of application for realistic data: visualization and clustering. We now give
an example of application of NGCA to visualization and clustering of realistic data. We
consider here “oil flow” data which has been obtained by numerical simulation of a
complex physical model. This data was already used before for testing techniques of
dimension reduction [2]. The data is 12-dimensional and our goal is to visualize the
data and possibly exhibit a clustered structure. We compared results obtained with the
NGCA methodology, regular PCA, FastICA with tanh index and Isomap. The results
are shown on Figure 3. A 3D projection of the data was first computed using these
methods, which was in turn projected in 2D to draw the figure; this last projection
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Fig. 3. 2D projection of the “oil flow” (12-dimensional) data obtained by different algorithms,
from left two right: PCA, Isomap, FastICA (tanh index), NGCA. In each case, the data was first
projected in 3D using the respective methods, from which a 2D projection was chosen visually so
as to yield the clearest cluster structure. Colors indicate label information (not used to determine
the projections).

was chosen manually so as to make the cluster structure as visible as possible in each
case. The NGCA result appears better with a clearer clustered structure appearing. This
structure is only partly visible in the Isomap result; the NGCA method additionally
has the advantage of a clear geometrical interpretation (linear orthogonal projection).
Finally, datapoints in this dataset are distributed in 3 classes. This information was not
used in the different procedures, but we can see a posteriori that only NGCA clearly
separates the classes in distinct clusters.

5 Conclusion

We proposed a new semi-parametric framework for constructing a linear projection
to separate an uninteresting, possibly of large amplitude multivariate Gaussian ‘noise’
subspace from the ‘signal-of-interest’ subspace. We also provided generic consistency
results on how well the non-Gaussian directions can be identified (an extended version
of this paper). Once the low-dimensional ‘signal’ part is extracted, we can use it for a
variety of applications such as data visualization, clustering, denoising or classification.
Numerically we found comparable or superior performance to, e.g., FastICA in defla-
tion mode as a generic representative of the family of ICA/PP algorithms. Note that
in general, PP methods need to pre-specify a projection index with which they search
non-Gaussian components. By contrast, an important advantage of our method is that
we are able to simultaneously use several families of nonlinear functions; moreover,
also inside a same function family we are able to use an entire range of parameters
(such as frequency for Fourier functions). Thus, NGCA provides higher flexibility, and
less restricting assumptions a priori on the data. In a sense, the functional indices that
are the most relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimension of
the non-Gaussian subspace. Extending the proposed framework to non-linear projection
scenarios [11, 12, 1, 6] and to finding the most discriminative directions using labels are
examples for which the current theory could be taken as a basis.

Acknowledgements. This work was supported in part by the IST Programme of the
European Community, under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.
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Proof of Proposition 1

Put α = Ex [xh(x)] and ψ(x) = h(x) − α�x. Note that ∇ψ = ∇h − α, hence
β(h) = Ex [∇ψ(x)]. Furthermore, it holds by change of variable that∫

ψ(x + u)p(x)dx =
∫

ψ(x)p(x− u)dx.

Under mild regularity conditions on p(x) and h(x), differentiating this with respect to
u gives

Ex [∇ψ(x)] =
∫
∇ψ(x)p(x)dx = −

∫
ψ(x)∇p(x)dx = −Ex [ψ(x)∇ log p(x)] ,

where we have used ∇p(x) = ∇ log p(x) p(x). Eq.(2) now implies ∇ log p(x) =
∇ log g(Tx)− Γ−1x, hence

β(ψ) = −Ex [ψ(x)∇ log g(Tx)] + Ex

[
ψ(x)Γ−1x

]
= −T�Ex [ψ(x)∇g(Tx)/g(Tx)] + Γ−1Ex

[
xh(x)− xx�E [xh(x)]

]
.

The last term above vanishes because we assumed Ex

[
xx�] = Id. The first term

belongs to I by definition. This concludes the proof. �
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Abstract. In this article, we consider high-dimensional data which contains a
low-dimensional non-Gaussian structure contaminated with Gaussian noise and
propose a new method to identify the non-Gaussian subspace. A linear dimension
reduction algorithm based on the fourth-order cumulant tensor was proposed in
our previous work [4]. Although it works well for sub-Gaussian structures, the
performance is not satisfactory for super-Gaussian data due to outliers. To over-
come this problem, we construct an alternative by using Hessian of characteristic
functions which was applied to (multidimensional) independent component anal-
ysis [10,11]. A numerical study demonstrates the validity of our method.

1 Introduction

Recently enormous amount of data with a huge number of features have been stored
and are to be analyzed. In most real-world applications, the ‘signal’ or ‘information’ is
typically contained only in a low-dimensional subspace of the high-dimensional data,
thus dimensionality reduction is a useful preprocessing for further data analysis. Here
we make an assumption on the data: the high-dimensional data x ∈ Rd is a sum of
low-dimensional non-Gaussian components (‘signal’) s ∈ Rm (m < d) and a Gaussian
noise n ∼ N(0, Γ ),

x = As + n (1)

where A is a d ×m full rank matrix indicating the non-Gaussian subspace and s and
n are assumed to be independent. Under this modeling assumption, therefore, the tasks
are to estimate the relevant non-Gaussian subspace and to recover the low-dimensional
non-Gaussian structures by linear dimension reduction. Although our goal is dimension
reduction, we want to emphasize that we do not assume the Gaussian components to
be of smaller order of magnitude than the signal components. This setting therefore
excludes the use of common linear and non-linear dimensionality reduction methods
such as PCA, Isomap [9] and LLE [8].

If the non-Gaussian components si’s are mutually independent, the model turns out
to be the under-complete noisy ICA, and there exist algorithms to extract the indepen-
dent components in the presence of Gaussian noise [7]. However, this is often a too
strict assumption on the practical data.

In contrast, Projection Pursuit (PP) [3,5] or FastICA in the deflation mode [6,7]
can also extract dependent non-Gaussian structures by maximizing a prefixed non-
Gaussianity index which contains higher order information. Recently two procedures

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 157–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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have been developped in the same spirit of PP/FastICA. Non-Gaussian Component
Analysis (NGCA) [1] was built upon a general semi-parametric framework in math-
ematical statistics, while the other [4] is a modification of an ICA algorithm (JADE
[2]) to the dimension reduction problem. In this paper, we will propose an alternative
of the second algorithm with Hessian of characteristic functions which was applied to
(multidimensional) independent component analysis [10,11]. In comparison with the
fourth-order cumulant, characteristic functions yield more robust and efficient method
when data contain super-Gaussian structures.

2 Mathematical Preliminaries

Since the decomposition (1) is not uniquely determined, we will further transform the
model to reduce indeterminacies. The noise term n can be decomposed into two inde-
pendent parts as n = n1 + n2, where n1 = Aη ∈ Range(A) and n2 is restricted in
the (d−m)-dimensional complementary subspace s.t. Cov(n1,n2) = 0. Thus, we get
a representation with less indeterminacies

x = As̃ + n2, (2)

where s̃ := s+η and the noise term n2 distributes with a (d−m)-dimensional degen-
erated Gaussian. We remark that we can only recover s̃, the signal with contaminated
noise in the non-Gaussian subspace Range(A). By changing the symbols as A→ AN ,
s̃→ sN and n2 → AGsG, we will consider

x = ANsN + AGsG (3)

as our model fomulation, where AG indicates the subspace and sG denotes a (d−m)-
dimensional Gaussian random vector. Independence of sN and sG implies that the non-
Gaussian subspace and the Gaussian noise components are orthogonal with the metric
Σ−1, i.e. A�

NΣ
−1AG = 0, where Σ := Cov(x).

Let (B�
N , B

�
G)� be the inverse matrix of (AN , AG). Then, the submatrices BN and

BG extract the non-Gaussian and the Gaussian parts of the data x, i.e. BNx = sN
and BGx = sG. The primal goal of dimension reduction in this paper is estimating the
linear mapping BN onto the non-Gaussian subspace in order to project out the irrelevant
Gaussian components sG and obtain the non-Gaussian signals sN = BNx. We remark
that other matrices BG, AN and AG can also be determined automatically, once BN is
derived. From independence of sN and sG, the density function of x can be expressed
as a product of the non-Gaussian and the Gaussian components

p(x) = g(BNx)φL(BGx), (4)

where g is an unknown function describing the density of sN and φL is the Gaussian
density with covariance L.

There still remain trivial indeterminacies in the model (3)

x = (ANC1)(C−1
1 sN ) + (AGC2)(C−1

2 sG), (5)
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where C1 and C2 are m- and (d − m)-dimensional square invertible matrices, re-
spectively. Because of the indeterminacies (5) we should evaluate the results by I =
Range(B�

N ) (called non-Gaussian index space here) rather than BN itself. We recently
proved that the decomposition (3) is unique up to this indeterminacies, if we assume
that the dimension m of the non-Gaussian subspace is correct [12].

3 Joint Low-Rank Approximation Method

3.1 Dimension Reduction by Using Fourth-Order Cumulant Tensor

In our previous work [4], we propose a procedure for estimating the non-Gaussian sub-
space I based on the fourth-order cumulant tensor

cum(xi, xj , xk, xl)
:= E[xixjxkxl]− E[xixj ]E[xkxl]− E[xixk]E[xjxl]− E[xixl]E[xjxk].

The method was inspired by the JADE algorithm [2] for ICA which uses this tensor.
As is used in the JADE algorithm, we also apply the whitening transformation z =

V −1/2x as preprocessing, where V = Cov[x]. Let us define the matrices

WN := BNV
1/2, WG := BGV

1/2,

which are the linear transformations from the sphered data to the factors s =
(s�
N , s

�
G)�. We remark that the non-Gaussian index space can be expressed as

I = Range(B�
N ) = V −1/2Range(W�

N ).

and therefore, it is enough to estimate the matrix WN . Without loss of generality, we
can assume that Cov[s] = I . Then, (W�

N ,W�
G ) becomes an orthogonal matrix.

The method proposed in [4] rests on the fact that the cumulant tensor of the sources
(sN , sG) has simple structure. Let us order the sources as sN = (s1, . . . , sm) and
sG = (sm+1, . . . , sd). The cumulant tensor cum(si, sj , sk, sl) takes 0, unless 1 ≤
i, j, k, l ≤ m (i.e. all components should belong to the non-Gaussian part). Let Q(kl)

be the matrix whose (i, j) element is cum(zi, zj , zk, zl) for all 1 ≤ k, l ≤ d and W ◦ be
a d-dimensional orthogonal matrix which recovers the sources, i.e. s = W ◦z. Then, it
can be proven that, for all (k, l),

W ◦Q(kl)(W ◦)� =
(
∗ 0
0 0

)
holds, that is, all components which are not contained in the m ×m submatrix ∗ van-
ish after the similar transformation by W ◦. This fact implies that we can estimate the
transformation W ◦

N to the non-Gaussian components sN by maximizing the Frobenius
norms of the m×m submatrices corresponding to the non-Gaussian subspace

L(WN ) =
d∑

k,l=1

‖WNQ
(kl)W�

N ‖2Fro =
d∑

k,l=1

m∑
i′,j′=1

cum(yi′ , yj′ , zk, zl)2 (6)
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w.r.t. WN s.t. WNW
�
N = Im, where yN = (y1, . . . , ym)� = WNz denotes the recon-

structed non-Gaussian components by WN and ‖ · ‖2Fro is Frobenius norm of matrices.
The contrast function (6) was optimized by iterative eigenvalue decomposition in [4],

W
(t+1)
N

d∑
k,l=1

Q̂(kl){W (t)
N }�W

(t)
N Q̂(kl) = ΛW

(t+1)
N , (7)

where Q̂(kl) is the empirical correspondent of the matrix Q(kl) and W
(t)
N is the t-step

estimator.
The algorithm works well for sub-Gaussian structures. However, due to outliers it

performs worse when the data contains heavy-tailed structures. In the remaining of this
section, we will introduce joint low-rank approximation (JLA) of matrices by general-
izing this method and show its global consistency. A novel algorithm using Hessian of
the characteristic function will be proposed as an example.

3.2 Joint Low-Rank Approximation of Matrices

Let us consider the ideal situation as the discussion with the expected cumulant tensor
in the previous section. Suppose that K complex matrices M1, . . . ,MK can be simul-
taneously transformed into

W ◦Mk(W ◦)� =
(
∗ 0
0 0

)
, k = 1, . . . ,K, (8)

that is, all components of all the transformed matrices vanish except for those in m×m
submatrices indicated by ∗, where W ◦ is a d-dimensional orthogonal matrix. Let W ◦

N be
them×dmatrix composed of the firstm rows ofW ◦. We remark thatW ◦

N (W ◦
N )� = Im.

The goal here is to estimate the mapping W ◦
N as before.

Let us consider the contrast function

L(WN ) =
K∑
k=1

‖WNMkW
�
N ‖2Fro, (9)

where Frobenius norm ‖C‖2Fro = tr(CC∗) in complex case. We can show that the
desired mapping W ◦

N can be obtained up to an orthogonal matrix by maximizing the
contrast function L(WN ).

Theorem 1. The objective function L(WN ) is maximal at WN = UW ◦
N , where W ◦

N

is the first m × d submatrix of W ◦ defined by Eq. (8) and U is an m-dimensional
orthogonal matrix.

Proof. We remark that Frobenius norm ‖WMkW
�‖2Fro is unchanged for any orthog-

onal matrix W , i.e. ‖WMkW
�‖2Fro = ‖Mk‖2Fro = ‖W ◦Mk(W ◦)�‖2Fro. From the

property (8) of the matrix W ◦, we get

‖W ◦Mk(W ◦)�‖2Fro =
∥∥∥∥(W ◦

NMk(W ◦
N )� 0

0 0

)∥∥∥∥2
Fro

=
∥∥W ◦

NMk(W ◦
N )�
∥∥2

Fro ,
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where we divided W ◦ into two submatrices W ◦
N and W ◦

G. On the other hand, for a
general orthogonal matrix W ,

‖WMkW
�‖2Fro =

∥∥∥∥(WNMkW
�
N WNMkW

�
G

WGMkW
�
N WGMkW

�
G

)∥∥∥∥2
Fro

= ‖WNMkW
�
N ‖2Fro + ‖WNMkW

�
G ‖2Fro

+‖WGMkW
�
N ‖2Fro + ‖WGMkW

�
G ‖2Fro

≥ ‖WNMkW
�
N ‖2Fro,

where W was also divided into two submatrices WN and WG. Since the inequality is
strict if and only if one of the three terms is non-zero, we notice that all global maxima
were already found. Therefore, for all orthogonal matrices U , finally we get

‖UW ◦
NMk(W ◦

N )�U�‖2Fro = ‖W ◦
NMk(W ◦

N )�‖2Fro ≥ ‖WNMkW
�
N ‖2Fro. �

For simplicity, we further assume that M�
k = Mk, as is the case with our algorithms.

By differentiating the criterion L under the constraint WNW
�
N = Im, we get

WN

K∑
k=1

Mk(WN ) = ΛWN , (10)

where

Mk(WN ) := MkW
�
NWNM

∗
k + M∗

kW
�
NWNMk (11)

is a d×d matrix depeding on WN and Lagrange multipliers Λ is assumed to be diagonal
without loss of generality. As the algorithm with the cumulant tensor, the maximization
of the contrast function (9) can be solved by iterating the eigenvalue problem

W
(t+1)
N

K∑
k=1

M̂k(W
(t)
N ) = ΛW

(t+1)
N (12)

where M̂k is the empirical correspondent of the matrix Mk and W
(t)
N is the t-step

estimator.

3.3 Dimension Reduction by Using Characteristic Functions

In [10] and [11], Hessians of the characteristic function were used for (multidimen-
sional) independent component analysis. Since they satisfy the property (8) under our
model assumption as we will show, they can also be used as the matrices Mk in the joint
low-rank approximation procedure. The characteristic function of the random variable
z can be defined by Ẑ(ζ) := E[exp(iζ�z)]. Let W ◦ = ( (W ◦

N )�, (W ◦
G)�)� be an

orthogonal matrix s.t. s = W ◦z. Then, the characteristic function can be expressed as

Ẑ(ζ) = Ŝ(W ◦ζ) = ŜN (W ◦
Nζ) exp

(
−1

2
‖W ◦

Gζ‖2
)
, (13)
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where Ŝ and ŜN are the characteristic functions of s and sN , respectively. Therefore,
if log Ẑ(ζ) exists, the Hessian of log Ẑ(ζ) becomes

Hlog Ẑ(ζ) :=
∂2

∂ζ∂ζ� log Ẑ(ζ)

= (W ◦)�
(

∂2

∂ξN∂ξ�
N

log ŜN (W ◦
Nζ) 0

0 −Id−m

)
W ◦, (14)

where ξN = W ◦
Nζ. For K selected vectors ζ1, . . . , ζK ∈ Rd, each matrix Mk :=

Hlog Ẑ(ζk) + Id satisfies the property (8).
Suppose that samples x1, . . . ,xn are given. The algorithm with Hessians of the

characteristic function is summarized as follows.

Algorithm

1. Sphere the data {xi}nj=1 by ẑj = V̂ −1/2xj , where V̂ = Ĉov[x].
2. Calculate the Hessian M̂k := Ĥlog Ẑ(ζk) + Id at selected vectors ζk from the

empirical characteristic function Ẑemp(ζ) = 1
n

∑n
j=1 exp(iζ�ẑj).

3. Compute m eigenvectors with largest absolute eigenvalues.

W
(0)
N

K∑
k=1

{
Re(M̂k) + Im(M̂k)

}
= ΛW

(0)
N

4. Solve the following eigenvalue problem until the matrix W
(t)
N converges.

W
(t+1)
N

K∑
k=1

M̂k(W
(t)
N ) = ΛW

(t+1)
N

The symbols with hat denote the empirical versions of the corresponding quantities, for
example, Ĉov is the sample covariance. Re(M) and Im(M) are the real and the imaginary
parts of a matrix M . The matrix M̂k(WN ) is calsulated from M̂k by Eq. (11).

4 Numerical Results

For testing our algorithm, we performed numerical experiments using various synthetic
data used in [1]. Each data set includes 1000 samples in 10 dimension. Each sample
consists of 8-dimensional independent standard Gaussian and 2 non-Gaussian compo-
nents as follows.

(A) Simple: 2-dimensional independent Gaussian mixtures with density of each com-
ponent given by 1

2φ−3,1(x) + 1
2φ3,1(x).

(B) Dependent super-Gaussian: 2-dimensional isotropic distribution with density
proportional to exp(−‖x‖).

(C) Dependent sub-Gaussian: 2-dimensional isotropic uniform with constant posi-
tive density for ‖x‖ ≤ 1 and 0 otherwise.
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(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with density pro-
portional to exp(−|xLap|) and 1-dimensional dependent uniform U(c, c+1), where
c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

The profiles of the density functions of the non-Gaussian components in the above data
sets are described in Fig. 1. The mean and standard deviation of samples are normalized
to zero and one in a component-wise manner.

Besides the proposed algorithm, we applied for reference the following four meth-
ods in the experiments: FastICA with ‘pow3’ or ‘tanh’ index (denoted by FIC3 and
FICt, respectively), JADE and joint low-rank approximation (JLA) algorithms with the
fourth-order cumulant tensor and Hessian of the characteristic function (denoted by
JLA4 and JLAH, respectively). In JLA with Hessian, 1000 vectors ζ were randomly
chosen and 10% of them with high norm ‖Mk‖Fro were taken in the contrast function.
We remark that we did not include the better method [1], because the main purpose of
the experiments is compareing the two JLA algorithm. Further research is necessary to
improve the algorithm. In FastICA and JLA with the cumulant tensor, additionally 9
runs from random initial matrices were also carried out and the optimum among these
10 solutions were chosen to avoid local optima.

Fig. 2 shows boxplots of the error criterion

E(Î, I) =
1
m
‖(Id −ΠI)ΠÎ‖

2
Fro, (15)

(A) (B) (C) (D)
Fig. 1. Densities of non-Gaussian components. The datasets are: (a) 2D independent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and (d) dependent 1D Lapla-
cian + 1D uniform.
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Fig. 2. Boxplots of the error criterion E(Î, I). Algorithms are FIC3, FICt, JADE, JLA4 and JLAH
(from left to right).
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obtained from 100 runs, where ΠI (resp. ΠÎ) is the projection matrix onto the true

non-Gaussian subspace I (resp. the estimated one Î).
Although we did not prove theoretically, JADE could find the non-Gaussian sub-

space I in all these examples. Unfortunately, the performance of the proposed algo-
rithm JLAH was worse than that of the previous version JLA4 for the simple data (A)
and was on par for the sub-Gaussian data (C). However, for data (B) and (D) which con-
tain super-Gaussian structures, the Hessian version JLAH outperformed the cumulant
one JLA4. Moreover, JLAH was much more robust than JLA4. The proposed algorithm
(JLAH) missed only one case, while the latter (JLA4) failed to estimate the index space
I many times ( (B)7%, (C)21% and (D)30%).

5 Conclusions

In this paper, we proposes a new linear method to identify the non-Gaussian subspace
based on Hessian of the characteristic function. In our numerical experiments, the pro-
posed algorithm was more robust and efficient than the previous version with the cu-
mulant tensor when data contain super-Gaussian structures. Global consistency of the
method was also proved in a more general framework. Further research should be done
on selection of the vectors ζk to improve its performance. Other examples of joint low-
rank approximation procedure can also be interesting.
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Abstract. In this paper, we solve an ICA problem where both source
and observation signals are multivariate, thus, vectorized signals. To de-
rive the algorithm, we define dependence between vectors as Kullback-
Leibler divergence between joint probability and the product of marginal
probabilities, and propose a vector density model that has a variance de-
pendency within a source vector. The example shows that the algorithm
successfully recovers the sources and it does not cause any permutation
ambiguities within the sources. Finally, we propose the frequency domain
blind source separation (BSS) for convolutive mixtures as an application
of IVA, which separates 6 speeches with 6 microphones in a reverberant
room environment.

1 Introduction

Independent component analysis (ICA) is proposed as a method to find statis-
tically independent sources from mixture observations by utilizing higher-order
statistics [1]. In its simplest form, the ICA model assumes linear, instantaneous
mixing without sensor noise, the number of sources being equal to the number
of sensors, and so on. Before considering these assumptions, there is more funda-
mental assumption, which is that every component is independent of the others.
Of course, it is. However, what if the sources are multivariate or vectorized sig-
nal? Let’s consider some examples such as complex-valued signal, time-frequency
representation of audio signal, color image signal, etc. Are the components still
independent? Usually not. Elements within a source vector are sometimes cor-
related or sometimes uncorrelated but dependent.

In this paper, we consider an algorithm for solving the following problem.

Independent Vector Analysis (IVA)
Given observations xi,

xi =
L∑
j

aij ◦ sj (1)

finding source vectors sj by

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 165–172, 2006.
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si ≈ ŝi =
M∑
j

wij ◦ xj (2)

where ◦ denotes element-wise product, and L and M is the number of sources
and observations, respectively. Notation used in this paper is defined in the
footnote.1

Assumptions
1. Elements of a source vector are mutually independent of elements of the other
source vectors.
2. Within a source vector, the elements are highly dependent on the others.
3. The number of sources is less than or equal to the number of observations.

Easily, one can treat this problem as several numbers of ICA problems, because
(1) can be rewritten as

x(1) = A(1)s(1), x(2) = A(2)s(2), · · · , x(D) = A(D)s(D) (3)

However, once the ICA algorithm is separately applied to each element of a
vector, the elements of the recovered source vectors would be randomly ordered.
In this case, afterwards, it should be decided which component belongs to which
source vector. It causes another clustering problem, which is not easy to solve
when the number of sources is large. Instead of applying ICA separately, we
tackle the problem by defining dependence between multivariate components
and deriving an algorithm for the IVA problem directly.

2 Method

2.1 Objective Function

In order to separate multivariate components from multivariate observations, we
need to define the objective function for multivariate random variables. Here,
we define Kullback-Leibler divergence between two functions as the measure of
dependence. One is an exact joint probability density function, p (s1, · · · , sL) and
the other is a nonlinear function which is the product of approximated marginal
probability distribution functions,

∏
i q (si).

C = KL
(
p (s1, · · · , sL) ‖

∏
i

q (si)

)
= const. +

∑
d

log | detA(d)| −
∑
i

Esi log q (si) (4)

1 Notation. We use lower-cased, bold-faced letters to denote vector variables, up-
per cased letters to denote matrix variables, e.g. si = [s(1)

i , · · · , s
(D)
i ]T. xi =

[x(1)
i , · · · , x

(D)
i ]T, and aij = [a(1)

ij , · · · , a
(D)
ij ]T, where a

(d)
ij is the ith row, jth column

element of the dth mixing matrix A(d).
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Note that the random variables in above equations are multivariate. The inter-
esting parts of this objective function are that each source is multivariate and it
would be minimized when dependency between the source vectors is removed, but
dependency between the components of each vector does not need to be removed.
Therefore, the objective function preserves the inherent dependency within each
source vector, although it removes dependency between the source vectors.

2.2 Learning Algorithm: A Gradient Descent Method

Now that we have defined the objective function for IVA, derivation of the learn-
ing algorithm is straightforward. Here, we are using a gradient descent method to
minimize the objective function. By differentiating the objective function C with
respect to the coefficients of unmixing matrices w(d)

ij , we can derive the learning
rule as follows.

Δw
(d)
ij = − ∂C

∂w
(d)
ij

= a
(d)
ji − Eϕ(d)

(
ŝ(1)
i , · · · , ŝ(D)

i

)
x(d)
j (5)

By multiplying scaling matrices,W (d)T
W (d), the natural gradient learning rule [2],

which is well known as a fast convergence method, can be obtained as

Δw
(d)
ij =

L∑
l=1

(
Iil − Eϕ(d)

(
ŝ(1)
i , · · · , ŝ(D)

i

)
ŝ(d)
l

)
w

(d)
lj (6)

where Iil is one when i = l, otherwise zero, and a multivariate score function is
given by

ϕ(d)
(
ŝ(1)
i , · · · , ŝ(D)

i

)
= −

∂ log q
(
ŝ(1)
i , · · · , ŝ(D)

i

)
∂ŝ

(d)
i

(7)

3 Vector Density Model

In order to minimize the objective function, defining an optimal form of the func-
tion q(·) as an approximated marginal probability density function is the most
critical part. Here, the function q(·) has to be characterized as a vector density
model that has dependency within a source vector. We define a vector density
model as a scale mixture of Gaussians distribution.

3.1 Scale Mixture of Gaussians Distribution

Suppose that there is a D-dimensional random variable, which is defined by

s =
√
v z + μ, (8)
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where v is a scalar random variable, z is a D-dimensional random variable, and μ
is a deterministic bias. Here, the random variable, z, has a Gaussian distribution
with mean 0 and covariance matrix Σ.

z ∼ N (0, Σ) =
1

(2π)D/2|Σ|1/2 exp
(
−zTΣ−1z

2

)
(9)

Obviously, the random variable, v, is non-negative. We assume that vhas a Gamma
distribution, which is a commonly used distribution for non-negative random
variables.

v ∼ G(α, λ) =
λαvα−1

Γ (α)
exp(−λv), (10)

where α and λ are the parameters of a Gamma distribution, and Γ (·) is a complete
Gamma function. Then, the random variable s given v has a Gaussian distribu-
tion. The mean and variance of this distribution are Es =

√
vEz + μ = μ and

E(s− μ)(s− μ)T =
√
vEzzT√v = vΣ, respectively.

s|v ∼ N (μ, vΣ) =
1

(2πv)D/2|Σ|1/2 exp
(
− (s− μ)TΣ−1(s− μ)

2v

)
(11)

In this model, each component of s is not only correlated to others, but also has
variance dependency generated by v. Even though we assume the covariance ma-
trix Σ is identity, that is, each element of s is uncorrelated, it is dependent on
the others. We can obtain probability distribution function of variance dependent
random variable s, by integrating joint distribution of s and v over v.

p(s) =
∫ ∞

0
p(s|v)p(v)dv (12)

Let δ =
√

((s− μ)TΣ−1(s− μ)) and γ =
√

2λ. Now, we rearrange the joint p.d.f
as a form of Inverse Gaussian distribution [3] as follows.

(12) =
λα

(2π)D/2Γ (α)|Σ|1/2
(2π)1/2

δ
exp (−γδ)

×
∫ ∞

0
vα−(D−1)/2 δ

(2π)1/2
exp (γδ) v−3/2 exp

(
−1

2

(
δ2

v
+ γ2v

))
︸ ︷︷ ︸

Inverse Gaussian p.d.f.

dv (13)

Then, the integral in (13) is the (α− (D − 1)/2)-th order moment of Inverse Gaus-
sian. Therefore, the variance dependent source p.d.f is obtained as

p(s)=c
(
(s− μ)TΣ−1(s− μ)

)α/2−D/4Kα−D/2 (√2λ(s− μ)TΣ−1(s− μ)
)
,(14)

where c is a normalization term and Kν(z) is the modified Bessel function of the
second kind, which is approximated as

Kν (z) ≈
√

π

2z
e−z
(

1 +
4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)
2!(8z)2

+ · · ·
)

(15)
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3.2 Multivariate Score Function

So far, we have derived an algorithm and defined a vector density model. Finally
in the algorithm, one can notice that the only difference between IVA and the
conventional ICA is caused by the form of a score function. If we define the mul-
tivariate score function given in (7) as a single-variate score function, ϕ(d)

(
ŝ
(d)
i

)
,

which is a function of only one variable, the algorithm is converted to the same as
the conventional ICA such as InfoMax algorithm. According to the density model
we defined, we can obtain a form of a multivariate score function by differentiat-
ing log prior (14) with respect to each element of a source vector, because q (ŝi) in
the objective function is an approximated probability density function of a source
vector, that is, q (si) ≈ p (si). Therefore, we can obtain following form of a multi-
variate score function.

ϕ(k)
(
ŝ
(1)
i , · · · , ŝ(D)

i

)
=
Kα−D/2−1 (δ)
Kα−D/2 (δ)

ŝ
(d)
i

δ
= ξ(δ)

ŝ
(d)
i

δ
(16)

where ξ(δ) ≈ 1 for large δ. To obtain a simplified score function, we may approx-
imate the Bessel function in (14) up to the 1st order, which results the following
function.

ϕ(k)
(
ŝ
(1)
i , · · · , ŝ(D)

i

)
≈
(
D + 1− 2α

2δ
+ 1
)
ŝ
(d)
i

δ
(17)

Although it is possible to estimate the mean vector μ and the covariance matrix
Σ while the algorithm learns. We would, in this paper, fix them to zero mean and
unit variance, and assume that the elements in a source vector are uncorrelated.

Thus, simply δ =

√∑
d

∣∣∣ŝ(d)
i

∣∣∣2. Although we propose above 2 forms of multivariate

score functions, we believe that another form of a multivariate score function will
be still possible by choosing a different vector density model that has different
dependencies.

4 Example

We verified our algorithm with artificially generated signals. First, we generated
3 i.i.d. Gaussian random vector signals, which were 4 dimensional vectors. Then,
the same amplitude modulation was applied to the elements of each vector signal
as follows.

s2(t) = cos (2πt/3)z1(t) (18)
s1(t) = sin (2πt)z2(t) (19)

s3(t) = U (sin (2πt/3)) z3(t), (20)

where zi is 4 dimensional i.i.d. Gaussian random vector, and U(·) denotes a unit
step function. Mixing matrices were randomly generated. Fig. 1 shows the origi-
nal sources, observations signals, and recovered sources by both of ICA and IVA.
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(a) original sources (b) observations

(c) recovered sources by ICA (d) recovered sources by IVA

Fig. 1. The original sources, observations, and recovered sources by ICA and IVA. Each
row is corresponding to a single source vector, which is 4 dimensional in the example.
In contrast to ICA, IVA does not suffer the inter-element permutation problem as well
as it separates sources properly.

Each row is corresponding to a single source vector, which is 4 dimensional in the
example. As shown in the figure, ICA solution disorders elements in a source vec-
tor, whereas IVA does not suffer the inter-element permutation problem as well
as it separates the sources properly. Following matrices show the product of the
unmixing matrix and the mixing matrix, which should be identity matrix with
permutations. Those obtained by ICA was

W (1)A(1)=

⎡⎢⎢⎢⎣
0.031 −0.034 1.557
0.012 1.3695 0.039
1.395 −0.081 0.019

⎤⎥⎥⎥⎦ W (2)A(2)=

⎡⎢⎢⎢⎣
1.360 −0.065 0.060
0.054 -1.399 0.013
−0.005 0.021 -1.536

⎤⎥⎥⎥⎦

W (3)A(3)=

⎡⎢⎢⎢⎣
0.018 1.422 −0.019
-1.391 0.058 0.075
0.013 −0.054 -1.538

⎤⎥⎥⎥⎦ W (4)A(4)=

⎡⎢⎢⎢⎣
0.011 1.357 0.018
−0.002 0.001 -1.557
-1.428 −0.047 0.029

⎤⎥⎥⎥⎦

In contrast to ICA, IVA provided a well-ordered solution, which has the same per-
mutations in a source vector as follows.

W (1)A(1)=

⎡⎢⎢⎢⎣
−0.006 -2.388 −0.048
−0.011 0.099 -2.592
2.370 −0.079 0.092

⎤⎥⎥⎥⎦ W (2)A(2)=

⎡⎢⎢⎢⎣
0.022 -2.395 0.036
0.015 0.066 2.610
-2.306 0.1270 −0.076

⎤⎥⎥⎥⎦

W (3)A(3)=

⎡⎢⎢⎢⎣
−0.009 2.409 0.007
−0.011 −0.077 -2.609
-2.386 0.033 0.103

⎤⎥⎥⎥⎦ W (4)A(4)=

⎡⎢⎢⎢⎣
−0.003 -2.338 −0.009
0.027 −0.083 2.587
2.421 −0.012 0.013

⎤⎥⎥⎥⎦
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In the above matrices, the values covered by rectangles to the other values ratio
was used to calculate the performance measure. ICA and IVA result 28.5dB and
30dB, respectively.

5 Application to the Frequency Domain BSS

We applied the proposed IVA algorithm to separate convolutive mixture in the
frequency domain, because the convolution is equivalent to multiplication at each
frequency bin, which is the same as the model given by (1). Although one can
use the conventional ICA algorithm to separate each frequency bin separately,
it causes another problem which is called the frequency permutation problem.
Thus, the permutations of separating matrices at each frequency should be cor-
rected so that the separated signal in the time domain is reconstructed properly.
Various algorithms have been proposed to solve the permutation problem, e.g.
method that limits the filter length in the time domain [4], uses direction of ar-
rival estimation [5], and uses inter-frequency correlation [6]. Although these
algorithms perform well in some cases, they are sometimes very sensitive to the
parameters or mixing conditions. However, IVA algorithm we proposed in this pa-
per does not suffer the permutation problem at all as well as it separates sources
properly.

We tested the proposed algorithm to separate 6 speeches with 6 microphones
in a reverberant room environment. In this experiment, we used 8kHz sampling
rate, a 2048 point FFT and a hanning window to convert time domain signal to the
frequency domain. The length of window was 2048 samples and shift size was 512
samples. The condition of the room was illustrated in Fig. 2(a), and the separated
sources are shown in Fig. 2(b). The improvement of signal to interference ratio
(SIR) was 18dB. More intensive experiments are included in our web site 2 and
another work [7].

(a) Reverberant room environment. A case
of 6 mics and 6 sources
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(b) Separated speeches in the time domain

Fig. 2. Room environment and the separated speeches. 2048 sample sized hanning win-
dow and 2048 FFT point was used. SIR improvement was approximately 18dB.

2 http://ergo.ucsd.edu/∼taesu/source separation.html
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6 Conclusions

We have extended the conventional ICA problem to multivariate components,
which we termed IVA. While ICA algorithm has a single-variate score function,
IVA algorithm has a multivariate score function, which is caused by higher-order
dependency within source vectors. To model a vector density, we have used scale
mixture of Gaussians distribution, which models variance dependency. The re-
sults have shown that the proposed algorithm successfully recovers the sources
not only in a simple example but also real world problem such as frequency do-
main BSS. Further, researches on various kinds of higher-order dependency mod-
els and multivariate score functions would be important to separate multivariate
components.
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Abstract. Independent component analysis (ICA) has many practical
applications in the fields of signal and image processing and several ICA
learning algorithms have been constructed via the selection of model
probability density functions. However, there is still a lack of deep math-
ematical theory to validate these ICA algorithms, especially for the gen-
eral case that super- and sub-Gaussian sources coexist. In this paper,
according to the one-bit-matching principle and by turning the de-mixing
matrix into an orthogonal matrix via certain normalization, we propose
a one-bit-matching ICA learning algorithm on the Stiefel manifold. It is
shown by the simulated and audio experiments that our proposed learn-
ing algorithm works efficiently on the ICA problem with both super-
and sub-Gaussian sources and outperforms the extended Infomax and
Fast-ICA algorithms.

1 Introduction

Independent component analysis (ICA) [1]-[2] aims to blindly separate some
independent sources s from their linear mixture x = As via

y = Wx, x ∈ Rm, y ∈ Rn, W ∈ Rm×n, (1)

where A is a mixing matrix, and W is the de-mixing matrix to be estimated.
For simplicity of analysis, the number of mixed signals is required to be equal to
the number of source signals, i.e., m = n, and A is an n×n nonsingular matrix.
Although the ICA problem has been studied from different perspectives [3]-[5],
it can be typically solved by minimizing the following objective function:

D = −H(y)−
n∑
i=1

∫
pW(yi;W) log pi(yi)dyi, (2)

where H(y) = −
∫
p(y) log p(y)dy denotes the entropy of y, pi(yi) denotes the

pre-determined model probability density function (pdf), and pW(yi;W) de-
notes the probability distribution on y = Wx.
� This work was supported by the Natural Science Foundation of China for Project

60471054.
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In the literature, how to choose the model pdf’s pi(yi) remains a key is-
sue for the ICA algorithms using the objective function Eq.(2). In general, any
gradient descent learning algorithm, such as the relative or natural gradient al-
gorithms [3]-[4], can work only in the cases that the components of s are either
all super-Gaussians or all sub-Gaussians. Recently, many new algorithms (e.g.,
the extended Infomax algorithm [6] and the Fast-ICA algorithm [7]) have been
proposed to solve the general ICA problem, but their theoretical foundations are
yet unclear. In order to solve the general ICA problem, Xu et al. [8] proposed the
one-bit-matching conjecture which states that “all the sources can be separated
as long as there is a one-to-one same-sign-correspondence between the kurtosis
signs of all source pdf’s and the kurtosis signs of all model pdf’s”. Recently, Liu
et al. [9] proved this conjecture by globally minimizing the objective function
under certain assumptions on the model pdf’s. Ma et al. [10] further proved the
conjecture by locally minimizing the same objective function on the two-source
ICA problems. It is generally believed that the one-bit-matching condition can
serve as a reasonable principle for the design of the model pdf’s. On the other
hand, if the observed x and the output y are both normalized with zero mean
and unit covariance matrix, the de-mixing matrix becomes orthogonal, which
can be learned on the Stiefel manifold.

In this paper, under the condition that the model pdf’s are designed accord-
ing to the one-bit-matching principle, with the observed x and the output y
being properly normalized, we propose a gradient-type ICA learning algorithm
on the Stiefel manifold, which we call as one-bit-matching learning algorithm. It
is shown by the simulated and audio experiments that the proposed algorithm
works efficiently on the general blind source separation problems and outper-
forms the typical existing ICA algorithms.

2 The One-Bit-Matching Learning Algorithm

We start to introduce the Stiefel manifold. Roughly, the Stiefel manifold Vn,p
consists of n-by-p “tall skinny” orthogonal matrices. That is, the p column vec-
tors of each matrix in Vn,p are pair-wised orthogonal in Rn. Here, we need only
to consider the special Stiefel manifold Vn,n, i.e., the orthogonal group On con-
sisting of n-by-n orthogonal matrices. For a smooth function F (Z) on the Stiefel
manifold On, i.e., Z ∈ On, with the canonical Euclidean metric, its gradient on
the manifold is computed by

∇F = FZ − ZFTZ Z, (3)

where FZ is the conventional gradient of F (Z) with respect to the matrix Z.
This gradient is consistent with the natural Riemannian gradient on the Stiefel
manifold from information geometry.

We further pre-whiten the observed x and the output y so that the de-mixing
matrix W can only be orthogonal, i.e, on the Stiefel manifold On. Clearly, we
can easily pre-whiten the observed x such that

E(x) = 0, ExxT = In, (4)
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where In is the n × n identity matrix. With each matrix W, we can also pre-
whiten the output y = Wx such that

E(y) = 0, EyyT = In. (5)

In this way, we have

In = E(yyT ) = WE(xxT )WT = WWT . (6)

Thus, WWT = In. That is, W must be an orthogonal matrix. Therefore, if
we can pre-whiten or normalize the observed x and the output y during each
phase of the learning process, the resulted W should be an orthogonal matrix.
Therefore, we can solve it on the Stiefel manifold.

We now revisit the objective function defined in Eq.(2). Suppose that the ob-
served x and the output y are both pre-whitened. Then, the required de-mixing
W should be orthogonal. So, we can search the feasible solution W of the ICA
problem via minimizing the objective function of W on the Stiefel manifold On.
For the design of model pdf’s, we use the one-bit-matching condition. Suppose
that p is the number of super-Gaussian sources in the ICA problem. The model
pdfs of sub- and super-Gaussians are selected as

psuper(u) =
1
π

sech(u), psub(u) =
1
2
[pN(1,1)(u) + pN(−1,1)(u)],

respectively, where pN(μ,σ2)(u) is the Gaussian probability density with mean
μ and variance σ2, and sech(·) is the hyperbolic secant function. That is, the
first p model pdf’s are selected as psuper(u), while the rest n − p model pdf’s
are selected as psub(u). In this way, the conventional gradient of the objective
function can be computed as follows.

We let V = (v1, v2, · · · , vn)T be an n-dim vector. For each observed x and the
corresponding output y via the relation y = Wx, we define

vi = −tanh(yi), for i = 1, · · · , p;
vi = tanh(yi)− yi, for i = p + 1, · · · , n.

Then, the adaptive gradient JW of the objective function Eq. (2) with respect
to W is simplified as

JW = −W −VxT . (7)

Given Eq.(7), we can construct the one-bit-matching learning algorithm as a
local gradient-descent learning algorithm of W on the Stiefel manifold On as
follows.

 W = −η(JW −WJTWW) = η(VxT −WxVTW), (8)

where η > 0 is the learning rate parameter which is generally selected as a small
positive constant.
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Since JW is just the adaptive gradient of the objective function, this algorithm
is adaptive. As W keeps an orthogonal matrix during the learning process, the
output y will be always normalized or whitened. Therefore, we need only to
pre-whiten the observed x at the beginning of the algorithm. Certainly, we can
establish the batch gradient learning algorithm on the Stiefel manifold with the
batch gradient of the objective function.

3 Experimental Results

In order to test our one-bit-matching learning algorithm, we conducted several
simulated and audio experiments on three source separation problems: (i). mixed
super-Gaussian and sub-Gaussian ones; (ii). uniform noises which are all sub-
Gaussian; (iii). audio samples which are all super-Gaussian. We also compared
it with the extended Informax and Fast-ICA algorithms.

3.1 On Separating Mixed Super-Gaussian and Sub-Gaussian
Sources

We began to consider the ICA problem of seven independent sources in which
there are four super-Gaussian sources generated from one Exponential distribu-
tion E(0.5), one Chi-square distribution χ2(6), one Gamma distribution γ(1, 4)
and one F -distribution F (10, 50), respectively, and three sub-Gaussian sources
generated from two β distributions β(2, 2), β(0.5, 0.5), and one Uniform dis-
tribution U([0, 1]), respectively. From each source or distribution, 100000 i.i.d.
samples were generated to form a source. Accordingly, these samples were further
pre-whitened.

The first set of linearly mixed signals was generated from these seven source
signals via a random orthogonal mixing matrix A1. We implemented the one-
bit-matching learning algorithm (p = 4, n = 7) on the first set of linearly mixed
signals with the learning rate being selected as η = 0.001 and the initial W being
set as a randomly generated orthogonal matrix. The one-bit-matching learning
algorithm operated adaptively and was stopped after 100000 iterations to ensure
the fulfilment of separation.

The result of the one-bit-matching learning algorithm on the first linearly
mixed signal set is given by Eq. (9). As a feasible solution of the ICA problem,
the obtained W will make WA = ΛP be satisfied or approximately satisfied to
a certain extent, where ΛP = diag[λ1, λ2, · · · , λn] with each λi �= 0, and P is a
permutation matrix. Since A was selected as an orthogonal matrix, WA should
be just a permutation matrix up to sign indeterminacy.

WA1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0033 0.0027 −0.0043 −0.0020 −0.0044 −0.0043
0.0026 0.0058 −0.9998 −0.0156 0.0031 −0.0007 −0.0032
0.0044 0.0032 −0.0156 0.9998 −0.0003 0.0079 0.0054
0.0032 −0.9999 −0.0058 0.0032 0.0006 −0.0128 0.0008

−0.0020 −0.0006 −0.0031 −0.0004 −1.0000 0.0027 −0.0015
−0.0044 0.0128 0.0006 0.0079 −0.0027 −0.9999 −0.0007
−0.0043 −0.0008 0.0031 0.0055 0.0015 0.0007 −1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)
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For comparison, we also ran the extended Infomax algorithm [5] (a kind of
natural or relative gradient learning with a switch criterion) on this set of linearly
mixed signals and obtained the separation result given by Eq. (10).

WA1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0148 −0.7588 0.0085 −0.0005 −0.0241 −0.0189 0.0088
0.0222 0.0167 −0.0109 0.0135 −1.4220 −0.0111 0.0093
0.0088 −0.0042 −0.7532 −0.0197 −0.0133 0.0336 0.0103

−0.0144 −0.0141 0.0037 −0.0333 −0.0280 −0.0141 1.4943
−0.8065 0.0161 −0.0018 −0.0146 −0.0581 −0.0465 0.0777

0.0176 −0.0197 −0.0057 0.0288 −0.0210 −1.4393 0.0343
0.0001 −0.0353 0.0284 0.7675 0.0004 −0.0537 −0.0017

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

From the above two tables, it can be found that the one-bit-matching learning
algorithm is much better than that of the extended Infomax algorithm. Precisely,
we calculated the performance index (introduced in [3]) defined by

PI =
n∑

i=1

(
n∑

j=1

|rij |
maxk |rik| − 1) +

n∑
j=1

(
n∑

i=1

|rij |
maxk |rkj | − 1),

where R = (rij)n×n = WA. For a perfect separation, this index should be zero.
Actually, the performance indexes of the one-bit-matching learning and extended
Infomax algorithms are 0.3411 and 1.6399, respectively, which quantitatively
shows that the one-bit-matching learning algorithm is much better than the
extended Infomax. Moreover, we implemented the Fast-ICA algorithm on this
linearly mixed signal set and obtained the separation result with the performance
index being 0.3028, which is slightly better than that of the one-bit-matching
learning algorithm.

3.2 On Separating Uniform Noises

Next, we considered the ICA problem of separating eight independent uniform
noises. That is, each source was sampled from a uniform distribution and con-
tains 100000 samples. These sources are all sub-Gaussian, being recognized as
the uniform noises. Our second set of linearly mixed signals was generated from
these eight uniform noises via another random orthogonal mixing matrix A2.
The signals were further pre-whitened. On this set of linearly mixed signals, we
implemented the one-bit-matching learning and extended Infomax algorithms
and their results are given by Eq. (11) and Eq. (12), respectively. It was found
that their performance indices are 0.1713 and 2.2776, respectively, which also
shows that the one-bit-matching learning algorithm also outperforms the ex-
tended Infomax. Moreover, it was also found that the the performance index of
the separation results via the Fast-ICA algorithm on this set is 0.2342, which is
considerably larger than 0.1713. That is, the one-bit-matching learning algorithm
also outperforms the Fast-ICA algorithm in this case.
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WA2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.003 0.000 0.001 −0.001 1.000 0.000 −0.002 −0.003
−0.002 0.000 −0.002 0.001 −0.002 0.000 −1.000 −0.001

0.000 0.002 0.000 −1.000 −0.001 −0.004 −0.001 −0.002
0.001 −0.003 −1.000 0.000 0.001 0.000 0.002 0.002

−0.003 −1.000 0.003 −0.002 0.000 0.001 0.000 0.001
−0.002 −0.001 −0.002 0.002 −0.003 0.002 0.001 −1.000
−0.001 0.001 0.000 −0.004 0.000 1.000 0.000 0.002

1.000 −0.003 0.001 0.000 0.003 0.001 −0.002 −0.003

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

WA2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.021 −0.002 −1.449 0.029 −0.014 0.038 −0.017 −0.053
0.009 −0.057 −0.039 −0.033 0.053 1.430 −0.008 −0.022
1.450 −0.040 −0.014 −0.010 0.033 0.052 0.009 −0.076
0.050 −0.035 −0.047 0.045 −0.014 0.025 −0.008 −1.499

−0.037 −1.452 0.031 −0.040 −0.048 0.037 −0.038 −0.023
−0.031 −0.046 −0.031 0.007 −1.444 −0.047 −0.005 −0.023
−0.014 0.015 0.037 0.022 0.037 −0.016 1.443 0.032
−0.013 0.056 −0.006 1.404 0.014 −0.018 0.057 −0.013

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

3.3 On Separating Audio Sources

Finally, we considered the ICA problem of separating 8 independent real-life
audio recordings (downloaded from Barak Pearlmutter’s homepage: http://
www- bcl.cs.may.ie/~bap/demos.html). Each audio source consists of 100000
data sampled at 22050 Hz. We pre-whitened these audio sources and then linearly
mixed them via an 8×8 random orthogonal mixing matrix A3 to form the third
set of linearly mixed signals. On such a data set, we implemented the one-bit-
matching algorithm, obtaining a successful separation result shown in Fig. 1.

For comparison, we also implemented the extended Infomax and Fast-ICA al-
gorithms on the data set. It was found by the experiments that the performance
indices of the one-bit-matching learning, extended Infomax and Fast-ICA al-
gorithms are 1.2979, 2.2746, and 1.3288, respectively, which again shows that
the one-bit-matching learning algorithm outperforms the extended Infomax and
Fast-ICA algorithms in this case.

For further comparison, we calculated the signal-to-noise ratios (SNRs) of
the output signals of the one-bit-matching, extended Infomax, and Fast-ICA
learning algorithms on the data set. Their results are listed in Table 1, which
again shows our proposed one-bit-matching learning algorithm outperforms the
other two popular ICA learning algorithms.

In addition, extensive experiments on the different ICA problems with mixed
super- and sub-Gaussian sources also showed that the one-bit-matching learning
algorithm always reaches an accurate feasible solution. It was even found that
as the number of sources increases, the one-bit-matching learning algorithm can
still maintain a similarly good performance on the source separation problems.
By comparison, we have found that the one-bit-matching learning algorithm
considerably outperforms the extended Infomax algorithm in the general case. As
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Fig. 1. The waveforms of sources signals (left column), linearly mixed signals (middle
column), and output signals (right column) of the one-bit-matching learning algorithm

Table 1. The SNRs of the recovered sources of the three algorithms

Signal-to-Noise Ratio (dB)
Audio Source 1 2 3 4 5 6 7 8 Med. Avg.
One-bit-matching 23.06 37.25 21.84 25.69 28.71 31.19 36.64 30.15 29.43 29.32
Extended Infomax 18.82 23.96 22.56 26.97 22.39 26.97 25.71 23.67 23.81 23.88
Fast-ICA 22.21 34.37 22.25 25.74 29.96 31.97 36.33 28.07 29.02 28.86

compared with the Fast-ICA algorithm, the one-bi-matching learning algorithm
leads to a similar result in the case of mixed sub- and Super-Gaussian sources,
but a better result in the case of all the sub- or super-Gaussian sources.

In practice, the number of super-Gaussian sources, p, may not be available
in ceratin cases. In this situation, the one-bit-matching learning algorithm can-
not work directly. However, we can implement the one-bit-matching learning
algorithm on the pre-whitened observed x with p varying from zero to n, then
there must be a feasible solution W with which the components of the output
y = Wx are independent, which can be checked by certain statistical indepen-
dence test method. That is, for each p, we can check whether the n components
of the output y by the resulted W are mutually independent. If they are, this
W is just a feasible solution for the ICA problem. Otherwise, it is not a feasible
solution for the ICA problem. Since the independence between the components
of the output y is sufficient for the feasible solution of the ICA problem, we
can find out the feasible solution of the ICA problem by this test and checking
procedure with the one-bit-matching learning algorithm. In fact, with a certain
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independence test criterion, we can use the one-bit-matching learning algorithm
to obtain the feasible solution for all the above three cases without knowing the
number of super-Gaussian sources.

4 Conclusions

In this paper, we have investigated the ICA problem from the point of view
of the one-bit-matching principle, and established an efficient one-bit-matching
ICA learning algorithm based on the Stiefel manifold gradient under the con-
dition that the number of super-Gaussian sources is known and the observed
signals are pre-whitened. It is demonstrated by the simulated and audio ex-
periments that the proposed one-bit-matching learning algorithm can solve the
source separation problem of mixed super- and sub-Gaussian sources efficiently
and even outperforms the existing extended Infomax and Fast-ICA learning algo-
rithms. Moreover, with certain independence test criterion, the one-bit-matching
learning algorithm can be used to solve the source separation problem without
knowing the number of super-Gaussians sources.
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Abstract. In last two decades, many researchers have been involved in
acoustic tomography applications. Recently, few algorithms have been
dedicated to the passive acoustic tomography applications in a single in-
put single output channel. Unfortunately, most of these algorithms can
not be applied in a real situation when we have a Multi-Input Multi-
Output channel. In this paper, we propose at first a realistic model of
an underwater acoustic channel, then a general structure to separate
acoustic signals crossing an underwater channel is proposed. Concerning
ICA algorithms, many algorithms have been implemented and tested but
only two algorithms give us good results. The latter algorithms minimize
two different second order statistic criteria in the frequency domain. Fi-
nally, some simulations have been presented and discussed.

Keywords: Underwater acoustic applications, passive acoustic Tomog-
raphy, second order statistics in frequency domain, multipath channel,
sparseness or non-stationary signals.

1 Introduction

Acoustic oceanic tomography are used in many civil or military applications such
as: Mapping underwater surfaces, meteorological applications (to measure the
temperature, the salinity, the motion and the depth of the water), to improve sonar
technology, so on. Many algorithms [1,2] have been developed to deal with active
acoustic tomography. Recently, the Passive Acoustic Tomography (PAT) [3] has
taken an increased importance mainly for the three following reasons: related to
submarine acoustic warfare, ecological reasons (the underwater ecological system
isn’t disturbed since no signal is emitted) and economical and logistical reasons
because there is no need for emitters.

The main drawbacks of PAT are the lack of information about the number, the
positions and the natures of the emitted signals. With more than two sourcesmany
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actual tomography algorithms can’t give satisfactory results. Many other don’t
work well or at all when the emitted signals are wide band signals [4]. Some al-
gorithms take into consideration the position of the acoustic sound emitters [5].
Typically, in real world PAT applications, underwater acoustic signals are gener-
ated by variousmoving sourceswhose number and positions are hardly (impossible
to be) identified (as in the case of shoal of fish or wave noises).

Since the early of the ninetieth, Independent Component Analysis (ICA) has
been considered as a set of many important signal processing tools [6]. By assum-
ing that the unknown p emitted signals (i.e sources) are statistically independent
from each other, ICA consists on retrieving a set of independent signals (out-
put signals) from the observation of unknown mixtures of the p sources. It was
proved that the output signals can be the sources up to a factor (or filter) scale
and up to a permutation [7].

This paper deals with the application of ICA algorithms in PAT in order
to improve and simplified the PAT algorithms as well as the processing of the
received signals.

2 Channel Model, Assumptions and Background

In passive acoustic tomography (PAT) applications, the sources are obviously
some signals of opportunities. Therefore, an extensive experimental study has
been conducted by a research engineer in our laboratory to classify and charac-
terize the divers recorded artificial signals (made by human activities as boats,
ships or submarine noises, etc.) and natural signals (mainly animals sounds or
noises) signals in our data base. A part of his study was of extreme important
to us. In fact, according to that study, one can conclude the following facts:

– Each signal in our data base corresponds to a well identified source. These
recorded signals are affected by a background ocean noise which can be
considered as an Additive White Gaussian Noise (AWGN).

– Many signals are Gaussian ones or they have a very weak kurtosis.
– Almost all of the signals are non-stationary signals, however some of them

have more or less periodic components as boat noises.
– Natural signals are very sparse ones and artificial ones are very noisy.

The above mentioned properties have been considered to select appropriate ICA
algorithms. Once the appropriate sources (non gaussian signals) are identified
and characterized, an underwater acoustic channel should be simulated in order
to conduct our experimental studies.

According to [8], the sound speed in the ocean is an increasing function of
temperature, salinity, and pressure, the latter being a function of depth. Since
most of these later parameters depend on time as well as geographic positions
and hydrographic properties of the sea, we consider a simplified model where
the sound propagation speed is assumed to be a constant.

It is well known [8] that the underwater sound is produced by natural or
artificial phenomena through forced mass injection leading to inhomogeneous
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wave equations which can be converted to frequency domain. The frequency-
domain wave equation is called the Helmholtz equation. The solutions of the
Helmholtz equation give us an underwater sound propagation model. A general
solution of the Helmholtz equation is very difficult to be obtained. Therefore
researchers use some simplified models (such as the ray theory, the mode theory,
the parabolic model, the hybrid model, etc) according to their applications.
The choice of a propagation model depends on many parameters such as wave
frequency, the depth of the sea, etc. In our case, the ray theory was the more
appropriate propagation model.

The reflected acoustic waves on the bottom of the propagation channel depend
on many parameters such as the constitution and the geometrical properties of
the bottom. In our model a standard sand bottom has been considered and ran-
dom coefficients have been added to characterize the other unknown parameters.

The reflected acoustic waves on the top of the propagation channel, i.e. the
water surface, depend on many parameters such as the wind, the wave frequency
as well as the swell properties. For this reason, the water surface cann’t be
considered as a flat surface. Therefore the direction of the reflected acoustic wave
is dispersed in the space. However in average term, the reflected acoustic wave
can be considered as obtained by a flat surface with some absorption coefficients.
In our model a flat surface has been considered and random coefficients have been
added to characterize the other unknown parameters.

Finally to consider the acoustic propagation effect, an acoustic model proposed
by Schulkin [9] was considered. According to that model, the received signal
should be multiplied by a corrective coefficient p given by the following equation:

p =
exp
(
−αr20
)

r
(1)

here r is the propagation distance and α stands for the Rayleigh absorption
coefficient which it can be approximated by the following equation, [9]:

α = (1− 6.54 ∗ 10−4 ∗ Pw)
(
SAfT f

2

f2 + f2
T

+
Bf2

fT

)
(2)

where fT = 21.9 ∗ 10(6− 1520
T+273 ) (in kHz), T is the water temperature (◦C), S =

3.5% is the water salinity (in the ocean S ≈ 35g/l), Pw is the water pressure (in
kg/m2), A = 2.34 ∗ 10−6 and B = 3.38 ∗ 10−6.

3 Mathematical Model

Under some mild assumptions [2], acoustic underwater channel can be considered
as a multiple paths which, in frequency domain, each of them can be defined by
a complex constant gain. Let S(n) denotes the p unknown sources which are
statistically independent from each other. X(n) is the q × 1 observed vector.
The relationship between S(n) and X(n) is given by:

X(n) = [H(z)]S(n) + N(n) (3)
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where H(z) stands for the channel effect. In the case of convolutive mixture,
H(z) = (hij(z)) becomes a q × p complex polynomial matrix. In the following,
we consider that the channel is a linear and causal one and that the coefficients
hij(z) are RIF filter. Let M denotes the degree of the channel which is the
highest degree of hij(z). The previous equation (3) can be rewritten as:

X(n) =
M∑
i=0

H(i)S(n− i) + N(n) (4)

Here H(i) denotes the q × p real constant matrix corresponding to the impulse
response of the channel at time i and S(n−i) is the source vector at time (n−i).

4 Pre- and Post-processing

Many ICA algorithms have been implemented and tested during this project.
Each of these algorithms has been tested using the following three steps:

– At first, we use the same (or similar) signals used by the authors of the
algorithm, and we try to obtain same (or similar) results shown by the
authors.

– After that, the same algorithm should be tested on simple mixture of acoustic
signals.

– At the end, we try the algorithm on real signals which cross our simulated
underwater acoustic channel.

Using the three above mentioned steps, we found that at the third step none of
the tested algorithms can unfortunately achieve a satisfactory separation accord-
ing to a set of performance indexes [10]. For this reason, a complete separation
structure has been implemented using pre- and post-processing modules of the
signals.

Most of our sources are bounded in frequency domain. Therefore, a low-pass
filter was of great helpful for us to reduce the impact of the AWGN and then
achieve better performances. Using this filter, we found that among the tested al-
gorithms, only three ones have given satisfactory results. These three algorithms
[11-13] were dedicated to separate non-stationary sources (audio or music sig-
nals). The last two algorithms [12,13], which be called in the following SOS [12]
and Parra [13] algorithms, are implemented in frequency domain using discrete
frequency adapted filter. Experimental studies showed that best results can be
obtained by applying the SOS algorithm over the signals mainly divided in three
frequency bands. Once the separation in each frequency bound are achieved, than
a reconstitution module should be used to recover the original sources. Our re-
constitution module is based on the second order statistics (but it can easily by
generalized to use other statistical features) and it uses the correlation of the
signals in time or frequency domain.

Finally, we should mention that best results have been obtained when both
algorithms Parra and SOS are used and the number of sensors is strict great
than the number of sources, as shown in Fig. 1.
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Fig. 1. General Structure

5 Frequency Domain Approach Applied to Acoustic
Signals

As it was mentioned before that best experimental results were obtained using
two algorithms [12,13]. These two algorithms are minimized second order sta-
tistics criteria in frequency-domain. In the following, we describe briefly both of
them, for more details please refer to the cited references.

5.1 A Frequency Domain Method for Blind Source Separation of
Convolutive Audio Mixture (SOS)

K. Rahbar et al. in [12,14] propose an algorithm which minimize a criterion
Γ based on the cross-spectral density matrix of the observed signals. For non-
stationary signals, the latter matrix depends of frequency and time epoch m:

Γ =
∫ π

0

M−1∑
m=0

‖F (w,m)‖2Fdw (5)

F (w,m) = P̂m(w)−
L∑

α=0,β=0

ĤαD̂m(w)ĤT
β exp (−j(α− β)w) (6)

where ‖F (w,m)‖2F is the Frobenius norm of F (w,m), L is an estimation of
channel degree H(z) =

∑L
i=0 H(i)z−i =

∑L
i=0 Hiz

−i, Ĥα is an estimation of the
channel response at time α, and D̂m(w) are diagonal matrices as estimated cross-
spectral density matrix of the sources. To estimate the cross-spectral density
matrix of the signals, the authors use M estimation windows with Lm samples
each:

P̂m(w) =
1
J

J−1∑
i=0

Xim(w)XH
im(w) (7)

where Xim(w) is the Fourier transform of the observed signals, and J is the
number of estimated windows such that LJ < Lm and JLJ > Lm.

It is clear that the minimization of (5) needs a continues variable w which it is
very difficult to be implemented. To solve that problem, the authors proposed the
minimization of another criterion over K frequency points such that wk = πk

K :
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Γ =
K−1∑
k=0

M−1∑
m=0

Tr
(
FR(wk,m)FHR (wk,m) + FI(wk,m)FHI (wk,m)

)
(8)

where FR(w,m) and FI(w,m) are the real and the imaginary parts of equa-
tion 6. Finally, the minimization is done using a conjugate gradient algorithm.

5.2 Convolutive Blind Separation of Non-stationary Sources

The approach proposed by Parra et al. [13] is similar to the previous one proposed
by Rahbar et al. Using the spectral density of different signals, the authors
propose the minimization of the following criterion by using a gradient algorithm:

Ĝ, R̂S , R̂N = argmin
∑
k

∑
w

‖G(w)
[
R̂X(w, k) −RN (w, k)

]
WH(w)−RS(w, k)‖2

(9)
where R̂X(w, k) is the estimated cross-power spectra of X . To improve the per-
formance of their algorithm, the authors propose the minimization using a joint
diagonalization algorithm of the following criterion J(w) and subject to a con-
straint in time domain concerning the filter size which aims to solve the permu-
tation indeterminacy in frequency domain:

J(w) =
∑
t,w

(∑
t

‖RX(w, t)‖−2

)
‖RX(t, w)− diag(RX(t, w))‖2F (10)

6 Experimental Results

Using the structure proposed in Fig. 1, many simulations have been conducted.
Generally, over 500000-1000000 samples are needs to achieve the separation.
The original sources are sampled at 44KHz. In almost all the simulations, The
separation of artificial or natural signals have been successfully achieved. In these
simulations, we have set the channel depth between 100 to 500m, the distances
among the sources or the sensors are from 30 to 100 m, the distances among the
different sources and the divers sensors are from 1500 to 2500 m, the number of
sensors is strictly great to the number of sources.

Fig. 2 represents the experimental results obtained by only applying SOS
algorithm to separate a mixture of acoustic signals (Ship and Whale).

We should mention here, that good results have been obtained by only ap-
plying SOS algorithm except for some configurations notably when the sources
are close to the water surface. For the latter cases, we found that the Parra al-
gorithm before SOS algorithm could improve the overall results. Fig. 3 shows us
different experimental results obtained by the different algorithms (Parra, SOS
or Parra + SOS), each point corresponds to results of random simulations using
Parra, SOS or Parra & SOS algorithms. In this figure, a normalized positive
performance index based on a nonlinear decorrelation is used [10]. The normal-
ized performance index is forced to be zero for the mixture values and 1 for the
sources.
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Fig. 2. Experimental results: First column contains the original and the estimated
sources, and second column contains the observed signals (the sources are: Whale
sound and a boat noise)
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Fig. 3. Experimental results obtained by the different algorithms (Parra, SOS or SOS
+ Parra) on divers configuration and using a normalized performance index

7 Conclusion

In this paper, a general structure for applying ICA algorithms on real world
application such the Passive Acoustic Tomography (PAT) has been presented.
Many simulations have been conducted and experimental studies show the ne-
cessity of considering pre-processing and post processing of the observed signals
in order to achieve properly the separation of the sources.

Many algorithms have been implemented and tested on our application. How-
ever, few algorithms which are dedicated to the separation of non-stationary



188 A. Mansour, N. Benchekroun, and C. Gervaise

signals, give us satisfactory results. Our future work consists on developing an
ICA algorithm which can use other features of acoustic signals such as sparseness
along with non-stationarity, etc.
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Abstract. It is common for data to be contaminated with artifacts,
interference, and noise. Several methods including independent compo-
nents analysis (ICA) and principal components analysis (PCA) have
been used to suppress these undesired signals and/or to extract the
underlying (desired) source waveforms. For some data it is known, or
can be extracted post hoc, how to partition the data into periods of
source activity and source inactivity. Two examples include cardiac data
and data collected using the stimulus-evoked paradigm. However, nei-
ther ICA nor PCA are able to take full advantage of the knowledge
of the partition. Here we introduce an interference suppression method,
partitioned factor analysis (PFA), that takes into account the data
partition.

1 Introduction

Raw data are corrupted by artifacts, interference, and sensor noise. When the
power of these undesired signals is large one of several signal processing tech-
niques may be applied to either reduce the level of interference or to extract
the underlying source waveforms directly (we use “denoising” and “interfer-
ence suppression” interchangeably). Linear denoising methods, including inde-
pendent components analysis (ICA), attempt to find the source subspace and
produce denoised signals by projecting intermediate lower-dimensional data back
into the space of the observations. Denoising is useful for spatio-temporal vi-
sualization and for source localization [1]. Furthermore, the intermediate data
produced by denoising methods can be used as the input to an ICA algo-
rithm when the desire is to extract the source waveforms. While ICA can be
applied directly to the observations to perform denoising and source extrac-
tion simultaneously, many ICA algorithms are too computationally intensive
to be used in this manner when there are many sensors. An alternative is
to reduce the dimensionality with a (non-ICA) denoising method and then
use ICA.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 189–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



190 S.S. Nagarajan et al.

Principal component analysis (PCA) is the most widely used method of
denoising. PCA is an ideal choice when either the power of the sources is
large relative to the power of all undesired signals or when the undesired sig-
nals are spatially uncorrelated and isotropic in sensor space [2]. Likewise, ICA
is ideal for denoising when the sources of interest are statistically indepen-
dent of all undesired signals, there are at least as many sensors as sources
(desired and undesired), and the subspace that contains the sources of inter-
est can be robustly determined automatically or with the aid of a human ex-
pert. However, these requisite conditions may not always be met. In addition,
both PCA and ICA are unable to take full advantage of additional informa-
tion that is available for some data, i.e., knowledge of when the sources are
active and when they are inactive. Data for which the timing of the source ac-
tivity is known or can be estimated include, e.g., cardiac data collected using a
magnetocardiogram (MCG) and stimulus-evoked data collected using a magne-
toencephalogram (MEG).

Here we introduce a denoising method, partitioned factor analysis (PFA), that
is based on what is thought to be a more realistic set of assumptions than PCA
or ICA and that is able to incorporate knowledge of the data partition.

2 Partitioned Factor Analysis

Generative model. The proposed method, PFA, is based on the following
generative model,

yn =
{

Bun + vn n=1, . . . , N0−1
Axn + Bun + vn n=N0, . . . , N

, (1)

where the (My × 1) vector vn is used to represent all signals that are spa-
tially uncorrelated in sensor space and that exist in the active and inactive
periods, the (Mu × 1) vector un represents all signals that are spatially corre-
lated in sensor space and that exist throughout, and the (Mx × 1) vector xn
represents all signals that exist only during the active period. We refer to xn
as the factors (which are an arbitrary linear combination of the sources of in-
terest, xn = Wsn), un as the interference, and vn as the noise. The inclusion
of the interference signals allow us to model signals of no interest that, unlike
the model commonly used for sensor noise, are spatially correlated in sensor
space, e.g., respiration, muscle artifacts, eye blinks, and ongoing neural activity.
Also, there is a common assumption that the spatial auto-correlation matrix
of the post-stimulus equals the auto-correlation of the pre-stimulus plus the
auto-correlation of the evoked response. This structure is directly reflected by
the model of (1), which provides a more complete representation of the data
than what is inherently assumed in PCA and the vast majority of ICA algo-
rithms (which combine xn and un into a single vector and assume that vn
is zero).

The proper choice for the active and inactive periods is problem-dependent.
For example, if the goal is to recover a cardiac signal the active period should
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correspond to all portions of the data that are near a QRS complex. Likewise, if
the goal is to recover an evoked response for data collected using the stimulus-
evoked paradigm, the active period corresponds to the post-stimulus period. To
simplify the notation the data are assumed to ordered so that the first N0−1
samples of the (My × N) matrix of observations y (where y corresponds to
the collection of yn∀n) correspond to the concatenation of all inactive peri-
ods and the remaining samples correspond to the concatenation of all active
periods.

PFA probabilistic graphical model. Each factor xm,n and each interference
um,n is modeled as having a Gaussian probability density function (pdf) with
zero mean and unit precision, where the precision is defined as the inverse vari-
ance and xm,n and um,n are the mth element of vectors xn and un, respectively.
Likewise, the noise at sensor m is modeled as having a Gaussian pdf with zero
mean and precision λm. We model the factors, interferences, and noises as mu-
tually statistically independent,

p(xn) = N (xn|0, I), p(un) = N (un|0, I), p(vn) = N (vn|0,Λ) , (2)

where 0 is a column vector of zeros, I is an identity matrix, and Λ is a diagonal
matrix. By inspection the data likelihood is

p(yn|xn,un,A,B) =
{
N (yn|Bun,Λ) n=1, . . . , N0−1
N (yn|Axn+Bun,Λ) n=N0, . . . , N

. (3)

We also assume that the signals are temporally i.i.d. so that

p(y|x,u,A,B)=
N∏
n=1

p(yn|xn,un,A,B), p(x)=
N∏

n=N0

p(xn), p(u)=
N∏
n=1

p(un) . (4)

The elements of the two mixing matrices are assumed to be independent zero-
mean Gaussians that have a precision that is proportional to the noise precision
of the corresponding sensor,

p(A) =
My∏
m=1

Mx∏
k=1

N (Am,k|0, λmαk), p(B) =
My∏
m=1

Mu∏
k=1

N (Bm,k|0, λmβk) , (5)

where the proportionality constants, αk, βk, are referred to as hyperparame-
ters. These priors are chosen so that they have the same functional form as the
posterior distribution (when this is true the prior is referred to as a conjugate
prior).

Inferring the PFA model from data. All three types of signals, xn,un,vn,
are unobserved, as are the (My ×Mx) matrix A and the (My ×Mu) matrix
B. Hence, PFA must use only y to infer the quantities of interest, which are
ỹn = Axn for denoising and xn for subsequent source extraction. To infer the
model from y we use an extended version of the Expectation-Maximization (EM)
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algorithm, which is known as the variational Bayesian EM method (VB-EM) [3].
Whereas standard EM computes the most likely parameter value given the data,
i.e., the maximum a posteriori (MAP) estimate, VB-EM computes full posterior
distributions. Furthermore, VB-EM provides a natural mechanism for inferring
the model order through hyper-parameter optimization [3], whereas standard
EM requires ad-hoc methods for model order selection.

Standard EM maximizes the log likelihood, which can be written as

log p(y) = log p(y)
∫

p(θ|y)dθ =
∫

p(θ|y) log
p(θ,y)
p(θ|y)

dθ , (6)

where θ = {x,u,A,B}. Since the exact posterior distribution is computationally
intractable, we approximate the posterior with a function that factorizes the
hidden variables given the data from the parameters given the data,

p(θ|y) ≈ q(θ|y) = q(x,u|y)q(A,B|y) . (7)

The result is that VB-EM adapts q(x,u|y) and q(A,B|y) to maximize an ap-
proximation of the log likelihood, which can be written as

F=
∫
q(x,u|y)q(A,B|y) log

p(x,u,A,B,y)
q(x,u|y)q(A,B|y)

dxdudAdB . (8)

It can be shown that maximizing F w.r.t. q(x,u|y), q(A,B|y) is equivalent to
minimizing the Kullback-Leibler divergence [4] between p(θ|y) and q(θ|y). Like
standard EM the VB-EM optimization method is an iterative algorithm where
each iteration is composed of an E-step and an M-step.

E-step. Maximization of F with respect to the posterior over hidden variables
is accomplished by setting the derivative of F to zero and solving for q(x,u|y)
while keeping q(A,B|y) fixed. This produces

q(x,u|y) =
1
z1

exp[
∫
q(A,B|y) log p(x,u,A,B,y)dAdB] , (9)

where the joint pdf, due to the previous assumptions, simplifies to

p(x,u,A,B,y) = p(y|x,u,A,B)p(x)p(u)p(A)p(B) , (10)

and where z1 is the normalizing constant (normalization of this posterior and
the posterior over parameters is enforced by adding two Lagrange multipliers
to F). The quantities in (10) are given by (2)-(5). The posterior over hidden
variables factorizes over time so that

q(x,u|y) =
N0−1∏
n=1

q(un|yn)
N∏

n=N0

q(xn,un|yn) , (11)
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where

q(un|yn) = N (un|ūn,Φ−1)

q(xn,un|yn) = N (
[

xn
un

]
|
[

x̄n
ūn

]
,Γ−1)

x̄n = (Γ xxĀ
T + Γ xuB̄

T )Λyn

ūn = ΦB̄
T
λyn n ∈ {1, . . . , N0−1}

ūn = (Γ TxuĀ
T + Γ uuB̄

T )Λyn n ∈ {N0, . . . , N}

Φ = (B̄T
ΛB̄ + I + MyΨBB)−1

Γ = (
[

Ā
B̄

]
Λ
[
Ā B̄

]
+ I + MyΨ)−1 =

[
Γ xx Γ xu
Γ Txu Γ uu

]
,

(12)

and where Ā, B̄,λ,Ψ are computed in the M-step.

M-step. Similarly, maximization of F with respect to the posterior over pa-
rameters is accomplished by setting the derivative of F to zero and solving for
q(A,B|y) while keeping q(x,u|y) fixed. This produces

q(A,B|y) =
1
z2

exp[
∫
q(x,u|y) log p(x,u,A,B,y)dxdu] , (13)

where z2 is the normalizing constant.
It follows from (13) that the posterior over parameters factorizes over the rows

of the two mixing matrices. Hence,

q(A,B|y) =
My∏
m=1

N (
[

AT
m

BT
m

]
|
[

Ā
T
m

B̄
T
m

]
, λmΨ−1) , (14)

where Am is the mth row of A and

Ā =

(
N∑

n=N0

ynx̄
T
n

)
Ψ , B̄ =

(
N∑
n=1

ynū
T
n

)
Ψ

Ψ =
[

Rxx + α Rxu

RT
xu Ruu + β

]−1

=
[

ΨAA ΨAB
ΨTAB ΨBB

]
Rxx =

N∑
n=N0

(
x̄nx̄

T
n + Γxx

)
, Rxu =

N∑
n=N0

(
x̄nū

T
n + Γxu

)
Ruu =

N0−1∑
n=1

(
ūnū

T
n + Φ

)
+

N∑
n=N0

(
ūnū

T
n + Γuu

)
,

(15)

and α,β are diagonal matrices that contain αk, βk, respectively.
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The solutions for the noise precision matrix and the hyperparameters are
found by computing the derivative of F and equating the result with zero,

α−1 = diag
(

1
My

Ā
T
ΛĀ + ΨAA

)
β−1 = diag

(
1
My

B̄
T
ΛB̄ + ΨBB

)
Λ−1 =

1
N

diag
(
Ryy − ĀRT

yx − B̄RT
yu

)
,

(16)

where

Ryy =
N∑
n=1

yny
T
n , Ryx =

N∑
n=N0

ynx̄
T
n , Ryu =

N∑
n=1

ynū
T
n . (17)

3 Results

Denoising performance is measured using the output signal-to-noise/interference
ratio (SNIR),

SNIR=
1
M

M∑
m=1

10 log10

∑N
n=1(Ax)2m,n∑N

n=1((Ax)m,n−(Āx̄)m,n)2
(dB) .

For real data we replace Axn with the sensor signals due to the 5 principal
components (representing 97% of the energy) of the average sensor data, where
the average is taken over 525 trials. The metric for source extraction performance
is the source-to-distortion ratio (SDR),

SDR =
1
Ms

Ms∑
m=1

10 log10
1
Ms

Ms∑
m′=1

⎛⎜⎜⎜⎝ 1

2− 2
N−N0+1 |

N∑
n=N0

sm,ns̄m′,n|

⎞⎟⎟⎟⎠ (dB) ,

where the distortion for source estimate m includes noise, interference, and all
sources other than source m, sn = W−1xn, W is found using ICA, and both
sm,n and s̄m,n (the estimate of source m at time n) are normalized to have unit
variance. For simulated data the SNIR and SDR are shown as a function of the
input signal-to-interference ratio (SIR) for a fixed value of input signal-to-noise
ratio (SNR). The former is defined as the ratio of the power of the factors to
the power of the interferences measured in sensor space. The latter is defined in
a similar fashion.

Simulated data. For the simulationsN =1000 data points/trial,N0 =631,My=
132, Mx = Ms = 2, Mu = 1000, SNR= 0 dB, and the number of trials is 10. The
results represent the mean over 10 Monte Carlo experiments (per trial) and error
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Fig. 1. Left subplot (1a): Output SNIR as a function of input SIR for 10 trials, input
SNR = 0 dB, and the ICA method is TDSEP. Right subplot (1b): SDR as a function
of input SIR for 10 trials, input SNR = 0 dB, and the ICA method is FastICA.

bars are used to indicate one standard error. The comparison includes the proposed
method (PFA), PCA [2], Wiener [5], ICA (TDSEP [6] or FastICA [7]), and the
mean over trials. For ICA, the source subspace is determined as the components
having the largest ratio of active power to inactive power.

Figure 1a shows the denoising performance as a function of input SIR. All of
the methods perform better than the trial mean. PFA performs the best across
all values of input SIR. The performances of both PCA and Wiener approach
that of PFA as the input SIR increases.

Figure 1b shows the SDR as a function of input SIR. In this figure PFA, PCA,
and Wiener are all combined with ICA. Also shown is the result for ICA without
dimension reduction. PFA produces the best overall results and is the least sen-
sitive to input SIR. The results for ICA (with no dimension reduction) indicate
that for this dataset dimension reduction should be used when the input SIR is
low and is not needed if the input SIR is > 10 dB.

Real data. Figure 2a shows the denoising performance as a function of the
number of trials for a real MEG dataset, which uses a somatosensory stimu-
lus (My = 274, Mx is assumed to be 2, Mu is assumed to be 50, N = 361,
N0 = 121). PFA performs the best and both PCA and Wiener (which per-
forms almost identically to PCA and is not shown here) outperform the trial
mean.

Figure 2b shows the sensor signals before and after PFA denoising is applied
to real fetal MCG data, which is a mixture of both fetal and maternal cardiac
sources (My=51, Mx is assumed to be 10, Mu is assumed to be 50, N =4000,
N0 = 501). Since the goal is to recover the fetal cardiac factors, the inactive
period is chosen such that it contains minimal activity of the fetal heart (two
250-length portions) and the active period is chosen such that it contains both
maternal and fetal cardiac activity. Notice that QRS complexes of the mother
are effectively suppressed and several fetal QRS complexes that were previously
obscured, e.g., at 1.3 sec and 3.1 sec, are now visible.
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Fig. 2. Left subplot (2a):Output SNIR as a function of number of trials for real MEG
data. Right subplot (2b): Observations before (upper subplot) and after (lower subplot)
PFA denoising for real fetal MCG data.

4 Conclusions

The PFA graphical model for denoising and dimension reduction is introduced.
This model takes into account additional information that is available for sev-
eral types of data, including cardiac data and data collected using the evoked-
response paradigm. The results of simulated and real data indicate that PFA
may be a viable alternative to ICA for interference suppression and may, when
used as a preprocessor, improve the performance of ICA for source extraction.
This appears to be true especially when the power of the noise/interference is
large or there are only a few trials available.
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Abstract. Independent component analysis is an important statistical tool in 
machine learning, pattern recognition, and signal processing. Most of these ap-
plications require on-line learning algorithms. Current on-line ICA algorithms 
use the stochastic gradient concept, drawbacks of which include difficulties in 
selecting the step size and generating suboptimal estimates. In this paper a re-
cursive generalized eigendecomposition algorithm is proposed that tracks the 
optimal solution that one would obtain using all the data observed. 

1   Introduction 

Independent component analysis (ICA) has now established itself as an essential sta-
tistical tool in signal processing and machine learning, both as a solution to problems 
(such as blind source separation) [1,2] and as a preprocessing instrument that com-
plements other pieces of a more comprehensive solution (such as dimensionality re-
duction and feature extraction) [3-5]. All of these applications of ICA require on-line 
learning algorithms that can operate in real-time on contemporary digital signal  
processors (DSP). 

Currently, the on-line ICA solutions are obtained using algorithms designed using 
the stochastic gradient concept (e.g., Infomax [6]), similar to the well-known least-
mean squares (LMS) algorithm [7]. The drawbacks of stochastic gradient algorithms 
in on-line learning include difficulty in selecting the step size for optimal speed mis-
adjustment trade-off and suboptimal estimates of the weights given the information 
contained in all the samples seen at any given iteration. 

Recursive least squares (RLS) is an on-line algorithm for supervised adaptive filter 
training, which has the desirable property that the estimated weights correspond to the 
optimal least squares solution that one would obtain using all the data observed so far, 
provided that initialization is done properly [7]. This benefit, of course comes at the 
cost of additional computational requirements compared to LMS. Nevertheless, cer-
tain applications where an on-line ICA algorithm that tracks the optimal solution one 
would have obtained using all samples observed up to that point in time would be 
beneficial. To this end, we derive a recursive generalized eigendecomposition (GED) 
based ICA algorithm that is similar to RLS in principle, but solves the simultaneous 
diagonalization problem using second and fourth order joint statistics of the observed 
mixtures. 
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The joint diagonalization of higher order statistics have been known to solve the 
ICA problem under the assumed linear mixing model and have led to popular algo-
rithms (e.g., JADE [8]). The joint diagonalization problem in ICA is essentially a 
GED problem, a connection which has been nicely summarized in a recent paper by 
Parra and Sajda [9] for various signal models in linear instantaneous BSS; others have 
pointed out this connection earlier as well. The algorithm we develop here is based on 
the non-Gaussian independent sources assumption, with independent and identically 
distributed samples of mixtures (the latter assumption eliminates the need for 
weighted averaging for minimum bias estimation of the expectations). 

In Section 2, we derive the recursive update equations for the required higher order 
statistics and the corresponding optimal ICA solution. In Section 3, we demonstrate 
using Monte Carlo simulations that the algorithm tracks the optimal ICA solution 
exactly when all matrices are initialized to their ideal values and that the algorithm 
converges to the optimal ICA solution when the matrices are initialized to arbitrary 
small matrices (whose bias on the solution should diminish as more samples are ob-
served and utilized). 

2   Recursive ICA Algorithm 

The square linear ICA problem is expressed in (1), where X is the n×N observation 
matrix, A is the n×n mixing matrix, and S is the n×N independent source matrix. 

 ASX =  (1) 

Each column of X and S represents one sample of data. If we consider each column as 
a sample in time, (1) becomes: 

 tt Asx =  (2) 

The joint diagonalization of higher order cumulant matrices can be compactly for-
mulated in the form of a generalized eigendecomposition problem that gives the ICA 
solution in an analytical form [9]. According to this formulation, under the assump-
tion of independent non-Gaussian source distributions the separation matrix W is the 
solution to the following generalized eigendecomposition problem: 

 WQWR xx =  (3) 

where Rx is the covariance matrix and Qx is the cumulant matrix estimated using 
sample averages. While any order of cumulants could have been employed, lower 
orders are more robust to outliers and small sample sizes, therefore we focus on the 
fourth order cumulant matrix: Qx=E[xTxxxT]-Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the 
sample estimates for these matrices, the ICA solution can be easily determined using 
efficient generalized eigendecomposition algorithms (or the eig command in Mat-
lab®). With the assumption of iid samples, expectations reduce to simple sample 
averages, and the estimates of covariance and cumulant matrices are given by (for 
real-valued mixtures) 

 ( ) 22)( xxxxx RRRxxxxQxxR −−== tr
i

T
iii

T
i

i

T
ii  (4) 
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2.1   The Update Equations 

Given the estimates in (4), one can define recursive update rules for the estimates of 
the covariance and cumulant matrices R and Q, as well as R-1 and R-1Q for further 
computational savings. The recursive update for the covariance matrix is 

 T
tttt tt

t
xxRR

11
1 +−= −  (5)  

and the update rule for the cumulant matrix is given by 

 22)( ttttt tr RRRCQ −−=  (6) 

where the matrix C is defined as }{ TTE xxxxC = , and estimating the expectation 

using sample averages as before, it becomes 

 ( )=
i

T
iii

T
i xxxxC  (7) 

Now, we can define the update rules for C and R2
 to obtain the recursive update for 

the cumulant matrix. The update rule for C is given by 

 ( ) T
ttt

T
ttt tt

t
xxxxCC

11
1 +−= −  (8) 

The recursive update of R2 can be derived from (5) by squaring both sides. Hence, the 
update rule for R2 becomes 

 ( ) ( ) ( )
][

111
22

2
12

2
2 T

tt
T
tt

T
ttt

T
ttt

t

t

tt

t
vxxvxxxxRR +−++−= −  (9) 

where for further computational savings we introduce the vector vt  as 

 ttt xRv 1−=  (10) 

Finally, the update rule for the cumulant matrix Q can be obtained by substituting (5), 
(8), and (9) into (6). Further computational savings can be obtained by iterating R-1 
and R-1Q to avoid matrix multiplications and inversions, each having an O(n3) com-
putational load. The reason why we need these two matrices will be clear as we pro-
ceed to the fixed-point algorithm that solves for the generalized eigendecomposition. 
Employing the matrix inversion lemma, the recursion rule for R-1 becomes 

 ( )
T
tt

t
tt t

t

t

t
uuRR

α11
1
1

1

−
−

−
= −

−
−

 (11) 

where t and ut are defined as 

 ( ) tttt
t
tt t xRuux 1

11 −
−=+−=α  (12) 

Here we define the matrix D, the update equation of whom can easily be defined by 
substituting the previously given update equations for R-1 and Q, using (11) and (6). 

 ttt QRD 1−=  (13) 
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2.2   Deflation Procedure 

Having the update equations, the aim is to find the optimal solution for the eigende-
composition for the updated correlation and cumulant matrices in each iteration. Re-
call the original problem given in (3); we need to solve for the weight matrix W. We 
will employ the deflation procedure to determine each generalized eigenvector se-
quentially. Every generalized eigenvector wd that is a column of the weight matrix W 
is a stationary point of the function 

 
wQw

wRw
w

T

T
J =)( . (14) 

This fact can be easily seen by taking the derivative and equating it to zero: 

 

( ) ( )
( )

Qw
wQw

wRw
Rw

wQw

wQwRwwRwQw
w
w

T
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TTJ

=

=−=
∂

∂
0

22)(
2

 (15) 

This is nothing but the generalized eigenvalues equation where the eigenvalues are 
the values of the objective criterion J(w) given in (14) evaluated at its stationary 
points. Hence, the fixed-point algorithm becomes 

 QwR
wQw

wRw
w 1−←

T

T

. (16) 

This fixed-point optimization procedure converges to the largest generalized eigenvec-
tor1 of R and Q, and the deflation procedure is employed to manipulate the matrices 
such that the obtained matrices have the same generalized eigenvalue and eigenvector 
pairs except the ones that have been determined previously. The larger eigenvalues are 
replaced by zeros in each deflation step. Note that in this subsection the time index is 
implicit and omitted for notational convenience. While d represents the dimension 
index, the deflation procedure employed while iterating the dimensions is given by 

 11
111

111
−−

−−−

−−− =−= ddd
dd

T
d

T
ddd

d RRQ
wQw

wwQ
IQ . (17) 

The deflated matrices are initialized to Q1=Q and R1=R. Obtaining the new matrices 
using deflation, we will employ the same fixed-point iteration procedure given in (16) 
to find the corresponding eigenvector. 

Investigating the fixed-point algorithm in (16), it is clear that iterating R-1 and D as 
suggested earlier will result in computational savings. The deflation rules for these 
matrices can be deduced from (17) easily. The deflation of R-1 is 

 1
1

1 −
−

− = dd RR . (18)  

                                                           
1 The largest eigenvector is the one that corresponds to the greatest eigenvalue. 
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Similarly, the deflation rule for D can be obtained by combining (17) and (18) as 

 1111 ][ −−−−−= dd
T
ddd DQwwID  (19) 

For each generalized eigenvector, the corresponding fixed-point update rule then 
becomes as follows: 

 dd
dd

T
d

dd
T
d

d wD
wQw

wRw
w ←  (20) 

Employing this fixed-point algorithm for each dimension and solving for the eigen-
vectors sequentially, one can update the W matrix and proceed to the next time update 
step. In the following section we will present results comparing the original GED-ICA 
algorithm [9] with the results of the proposed recursive GED-ICA algorithm. 

3   Experimental Results 

In this section, the results provided by the proposed recursive algorithm will be com-
pared with those of the original GED-ICA algorithm. The experiments are done on a 
synthetic dataset, which is simply generated by a linear mixture of independent uni-
form sources. Experiments using mixing matrices with varying condition numbers are 
employed to test the dependency of the tracking performance on the mixture  
conditioning. 
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   (a)                                  (b) 

Fig. 1. An illustration of the samples (a) from independent uniform sources (b) after the  
linear mixing 

The joint distribution of the sources is presented in Figure 1 for a two-dimensional 
case. Mixing matrices with condition numbers 10 and 100 are employed for the mix-
ing and the corresponding results are presented for two cases. In the first case, the 
original GED-ICA is employed on a small initialization data set to obtain ideal initial 
values for all matrices involved, including the eigenvectors. The expected result for 
the first simulation is to observe that the recursive algorithm is capable of tracking the 
result of the original algorithm within a range of small numerical error. In second 
case, these values are initialized to arbitrary small matrices. As increasing number of 
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samples are utilized for the matrix updates, the bias of these arbitrary initial condi-
tions is expected to decay. The second experiment will allow us to investigate this 
decay process by comparing the biased solution to that of the original GED-ICA  
procedure. 
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Fig. 2. The performances of recursive and the original methods are compared for a mixing of 
condition numbers 10 and 100. Performances and performance differences for exact initialization 
(top and bottom left, accordingly) and random initialization (top and bottom right) are shown. 
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In the simulations, the 20 samples have been used for initialization the ideal solu-
tion, and for the arbitrary initialization identity matrices with a small variances are 
employed (note that once R and C are initialized to values at the order of 10-6 all other 
matrices can be determined consistently with the equations). The corresponding aver-
age tracking results for 2000 samples are shown in Figure 2 for mixing matrix condi-
tion numbers of 10 and 100. These results are averaged over 100 Monte Carlo runs 
keeping the condition number of the mixture and the joint source distribution fixed 
and randomizing the right and left eigenvectors of the mixing matrix as well as the 
actual source samples using in the sample averages. 

4   Conclusions 

On-line ICA algorithms are essential for may signal processing and machine learning 
applications, where the ICA solution acts as a front-end preprocessor, a feature ex-
tractor, or a major portion of the solution itself. Stochastic gradient based algorithm 
motivated by various ICA criteria have been utilized successfully in such situations 
and they have the advantage of yielding computationally simple weight update rules. 
On the other hand, they are not able to offer optimal solutions at every iteration. 

In this paper, we derived a recursive ICA algorithm based on the joint diagonaliza-
tion of covariance and fourth order cumulants. The derivation employs the use of the 
matrix inversion lemma and the sample update rules for expectations approximated by 
sample averages. Since the proposed method is the recursive version of the algorithm 
proposed in [9], and it is tracking the optimal solution given by this algorithm in a 
recursive manner, the experimental results section is limited to the comparisons be-
tween the proposed recursive method and the original algorithm.  

The resulting algorithm, of course, is computationally more expensive than its sto-
chastic gradient counterpart. However, it has the ability to converge to and track the 
optimal solution based on this separation criterion in a small number of samples, even 
when initialized to arbitrary matrices. 
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Abstract. We introduce a new greedy algorithm to find approximate
sparse representations s of x = As by finding the Basis Pursuit (BP)
solution of the linear program min{‖s‖1 | x = As}. The proposed algo-
rithm is based on the geometry of the polar polytope P ∗ = {c | ÃT c ≤ 1}
where Ã = [A, −A] and searches for the vertex c∗ ∈ P ∗ which maxi-
mizes xT c using a path following method. The resulting algorithm is in
the style of Matching Pursuits (MP), in that it adds new basis vectors
one at a time, but it uses a different correlation criterion to determine
which basis vector to add and can switch out basis vectors as necessary.
The algorithm complexity is of a similar order to Orthogonal Matching
Pursuits (OMP). Experimental results show that this algorithm, which
we call Polytope Faces Pursuit, produces good results on examples that
are known to be hard for MP, and it is faster than the interior point
method for BP on the experiments presented.

1 Introduction

Suppose are given a sequence of observations X = [x1, . . . ,xT ], xt ∈ IRd, which
we wish to decompose according to the usual independent component analysis
(ICA) generative model X = AS, where A = [a1, . . . ,an] is a d × n mixing
matrix of real basis vectors ai and sequence S = [s1, . . . , sT ] of source coefficient
vectors st ∈ IRn. If we have n > d, i.e. the number of basis vectors is larger
than the dimensionality of the basis space, then the system is overcomplete.
This means in particular that if we have identified the mixing matrix A, using
some dictionary learning method (see e.g. [1]), then the equation xt = Ast at
a particular t still has multiple solutions in general for st given A and xt. In
sparse coding, we favour the minimum #0-norm solution s to x = As which has
the smallest number of non-zero elements ‖s‖0,

min
s
‖s‖0 such that x = As . (1)

However, finding the #0 solution (1) is known to be a hard problem. Instead,
the method of Basis Pursuit (BP) [2] proposes to find the minimum #1 norm
solution

min
s
‖s‖1 such that x = As (2)
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which is equivalent to a linear programming (LP) problem and can be solved
with e.g. interior point methods. However these methods can still be slow, so in
practice greedy algorithms such as Matching Pursuits (MP) [3] or Orthogonal
Matching Pursuit (OMP) [4] have been used as an efficient way to find ap-
proximate solutions to (2). Recently there has been much investigation into the
conditions under which the solutions to (1) and (2) coincide (#1/#0 equivalence)
and will be found by MP/OMP (exact recovery condition). For discussions see
e.g. [5,6,7,8] and references therein.

In an interesting new direction, Donoho [9] has shown that by considering the
d-dimensional polytope (the d-dimensional generalization of a polygon) whose
vertices are the 2n signed basis vectors ±ai, ai ∈ A, results from the theory
of polytopes can give us insight into the question of #1/#0 equivalence. Using
a similar geometric approach, the present author [10] has explored the geom-
etry of the problem (2), giving a visualization for the conditions discussed by
Fuchs [7] and Tropp [6] for a unique optimal solution to (2), and hence #1/#0
equivalence.

In this paper we build on this geometrical visualization to propose a new
greedy algorithm that performs Basis Pursuit (2). The algorithm adopts a path-
following approach through the relative interior of the faces of the polar (dual)
polytope associated with the dual LP problem. We refer to this as the Polytope
Faces Pursuit algorithm.

2 Dual Linear Programs and Polar Polytopes

It is sometimes convenient to convert (2) into its standard form [2,11]

min
s̃

1T s̃ such that x = Ãs̃, s̃ ≥ 0 (3)

where 1 is a column vector of ones, Ã = [A,−A] and s̃ has 2n nonnegative
components s̃i = max(si, 0) for 1 ≤ i ≤ n and s̃i = max(−si−n, 0) for n + 1 ≤
i ≤ 2n. Clearly si = s̃i − s̃i+n. The new linear program (3) has a corresponding
dual linear program [2]

max
c

xT c such that ÃT c ≤ 1 (4)

which has an optimum c∗ associated with any optimum s̃∗ of (3). Thus to
perform BP we can search for the optimum c in (4) and solve the resulting
(determined) system for s̃.

To help us visualize this search space, we introduce some geometric concepts.
A d-dimensional polytope P is a bounded subset of IRd defined by a finite set of
inequalities, or alternatively as the convex hull of a finite set of extreme points,
its vertices. If the inequality aTx ≤ b is valid for P , i.e. aTx ≤ b for all x ∈ P ,
then F = {x ∈ P | aTx = b} is a face of P . Examples of faces include the
improper faces ∅ and P itself, as well as the vertices (0-dimensional faces) and
facets ((d − 1)-dimensional faces) of P . For more definitions and notation see
e.g. [9,12].
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Fig. 1. Examples of polytopes in 2-D: (a) primal (dashed) and polar (solid) polytopes;
(b) polar polytope showing ideal basis vertex c∗

The dashed polygon in Fig. 1(a) shows the primal polytope P with vertices
given by the signed basis vectors ±ai. Of more interest to us is the polar poly-
tope P ∗ defined by the inequalities P ∗ = {c | ãTi c ≤ 1} where ãi ∈ Ã, i.e.
ãi ∈ {a1,a2,−a1,−a2}. The scaled vectors a+

i = ai/|ai|2, satisfy aTi a+
i = 1 so

touch the faces, extended if necessary, defined by aTi c = 1 (a+
i is also the trans-

pose of the Moore-Penrose pseudoinverse of ai). Clearly this polar polytope P ∗

is the feasible region for c in (4). The vertices c++ etc. of P ∗ correspond to par-
ticular sets of selected vertices. If we let A+− = [a1,−a2] then c+− is the vertex
such that AT

+−c+− = 1, i.e. c+− = A†
+−

T1 where A† is the Moore-Penrose
pseudoinverse of A (used so that we can define c for an A with less than d
columns). It is a standard result from linear programming that the optimum of
(4) will be achieved at one of the vertices [11]. Therefore it remains for us to
identify which is the optimal vertex which maximizes xT c, and use that to find
the optimal vector s̃ (and hence s).

As an example, consider the shaded polytope in Fig. 1(b), which is defined
by three basis vector pairs A = [a1,a2,a3]. The scaled vectors a+

i , i = 1, 2, 3
are also shown. The dual vector c that maximizes the inner product xT c with
x is the one furthest along the direction parallel to x, and is marked c∗. In this
particular case c∗ corresponds to the optimal basis set Ãopt = [a1,a2], which
has the corresponding primal solution s̃ = Ã†

optx, or in original form s = A†
optx

where Aopt = [a1,a2].
However, consider what happens if we apply either MP or OMP, suitably ad-

justed for non-unit-norm basis vectors, to the situation pictured in Fig. 1(b).
The first vector selected is arg maxai

aTi x = a1, so after the first step, A1 = [a1].
This produces a residual r1 perpendicular to a1, i.e. along a3, so on the sec-
ond step both MP and OMP will select a3. The basis set A2 = [a1,a3] now
spans the space, the residual r2 is zero, and both MP and OMP stop after 2
steps. MP and OMP have the same behaviour in this case because a1 and a3
are orthogonal. Thus both MP and OMP have failed to find the optimal so-
lution to (2). In Natarajan’s algorithm [13], sometimes called Order Recursive
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Matching Pursuit, there would be an arbitrary choice between a2 and a3 in
step 2, since both would give zero residual after selection, so this can also fail on
this example.

3 Deriving the Faces Pursuit Algorithm

Let us now derive an algorithm to find the true optimal LP solution of (2), but
will build up its solution in a similar way to MP/OMP. Our first insight is that
if we project from the origin O along h = αx for α ≥ 0 the first polytope face
we encounter is at

α1 = min{α > 0 | aTi (αx) = 1} = min{α > 0 | aTi x = 1/α} = 1/max{aTi x}

which is our normal MP/OMP maximum correlation condition. Let us select a1
as our first vector, and then continue our path ‘towards’ x, but with our path
now constrained to be within the polytope face F 1 = {h ∈ P ∗ | aT1 h = 1}.
We can achieve this by projecting x into the subspace parallel to F 1, to give
r1 = (I −Q1)x where Q1 = a1a+

1
T = a1aT1 /|a1|2. Since s̃1 = a+

1
Tx and x̂1 =

a1s̃1 we have r1 = x − a1s̃1 = x − x̂1 so r1 is therefore the residual from the
approximation x̂1 to x obtained after Step 1 (Fig. 2).

The second step is where the difference from MP/OMP arises. These would
find maxi aTi r1, but this is the first face encountered projecting along the residual
r1 from the origin, not within face F 1. Instead, to correctly determine the next
face we encounter along the face F 1 we project along the residual starting at
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Fig. 2. Path of the Faces Pursuit Algorithm, starting at c0 = h0 = 0
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h1 = α1x. A little manipulation will confirm that the next face is encountered at
min{α > α1 | aTi (c1 +αr1) = 1} = 1/max{(aTi r1)/(1−aTi c1) | aTi r1 > 0} where
c1 = a+

1 · 1 and we exclude faces already encountered. Further consideration
along these lines shows that this generalizes so at each step k we do not simply
want the maximum correlation aTi rk−1, but the maximum scaled correlation

ak = arg max
ai

aTi rk−1

1− aTi ck−1 (5)

where we consider only vectors ai for which aTi rk−1 > 0. Note that if we have
a fast method to compute aTi rk−1, such as a fast Wavelet transform if A is a
wavelet basis, we can use the same method to compute aTi ck−1.

In the complete algorithm (Algorithm 1) we also need to be able to optionally
switch out certain constraints once we have encountered a new face (consider
‘climbing up’ the face corresponding to a3 instead of a1 in Fig. 2: we leave that
constraint once we encounter the face corresponding to a2). A little manipulation
will show that constraints should be switched out after step k if s̃k contains
any negative entries: the negative entries corresponding to the constraints to be
removed. We also have to take practical steps to ensure that aTi ck ≈ 1 does
not give divide-by-zero errors, and to ensure the same bases are not considered
candidates again.

Algorithm 1. Polytope Faces Pursuit
1: Input: Ã = [ãi], x {If required, set Ã ← [A, −A]}
2: Set stopping conditions kmax and θmin

3: Initialize: k ← 0, Ik ← ∅, Ãk ← ∅, ck ← 0, s̃k ← ∅, x̂k ← 0, rk ← x
4: while k < kmax and maxi ãT

i rk−1 > θmin do {Find next face}
5: k ← k + 1
6: Find face: ik ← arg maxi/∈Ik−1{(ãT

i rk−1)/(1 − ãT
i ck−1) | ãT

i rk−1 > 0}
7: Optionally: αk ← (1 − ãT

ikck−1)/(ãT
ikrk−1), hk ← ck−1 + αkrk−1

8: Add constraint: Ãk ← [Ãk−1, aik ], Ik ← Ik−1 ∪{ik}, Bk ← (Ãk)†, s̃k ← Bkx

9: while s̃k � 0 do {Release retarding constraints}
10: Select some j ∈ Ik such that s̃k

j < 0; remove column aj from Ãk

11: Update: Ik ← Ik \ {j}, Bk ← (Ãk)†, s̃k ← Bkx
12: end while
13: ck ← (Bk)T 1, x̂k ← Ãks̃k, rk ← x − x̂k

14: end while
15: Output: c∗ = ck, s̃∗ ← 0 + corresponding entries from s̃k

{If required, get s∗
i ← (s̃∗

i − s̃∗
i+n), 1 ≤ i ≤ n}

The most expensive operations in the algorithm are the dictionary analysis
calculations ãTi rk−1 and ãTi ck−1 (two per step k instead of one per step for
MP/OMP) and the pseudoinverse calculation (Ãk)† (one per step k as for OMP,
plus one each retarding constraint release in the inner loop). Thus the complexity
is similar to OMP but with an additional dictionary probe each loop. Constraint
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releases appear to be relatively infrequent: on the Gong example in Section 4
constraint releases occur on average every 5–6 steps. Note that the Algorithm 1
does not require A to be a unit norm dictionary.

4 Experiments

To confirm the operation of the Polytope Faces Pursuit algorithm and compare
it with MP and the interior point method for BP, we applied the algorithm to
some examples where MP and BP have already been compared [2]. Fig. 3 shows
MP, OMP, BP and the proposed Polytope Faces Pursuit algorithm (FP) applied
to the signal ‘TwinSine’, a superposition of two sinusoids separated by less than
the Rayleigh Distance 2π/n. The analysis is performed in a 4-fold overcomplete
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Fig. 3. (a) The ‘TwinSine’ signal (see [2]) with decompositions by (b) MP (‘o’) and
OMP (‘+’), (c) BP using the interior point method, and (d) Polytope Faces Pursuit

discrete cosine dictionary [2]. The stopping condition θmin was set to 10−2 times
the signal norm for MP and Polytope Faces Pursuit.

As is already known, MP and OMP fail to resolve this signal, in that they
both initially select the middle frequency atom (atom 126) and subsequently
do not remove it, while BP (using the interior point method) does resolve the
signal correctly. Faces Pursuit quickly produces a clean sparse decomposition:
atom 126 is initially selected, the same as for MP/OMP as we would expect, but
following the addition of atoms 125 and 127 atom 126 it is removed at step 3
as a retarding constraint. Thus Faces Pursuit stops in 3 steps, yielding a sparse
representation consisting of only 2 basis atoms (Fig. 3(d)). Remaining differences
with BP appear to be due to algorithm tolerances.

Fig. 4 shows MP, BP and Polytope Faces Pursuit applied to the signal ‘Gong’,
which is zero until t0 and then follows a decaying sinusoid. The analysis is per-
formed using a cosine packet dictionary [2]. As already known, BP using the
interior point method produces a ‘cleaner’ decomposition than MP, although it
is approximately an order of magnitude slower than MP on this example. We
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Fig. 4. (a) The ‘Gong’ signal (see [2]) with decompositions by (b) MP, (c) BP using
the interior point method, and (d) Polytope Faces Pursuit

can confirm that Polytope Faces Pursuit produces a similar result to BP, tak-
ing a time between MP and BP for the same accuracy. A typical run on the
three algorithms using Matlab 7.0 (R14) under Windows XP on a 1.5GHz In-
tel Pentium M laptop takes tMP = 28s, tBP = 224s, tFP = 74s. We expect to
improve the speed of the Faces Pursuit algorithm in future through the use of
matrix and vector updating and downdating formulae in place of the expensive
pseudo-inverse calculation each step (see e.g. [14]).

5 Conclusions

We have introduced a new greedy algorithm to find approximate sparse repre-
sentations s of x = As given A and x. The algorithm is based on the geometry
of the polar polytope P ∗ = {c | ÃT c ≤ 1} where Ã = [A,−A] which defines the
feasible region of the dual linear program max{xT c | ÃT c ≤ 1}. The algorithm
searches for the vertex c∗ ∈ P ∗ which maximizes xT c using a path following
method through the relative interior of faces of P . We call this method Polytope
Faces Pursuit.

The resulting algorithm is in the style of Matching Pursuits (MP), in that it
adds new basis vectors one at a time based in a correlation criterion, but has
two major differences: (1) the correlation criterion depends on the current vertex
ck at step k as well as the residual rk; and (2) basis vectors are switched out
if necessary. The algorithm complexity is of the same order as OMP, although
it has one additional dictionary probe per step, and has costs associated with
switching out of basis vectors.

Experimental results confirm that the Polytope Faces Pursuit algorithm pro-
duces good results on examples that are known to be challenging for MP, and
that it is faster than the interior point method for Basis Pursuit (BP) on the
experiments presented.
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ICA Based Semi-supervised Learning Algorithm
for BCI Systems
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Abstract. As an emerging technique, brain-computer interfaces (BCIs)
bring us a new communication interface which can translate brain ac-
tivities into control signals of devices like computers, robots etc. In this
study, we introduce an independent component analysis (ICA) based
semi-supervised learning algorithm for BCI systems. In this algorithm,
we separate the raw electroencephalographic (EEG) signals into several
independent components using ICA; then choose a best independent
component for feature extraction and classification. To demonstrate the
validity of our algorithm, we apply it to an data set from an EEG-based
cursor control experiment implemented in Wadsworth Center. The data
analysis results show that both ICA preprocessing and semi-supervised
learning can improve prediction accuracy significantly.

1 Introduction

A brain-computer interface is a communication system that does not depend on
brain’s normal output pathways of peripheral nerves and muscles. It provides
new augmentative communication technology to those who are paralyzed or have
other severe movement deficits [1].

Electroencephalogram (EEG) is an electrical activity produced by the neurons
and synapses of the central nervous system in the course of their operation and
recorded from the scalp or from the cortical surface [2]. It can be taken as the
input of BCI systems. Since noise including artifacts (e.g., eye movements, eye
blinks and EMG) is inevitable in EEG signals, EEG based BCIs should contain a
preprocessing procedure to separate the useful brain sources of EEG signals from
noise. A good preprocessing method can improve the information transferring
rate of BCIs significantly.

Independent component analysis (ICA), which finds a linear representation
of nongaussian data such that the components are statistically independent
[3], has been widely used in blind source separation [4,5,6], and EEG signal
analysis [7], etc. We think ICA is a very promising preprocessing method to
blindly separate the useful brain sources from noise (including artifacts) for BCI
systems.

In this paper, we propose an algorithm for BCI systems. In this algorithm,
ICA is introduced as a preprocessing method. That is, the raw EEG signals

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 214–221, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are first transformed into ICA components by an ICA algorithm, then fea-
tures are extracted from the ICA component which is most relevant to the
users’ control intention and most suitable for feature extraction. Next, we ap-
ply a self-training based semi-supervised learning method for classification. The
task of classification algorithm in BCI systems is to translate the features into
control signals. Based on semi-supervised learning strategy, we train a clas-
sifier using small amount of labeled and large amount of unlabeled samples.
The benefit of this method is in reducing training effort, which is often te-
dious and time-consuming, as stated in the description of Data Set IVa
in [17].

We evaluated the ICA based semi-supervised learning method using the data
set from an EEG-based cursor control experiment , which was implemented in
Wadsworth Center. Three subjects’ data were included in this data set. Data
analysis results demonstrated the validity of our algorithm.

2 Methods

In this section, the presented methods include ICA preprocessing, feature ex-
traction, and semi-supervised learning based classification.

2.1 ICA Preprocessing

In EEG-based BCI systems, the intention of the user is embedded in the EEG
recordings. From the EEG recordings on the scalp, finding the hidden brain
sources which present the users’ intension is a very challenge task. Because,
hidden brain sources are extremely weak, nonstationary signals and usually dis-
torted by large noise, interference and on-going activity of the brain [11]. We
think ICA, which can find statistically independent or as independent as possi-
ble components from the raw signal, is one of the promising methods that can
be used to separate the hidden brain sources which present the users’ intension
from other noise including artifacts.

We assume that the multichannel EEG can be modelled by

X(n) = AS(n) (1)

where X(n) is an EEG column vector at time n, the m unknown components
S = [S1, S2, . . . , Sm]T are brain sources related to the intention of the users,
artifacts etc., A is an unknown nonsingular square mixing matrix.

The task of blind source separation is to find a demixing matrix C such that
the sources can be recovered as below

Y(n) = CX(n) (2)

In this study, we apply a natural gradient-flexible ICA algorithm [12] (other
ICA algorithms also can be used), which can blindly separate mixtures of sub-
and super-gaussian sources, to find components.
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2.2 Feature Extraction

After presenting ICA preprocessing, we will focus on feature extraction in this
subsection. Note that the features will be extracted from ICA components in-
stead of raw EEG signals. In the cursor control experiment mentioned before,
the amplitude (i.e., the square root of power) in the mu and/or beta rhythm
frequency band over sensorimotor cortex was used to control the cursor up and
down [2]. Therefore, we still use the amplitude of mu or beta rhythm as the fea-
ture. However, in order to reflect the change of brain signals during a trial, we
will extract a dynamic amplitude feature. That is, we separate the time interval
of each trial into m overlapped time bins, and calculate the amplitude value
of the mu or beta rhythm for each time bin. Consequently, a m dimensional
amplitude feature vector is obtained for each trial.

Among the ICA components, only one will be chosen for amplitude feature
extraction. How to select the component will be described in the next subsection.
The dynamic amplitude feature of each trial is defined as,

PF = [
√
PF1,

√
PF2,

√
PF3, ...,

√
PFm]T , (3)

PFn =
∑

f∈[11,14]

Pn(f), n = 1, ...,m, (4)

where Pn(f) is the power spectral density of the n − th time bin, and 11–14Hz
is the frequency band of mu rhythm in our off-line data analysis. While the
providers reported to have used mu rhythm that is in 8–12Hz [9], our analysis and
the authors of [14] found that roughly 11–14Hz (or 10–15Hz) is the discriminative
frequency band.

The algorithm using to estimate the power spectral density is the Burg method
[15]. The Burg method fits an AR model of the specified order (the order is 40
(the same as in [13]) in our power spectral density estimation ) to the input sig-
nal by minimizing the arithmetic mean of the forward and backward prediction
errors. The spectral density is then computed from the frequency response of the
AR model.

2.3 Self-training Algorithm and ICA Component Selection

In this subsection, we first present a self-training algorithm for training our
classifier, then discuss how to select an ICA component on which our feature
extraction and classification are based.

For many EEG-based BCIs, a tedious and time consuming training process
is needed to set system parameters. In BCI Competition 2005 [17], reducing the
training process has been explicitly proposed as a task. In this paper, we resort to
semi-supervised learning to train a classifier. Compared with the case of super-
vised learning, the training data set (labeled data) of semi-supervised learning
is much smaller. Since unlabeled data are used for training, the performance of
semi-supervised learning can still be satisfying.
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A full Bayes classifier is used for classification. To train classifier parameters
with a small training set, we use a self-training algorithm, which is a common
semi-supervised learning technique. The outline of the self-training algorithm is
as follows.

Self-training algorithm: Given two data sets: labeled data set Dl, and unla-
beled data set Du.

– Step 1: Train an initial Bayes classifier using Dl;
– Step 2: Estimate the labels of Du using the current classifier;
– Step 3: Retrain the classifier using the data set Du with estimated labels

and the data set Dl;
– Step 4: If the change of the classifier’s parameters are below a tolerance,

terminate the iteration; otherwise, go back to Step 2.

Now we discuss the problem left in Section 2.2 on how to select an ICA
component for feature extraction. Traditional feature selection methods used in
BCI includes Fisher criterion, bi-serial correlation coefficients, cross-validation,
weighting of sparse classifier, etc. A survey about these methods can be found
in [16]. However, all these methods needs abundant labeled data. For selection
of the best component from small amounts of labeled data and large amounts of
unlabeled data, we introduce an extended entropy based criterion. This criterion
is defined as,

J = −
M∑
n=1

P (n) log(P (n)) +

(
T∑
i=1

M∑
n=1

P (n|Fi) log(P (n|Fik))
)

T
, (5)

where M is the number of classes, T is the number of the training samples includ-
ing the labeled and unlabeled samples, P (n) is a prior of the nth class, P (n|Fi) is
the posterior probability for the feature vector Fi extracted from one independent
component of the ith sample. Note that for both labeled data and unlabeled data,
P (n|Fi) is from the bayes classifier trained by the above self-training algorithm.
The second term of equation (5) is from a traditional entropy criterion [18], which
can measure the separability of features if all the available data are labeled. The
bigger the value, the better the separability of features. We extended the entropy
criterion by adding the first term, which can impose a constraint for avoiding the
case of serious unbalance of classes brought by classification.

According to this criterion, the ICA component corresponding to the highest
J will be selected as the best component.

3 Experimental Data Analysis

In this section, we evaluate the ICA based semi-supervised learning method
using the data set from an EEG-based cursor control experiment.

The EEG-based cursor control experiment was carried out in Wadsworth
Center. In this experiment, the subjects sat in a reclining chair facing a video
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screen and was asked to remain motionless during performance. The subjects
used mu or beta rhythm amplitude to control vertical position of a target lo-
cated at the right edge of the video screen. The data set was recorded from
three subjects (AA, BB, CC). Each subject’s data included 10 sessions for
each subject. The data set and the details of this experiment are available at
http://ida.first.fraunhofer.de/projects/bci/competition.

For convenience, only the trials with the targets at the highest and lowest
position of the right edge of the screen are used in our offline analysis (96*10
trials for each subject).

For evaluating our algorithm, we separate all the trials into three sets, i.e.,
labeled set, unlabeled set and independent test set. labeled set and unlabeled set
are used for training. labeled set consists of 20 trials (10 trials for each target)
from session 1; unlabeled set consists of 556 trials from the remaining trials
of session 1 and all the trials of sessions 2–6; and the independent test set is
composed of 384 trials of sessions 7–10.

In this study, we use the EEG signals of 18 channels with channel numbers 8–10,
12–17, 19–21, 48–50 and 52–54, which are just over the sensorimotor area, for the
ICA preprocessing. To obtain a demixing matrix, we apply the natural gradient-
flexible ICA algorithm [12] to the data matrix of 20 trials, which are randomly se-
lected from the labeled and unlabeled data sets. Then using the demixing matrix to
all the data set, we get the ICA components. Afterwards, we extract 5 time bins dy-
namic amplitude features of all the ICA components and perform ICA component
selection. Finally, based on the selected ICA component and its amplitude feature,
we perform classification to the unlabeled data set and independent test set.

In the following, we present our data analysis results. Figure 1 shows the
first 6 ICA components of subject AA (left column) and their corresponding
power spectral density calculated by burg algorithm (right column). Cn repre-
sents the nth independent component. C6 in this figure is obviously an artifact
component. From the power spectral density of C2, we can see that an obvi-
ous frequency component in the frequency band 11–14hz; thus, C2 may be the
component which can effectively control the cursor. In fact, by the criterion in-
troduced in Section 2.3, C2 is indeed verified to be the best ICA components
for classification.We apply our algorithm to the independent test set for test.
By comparing the predicted target position for each trial with the true target
position, the prediction accuracy rate is obtained. The accuracy rates for the
three subjects are shown in the second row of Table 1.

For demonstrating the validity of ICA preprocessing, we perform similar
analysis as above in the two cases: 1. Principal component analysis (PCA) is
used to replace ICA for preprocessing; 2. No preprocessing is used.

Furthermore, we consider the second and third training settings to demon-
strate the effectiveness of the self-training algorithm (the first setting):

1. self-training algorithm is used to train a bayes classifier;
2. only labeled data set is used to train a bayes classifier;
3. the true labels are assigned to the unlabeled data set, then use all the labeled

data to train a bayes classifier.
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Fig. 1. Left column: 4000 samples of the first 6 ICA components of subject AA, right
column: the corresponding power spectral density

Table 1. Accuracy rates (%) for the three subjects AA, BB and CC

Preprocessing training AA BB CC Average
method setting Accuracy Accuracy Accuracy Accuracy

ICA 1 94.52 89.74 89.52 91.26
PCA 1 87.99 85.53 89.52 87.68

No preprocessing 1 67.10 72.89 79.30 73.10
ICA 2 79.63 82.37 82.53 81.51
ICA 3 93.99 86.05 89.78 89.94

Table 1 lists the prediction accuracy rates obtained in all cases. First, the
results show that the average accuracy rate obtained with ICA preprocessing
is improved by 3.58% and 18.16% over those obtained with PCA preprocessing
and without preprocessing, respectively. From Table 1, we can also find that
semi-supervised learning improves the accuracy rate significantly (by 9.75%),
compared with the accuracy rates obtained under the above training setting 2.
Interestingly, even if we assign the true labels (i.e. the target positions of the
unlabeled trials) to the unlabeled data set, and use all labeled data to train a
classifier (training setting 3). The obtained accuracy rate is a little less than that
obtained by semi-supervised learning. In most cases, the accuracy rate obtained
in training setting 3 should be the best. But, in some cases, it is possible that
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small part of the samples are mislabeled (in the training procedure of cursor
control BCI, it is possible that the user sometimes did not intend to hit the
target), or exist some outliers. These wrong labeled samples or outliers will
harm the performance of the classifier. Thus, in this case, the performance of
training setting 3 may be poorer than the performance of training setting 1.

4 Conclusions

Through the offline analysis of the data set from a cursor control BCI experiment,
we have shown that ICA based semi-supervised learning-based algorithm is an
effective algorithm for BCI systems.

The ICA based semi-supervised learning algorithm offers several advantages.
First, we think that the ICA preprocessing can separate useful source compo-
nents from noise including artifacts to some extent. Thus we can choose one
component which can best reflect brain’s intention and most suitable for fea-
ture extraction. The results in Table 1 show that the prediction accuracy rate
is improved significantly by ICA preprocessing, compared with the result of no
preprocessing case. Second, since we choose only one ICA component for fea-
ture extraction, unlike using a small subset of channels of raw EEG signal [9],
the computational burden of classification can be reduced significant . Further-
more, it follows from our data analysis results that ICA is superior than PCA,
a similar preprocessing method, especially for some subjects. Finally, through
ICA based semi-supervised learning, we use a small labeled data set and a large
unlabeled training data set to train a classifier. The performance of the classifier
is quite satisfying. Note that the labels of the unlabeled data set can also be
predicted by this classifier. Therefore, the proposed ICA based semi-supervised
learning algorithm can significantly reduce the time-consuming training effort for
BCI systems.
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Abstract. Nonlinear source separation can be performed by inferring
the state of a nonlinear state-space model. We study and improve the
inference algorithm in the variational Bayesian blind source separation
model introduced by Valpola and Karhunen in 2002. As comparison
methods we use extensions of the Kalman filter that are widely used in-
ference methods in tracking and control theory. The results in stability,
speed, and accuracy favour our method especially in difficult inference
problems.

1 Introduction

Many applications of source separation methods involve data with some kind of
relations between consecutive observations. Examples include relations between
neighbouring pixels in images and time series data. Using information on these
relations improves the quality of separation results, especially in difficult non-
linear separation problems. Nonlinear modelling of relations may also be useful
in linear mixing problems as the dynamics of the time series, for instance, may
well be nonlinear.

A method for blind source separation using a nonlinear state-space model is
described in [1]. In this paper we study and improve ways of estimating the
sources or states in this framework. Efficient solution of the state estimation
problem requires taking into account the nonlinear relations between consecutive
samples, making it significantly more difficult than source separation in static
models. Standard algorithms based on extensions of the Kalman smoother work
rather well in general, but may fail to converge when estimating the states over
a long gap or when used together with learning the model. We propose solving
the problem by improving the variational Bayesian technique proposed in [1] by
explicitly using the information on the relation between consecutive samples to
speed up convergence.

To tackle just the state estimation (or source separation) part, we will simplify
the blind problem by fixing the model weights and other parameters. In [2],
linear and nonlinear state-space models are used for blind and semi-blind source
separation. Also there the problem is simplified by fixing part of the model.
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2 Nonlinear State-Space Models

In nonlinear state-space models, the observation vectors x(t), t = 1, 2, . . . , T , are
assumed to have been generated from unobserved state (or source) vectors s(t).
The model equations are

x(t) = f(s(t)) + n(t) (1)
s(t) = g(s(t− 1)) + m(t), (2)

Both the mixing mapping f and the process mapping g are nonlinear. The noise
model for both mixing and dynamical process is often assumed to be Gaussian

p(n(t)) = N [n(t);0;Σx] (3)
p(m(t)) = N [m(t);0;Σs] , (4)

where Σx and Σs are the noise covariance matrices. In blind source separation,
the mappings f and g are assumed to be unknown [1] but in this paper we
concentrate on the case where they are known.

2.1 Inference Methods

The task of estimating a sequence of sources s(1), . . . , s(T ) given a sequence
of observations x(1), . . . ,x(T ) and the model is called inference. In case f and
g in Eqs. (1) and (2) are linear, the state can be inferred analytically with
an algorithm called the Kalman filter [3]. In a filter phase, evidence from the
past is propagated forward, and in a smoothing phase, evidence from the future
is propagated backwards. Only the most recent state can be inferred using the
Kalman filter, otherwise the algorithm should be called the Kalman smoother. In
[4], the Kalman filter is extended for blind source separation from time-varying
noisy mixtures.

The idea behind iterated extended Kalman smoother [3] (IEKS) is to linearise
the mappings f and g around the current state estimates using the first terms
of the Taylor series expansion. The algorithm alternates between updating the
state estimates by Kalman smoothing and renewing the linearisation. When the
system is highly nonlinear or the initial estimate is poor, the IEKS may diverge.

The iterative unscented Kalman smoother [5,6] (IUKS) replaces the local lin-
earisation of IEKS by a deterministic sampling technique. The sampled points
are propagated through the nonlinearities, and a Gaussian distribution is fitted
to them. The use of nonlocal information improves convergence and accuracy at
the cost of doubling the computational complexity1. Still there is no guarantee
of convergence.

A recent variant called backward-smoothing extended Kalman filter [8] searches
for the maximum a posteriori solution to the filtering problem by a guarded
Gauss-Newton method. It increases the accuracy further and guarantees conver-
gence at the cost of about hundredfold increase in computational burden.
1 An even better way of replacing the local linearisation when a multilayer perceptron

network is used as a nonlinearity, is described in [7].
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Particle filter [9] uses a set of particles or random samples to represent the
state distribution. It is a Monte Carlo method developed especially for sequences.
The particles are propagated through nonlinearities and there is no need for
linearisation nor iterating. Given enough particles, the state estimate approaches
the true distribution. Combining the filtering and smoothing directions is not
straightforward but there are alternative methods for that. In [10], particle filters
are used for non-stationary ICA.

2.2 Variational Bayesian Method

Nonlinear dynamical factor analysis (NDFA) [1] is a variational Bayesian method
for learning nonlinear state-space models. The mappings f and g in Eqs. (1) and
(2) are modelled with multilayer perceptron (MLP) networks whose parameters
can be learned from the data. The parameter vector θ include network weigths,
noise levels, and hierarchical priors for them. The posterior distribution over the
sources S = [s(1), . . . , s(T )] and the parameters θ is approximated by a Gaussian
distribution q(S,θ) with some further independency assumptions. Both learning
and inference are based on minimising a cost function CKL

CKL =
∫

θ

∫
S
q(S,θ) ln

q(S,θ)
p(X,S,θ)

dSdθ, (5)

where p(X,S,θ) is the joint probability density over the data X=[x(1),. . .,x(T )],
sources S, and parameters θ. The cost function is based on Kullback-Leibler
divergence between the approximation and the true posterior. It can be split into
terms, which helps in studying only a part of the model at a time. The variational
approach is less prone to overfitting compared to maximum a posteriori estimates
and still fast compared to Monte Carlo methods. See [1] for details.

The variational Bayesian inference algorithm in [1] uses the gradient of the
cost function w.r.t. state in a heuristic manner. We propose an algorithm that
differs from it in three ways. Firstly, the heuristic updates are replaced by a
standard conjugate gradient algorithm [11]. Secondly, the linearisation method
from [7] is applied. Thirdly, the gradient is replaced by a vector of approximated
total derivatives, as described in the following section.

2.3 Total Derivatives

When updates are done locally, information spreads around slowly because the
states of different time slices affect each other only between updates. It is possible
to predict this interaction by a suitable approximation. We get a novel update
algorithm for the posterior mean of the states by replacing partial derivatives of
the cost function w.r.t. state means s(t) by (approximated) total derivatives

dCKL

ds(t)
=

T∑
τ=1

∂CKL

∂s(τ)
∂s(τ)
∂s(t)

. (6)

They can be computed efficiently using the chain rule and dynamic program-
ming, given that we can approximate the terms ∂s(t)

∂s(t−1) and ∂s(t)
∂s(t+1) .
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Before going into details, let us go through the idea. The posterior distribution
of the state s(t) can be factored into three potentials, one from s(t− 1) (the past),
one from s(t+1) (the future), and one fromx(t) (the observation).We will linearise
the nonlinear mappings so that the three potentials become Gaussian. Then also
the posterior of s(t) becomes Gaussian with a mean that is the weighted average of
the means of the three potentials, where the weights are the inverse (co)variances
of the potentials. A change in the mean of a potential results in a change of the
mean of the posterior inversely proportional to their (co)variances.

The terms of the cost function (See Equation (5.6) in [1], although the notation
is somewhat different) that relate to s(t) are

CKL(s(t)) =
m∑
i=1

(
−1

2
ln s̃ii(t) +

1
2
Σ−1
sii

{
[si(t)− gi(s(t− 1))]2 + s̃i(t)

})

+
m∑
j=1

1
2
Σ−1
sjj

{[
gj(s(t))− sj(t + 1)

]2 + g̃j(s(t))
}

+
n∑
k=1

1
2
Σ−1
xkk

{[
fk(s(t)) − xk(t)

]2
+ f̃k(s(t))

}
,

(7)

where α and α̃ denote the mean and (co)variance of α over the posterior ap-
proximation q respectively and n and m are the dimensionalities of x and s
respectively. Note that we assume diagonal noise covariances Σ. Nonlinearities
f and g are replaced by the linearisations

f̂(s(t)) = f (scur(t)) + Jf (t) [s(t)− scur(t)] (8)
ĝ(s(t)) = g(scur(t)) + Jg(t) [s(t)− scur(t)] , (9)

where the subscript cur denotes a current estimate that is constant w.r.t. further
changes in s(t). The minimum of (7) with linearisations can be found at the zero
of the gradient:

s̃opt(t) =
[
Σ−1
s + Jg(t)TΣ−1

s Jg(t) + Jf (t)TΣ−1
x Jf (t)

]−1
(10)

sopt(t) = s̃opt(t)
{
Σ−1
s [g(scur(t− 1)) + Jg(t− 1)(s(t− 1)− scur(t− 1))]

+ Jg(t)TΣ−1
s [s(t + 1)− g(scur(t))] (11)

+Jf (t)TΣ−1
x

[
x(t)− f(scur(t))

]}
.

The optimum mean reacts to changes in the past and in the future by

∂sopt(t)
∂s(t− 1)

= s̃opt(t)Σ−1
s Jg(t− 1) (12)

∂sopt(t)
∂s(t + 1)

= s̃opt(t)Jg(t)TΣ−1
s . (13)

Finally, we assume that the Equations (12) and (13) apply approximately even
in the nonlinear case when the subscripts opt are dropped out. The linearisation
matrices J need to be computed anyway [7] so the computational overhead is
rather small.
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3 Experiments

To experimentally measure the performance of our proposed new method, we
used two different data sets. The first data set was generated using a simulated
double inverted pendulum system with known dynamics. As the second data set
we used real-world speech data with unknown dynamics.

In all the experiments, IEKS and IUKS were run for 50 iterations and NDFA
algorithm for 500 iterations. In most cases this was long enough for the algo-
rithms to converge to a local minimum. For comparison purposes, the NDFA
experiments were also repeated without using the total derivatives.

Even with a relatively high number of particles, particle smoother performed
poorly compared to the iterative algorithms. The results for particle smoother
are therefore omitted from the figures. They are however discussed where appro-
priate. Even though the particle smoother performed relatively poorly, it should
be noted that many different schemes exists to improve the performance of par-
ticle filters [9], and therefore direct comparison between the iterative algorithms
and the plain particle filter algorithm used in these experiments may be some-
what unjustified. The experiments were also repeated with the original NDFA
algorithm presented in [1]. The results were quite poor, as was to be excepted,
as the heuristic update rules are optimized for learning.

3.1 Double Inverted Pendulum

The double inverted pendulum system [6] (see Figure 1) is a standard bench-
mark in the field of control. The system consists of a cart and a two-part pole
attached to the cart. The system has six states which are cart position on a
track, cart velocity, and the angles and the angular velocities of the two at-
tached pendulums. The single control signal is the lateral force applied to the
cart. The dynamical equations for the double inverted pendulum system can
be found e.g. in [6], in this experiment a discrete system with a time step of
Δt = 0.05 s was simulated using the MATLAB ordinary differential equation
solver ode23.

To make sure that the learning scheme did not favour the proposed algorithm,
standard backpropagation algorithm was used to learn an MLP network to model
the system dynamics using a relatively small sample of 2000 input-output pairs.
To make this problem more challenging, only the velocity and position of the
cart and the angle of the upper pendulum were available as observations, and
the rest of the state had to be inferred from these. Experiments were run on
ten different data sets with 50 samples each using 5 different initialisations. The
final results can be seen in Figure 1.

IEKS suffered from quite serious convergence problems with this data set.
These problems were especially bad during the early iterations, but several
runs failed to converge to a meaningful result even after the iteration limit
was reached. IUKS performed somewhat better, but suffered from some sta-
bility problems too. The proposed method was much more robust and did not
suffer from stability issues and also performed better on average than the two
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Fig. 1. Inference with the double inverted pendulum system. On the left the schematic
of the system, on the right root mean square error plotted against computation time.

Kalman filter based algorithms. It should be noted, however, that in some ex-
periments both IEKS and IUKS converged in only a few iterations, resulting in
a superior performance compared to the proposed method. Therefore the prob-
lem with IEKS and IUKS may at least partially be related to poor choice of
initialisations.

3.2 Speech Spectra

As a real world data set we used speech spectra. The data set consisted of 11200
21 dimensional samples which corresponds to 90 seconds of continuous human
speech. The first 10000 samples were used to train a seven dimensional state-
space model with the method from [1] and the rest of the data was used in
the experiments. This data set poses a somewhat different problem from the
double inverted pendulum system. The nonlinearities are not as strong as in the
first experiment but the dimensionality of the observation and state spaces are
higher, which emphasises the scalability of the methods.
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Fig. 2. Inference with the speech data and missing values. On the top one of the data
sets used in the experiments (missing values marked in black), on the bottom root
mean square error plotted against computation time. Left side figures use a small gap
size, right side figures a large gap size.
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The test data set was divided into three parts each consisting of 300 samples and
all the algorithms were run for each data set with four random initialisations. The
final results representanaverageoverboththedifferentdata setsandinitialisations.

Since the true state is unknown in this experiment, the mean square error of
the reconstruction of missing data was used to compare the different algorithms.
Experiments were done with sets of both 3 and 30 consecutive missing samples.
The ability to cope with missing values is very important when only partial
observations are available or in the case of failures in the observation process. It
also has interesting applications in the field of control as reported in [12].

Results can be seen in Figure 2. When missing values are present, especially
in the case of the large gap size, the proposed algorithm performs clearly better
than the rest of the compared algorithms. Compared to the double inverted
pendulum data set, the stability issues with IEKS and IUKS were not as severe,
but neither method could cope very well with long gaps of missing values.

4 Discussion and Conclusions

We proposed an algorithm for inference in nonlinear state-space models and
compared it to some of the existing methods. The algorithm is based on min-
imising a variational Bayesian cost function and the novelty is in propagating
the gradient through the state sequence. The results were slightly better than
any of the comparison methods (IEKS and IUKS). The difference became large
in a high-dimensional problem with long gaps in observations.

Our current implementation requires that the nonlinear mappings are mod-
elled as multilayer perceptron networks. Part of the success of our method is due
to a linearisation that is specialised to that case [7]. The idea presented in this
paper applies in general.

When an algorithm is based on minimising a cost function, it is fairly easy
to guarantee convergence. While the Kalman filter is clearly the best choice for
inference in linear Gaussian models, the problem with many of the nonlinear
generalisation (e.g. IEKS and IUKS) is that they cannot guarantee convergence.
Even when the algorithms converge, convergence can be slow. A recent fix for
convergence comes with a large computational cost [8] but this paper shows that
stable inference can be fast, too.

While this paper concentrates on the case where nonlinear mappings and other
model parameters are known, we aim at the case where they should be learned
from the data [1]. Blind source separation involves a lot more iterations than the
basic source separation. The requirements of a good inference algorithm change,
too: There is always the previous estimate of the sources available and most of
the time it is already quite accurate.
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Abstract. This paper considers the problem of blind separation of sour-
ces mixed by a MIMO convolutive system. For both i.i.d. and non i.i.d.
sources, quadratic separation criteria previously designed for the extrac-
tion of a single source are extended to parallel extraction in the MIMO
case. These criteria are based on the use of so-called reference signals and
a condition is given under which we obtain MIMO contrast functions.
Simulations demonstrate that a particular choice of a set of reference
signals ensures the contrast property. The performance offered by these
criteria is investigated through simulations: it is shown that the pro-
posed contrast functions avoid accumulation errors, contrary to deflation
methods.

1 Introduction

We consider the problem of blind equalization of Linear Time Invariant (LTI)
Multi-Input / Multi-Output (MIMO) systems. Such a problem is of interest e.g.
in multi-user wireless communications where observed signals have to be equal-
ized both in space and time in order to eliminate both intersymbol and cochan-
nel interferences. These interferences are due to possible delays introduced by
multi-path propagation and to possible multi-users. Examples are found in Space
Division Multiple Access (SDMA) or Code Division Multiple Access (CDMA)
communication systems.

Our approach is based on the use of a contrast function [6, 4]. In particular, this
has the advantage to yield a sufficient condition for separation. In the context of
MIMO systems and parallel extraction of all sources, classical contrast functions
generally first require a pre-whitening stage on the observation signals in order
to constrain the searched system to be para-unitary [4, 5, 8]. On the other hand,
recent solutions have been shown to be very efficient when so-called reference
signals are considered, either for equalization of a SISO or SIMO systems [3]
or for extraction of one source [1] from a MIMO system. Our main goal in this
paper is to propose a generalization of the latter results to the case of parallel
extraction in convolutive MIMO systems. In particular notice that our results
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generalize the one in [2] and more importantly that we do not require any pre-
whitening stage. The usefulness of such a wide family of criteria is illustrated by
computer simulations.

2 Model and Problem Formulation

We consider a Q-dimensional (Q ∈ N, Q ≥ 2) discrete-time signal which is called
vector of observations and denoted by x(n) (in the whole paper, n stands for
any integer: n ∈ Z). It results from a linear time invariant (LTI) multichannel
system {M} described by the input-output relation:

x(n) =
∑
k∈Z

M(k)s(n− k) � {M}s(n), (1)

where M(n) is the sequence of (Q,N) impulse response matrices and s(n) is
an N -dimensional (N ∈ N∗) unknown and unobserved column vector, which is
referred to as the vector of sources.

The multichannel blind deconvolution problem consists in estimating a mul-
tivariate LTI system {W} operating on the observations, such that the vector

y(n) =
∑
k∈Z

W(k)x(n− k) � {W}x(n) (2)

restores the N input sources. The problem is referred to as the blind source
separation (BSS) problem, where blind means that no information is available
on the mixing system and that the sources are unobservable. It is useful to define
the (N,N) global LTI filter {G} by the following impulse response:

G(n) =
∑
k∈Z

W(k)M(n− k). (3)

We have then:
y(n) =

∑
k∈Z

G(n− k)s(k) � {G}s(n). (4)

In order to be able to solve the BSS problem, we have to introduce some as-
sumptions on the source signals. The following one is known to play a key role:

A.1. The source vector components si(n), i ∈ {1, . . . , N} are mutually inde-
pendent, stationary and zero-mean processes with unit variance. Their re-
spective covariance functions are denoted by γi(k), k ∈ Z and are positive
definite functions (i.e the corresponding spectrum density is positive).

Since the sources are assumed to be unobservable, some inherent indetermi-
nations in their restitution remain: in the general case, their order cannot be
restored and each of them is only recovered up to a permutation and a scalar
filtering ambiguity. Consequently, the sources are said to be separated when the
global transfer matrix G(z) �

∑
kG(k)z−k reads:

G(z) = D(z)P (5)
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where P is permutation matrix and D(z) = Diag(d1(z), . . . , dN (z)) is a matrix
with scalar filters on its main diagonal. Whenever the sources are assumed to
be temporally i.i.d. (independent and identically distributed), the scalar filtering
ambiguity reduces to a scaling factor and time delay. In this case, the sources
are said to be separated when:

G(z) = D(z)ΛP (6)

where Λ is a constant diagonal matrix and D(z) = Diag(z−l1 , . . . , z−lN ) with
(l1, . . . , lN) ∈ ZN . Naturally, we assume that the mixing filter is invertible (which
implies Q ≥ N) in the sense that it is possible to obtain (6) or (5).

3 MIMO Separation Criteria

The concept of contrast function has been introduced in BSS so as to reduce
the problem to an optimization one: by definition, a contrast function is a crite-
rion which maximization leads to a separating solution. When a pre-whitening
procedure has been applied, and under certain conditions, one of the simplest
contrast [4, 5] in the context of a MIMO parallel extraction of all sources is
given by

CR{y(n)} �
N∑
i=1

|Cum{yi(n), yi(n), yi(n), . . . , yi(n)︸ ︷︷ ︸
R times, R≥3

}| (7)

where Cum denotes the cumulant. The main contribution of the paper consists
in using criteria based on R-th order cross-cumulants, where R − 2 variables
are fixed. This choice yields a quadratic dependence with respect to the opti-
mized parameter, which greatly simplifies the optimization task. We define the
following R-th order cumulant, where R ≥ 3:

κR,zi{yi(n)} = Cum{yi(n), yi(n), zi(n), . . . , zi(n)︸ ︷︷ ︸
R−2 times

} (8)

where zi(n) are given signals to be precisely defined later. In previous works [1],
they have been referred to as reference signals determined from prior informa-
tion, but we will see that they may be chosen as observations whitened. We now
define the following criterion:

CR,z{y(n)} �
N∑
i=1

|κR,zi{yi(n)}| . (9)

This criterion is a MIMO extension of the results in [1]: it will allow the parallel
extraction of all sources, contrary to [1] which allows the extraction of the sources
one after the other. (9) also generalizes a result in [2].
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3.1 Case of i.i.d. Sources

Main result. Since the sources have unit variance, one can restrict the multi-
plicative factors in (6) to |Λ| = I by imposing the constraint E{|yi(n)|2} = 1 for
all i ∈ {1, . . . , N}. For i.i.d. sources, this condition also reads:

∀i ∈ {1, . . . , N} ,
N∑
j=1

∑
k∈Z

|Gij(k)|2 = 1 (10)

We need to define the following supremum:

κmax
R,i � N

max
j=1

sup
k∈Z

|κR,zi{sj(n− k)}| (11)

The proof of Proposition 1 requires the following assumption:

A.2. ∀i ∈ {1, . . . , N}, there exits (ji, li) such that:

κmax
R,i = |κR,zi{sji(n− li)}| < +∞ (12)

We can then state:

Proposition 1. In the case of i.i.d. source signals and under the constraint
(10), the criterion CR,z is a contrast function if and only if each set

Ii � {(j, k) ∈ {1, . . . , N} × Z | |κR,zi{sj(n− k)}| = κmax
R,i }, (13)

where i ∈ {1, . . . , N}, contains a single element (σi, ki), where σ denotes a per-
mutation in {1, . . . , N}.
Proof: We can write: κR,zi{yi(n)} =

∑N
j=1
∑
k∈Z

Gij(k)2κR,zi{sj(n− k)}
and, using (11) and (10), it follows

CR,z{y(n)} ≤
N∑
i=1

N∑
j=1

∑
k∈Z

|Gij(k)|2|κR,zi{sj(n− k)}| (14)

≤
N∑
i=1

κmax
R,i

N∑
j=1

∑
k∈Z

|Gij(k)|2 =
N∑
i=1

κmax
R,i (15)

≤
N∑
i=1

|κR,zi{sσi(n− li)}| = CR,z{s(n− l)}. (16)

where s(n− l) = (sσ1(n− l1), . . . , sσN (n− lN))T is a vector of N source signals
delayed. If the above upper-bound is reached (which is possible according to
assumption A.2), then

N∑
i=1

N∑
j=1

∑
k∈Z

|Gij(k)|2
(
κmax
R,i − |κR,zi{sj(n− k)}|

)
= 0. (17)

All terms in the above sum being positive, if Ii contains a single element and
σ is a permutation, one deduces, that {G} satisfies the equalization condition
(6). Conversely, one can see that if Ii contains several elements, there exist non
separating filters which maximize CR,z. �
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Comments and alternative results. One should notice that no prewhiten-
ing has been required to prove the validity of the contrast CR,z. This means
that the global filter {G} need not be para-unitary for the result to hold but
that (10) is sufficient. Incidently, one can notice that if (10) is replaced by:
∀j ∈ {1, . . . , N}

∑N
i=1
∑
k∈Z
|Gij(k)|2 = 1, a result similar to the one given

by Proposition 1 can be proved by changing the roles of i and j. Finally, one
should notice also that, although no assumption has been explicitly made on the
cumulants of the sources, no source should have vanishing R-th order cumulants
in order to satisfy the conditions of Proposition 1.

3.2 Case of Non i.i.d. Sources

Non i.i.d. sources can only be recovered up to a scalar filtering. It is hence
natural in this case to work on the scalar filters components which compose the
MIMO system. Thanks to the definite positiveness assumed in A.1 we define the
following j-norm:

‖h‖j �

⎛⎝ ∑
(k1,k2)∈Z2

h(k1)h∗(k2)γj(k2 − k1)

⎞⎠ 1
2

(18)

Similarly to (10) we will impose a variance constraint on the output, which
corresponds to a unit norm constraint on the row filters:

∀i ∈ {1, . . . , N}
N∑
j=1

‖Gij‖2j = 1 (19)

Corresponding to (11) we define κ̃max
R,i � N

max
j=1

sup
‖{Gij}‖j=1

|κR,zi{{G̃ij}sj(n)}| and

corresponding to (12) we assume:

A.3. For all i ∈ {1, . . . , N} there exists ji ∈ {1, . . . , N} and a filter h�i such that:

κ̃max
R,i = |κR,zi{{h

�
i}sji(n)}| < +∞ (20)

We can then state:

Proposition 2. In the case of non i.i.d. sources and under the constraint (19),
the criterion CR,z is a contrast if and only if each set

Ii � {j ∈ {1, . . . , N} | sup
‖h‖j=1

|κR,zi{{h}sj(n)}| = κ̃max
R,i }, (21)

where i ∈ {1, . . . , N}, contains a single element σi, where σ denotes a permuta-
tion in {1, . . . , N}.

Proof: We have:yi(n) =
∑N
j=1{Gij}sj(n) =

∑N
j=1 ‖Gij‖j{G̃ij}sj(n) where {G̃ij}

is defined by {G̃ij} = {G̃ij}/‖G̃ij‖j if ‖G̃ij‖j �= 0 and {G̃ij} = 0 otherwise. Now
we easily obtain:
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CR,z{y(n)} ≤
N∑
i=1

N∑
j=1

‖Gij‖2j |κR,zi{{G̃ij}sj(n)}| ≤
N∑
i=1

N∑
j=1

‖Gij‖2j κ̃max
R,i (22)

and by arguments similar to the proof in the i.i.d. case, one obtains that the
above upper-bound is reached if and only if the global filter is separating in the
sense of Equation (5). �

4 Simulations

4.1 Separation Procedure

Our MIMO contrast being quadratic, the optimization can be performed with
a similar method to the one presented in [1] for MISO contrasts. The reference
signals zi(n), i ∈ {1, . . . , n} must be chosen according to A.1. Interestingly, the
simulations have clearly demonstrated that it is practically a valid choice to
choose them as the output of a prewhitening operation on the observations.
This makes our method efficient and competitive compared to other methods.

By the optimization of CR,z, one can estimate the sources. As has been done
in [1], these estimation of the sources can in turn serve as reference signals: when
this procedure is repeated iteratively, the number of iteration is denoted by NI .

4.2 Results

Computer simulations are now presented to compare a deflation procedure to our
proposed MIMO contrast CR,z. We have used fourth order cumulants (R = 4). The
separation criteria are the mean square estimation error (MSE) on each source for

the PAM-4 i.i.d. source signals and τi � 1 − maxj ‖Gij‖2
j

N
j=1 ‖Gij‖2

j

(i ∈ {1, . . . , N}) for the

CPM (ContinuousPhaseModulation) non i.i.d source signals (modulation indices:
0.4, 0.7, 0.3 and 0.6). Note that 0 ≤ τi < 1 and τi = 0 if and only if yi(n) corre-
sponds perfectly to one source. The mixing filter coefficients have systematically
been randomly chosen according to a normal distribution.

Experiment 1. In Figure 1 (resp. Figure 2), we have plotted the cumulative
distribution of the empirical values of the MSE (resp. values of τi) over 1000
Monte-Carlo runs. We have considered N = 3 source signals mixed on Q = 4
sensors with a filter of length L = 3, using K = 10000 samples and NI = 3
iterations. We clearly notice that in all Monte-Carlo runs, the proposed method
succeeded particularly well to separate the three different sources. This illustrates
that choosing the output of a whitening filter for the references is a successful
method. In addition, the proposed approach has an equal performance for the
extraction of the three sources. As classically observed in deflation separation
methods, the performance is worse for the last extracted source signals than for
the first ones.

Experiment 2. We have considered N = 3 source signals mixed on Q = 4
sensors with a filter of length L = 3. The number of iterations for each source
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Fig. 1. Empirical cumulative distribu-
tion function of the MSE
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Fig. 2. Empirical cumulative distribu-
tion function of τi

Table 1. MSE for PAM-4 i.i.d sources and τi for CPM non i.i.d sources versus number
of samples

K 5000 10000 15000 20000 25000
PAM-4 sources s1 6.20 10−4 2.92 10−4 1.92 10−4 1.42 10−4 1.17 10−4

proposed MIMO contrast s2 6.08 10−4 3.01 10−4 1.97 10−4 1.45 10−4 1.17 10−4

s3 6.07 10−4 3.01 10−4 1.94 10−4 1.43 10−4 1.17 10−4

PAM-4 sources s1 6.22 10−4 2.94 10−4 1.97 10−4 1.46 10−4 1.1710−4

deflation appoach + s2 6.87 10−3 2.73 10−3 2.21 10−3 1.20 10−3 9.68 10−4

quadratic MISO contrast s3 1.17 10−2 4.35 10−3 4.35 10−3 2.80 10−3 1.71 10−3

CPM sources τ1 5.76 10−6 2.24 10−6 1.21 10−6 1.04 10−6 7.5110−7

proposed MIMO contrast τ2 4.82 10−6 1.97 10−6 1.44 10−6 8.47 10−7 7.9 10−7

τ3 5.69 10−6 2.29 10−6 1.07 10−6 8.72 10−7 8.27 10−7

CPM sources τ1 5.37 10−6 2.67 10−6 1.44 10−6 1.08 10−6 5.2310−7

deflation appoach + τ2 5.03 10−3 3.09 10−3 4.06 10−3 2.27 10−3 2.16 10−3

quadratic MISO contrast τ3 1.03 10−2 8.51 10−3 7.30 10−3 6.75 10−3 4.22 10−3

extraction was NI = 5. In Table 1 we report both the average MSE of each
source and τi for i = 1, 2, 3 on 100 Monte-Carlo runs for the three estimated
sources versus the number of samples K. As intuitively expected, using the
proposed MIMO contrast, a constant performance has been obtained for the
three sources, contrary to the deflation procedure for which the performance is
degraded for the extraction of s2 and s3.

Experiment 3. We now compare a deflation approach combined with the kur-
tosis based contrast |Cum{y(n), y(n), y(n), y(n)}|2 with our quadratic contrast.
The kurtosis contrast has been optimized using a gradient ascent method. We
have considered N = 3 source signals mixed on Q = 4 sensors with a fil-
ter of length L = 3. The number of samples is K = 10000. We plotted in
Figure 3 the cumulative distribution of the empirical values of τi for the three
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Fig. 3. Comparison of MIMO results by using the kurtosis based contrast and the
proposed contrast CR,z

CPM estimated sources on 100 Monte-Carlo runs for both contrasts. One can
see that the quadratic approach outperforms the results obtained by the kurtosis
contrast. Besides, the optimization of our contrast is much quicker than gradient
optimization of the kurtosis.
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Abstract. It is well known the relationship between source separation and blind 
deconvolution: If a filtered version of an unknown i.i.d. signal is observed, 
temporal independence between samples can be used to retrieve the original 
signal, in the same manner as spatial independence is used for source separa-
tion. In this paper we propose the use of a Genetic Algorithm (GA) to blindly 
invert linear channels. The use of GA may be more appropriate in the case of  
small number of samples, where other gradient-like methods fails because of 
poor estimation of statistics. The experimental results show that the presented 
method is able to invert unknown filters with good numerical results, even if 
only 100 samples or less are available. 

1   Introduction 

The problem of source separation may be formulated as the recovering of a set of 
unknown independent signals from the observations of mixtures of them without 
any prior information about either the sources or the mixture [1, 2]. The strategy 
used in this kind of problems is based on obtaining signals which maximize a cer-
tain independence criterion. In the bibliography multiple algorithms are proposed 
for solving the problem of source separation in instantaneous linear mixtures, from 
neural networks based methods [3], cumulants or moments methods [4, 5], geomet-
ric methods [6] or information theoretic methods [7]. In real world situations, how-
ever, the majority of mixtures can not be modeled as instantaneous and/or linear. 
This is the case of convolutive mixtures, where the effect of channel from source to 
sensor is modeled by a filter [8]. 

A particular case of blind separation is the case of blind deconvolution, which is 
presented in figure 1. Development of this framework is presented in the following 
section. 
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w  h

 s(t)  y(t)

unknown
(convolution  system)

observation
(deconvolution system)

 e(t)

input output

 

Fig. 1. Block diagram of the convolution system and blind deconvolution system. Both filter h 
and signal s(t) on the convolution process are unknown. 

This paper proposes the use of Genetic Algorithms (GA) for the blind inversion of 
the (linear) channel. The theoretic framework for using source separation techniques 
in the case of blind deconvolution is presented in [9]. There, a quasi-nonparametric 
gradient approach is used, minimizing the mutual information of the output as a cost 
function to deal with the problem. A parametric approach can be found in [10]. The 
aim of the paper is to present a different optimization procedure to solve the problem, 
even if a small number of samples is available. In this case, gradient-like algorithms 
fail because of poor estimation of statistics. Our method is shown to be useful in this 
case, where other methods can not be used. This paper is organized as follows. Sec-
tion 2 describes the linear model and presents the basic equations. Section 3 explains 
the Genetic Algorithm for blind deconvolution. Finally, section 4 presents the ex-
periments showing the performance of the method. 

2   Model and System Equations 

2.1   Model 

We suppose that the input of the system S={s(t)} is an unknown non-Gaussian inde-
pendent and identically distributed (i.i.d.) process, and that subsystem h is a linear 
filter, unknown and invertible. We would like to estimate s(t) by only observing the 
system output. This implies the blind estimation of the inverse structure composed of 
a linear filter w. Let s and e be the vectors of infinite dimension, whose t-th entries are 
s(t) or e(t), respectively. The unknown input-output transfer can be written as: 

se H=  (1) 

where:  

++
−+

=

LLLLL

LL

LL

LLLLL

)()1()2(

)1()()1(

ththth

ththth
H  (2) 

is an infinite dimension Toeplitz matrix which represents the action of the filter h to 
the signal s(t). The matrix H is non-singular provided that the filter h is invertible,  
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i.e. satisfies ( ) ( ) ( ) ( ) ( )tthththth δ== −− 11 ** , where δ(t) is the Dirac impulse. The 

infinite dimension of vectors and matrix is due to the lack of assumption on the filter 
order. If the filter h is a finite impulse response (FIR) filter of order Nh, the matrix 
dimension can be reduced to the size Nh. In practice, because infinite-dimension equa-
tions are not tractable, we have to choose a pertinent (finite) value for Nh. 

2.2   Summary of Equations 

From figure 1, we can write the mutual information of the output of the filter w using 
the notion of entropy rates of stochastic processes as:  

( ) ( )( ) ( ) ( )( ) ( )YHyHyyHtyH
T

limYI TT

T

TtT
−=−

+
= −

−=∞→
τ,...,

12

1

 
(3) 

where τ is arbitrary due to the stationary assumption. The input signal S={s(t)} is an 
unknown non-Gaussian i.i.d. process, Y={y(t)} is the output process and y denotes a 
vector of infinite dimension whose t-th entry is y(t). We shall notice that I(Y) is al-
ways positive and vanishes when Y is i.i.d.  

After some algebra, Equation (2) can be rewritten as [10]: 

( ) ( )( ) ( )
2

0

1
log

2
jt

t

I Y H y w t e d E
π

θτ θ
π

ε+∞
−

=−∞

= − −  (4) 

At this point we need to derive the optimization algorithm. One possibility is, for 
example, to use gradient-like algorithms, where the derivative of I(Y) with respect to 
the coefficients of w filter is needed. In our system, a canonical genetic algorithm will 
be used, avoiding the calculus of hard statistics. The method is presented in next  
section. 

3   Genetic Algorithm for Blind Deconvolution 

3.1   Justifying the Use of a GA for Blind Deconvolution 

A genetic algorithm (GA hereinafter) is a search technique used in computer science 
to find approximate solutions to combinatorial optimization problems. GAs are a 
particular class of evolutionary algorithms that use techniques inspired by evolution-
ary biology such as inheritance, mutation, natural selection, and recombination (or 
crossover) [11].  

The process of blind deconvolution can be handled by a genetic algorithm which 
evolves individuals corresponding to different inverse filters and evaluate the esti-
mated solutions according to a measure of statistical independence. This is a problem 
of global optimization: minimizing or maximizing a real valued function ( )f x

r
 in the 

parameter space x P∈
r

. This particular type of problems is suitable to be solved by a 
genetic algorithm. GAs are designed to move the population away from local minima 
that a traditional hill climbing algorithm might get stuck in. They are also easily paral-
lelizable and their evaluation function can be any that assigns to each individual a real 
value into a partially ordered set (poset). GAs have already been successfully applied 
to linear and post-nonlinear blind source separation [12]. 
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3.2   GA Characterization 

The operation of the basic genetic algorithm needs the following features to be com-
pletely characterized: 

− Encoding Scheme. The genes will represent the coefficients of the unknown de-
convolution filter W  (real coding). An initial decision must therefore be taken 
about the length of the inverse filter. 

− Initialization Procedure.  Coefficients of the deconvolution filter which form part 
of the chromosomes are randomly initialized. 

− Fitness Function. The key point in the performance of a GA is the definition of the 
fitness function. In this case, we propose several fitness functions related with 
maximizing independence between the values of the estimated signal y(t). Maxi-
mizing kurtosis absolute value is proposed as a first approach, followed by two 
cumulant-based expressions. Further details will be given in Section 3.2.1. 

− Genetic Operators. Typical crossover and mutation operators will be used for the 
manipulation of the current population in each iteration of the GA.  The cross-
over operator is “Simple One-point Crossover”. The mutation operator is  
“Non-Uniform Mutation” [11]. This operator makes the exploration-exploitation 
trade-off be more favorable to exploration in the early stages of the algorithm, 
while exploitation takes more importance when the solution given by the GA is 
closer to the optimal. 

− Parameter Set. Population size, number of generations, probability of mutation and 
crossover and other parameters relative to the genetic algorithm operation were 
chosen depending on the characteristics of the mixing problem.  Generally a popu-
lation of 80-100 individuals was used, stopping criteria was set between 60-100 it-
erations, crossover probability is 0.8 per chromosome and mutation probability is 
typically set between 0.05 and 0.08 per gene. 

3.2.1   Evaluation Functions Proposed 
One of the most remarkable advantages of genetic algorithms is its great flexibility for 
the application of new evaluation functions, being the only requirement that the 
evaluation function assigns a real value to each individual into a partially ordered set. 
Therefore, the evaluation function is extremely modular and independent from the 
rest of the GA. This ability will allow us to decide which evaluation function per-
forms better in each situation. Generally, we will look for an evaluation function 
which gives higher scores for those chromosomes representing estimations which 
maximize statistical independence. 

• Measuring nongaussianity by kurtosis. Absolute value of the kurtosis has been 
extensively used as a measure of nongaussianity in finding independent compo-
nents [13]. Kurtosis is simple to compute. In this paper we propose using the abso-
lute value of the normalized kurtosis as the first evaluation function: 

4

2 2

E( )
( ) 3

E( )

x
kurt x

x
= −  (5) 
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 The evaluation function is directly derived from (5): 

Kurteval ( ) ( )w kurt y=  (6) 

where y  is the signal obtained after applying the filter w to the observation x . 

• Measuring mutual information through approximation by cumulants. As it is well-
known, kurtosis is very sensitive to outliers. Therefore we propose a different 
evaluation function. Using Edgewoth expansion, an approximation of mutual in-
formation can be reached using cumulants (higher-order statistics), as proposed  
in [14]: 

2 2 4 2
3 4 4 3 4

1

1
I( ) 4 ( ) ( ) 7 ( ) 6 ( ) ( )

48

n

i i i i i
i

y C y y y y yκ κ κ κ κ
=

= − + + − ⋅  (7) 

where { } { }3 4
3 3 4 4( ) ( ) ,   ( ) ( ) 3 3i i i i i ik y m y E y k y m y E y= = = − = −  and C is a  

constant. 
The proposed evaluation function splits the estimated signal y in a set of equal-

size chunks. Subsequently, it approximates mutual information between the pieces of 
the signal according to equation (7). As mutual information must be minimal for the 
estimated source under the assumption of statistical independence, and the evaluation 
function is attempted to be maximized by the GA, the evaluation function for a given 
chromosome in this case will be: 

2 2 4 2
IM 3 4 4 3 4

1

1
eval ( ) 4 ( ) ( ) 7 ( ) 6 ( ) ( )

48

n

i i i i i
i

W y y y y yκ κ κ κ κ
=

= + + − ⋅  (8) 

where y  is the signal obtained after applying the filter W to the observation x  and 

iy  is the i-th chunk from estimation y. 

• Measuring negentropy through approximation by cumulants. Negentropy is a 
nonegative measure of nongaussianity. Finally, using again higher-order cumulants 
and the Gram-Charlier polynomial expansion, gives  the approximation: 

{ } { } 223 41 1
J( ) 3

12 48
y E y E y≈ + −  (9) 

The evaluation function is just equivalent to the approximation of negentropy, as 
the maximum values should give good estimations: 

NEGeval ( ) J( )W y=  (10) 

where y  is the signal obtained after applying the filter W to the observation x . 

4   Experimental Results 

Finally, in order to verify the effectiveness of the proposed algorithm, some experi-
mental results using uniform random sources are presented. In all the experiments, the 
source signal is an uniform random source with zero mean and unit variance. As the 
performance criterion, we have used the output Signal to the Noise Ratio (SNR) 
measured in decibels. 
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Fig. 2. Encoding scheme in a genetic algorithm for filter coefficients of linear blind deconvolu-
tion. The values of the variables stored in the chromosome are real numbers. 
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Fig. 3. On the top line, the inverse filter coefficients. Down figures represent coefficients of the 
convolution between filters W(Z) and H(Z). From left to right: filter coefficients given by the 
GA using Kurteval  with an observed signal of 2000 samples,  IMeval  with 1000 samples, and  

Negeval  with 500 samples. Note that in some of the estimated filters, a delay due to the inde-

terminacies may appear. 

In the first experiment, the (unknown) filter is the low-pass filter ( ) 15.01 −+= zZH . 

Then, the proposed algorithm is used to obtain the inverse system. The parameters of 
the algorithm are: T = 5000 (number of observed samples), p = 7 (order of inverse 
filter), crossover probability was set to 0.8, mutation probability 0.075, population 
size is 80, and the stopping criterion is 100 generations. 

In the second experiment, we diminish the number of available samples. Here, the 
problem is more difficult due to the lack of information. Parameters of the algorithm 
are set to: T = 1000 (number of observed samples), p = 5 (order of inverse filter), and 
we used the same parameters for the genetic part of the algorithm as in the first ex-
periment. Figure 2 (center) shows the coefficients of the filters W(Z)  and WH(Z) re-
spectively when applying IMeval .   

In the last experiment, we reduced the number of available to T=500. The rest of 
the parameters remain the same as in the former simulations.  

Figure 3 summarizes the results of the experiments in terms of crosstalk (left) 
and computational time (right). These experiments show that although the number 
of samples are low, the algorithm has been capable of estimating the inverse sys-
tem. Crosstalk between the estimation and the source is situated  between  20-30dB, 
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Fig. 4. Crosstalk and time comparison of the proposed GA using the three different evaluation 
functions and a gradient descent algorithm 

depending on the length of the signal and the contrast function applied. When com-
pared to a typical deconvolution gradient descent algorithm, the GA presents a 
better performance as the number of samples in the observed signal decreases. 

5   Conclusion 

A GA algorithm is presented for blind inversion of channels. The use of this tech-
nique is justified here because of the small number of samples. In this situation, gra-
dient-like algorithm fails because it is very difficult to obtain a good estimation of 
statistics (score function, pdf, etc.). Optimization using GA avoids these calculations 
and gives us good results for inverting the unknown filter. Future research should 
extend the idea to Wiener systems (linear filter plus nonlinear function), where a 
Hammerstein structure can be used and all the parameters should be found by these 
optimization techniques.   
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Abstract. Convolutive mixtures of images are common in photography
of semi-reflections. They also occur in microscopy and tomography. Their
formation process involves focusing on an object layer, over which defo-
cused layers are superimposed. Blind source separation (BSS) of convolu-
tive image mixtures by direct optimization of mutual information is very
complex and suffers from local minima. Thus, we devise an efficient ap-
proach to solve these problems. Our method is fast, while achieving high
quality image separation. The convolutive BSS problem is converted into
a set of instantaneous (pointwise) problems, using a short time Fourier
transform (STFT). Standard BSS solutions for instantaneous problems
suffer, however, from scale and permutation ambiguities. We overcome
these ambiguities by exploiting a parametric model of the defocus point
spread function. Moreover, we enhance the efficiency of the approach by
exploiting the sparsity of the STFT representation as a prior.

1 Introduction

Typical blind source separation (BSS) methods seek separation when the mix-
ing process is unknown. However, loose prior knowledge regarding the mixing
process often exists, due to its physical origin. In particular, this process can
be represented by a parametric form, rather than a trivial representation of raw
numbers. For example, consider convolutive image mixtures caused by defocus
blur. This blur can be parameterized, yet the parameters’ values are unknown.
Such mixtures occur in tomography and microscopy [1, 2]. They also occur in
semi-reflections [1], e.g., from a glass window: a scene imaged behind the semi-
reflector is superimposed on a reflected scene [3, 4]. Each scene is at a different
distance from the camera, thus differently defocus blurred in the mixtures.

We claim that BSS can benefit from such a parametrization, as it makes the
estimation more efficient while helping to alleviate ambiguities. In the case of
semireflections, our goal is to decompose the mixed and blurred images into
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the separate scene layers, by minimizing the mutual information (MI) of the
estimated objects. An attempt by Ref. [1] used exhaustive search, hence being
computationally prohibitive. Ref. [5] attempted convolutive image separation
by minimization of higher order cumulant. That method suffers from a scale
ambiguity: the sources are reconstructed up to an unknown filter. Moreover, the
method’s complexity increases fast with the support of the separation kernel.

The complexity of convolutive source separation has been reduced in the do-
main of acoustic signals, by using frequency methods [6, 7]. There, BSS is de-
composed into several small pointwise problems by applying a short-time-Fourier
transform (STFT). Then, standard BSS tools are applied to each of the STFT
channels. However, these tools suffer from fundamental ambiguities, which may
reduce the overall separation quality. Ref. [8] suggested that these ambiguities
can be overcome by nonlinear operations in the image domain. However, this
method encountered performance problems when simulated over natural images.

We show that these problems can be efficiently solved by exploiting a para-
metric model for the unknown blur. Moreover, we use the sparsity of STFT
coefficients to yield a practically unique solution, which is derived fast. The
algorithm is demonstrated in simulations of semi-reflected natural scenes.

2 Problem Formulation

Let {s1, . . . , sK} be a set of K independent sources. Each source is of the form
sk = sk(x), k = 1, . . . ,K, where x = (x, y) is a two dimensional (2D) spatial
coordinate vector in the case of images. Let {m1, . . . ,mK} be a set of K measured
signals, each of which is a linear mixture of a convolved version of the sources

mi(x) = ai1 ∗ s1(x) + . . . + aiK ∗ sK(x) , i = 1, . . . ,K . (1)

Here ∗ denotes convolution and aik(x), k = 1, . . . ,K, are linear spatially invari-
ant filters. Denote {ŝ1, . . . , ŝK} as the set of the reconstructed sources. Recon-
struction is done by applying a linear operator W on {m1, . . . ,mK}. Each of
the reconstructed sources is of the form

ŝk(x) = wk1 ∗m1(x) + . . . + wkK ∗mK(x) , k = 1, . . . ,K , (2)

where wik(x) are linear spatially invariant filters. Our goal is: given only the
measured signals {m1, . . . ,mK}, find a linear separation operator W that in-
verts the mixing process, thereby separating the sources. The mixing process is
inverted by finding W that minimizes the MI of {ŝ1, . . . , ŝK}.

MI is expressed by using the marginal entropies Hŝk
and the joint entropy of

the estimated sources Hŝ1,ŝ2 as Iŝ1,ŝ2 =
∑K
k=1Hŝk

−Hŝ1,...,ŝK
. However, estima-

tion of the joint entropy may be unreliable. It can be avoided if the mixtures are
pointwise, rather than convolutive. In pointwise mixtures, the separation oper-
ator W is a simple matrix, termed the separation matrix. In this case, the MI
can be expressed as (see for example Ref. [9])

I(ŝ1, ŝ2) = − log |det(W)|+
∑K

k=1
Hŝk

. (3)
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It is desirable to do the same for convolutive mixtures. However, if W is a
convolutive operator, Eq. (3) does not hold. We note that expressions similar
to (3) have been developed for convolutive mixtures [10] assuming spatially white
sources. Nevertheless, algorithms based on these expressions suffer from whiten-
ing of the separated sources, corrupting the estimation severely both in acoustic
and in imaging applications.

3 Efficient Separation of Convolutive Image Mixtures

We may use Eq. (3) in convolutive mixtures, despite the fact that it is valid
only in pointwise mixtures. This is achieved by decomposing the convolutive
optimization problem into several smaller ones, which are apparently indepen-
dent of each other. This approach is inspired by frequency domain algorithms
developed for acoustic signals [6,7]. Nevertheless, this approach has its own fun-
damental limitations, which are discussed and solved in Secs. 4 and 5.

We apply STFT1 to the data. Denote ω = (ωx, ωy) as the index vector of the
frequency variable of the 2D STFT. Assuming that the STFT window size is
larger than the effective width2 of the blur kernel [6], Eq. (1) becomes

mi(ω,x) ≈ ai1(ω)s1(ω,x) + . . . + aiK(ω)sK(ω,x), i = 1, . . . ,K , (4)

since convolution becomes a multiplication in this domain.
Eq. (4) exposes a fundamental problem in cases of energy-preserving convolu-

tion operators. In such operators aik(ω)→ 1 as ω → 0 (the overall light energy
over the image area is invariant to the convolution). This occurs in defocus blur,
since change of focus does not cause light attenuation, only a different spread of
the light energy across the sensor area [1, 2]. As aik(ω)→ 1, Eq. (4) becomes

mi(ω,x) ≈ s1(ω,x) + . . . + sK(ω,x), i = 1, . . . ,K . (5)

This is a singular set of equations. Therefore, low spatial frequencies are not well
reconstructed. Note that this has nothing to do with the ICA problem. Even if
the blur kernels aik are perfectly known, the reconstruction is ill-conditioned in the
low-frequency bands [1,2]. Keeping in mind this matter, we continue with the blind
estimation process. Note that at each sub-band ω, Eq. (4) expresses a pointwise
mixture of sub-band images. At each frequency channel, the mixed sources can be
separated by simple ICA optimization. Then, all the separated sources from all
the frequency channels may be combined by inverse STFT.

To describe the ICA optimization, denote W(ω) as the separation matrix
at channel ω. In addition, denote Iω(ŝ1, ŝ2) and Hω

ŝk
as the MI and marginal

entropies of the estimated sources at channel ω, respectively. Then, similarly to
Eq. (3), the MI of the estimated sources at each channel is given by

min
w(ω)

{
− log |det[W(ω)]|+

∑K

k=1
Ĥω
ŝk

}
, (6)

1 This operation is also termed as a windowed Fourier transform, which may be more
appropriate for spatial coordinates as we use.

2 A discussion regarding the STFT window width is given in Sec. 7.
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where Ĥω
ŝk

is an estimator of the channel entropy of an estimated source. Hence,
using this factorization, MI minimization of a convolutive mixture is expected
to be both more accurate and more efficient to obtain.

Sparse Separation in the STFT Domain

Now, we exploit image statistics in order to achieve a computationally efficient
solution for the sub-problems in each frequency channel. As shown in [11], spar-
sity of sources is a strong prior that can be exploited to achieve a very efficient
separation. It is known from studies of image statistics (see for example [12]) that
sub-band images are sparse signals. Motivated by [11,13], their quasi-maximum
likelihood blind separation can be achieved via minimization of

min
w(ω)

{
− log |det[W(ω)]|+ (1/N)

∑K

k=1

∑N

n=1
|ŝk(ω, n)|

}
. (7)

Here n indexes the STFT shift (out of a total of N). This enables relative Newton
optimization [14], which enhances the efficiency of sparse source separation.

4 Inherent Problems

The frequency representation brings efficiency of pointwise separation. With it,
however, come fundamental ambiguities that are common in pointwise problems.
The permutation ambiguity implies that the separated sub-band images appear
at each channel in a random permutation. Some sub-band images corresponding
to the “first” estimated source may actually belong to the “second” estimated
source. When the channels are transformed back to the image domain using the
inverse STFT, the reconstructed images can suffer from crosstalk. Even though
source separation was achieved in each channel independently, distinct sub-band
images from different sources are combined in the reconstruction.

In addition, the scale of different channels is unknown due to scale ambiguity,
leading to imbalance between frequency channels. When the estimated channels
of a source are transformed back to the image domain using the inverse STFT,
the reconstructed image can appear unnatural and suffer from artifacts.

Moreover, the performance in each frequency channel is frequency depen-
dent. Typically, there are a few frequency channels with good separation, a few
channels with very poor separation and the rest of the channels have mediocre
separation quality. There are several reasons for this phenomenon. One reason
is related to the different sparsity of different frequency channels [15].

5 Inter-channel Knowledge Transfer

In this section we bypass the permutation and scale ambiguities by exploiting
a prior about the unknown convolutive process. Blur caused by optical defocus
can be parameterized [16]. As an example, consider a rough parametric model:
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a simple 2D Gaussian kernel with different widths in the x and y directions [1].
Denote ξi,k = [ξi,k,x, ξi,k,y] as the vector of the unknown blur parameters of the
blur kernel of source k at image i and

Gξi,k
(ω) = exp

[
−ω2

x/(2ξ
2
i,k,x)

]
exp
[
−ω2

y/(2ξ
2
i,k,y)

]
(8)

as the filter which preserves light energy. In addition to defocus, let us incorporate
attenuation gi,k of each source k into any mixture i.

Assume that in each acquired image, one of the layers is focused,3 i.e. Gξk,k
=1.

Define A(ω) as the mixing operator in frequency channel ω.

A(ω) =

⎡⎢⎢⎢⎢⎣
1 g1,2Gξ1,2(ω) . . . . . .

g2,1Gξ2,1(ω) 1
...

...
...

...
. . .

...
. . . . . . gK,K−1GξK,K−1(ω) 1

⎤⎥⎥⎥⎥⎦ . (9)

Thus, the separation matrix in each channel is parameterized by ξi,k and gi,k
and is of the form W(ω) = [A(ω)]−1 . Note that the parameter ξi,k and gi,k are
the same for all frequency channels. Hence, there is a small number of actual
unknown blur variables. On the other hand, there is a large number of frequency
channels upon which the estimation of these variables can be based.

As we explain is Sec. 5.2, we can automatically select three channels ωa, ωb

and ωc, that yield the best separation results according to a ranking criterion.
Define Ã(ωa) = [W(ωa)]−1 and similarly Ã(ωb) and Ã(ωc). Let ãi,k be the
coefficients of Ã. Then, for each blur kernel, we calculate the unknown blur
parameters ξi,k and gi,k by solving the following set of equations:⎧⎨⎩gi,kGξi,k

(ωa) = ãi,k(ωa)/ãi,i(ωa)
gi,kGξi,k

(ωb) = ãi,k(ωb)/ãi,i(ωb)
gi,kGξi,k

(ωc) = ãi,k(ωc)/ãi,i(ωc)
, (10)

We solve this set to find the parameters ξi,k and gi,k, thus deriving the blur and
attenuation parameters based on those few selected channels.4

Now, we can use these parameters and Eq. (8) to calculate gi,kGξi,k
(ω) for all

the frequency channels. This directly yields the separation operator W for all
the frequency channels. We invert the mixing process by using this W. It may
be possible to achieve higher accuracy by representing each blur kernel using
parametric models other than Gaussian, requiring more parameters. This would
require selection of additional channels.
3 We stress that we seek layer separation rather than deblurring. Therefore, if source

k is defocused in all the images, we denote the least defocused version of source k as
the effective source we aim to reconstruct. Then, we denote Gξi,k (ω) as the relative
defocus filter between the effective source and the defocused source at image i .

4 One might suggest optimizing the MI directly over the parameters gi,k and ξi,j .
However, this optimization scheme is not necessarily convex. A detailed discussion
on this issue is given in [15].
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5.1 Separation of Semi-reflections

Section 5 describes a parametric model for mixtures of blurred images. It con-
sists of an attenuation factor gi,k and an energy preserving filter Gξi,k

. However,
in common applications such as semi-reflections [1] or widefield optical section-
ing [2], no attenuation accompanies the change of focus. Hence, gi,k = 1 for
all i, k. For each signal, each source is affected only by two parameters in the
Gaussian model. Thus, only two channels are needed to solve for the unknown
ξi,k. Moreover, in the special case of semi-reflections, we have only two sources.
Therefore, the mixing operator and the separation operator are reduced to

A(ω) =
[

1 Gξ1,2

Gξ2,1(ω) 1

]
, W(ω) =

[
1 −Gξ1,2

−Gξ2,1(ω) 1

]
{det(|A(ω)|)}−1 .

(11)
The equation system we need to solve in order to estimate ξ1,2 and ξ2,1 is⎧⎪⎪⎨⎪⎪⎩

−Gξ1,2(ω
a) = w1,2(ωa)/w1,1(ωa)

−Gξ1,2(ω
b) = w1,2(ωb)/w1,1(ωb)

−Gξ2,1(ω
a) = w2,1(ωa)/w2,2(ωa)

−Gξ2,1(ω
b) = w2,1(ωb)/w2,2(ωb)

. (12)

Here, wi,k are the coefficients of matrix W(ω) and ωa,ωb are the best and
second best channels according to the ranking we describe next.5

We stress that thanks to this approach of parameter-based inter-channel
knowledge transfer, the permutation, scale and sign ambiguities are solved: the
sources are not derived in a random order or with inter-channel imbalance, but
in a way that must be consistent with the blur model, hence with the image for-
mation process. In addition, the problem of channel and data dependent perfor-
mance is alleviated, since the separation operator is estimated based on selected
channels performing well.

5.2 Selecting a Good Frequency Channels

The parameter estimation method requires ranking of the channels. The ranking
relies on a quality criterion for the separation (i.e., independence) of ŝ1 and ŝ2
at each frequency channel ω, given the sparsity assumption.

The scatter plot of sparse independent signals has a cross shape aligned with
the axes, in the (ŝ1, ŝ2) plane, i.e., most of the samples should have small angles
relative to the ŝ1 and ŝ2 axes. Define

χω
L1

=
∑2

k=1

({∑N

n=1
|ŝk(ω, n)|

}
/

{∑N

n=1
[ŝk(ω, n)]2

})
. (13)

This criterion increases as the samples in the scatter plot deviate from the ŝ1
and ŝ2 axes, and is reduced when each sample n has non-zero values exclusively in
5 It might be possible to achieve better estimation by using more than two channels,

for example, by solving a non-linear least squares problem.
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Fig. 1. Simulation results: (a) Two original natural images. (b) The two convolved and
mixed images. (c) Reconstructed layers.

ŝ1 or ŝ2. This closed form expression automatically determines which frequency
channels yield the most separated sources, and are thus preferable.

Thus, in our algorithm, we first perform ICA in all the frequency channels. We
then calculate χω

L1
, thus ranking the channels. Then, we select the best channels

as those that correspond to the smallest values of the penalty function χω
L1

.
These channels are used in Sec. 5.

6 Demonstration

The method was simulated using two natural images of size 122 × 162 pixels
(Fig. 1a) as the two scene layers. The blur kernels we used are Gaussians with
parameter vectors ξ1,2 = [1, 2] and ξ2,1 = [2, 1] pixels. We did not use attenua-
tion coefficients because in photography of real semi-reflections, the image layers
are only blurred but not attenuated by change of focus. We added i.i.d Gaussian
noise with standard deviation of ∼ 2.5 gray levels to the convolved and mixed
images. The resulting mixed and noisy images are shown in Fig. 1b. Separation
was performed using STFT having 13× 13 frequency channels. The separation
results are presented in Fig. 1c. The resulting images are indeed well separated.
There is no visible crosstalk between the images. The contrast of the recon-
structed images is reduced compared to the original images. This stems from
inherent ill-conditioning of the mixing matrix at low frequencies (see Sec. 4),
i.e., this is not associated with the blindness of the separation problem.

7 Discussion

The convolutive image separation algorithm has currently a single parameter to
tweak: the width of the STFT window. It can affect the separation results, and
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the optimal size somewhat depends on the acquired images. As mentioned in
Sec. 3, it must be larger than the effective width of the blur kernel. On the other
hand, a very wide window can degrade the sparsity of the sub-band images. A
detailed discussion is given in [15]. We determined the window width by trial
and error, but we believe this can be automated. For example, multi-window
STFT may be used, followed by selection of the the best window width using
the criterion described in Sec. 5.2. This requires further research.
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Abstract. Nonnegative Matrix Factorization (NMF) has proven to be
a useful tool for the analysis of nonnegative multivariate data. However,
it is known not to lead to unique results when applied to nonnegative
Blind Source Separation (BSS) problems. In this paper we present first
results of an extension to the NMF algorithm which solves the BSS prob-
lem when the underlying sources are sufficiently sparse. As the proposed
target function has many local minima, we use a genetic algorithm for
its minimization.

1 Matrix Factorization and Sparse Component Analysis

Since recently high throughput methods like microarrays allow to measure whole
genom wide gene expression profiles. Intelligent data analysis tools are needed
to unveil the information hidden in those microarray data sets. BSS might proof
useful to go beyond simple clustering and decompose such data sets into com-
ponent profiles which might be associated with underlying biological processes.
Linear BSS can be considered a matrix factorization problem, where the m× T
matrix of observations X is decomposed into an m× T matrix S of underlying
sources and an m×m mixing matrix according to X = AS.

Thus the observations X represent weighted sums of m underlying sources
which form the rows of the m× T matrix S, and the element aij of the mixing
matrix A forms the weight with which the j-th source contributes to the i-th
observation. With BSS now, given only the matrix X, a matrix factorization as in
(1) is sought such that A and S are unique up to some scaling and permutation
indeterminacies. Obviously, the problem is highly underdetermined and can only
be solved uniquely if additional constraints are imposed onto the sources or the
mixing matrix.

A variant of matrix factorization is nonnegative matrix factorization (NMF),
where the matrices S, A and X are assumed to be strictly nonnegative. But
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NMF cannot solve the BSS problem uniquely up to scaling and permutation in-
determinacies, hence additional constraints are needed. Concerning microarrays,
the assumption of sparsely represented sources, which have many zero entries,
seems appropriate. Such sparseness constraints have already been exploited suc-
cessfully in NMF based image analysis methods [2].

The basic idea is thus to determine two nonnegative matrices Â and Ŝ such
that a) the rows of the matrix Ŝ are as sparse as possible and b) the recon-
struction error of the mixtures ||X− ÂŜ||2 is as small as possible. To solve this
problem algorithmically we propose to minimize the following target function

E(Ã, S̃) = ||X− ÃS̃||2 − λ

N∑
i=1

σ(̃si), (1)

where σ is an appropriate sparseness measure defined as the fraction of its zero
to its nonzero elements, λ is a positive weighting factor, and s̃i denotes the i-th
row of the matrix S̃. To make this definition of sparseness practical we use a
nonnegative threshold τ which defines the maximum value an entry of s may
have in order to be regarded as a zero element. This leads to the following
sparseness measure σ:

σ(s) =
number of elements of s < τ

number of elements of s
, (2)

1.1 Genetic Algorithm Based Optimization

As the target function defined in Eq. 1 has many local minima we use a Genetic
Algorithm (GA) for its minimization.

GAs are stochastic global search and optimization methods inspired by nat-
ural biological evolution. For the minimization of the target function in Eq. 1
the m2 elements of the mixing matrix Â have to be determined. Because of the
scaling indeterminacy we may assume that the columns of the original mixing
matrix A are normalized such that its diagonal elements are all unity. Hence,
only the m(m − 1) off-diagonal elements of the matrix Â have to be deter-
mined. Accordingly, each of the Nind individuals of the GA algorithm consists
of m(m − 1) parameters which are referred to as genes. As the original mixing
matrix is assumed to have nonnegative entries only, all genes should be non-
negative, too. However, we allow the genes to become negative throughout the
optimization procedure as we have observed in our experiments that otherwise
the GA often fails to converge to the global minimum of the target function.

In every generation of the GA, the fitness of each individual for the optimiza-
tion task has to be computed in order to determine the number of offsprings it
will be allowed to produce. In order to limit the number of offsprings we use a
linear scaling procedure to transform target function values to fitness values. To
compute the target function values, for every individual, a matrix Ã− is gen-
erated with off elements consisting of the genes as stored in the individual and
with diagonal elements being unity. To avoid singular matrices Ã− we replace
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matrices Ã− with a conditional number higher than a user defined threshold
τsing by a pseudo-random matrix with a conditional number lower than τsing ,
which also has ones on its diagonal. The genes of the corresponding individual
are then adjusted accordingly.

Next, the inverse W̃− of Ã− is computed. The matrices S̃ and Ã are then
obtained by setting the negative elements of the matrices S̃− = W̃−X and Ã−,
respectively, to zero. Inserting the matrices S̃ and Ã into (1), the resulting target
function value is assigned to the corresponding individual. The individuals are
then arranged in ascending order according to their target function values, and
their fitness values F (p(i)), i = 1, . . . , Nind, are determined by

F (p(i)) = 2− μ + 2(μ− 1)
p(i) − 1
Nind − 1

, (3)

where p(i) is the position of individual i in the ordered population. The scalar
parameter μ, which is usually chosen to be between 1.1 and 2.0, denotes the
selection pressure towards the fittest individuals.

We have used Stochastic Universal Sampling (SUS) [4] to determine the abso-
lute number of offsprings an individual may produce. The offsprings are created
in a two step procedure. In the first step, two individuals, which conform to the
SUS criterion, are chosen at random and are used to create a new individual.
Thereby, the genes of the new individual are generated by uniform crossover, i.e.
each gene of the new individual is created by copying, each time with a probabil-
ity of 50 %, the corresponding gene of the first or the second parent individuum.
In the second step, called mutation, the new offsprings are obtained by altering a
certain fraction rmut of the genes of the new individuals. These genes are chosen
at random and are increased or decreased by a random number in the range of
[0,mmax]. The last action within each generation of a GA is the replacement
of the parent individuals by their offsprings where we use an elitist reinsertion
scheme. In order to prevent the algorithm from converging prematurely we make
use of the concept of multiple populations.

To implement the algorithm we have used the functions provided by the Ge-
netic Algorithm Toolbox [4] for all GA procedures except the mutation operator
which we implemented by ourselves.

Despite using multiple populations, the algorithm failed in many experiments
to recover the source and mixing matrix after its first run. Stable results could
still be obtained by applying the algorithm repeatedly. The final estimates of the
mixing matrix Â and the source matrix Ŝ were obtained as Â =

∏K
j=1 Ã(j) and

Ŝ = S̃(K), respectively, as the matrix X can be factorized as X =
∏K
j=1 Ã(j)S̃(K).

2 Simulations

2.1 Reliability of the Proposed Algorithm

We generated 25 different observation matrices X(j), j = 1, . . . , 25, in order to
evaluate the reliability of the proposed algorithm. Three nonnegative sources
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s
(j)
i , i = 1, . . . , 3, were created with each source consisting of 1000 nonnegative

random elements uniformly distributed in the interval (0, 1). We set j = 900
randomly selected elements of s(j)

1 , j = 800 of s(29)
2 and j = 700 of s(39)

3 , respec-
tively, to zero before adding random noise with a maximum amplitude of 0.001.
Accordingly, source amplitudes smaller than τ = 0.001 (cf. Eq. 2) were set to
zero yielding sparseness values of the sources of σ1 = 0.9, σ2 = 0.8 and σ3 = 0.7,
respectively. These sources constituted the rows of 25 different source matrices
S(j). Next, 25 random nonnegative 3 × 3 mixing matrices A(j) have been gen-
erated and the observation matrices X(j) were computed as X(j) = A(j)S(j).
Based on these observation matrices only, the presented algorithm was used to
recover the source and the mixing matrices, respectively. Multiple Npop = 8 pop-
ulations, each consisting of Nind = 50 individuals, were indispensable to prevent
premature convergence to suboptimal solutions. The populations were allowed
to exchange rmig = 20% of their fittest individuals after every Tex = 100 gen-
erations. Thereby, each individual consisted of 6 genes corresponding to the 6
off-diagonal elements of the mixing matrix A. Further matrices with condition
numbers larger than τsing = 100 have been replaced by random matrices with
low condition numbers. In the simulations λ = 0.01 was used in (1), the selection
pressure was set to μ = 1.5, while rmut = 10% of the genes of each individual
were increased or decreased by maximally mmax = 0.1 during the mutation step.
Furthermore, we used an elitist reinsertion scheme, where 98% of the individ-
uals were replaced by their offsprings. Finally 2000 iterations and K = 2 − 5
repetitions of the algorithms were deemed sufficient.

Correlation coefficients between original and estimated sources and the cross-
talking error (CTE) were determined in each case and are shown in Fig. 1. The
algorithm lead in 76% of the simulations to correlation coefficients higher than
0.99 and to a cross-talking error between the estimated and the original mixing
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Fig. 1. Top: the correlation coefficients between the estimated and the original sources.
Middle: crosstalking error between the estimated and the original mixing matrix.
Bottom: the condition numbers of the original mixing matrices.
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matrix below 1. Whenever the condition number of the mixing matrix was larger
than τsing = 100 the algorithm failed to converge. The reason is that in the case
of poorly conditioned mixing matrices the global minimum is very narrow and
therefore hard to locate during the optimization process. On the other hand,
we have noticed that choosing τsing too large lead to worse results when the
conditional number of the original mixing matrix was low. This happens because
a low τsing narrows the search space and the global minimum is found easier.
Hence, our algorithm is especially eligible for problems where the mixing matrix
is not extremely poorly conditioned.

2.2 Recovery of Correlated Sources

In this section we show that the proposed method is capable of solving the BSS
problem even if the underlying sources are correlated.

Three sources si, i = 1, . . . , 3, were generated as follows: s1 and s2 were
nonnegative random vectors with 90% and 80% of their elements set to zero,
s3(n) = s2(n) + 0.001(n− 1) where si(n) denotes the n-th element of the source
si and n = 1, . . . , 1000 (cf. Fig. 2). Note that s2 and s3 are correlated (c = 0.65),
while s1 and s2 as well as s1 and s3 are uncorrelated. The observation matrix
X (cf. Fig. 2) was generated by mixing the sources using a randomly generated
nonnegative 3× 3-matrix A which had a conditional number of 5.5.
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Fig. 2. left: The original sources. Note, that s3 was obtained from s2 by adding a linear
function, right: The rows of the mixture matrix X.

Table 1. Results obtained with the presented method (sparse NN BSS) and the
fastICA algorithm. Displayed are the correlation coefficients ci between the i-th orig-
inal source and its corresponding estimate as well as the cross-talking error (CTE)
between the estimated and the original mixing matrix.

c1 c2 c3 CTE

sparse NN BSS 1.00 1.00 1.00 0.39
fastICA 1.00 1.00 0.75 5.19
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Fig. 3. left: Sources estimated by the nonnegative sparse BSS algorithm, right: Sources
estimated by the fastICA algorithm

Using the proposed algorithm and the parameter set as in the last section,
sources as well as the mixing matrix could be recovered almost perfectly (see
Tab. 1 and Fig. 3) with only K = 2 repetitions of the algorithm. In contrast, ICA
based BSS algorithms like fastICA [3] failed to recover the original correlated
sources si, i = 1, . . . , 3, as well as the mixing matrix A. Rather, fastICA tried
to extract sources which are as independent as possible which, however, did not
conform to the original sources sought after. Such poor performance of fastICA
was to be expected as the independence assumption was violated deliberately.

3 Sparse NMF Analysis of PXE Microarray Data

Gene microarrays are the state of the art technique used to investigate cellular
processes at the genetic level. Generally, the goal of a microarray experiment is to
determine which genes are expressed to what extent by the biological cells under
investigation. Current research, however, also focuses on clustering the detected
genes according to their biological function. For this purpose, a huge group
of identical cells is divided into several subgroups and each of the subgroups is
then exposed to a specific ambient condition. The cells adapt themselves to these
conditions by up- or down-regulating their biological processes as, for instance,
their metabolism or the constitution of the ribosomes. If for each of the different
ambient conditions a microarray experiment is carried out genes belonging to the
same biological process should be jointly up or down-regulated and hence should
be easy to detect by e.g. k-means clustering. However, many genes are known to
participate simultaneously in several biological processes thus an assignment of
those genes to only one cluster leads to incomplete information at best.

This problem can be overcome by linear BSS based clustering methods.
Thereby, the microarray data collected constitute the rows of the data matrix X,
i.e. the element xmt, m = 1, ...,M , and t = 1, ..., T , contains the expression level
of the t-th gene on the microarray recorded under the m-th experimental condi-
tion. Here, M denotes the number of experiments and T is the total number of
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genes detected on the microarray chip. The rows of the matrix S are then con-
sidered to contain the genetic fingerprints of the individual biological processes
occurring in the cell. This means that the element smt, m = 1, ...,M , t = 1, ..., T ,
contains the expression level of the t-th gene which would be observed if the gene
expression of the m-th underlying biological process could be recorded in isola-
tion in a microarray experiment. As mentioned above, the underlying biological
processes lead to up- or down-regulated gene expressions depending on the am-
bient condition the cells were exposed to before the microarray experiment was
carried out. These different levels of activity are encoded into the matrix A,
where the element amm reflects the activity of the m-th biological process under
the m-th experimental condition.

Obviously, the matrices S and A, respectively, are nonnegative as no negative
expression of genes as well as no negative activity of biological processes exists.
Furthermore, biological cells try to save energy by expressing as little genes as
possible for each of their biological processes. Hence, the rows of the matrix S
are supposed to contain only few active genes. Given these nonnegativity and
sparseness constraints, the proposed sparse NMF algorithm seems appropriate
to recover the genetic fingerprints of the biological processes in S as well as the
activity matrix A.

We have applied the proposed sparse NMF algorithm to analyze microarray
data which were recorded during an investigation of pseudoxanthoma elasticum
(PXE), an inherited connective tissue disorder characterized by progressive cal-
cification and fragmentation of elastic fibers in the skin, the retina, and the
cardiovascular system. During the investigations M=8 microarray experiments
have been carried out. In the first and the second experiment the PXE fibrob-
lasts were incubated in Bovine Serum Albumin (BSA) whereas the incubation
time was three hours in the first and 24 hours in the second experiment. In the
third experiment the PXE fibroblasts were incubated for three hours in an envi-
ronment with a high concentration of the Transcription Growth Factor beta and
in the fourth experiment the cells were incubated for 24 hours in an environment
which was rich in Interleukin 1 beta. The same experiments were then repeated
with a control group of normal fibroblasts. The used Affymetrix HG-U133 plus
2.0 microarray chips are capable of detecting the expression levels of more than
54675 genes, of which, however, only T=10530 were expressed significantly in at
least one of the experiments. Hence, only these 10530 genes were considered in
the further data analysis.

This data set was used to constitute the 8×10530 observation matrix X which
was then decomposed into the matrices Â and Ŝ by the proposed sparse NMF
algorithm. For the genetic algorithm we increased the number of sub-populations
to Npop = 56, the maximum number of iterations to 2500 and the number of
algorithm repetitions to K = 8 while the remaining parameters were set as in
section 2. Note, that after the fifth of the K = 8 repetitions of the algorithm
the resulting matrices Â and Ŝ did not change any further which indicated the
overall convergence of the algorithm. After the sparse NMF analysis each row
of the matrix S should ideally consist of the genetic fingerprint of one specific
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Table 2. Number of genes related with calcium ion binding (#(cib)) for each of the
eight estimated sources. Only genes which are rated exclusively as having a calcium ion
binding molecular function in the Gene Ontology [5] database were considered. Most
genes related with calcium ion binding are clustered into source 6.

Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7 Source 8
#(cib) 0 13 7 0 4 35 9 6

biological process only. It must be noted, however, that at least one hundred of
such processes are occurring simultaneously in a biological cell while the number
of available observations and hence the number of estimated sources was only
eight. But despite these highly overcomplete settings the algorithm succeeded in
grouping the majority of genes which are related with calcium ion binding (344
in total) and hence with the disease picture of PXE into the sixth estimated
source (see Tab. 2). Furthermore, the calcium ion binding related genes in the
sixth source seem to be specific for only one biological process as maximally
14 % of them could be found in any of the remaining sources.

For comparison, we have used Independent Component Analysis (ICA) to
factorize the observation matrix X into the m×m mixing matrix AICA as well
as into m×T source matrix SICA. In ICA the nonnegativity and the sparseness
constraints are replaced by the assumption that the rows of the matrix SICA
are mutually independent. We have chosen the well-known fastICA algorithm [3]
for the data analysis. In contrast to the results obtained with the sparse NMF
algorithm, maximally 12 genes related with calcium ion binding could be found
in one source. Hence, the proposed sparse NMF algorithm seems to be better
suited for the analysis of PXE cells than the fastICA algorithm.
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Abstract. The minimum support ICA algorithms currently use the ex-
treme statistics difference (also called the statistical range) for support
width estimation. In this paper, we extend this method by analyzing
the use of (possibly averaged) differences between the N − m + 1-th and
m-th order statistics, where N is the sample size and m is a positive
integer lower than N/2. Numerical results illustrate the expectation and
variance of the estimators for various densities and sample sizes; the-
oretical results are provided for uniform densities. The estimators are
analyzed from the specific viewpoint of ICA, i.e. considering that the
support widths and the pdf shapes vary with demixing matrix updates.

1 Introduction

Recently, new contrasts for ICA have been developed for the separation of
bounded sources, based on the fact that the output support width varies with
the mixing coefficients; the independent components are recovered one by one,
by finding directions in which the outputs have a minimum support convex hull
measure [1, 3]. Such approach benefits from some advantages: on one hand the
contrast is extremely simple and free of spurious maxima [1]; and on the other
hand, its optimization can be easily handled, leading to interesting results in
terms of speed and residual crosstalk.

The support estimation of a pdf fX has been extensively studied in statistics
and econometrics. Nevertheless, most methods require resampling techniques or
tricky tuning parameters, and are thus not really appropriated to ICA algo-
rithms. For instance, if the support Ω(X) of the output is (a, b), existing ICA
methods currently use the range approximation to estimate the (Lebesgue) mea-
sure of the support μ[Ω(X)] : b − a � R(X) � maxi,j [xi − xj ], 1 ≤ i, j ≤ N
where the xj can either be considered as iid realizations of the common random
variable (r.v.) X, or as a samples of a stationary stochastic process constituted
of a sequence of N independent r.v. Xj , all sharing the same pdf fX .

An extended form of this estimator will be considered here, using order statis-
tics differences. The study is motivated by the idea that the extreme statistics
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are not necessarily reliable. Let x(1) ≤ · · · ≤ x(N) be a rearranged version of the
observed sample set XN = {x1, ..., xN}; each of the x(j) can be seen as a real-
ization of a r.v. X(j). Obviously, the X(j) are not independent and do not share
the same pdf. Both x(j) and X(j) are called the j-th order statistic of XN . This
appellation is not related to the (higher) order statistics, frequently used in the
ICA community. The order statistics, as defined in this paper, have already been
used in the BSS context in [4] (see also [10], [9] and references therein). These
ordered variates can be used to define the range R1(X) = X(N) −X(1), or the
(symmetric) quasi-ranges (QR): Rm(X) = X(N−m+1)−X(m), with m < "N/2#.
Such QR could be also used to estimate the quantity b − a. However, even if
Rm(X) is a generalization of R(X) = R1(X), both estimators only involve two
sample points. In order to include more points in the estimation, we also compare
Rm(X) to 〈Rm(X)〉 � 1/m

∑m
i=1 Ri(X).

The QR-based support estimation is analyzed in Section 2, for various pdf and
sample sizes. Specific phenomena are discussed in Section 3, keeping in mind that
the pdf of X vary with time in ICA applications, due to the iterative updates
of the demixing matrix. Note that the performance analysis of ICA algorithms
using the above estimators is discussed in a separated paper [2].

2 Density, Bias and Variances of the QR

A large attention has been paid to order statistics and QRs in the statistic
literature. For instance, the pdf fRm(X) of Rm(X) for Ω(X) = (a, b) has been
established in [8]. If FX denotes the cdf of X, the computation of fX(j) yields

fRm(X)(r) =
N !

((m− 1)!)2(N − 2m)!

∫ ∞

−∞
Fm−1
X (x) [FX(x + r)− FX(x)]N−2m

×fX(x)fX(x + r) [1− FX(x + r)]m−1
dx .

It can be seen that the density fRm(X) is a function of fX = F ′
X , as well as of

N and m. Although, the above theoretical expression is of few use in practice; for
most parent densities fX , no analytical expression can be found for simple func-
tions of Rm(X), such as expectation and moments. Dealing with f〈Rm(X)〉(r) is
even worst, since f〈Rm(X)〉 depends on the joint density of R1(X), · · · , Rm(X).
A more reasonable way to compute the expectation and variances of Rm(X) and
〈Rm(X)〉 is to prefer numerical simulations to theoretical developments that are
valid for a single density only; this is done in Section 2.1. However, for compar-
ison purposes, the exact expressions of E[Rm(X)], VAR[Rm(X)], E[〈Rm(X)〉]
and VAR[〈Rm(X)〉] aer given in Section 2.2 in the case where fX is the uni-
form pdf.

2.1 Empirical Expectation and Variance of QRs

Let us note U , L, T and V white r.v. having uniform, linear, triangular and ‘V’-
shape densities, respectively. We note the empirical expectations and variances
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Fig. 1. Empirical expectations and variances of Rm(X) (left) and 〈Rm(X)〉 (right) for
N = 500 (1000 trials). The theoretical curves for the uniform case are labelled ‘ ∗ ’.

of estimators taken over t trials as Et[·] and VARt[·]. The evolution of these
quantities with respect to m is shown in Fig. 1. Three particular effects have to
be emphasized.

• Effect of m and fX : the estimation error increases with m for fixed N at
a rate depending on fX , and m has thus to be chosen small enough in
comparison to N (the true support measures of the white r.v. are μ[Ω(T )] =
2
√

6 > μ[Ω(L)] = 3/2
√

8 > μ[Ω(U)] = 2
√

3 > μ[Ω(V )] = 2
√

2). The
support of V and U can be estimated with a low variance, even for a small m,
contrarily to T and L. For instance, the variance of the estimators decreases
with m for linear and triangular r.v., while this behavior cannot be observed
for U or V ; the variance of the estimators increases when unreliable points
(i.e. corresponding to a low value of the pdf) are taken into account. The
shape of VARt[Rm(U)] and VARt[〈Rm(U)〉] are more surprising, but they
have been confirmed by the analytical equations given in Section 2.2.

• Effect of N : it can be reasonably understood, though not visible on Fig. 1,
that Rm(X) and 〈Rm(X)〉 are asymptotically unbiaised estimators of b− a
if b and a are not isolated points, that is if the support Ω(X) includes
some neighborhoods of b and a. Similarly, limN→∞ VAR[Rm(X)] = 0 (for
m fixed); We conjecture that the latter limit holds for 〈Rm(X)〉, with fixed
m. Note that the convergence rate depends of fX . These properties can be
easily confirmed when X is uniform (see next section).

• Rm(X) vs 〈Rm(X)〉: the error of Rm(X) increases at a higher rate than the
one of 〈Rm(X)〉 for increasing m and fixed N ; this is a consequence of the
regularization due to the average in 〈Rm(X)〉: Pr [〈Rm(X)〉 ≥ Rm(X)] = 1.

The above simulation results indicate that 〈Rm(X)〉 should be preferred to
Rm(X) for support estimation; for a small m compared to N , both the error
and the variance are improved. The choice of m is difficult, though : it must be
small enough to ensure a small error, but not too small if one desires to estimate
the support of e.g. fT or fL or of noisy data; an optimal value of m depends of
the unknown density.
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2.2 Exact Expectation and Variance of QRs for Uniform Pdf

In this section, contrarily to the remaining of the paper, U denotes a normalized
uniform r.v. with support equal to (0, 1), in order to simplify the mathematical
developments, that are sketched in the Appendix.

Using the expression of fRm(X) given in Section 2, it can be shown that
E[Rm(U)] = (N − 2m+1)/(N +1) and VAR[Rm(U)] = 2m(N − 2m+1)/((N +
2)(N + 1)2). Simple manipulations directly show that Rm(U) is an asymptoti-
cally unbiaised estimator of the support measure, monotonously increasing with
limit b− a, when m is kept fixed.

The expectation of 〈Rm(U)〉 can directly be derived from E[Rm(U)]; if m is
fixed, 〈Rm(U)〉 is asymptotically unbiased. On the contrary if we set m = "N/k#,
k ∈ Z, the asymptotic bias equals 1/k. Such bias can be cancelled if m(N) in-
creases at a lower rate that N ; this is e.g. the case if m(N) = "

√
N/k#. Regarding

the variance of 〈Rm(U)〉, we have

VAR[〈Rm(U)〉] =
−3m3 + 2m2(N − 2) + 3mN + (N + 1)

3m(N + 2)(N + 1)2
.

Using ad-hoc scaling coefficients, the related quantities can be obtained for
white r.v. (no more confined in (0, 1)). The theoretical curves (labelled using
‘ ∗ ’) are superimposed to the associated empirical ones if Fig. 1.

3 Estimating the Mixture Support

The above discussion gives general results regarding the estimation of the sup-
port convex hull measure of a one-dimensional r.v. Let us now focus on the
support estimation of a single output (deflation scheme) of the 2-dimensional
ICA application; the support varies with the associated row of transfer matrix.
For the ease of understanding, we constrain the sources to share the same pdf.
The instantaneous noise-free ICA mixture scheme, under whiteness constraint,
leads to the following expression for an output:

ZX(φ + ϕ) = cos(φ + ϕ)S1 + sin(φ + ϕ)S2 , (1)

where the Si are the sources, and φ and ϕ are resp. the mixing-whitening and
demixing angles. The subscript X means that the sources follow the pdf fX . We
define θ = φ + ϕ as the input-output transfer angle.

The minimum support ICA approach updates the angle ϕ to minimize the
objective function μ[Ω(ZX(θ))]. Since it has been shown that this cost function
is concave in a given quadrant, a gradient-based method leads to θ = kπ/2,
with k ∈ Z. In practice however, μ[Ω(ZX(θ))] has to be estimated, for example
using the proposed form of estimators. The following subsections points out two
phenomena that have to be considered.
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3.1 The Mixing Effect

Fig. 2 shows the surface of the empirical expectation of the error ε, defined as

ε(X,N,m, θ) = μ[Ω(ZX(θ))]− 〈Rm(ZX(θ))〉 , (2)

when fX is a triangular or ‘V’-shape density, θ ranges from 0 to π/2, and N
from 2 to 500.

In addition to the bias dependency on fX , we can observe what we call the
‘mixing effect’: the error increases for θ going from 0 or π/2 to π/4. This phe-
nomenon can be explained as follows. The pdf of a sum of r.v. is obtained by
convoluting the pdfs of the summed r.v. Therefore, the tails of resulting pdfs
will be less sharp than the source pdfs. For instance, the pdf of a sum of two
normalized uniform r.v. is triangular. The mixing effect phenomenon can now be
understood, since for fixed N and m, the support measure of a pdf with sharp
tails is better estimated than of a pdf with smoothly decreasing tails. The main
consequence of this phenomenon is that the empirical contrast is more ‘flat’ than
the true one with respect to the transfer angle.
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Fig. 2. Empirical error E100 [ε(X, N, m, θ)] for various source pdf fX , with N ranging
from 2 to 200, and mN/5 � max(1, �N/5�)

3.2 The Large-m Given N Effect

The mixing effect emphasizes that the support estimation quality depends of
θ: the support of ZX(π/4) is always more under-estimated than the one of
ZX(kπ/2) by using QR or averaged QR estimators. This results from the fact
that the output density depends of the transfer angle. In section 2.1, the effect
of m on the expectation and variance of the estimators is shown to depend of
the density fX . In the ICA application it thus depends of θ: the bias increases
with m, at a rate depending of fZX(θ), i.e. of θ. This is a tricky point, since
even if μ[Ω(ZX(π/4))] > μ[Ω(ZX(kπ/2))], this inequality evaluated using the
support measure approximations can be violated. In this scenario, occurring for
m greater than a threshold value m†, the contrast optimum will be obtained for
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Fig. 3. Evolution of error means for various pdf fX , N ranging from 2 to 200 and
m1 = max(1, �N/5�),m2 is given by eq. (3). E100 [E1(X)] = E100 [〈E1(X)〉] (first col.);
E100 [Em1(X)] (second col.); E100 [〈Em1(X)〉] (third col.); and E100 [〈Em2(X)〉] (last col.).
The width of the curves reflects twice the empirical variance of E(X) and 〈E(X)〉.

θ = π/4 rather than θ ∈ {0, π/2}, i.e. the algorithm will totally fail. For exam-
ple, when dealing with 〈Rm(ZU (θ))〉 and two 500-sampled sources, m† � 100.
If Rm(ZU (θ)) is considered, m† � 40. Indeed, the pdf of ZU (π/4) is triangular,
and we see on Fig. 1 that the estimation of the support of a white triangular
r.v. is lower than the estimated support of a white uniform r.v. for these values
of N and m > m†. These values of m† obviously decrease with decreasing N .

Fig. 3 illustrates the quantities Em(X) � Rm(ZX(π/4)) − Rm(ZX(0)) and
〈Em(X)〉 � 〈Rm(ZX(π/4))〉 − 〈Rm(ZX(0))〉: negative values of Em(X) and
〈Em(X)〉 obtained for m > m† clearly indicate that the optima of the empirical
contrast, i.e. the corresponding estimators will lead to wrong source separation so-
lutions. The last column shows the result obtained by using (3); the vertical dashed
lines indicated thatm has been incremented. This comment suggests to pay atten-
tion to the choice of m: it must be small enough by comparison to N to ensure a
small error and m < m†, but greater than one for regularization purposes. There-
fore, ifα denotes the nearest integer toα, we suggest to takem according to the rule

max
(
1,�
([(N − 18

6.5

)0.65

− 4.5
]))

. (3)

Though the above rule of the thumb will not be detailed here, we mention that rule
(3) results from a distribution-free procedure for choosingm and valid for all θ and
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all source pdfs; the method is detailed in [2]. A positive point is that the critical
valuem† does not seem to be sensitive to the number of sources, probably due to the
compensationof twoeffects: even if the tails offZX(θ) tend todecrease exponentially
when many sources are mixed since fZX(θ) tend to be Gaussian-shape (inducing a
large under-estimation of the support), large-value sample points can be observed
due to the summed r.v. (so that the estimated mixture support should be larger
than the estimated source support).

4 Conclusion and Future Work

In this paper, we have investigated the use of the quasi-rangesRm(X) and averaged
symmetric quasi-ranges 〈Rm(X)〉 for support width minimization approaches to
ICA. Note that the computation of the true QR requires the knowledge of the or-
der statistics ofX, that are unknown here; in this paper, the i-th order statisticX(i)
was approximated by the i-th largest observed value x(i) of X. This work is moti-
vated by the fact that extreme statistics can be unreliable. It is shown that m has
to be chosen small in comparison to N , but greater than one to make the variance
of the estimators decrease for several kinds of pdf. The main advantage of the av-
eraged QR is that it takes 2m points into account. From both the expectation and
variance points of view, the averaged QR has better performances than the simple
QR. We have shown that an excessive value m with given N could lead the related
ICA algorithms to totally fail; from this point of view too, the averaged QR has
to be preferred to the QR. Future work should focus on a study involving specific
noise, as well as a comparison with existing endpoint estimators.
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Appendix. Details of Some Results for Uniform Densities

• Expectation and Variance of Rm(U)

It is known e.g. from [5] that the pdf of the i-th order statistic a uniform
r.v. is fU(i)(u) = N !

(i−1)!(N−i)! [FU (u)]i−1[1 − FU (u)]N−ifU (u). By using ba-
sic properties of expectation and Ω(U) = (0, 1), we have E[U(i+1) − U(i)] =

1
N+1

N !
i!(N−i−1)!

∫ 1
0 xi(1 − x)N−i−1dx, where the integral equals i!(N−i−1)!

N ! [6]. It

comes that
∑N−m
i=m E[U(i+1) − U(i)] = N−2m+1

N+1 . Similar development as above
on the i-th order statistic of a uniform variable on (0, 1) leads to VAR[U(i)] =
i(N−i+1)

(N+2)(N+1)2 = VAR[U(N−i+1)].
Since CORR[Ui, Uj ] (1 ≤ i < j ≤ N) is know from [7], we obtain

COV[U(i+p), U(i)] =
i(N + 1− i− p)
(N + 2)(N + 1)2

. (4)

We find VAR[U(i+p) − U(i)] = VAR[U(i+p)] + VAR[Ui] − 2COV[U(i+p), U(i)],
which equals p(N+1−p)

(N+2)(N+1)2 . The results enounced in Section 2.2 comes when setting
i = m and p = N − 2m + 1.

• Expectation and Variance of 〈Rm(U)〉
We obviously have E[〈Rm(X)〉] = 1

m

∑m
p=1

N−2p+1
N+1 = N−m

N+1 .
The computation of VAR[〈Rm(U)〉] is more tricky. Observe first that:

m2VAR[〈Rm(U)〉] =
m∑
p=1

VAR[Rp(U)] + 2
∑

1≤i<j≤m
COV [Ri(U), Rj(U)] . (5)

Using eq. (4), we find: COVi<j [Ri(U), Rj(U)] = 2i N+1−2j
(N+2)(N+1)2 .

We have, using basic properties:

m∑
p=1

VAR[〈Rp(U)〉] =
(N + 1)m(m + 1)− 2/3m(m + 1)(2m + 1)

(m + 2)(m + 1)2
, (6)

and∑
1≤i<j≤m

COV [Ri(U), Rj(U)]] =
m(m− 1)

6(N + 2)(N + 1)2
{
−3m2 + m(2N − 3) + 2N

}
.

which leads to the results presented in Section 2.2.
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Université catholique de Louvain, Machine Learning Group,
Place du Levant, 3, 1380 Louvain-la-Neuve, Belgium

{vrins, verleysen}@dice.ucl.ac.be

Abstract. Linear instantaneous independent component analysis (ICA)
is a well-known problem, for which efficient algorithms like FastICA and
JADE have been developed. Nevertheless, the development of new con-
trasts and optimization procedures is still needed, e.g. to improve the
separation performances in specific cases. For example, algorithms may
exploit prior information, such as the sparseness or the non-negativity
of the sources. In this paper, we show that support-width minimization-
based ICA algorithms may outperform other well-known ICA methods
when extracting bounded sources. The output supports are estimated
using symmetric differences of order statistics.

1 Introduction and Motivation

Most of ICA researchers and practitioners agree with the idea that it does not
exist a unique ICA algorithm outperforming all alternatives, and making the
other methods useless. Obviously, certain approaches, like e.g. FastICA [11] or
JADE [12] yield remarkable separation performances while simultaneously being
fast. Nevertheless, at least three arguments for developing new ICA contrasts
can be emphasized, even for the simplest (but also most widely used) linear,
instantaneous and noise-free mixture scheme [10]. First, to extend the field of
application of BSS techniques (specific procedures have been derived to deal with
e.g. structured gaussian sources). Second, some contrasts can be handled easier
than others; for example, the convexity property simplifies the optimization step.
Third, the contrast performances may vary with the source densities, so that the
separation performances depend on the cost function and on the application.

For example, we can cite BSS methods exploiting the non-negativity [9] or
sparseness [8] of the sources, as well as their temporal dependency [13], etc.
The minimum support approach has been independently suggested by Cruces &
Duran [14] and Vrins et al. [1], to extract bounded sources in a deflation way.
The theoretical framework has been well established; this approach has relation-
ship to zero Renyi’s entropy, and also with the Young and Brunn-Minkowski
inequalities. On the other hand, this approach benefits from the discriminacy
property, i.e. all the local optima of the theoretic criterion are relevant for ICA.
� Michel Verleysen is Research Director of the Belgian F.N.R.S.
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This property gives confidence in the solution obtained when the optimum is
reached using gradient techniques. This is not the case for example when sepa-
rating multimodal sources by minimizing the entropy or the mutual information
[4]. It is interesting to note that the boundness prior on the sources have been
used by Theis and Gruber to establish separability results in postnonlinear mix-
ture schemes [7]. In addition, this approach can also be used to separate signals
being correlated in some specific way, such as landscape images [3]. Finally, a
related symmetric method with geometrical interpretation can be found in the
nice paper of Pham [5].

However, the performances of the minimum-support ICA method on bounded
source signals have not been detailed and compared to other methods. Similarly,
the support estimation problem, which is a crucial issue though, is not discussed
in this context. In this paper, we compare the performances of FastICA and max-
imum absolute kurtosis maximized using [6] (AKMICA) to minimum support al-
gorithms called XSICA, OSICA and AVOSICA. In the three last algorithms, the
support measure criterion are estimated in different ways, and is minimized using
the optimization technique for non-differentiable criteria presented in [6]. We also
analyze the performances of JADE, though it is a rather different method (highly
limited by the number of sources, symmetric, algebraic and thus non-iterative).

We show that in the instantaneous noise-free and noisy cases, AVOSICA ben-
efits from interesting signal interference ratio (SIR) performances results in com-
parison to other ICA algorithms, without added complexity.

2 The XSICA, OSICA and AVOSICA Algorithms

The recent minimum support approach to ICA requires support estimation; in
[1,3] the statistical range is used, i.e. the output supports are estimated by
the difference of the output extreme values. When this criterion is minimized
using [6], we call this algorithm XSICA (extreme statistics ICA). Nevertheless,
extreme values can be unreliable in the noisy case, so that alternative ways
to estimate bounded support widths have to be derived. This can be easily
done by using order statistics differences. The i-th order statistic of an observed
sequence XN = {x1, ..., xN} is noted x(j) and is the j-th largest observed sample,
i.e. {x(1) ≤ · · · ≤ x(N)} [17]. The latter sequence is no other than an ordered
version of the set XN . If we note by Rm(X) (1 ≤ m < "N/2#, m ∈ Z) the quasi-
range defined by x(N−m+1) − x(m), both the quantities Rm(X) and 〈Rm(X)〉 �
1/m

∑m
i=1 Rm(X) can be seen as support width estimators, where m is a tuning

parameter. Combining those criteria with the optimization procedure [6], the
OSICA (order statistics ICA) and AVOSICA (average order statistics ICA) are
obtained. Note that XSICA, OSICA and AVOSICA are equivalent when setting
m = 1. In 〈Rm(X)〉, m equals twice the number of sample points used in the
support estimation. The estimation of the support convex hull width by 〈Rm(X)〉
is analyzed in [2]; it is shown to be preferred to Rm(X), but the performances
of those practical criterion in terms of SIR are not discussed. In addition, no
specific information about how to choose the tuning parameter m in 〈Rm(X)〉
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is given. A small value of m cancels the regularization induced by the average,
so that the criterion could be highly sensitive to noise; on the other hand, an
excessive value of m may lead the algorithm to totally fail. Furthermore, even
if only a small error is observed for large N and small m when estimating the
support of a given random variable (r.v.), the shape of the function that links
the variance of the estimator to m depends of the (unknown) pdf of the r.v.; the
variance can either increases or decreases with m [2].

In the remaining of this paper, a meaningful procedure for choosing a satisfac-
tory value for m given N is derived in Section 3. The performances of AVOSICA
are then pointed out, in comparison to XSICA, OSICA, AKMICA, JADE and
FastICA using the gauss non-linearity, for robustness purpose [10] (the tanh
non-linearity gives similar results).

3 Towards a Meaningful Choice of m with Fixed N

In this section, we derive a procedure to set a default value for the tuning pa-
rameter m, for fixed N . We propose to find the maximum value m0 of m given
N , ensuring that the positive error μ[Ω(X)] − 〈Rm(X)〉 is lower than an error
threshold E with a high probability, whatever is the density of X. In other words,
we try to find m0 such that for all m ≤ m0:

Pr [μ[Ω(X)]− 〈Rm(X)〉 ≤ E ] ≥ L(m0) , (1)

where L(m0) is a threshold ideally close to, but lower than one.
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Fig. 1. Densities and (cumulative) distributions of the 5 sources
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The main problem of this approach is that if E is a constant, we are not able to
find an expression for L(m0) that is i) useful, and ii) distribution-free, in the sense
that it does not depends on fX . For instance, the probability in (1) can be written
as 1−F〈Rm(X)〉(μ[Ω(X)]−E) where F〈Rm(X)〉 is the (cumulative) distribution of
〈Rm(X)〉, which depends on fX through the order statistic densities fX(i) . The
point is thus to include the density dependency into the error term E . Let us
approximate the support measure by using quantile differences, and define the
error term as

E(X) � μ[Ω(X)]− (ξq − ξp) , (2)

where ξq and ξp (0 ≤ p < q ≤ 1) are the q-th and p-th quantiles of FX ,
respectively. Note that E(X) is positive and tends to 0 for increasing q and
decreasing p, whatever is the density of X, but at a various rate. For example,
with q = .95 and p = 1− q we have E(T ) = 31.6% and E(V ) = 5% (see Fig. 1).

Observe that any lower bound of Pr [Rm(X) ≥ μ[Ω(X)]− E ] can be used in
the right hand side of eq. 1:

Pr [〈Rm(X)〉 ≥ μ[Ω(X)] − E ] = Pr
[
〈Rm(X)〉 ≥ μ[Ω(X)] − E|Rm(X) ≥ μ[Ω(X)] − E

]
×Pr [Rm(X) ≥ μ[Ω(X)] − E ]

+ Pr
[
〈Rm(X)〉 ≥ μ[Ω(X)] − E|Rm(X) < μ[Ω(X)] − E

]
×Pr [Rm(X) < μ[Ω(X)] − E ]

≥ Pr [Rm(X) ≥ μ[Ω(X)] − E ] , (3)

where the inequality result from the fact that 〈Rm(X)〉 ≥ Rm(X) with proba-
bility one.

On the other hand, using the confidence interval for quantiles derived in [16],
noting that Pr

[
Rm(X) ≥ Rm0(X)|m ≤ m0

]
= 1 and setting p = 1 − q in (2),

the following inequality holds for for all m ≤ m0:

Pr[Rm(X) ≥ ξq − ξ1−q] ≥
N∑

i=m0

(
N
i

)
qN−i(1 − q)i −

N∑
i=N−m0+1

(
N
i

)
qi(1 − q)N−i

︸ ︷︷ ︸
�L(q,m0,N)

and consequently, using inequality (3) and E(X) given by (2):

Pr
[
μ[Ω(X)]− 〈Rm(X)〉 ≤ E(X)

]
= Pr [〈Rm(X)〉 ≥ ξq − ξ1−q]

≥ L+(q,m0, N) , (4)

with L+(q,m0, N) � max(0,L(q,m0, N)). The latter inequality can be under-
stood as follows: if q is chosen close enough to one, 〈Rm(X)〉 nearly covers the
true support, with a probability higher than L+(q,m0, N). Note that q has to
be chosen close enough to one, so that E(X) is small; otherwise the bound L+ in
(4) is no more related to support estimation quality. The terms close enough to
one depends of the cdf FX . In practice however, if no information on the source
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Fig. 2. Left: L(q, m, N), useful only for couples (m, N) below the dashed line; Right:
selected iso-L+ curves for q = 0.95. The curve m� given by eq. (5) vs N has been also
plotted.

densities is available, q can be a priori taken equal to e.g. 0.95. The value of m
is thus fixed once the quantile number q and the probability threshold are fixed:
we take m0 as default value for m so that for a given quantile number q and
p = 1 − q, the probability lower bound L+(q,m0, N) is higher than or equal to
a positive threshold lower than 1.

The single parameter m has thus been replaced by two parameters, but the
proposed approach has two advantages, though. First, the new parameters have
a concrete interpretation; q is related to the support estimation, and the bound
L+ tells us the confidence that we can have in the support estimation. Second,
in practice, q and L+ can be fixed, so that a direct relation between m and N
is found, which can be used to set a default value for m.

Figure 2(a) shows L(q,m,N) versus m and N . The valid values of m for a
given N are m ≤ "N/2#. The bound is useful only for couples (m,N) below the
dashed line illustrating L(q,m,N) = 0. In Figure 2(b) we plot the maximum
value m0 of m so that the quantity L+(q,m0, N) equals various fixed values
(indicated on the related curve) with respect to N . Null values for m0 indicate
that it does not exist m0 such that L+(q,m,N) ≥ 0.95 for fixed N , q = .95
and all m ≤ m0. In other words, each couple (m,N) located under these curves
ensure that inequality (4) holds. Observe that for sufficiently large N , small m
and for a given q, L+(q,m,N) tends to one.

It must be stressed that some attention must be paid when evaluating L+ for
large N ; numerical problems may arise when dividing two factorial expressions of
large numbers. Therefore, we suggest to use the logarithms when computing the

binomial coefficients, i.e.
(
N
i

)
= exp

[∑N
j=1 log j −

∑N−i
j=1 log j −

∑i
j=1 log j

]
.

If one desires to speed up the method, the following empirical law can be used
for selecting a default value for m; we can take

m�(N) = max
(
1,�
([(N − 18

6.5

)0.65

− 4.5
]))

, (5)

where α denotes the nearest integer to α (see Fig. 2(b)).
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4 Performances Comparison

In this section, we compare the extraction performances of 5 ICA algorithms:
FastICA, JADE, AKMICA and three minimum-support approaches, OSICA
(support estimated by Rm(X)), XSICA (support estimated by R1(X)) and
AVOSICA (support estimated by 〈Rm(X)〉). The default value for the param-
eter m was chosen equal to m�, given by (5). The algorithms have been tested
on the extraction of 5 bounded and white sources from 5 mixtures. The pdf and
cdf of the five sources (matched to (0,1)) are illustrated in Fig. 1. The mixing
matrix is built from 25 random coefficients uniformly distributed in (0, 1).

Figure 3 compares the histograms of the SIR for each extracted source in
the noise-free case for N = 2000 and m = m�(N). Remind that after hav-
ing processed the permutation indetermination, the SIR criterion of the i-th
source si reduces to SIR(si) =

∑
j �=i |ci(j)|/|ci(i)|. We can observe in Figure 3

that AVOSICA and XSICA give the most interesting results, in comparison to
OSICA, AKMICA, JADE and FastICA (gauss), especially for the separation of
sources with linear and triangular pdf. It must be stressed that even if AVOSICA
and OSICA perform quite satisfactory for small values of N , the performances
are improved for large N .

Table 1 summarizes the global SIR performance of ICA algorithms for vari-
ous noise levels. Since we deal with SIR, the performance results are analyzed
from the mixing matrix recovery point of view; the source denoising task is not
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Fig. 3. 12-bins histograms of SIR for each extracted source, for 50 trials, N = 2000,
and m = m�(N) = 37. The analyzed algorithms are AVOSICA (‘A’), XSICA (‘X’),
OSICA (‘O’), AKMICA (‘K’), JADE (‘J’) and FastICA (‘F’). The global SIR is the
averaged SIR computed from the individual source SIRs for a given trial.
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Table 1. 100-trials empirical means and variances of global SIR performances of several
ICA algorithms (global SIR is the averaged SIR computed from the individual source
SIRs for a given trial); m = m�(N). Gaussian noise with standard deviation σn has
been added to the whitened mixtures (so that for a given σn, the mixture SNRs equal
−10 log σ2

n; they do not vary between trials, and do not depend of the mixing weights).

σ2
n N AVOSICA AKMICA JADE FastICA XSICA OSICA

0 500 .106 (.005) .135 (.006) .127 (.006) .194 (.023) .139 (.025) .208 (.03)
2000 .05 (.004) .065 (.0012) .06(.0007) .097 (.004) .082 (.02) .087 (.003)

0.01 500 .102 (.003) .13 (.005) .12 (.004) .187 (.02) .127 (.02) .189 (.021)
2000 .047 (.0006) .066 (.001) .059 (.0008) .105 (.005) .08 (.02) .085 (.0024)

0.05 500 .105 (.0027) .13 (.0039) .122 (.0032) .184 (.015) .144 (.012) .176 (.013)
2000 .051 (.0012) .067 (.0012) .06 (.0006) .112 (.007) .1 (.0225) .09 (.006)

considered here. The global SIR, for a given trial, is obtained by computing the
mean of the extracted sources SIR. The good results of AVOSICA can be ob-
served, despite the fact that the value of m has not been chosen to optimize the
results, i.e. we always have taken m = m�(N). It must be stressed that the value
of the parameter m is not critical when chosen around m�(N).

JADE is a very good alternative when the dimensionality of the source space
is low. The computational time of FastICA is its main advantage, contrarily to
AKMICA.

5 Conclusion

In addition to existing results regarding the theoretical framework of minimum-
support ICA and their specific advantages when separating sources correlated
in a specific way, we have shown that these methods also yield competitive re-
sults in comparison to other ICA algorithms for extracting bounded sources in
the noise-free and noisy cases. This is shown in the particular situation where
the support measure is estimated using averaged quasi-ranges. We have fur-
ther derived a rule to choose a default value for the tuning parameter m, for
given sample size N . This choice is related to the confidence of support esti-
mation quality. Numerical results illustrate that the proposed default value of
m yield interesting SIR performances, that are comparable for m close to the
suggested value.
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Abstract. We address the problem of Blind Source Separation (BSS)
in the context of instantaneous (memoryless) linear mixtures, where the
unknown mixing coefficients are time varying, changing periodically in
time. Such a mixing model is realistic, e.g., when considering a biological
or physiological system where the mixing coefficients are affected by pe-
riodic processes like breathing, heart-beating etc. Assuming stationary
sources with distinct spectra, we rely on second-order statistics (SOS)
and offer an expansion of the classical Second Order Blind Identification
(SOBI) algorithm, accommodating the periodic variation model. The
proposed algorithm consists of estimating several types of correlation
matrices related to the time-varying SOS of the observations, followed
by applying generalized joint diagonalization, which leads to estimates
of the parameters of the periodic mixing. These estimated parameters
are used in turn to apply a time-varying unmixing operation, recover-
ing the desired sources. In its basic form (as presented in here), the
algorithm requires prior knowledge (or a good estimate) of the cyclic
period. We demonstrate the performance improvement over SOBI in
simulation.

1 Introduction

In quite a few Blind Source Separation (BSS) applications the classical assump-
tion of static (i.e., time-invariant) mixing coefficients seems implausible. Often,
the mixing medium undergoes some modifying processes during the observation
interval, possibly causing slight variations in the mixing coefficients. Neverthe-
less, the case of time-varying mixtures has not been studied as extensively in the
BSS community. It is common practice to rely of the adaptive nature of some
sequential learning algorithms to track possible time-variations in the mixture
- see, e.g., [1]. Yet another possible approach is to parameterize the time vari-
ation and try to estimate the associated variation parameters from the data,
to be used, in turn, for constructing the time-varying separation. Such an ap-
proach was taken, e.g., in [2], where the time variations were modeled as linear
in time.

In some bio-medical and other applications, such as in the case of multi-lead
Electrocardiogram (EEG) (e.g., [3], [4]), it may be more reasonable to assume
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periodic variation of the mixing coefficients, as the medium (the human body)
may be affected by the periodic breathing mechanism throughout the measure-
ment interval.

The concept of periodic modeling of the mixtures’ time-variations can be
applied to various source models, thereby enhancing classical BSS algorithms
based on respective properties of the sources. In this work we chose to concentrate
on Second-Order Statistics (SOS), enhancing the well-known Second Order Blind
Identification (SOBI) algorithm (Belouchrani et al., [5]). The resulting algorithm
may thus be applied to any wide-sense stationary (WSS) source signals, as long
as they are mutually uncorrelated and have non-similar spectra (i.e., no source
is allowed to have a spectrum which is a scaled version of another source’s
spectrum).

2 Problem Formulation

We consider M zero-mean WSS mutually uncorrelated source signals with un-
known (but distinct) spectra, denoted by s[n] = [s1[n]s2[n]...sM [n]]T .

The most general representation of a square instantaneous time-varying (and
noiseless) mixture model would be

x[n] = A[n]s[n] (1)

where x[n] = [x1[n]x2[n]...xM [n]]T are the M observations (at time-instant n).
Assuming that each element of A[n] varies periodically in time (with known1

angular frequency ω), the most general expression for each element Aij [n] of
A[n] would be (for i, j = 1, 2, ...,M):

Aij [n] = A
(0)
ij +

∞∑
k=1

A
(k)
ij cos(kωn + φ

(k)
ij ). (2)

where {A(k)
ij }∞k=0 and {φ(k)

ij }∞k=1 are the unknown amplitudes and phases of the
different harmonics. Note further, that using some trivial transformations, (2)
can be written in matrix form as

A[n] = (I +
∞∑
k=1

[E(k)
c cos(kωn) + E(k)

s sin(kωn)])A0 (3)

where A0 is the “mean” constant matrix, I denotes the M ×M identity ma-
trix and {E(k)

c }∞k=1 and {E(k)
s }∞k=1 are the relative coefficients matrices of the

quadrature components of the respective harmonics.
In order to simplify the discussion, we shall assume later that all the coeffi-

cients in the relative coefficients matrices have “small” absolute values (relative
to 1). Further, we shall now assume that all relative coefficients pertaining to
1 Often this is a reasonable assumption, as the mechanism which determines the fre-

quency of the change in the mixing matrix is, in many cases, either known or can
be conveniently measured externally.
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second and higher harmonics are negligible, thereby reducing the discussion to
a first-order Fourier approximation of the periodic variations. Hence, for nota-
tional convenience we shall, from now on, denote the remaining E(1)

c and E(1)
s

simply as Ec and Es (respectively).
To conclude, the mixing model is given by:

x[n] = (I + Ec cos(ωn) + Es sin(ωn)) A0s[n] (4)

where x[n], n = 1, 2, ..., N are the observed mixtures, from which it is desired to
recover the sources s[n], possibly via estimation of A0, Ec and Es.

3 Derivation of the Algorithms

We begin by evaluating the SOS of x[n]. It should be noted that despite the
stationarity of the sources, the observations are obviously nonstationary, due to
the time-varying nature of the mixture. First we establish the following:

Rx[n, �]
�
= E

[
x[n + �]xT [n]

]
= E

[
A[n]s[n + �]sT [n]AT [n]

] �
= A[n]Λ	A

T [n] (5)

where Λ� = E[s[n + #]sT [n]] are the source signal’s diagonal autocorrelation
matrices at lag #. For additional convenience we shall also denote Rx[n, #] as
R�[n]. We assume that the correlation span of the sources is small relative to
the variation period of the mixing, hence for all values of # to be considered we
may assume that cos(ω#) ≈ 1 and sin(ω#) ≈ 0. We therefore have cos(ω(n+l)) ≈
cos(ωn) and sin(ω(n + l)) ≈ sin(ωn), leading to

R�[n] ≈ R
(0)
� + (EcR(0)

� + R
(0)
� ETc ) cos(ωn) + (EsR(0)

� + R
(0)
� ETs ) sin(ωn)

+ (EcR(0)
� ETc ) cos2(ωn) + (EsR(0)

� ETs ) sin2(ωn) (6)

+ (EcR(0)
� ETc + EsR(0)

� ETs ) cos(ωn) sin(ωn).

where
R

(0)
�

�
= A0Λ�A

T
0 . (7)

Recalling that Ec and Es are small (and both cos(ωn) and sin(ωn) are
bounded), we now make some further approximation by neglecting all terms
that are quadratic in either of these two matrices, namely we neglect the last
three terms in (6), resulting in

R�[n] ≈ R
(0)
� + R

(c)
� cos(ωn) + R

(s)
� sin(ωn) (8)

where
R

(c)
�

�
= EcA0Λ�A

T
0 + A0Λ�A

T
0 ETc = EcR(0)

� + R
(0)
� ETc (9a)

and
R

(s)
�

�
= EsA0Λ�A

T
0 + A0Λ�A

T
0 ETs = EsR(0)

� + R
(0)
� ETs (9b)
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3.1 Estimating R
(0)
� , R

(c)
� and R

(s)
�

We now wish to estimate the unknown matrices R
(0)
� , R

(c)
� and R

(s)
� from the

available data x[1] to x[N ]. To this end, note that the (i, j)-th element of R�[n],
which is the expected value of the product xi[n + #]xj [n], can be regarded as a
“noisy” measurement thereof (with zero-mean noise). We can therefore arrange
these samples in the following manner, applying the model specified by (8) casted
as a linear least squares model in the unknown parameters:

y(#, i, j)
�
=

⎡⎢⎢⎢⎣
xi[1 + #]xj [1]
xi[2 + #]xj [2]

...
xi[N + #]xj [N ]

⎤⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎣

R�[1](i, j)
R�[2](i, j)

...
R�[N ](i, j)

⎤⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎣
1 cos(1 · ω) sin(1 · ω)
1 cos(2 · ω) sin(2 · ω)
...

...
...

1 cos(N · ω) sin(N · ω)

⎤⎥⎥⎥⎦
⎡⎢⎣R

(0)
� (i, j)

R
(c)
� (i, j)

R
(s)
� (i, j)

⎤⎥⎦ �
= Hθ(#, i, j) (10)

where θ(#, i, j) denotes the unknown parameters, namely the (i, j)-th elements
of the three matrices R

(0)
� , R

(c)
� and R

(s)
� , and therefore needs to be estimated

for each 1 ≤ i, j ≤ M and for all desired lags, say 0 ≤ # ≤ L, where L is
some maximum lag to be used. It is also assumed implicitly in (10), that N +L
samples are actually available, so that end effects are mitigated at the cost of
not exploiting all the available samples for the shorter lags. Assuming L << N ,
the associated loss is quite negligible.

The Least Squares (LS) estimate is then given by

θ̂(#, i, j) = (HTH)−1HTy(#, i, j)

=

⎡⎣S1 Sc Ss
Sc Scc Scs
Ss Scs Sss

⎤⎦−1

·
N∑
n=1

⎡⎣ xi[n + #]xj [n]
cos(ωn)xi[n + #]xj [n]
sin(ωn)xi[n + #]xj [n]

⎤⎦ , (11)

where the elements of the matrix HTH are given by the respective sums, and
can be approximated by the associated integrals (assuming 1 $ 2π

ω ) as indi-

Table 1. Explicit expressions for the elements of HT H

Term
∑N

n=1(•) Approximating expression
S1 1 N (exact)
Sc cos(ωn) 1

ω
sin(ωN)

Ss sin(ωn) 1
ω
(1 − cos(ωN))

Scc cos2(ωn) N
2 + 1

4ω
sin(2ωN)

Sss sin2(ωn) N
2 − 1

4ω
sin(2ωN)

Scs cos(ωn) sin(ωn) 1
2ω

sin2(ωN)
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cated in Table 1. Once the parameters vector θ(#, i, j) is estimated for each
i, j and #, the results can be plugged into the respective estimated matrices,
obtaining R̂

(0)
� , R̂

(c)
� and R̂

(s)
� . Note that while the true matrices R

(0)
� , R

(c)
�

and R
(s)
� are all symmetric, their estimated counterparts may be non-symmetric

for # �= 0. It is therefore proposed to “symmetrize” the estimates by replacing
each R̂

(p)
� with 1

2 (R̂
(p)
� + R̂

(p)T
� ), p = 0, c, s. Using these estimated matrices, we

now proceed to obtain estimates of the unknown mixing parameters A0 , Ec
and Es.

3.2 Estimating A0, Ec and Es

Recalling the relations (7), (9a), (9b) between A, Ec, Es and the matrices R
(0)
� ,

R
(c)
� and R

(s)
� , several approaches can be taken in extracting estimates of A , Ec

and Es from the estimates of the correlation matrices, essentially by trying to
attain the closest match when plugged into (7), (9a), (9b). To this end, we choose
to employ the same sub-optimal (but computationally more simple) approach
as in [2], i.e., attempting to match each term separately.

The first terms to be matched in the LS sense would be {R̂(0)
� }L�=0, leading to

the minimization of

min
A0,Λ0,Λ1,...ΛL

{
L∑
�=0

||R̂(0)
� −A0Λ�A

T
0 ||2F

}
, (12)

which is exactly the static SOBI term, leading to a standard joint diagonalization
approach. Note, however, that R̂

(0)
� as obtained from (11) is (in general) not

necessarily a positive definite matrix, which in turn implies that the standard
whitening phase in SOBI may yield a complex whitening matrix. To mitigate
this, we may use a non-orthogonal joint diagonalization algorithm such as [6],
yielding Â0 and Λ̂� , # = 0, 1, 2, ..., L.

LS matching of {R(c)
� }L�=0 and {R(s)

� }L�=0 requires the following minimization:

minEp

{
L∑
�=0

||R̂(p)
� − EpR̂(0)

� − R̂
(0)
� ETp ||2F

}
p = c, s. (13)

Fortunately, the minimization criterion (13) is quadratic in Ep, and can there-
fore be minimized as follows. Denoting by εi the columns of ETp such that

ETp = [ε1ε2...εM ] and by r�i the columns of R̂
(0)
� such that R̂

(0)
� = [r�1r

�
2...r

�
M ],

we have (for 1 ≤ i, j ≤M , and exploiting the symmetry of R̂
(0)
� ):(

EpR̂(0)
� + R̂

(0)
� ETp

)
(i,j)

= εTi r�j + r�Ti εj . (14)

Denoting by vec(•) the operation of concatenating the columns of the argument

M ×M matrix into one M2× 1 column, and denoting εp
�
= vec(ETp ), we obtain
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vec(EpR̂(0)
� ) =

⎡⎢⎢⎢⎣
I ⊗ r�T1
I ⊗ r�T2

...
I ⊗ r�TM

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

�
= H�

1

·εp , vec(R̂
(0)
� ETp ) =

[
I ⊗ R̂

(0)
�

]
︸ ︷︷ ︸

�
= H�

2

·εp
(15)

where I denotes the M×M identity matrix and ⊗ denotes Kronecker’s product.
Consequently, the linear LS minimization problems (13) can be restated as

min
εp

{
L∑
�=0

|| vec(R̂
(p)
� )− [H�

1 + H�
2]εp||2

}
(16)

(where H1 and H2 are defined in (15) above), whose solution is

ε̂p =

[
L∑
�=0

[
H�

1 + H�
2

]T [
H�

1 + H�
2

]]−1

·
L∑
�=0

[
H�

1 + H�
2

]T
· vec(R̂

(p)
1 ). (17)

Once the minimizing ε̂p = vec(ÊTp ) is computed for p = {c, s}, Êc and Ês can
be easily extracted by undoing the vec(•) operation, and we can construct an
estimate of the periodically varying mixing matrix:

Â[n] = (I + Êc cos(ωn) + Ês sin(ωn))Â0 , n = 1, 2, ..., N (18)

which, in turn, can be used for demixing the data: ŝ[n] = Â[n]−1x[n]. The signals
ŝ[n] are the estimated source signals, up to the inherent scale and permutation
ambiguities induces in any BSS problem. Note, however, that all scaling ambigu-
ities are absorbed in the estimated A0 only, and there are no scaling ambiguities
in the estimates of Ec and Es.

4 Regularization for Short Observation Intervals

When the observation length N is short relative to the variation period 2π
ω , the

matrix HTH (of (11)) may become ill-conditioned, implying undetermined dis-
tribution of energy between the estimates of R

(0)
� , R

(c)
� and R

(s)
� . To mitigate this

difficulty, we may introduce a Bayesian approach with respect to R
(c)
� and R

(s)
� ,

conveying the information that they are supposed to be small relative to R
(0)
� .

A convenient way for conveying that information is to augment each “mea-
surement vector” y(#, i, j) in (10) (for all #, i and j) with two zeros, similarly
augmenting the matrices H with two rows:

[
0 1 0
0 0 1

]
. Then, a Weighted LS solu-

tion can be used, so as to attribute the proper weight to these fictitious measure-
ments: assuming that the variation in all the true measurements are of the order
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of one2, the additional measurements would be weighted by 1
σ2 , where σ2 reflects

the allowable variation of the elements of R
(c)
� and R

(s)
� , e.g., using σ = 0.1.

As a result, the only computational change that has to be applied in the
algorithm is the substitution of HTH in (11) with HTH + 1

σ2

[ 0 0 0
0 1 0
0 0 1

]
, where σ2

is the regularization parameter. For longer observation intervals this operation
is not necessary, but it may be left in anyway, since the associated weight would
be overwhelmed by the weight of the data (or, in other words, the regularization
matrix would be negligible with respect to HTH).

5 Simulation Results

We demonstrate the performance with M = 2 sources, generated by filtering
two uncorrelated zero-mean white Gaussian processes with the following dig-
ital filters: H1(z) = 0.8 − 0.2z−1 + 0.5z−2 − 0.3z−4 (for s1[n]) and H2(z) =
0.8 + 0.3z−1 + 0.2z−2 − 0.5z−3 (for s2[n]). The true mixing parameters were
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2

Fig. 1. OISR1 and OISR2 [dB] for SOPHIA, SOBI vs. N . Each point represents the
average of 1000 trials.

2 To justify this assumption, it is necessary to apply a pre-processing operation in
which all the observations are normalized to unit energy. With Gaussian sources,
this would guarantee that the variance of each element (of y(�, i, j)) lies between 1
and 2 (depending on the true correlation value).
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A0 =
[ 3 −2
−1 4

]
, Ec =

[ 0.01 −0.02
−0.07 0.03

]
and Es =

[
0 0.08−0.02 0.05

]
. The periodic variation

angular frequency was set to ω = 2π
1000 .

We present the performance of the proposed algorithm (termed SOPHIA -
Second-Order Periodic Hypothesis Identification Algorithm), as well as SOBI,
vs. the observation length. Both algorithms were applied with five correlation
lags (L = 4). The regularization parameter was set to σ = 0.1.

Our performance measure is the Overall Interference to Signal Ratio (OISR),
defined as follows: Let T [n] denote the total (time-dependent) mixing-demixing

effect, T [n]
�
= Â[n]−1A[n] for n = 1, 2, ..., N . Based on T [n], we compute the

overall energy gains T
�
=
∑N
n=1 T [n] � T [n], where � denotes Hadamard’s

(element-wise) product (implying element-wise squaring in this case). Once T is
calculated, the permutation ambiguity is resolved by selecting the row permuta-
tion which maximizes T ’s trace, and then the OISR for each source is the ratio
of off-diagonal to diagonal energy in the respective row.

6 Conclusion

We presented an algorithm for blind separation of periodically time-varying mix-
tures, where the periodic variation introduces slight, smooth fluctuations about
the mean values of the mixing parameters. The estimation algorithm consists
of estimating the parameterized variations in the time-varying correlation ma-
trices (at different lags), followed by a LS matching scheme which leads to the
estimation of the time-varying mixing parameters. In a truly periodical mixture
scenario, this approach offers considerable improvement over SOBI, especially
with observation intervals considerably longer than the variation period. Future
work would address the estimation of ω as well as the accommodation of more
than a single frequency mode in the time-varying mixture.
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Abstract. Principal components (PCs) by construction have a natu-
ral ordering based on their cumulative proportion of variance explained.
However, most ICA algorithms for finding independent components (ICs)
are arbitrary, which limit the use of ICA in pattern discovery and dimen-
sion reduction. To solve this problem, we propose an efficient IC ordering
approach and prove that this method guarantees to find the optimal or-
dering of ICs based on the MSE criterion. Furthermore, we employ the
cross validation method to select the number of dominant ICs. Simulation
experiments show that the proposed IC ordering and selection procedure
is efficient and effective, which can be used to identify the dominant ICs
as well as to reduce the number of ICs.

1 Introduction

Independent component analysis or blind source separation [4,11,12] is a sta-
tistical method which aims to express the observed data in terms of a linear
combination of mutually independent latent variables called independent com-
ponents. A typical ICA model is x(t) = As(t), t = 1, 2, · · · , T , where x(t) =
[x1(t), ..., xp(t)]T is the vector of p observed variables, s(t) = [s1(t), ..., sq(t)]T

is the vector of independent components, and A is an unknown mixing matrix.
The task is to identify both the independent components and the matrix A.

Many researchers proposed different methods to find ICs. For instance, a fast
fixed point algorithm (FastICA) was presented by Hyvärinen and Oja [9,10].
The FastICA algorithm is a computationally efficient and robust fixed-point
type algorithm for ICA. In [13], we found that ICA models demonstrate better
forecasts of time-varying volatilities than PCA models. Although ICA is more
powerful in modelling multivariate time series than PCA, PCA may be preferable
in some cases (e.g., dimension reduction) because PCs have a natural ordering
based on their cumulative proportion of variance explained. In contrast, the ICs
found by most ICA algorithms lack of a proper ordering, which limits the use of
ICA in many applications. For example, if we find 100 ICs from a high dimension
dataset, how can we identify a modest number of dominant ICs that can well
represent the data?

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 286–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the literature, some methods have been proposed to determine a proper
ordering of ICs. For example, Cheung et. al [1,2] suggested a so-called Testing-
and-Acceptance (TnA) algorithm to determine locally optimal IC ordering and
selection based on some error function. An error function they considered is
Mean Square Error (MSE) which is defined as:

MSE(x̂) =
p∑
i=1

MSE(x̂i)

MSE(x̂i) =
1
T

T∑
t=1

[xi(t)− x̂i(t)]2

where x̂(t) = [x̂1(t), ..., x̂p(t)]T is the vector of predicted x(t) obtained by ICA.
The basic idea of the TnA algorithm has similar spirit of backward elim-

ination technique for variable selection in regression analysis. Starting from
the component set consisting of all ICs, the TnA algorithm first picks an IC
as the last one in the ordering, which minimizes the error function. Then, re-
move the IC from the component set and repeat the procedure on the remaining
component set until all the ICs are ordered. As the exhaustive search of the
optimal IC ordering is fairly time consuming, the TnA algorithm generally pro-
vides a fast but sub-optimal ordering of ICs because it does not guarantee that
when m ICs are used, the first m ICs selected by TnA always minimize the error
function.

In this paper, we show that if the error function is the MSE, the TnA algo-
rithm always provides the optimal order of ICs. In addition, instead of searching
sequentially as in the TnA algorithm, we consider a more efficient one-pass IC
ordering procedure under the MSE criterion. The rest of the paper is organized
as follows. In Section 2, we propose the IC ordering method and give the proof
of the proposition. In Section 3, we present the cross validation method to de-
termine the number of ICs to be selected. Some simulation studies are given
in Section 4 and an application is illustrated in Section 5. Section 6 gives the
conclusions.

2 Ordering Independent Components Under the MSE

Mean Square Error (MSE) is a widely accepted criterion in model assessment.
For example, in dimension reduction, we can use MSE to measure the fitness of
a low dimension representation to the original high dimension. In the following,
we first prove a proposition and then present our IC ordering method.

Let x(m) be the approximation of x based on a set of m independent compo-
nents Sm = {s1, ..., sm}. That is, x(m)

i (t) = ai1s1(t) + ai2s2(t) + ... + aimsm(t).
Let MinMSE(m) be the minimum MSE of x(m) among all subsets {Sm} of
ICs of size m. Denote the optimal subset of ICs by Sopt(m).
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Proposition 1. Given a set of ICs, Sq = {s1, ..., sq}, where the ICs are placed
in an order such that

T∑
t=1

p∑
i=1

a2
i1V ar(s1(t)) ≥

T∑
t=1

p∑
i=1

a2
i2V ar(s2(t)) ≥ · · · ≥

T∑
t=1

p∑
i=1

a2
iqV ar(sq(t)). (1)

Then we have Sopt(m) = {s1, ..., sm}, m = 1, ..., q.

Proof. Without loss of generality, we assume that every IC has zero mean. Sup-
pose the ICs do not necessarily satisfy (1). Note that

MSE(x(m)
i ) =

1
T

T∑
t=1

[xi(t)− x
(m)
i (t)]2 =

1
T

T∑
t=1

⎡⎣ q∑
j=m+1

aijsj(t)

⎤⎦2

=
1
T

T∑
t=1

⎡⎣ q∑
j=m+1

a2
ijs

2
j (t)

⎤⎦ =
1
T

T∑
t=1

⎡⎣ q∑
j=m+1

a2
ijV ar(sj(t))

⎤⎦
The second-last equality holds because any two ICs are independent and hence
have zero covariance and the last equality holds because of zero mean ICs. The
mean square error MSE of x(m) is

MSE(x(m)) =
1
T

q∑
j=m+1

T∑
t=1

p∑
i=1

a2
ijV ar(sj(t)).

It is now easy to see that the MinMSE(m) can be attained by selecting the m
largest ICs in the order in (1) and thus Sopt(m) = {s1, ..., sm}.

This proposition implies that when increasing the number of independent
components, the larger optimal IC sets are the supersets of the smaller optimal
IC sets under the MSE criterion, i.e., Sopt(m)⊂Sopt(m+1), m=1, ..., q − 1.

By using this proposition, we can rank order the ICs in a way such that (1)
is satisfied. Given the ordering of ICs, the remaining issue is to identify the
dominant ICs. This is particularly useful when the number of ICs is large.

3 Selecting Independent Components by Cross Validation

In [1], Cheung et. al proposed a cost function J(m) as the IC selection criterion
which is defined as:

J(m) = Q(x(m)
L )−Q(x(m−1)

L ), 2 ≤ m ≤ q

where x
(m)
L is the predicted x based on the first m ICs ordered according to a

list L, and Q is an error function such as MSE. Cheung et. al commented that
there may exist a big drop in the error function when one dominant IC is added
and adding non-dominant ICs should make little change in the error function.
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Therefore, they recommended identifying the global minimal point m = m∗ of
the curve of J(m) and select the first m∗ ICs in the list L as the dominant ICs.

As found in our empirical application in Section 5, this method may recom-
mend a very large m which may not be too sensible in practice. Therefore in
the following, we propose an alternative criterion for IC selection. The criterion
used here is the cost-complexity function:

C(m) = Q(m) + αm

where m is the number of ICs selected, Q(m) is an error function based on m
ICs (we use Mean Square Error MSE in this paper), and α is a non-negative
constant. For a fixed α, we can choose the optimal m such as C(m) is minimized.
Notice that when α = 0, the minimum is attained at m = q. Therefore, the α in
C(m) controls the penalty factor to m.

However, how to specify the value of α? To do this, we can adopt a cross val-
idation approach [5], the one often used to evaluate the prediction performance
of a model. The basic idea is to remove some of the data before training begins,
after training is done (i.e., the optimal m is determined), the data that was re-
moved can be used to test the prediction performance of the m chosen ICs on
the removed data.

In a k-fold cross-validation (we use k = 10 here), we first divide the data into
k subsets of equal size. Then we train the dataset k times, each time leaving out
one of the subsets from training, and using only the leaving-out subset (or testing
subset) to compute the error function Q. Consider a set of plausible values of α,
the best α is the one having the smallest total error of the k testing subsets.

For a given α and a given training dataset, we can find the optimal m by
minimizing C(m). But what range of the values of α do you consider? Here, we
choose 0 as the lower bound of α because when α = 0, C(q) = Q(q) ≤ Q(m) =
C(m) for all m and hence the optimal m must be q. When α is getting larger
and larger, the C(q) is more likely to exceed other C(m). Therefore, we define
the upper bound of α as αupper = Q(1)−Q(q)

q−1 , where q is the total number of ICs.

This is because when α = Q(1)−Q(q)
q−1 , C(1) = C(q). In short, the searching space

of α is set to be the interval (0, Q(1)−Q(q)
q−1 ]. The step size of α depends on the

value of αupper. When αupper is large, more steps may be required. The default
is 1,000 steps. We summarize the major steps of IC selection as follows:

1. Construct the cost-complexity function C(m) = Q(m) + αm.
2. Divide the multivariate time series dataset into k subsets of equal size, with

each subset having T/k observations. Use any k−1 subsets to form a training
set and the remaining subset as a testing set.

3. For each training set, use ICA model to find the mixing matrix Atrain.
4. For each testing set, the ICs is obtained by stest(t) = A−1

trainxtest(t).
5. Then, x(m)(t) is predicted by a linear combination of the m ICs in stest(t),

that is, x(m)(t) = Atrains
(m)
test(t).

6. Determine the range of α: (0, Q(1)−Q(q)
q−1 ] and set the step size of α.
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7. For each α (starting from 0),
(a) find the minimal Q(m∗

1), ..., Q(m∗
k) for the k testing sets, respectively

Here, Q(m) = MSE(x(m)).
(b) sum up Q(m∗

1), ..., Q(m∗
k) and denote the sum by Qα

8. Determine the optimal α that minimizes Qα and denote this α by α∗.
9. Determine the optimal m that minimizes C∗(m), where C∗(m) is the cost-

complexity function based on the whole data set and α = α∗.

4 Simulation

Experiment 1. We design an experiment to validate the effectiveness of our
proposed model for IC ordering and selection. We select four time series sources
which are normal distributed noise (S1), uniform distributed noise (S2), Mod
(S3), and Sin (S4), respectively. They are shown in the first column of Fig 1.
We also simulate four time series which are the mixtures of the sources. X1 =
0.5 × S3 + 0.5 × S4, X2 = 0.5 × S1 + 0.5 × S4, X3 = 0.5 × S2 + 0.5 × S3,
X4 = 0.5 × S1 + 0.5 × S3. Then, we use our model to determine how many
dominant ICs are needed to model the time series and the order of the dominant
ICs. The ordering result is shown in the third column of Fig 1 (From top to
bottom, the order is 1st IC, 2nd IC, 3rd IC, and 4th IC).
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(1st column: Original Sources, 2nd column: Mixtures, 3rd column: Ordered ICs)

Fig. 1. A Simulation of IC Ordering and Selection

By using our IC ordering and selection method, we get the optimal m = 2.
The result also suggest that the first two dominant ICs are approximate the Mod
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(1st column: first two ordered ICs, 2nd column: first two PCs, 3rd column: the two
ICs obtained from first two PCs)

Fig. 2. Comparison of the first 2 ICs and PCs

and Sin sources. The result is consistent with our expectation. Because we think
the noise sources are not very useful to identify underlying patterns, so a good
IC selection model should be able to filter out such noises. As comparison, when
we plot the first two PCs (2nd column in Fig 2), we cannot clearly identify the
original sources. The two ICs (3rd column in Fig 2) found by the two PCs also
lack of satisfactory recovery of the two most important patterns in the original
multivariate time series. In contrast, the first two ICs found by our method
demonstrate good recovery of the original two patterns (1st column in Fig 2).

From this experiment, we validate that our IC selection model can correctly
identify the most important sources from a given time series dataset. There-
fore, the cross validation method for IC selection is feasible. In addition, from
the results of this experiment, we suggest that in IC selection, it’s better to or-
der all the ICs first, and then select the ICs. This method is superior to using
PCA for dimension reduction first, e.g., finding 2 ICs from first 2 PCs, because
the dimension reduction will distort the ICs discovered, as we have shown in
the example.

Experiment 2. We also compare the performance of ICA and PCA in identifying
dominant ICs. The four sources are unchanged while the mixtures are randomly
generated for each simulation. Here, X1 = (0.5 ± ε) × S3 + (0.5 ± ε) × S4, X2 =
(0.5 ± ε) × S1 + (0.5 ± ε) × S4, X3 = (0.5 ± ε) × S2 + (0.5 ± ε) × S3, X4 =
(0.5± ε)×S1 +(0.5± ε)×S3, where ε is iid r.v. which follows uniform distribution
U(0, 0.25). Then, we use PCA to find the fours PCs for the mixture. Because the
PCs are ordered based on the cumulative proportion of variance explained, we can
regard this ordering as the relatively importance of the PCs. Also, we employ our
proposed method to order the four ICs found. To get a more reliable performance
analysis, we run the simulation 100 times to avoid bias results by chance.

Among the 100 simulation trials, ICA can correctly identify the two non-noisy
source patterns as the first two dominant sources for 84 trials while PCA only
succeed in 41 trials. This experiment strongly suggests that the ICA ordering and
selection approach is feasible in finding the underlying and meaningful patterns
and it is more robust than PCA in filtering out noise sources.
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5 A Real Application

In this case study, we try to validate our proposed IC ordering method and test the
performance by employing real financial data. We select daily stock prices of 27
HSI Constituent Stocks from 26/11/2001 to 26/11/2004 as the multivariate time
series. The daily returns ri(t) are calculated by ri(t) = ln(pi(t)) − ln(pi(t − 1)),
where pi(t) is the closing price of stock i on the trading day t.

By using FastICA, we found 27 ICs from the return series. Using our IC
selection procedure, the optimal α is found to be 0.0005. Fig 3. shows the plot
of the cost function values (with α = 0.0005) against the number of ordered ICs
m. In this case, the first 4 ICs is the optimal choice since when m = 4, the cost
function is minimized.
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In contrast, using the IC selection method proposed in [1], the optimal number
of ICs found should be 26 under the MSE criterion (See Fig. 4). Obviously, a
smaller number of ICs is more reasonable as most empirical studies found in the
financial literature suggest at most 10 components [6].

The optimal sets of ICs found by exhaustive search are consistent with our
ordering method. This result validates our finding in Proposition 1. In Fig 5,
we note that the running time of exhaustive search is extremely huge, and even
impossible to achieve when the number of ICs is large. Therefore, by using our
proposed IC ordering approach, we can efficiently find the sets of dominant ICs
for effective time series analysis. The TnA algorithm also achieves this result,
however, its computational cost is greater than our proposed method because
the TnA is a sequential search method.

6 Conclusion

In this article, we propose an independent component ordering criterion based
on the ICs’ loadings and variances. We prove that the sets of ICs selected ac-
cording the ordering method can maximally reduce the total MSE. We also find
that the optimal sets of ICs under the MSE criterion are nested, this property
provides us an efficient way to find the optimal ICs. Based on this, we suggest
the cross validation method for selecting the optimal number of ICs. The sim-
ulation experiments demonstrate that it is more effective to use our proposed
method to reduce the number of ICs instead of using PCs to restrict the number
of ICs. In the future, we intend to find similar IC ordering properties under other
reconstruction error measures.
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Abstract. Recent authors have investigated the use of manifolds and
Lie group methods for independent component analysis (ICA), includ-
ing the Stiefel and the Grassmann manifolds and the orthogonal group
O(n). In this paper we introduce a new class of manifold, the generalized
flag manifold, which is suitable for independent subspace analysis. The
generalized flag manifold is a set of subspaces which are orthogonal to
each other, and includes the Stiefel and the Grassmann manifolds as spe-
cial cases. We describe how the independent subspace analysis problem
can be tackled as an optimization on the generalized flag manifold. We
propose a Riemannian optimization method on the generalized flag man-
ifold by adapting an existing geodesic formula for the Stiefel manifold,
and present a new learning algorithm for independent subspace analy-
sis based on this approach. Experiments confirm the effectiveness of our
method.

1 Introduction

Independent component analysis (ICA) assumes a statistical generative model
of the form x = As where s = (s1, . . . , sn)

� ∈ Rn, the components si are
generated from statistically independent sources, and A ∈ Rn×n is an invertible
matrix. Most algorithms for ICA use whitening as a preprocessing step, giving
z = Bx such that E[zz�] = In. After the whitening operation, solving the ICA
task reduces to an optimization on the orthogonal group [8, 9], i.e. over the set of
orthogonal demixing matrices {W ∈ Rn×n|W�W = In} where W is a demixing
matrix in y = (y1, . . . , yn)

� = W�z which attempts to recover the original
signals up to a scaling and permutation ambiguity.

Optimization on a special class of manifolds related to the orthogonal group
such as the Stiefel and the Grassmann manifolds frequently appear in the con-
text of neural networks, signal processing, pattern recognition, computer vi-
sion, numerics and so on [3]. Principal, minor, and independent component
analysis are formalized as optimization on the Stiefel manifold, subspace track-
ing and application-driven dimension reduction can be solved by optimization
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on the Grassmann manifold. Generally, optimization on manifolds raises more
intricate problems than optimization on Euclidean space, however, optimiza-
tion on the Stiefel and the Grassmann manifolds can be tackled in a geomet-
rically natural way based on Riemannian geometry. Because those manifolds
are homogeneous, we can explicitly compute various Riemannian quantities
relative to a Riemannian metric g, including Riemannian gradient, Hessian,
geodesic, parallel translation vector, and curvature. Therefore, by replacing,
for instance, an ordinary gradient vector of a cost function by a Riemannian
gradient vector, and updating a point along the geodesic in direction to the
Riemannian gradient, we get a Riemannian gradient descent method on that
manifold:

Wk+1 = Wk − η∇f(Wk) : Euclidean

Wk+1 = ϕM (Wk,− gradW f(Wk), η) : Riemannian,

where ϕM (W,V, t) denotes the geodesic equation on a manifold M starting from
W ∈M in direction V ∈ TWM relative to a Riemannian metric g on M . As such,
other iterative optimization methods on Euclidean space are directly modified for
the Stiefel and the Grassmann manifolds just replacing everything by Riemannian
counterparts. Riemannian optimization methods are performed along piecewise
geodesic curve on the manifold, so updated points always stays on the manifold
and guarantees the stability against the deviation from the manifold. For more in-
formation about this approach, see e.g. [4].

In this paper we introduce a new class of manifold: the generalized flag man-
ifold. This new manifold naturally arises when we slightly relax the assumption
of ICA and consider independent subspace analysis (ISA), allowing dependence
between signals within to different subspaces. So far researchers in neural net-
works, signal processing have mainly concentrated on the Stiefel and Grassmann
manifolds for optimization: the generalized flag manifold is a generalization of
both the Stiefel and the Grassmann manifolds. We extend the Riemannian op-
timization method to this new manifold using our previous geodesic formula for
the Stiefel manifold [9], and based on it propose a new algorithm for ISA. Fi-
nally, we present computer experiments comparing the ordinary gradient method
for ISA with the new Riemannian gradient geodesic method based on the flag
manifold.

2 Independent Subspace Analysis

Hyvärinen and Hoyer introduced independent subspace analysis (ISA) [7], by
relaxing the usual statistically independent condition of each source signal in
ICA. The source signal s is decomposed into di-tuples (i = 1, . . . , r) where
signals within a particular tuple are allowed to be dependent on each other, while
signals belonging to different tuples are statistically independent. Since the ISA
algorithm uses pre-whitening, we have W�W = In as for normal ICA. However,
because of the statistical dependence of signals within tuples, the manifold of
candidate matrices for ISA is no longer simply the Stiefel manifold, but rather
it is the Stiefel manifold with an additional symmetry.
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Therefore solving ISA task can be regarded as an optimization on this new
manifold, which is known as the generalized flag manifold.

3 What Is the Generalized Flag Manifold?

Let us introduce the generalized flag manifold. A flag in Rn is an increasing
sequence of subspaces V1 ⊂ · · · ⊂ Vr ⊂ Rn of Rn, 1 ≤ r ≤ n. Given any sequence
(n1, . . . , nr) of nonnegative integers with n1 + · · ·+ nr ≤ n, the generalized flag
manifold Fl(n1, n2, . . . , nr) is defined as the set of all flags (V1, . . . , Vr) of vector
spaces with V1 ⊂ · · · ⊂ Vr ⊂ Rn and dimVi = n1 + · · · + ni, i = 1, 2, . . . , r.
Fl(n1, n2, · · · , nr) is a smooth, connected, compact manifold. We can also con-
sider a modified version of the generalized flag manifold, where we instead
consider the set of the vector spaces V

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr ⊂ Rn, (1)

where dimVi = di, d1 ≤ d2 ≤ · · · ≤ dr, dimV =
∑r
i=1 di = p ≤ n. With

the mapping Vi �→
⊕i
j=1 Vj we can see that the set of all V forms a manifold

isomorphic to the original definition so this is also a generalized flag manifold,
which we denote by Fl(n, d1, d2, · · · , dr). We represent a point on this manifold
by a n by p orthogonal matrix W , i.e. W�W = Ip, which can be decomposed as

W = [W1,W2, · · · ,Wr],

Wi = (wi1, w
i
2, · · · , widi

),

where wik ∈ Rn, k = 1, · · · , di for some i, form the orthogonal basis of Vi. Note
that we are not so concerned with the individual frame vectors wik themselves,
rather with the subspace in Rn spanned by that set of vectors for some i. In
other words any two matrices W1,W2 related by

W2 = W1

⎛⎜⎜⎜⎝
R1

R2
. . .

Rr

⎞⎟⎟⎟⎠ ≡W1diag(R1, R2, · · · , Rr) (2)

where Ri (1 ≤ i ≤ r) ∈ O(di), i.e. RiRTi = RTi Ri = Idi , correspond to the same
point on the manifold: we say we identify these two matrices. The generalized
flag manifold is a generalization of both the Stiefel and the Grassmann manifolds.
If all di (1 ≤ i ≤ r) = 1, it reduces to the Stiefel manifold, if r = 1, it reduces to
the Grassmann manifold [3].

4 Geometry of the Flag Manifold

4.1 Tangent Space Structure

A tangent space of a manifold is an analogue of a tangent plane of a hypersurface
in Euclidean space. For W to represent points in Fl(n, d1, d2, · · · , dr) we have

W�W = Ip (3)
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Wdiag(R1, R2, . . . , Rr), Ri ∈ O(di), 1 ≤ i ≤ r are identified. (4)

A tangent vector V = [V1, V2, . . . , Vr] of Fl(n, d1, d2, . . . , dr) at W = [W1,W2,

. . . ,Wr] must satisfy the equation obtained by differentiating (3)

W�V + V �W = O, (5)

Now let us consider the following curve on the flag manifold passing through W.

Wdiag(R1(t), R2(t), . . . , Rr(t))

where Ri(t) ∈ O(di), Ri(0) = Idi , (1 ≤ i ≤ r). Since we neglect the effect of each
rotation Ri(t), V must be orthogonal to

Wdiag(R′
1(0), R′

2(0), . . . , R′
r(0)) = Wdiag(X1, . . . , Xr),

where Xi (1 ≤ i ≤ r) is a di × di skew symmetric matrix. Thus

0 = tr
{
diag(X�

1 , . . . , X�
r )W�V

}
= −

n∑
i=1

trXiW�
i Vi for all Xi

so we can show that W�
i Vi is symmetric. Now the i-i block of (5) yields

W�
i Vi + V �

i Wi = O.

and therefore W�
i Vi = O, (1 ≤ i ≤ r).

So to summarize, a tangent vector V = [V1, V2, . . . , Vr ] of Fl(n, d1, d2, . . . , dr)
at W = [W1,W2, . . . ,Wr] is characterized by

W�V + V �W = O and W�
i Vi = O, i = 1, . . . , r. (6)

4.2 Natural Gradient

In this section we derive the natural gradient of a function over the generalized
flag manifold.

We use the following notations.

G = I − 1
2
WW� with G−1 = I + WWT (7)

X = ∇W f =
(

∂f

∂wij

)
= [X1, . . . , Xr] (8)

Y = G−1∇W f = (I + WW�)∇W f, Yi = G−1Xi (9)

Now the natural gradient V of a function f on Fl(n, d1, d2, . . . , dr) is equal
to the orthogonal projection of Y to TW Fl(n, d1, d2, . . . , dr). In other words,
TW Fl(n, d1, d2, . . . , dr) is obtained through the minimization of (V − Y )t
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G(V − Y ) under the constraints (6). This can be solved by the Lagrange multi-
plier method. Let us introduce

L = tr{(V−Y )�G(V−Y )}−
∑
i

tr(A�
i W

�
i Vi)−

∑
i

∑
j �=i

tr{B�
ij(W

�
i Vj+V �

i Wj)}

= tr{(V−Y )�G(V−Y )}−
∑
i

tr(A�
i W

�
i Vi)−

∑
i

∑
j �=i

tr(B�
ijW

�
i Vj+BjiW

�
i Vj).

Differentiating L with respect to Vi and equating to zero leads to

∂L

∂Vi
= 2G(Vi − Yi)−WiAi −

∑
j �=i

Wj(Bij + B�
ji) = O. (10)

Vi = Yi +
G−1

2
WiAi +

G−1

2

∑
j �=i

Wj(Bij + B�
ji) (11)

Substituting G−1 = I + WW� = I +
∑
i

WiW
�
i into (11), we get

Vi = Yi + WiAi +
∑
j �=i

Wj(Bij + B�
ji).

Therefore, the condition of the tangent vector yields

W�
i Vi = W�

i Yi + Ai = O ⇔ Ai = −W�
i Yi, (12)

W�
i Vj + V �

i Wj = W�
i Yj + (Bji + B�

ij) + Y �
i Wj + B�

ij + Bji = O. (13)

Thus,

Bij + B�
ji = −1

2
(W�

j Yi + Y �
j Wi) (i �= j),

Vi = Xi − (WiWi
�Xi +

∑
j �=i

WjX
�
j Wi). (14)

It is easy to check that this formula includes the natural gradient formula for
the Stiefel and the Grassmann manifolds [3] as special cases.

4.3 Geodesic of the Flag Manifold

We use our geodesic formula of the Stiefel manifold relative to the normal ho-
mogeneous metric for the Stiefel manifold: G = I − 1

2WW� obtained in [9].

ϕSt(n,p)(W,− gradW f, t) = exp(−t(∇f(W )W� −W∇f(W )�))W (15)

ϕSt(n,p)(W,V, t) = exp(t(DW� −WD�))W, (16)

where D = (I − 1
2WW�)V.
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We decompose the tangent space of St(n, p) at W into the vertical space VW
and the horizontal space HW with respect to G. TW St(n, p) = HW ⊕ VW . The
vertical space does not depend on the metric; it is determined from the quotient
space structure of TW Fl(n, d1, d2, . . . , dr) :

VW = Wdiag(X�
1 , . . . , X�

r ),where Xi ∈ TO(di) (skew symmetric matrices).

We need to lift a tangent vector V at TW Fl(n, d1, d2, . . . , dr) to Ṽ ∈ HW . It
turns out that Ṽ = V, because

g
St(n,p)
W (X,V ) = tr(X�GV ) (17)

= −tr{diag(X�
1 , . . . , X�

r )W�(I − 1
2
WW�)V } (18)

= −1
2
tr{
(
diag(X�

1 , . . . , X�
r )
)
W�V } = 0, for all X ∈ VW . (19)

Because the projection π : St(n, p) → Fl(n, d1, . . . , dr) (π(W ) = W ) is a Rie-
mannian submersion, the following theorem guarantees that the geodesic on the
Stiefel manifold starting from W in direction V yields the geodesic on the flag
manifold emanating from W with the initial velocity V. Both geodesics are based
on the same Riemannian metric G.

Let p : M̃ →M be a Riemannian submersion, c̃(t) be a geodesic of (M̃, gM̃)).
If the vector c̃

′
(0) is horizontal, then c̃

′
(t) is horizontal for any t, and the curve

p(c̃(t)) is a geodesic of (M, g) of the same length as c̃(t) [5, 9].

5 Application to Independent Subspace Analysis

In order to validate the effectiveness of the proposed algorithm, we performed
independent subspace analysis experiments of natural image data [7]. In this ex-
periment, we attempt to decompose a gray-scale image I(x, y) into linear com-
bination of basis images ai(x, y) as

I(x, y) =
n∑
i=1

siai(x, y), (20)

where si is a coefficient. Let the inverse filter of this model be

si = 〈wi, I〉 =
∑
x,y

wi(x, y)I(x, y). (21)

The problem is to estimate si (or equivalently wi(x, y)) when a set of images
are given. For this purpose, we apply the independent subspace criterion: pro-
posed by Hyvärinen et al. [7] Components are partitioned into disjoint subspaces
S1, . . . , Sr, and si and sj are statistically independent if i and j belong to dif-
ferent subspaces. As a cost function, we take a negative log-likelihood:

f({wi}) = −
K∑
k=1

logL(Ik; {wi}) = −
K∑
k=1

r∑
j=1

log p

⎛⎝∑
i∈Sj

〈wi, Ik〉2
⎞⎠ (22)
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where the suffix k denotes the index of samples and p is the exponential distribu-
tion p(x) = α exp(−αx), where the parameter α does not appear in learning rule
and hence can be ignored. The cost function is invariant under rotation within
the subspace.

We applied the above model to small image patches of size 16× 16 pixels. We
prepared 10000 image patches at random locations extracted from monochrome
photographs of natural images. (The dataset and ISA code is distributed by
Hyvärinen http://www.cis.hut.fi/projects/ica/data/images).

In the preprocessing phase, the mean gray-scale value of each image patch was
subtracted, and then the dimension of the image was reduced from 256 to 160
by principal component analysis (n = 160), and finally the data were whitened.
Independent subspace analysis was performed for this dataset, in which each sub-
space is 4-dimensional (di = 4), and accordingly the 160 dimensional subspaces
were separated into 40 subspaces (r = 40).

We compared two methods to extract independent subspaces from the dataset.
One is the ordinary gradient method used in [7] (η = 1) and the other is the pro-
posed method based on geodesic of the flag manifold (η = 1.1). The best learning
constant was chosen for each algorithm. In the ordinary gradient method, the
extraction matrix was projected to the orthogonal group by singular value de-
composition in each step. Both algorithms were implemented in MATLAB on
3.8GHz, 2.00GB machine.

The behavior of the cost function along iterations is shown in Fig. 1(a). In
early stages of learning, the cost of the geodesic approach decreased much faster
than the ordinary gradient method. The average run time per iteration was 9.06
seconds for the ordinary gradient method; 8.95 seconds for the geodesic method.
The recovered inverse filters wi(x, y) are shown in Fig. 1(b). The filters were
clearly separated into groups. We found no significant difference between the
points of convergence of the two methods, and neither method appeared to get
‘stuck’ in a local optimum.

(a) (b)

Fig. 1. Results, showing (a) learning curves; (b) recovered inverse filters
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6 Conclusion

We have introduced a new manifold, the generalized flag manifold, for solving the
independent subspace analysis (ISA) problem, and have developed a Riemannian
gradient descent geodesic method on the generalized flag manifold. Computer
experiments confirm that our algorithm gives good performance compared with
the ordinary gradient descent method.

While we have concentrated on the gradient descent method in this paper,
conjugated gradient and the Newton methods could also be used for search-
ing over manifold using geodesics. Also, while we used orthogonal matrices to
represent points on the flag manifold, the algorithm could be described using
non-orthogonal matrices, as Absil et al have done for the Grassmannian [1].
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Abstract. In many applications, such as biomedical engineering, it is
often required to obtain specific periodic source signals. In this paper, we
propose a two-stage based approach for extracting periodic signals. At
the first stage, the autocorrelation property of the desired source signal
is exploited to roughly extract the desired source signal. At the second
stage, the extracted signal is further processed as cleanly as possible,
based on the higher-order statistics. Simulations on artificially gener-
ated data and real-world ECG data have showed its better performance,
compared with many existing extraction algorithms.

1 Introduction

Blind source extraction (BSE) [1] is a powerful technique that is closely related
to blind source separation (BSS) [2]. The basic task of BSE is to estimate some
components of source signals that are linearly combined in observations.

Compared with BSS, BSE has many advantages [1]. One advantage is that it
can extract only the “interesting” signals from noisy mixed signals by exploiting
their desired properties. That is to say, it requires certain additional a priori
information of the desired source signal. Thus it generally is implemented in
a semi-blind way. In many applications [3–6], such as the fetal ECG extraction
[7, 8], the desired source signal is periodic or quasi-periodic. Therefore the period
property can be used to extract the desired source signals.

Barros and Cichocki [3] first proposed an algorithm that can quickly extract
the desired source signal with a specific period. But the algorithm’s performance
strongly depends on the precise estimation of an optimal time delay. In addition,
the literature did not provide methods to find the optimal time delay, and only
used the fundamental or multiple period of the desired source signal as the
optimal time delay. In fact, the fundamental or multiple period is not necessarily
the optimal time delay [7].

To overcome the drawbacks, several approaches recently have been proposed.
Jafari et al. [6] proposed a fast algorithm that can instantaneously extract all
the periodic source signals from the mixtures. It only needs to know the period
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of one of the source signals to extract, without knowing the optimal time delay.
Another advantage is its tolerance of large estimate errors of the period. But its
performance degrades if the period is not small enough, or if the periods of the
source signals are close to each other.

On the other hand, we proposed an extraction algorithm [8], whose perfor-
mance is not affected by the value of the period of the desired source signal. But
the algorithm also needs to know the optimal time delay. In practice, it also takes
the fundamental period of the desired source signal as the optimal time delay.
However, compared with the one in [3], the algorithm can achieve better extrac-
tion performance due to exploitation of higher-order statistics information, and
to some extent it is tolerant of estimate errors of the period. But the algorithm
may fail in some complicated situations (see simulations in Section 4).

Recently, Lu et al. [9] proposed the so-called constrained ICA algorithm, which
needs to elaborately design a reference signal that is closely related to the desired
source signal. However, to design such reference signal, one should obtain lots of
a priori information, which is not available in many cases.

In this paper, we propose an extraction algorithm, which only needs to es-
timate the period of the desired signal, and it is non-sensitive to the estimate
errors of the period. Simulations on the artificially generated data and real-world
data have showed its validity and good performance.

2 Problem Statement

Suppose one observes an n-dimentional stochastic signal vector x that is regarded
as the linear transformation of an m-dimensional mutually independent zero-
mean and unit-variance source vector s, i.e., x = As, where A is an unknown
mixing matrix. The goal of source extraction is to find a vector w such that
y = wTx = wTAs is an estimated source signal up to a scalar. To cope with ill-
conditioned cases and to make algorithms simpler and faster, whitening is often
used to transform the observed signals x to x̃ = Vx such that E{x̃x̃T } = I,
where V is a whitening matrix. For convenience, in the following discussion we
assume that x are the whitened observed signals and n = m.

Since our goal is to extract the periodic source signal, we further assume the
desired periodic signal si satisfies the following relations for a specific integer τ∗:{

E {si(k)si(k − τ∗)} > 0
E {sj(k)sj(k − τ∗)} = 0 ∀j �= i

(1)

where sj are other source signals, k is the time index, and τ∗ is the so-called
optimal time delay [3].

Ideally, under the constraint ‖w‖ = 1, maximizing the objective function

J(w) = E{y(k)y(k − τ∗)} = wTE{x(k)x(k − τ∗)T }w (2)

leads to perfect recovery of the desired periodic source signal si. The reason for
this formulation is that for the desired signal si, this delayed autocorrelation has
a large positive value, while for other source signals this value is zero.
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Using the standard gradient approach and neglecting the small difference
between Rx(τ∗) and Rx(τ∗)T , from the objective function (2) we can derive the
Barros’s algorithm [3]: {

w+ = Rx(τ∗)w
w = w+/‖w+‖ (3)

where Rx(τ∗) = E{x(k)x(k − τ∗)T }. Note here the Barros’s algorithm is de-
rived from a different aspect. The algorithm is simple and fast. However, some
important practical issues should be considered.

One important issue is the optimal time delay τ∗. In most cases such opti-
mal time delay does not exist. In other words, although the desired signal si is
strongly autocorrelated at the time delay τ∗, several other source signals may
be also autocorrelated at the delay τ∗ (i.e., E {sj(k)sj(k − τ∗)} �= 0, j �= i).

Another issue is the effect of finite samples [7, 10]. Even if the source signals are
strictly mutually uncorrelated, in practice the calculated correlations of source
signals using limited samples are generally non-zero, due to the fact that the ex-
pectation operator is replaced by the mathematical average. That is to say, even
if E {si(k)sj(k − τ∗)} = 0 and E {sj(k)sj(k − τ∗)} = 0, j �= i, it is very possible
that

∑N−1
k=τ∗ si(k)sj(k − τ∗)/(N − τ∗) �= 0 and

∑N−1
k=τ∗ sj(k)sj(k − τ∗)/(N − τ∗)

�= 0.
According to the results in [7], the performance of the Barros’s algorithm (3)

greatly degrades due to the joint effect of the above two issues.
The third issue is the exploitation of the higher-order statistics. In many

applications the source signals are physically mutually independent. Therefore,
suitable use of the higher-order statistics, rather than only using the second-order
statistics, is expected to improve the extraction performance.

Considering the above issues, in the next section we will propose an effi-
cient two-stage algorithm, which achieves better performance than many existing
algorithms.

3 Proposed Algorithm

3.1 Framework of the Proposed Algorithm

First, we estimate the fundamental period τ of the desired source signal. For
estimating τ , there are many methods, such as the autocorrelation method [3],
and the instantaneous frequency estimation technique [4]. In addition, in some
applications, e.g., biomedical signal processing, this type of information is often
readily available [3, 5, 9]. Note that τ is not necessarily the optimal time delay.

The following procedure is roughly divided into two stages. The first stage is
called the capture stage. In this stage, the algorithm coarsely extracts the desired
source signal by using the estimated period. After the algorithm converges, we
obtain the weight vector ŵ. But due to some reasons (discussed below), ŵ is only
close to the ideally optimal weight vector w∗ (in the sense that the extracted
desired source signal y∗ = wT∗ x is not mixed by any crosstalk noise). Therefore
the captured source signal ŷ = ŵTx is mixed by some noise and interference.
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Next, in the second stage, we run the fixed-point algorithm [1, 11] on the
original mixtures, using ŵ as its initial weight vector. The initial weight vector
ŵ can ensure the fixed-point algorithm converges to the sub-optimal solution
w̄, which is much closer to w∗ than ŵ is. Then we finally obtain the estimated
desired source signal ȳ = w̄Tx, which is almost not mixed by any interference.

3.2 The First Stage: Coarse Capture

In the first stage, the goal is to roughly extract the desired source signal, ex-
ploiting its autocorrelation structure. First, consider the objective function (2):

J(w) =
1
2
J(w) +

1
2
J(w)T

=
1
2
wTE{x(k)x(k − τ)T }w +

1
2
wTE{x(k − τ)x(k)T }w

=
1
2
wT
(
Rx(τ) + Rx(τ)T

)
w

=
1
2
wTRw, (4)

which implies that under the constraint ‖w‖ = 1 maximizing (2) is equivalent
to finding the eigenvector corresponding to the maximal eigenvalue of the real
symmetric matrix R. Thus we directly obtain the following algorithm:

w = EIG(R), (5)

where EIG(R) is the operator that calculates the normalized eigenvector cor-
responding to the maximal eigenvalue of the real symmetric matrix R. After
convergence, the algorithm gives the solution ŵ.

If τ is the optimal time delay, then the solution ŵ is just the optimal solution
w∗, and the captured signal ŷ = ŵTx is just the desired source signal, without
any noise or distortion. However, the optimal time delay generally does not exist,
then the optimal solution w∗ is ideal. Therefore, in fact the solution ŵ is only
near w∗, and the captured desired source signal is noisy.

Note that if ŵ is not close enough to w∗, the algorithms in the second stage
may converge to other local maxima, and thus cannot obtain the desired source
signal. Therefore we should make ŵ approximate w∗ as closely as possible. In [7]
we have showed that the larger the autocorrelations of undesired source signals
at the delay τ are, and/or the larger the absolute value of the cross-correlation
between any two source signals at the delay τ is, the farther ŵ deviates from
w∗. To ensure ŵ is close enough to w∗, we modify the former objective function
(2) as follows:

J(w) = wT
{ P∑
l=1

(
Rx(lτ) + Rx(lτ)T

)}
w, (6)

and its corresponding algorithm is given by

w = EIG
( P∑
l=1

(
Rx(lτ) + Rx(lτ)T

))
, (7)
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where P is a positive integer, and τ is the fundamental period of the desired
source signal. The algorithm is based on the averaged eigen-structure of corre-
lation matrices of source signals over multi-delays. In [7] we have showed that
both the averaged auto-correlations of undesired source signals and the averaged
absolute value of cross-correlation between any two source signals at the delay τ
tend to zero with P increasing. Thus the converged solution ŵ is closer to w∗,
ensuring the successful fine extraction of the second stage.

3.3 The Second Stage: Fine Extraction

In this stage we use the one-unit fixed-point algorithm [11] to make the solution
ŵ from the previous stage further close to the optimal solution w∗, which implies
the extracted source signal is cleaner, with less noise and interference. ŵ is taken
as the initial weight value of the fixed-point algorithm:{

w+ = E{x(wTx)3} − 3w
w = w+/‖w+‖. (8)

To improve the robustness to outliers and spiky noise, we can adopt the
modified fixed-point algorithm [1]:{

w+ = E{y3x}
E{y4} −w

w = w+/‖w+‖.
(9)

When the algorithm (8) or (9) has converged, we obtain the solution w̄, which
is much closer to the optimal solution w∗ than ŵ is. Therefore, we finally get
the estimated desired source signal ȳ = w̄Tx.

4 Simulations

In the first simulation, we generated five zero-mean and unit-variance source sig-
nals, shown in Fig.1(a). Each signal has 3000 samples. Three signals are periodic
(or quasi-periodic), respectively given by s1(k) = sin(2πf1k + 6 cos(2π200k)),
s2(k) = cos(2πf2k), and s3(k) = cos(2πf3k+2), where ts = 1×10−4, f1 = 0.061,
f2 = 0.054, and f3 = 0.028. ts is the sampling period, and fi(i = 1, 2, 3) are
normalized frequencies. The other two signals are Gaussian noise. Note that
s1 is the desired source signal, and its fundamental period is assumed to be
known.

The source signals were randomly mixed (Fig.1(b)). After whitening the mixed
signals, we ran the Barros’s algorithm [3], the algorithm in [8], the one in [7] and
the proposed one in this paper. The results are shown in Fig.1(c), from which it
is clear to see that the algorithms in [3] and the one in [8] extracted the wrong
source signal, while the other two algorithms correctly extracted the desired
source signals. To evaluate the extraction performance of the two algorithms
that obtained the correct signal, we adopted the following measure:

PI = −10E{lg(s(k)− s̃(k))2}, (dB) (10)
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Fig. 1. Simulation on artificially generated data. (a) The five source signals. (b) The
randomly mixed signals. (c) The extracted signals, respectively by the algorithm in [3]
(y1), the one in [8] (y2), the one in [7] (y3) and the proposed one in this paper (y4). (d)
The reference signals (r1, r2, r3) and the corresponding extracted signals (y1, y2, y3) by
the constrained ICA [9].

where s(k) was the desired source signal, and s̃(k) was the extracted signal
(both of them were normalized to be zero-mean and unit-variance). The higher
PI was, the better the performance was. The averaged performance over 400
independent running of the algorithm in [7] and of the proposed algorithm was,
respectively, 23.4 dB and 48.9 dB. The results showed the proposed algorithm
has better extraction performance.

Next, we used the constrained ICA [9] to extract the desired source signal.
Fig.1(d) shows the results, where r1, r2, r3 are the very similar reference signals,
having the same fundamental period. The rectangular pulse width of r2 is larger
than that of r1 by only a sampling period, while keeping the same pulse oc-
currence time. r3 has the same rectangular pulse width as r1, but is delayed
by a sampling period. y1, y2 and y3 are the extracted signals, respectively by
using the reference signal r1, r2 and r3. Clearly, only y1 was well recovered. This
means that the algorithm’s performance is greatly affected by the reference sig-
nal. To achieve good performance, the elaborately designed reference signal is
necessary, which cannot be obtained in many cases. In addition, the selection of
some parameters of the algorithm is crucial to the algorithm.
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Fig. 2. Simulation on real-world ECG data. (a) The ECG data. (b) The separated
signals by [6]. (c) The extracted signals, respectively by the algorithm in [3], the one
in [8], the one in [7] and the proposed one by this paper, from the top down. (d)The
extracted signals when the estimate errors were introduced. y1-y3 were extracted by
the proposed algorithm, while y4 and y5 by the Barros’s algorithm [3].

Next we used the real-world ECG data [12] (Fig.2(a)). Our goal was to ex-
tract the fetal ECG, which was very weak and almost only visible in x1. Us-
ing the method in [8] we estimated that the period of the fetal ECG was 112
sampling periods. After whitening the sensor signals, we respectively ran the
algorithm in [6], the one in [3], the one in [8], the one in [7] and the proposed
one. The results are shown in Fig.2(b) and (c). We can see that the algorithm
in [6] had poor performance. The reason is that the period of the fetal ECG
was not small, violating the basic assumption of the algorithm. In addition,
the extracted fetal ECG by the Barros’s algorithm [3] also showed the poor
performance.

In practice, the estimate errors of the period of the desired source signal
are inevitable. Suppose the estimated period of the Fetal ECG deviates from its
true value. The extraction results are shown in Fig.2(d), where y1, y2, y3 were the
corresponding extracted signals by the proposed algorithm when the estimated
period was 108, 114, and 118 sampling periods, respectively. y4, y5 were the
extracted signals by the Barros’s algorithm [3] when the estimated period was
110 and 113 sampling periods, respectively. Clearly, the proposed algorithm is
not sensitive to the estimate errors.
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5 Conclusions

In this paper we present a two-stage algorithm for extracting periodic signals. It
converges quickly, due to the use of efficient eigenvalue decomposition methods at
the first stage and the fast fixed-point algorithm in the second stage. And it has
good extraction performance. Furthermore, the algorithm is tolerant of estimate
errors of the period of the desired source signal. In addition, the algorithm does
not need to design the so-called reference signals.
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Statistics to Second-Order Moments
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Abstract. It is well known that principal component analysis (PCA)
only considers the second-order statistics and that independent compo-
nent analysis (ICA) exploits higher-order statistics of the data. In this
paper, for whitened data, we give an elegant way to incorporate higher-
order statistics implicitly in the form of second-order moments, and show
that ICA can be performed by PCA following a simple transformation.
This method is termed P-ICA. Kurtosis-based P-ICA is equivalent to
the fourth-order blind identification (FOBI) algorithm [2]. Analysis of
the transformation form enables us to give the robust version of P-ICA,
which exploits the trade-off of all even order statistics of sources. Ex-
perimental comparisons of P-ICA with the prevailing ICA methods are
presented. The main advantage of P-ICA is that it enables any PCA
system, especially the dedicated hardware, to perform ICA after slight
modification.

1 Introduction

In independent component analysis (ICA), we have an observable random vector
x = [x1, x2, ..., xn]T . Variables xi are assumed to be linear mixtures of some
mutually statistically independent variables si, which form the random vector
s = [s1, s2, ..., sn]T (here we assume that the number of observations is equal
to that of sources, and that si are zero-mean). Mathematically, x is generated
according to x = As. By using some linear transform, the task of ICA is to find
the random vector y = [y1, y2, ..., yn]T :

y = Wx (1)

whose components are as mutually independent as possible, such that it provides
an estimate of s.

Since they involve no iterative optimization and the computation is extremely
simple, closed-form solutions to ICA were developed by using high-order cumu-
lants [4, 6, 7, 10] or the derivatives of mixtures [9]. However, the applicability of
these results is limited since they only apply for the two-source case. Generally
� This work was partially supported by a grant from the Research rants Council of

the Hong Kong Special Administration Region, China.
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speaking, ICA does not have closed-form solutions, and an ordinary ICA algo-
rithm consists of two parts—an objective function (contrast function) and an
optimization method used to optimize it.

In this paper, by investigating the relationship between ICA and PCA, we
present a way to solve the ICA problem by explicitly applying principal com-
ponent analysis (PCA). We consider the case where sources have different dis-
tributions. It is shown that for whitened data, with a tricky transformation,
the linear transformation for PCA of the transformed data is exactly that for
ICA of the original data. Although this method, namely P-ICA, may not give
optimal results, it is very simple and efficient, as PCA can be easily done
by eigenvalue decomposition (EVD) of the data covariance matrix or singular
value decomposition (SVD) of the data. In addition, it just explicitly involves
second-order statistics and has no local optima. As a consequence, second-order
statistics-based systems, especially the hardware ones, can also perform ICA
with P-ICA.

2 PCA and ICA

Given the data x, PCA and ICA both aim to find the linear transformation
given in Eq. 1. However, they are based on different criteria and exploit data
information of different aspects. PCA aims at finding an orthogonal transfor-
mation W which gives uncorrelated outputs, or equivalently, in PCA, each
principal component defines a projection that encapsules the maximum amount
of variation in the data and is uncorrelated to the previous principal compo-
nents. It only considers the second order statistical characteristics of the data.
In other words, PCA just uses the joint Gaussian distribution to fit the data
and finds an orthogonal transformation which makes the joint Gaussian dis-
tribution factorable, regardless of the true distribution of the data. While in
ICA, we find the linear transformation which makes the true joint distribu-
tion of the transformed data factorable, such that the outputs are mutually
independent.

Statistically speaking, mutual independence is much stronger than uncorre-
latedness between the variables, i.e. independence guarantees uncorrelatedness.
In ICA, the independent components yi are uncorrelated, at least approxi-
mately, since they are as independent as possible.Some ICA algorithms, such as
FastICA [8] and JADE [3], require whitening the observed data x as a prepro-
cessing step. The method proposed in this paper also requires this step.

Whitening of the data x can be performed by PCA or EVD of the covariance
matrix of x. Denote the covariance matrix of x by Σx, i.e. Σx = E{xxT }. Let
the EVD of Σx be Σx = EDET , where E is the orthogonal matrix consisting of
eigenvectors of Σx as its columns and D the diagonal matrix of the corresponding
eigenvalues. Whitening of x can be done using the matrix V = ED−1/2ET .
Denote the whitened data by v, i.e.

v = Vx (2)
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After whitening, we just need to find an orthogonal transformation U to make
components of y = Uv mutually independent. The transformation matrix W in
Eq. 1 can then be constructed as

W = UV (3)

3 ICA by PCA

Without loss of generality, we assume the sources si are zero-mean and of unit
variance, i.e. E{si} = 0 and E{s2

i } = 1. Let B = VA. One can easily see that
B is orthogonal. Now let us consider the case where si have different kurtosis.

3.1 Based on Kurtosis

Under the condition that s1, ..., sn have different kurtosis, we have the following
theorem.

Theorem 1. Let s, v, and z be random vectors such that v = Bs, where B is
an orthogonal matrix, and

z = ||v|| · v (4)

Suppose additionally s has zero-mean independent components and these compo-
nents have different kurtosis. Then the orthogonal matrix U which gives principal
components of z (without centering) performs ICA on v.

Proof: Let s = [s1, ..., sn]T , U = [u1, ...,un], and C = [c1, ..., cn] = [cij ]n×n =
UB. Since B is orthogonal, we have ||v|| = ||Bs|| = ||s||. The second-order origin
moment of the projection of z on ui is

E(uTi z)2 = E(uTi · ||v|| · v)2 = E{||s||2 · (uTi Bs)2} = E
{ n∑
k=1

(cTi s)2 · s2
k

}
=

n∑
k=1

c2ikE(s4
k)+

n∑
k=1

n∑
p=1
p �=k

c2ipE(s2
ps

2
k)+

n∑
k=1

n∑
p=1,
p �=k

n∑
q=1,
q �=p

cipciqE(spsqs2
k) (5)

When q �= p, obviously at least one of q and p is different from k. Suppose
q �= k. We then have E(spsqs2

k) = E(sq)E(sps2
k) = 0 since si are independent

and zero-mean. We also have
∑n
k=1 c

2
ik = 1 since C is orthogonal. Equation 5

then becomes

E(uTi z)2 =
n∑
k=1

c2ikE(s4
k) +

n∑
k=1

n∑
p=1
p �=k

c2ipE(s2
p)E(s2

k)

=
n∑
k=1

c2ikE(s4
k) +

n∑
k=1

n∑
p=1
p �=k

c2ip =
n∑
k=1

c2ikkurt(sk) + (n + 2) (6)

Therefore E(uTi z)2 is the weighted average of kurt(si) plus a constant. As si
are assumed to have different kurtosis, without loss of generality, we assume
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kurt(s1) > kurt(s2) > · · · > kurt(sn). From Eq. 6 we can see that maximization
of E(uT1 z)2 gives c1 = [±1, 0, ..., 0]T , which means that y1 = uT1 v = uT1 Bs =
cT1 s = ±s1. After finding u1, under the constraint that u2 is orthogonal to u1, the
maximum of E(uT2 z)2 is obtained at c2 = [0,±1, 0, ..., 0]T . Consequently y2 =
uT2 v = cT2 s = ±s2. Repeating this procedure, finally all independent components
can be estimated as yi = uTi v = ±si where ui maximizes E(uTi z)2. In other
words, the orthogonal matrix U performing PCA on z (without centering of z)
actually performs ICA on v. �
Note that z may not be zero-mean since v may be nonsymmetrical. And we
should not do centering of z when performing PCA on z—in fact, here PCA is
used to maximize the origin moment of uTi z, rather than its variance.

We term this method as P-ICA. Kurtosis-based P-ICA, which is actually equiv-
alent to the fourth-order blind identification (FOBI) algorithm [2], consists of three
steps: 1. do whitening of x (Eq. 2); 2. do the transformation given in Eq. 4; 3. find
U by PCA on z. After estimating the orthogonal matrix U, the de-mixing matrix
for the original data, W, can be constructed according to Eq. 3. With PCA done
by EVD, below we give the Matlab code implementing this algorithm:

% whitening
[E,D]=eig(cov(x)); v=E*D∧(-.5)*E’*x;
% Data transformation and ICA by PCA
z=sqrt(sum(v.∧2)).*v; [EE,DD]=eig(z*z’); y=EE’*v;

3.2 An Illustration

For clarity, let us use a simple example to illustrate how P-ICA works. We use
a sinusoid waveform and a Gaussian white signal as the independent sources,
shown in Fig. 1 (a). The mixing matrix A is randomly chosen. The observed
data x = As are shown in Fig. 1 (b).

The whitened version of the observations, v = Vx, is shown in Fig. 1 (c).
Fig. 1 (d) shows the waveforms of the transformed data z = ||v||·v together with
the scatterplot. From this figure we can see that the axes corresponding to the
independent sources si are almost the same as those giving principal components
of z. The orthogonal matrix for PCA of z can be obtained by applying EVD on
the covariance matrix of z:

U =
[
−0.2878 −0.9577
−0.9577 0.2878

]
According to Theorem 1, the independent components of x can then be ob-

tained as y = Uv (or equivalently, y = UVx), as shown in Fig. 1 (e). Clearly
the independent sources si have been successfully recovered.

3.3 For Robustness

From Eq. 6 we can see that the vector ui found by maximizing E(uTi z) actually
depends on the kurtosis of si. It is well known that kurtosis can be very sensitive
to outliers, so it is useful to develop a robust version for P-ICA.
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Fig. 1. An illustrative example. (a) The independent sources si (left) and their joint
scatterplot (right). (b) The observations xi (left) and their joint scatterplot (right).
(c) The whitened data vi (left) and their joint scatterplot (right). The straight lines in
the figure on the right show the axes of the independent sources si. The ellipse, which
is actually a circle, is a contour of the joint Gaussian distribution fitting v. (d) The
transformed data z = ||v|| ·v (left) and their joint scatterplot (right). The ellipse shows
a contour of the joint Gaussian distribution fitting z. (e) The estimated independent
component y = Uv = UVx (left) and their joint scatterplot (right). Clearly yi provide
a good estimate for the independent sources si.
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Now let us replace ||v|| in Eq. 4 by f
1
2 (||v||2), i.e. z = f

1
2 (||v||2) · v, where f

is a sufficiently smooth and monotonically increasing function and f(0) = 0. We
have the Taylor expansion about the origin for f(||v||2):

f(||v||2) = f(||s||2) = f(s2
1 + · · ·+ s2

n)

=
∞∑

e1,...,en=0
Πei �=0

α(e1,e2,...,en) · s2e1
1 s2e2

2 · · · s2en
n (7)

where α(e1,e2,...,en) denotes the coefficients of the Taylor expansion.
Suppose si have finite moments. We then have

E(uT
i z)2 = E{f(||v||2) · (uT

i Bs)2} = E f(||s||2) ·
n

p=1

n

q=1

cipciqspsq

=
n

p=1

n

q=1
q �=p

∞

e1,...,en=0
Πei �=0

cipciqα(e1,e2,...,en) · E(s2e1
1 · · · s2e2+1

p · · · s2eq+1
q · · · s2en

n )

+
n

p=1

c2
ipE{s2

p · f(||s||2)} (8)

Provided that at most one of the sources si is nonsymmetrical, also taking into
account that si are mutually independent, the first term in Eq. 8 vanishes. Define
Gp ≡ E{s2

p · f(||s||2)}. As the expectation of s2
p weighted by f(||s||2), Gp is

actually a function of the moments of si of all even orders according to Eq. 7:

Gp =
∞∑

e1,...,en=0
Πei �=0

α(e1,e2,...,en) ·E(s2e1
1 ) · · ·E(s2ep+2

p ) · · ·E(s2en
n )

Suppose Gp vary according to p. Roughly speaking, this condition could be
enforced by assuming si have different distributions. According to Eq. 8,E(uTi z)2

is the weighted average of Gp: E(uTi z)2 =
∑n
p=1 c

2
ipGp. This equation is similar

to Eq. 6, and we can see that the orthogonal matrix U which gives principal
components of z (without centering) performs ICA on v.

In order to improve the robustness, f(·) should be a function increasing slower
than the linear one. Many functions can be chosen as f for such a purpose. In
our experiments, we choose

f(||v||2) = log(1 + ||v||2) (9)

which behaves very well. Note that we have made the assumption that at most
one of si is nonsymmetrical when using the robust version of P-ICA, while in
kurtosis-based P-ICA, this assumption is unnecessary.

4 Experiments

The illustrative example in Subsection 3.2 has demonstrated the validity of the
P-ICA method. Now we give two additional experiments. The Amari perfor-
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mance index Perr [1] is used to assess the quality of W for separating observa-
tions generated by the mixing matrix A. The smaller Perr, the better W.

The P-ICA method assumes that sources have different distributions. The
first experiment demonstrates the necessity of this assumption and how the
separation performance is affected by violation of this assumption. s1 is generated
by the Cornish-Fisher (C-F) expansion [5] with skewness 0 and kurtosis 1. s2
is also generated by the C-F expansion with skewness 0, but the kurtosis varies
from −1 and 6. Each source has 1000 samples. We compare five methods, which
are kurtosis-based P-ICA, robust P-ICA (with f given in Eq. 9), FastICA [8] with
pow3 nonlinearity, FastICA with tanh nonlinearity, and JADE [3], for separating
s1 and s2 from their mixtures. For each value of kurt(s2), we randomly generate
s2 and the mixing matrix A, and repeat the algorithms 40 runs. The average
performance index is shown in Fig. 2. As expected, when s1 and s2 have the same
distribution (here their distribution only depends on the skewness and kurtosis
as they are both generated by the C-F expansion), P-ICA fails to separate the
sources. When kurt(s2) is far from kurt(s1), the performance of the robust P-ICA
is very close to the best, and the other three methods produce similar results.
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Fig. 2. Logarithm of the average performance index as function of kurt(s2). Note that
kurt(s1) = 1, and s1 and s2 are both generated by the Cornish-Fisher expansion.

The second experiment tests how the source number affects the separation
performance. Four sources are involved, which are a non-central t distributed
white signal (with v = 5 and δ = 1, s1), a uniformly distributed white signal (s2),
a Gaussian white signal (s3), and a square waveform (s4). Each source has 1000
samples. The source number n varies from 2 to 4. For each source number, we
randomly generate the sources and the mixing matrix, and repeat the methods
50 runs. The average performance index, together with its standard deviation,
is given in Table 1. Compared to other methods, the performance of P-ICA
becomes worse when the source number increases. There may be two reasons for
this phenomenon. First, as the source number increases, the difference between
source distributions becomes more and more insignificant. Second, in developing
P-ICA, we treat the last term in Eq. 5 (and the first term in Eq. 8) as zero,
which theoretically holds. However, in practice, due to the finite-sample effect
and the fact that sources may not be completely independent, this term may
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Table 1. The average Perr of the five algorithms with different source number for 50
runs. The values in parentheses are the standard deviations.

Source
number (n)

P-ICA
(kurtosis)

P-ICA
(robust)

FastICA
(pow3)

FastICA
(tanh) JADE

2 (s1&s2) 0.1137(0.0663) 0.0786(0.0502) 0.1137(0.0663) 0.0619(0.0410) 0.1288(0.0773)
3 (s1 ∼ s3) 0.1381(0.0591) 0.1104(0.0454) 0.1234(0.0632) 0.0901(0.0516) 0.1069(0.0535)
4 (s1 ∼ s4) 0.1109(0.0366) 0.0851(0.0284) 0.0852(0.0284) 0.0568(0.0171) 0.0735(0.0236)

not vanish and the error accumulates as the source number increases. However,
we should remark that the computational cost of P-ICA is very light since it is
just a PCA procedure after a simple transformation.

5 Conclusion

We investigated the relationship between PCA and ICA, and consequently
showed that ICA with sources having different distributions can be solved by
PCA following a simple transformation. Such a method, termed P-ICA, does
not explicitly involve higher-order statistics and has low computational cost.
Kurtosis-based P-ICA, which just exploits the kurtoses of sources, is the same
as FOBI [2]. We further developed the robust version of P-ICA, which is insen-
sitive to outliers. P-ICA enables PCA (hardware) systems to perform ICA after
sligh modification. Experimental results showed the validity and restriction of
P-ICA.
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Abstract. We focus on convolutive mixtures, expressed in time-domain. Sepa-
ration is known to be obtained by testing the independence between delayed 
outputs. This criterion can be much simplified and we prove in this paper that 
testing the independence between the contributions of all sources on the same 
sensor at same time index also leads to separability. We recover the contribu-
tion by using Wiener filtering (or Minimal Distorsion Principal) which is in-
cluded in the separation filters. The independence is tested here with the mutual 
information. It is minimized only for non-delayed outputs of the Wiener filters. 
The test is easier and shows good results on simulation and experimental sig-
nals for the separation of piston slap and combustion in diesel engine. 

1   Introduction 

Blind source separation (BSS) is a method for recovering a set of unknown source 
signals from the observation of their mixtures. Among open issues, recovering the 
sources from their linear convolutive mixtures remains a challenging problem. Many 
solutions have been addressed in the frequency-domain, particularly for the separation 
of non-stationary audio signals. In the BSS of stationary signals, two problems remain 
open in time domain. It has been proved [1] that convolutive mixtures are separable, 
that is, the independence of the outputs insures the separation of the sources, up to a 
few indeterminacies. However, the meaning of the independence is not the same in 
convolutive and instantaneous contexts. In the convolutive context, the outputs have 
to be independent in the sense of stochastic processes [2] which requires the inde-
pendence of the random variables yi(n) and yj(n-m) for all discrete times n and m. The 
independence criteria are therefore more complicated and computationally expensive. 
Several ideas are given in [3,4] to test the independence in function of time delays m, 
using the mutual information criterion. The second problem is coming from the inher-
ent indeterminacy of the definition of a source in the BSS model. Indeed, any linear 
transform of a source can also be considered as a source and there is an infinity of 
separators that can extract sources. Some constraints can be added either on the 
source signals (they are usually supposed to be normalized) or on the separator system 
(Minimal Distorsion Principal [5]). In [5], one proposition is to choose the separator 
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which minimizes the quadratic error between sensors and outputs, also known as 
Wiener filter. In this paper, we deal with convolutive mixtures and express the model 
in time-domain. The aim is to quantify the proportions of mechanical noise coming 
from piston slap or thermal noise and received on accelerometers, placed on one cyl-
inder of a diesel engine. We are only interested in the contribution of these two 
sources recorded on each sensor. These signals are uniquely defined, which removes 
the filter indeterminacy. It can also help to simplify the independence criterion and we 
prove in this paper that testing the independence between the contributions of all 
sources on the same sensor at same time index n also leads to separability. We re-
cover these contributions zi(n) by using Wiener filters which are included in the sepa-
ration filters. The independence criterion is therefore less complicated as it requires 
only the independence between the outputs zi(n) and zj(n) (and no more yi(n) and yj(n-
m)). The mutual information is used here and shows good results on simulation and 
experimental signals for the separation of piston slap and combustion noise in diesel 
engine. 

2   Modelization  of the Observations 

Let us consider the standard convolutive mixing model with M inputs and M outputs. 
Each sensor ( )jx n  (j=1, .., M) receives a linear convolution (noted *) of each source 

( )is n  (i=1,…,M) at discrete time n: 

1

( ) * ( )
M

j ji i
i

x n h s n
=

=     (1) 

where hij represents the impulse response from source i to sensor j. The inverse of 
mixing filters are not necessarily causal, so the aim of BSS is to recover non-causal 
filters with impulse responses gij between sensor i and output j, such that the output 
vector y(n) estimates the sources, up to a linear filter : 

1

( ) ( ) ( )
M L

j ji i
i k L

y n g k x n k
= =−

= −    (2) 

Any linear transform of a source can also be considered as a source and there is an 
infinity of separators gij that can extract sources. We focus here on the estimation of 
the signals hij * si(n), coming from source i on sensor j. These signals are uniquely 
defined, which removes the filter indeterminacy. Let be a 2 sources 2 sensors scheme. 
For sake of simplicity, we call here sources the two contributions on the first sensor. 
So, x1(n) is equal to : 1 1 2( ) ( ) ( )x n s n s n= + . Let be y1(n) and y2(n), two outputs :  

2

1

( ) ( ) ( )
L

j ji i
i k L

y n g k x n k
= =−

= −                                        (3) 

If yj(n) is any linear filtering of one source, than the contribution of this source on the 
first sensor is calculated by an (eventually non causal) Wiener filter Wj(z) such that 
the quadratic error between x1(n) and yj(n) is minimized. The two contributions on the 
first sensor are so given by: 
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2

1

( ) ( ) ( )
L

j j i
i k L

z n w k y n k
= =−

= −                                 (4) 

where the discrete Fourier Transforms (DFT) of the Wiener filters wj(k) are computed 
in function of the cross-spectra of x1(n) and yj(n) : 

    1 1 2 1

1 2

1 2

( ) ( )
( ) ( )

( ) ( )
;Y X Y X

Y Y

f f
W f W f

f f

γ γ

γ γ
= =     (5) 

3   Separability of the Source Contributions on One Sensor 

In specific cases, testing the independence between y1(n) and y2(n) is sufficient [6] to 
ensure the separation. For example, for i.i.d. normalized sources, the sum of fourth-
order cumulants of the outputs is a contrast function [7] under a condition on separat-
ing filters [6]. For linear filtering of i.i.d. signals, the same result is obtained after a 
first step of whitening of the data. However, in a general case, delays must be intro-
duced in the contrast function and the separability of convolutive mixtures is obtained 
only when the components of the output vector y(n) are independent in the sense of 
stochastic variables : y1(n) and y2(n-m) have to be independent for all discrete time 
delays m.  For example, a solution is to minimize the criterion J : 

( )1 2( ), ( )
m

J I y n y n m= −    (6) 

where I represents the mutual information (7). I is nonnegative and equal to zero if 
and only if the components are statistically independent. 

       

1

( )
( ) ( ) ln

( )

y

y M

R
yi i

i

p y
I y p y dy

p y
=

=

∏
   (7) 

The delays m can be taken in an a priori set [-K, .., K], which depends on the degree 
of the filters corresponding to the whole mixing-separating system. The criterion (6) 
is computationally expensive. In [3], a gradient-based algorithm minimizes (6): at 
each time iteration, a random value of delay m is chosen and I(y1(n), y2(n-m)) is used 
as the current separation criterion. 

We propose to study here the separability of z1(n) and z2(n) (4) versus y1(n) and 
y2(n). We show that it is simpler and that no time delay (n-m) is needed. Suppose 
now any outputs y1(n) and y2(n). To ensure the separation, it is necessary (but not 
sufficient) that the mutual information I(y1(n), y2(n)) is zero. Two cases can happen. 
If each output yj(n) only depends on one source, the outputs are also independent in 
the sense of stochastic processes (the separation has been effected) and it will be 
also verified for z1(n) and z2(n). So I(z1(n), z2(n))=0. In the second case, the outputs 
yj(n) can be independent (I(y1(n), y2(n))=0 at time delay 0) but remain mixtures of 
sources. For example, in the case of i.i.d sources, the two following outputs yj(n) are 
independent (8): 
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1 1 2

2 1 2

( ) ( ) ( )

( ) ( 1) ( 1)

y n s n s n

y n s n s n

= +

= − + −
                       (8) 

It occurs (typically for i.i.d. sources) when one source is common in the two outputs 
but with two different time index (n-n0) and (n-n1). In that case, yj(n) are independent 
but surely not the components of zj(n)=Wi(z) yj(n), as common time index can appear 
after linear filtering. It can be seen intuitively, since Wiener filtering aims at the 
maximization of the correlation between z1(n) and x1(n) (respectively z2(n) and x1(n)). 
We will prove theoretically that indeed I(z1(n), z2(n)) is not equal to zero. As a conse-
quence, testing the cancellation of I(y1(n), y2(n)) and I(z1(n), z2(n)) will ensure the 
separability.   

Suppose that y1(n) and y2(n) are mixtures of the sources (even if I(y1(n), y2(n))=0). 
So are z1(n) and z2(n) after Wiener filtering. Let be Z1(f) and Z2(f), their DFT’s. They 
are of the form (10). The transfer functions W1(f) and W2(f) (5) of the Wiener filters 
are expressed in function of the DFT of filters gij(k), Gji(f), and the source spectra: 

    11 1 12 2 21 1 22 2

1 2

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
;S S S S

Y Y

G f f G f f G f f G f f
W f W f

f f

γ γ γ γ

γ γ

+ +
= =    (9) 

  

2

11 1 11 12 2

1 1 2

1

2

21 1 21 22 2

2 1 2

2

2

11 12 1 12 2

1

2

21 22 1 22 2

2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

S S

Y

S S

Y

S S

Y

S S

Y

G f f G f G f f
Z f S f S f

f

G f f G f G f f
Z f S f S f

f

G f G f f G f f

f

G f G f f G f f

f

γ γ

γ

γ γ

γ

γ γ

γ

γ γ

γ

= +

= +

+

+

+

+
  (10) 

zj(n) are linear filtering of s1(n) and s2(n) as y1(n) and y2(n). Call uij(k), the new 
mixing filters: uij(k)=[wj * gij](k) where * stands for the linear convolution. zj(n) are 
expressed as : 

2

1

( ) ( ) ( )
L

j ij i
i k L

z n u k s n k
= =−

= −                                            (11) 

The two signals z1(n) and z2(n) cannot be independent (I(z1(n), z2(n)) is not zero) if 
some coefficients u11(k) and u12(k) are non zero for common time delays k. And, at 
least, we prove that one coefficient, uij(k)(0), is non zero. Suppose that the DFT is 
computed on N time samples : 

  
1

0

2
( ) ( ) ( ) ( ) ( )

11 1 11 12 2

( )
1

(0)
11

N

f

G f f G f G f f
S S

f
Y

u
γ γ

γ

−

=

+
=            (12) 
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2 2

1 2

1 1

1 2
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1 1

2

(0)
11

( ) ( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )
( ( ) ( ) ( ) ( ))

( ) ( )

f f

f f

S S

Y Y

S S

Y Y

u G f G f G f

G f

f f

f f

f f
G f G f G f G f

f f

γ γ

γ γ

γ γ

γ γ

= + +
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                   (13) 
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If the third term of the sum is positive or null, then u11(k)(0) cannot be null. If it is 
negative, (u11(k)(0))2 is always superior to a strictly positive value (14). Similar com-
putations can be done with u12(k)(0), u21(k)(0) and u22(k)(0). 

2

11 11 12

2

11

2 2

1 2

1 1

1 2 2

11 12 11 12

1 1 1

2 1 2

11 11 12
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2
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         (14) 

So, for any outputs yj(n) which verify I(y1(n), y2(n))=0, then after Wiener filtering 
projected on the same sensor (here the first one) I(z1(n), z2(n)) is non zero. The only 
exception concerns the outputs yj(n) which depend on one source and it means that the 
separation has been achieved. Same results can also be obtained with M sources. 

As a consequence, testing I(y1(n), y2(n))=0 and I(z1(n), z2(n))=0, ensures the sepa-
rability. The criterion is much more easier to test than the mutual information of  
delayed outputs as it can be verified in an iterative way. Moreover the outputs are 
directly the contribution of the sources on the processed sensor.  

4   Separating Algorithm and Simulations 

The final separating algorithm for convolutive mixtures is based here on the miniza-
tion of the mutual information as in [3] but the previous proof of separability could be 
exploited with another independence test.  
 
Initialization : y(n)= x(n) 
Repeat until convergence :  

- Estimate the score function difference between y1(n) and y2(n): β(y1(n),y2(n)) 
- Update : y(n)      y(n)- μ β( y1(n),y2(n)) 
- Compute the Wiener filters Wi(z), and the contributions : zj(n)=Wi(z) yj(n) 
- Replace : y(n)   z(n) 

 
The performances are shown in figures 1 and 2 with simulations results. Each source 
(of 1500 samples) is constituted of the sum of a uniform random signal and a sinu-
soid. They are mixed with filters :  

     
1 2 1 2

1 2 1 2

1 0.2 0.1 0.5 0.3 0.1
( )

0.5 0.3 0.1 1 0.2 0.1

z z z z
H z

z z z z

− − − −

− − − −

+ + + +
=

+ + + +
                         (15) 

The mutual information (between z1(n) and z2(n)) and the quadratic error between 
z1(n) and the exact contribution are plotted in fig.1 and 2 with marks, for each itera-
tion. They are averaged on 50 realizations of the sources. It shows good results for the 
convergence speed and the residual quadratic error. The results can still be improved 
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by adding some constraints. Indeed, four contributions must be computed in this 
scheme by projecting y1(n) (respectively y2(n)) on the two sensors: z11(n), z21(n) (re-
spectively z12(n), z22(n )). The convergence speed is increasing by adding the mutual 
information between the projections on the second sensor I(z21(n), z22(n)) to I(z11(n), 
z12(n)) (as previously) in the minimization. The results are displayed in figures 1 and 2 
in solid line and show the increasing of the convergence. So, the new algorithm is: 

Initialization : y(n)= x(n) 
Repeat until convergence :  

- Estimate the score function differences: β(z11(n), z12(n)), β(z21(n), z22(n)) 
- Update : y(n)      y(n)- μ [β(z21(n), z22(n))+β(z11(n), z12(n))] 
- Compute the Wiener filters Wij(z), and the contributions : zij(n)=Wij(z) yj(n) 
- Replace : y(n)   [z11(n), z12(n))] 

 
Fig. 1. Mutual information versus iterations 

 

 
Fig. 2. Quadratic error between the contribution of one source on the first sensor and its esti-
mate, versus iterations 

5   Separation of Piston Slap and Combustion in Diesel Engine 

The aim is to characterize the relative noise given out by a diesel engine by quantify-
ing the proportions of mechanical noise coming from piston slap and thermal noise or 
combustion. Signals are issued of ten accelerometers, placed on a four-stroke and four 
cylinder diesel engine. They record thermal and mechanical phenomena that are tem-
porally superposed around the TDC, as well as spectrally overlapping. Some sensors 
respond to vertical moves or horizontal ones, according to their positions. Therefore, 
some accelerometers are more sensitive to combustion noise whereas the other ones 
receive more mechanical noise as piston-slap. Nevertheless, all accelerometer signals 
are convolutive mixtures of thermal and mechanical sources. Signals have been  
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sampled at 25600Hz. In figure 3, we show the power measured by one sensor in the 
angular window [-40°, 80°] of the crankshaft (in green). This sensor responded to 
horizontal moves as it was placed on one side of the liner and received more piston-
slap. The figure 3 includes the measured pressure and the injection control pulses. The 
contributions of the two sources on the sensor have been estimated by the algorithm 
proposed in section 4 and their powers are shown in figures 4 and 5. 

degree

Measured 
pressure  

control pulses  
of injection 

 
 

Fig. 3. Power of one sensor versus the crankshaft angle in degree 
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Fig. 4. Power of the first separated source versus the crankshaft angle 
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Fig. 5. Power of the second separated source versus the crankshaft angle 
 

A first experiment has been done without injection and therefore no combustion 
noise is present. It helps to know the exact localization of the mechanical and thermal 
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phenomena. This experiment (not presented here) shows that the sensor registers three 
mechanical shocks, at 20°5, 23° and 27°. By difference, we can conclude that the 
combustion is present between 10° and 20°, including the position of the main shock 
and around 0° for the pre-combustion. The two phenomena are well noticeable in 
figure 3. After separation, we can see that the first contribution is really the most 
important. It can be correctly attributed to mechanical shocks as they take place at 
21°, 23°8 and  28°8. Besides no pre-combustion is seen around 0° and the main com-
bustion (between 10° and 20°) is well separated. The second contribution is a good 
estimation of the thermal noise as we recover the pre-combustion and the main com-
bustion. Moreover, the position of the pre-combustion is validated by the localization 
of the control pulses of injection (seen in figure 3). 

6   Conclusion 

We focus on the separability of convolutive mixtures, expressed in time-domain. In 
the convolutive context, the outputs yi(n) have to be independent in the sense of sto-
chastic processes which requires the independence of yi(n) and yi(n-m) for all discrete 
times n and m. The independence criteria are therefore complicated and computation-
ally expensive. The criterion has been simplified as we recover only the contribution 
of all sources on all sensors, by using Wiener filtering (or Minimal Distorsion Princi-
pal). It has been proved that testing the independence between these contributions on 
the same sensor also leads to separability, without testing an independence test of 
delayed outputs. The criterion is easier to test and is implemented here by minimizing 
the mutual information of the outputs after Wiener filtering. It shows good results on 
simulation and experimental signals for the separation of piston slap and combustion 
in diesel engine. 
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Abstract. There are numerous algorithms available for blind signal separation 
(BSS) of multiple signals, but most of these are optimised for short blocks of 
data, stationary signals and time invariant mixing matrices. As such, they are 
unsuitable for real-world applications, which often require tracking BSS carried 
out in real time with as small a lag as possible. This paper looks at the problems 
encountered in applying BSS to real data sets and addresses the issue of 
computationally efficient tracking BSS based on well-understood two-stage 
block-based approaches. An example is included where the technique is applied 
to a five-minute section of twin foetal electrocardiogram (ECG) data.  

1   Introduction 

A commonly desired objective of signal processing is to recover a signal of interest 
from sensor recordings in which it may be masked by noise and by other, interfering, 
signals. Often there will be a large number of signals present, and any individual 
sensor can only receive a mixture of these signals: in general, only limited 
information about the signals of interest can be recovered from such a mixture. Blind 
signal separation (BSS) aims to separate signals by utilizing multiple sensors, 
commonly using the assumption that the signals are independent (Independent 
Component Analysis). BSS has been successfully used in many different application 
areas, e.g. artefact suppression in electroencephlogram (EEG) recordings [8], foetal 
electrocardiogram (ECG) analysis [10] and image enhancement [5].  

The term 'blind' is used to indicate that no prior information, either concerning the 
individual signals (other than the independence assumption), or the manner in which 
they combine at the sensors is available. Unknown factors generally include the 
number of signals, the locations of the signal sources and the sensor locations. 

Many different techniques have been developed for carrying out BSS. Some of the 
best performing, or best known, are JADE [3], FastICA [6], BLISS [7], EASI [4], 
InfoMax [2] and kernelICA [1]. All of these have been developed to solve the BSS 
problem in the theoretical case, so without modification they are not necessarily 
suitable for processing real data sets, especially over long periods of time. Although 
the difficulties arising in processing real data sets are often unique to the type of data, 
there are many common problems. In this paper we describe some of these common 
problems.  

Most real data sets contain non-stationary signals and time-varying mixing, 
especially if they are recorded over long periods of time. We describe how to extend 
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single block-based BSS algorithms to produce an efficient tracking BSS approach. 
We provide a demonstration of this technique, applied to a twin foetal ECG data set 
over five minutes. This shows the utility of the technique. 

In section 2 we introduce the basic BSS model, investigate the two-stage approach 
to solving it and observe some of the difficulties encountered when using it on real 
data. Our tracking BSS approach is developed in section 3, and is demonstrated on 
foetal twin ECG data in section 4. Conclusions are drawn in section 5.  

2   Basic BSS 

2.1   Data Model 

The basic linear BSS data model, assuming m sensors and T samples is: 

X = AS + N (1) 

The (m x T) matrix X denotes the observed sensor data, so the rows of X contain the 
sensor outputs. The (m x m) matrix A denotes the time-invariant mixing matrix and 
the rows of the (m x T) matrix S contain the independent signals, assumed to be 
stationary. The (m x T) matrix N contains the sensor noise, usually assumed to be 
white Gaussian noise, uncorrelated between the sensors. For the sake of simplicity we 
assume that the number of signals is equal to the number of sensors (m), although for 
most techniques it is only necessary for there to be at least as many sensors as signals. 
The following conditions also apply to the data model: 

• The mixing process is assumed to be linear and instantaneous (time delays between 
sensors can be represented as phase shifts);  

• The mixing process is assumed to be time invariant; 
• At most one of the signals has a Gaussian distribution (only required for complete 

signal separation). 

2.2   Algorithms 

Many of the basic BSS algorithms operate on the whole data block at once, using a 
two-stage approach to achieve signal separation. Firstly, in the second-order stage, 
the sensor outputs are decorrelated and normalised using a method such as the 
singular value decomposition (SVD) as shown in equation (2). Here, the columns of 
the (m x m) matrix U contain the orthonormal steering (spatial) vectors. The 
estimated orthonormal signals are contained in the rows of the (m x T) matrix VT. The 
(m x m) diagonal matrix α contains the singular values. The orthonormal signals are 
related to the independent signals by a (m x m) 'hidden' rotation matrix R. The higher-
order stage of separation determines R, as shown in equation 3. The matrix 

SRV ˆT = contains the estimates of the signals and UαRT denotes the estimated 
mixing matrix. 

X=UαVT (2) 

X=UαRTRVT (3) 
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Many of the block-based BSS algorithms differ only in the method used for 
computing R. JADE, BLISS, FastICA and KernelICA all use this two-stage 
approach, with the same second-order stage but different methods for the higher-
order stage. 

Whichever BSS algorithm is used, certain difficulties tend to arise when they are 
applied to real data sets. Some of the commonest of these are: 

• Computational Cost: In general the computational cost associated with applying 
BSS to a data block is high, at least O(m2) and much higher in the case of some 
algorithms such as KernelICA. This leads to two, more specific, problems: 
− Real Time Processing: In many cases real time processing is required, so 

computationally expensive procedures require high processing power, which is 
expensive and possibly unobtainable; 

− Small Processing Lag: Even if processing power is available to process data in 
real time, computationally expensive procedures lead to a large lag between the 
data arriving at the sensors and the processed data being available; 

• Time variation: Although short sections of many real data sets are sufficiently 
time-invariant for the basic BSS algorithms to run, longer sections of such data sets 
are time-varying, e.g. foetal ECG recordings are often time-invariant over 10 
second blocks, but the mixing is time-varying and the signals are non-stationary 
over 1 hour blocks. Three types of time variation are commonly seen: 
− Non-Stationary Signals: Usually the signal power varies, this includes the 

onset of interfering (jamming) signals and signal births and deaths; 
− Non-Stationary Noise Levels: Can lead to portions of the data where the 

signals are swamped by noise and signal separation may not be possible. Such 
events should not be allowed to bias the overall tracking process; 

− Time-Varying Steering Vectors: The relative locations of the signals and 
sensors can change during the data collection.  

In this paper we develop a tracking BSS algorithm for data with significant time 
variation, and wherever possible try to reduce the computational costs involved. 

3   Tracking BSS 

We present a method for extending two-stage BSS techniques to time-varying data 
sets. The basic principle is to use a moving data window, where the signals are 
separated in each window using a block-based approach. However, the use of a 
moving window technique alone is not sufficient for many real applications; here we 
address the following issues: 

• Computational Load: Processing the individual windows in isolation is 
inefficient; 

• Signal Swapping: In each window the signals may be separated in a different 
order. This is due to both the inherent signal ordering indeterminacy in the higher-
order stage, and to the second-order stage ordering the signals by their powers. 
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Our tracking BSS technique uses two techniques based on second and higher-order 
statistics, but for the purposes of tracking, these are first initialised using past 
information and then updated using small rotations. This is similar in concept to the 
EASI algorithm [4], but unlike EASI this approach seeks to utilize the fast 
convergence of block-based approaches, albeit in a tracking context. 

The tracking BSS technique we present here can be implemented using either 
overlapping or contiguous data windows. The first window defines the acquisition 
phase; in this window the data is processed by a normal two-stage BSS technique. It 
is inefficient to process the remaining windows in isolation. The use of the SVD, 
equation (2), in the remaining windows can be problematic. It successfully 
decorrelates the signals, but also orders the signals according to their power. This can 
lead to signals being ordered differently in adjacent windows if their powers vary 
(signal swapping). Similarly, even if initialised near one solution, most higher-order 
techniques are not guaranteed to converge to this solution, but instead will find a 
permuted version of this solution. 

The tracking BSS technique presented here can overcome these problems by using 
information estimated from the previous window to initialise the current one and then 
applying small updates for both the second and higher-order stages. 

3.1   Second-Order Stage 

Consider the second-order stage in a given tracking window. The signals can be made 
orthonormal by combining an initialisation process (using the second-order 
information from the previous window), a decorrelation method (via a Jacobi 
diagonalisation) for updating the orthogonality of the signals and a new normal-
ization step. 

The Jacobi method for diagonalisation can be used as the decorrelation method, 
where each pairwise rotation is constrained to choose the smallest of the possible 
angles to rotate the signals by [9]. For example, if x and y represent the (1 x T) i’th 
and j’th vectors the pairwise orthogonalisation step of Jacobi diagonalisation can be 
done by diagonalising their symmetric correlation matrix, i.e. by finding a rotation 
matrix Q, parameterised by θ, that zeros the off-diagonal elements of the matrix B: 
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where c=cos(θ) and  s=sin(θ).  The correct θ therefore satisfies:  

( ) ( )iijjij aaa22tan −=θ  (5) 

The LHS of equation (5) can be expressed as 2t/(1-t2), where t=tan(θ). Thus, there are 
two solutions for θ in the range [–π/2, π/2]. The orthogonality of two vectors has been 
initialised using information from the last window, so x and y are nearly orthogonal to 
begin with. Thus the two solutions for θ are close to 0 and π/2. A normal SVD 
chooses between these by ordering the outputs according to their power; this can 
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cause the vectors to be rotated by approximately π/2 and hence introduce signal 
swapping. In our tracking BSS technique we avoid this by insisting on the solution 
closest to 0 being used. 

A mathematical summary of the second-order update stage is shown in equations 
(7) to (10), where subscript k denotes values belonging to the k’th data window, e.g. 
Xk denotes the data in the k’th window. We first note that the symmetric 
(unnormalised) correlation matrix of the data has as its eigenvalue decomposition 

T
kkk

T
k

2
kk

T
kk UUUUXX == , (6) 

where Uk contains the eigenvectors and λk contains the eigenvalues.  
In equation (7) the eigenvectors for the last window Uk-1 are used to initialise the 

eigenvalue decomposition of the current covariance matrix; for a slowly changing 
mixing matrix, λk' will be nearly diagonal. Thus λk' can be simply diagonalised by Uz, 
equation (8), found by the Jacobi method with the small rotation constraint described 
above. The updated eigenvectors are found via equation (9) and the estimated 
orthonormal vectors are given by equation (10). 

Equation (9) shows how Uk is calculated as the product of an initialisation 
process, Uk-1, and a small update, Uz.  
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3.2   Higher-Order Stage 

The higher-order stage is carried out in a similar way to the second-order stage. The 
independence of the orthonormal vectors Vk

T can be initialised by the rotation matrix 
Rk-1 derived from the last window, equation (11). For a slowly changing mixing 
matrix, and where signal swapping has been avoided in the second-order stage, then 

IRR ≈− k1k . Then the initialized signal estimates, '
kŜ , are nearly separated and need 

to be updated using small angle rotations to avoid introducing signal swapping. Most 
two-stage BSS algorithms can be easily modified so they find a rotation matrix, zR , 

only using small angles. Equations (12) and (13) show how zR  is used to find the 

independent signal estimates and to update the rotation matrix. 
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4   Demonstration of Concept 

In this section the results of applying the tracking BSS technique using the BLISS 
algorithm [7] for the higher-order stage to foetal ECG recordings are presented. It is 
possible to monitor single or multiple foetuses by placing ECG sensors on the 
mother’s abdomen and analysing the signals. It is hard to observe the weak foetal 
signals in the outputs from a single sensor due to maternal signals and other electrical 
interference. BSS offers a way to separate out the weak foetal signals, but this 
analysis needs to be carried out over long periods of time where the stationarity 
hypothesis is not valid. 

Figure 1 shows the first 10 seconds of the 12 sensor recordings, sampled at 512Hz, 
demonstrating the small magnitude of the foetal signals in the sensor outputs. This 
data set is relatively time-invariant has very few interfering signals e.g. muscle noise; 
this means that the signals are clear and good separation should be achievable. 
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Fig. 1. Section of the sensor recordings 
 

As in many real data analysis problems, qualitative performance measures are hard 
to find, so qualitative assessments on the quality of the separation must be made. 

In figure 2, the first ten seconds of the signals separated by the EASI algorithm 
(learning rate 0.001) are shown. Note a larger learning rate caused the EASI algorithm 
to introduce signal swapping. The convergence problems of the EASI algorithm can 
be seen; signal breakthrough occurs up to 4000 samples into the data set. This effect 
will follow any sudden change in signal powers or steering vectors. The EASI 
algorithm did provide good separation on the remaining 290 seconds of this data set. 

Figure 3 shows the first ten seconds of the signals separated by the tracking BSS 
technique (block size 5120 samples, 50% block-to-block overlap); the separation is 
clearer as no breakthrough is visible, and the F2 is more clearly separated. The time 
taken to process 1 second of input data by the tracking BSS algorithm was 0.04 
seconds – demonstrating that the algorithm can lead to real-time processing. The 
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algorithm was coded in C++ and run on a Dell Latitude 1.2GHz computer, and the 
figure quoted is for the average of 30 trials. Other experiments have shown that the 
tracking BSS technique can work on heavily artifact-corrupted data sets. 
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Fig. 2. First ten seconds extracts of the signals separated by EASI. The signals are denoted by 
M – maternal, F1 – foetus 1 and F2 – foetus 2. 
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Fig. 3. First ten seconds extracts of the signals separated by the tracking BSS technique 
developed at QinetiQ. The signals are denoted by M - maternal, F1 - foetus 1 and F2 - foetus 2. 
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5   Conclusions 

In this paper it has been shown that block-based blind signal separation (BSS) 
methods, combined with a moving window approach, can in principle be used for 
tracking real, non-stationary signals. However, the use of the moving window 
principle alone is not sufficient due to the introduction of signal swapping. We 
overcome this problem and show how past estimates can be efficiently used in the 
tracking process, to reduce the overall computational cost. 

A demonstration of this tracking BSS approach is shown, where it is applied to a 
five-minute recording of twin foetal ECG data. 
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Abstract. In this paper we propose some compression schemes for mul-
ticomponent satellite images. These compression schemes use a classical
bi-dimensional discrete wavelet transform (DWT) for spatial redundancy
reduction, associated with linear transforms that reduce the spectral
redundancy in an optimal way, for uniform scalar quantizers. These
transforms are returned by Independent Component Analysis (ICA) al-
gorithms which have been modified in order to maximize the compression
gain under the assumption of high rate quantization and entropy coding.
One algorithm, called ICA opt, returns an optimal asymptotical linear
transform and the other, called ICA orth, returns an optimal asymp-
totical orthogonal transform. We compare the performance in high and
medium rate coding of the Karhunen Loeve Transform (KLT) with the
transforms returned by the modified ICA algorithms. These last trans-
forms perform better than the KLT in term of compression gain in all
cases, and in some cases the gain becomes significant.

1 Introduction

Multicomponent satellite images represent a very large amount of data that have
to be transmitted and stored for different applications. The different components
of the image generally represent the same scene with different views depending
on the wavelength. That means that there is a high degree of dependence (or
redundancy) between components. The aim of transform coding is to minimize
these redundancy as far as possible in order to optimize the compression. In the
last years, a lot of compression schemes have been proposed, which are generally
characterized by the transformations used for redundancy reduction. The prob-
lem with the multicomponent images is that there is two kinds of redundancy:
the spatial redundancy between the different pixels of a component and the
spectral redundancy between the different components. It is important for com-
pression to find a transformation which minimizes these two redundancies as far
as possible. The DWT is known to be a good candidate for spatial redundancy
reduction in each component, it is used in the new standard JPEG2000 and in
other coding systems associated with zero tree coders like SPIHT (cf. [8] and its
references). It has been shown in [5] that after the DWT a few redundancy re-
mains between coefficients in a same subband or between coefficients in different
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subbands of a single component. However they are generally not very significant
and can be partially captured by quite complex entropy coders like EBCOT [8].
The KLT is recommended in JPEG2000 [8] for spectral decorrelation1 and is
known to be optimal under the assumption of Gaussian sources and scale invari-
ant quantizers [3] like uniform scalar quantizers. Narozny et al. [6] proposed two
modified ICA algorithms which provide optimal linear transforms in transform
coding, under the single assumptions of high rate entropy coding and scalar uni-
form quantizers (without the Gaussian assumption of the data). It was shown
in this paper that if a multicomponent signal X(t) = [X1(t),X2(t), ...,XN (t)],
t = 1, . . . , T , is linearly transformed into Y(t) = AX(t), with A an invertible
matrix, and if the components (Yi(t))1≤i≤N of Y(t) are quantized uniformly with
an optimal allocation between quantizers and entropy coded, then the transform
A that, for any (high) given bit rate, minimizes the distortion (mean square er-
ror) between X(t) and the reconstructed signal A−1Yq(t) (with Yq the vector
of the quantized components of Y), for any (high) given bit rate, is the one that
minimizes the criterion C(A) = I(Y1; · · · ;YN )+CO(A), where I(Y1; · · · ;YN ) is
the classical mutual information criterion of ICA and

CO(A) =
1
2

log2
det diag(A−TA−1)

det(A−TA−1)

diag denoting the operator which builds a diagonal matrix from the diagonal
of its argument. The term CO(A) is non negative and can be zero if and only
if A has orthogonal rows, hence can be viewed as a penalization term for non
orthogonality. Based on the algorithm for minimizing the mutual information
criterion of [7], Narozny et al. [6] have developd two modified versions called
Ica opt and Ica orth, which minimize C(A) without constraint and under the
constraint that A has orthogonal rows.

In this paper, we extended the notion of generalized coding gain introduced
in [6] to multicomponent images subjected to both bi-dimensional DWT for
intra-component redundancy reduction and linear transforms for inter-component
redundancy reduction. We say that those algorithms are optimal if they asymp-
totically minimize the mean rate coding subjected to a given distortion, which is
the main goal in compression. Moreover, it can be shown that the transform pro-
vided with ICA orth remains optimal when it is associated with any DWT and
that the transform returned by ICA opt remains optimal when it is associated
with any orthogonal DWT.

The main idea of this paper is to associate a transform that accomplishes spa-
tial redundancy reduction in each component with another one that accomplishes
spectral redundancy reduction. The latter is accomplished thanks to the linear
transforms returned by the modified ICA algorithms. Such a kind of structure
has been studied in [9] on multispectral images using the KLT for spectral redun-
dancy reduction and a vector quantization before coding. Another close study
has been done by Dragotti et al. [2], where many cases have been compared in-
cluding different transforms for the spatial and spectral redundancy reductions.
1 It renders the spectral components uncorrelated but not necessary independent.
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In section 2, we present the different compression structures studied in this pa-
per. In section 3, we present two figures of merit for comparing transformations
in transform coding, under the assumption of high rate entropy coding, one is
called the generalized coding gain and the other the generalized reducible bits.
In section 4, we show and discuss the results that have been obtained with the
different schemes and various transforms.

2 The Different Compression Schemes

The block diagram of the compression schemes is represented in Fig. 1. The
transform is divided into two distinct parts: the spatial redundancy reduction
(accomplished by the DWT) and the spectral redundancy reduction which can
be accomplished by the KLT, or the transform returned by either ICA opt or
ICA orth.

For a given multispectral image X with N spectral components denoted Xi

(1 ≤ i ≤ N), we first apply the same DWT to each component with the same
level of decomposition (we use the 9/7 Daubechies DWT). Then we apply the
spectral redundancy reduction transform in two different ways. One way con-
sists of computing as many as optimal linear transforms as subbands, i.e., the
spectral reduction of redundancy is accomplished subband by subband, and
the other consists of computing only a same optimal linear transform for all
the subbands. In the following we refer to them as the first compression scheme
and the second compression scheme. For both compression schemes, each sub-
band of each component is quantized with an infinite uniform scalar quantizer
before entropy coding. We use the first order entropy in order to estimate the rate
of quantized coefficients. The quantization step for each quantizer is chosen in
such a way that the optimal bit allocation between quantizers is achieved under
the assumption of high rate entropy coding [4]. The structures we study differ
from the one recommended in JPEG2000 for multicomponent images, since in
JPEG2000, the spectral redundancy reduction is performed before the reduction
of spatial redundancy. As in [2], we observed that the best scores are obtained
when the spatial redundancy reduction is accomplished first, like in our schemes.
In order to reconstruct a decoded image, the reverse coding process is applied to
the quantized coefficients, using the inverse transforms of the coding process. As
a measure of distortion, we use the mean square error between the original image
and the decoded image. It is well known that the Huffman coding or the arith-
metic coding achieve performance very close to the first order entropy [1]. We
can then evaluate the asymptotic rate-distortion curve of the image associated
with the specific spectral transform used.

For hyperspectral images, the number N of spectral components is very large:
a few thousands in general. In order to avoid the computation and memory usage
needed for spectral redundancy reduction transform, we divide the image (along
the spectral axis) into blocks of K components. We have thus Nb = N/K blocks,
assuming for simplicity that N is proportional to K so that Nb is an integer. We
then consider each block as a multispectral image and we apply the compression
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Fig. 1. The block diagram of the compression schemes

schemes described above to it. The final asymptotic rate-distortion curve of the
hyperspectral image is taken as the average of the rate-distortion curves of the
Nb different blocks.

3 Expression of the Asymptotic Distortion

In this section we give an approximation of the end-to-end distortion under
some assumptions for multispectral images. First we give simple expressions of
the generalized coding gain and the generalized reducible bits.

3.1 Generalized Coding Gain and Reducible Bits

In order to compare spectral transforms for high rate entropy coding, we define
two figures of merit that are related one to the other. The first one is called the
generalized reducible bits, expressed in bits per pixel (bpp) and the second one
is called the generalized coding gain, expressed in decibels (dB). For both com-
pression schemes (the first and the second), and for any spectral transformation
A, the generalized reducible bits associated with the distortion D is defined by

GR(A;D) = RD(A0)−RD(A), (1)

and the generalized coding gain associated with the rate R is given by

GD(A;R) = PSNRR(A)− PSNRR(A0), (2)

where A0 is the reference transform for spectral redundancy reduction (we will
use either the identity transform or the KLT). The identity transform means
that no spectral redundancy reduction transform is applied after the spatial one.
The quantity RD(A) is the average rate per pixel and per component obtained
with any of the two above described compression schemes, when the spectral
redundancy reduction transform A is used with an optimal bit allocation be-
tween quantizers and an end-to-end distortion equals to D. The Peak Signal to
Noise Ratio (PSNR) is a measure of distortion and is more often used in image
compression than the mean square error. It is related to D and is defined by
PSNR = 10 log10

(2c−1)2

D , where c is the precision (i.e., the number of bits per
pixel) of the original image; generally c ∈ {8, 12, 16}. The quantity PSNRR(A)
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is the PSNR associated with the spectral transformation A with an optimal bit
allocation between quantizers and an average rate per pixel equals to R.

We can see that both definitions of generalized coding gain and generalized
reducible bits are dual. Indeed, they depend on the asymptotic rate-distortion
curve assuming that the optimal bit allocation between quantizers is achieved.

3.2 Expression of the Distortion in High Rate Entropy Coding

Under the assumption that the quantization noises are zero mean and indepen-
dent, it can be shown that the end-to-end distortion D between the original
image and the reconstructed one is well approximated by

D ≈ 1
N

M∑
m=1

πmwm

[
N∑
i=1

w
(m)
i D

(m)
i

]
(3)

where D
(m)
i is the mean square error between the transformed coefficients of

the mth subband of the ith component and their quantized values. Let M denote
the number of subbands. Since we choose high rate scalar uniform quantizers,
the mean square error D(m)

i depends only on the quantization step q
(m)
i : D(m)

i ≈
[q(m)
i ]2/12. The factor πm is the ratio between the number of wavelet coefficients

of the subband m and the number of pixels of a single component. The weighting
factor wm depends only on the filters used in the inverse DWT. In [10], a method
for evaluating these weighting factors in the case of monodimensional wavelets is
clearly explained, some explanations for extending the method to bi-dimensional
wavelets are also given. In the first compression scheme, the coefficient w

(m)
i

depends only on the spectral redundancy reduction transformation associated
with the subband m and the component i. It can be computed from the relation

w
(m)
i =

N∑
j=1

[
A(m)−1
ji

]2 (4)

where (A)(m)−1
ji is the matrix element on the jth row and the ith column of

the inverse spectral transform associated with the mth subband. The expres-
sion between the brackets in (3) can be interpreted as the mean square error
of quantization for all the transformed coefficients of the mth subband belong-
ing to the N components. For an orthogonal transform, like KLT or the one
returned by ICA orth, all the coefficients w

(m)
i are equal to one. In the second

compression scheme, the factors w
(m)
i do not depend on m. Indeed, we have

w
(m)
i =

∑N
j=1(A

−1
ji )2, where A is the linear transform applied in each subband

to reduce spectral redundancy.

3.3 Optimal Bit Allocation

Under high rate assumption, it is well known [4] that the first order entropy
H(Q[X ]) of a uniform scalar quantized random variable X , is well approximated
by the Bennet’s approximation
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H(Q[X ]) ≈ h(X)− 1
2

log2(12Dq) (5)

where Dq is the mean square error between X and its quantized value and
h(X) = −

∫
f(x) log2 f(x) dx is the differential entropy of X . The average rate

per pixel and per component of the first compression scheme is given by R =
1
N

∑N
i=1
∑M
m=1 πmR

(m)
i , where R

(m)
i denotes the first order entropy of the quan-

tized coefficients of the mth subband of the ith component. The optimal bit allo-
cation problem can be stated as follows: for a given rate Rc, how to allocate the
scalar quantization step of each uniform scalar quantizer in such a way that the
end-to-end distortion is minimized with the constraint that the resulting global
average R is not greater than Rc. Due to the duality of the rate-distortion and
the distortion-rate curves, this problem can also be stated as: given an end-to-end
distortion Dc, how to find the optimal quantization step of each uniform scalar
quantizer in order to minimize the global average rate with the constraint that
the resulting end-to-end distortion D is not greater than Dc. This constrained
problem can easily be solved using the Lagrange multiplier method [1].

Using the Bennet’s approximation for evaluating the first order entropy, com-
bined with the approximation (3) of the end-to-end distortion and the global
mean rate expression, we find that the optimal bit allocation is obtained when
the mean square error D(m)

i satisfies the condition

D
(m)
i =

Dc

wmw
(m)
i

(6)

Hence, since D
(m)
i ≈ [q(m)

i ]2/12, we can find out the quantization step q
(m)
i of

each subband and each component.

4 Evaluation of the Generalized Coding Gain

We tested the both compression schemes on satellite images, some are multispec-
tral images of towns2 in France and others are AVIRIS3 hyperspectral images.
The multispectral images are sights of Vannes, Moissac and Strasbourg. All of
them have four spectral components and an original resolution of 12 bpp. The
hyperspectral images have each 224 spectral components (the wavelength vary-
ing from the visible to the infra-red) and an original resolution of 16 bpp. We
evaluated the generalized coding gain and the generalized reducible bits of three
specific spectral redundancy reduction transforms: KLT, ICA orth (returned by
ICA orth) and ICA opt (returned by ICA opt). Since the KLT is commonly used
(it cancels statistical correlation and hence is optimal under the assumption of
Gaussian data), we compare the performance of the modified ICA transforms
with the KLT.
2 These images have been given as a favor by the French National Spatial Studies

Center, CNES.
3 These images have been given as a favor by the NASA.
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Table 1. Generalized coding gain in dB for the two compression schemes

First scheme Second scheme
KLT ICA orth ICA opt KLT ICA orth ICA opt

Moissac 6.1 6.16 6.2 5.95 6.01 6.03
Strasbourg 5.84 5.91 5.93 5.78 5.88 5.90
AVIRIS1 10.7 13.8 14 10.6 12.3 12.8
AVIRIS2 12 14.4 14.5 11 13.1 13.6

First, we verified that the approximation (3) is a good one for the end-to-
end distortion. Indeed, for different images and distortions chosen at random,
the relative approximation error using (3) is less than 1% for high and medium
rates, which comforts us in using the relation (6) for optimal bit allocation.
The generalized coding gain are plotted for the multispectral image Vannes in
Fig. 2. The results obtained with the others multispectral images are summarized
in Table 1. Looking at the results we can see that for the two compression
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Fig. 2. Generalized coding gain compared with the identity transform of Vannes. Top:
for the first scheme, bottom: for the second scheme.

schemes, the new transforms ICA orth and ICA opt, obtained from modified
ICA algorithms, perform very well and give significant compression gain compare
to the identity spectral transform. They also perform better than the KLT, with
more than 1 dB of compression gain in some cases. Also, we can see that the
performance of the two compression schemes are quite close, and the second has
the advantage of less memory and computing complexities.
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The generalized coding gain of Table 1 are obtained by averaging the gener-
alized coding gain for rates between 2.5 and 5 bpp per component, in which it
varies slightly. One inconvenience of the proposed schemes is that the spectral
transforms need a lot of memory ressources and computing time. That is due to
the fact that the modified ICA algorithms work iteratively and need to perform
some complex statistic functions for an important quantity of data.

5 Conclusion

We proposed two compression schemes for multicomponent satellite images us-
ing both spatial and spectral redundancy reductions. The latter is achieved by
using new transforms returned by modified ICA algorithms. The results of our
simulations show a good performance of the methods and in many cases, the
modified ICA algorithms perform better than the KLT. The second compression
scheme suffers little loss of performance with respect to the first one, but it has
the advantage of being much simpler in term of complexity of computations.
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Abstract. The complex-valued signal model is useful for several prac-
tical applications, yet few algorithms for separating complex linear mix-
tures exist. This paper develops two algorithms for separating mixtures
of independent complex-valued signals in which statistical independence
of the real and imaginary components is assumed. The procedures ex-
tract sources assuming that the kurtoses of either the real or imaginary
components are non-zero. Simulations indicate the efficacy of the meth-
ods in performing source separation for wireless communications models.

1 Introduction

The goal of blind source separation is to find an (m×m) matrix B such that

y(k) = Bx(k) and x(k) = As(k), (1)

where y(k) contains estimates of the m sources in s(k), A is full rank, and
s(k) is typically assumed to contain independent signals. This paper focuses on
complex-valued source separation, in which all quantities in (1) are complex-
valued. Few algorithms have been developed for complex ICA [1, 2, 3, 4, 5]. The
complex FastICA procedure in [2] uses a circular contrast and may not perform
well with mixtures containing non-circular sources such as real-valued BPSK
signals.

In this paper, we consider algorithms for separating complex-valued signal
mixtures using fourth-moment contrasts, in which the sources in s(k) are as-
sumed to have independent real- and imaginary components. Such an assump-
tion is quite reasonable in some applications, particularly in multiple-input,
multiple-output (MIMO) wireless communications systems where higher-order
modulation schemes are used. We develop two procedures that employ modified
versions of the FastICA algorithm to extract each of the m complex sources
based on the statistics of either their real or imaginary component. Simula-
tions show the efficacy of the proposed methods for complex-valued source
separation.
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2 On Mixtures of Complex-Valued Signals

Without loss of generality, assume that the sources in s(k) = sR(k) + jsI(k) are
zero-mean and strong-uncorrelated [6, 7], such that the source covariance and
pseudo-covariance matrices are E{s(k)sH(k)} = I and E{s(k)sT (k)} = Λ, and
Λ is a diagonal matrix of real-valued circularity coefficients λi with 0 ≤ λi ≤ 1.

Consider an algorithm that adjusts a single row b = [b1 · · · bm]T of B in (1) to
extract a source si(k) based on the statistics of its real or imaginary component
sR,i(k) or sI,i(k). The output signal is y(k) = yR(k) + jyI(k) = bTx(k) =
cT s(k), where c = ATb = cR + jcI . Thus, yR(k) = cTRsR(k) − cTI sI(k) and
yI(k) = cTI sR(k) + cTRsI(k). The normalized kurtoses of sR,i(k) and sI,i(k) are

κR,i =
2E{s4

R,i(k)}
(1 + λi)2

− 3 and κI,i =

⎧⎨⎩
2E{s4

I,i(k)}
(1− λi)2

− 3, if 0 ≤ λi < 1

0, if λi = 1
. (2)

The quantities κR,i and κI,i are related to the symmetric kurtosis of si(k) as

κi =
1
4
[
(1 + λi)2κR,i + (1− λi)2κI,i

]
. (3)

Theorem 1. Under the above conditions, the real and imaginary components
yR(k) and yI(k) of y(k) have the following second moments and kurtoses:

E{y2
R(k)} =

1
2

m∑
i=1

(1 + λi)c2R,i + (1− λi)c2I,i (4)

E{y2
I(k)}= 1

2

m∑
i=1

(1−λi)c2R,i + (1+λi)c2I,i, E{yR(k)yI(k)}=
m∑
i=1

λicR,icI,i(5)

κ[yR(k)] =
m∑
i=1

[κR,i
4

(1 + λi)2c4R,i +
κI,i
4

(1− λi)2c4I,i
]

+
3
2

m∑
i=1

[
E{s2

R,i(k)s2
I,i(k)} − 1

4
(1 − λ2

i )
]
c2R,ic

2
I,i

−4
m∑
i=1

c3R,icI,iE{s3
R(k)sI(k)} + cR,ic

3
I,iE{sR(k)s3

I(k)} (6)

κ[yI(k)] =
m∑
i=1

[κR,i
4

(1 + λi)2c4I,i +
κI,i
4

(1 − λi)2c4R,i
]

+
3
2

m∑
i=1

[
E{s2

R,i(k)s2
I,i(k)} − 1

4
(1 − λ2

i )
]
c2R,ic

2
I,i

+4
m∑
i=1

c3I,icR,iE{s3
R(k)sI(k)} + cI,ic

3
R,iE{sR(k)s3

I(k)} (7)
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Corollary 1.1: Under the additional assumption that sR,i(k) and sI,i(k) are in-
dependent for all 1 ≤ i ≤ m,

κ[yR(k)] =
m∑
i=1

[κR,i
4

(1 + λi)2c4R,i +
κI,i
4

(1− λi)2c4I,i
]

(8)

κ[yI(k)] =
m∑
i=1

[κR,i
4

(1 + λi)2c4I,i +
κI,i
4

(1− λi)2c4R,i
]

(9)

The fourth-order statistical structures of the real and imaginary components
of linearly-mixed, statistically-independent strong-uncorrelated, and possibly
non-circular complex sources is not as simple as in the real-valued case. If all
sR,i(k) and sI,i(k) are jointly statistically-independent, however, (8) and (9) are
similar in structure to the real-valued case, leading to the following theorem.

Theorem 2. Consider the single-unit extraction criterion

J (b) =
∣∣∣∣ κ[yR(k)]
(E{|yR(k)|2})2

∣∣∣∣ (10)

where y(k) = bTx(k) = cT s(k) = yR(k)+ jyI(k). Assume that all of the sources
are statistically-independent with statistically-independent real and imaginary
parts, and at least one of the sources has a real and/or imaginary part with
κR,i �= 0 and/or κI,i �= 0. Then, maximization of J (b) over b under the con-
straint E{y2

R(k)} = 1 yields one of the columns of A−1 for which κR,i �= 0 or
κI,i �= 0, up to a complex scaling factor ejπp/2, where p is an integer.

Proof: Define the (2m)-dimensional real-valued vector cR =
√

2[cTR[I + Λ]−1/2

cTI [I − Λ]+/2]T , with entries {ci}, where N+ denotes the pseudo-inverse of a
square matrix N. Let κi denote the (2m)-element sequence {κR,1, . . . , κR,m,
κI,1, . . . , κI,m}. Substituting these relations into (8) and and (4) yields

κR[yR(k)] =
2m∑
i=1

κic
4
i and E{y2

R(k)} =
2m∑
i=1

c2i . (11)

The relations in (11) are identical to those in the 2m-dimensional real-valued
separation case. Thus, constrained maximization of J (b) results in an extracted
source with a non-zero-kurtosis real or imaginary component. The one non-zero
coefficient of bTA equals ejπp/2 because (i) absolute signs of the {ci} do not
matter, and (ii) the real or imaginary component of a source could be extracted.

3 FastICA Algorithms for Extracting a Single Source
with Independent Real and Imaginary Components

We now develop fast-converging single-unit procedures to extract one source from
mixtures of sources having independent real and imaginary components. Two
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methods are considered. The first algorithm relies on the strong-uncorrelating
transform G that diagonalizes both the sample covariance and pseudo-covariance
matrices RXX = E{x(k)xH(k)} and PXX = E{x(k)xT (k)}, respectively [7].
Let Γ = GA = ΓR+ jΓ I and v(k) = Gx(k) = vR(k)+ jvI (k). Then, s(k) and
v(k) are related as [

vR(k)
vI(k)

]
=
[
ΓR −Γ I
Γ I ΓR

] [
sR(k)
sI(k)

]
. (12)

The matrix premultiplying [sTR(k) sTI (k)]T on the right-hand side of (12) is real-
valued and orthogonal. Moreover, under strong-uncorrelation,E{vR(k)vTR(k)} =
1
2 (I + Λ̂), E{vI(k)vTI (k)} = 1

2 (I − Λ̂), and E{vR(n)vTI (n)} = 0, where Λ̂ =
GPXXGT is diagonal. Since the elements of vR(k) and vI(k) are not unit vari-
ance as required by the real-valued FastICA algorithm, define

v(k) =
[

vR(k)
−vI(k)

]
=

[ √
2(I + Λ̂)−1/2vR(k)

−
√

2(I− Λ̂)+1/2vI(k)

]
. (13)

s(k) =
[

sR(k)
−sI(k)

]
=

[ √
2(I + Λ̂)−1/2sR(k)

−
√

2(I− Λ̂)+1/2sI(k)

]
. (14)

The scaling operations in (13)–(14) are not valid in the space of complex ma-
trices. Despite this fact, the orthonormal mixing properties between the sources
in s(k) and the prewhitened mixture v(k) are maintained with this scaling.

Theorem 3. Let v(k) = vR(k)+jvI(k) and s(k) = sR(k)+jsI(k). Then, under
strong-uncorrelation, the relationship between v(k) and s(k) is identical to that
between v(k) and s(k), i.e. v(k) = Γ s(k) with ΓΓH = Γ TΓ ∗ = I.

Proof: The proof is obtained by considering the structure of linearly-mixed
strong-uncorrelated random variables as described in [5, 7] and is omitted for
brevity.

The above theorem allows us to proceed with the specification of the FastICA
algorithm in this case, as E{s(k)sT (k)} = I. All of the identifiability, uniqueness,
and separability results for complex-valued ICA are preserved [7].

Given the relationship wt = wR,t + jwI,t, let wt = [wTR,t wTI,t]
T , and define

the output of the single-unit extraction system as yt(k) = wTt v(k). It can be
easily shown that yt(k) = �e[wTt v(k)]. Since v(k) contains an orthogonally-
mixed set of (2m) independent, real-valued sources with zero means and unit
variances, we can use the standard real-valued FastICA procedure with kurtosis
contrast to adjust the coefficients in wt as

w̃t =

(
1
N

N∑
n=1

y3
t (n)v(n)

)
− 3wt, wt+1 =

w̃t√
w̃T
t w̃t

. (15)
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As has been shown in [8] for real-valued mixtures, this algorithm is guaranteed
to converge to an extracting solution, which for our data structure means that
one of the real or imaginary components of s(k) is obtained in yt(k) with unit-
variance scaling and (possibly) a sign change.

The algorithm in (15) requires the strong-uncorrelating transform, which re-
quires specialized code to compute in the general case. It is possible to design
a single-unit FastICA procedure to separate mixtures of complex-valued sources
using only ordinary prewhitening. In this version, find any prewhitening matrix
Ĝ satisfying ĜRXXĜH = I, and set v(k) = Ĝx(k). The pseudo-covariance
matrix, which is not needed here, is not diagonal. The relationship between v(k)
and s(k) is given in complex form by v(k) = Γ̂ s(k), or in real form as in (12)
with Γ = Γ̂R+jΓ̂ I . Define the (2m)-dimensional vectors of real-valued elements
v(k) and s(k) as

v(k) =
[

vR(k)
−vI(k)

]
and s(k) =

[
sR(k)
−sI(k)

]
(16)

Then, the sample autocorrelation matrix of vR(k) is

R̂V V =
1
N

N∑
n=1

v(n)vT (n) (17)

=

[
Γ̂R Γ̂ I
−Γ̂ I Γ̂R

](
1
N

N∑
n=1

[
sR(n)sTR(n) sR(n)sTI (n)
sI(n)sTR(n) sI(n)sTI (n)

])[
Γ̂
T

R −Γ̂
T

I

Γ̂
T

I Γ̂
T

R

]
(18)

In the limit at N → ∞, R̂V V is not diagonal. Moreover, the powers in the
(2m) real-valued sources in s(k) are not unity. Thus, a pair of fundamental
assumptions about the FastICA procedure do not hold. Even so, we can derive
a modified FastICA procedure to obtain one of the non-zero-kurtosis sources in
s(k); see [9] for a similar derivation of a different algorithm. Define wt as the
system vector, and let y

t
(k) = wTt v(k). Define

ct =
[

cR,t
−cI,t

]
, Γ̂ =

[
Γ̂R Γ̂ I
−Γ̂ I Γ̂R

]
, and ΛS =

[
I + Λ 0

0 I−Λ

]
. (19)

Then, we set y
t
(k) = cTt s(k) and ct = Γ̂

T
wt. Consider the fourth moment term

E{|y
t
(k)|4} = cTt E{s(k)sT (k)ctc

T
t s(k)sT (k)}ct. (20)

It is straightforward to show that

E{s(k)sT (k)ctc
T
t s(k)sT (k)} = 2ΛSctc

T
t ΛS + ΛcTt ΛSct + Kdiag[ctc

T
t ],(21)

such that the desired update is

c̃t = E{s(k)sT (k)ctc
T
t s(k)sT (k)}ct − 3ΛSctc

T
t ΛSct. (22)
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The power constraint changes to E{y2
t
(k)} = cTt ΛSct = (1 ± λi), and it is

met when ct has only one non-zero unity-valued element, which is equivalent to
wTt wt = 1. Transforming back to the coordinates wt, we obtain the update

w̃t =

(
1
N

N∑
n=1

y3
t
(n)v(n)

)
− 3R̂V Vwt

(
1
N

N∑
n=1

y2(n)

)
, wt+1 =

w̃t√
w̃T
t w̃t

(23)

4 Designing Multiple-Component Extraction Procedures

For either of our single-source extraction procedures in (15) or (23) , we now
develop extensions that employ multiple parallel systems to extract each of the
source components within the mixture. We exploit the structure of the com-
plex prewhitened mixing system as indicated in (12) to make this task easier.
Suppose that wt = wR,t + jwit of either algorithm has converged such that
�e[wTt v(k)] = dR,isR,i(k) for some real-valued scalar dR,i. Then, (m[wTt v(k)] =
dI,isI,i(k) for some real-valued scalar dI,i. Similarly, if �e[wTt v(k)] = dI,isI,i(k),
then (m[wTt v(k)] = dR,isR,i(k). In other words, extracting any real (or imagi-
nary) component of a source in the mixture gives the corresponding imaginary
(or real) component of that source via the complex conjugate of the complex-
valued system output. We only need to run m single-unit real-valued extraction
procedures and employ each extracted coefficient vector twice to deflate the sig-
nal space as sources are extracted. If Gram-Schmidt deflation is employed, the
multi-source extension of the algorithm in (23) for the ith separation stage is

y
it
(k) = wTitv(k) (24)

w̃it =

(
1
N

N∑
n=1

y3
it
(n)v(n)

)
− 3

(
1
N

N∑
n=1

y2
it
(n)

)
R̂V Vwit (25)

for n = 1 to i− 1 do
wit = w̃it −wnw

T
n w̃it (26)

wit = wit −mnm
T
nwit (27)

end

wi(t+1) =
wit√
wT
itwit

(28)

where the vectors wn = [wTR,n wTI,n]
T and mn = [−wTI,n wTR,n]

T are the
coefficient vectors from the previous extraction steps. After convergence of all
units,

W =

⎡⎢⎣ wTR,1 + jwTI,1
...

wTR,m + jwTI,m

⎤⎥⎦ , y(k) = Wv(k). (29)
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The following theorem describes the separating capabilities of this algorithm.

Theorem 4. Suppose x(k) contains a mixture of m complex-valued statistically-
independent sources that all have statistically-independent real and imaginary
parts in which all but one of the sources has either a real or an imaginary com-
ponent with a non-zero kurtosis. Then, either of the algorithms in (15) or (23)
combined with (26)–(29) extracts all complex-valued sources in s(k).

Remarks: The above theorem allows for each source to have a zero-kurtosis real
or imaginary part that could be Gaussian-distributed. Thus, our algorithms can
extract several BPSK sources measured in Gaussian noise in a complex base-
band representation of an array processing system in wireless communications.
In addition, note that our techniques are more powerful than a general (2m)-
dimensional FastICA procedure applied to a set of prewhitened signal mixtures
generated from the real and imaginary parts of x(k). The latter procedure would
require all but one of the 2m total real and imaginary parts of the complex sources
to have a non-zero kurtosis.

5 Simulations

We now explore the numerical performances of the proposed algorithms. All
evaluations are performed on synthetic data using the MATLAB technical com-
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Fig. 1. Convergence of E{ICIt} for the various algorithms in a noiseless six-source
separation task
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Fig. 2. Convergence of E{ICIt} for the various algorithms in a noisy seven-source
separation task

puting environment. Three BPSK and three 16-QAM sources were mixed using
A = UΣVH , where U and V are random complex orthogonal and the com-
plex diagonal elements of Σ have amplitudes in the range [0.2, 1]. The average
inter-channel interference (ICI) is used to measure performance, as given by

ICI =
1
m

m∑
i=1

⎛⎜⎜⎜⎜⎝
m∑
l=1

|cil|2 − max
1≤k≤m

|cik|2

max
1≤k≤m

|cik|2

⎞⎟⎟⎟⎟⎠ , (30)

where cil = [WĜA]il. Shown in Figure 1 are the performances of the multi-unit
versions of the algorithms in (15) and (23) along with those of two different
versions of JADE using m and m2 cumulant matrices [1], and the circular com-
plex FastICA algorithm [2] with asymmetric deflation and G(|y|2) = 0.5|y|2.
The proposed methods outperform the algorthm in [2], and they also perform
better than JADE(m) for N ≤ 200. Figure 2 shows a more-realistic situation
in which an additional Gaussian was included in the m = 7-source mixtures
and additive circular uncorrelated Gaussian noises with variances σ2

ν = 0.001
was used as measurement interference. In this case, the proposed methods per-
form as well as or better than both JADE versions for N ≤ 500 snapshots.
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Per-unit convergence of the proposed algorithms is as fast as the original real-
valued FastICA algorithm; only a few iterations of (15) and (23) are required at
each stage.

6 Conclusions

In this paper, we have derived two novel algorithms for extracting independent
sources from complex-valued mixtures using the fourth-moment properties of
their real or imaginary components. The algorithms are computationally-simple
and converge quickly. Simulations on mixtures of complex-valued signals typi-
cally found in wireless communications applications show the methods’ efficacies.
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Abstract. This paper studies a method for blind (input signals being
unknown) estimation of the row relative degrees of a system non invert-
ible at infinity. The proposed method uses a blind signal deconvolution
scheme: A system, called demixer, is applied to the observed signals and
is updated in order to minimize the mutual information. A key point
is that the demixer is constrained to be biproper whereas the system is
not invertible at infinity, consequently deconvolution is not achievable.
But, the row relative degrees can be obtained in two steps: i) minimizing
the mutual information at the output of the demixer. ii) using second
order statistics of the obtained outputs. Although convergence has not
yet been proved, extensive numerical simulation shows the effectiveness
of this method.

1 Introduction

Blind signal separation has recently attracted much attention, and many efficient
statistical methods have appeared in the last decade. In blind signal separation,
the focus is on the recovery of unknown signals using only observed mixtures
of these signals. During recovery, the dynamical system corresponding to the
mixture is also partially identified (see book [1] for details). This approach is
hence promising in control engineering too, because we often encounter the case
where some of the input signals are unavailable due to noise, saturation, or
failure; see, for example, [4].

Since control systems are often strictly proper, i.e. non invertible at infinity,
many theoretical developments assume that the degrees of the rational transfer
matrix representing the system are partially known. Some of the most impor-
tant parameters are the row relative degrees (see Sect.2.2 and [2, 5]). However
few methods enable the determination of these parameters, thus trial and error
scheme is often used in practical applications.

This paper studies a method that enables the blind estimation of the row
relative degrees of a system. However, the blind treatment has a cost in term of
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eign Researchers” program.
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indeterminacy: Only the difference of relative degree among the rows is obtained.
The blind estimation is achieved in two steps:

i) Minimizing the mutual information with some structural constraints on the
demixer: It does not result in a blind deconvolution because of the con-
straints,

ii) exploiting the second order statistics of the output signals obtained after i).

Although convergence has not yet been proved, extensive numerical simulation
shows the effectiveness of this method.

The proposed method provides a good insight in the system’s structure be-
cause the approximate inverse of the system is factorized in two terms, one of
those corresponding to the row relative degrees information. Traditional blind
signal separation methods do not perform such a factorization because they fo-
cus on the recovery of sources. Since the use of blind deconvolution techniques
based on mutual information is not widespread yet in control community, this
paper is also an attempt to show their potential in this field.

Some notations below will be used in this paper: For a matrix A: A(i,:) denotes
the ith row of A and A(i,j) is the element of A in the ith row and the jth column.
Om×p is a null matrix of size m × p and Im is the identity matrix of size

m. δi,j is the Kronecker’s delta equal to 1 if i = j and 0 if i �= j. All transfer
matrices are assumed to be square of size m×m with m > 1.

2 Preliminaries

2.1 Blind Deconvolution

Throughout the paper we treat discrete-time signals. The goal of blind decon-
volution is to recover the unknown input signals, called source signals, s(t) =
[s1(t), . . . , sm(t)]T applied to an unknown transfer matrix H(z), called ”mixer”,
when only the observed signals v(t) = [v1(t), . . . , vm(t)]T = H(z)s(t) are avail-
able. Throughout the paper, H(z) is assumed to be stable rational, proper, and
of minimal phase with full normal rank.

A transfermatrixW (z), called ”demixer”, is applied to the observations in order
to obtain the estimates y(t) = [y1(t), . . . , ym(t)]T of the sources as illustrated in
Fig. 1. A common hypothesis used in blind signal deconvolution is to assume that
each source si(t) is an independent identically distributed (i.i.d.) process and that
all sources are mutually statistically independent. It is also necessary to assume
that atmost one of the sources has a Gaussiandistribution. With these hypotheses,
blind signal deconvolution can be achieved by adapting the demixerW (z) in order
to obtain signalsy(t)whose components are mutually statistically independent [3].

Even under the above conditions the blind identification of the transfer matrix
has indeterminacies: We can detect neither a permutation of the outputs, the
delay, nor the scale of each output. This is formulated by the relation:

W (z)H(z) = P Λ(z), (1)

where P is a permutation matrix and Λ(z) is a diagonal transfer matrix with
entries of the form αi z

−λi .
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Fig. 1. Blind signal deconvolution scheme

2.2 Row Relative Degree

A transfer matrix H(z) is said to be biproper, i.e. invertible at infinity, if the
first matrix that appears in its power series expansion H(z) = H0 +H1z

−1 + . . .
is invertible. A transfer matrix H(z) of size m ×m is said to be non invertible
at infinity if lim|z|→∞H(z) = M is not an invertible matrix.

The relative degree of a rational polynomial fraction N(z)/D(z) is degD(z)−
degN(z). The matrix of relative degrees of a polynomial transfer matrix H(z) =
{Hij(z)}i,j∈[1,m] is {dij}i,j∈[1,m] with dij relative degree of Hij(z). The ith row
relative degree of H(z) is di = minj dij .

In the remainder of the paper, we assume that H(z) is non invertible at
infinity. We further assume that H(z) is such that

diag
(
zd1 . . . zdm

)
H(z) (2)

is invertible at infinity. Namely, shifting each output signal by a number of
samples equal to the row relative degree results in a biproper transfer matrix.

Considering the two transfer matrices H(z) and H̃(z) = H(z)Λ(z), where
Λ(z) = diag(z−αj)j∈[1,m], their row relative degrees are di = minj dij and d̃i =
minj (dij + αj), respectively, and are different. However, the row relative degree
differences rpq = dp−dq and r̃pq = d̃p−d̃q are same if either one of the conditions
below is fulfilled

i) αj = α for all j: r̃pq = minj (dpj) + α−minj (dqj)− α = rpq,
ii) dij = di for all j: r̃pq = dp + minj

(
ασp(j)

)
− dq −minj

(
ασq(j)

)
= rpq .

In the case ii), the indeterminacies of blind deconvolution in Eq.(1) do not pre-
vent to estimate the row relative degree differences (permutation of column has
no effect on the row relative degrees).

3 Main Results

3.1 Adaptation of W (z)

The proposed method exploits a classical blind deconvolution scheme. However
structures of the mixer and demixer are incompatible: The demixer is constrained
to be biproper and thus cannot be the inverse of the mixer which is non invertible
at infinity.
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The demixer W (z) is a finite impulse response (FIR) system

W (z) = W0 + W1z
−1 + . . . + Wlz

−l.

The matrices Wj are adapted with a batch algorithm based on the on-line
method proposed in [1]. The method minimizes the mutual information of the
outputs

MI[y(t)] = −H(y(t)) +
m∑
i=1

H(yi(t)),

where H(X) = −
∫
PX(X) lnPX(X)dX is the entropy. Adaptation rule is de-

rived from the relative gradient of MI[y(t)].
Let Wi(k) denote the matrix Wi at iteration k and μ(k) be the positive adap-

tation step used at iteration k. The adaptation law is

Wi(k + 1) = Wi(k)− μ(k)ΔWi(k),

with ΔWi(k) =
i∑
j=0

(δj,0Im− < ψ(y(t))yT (t− j) >t)Wi−j(k)

ΔW0(k) = (Im− < ψ(y(t))yT (t) >t) W0(k)

where < . >t denotes time average on the data block. ψ(.) = [ψ1(.) . . . ψm(.)]T

is a vector containing approximations of the score functions associated with the
source signals: ψreal(s) = −∂ln[Ps(s)]/∂s (see [1] for derivation and discussion
on approximation of score). In a single iteration k, the whole block of signal y(t)
has to be computed (hence this is a batch algorithm).

At initialization W (z) = Im. An important property of the adaptation law
is that when W (z) is initialized to a biproper filter, it remains biproper during
adaptation [1]. Hence blind deconvolution cannot be attained because H(z) is
not biproper and MI[y(t)] reaches a local minimum by the above adaptation.

For simplicity, we illustrate our discussion with 2×2 transfer matrices. Assume
that first and second rows of H(z) have relative degrees d1 = 0 and d2 = d > 0,
respectively. In this case, the power series expansion of H(z) is

H(z) =
[
H

(1,:)
0

O1×2

]
+ . . . +

[
H

(1,:)
d−1

O1×2

]
z−(d−1) + Hdz

−d + HT z
−(d+1) + . . .

Conjecture. If the demixer W (z) is initialized to identity and adapted with
the above adaptation law, then the cascade G(z) = W (z)H(z) (for an even d)
converges to

G(z)≈
[
G

(1,:)
0

O1×2

]
+

[
G

(1,:)
1

O1×2

]
z−1+. . .+

[
G

(1,:)
r−1

O1×2

]
z−(r−1)

+

[
G

(1,:)
r

G
(2,:)
r

]
z−r+

[
O1×2

G
(2,:)
r+1

]
z−r−1+. . .+

[
O1×2

G
(2,:)
d

]
z−d (3)

with the integer r = d/2 and the two rows of Gr being orthogonal.
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Let us explain a ground of this conjecture. First note that minimizing MI[y(t)]
is to force that G(z) = W (z)H(z) has statistically orthogonal outputs that have
non Gaussian distributions [3]. Namely, both of the following conditions are to
be fulfilled:

i) The two rows G(1,:)
j and G

(2,:)
j of each matrix Gj are orthogonal.

ii) The vectors [G(i,:)
1 , . . . , G

(i,:)
l ] for i = 1, 2 have only one non null element.

Conditions i) and ii) cannot be satisfied completely because the demixer is
biproper, but the adaptation tries to attain them. In particular, the first matrix
W0 is solution of:

W0

[
H

(1,:)
0

O1×m

]
=

[
W

(1,1)
0 H

(1,:)
0

W
(2,1)
0 H

(1,:)
0

]
= G0.

At initialization W
(1,1)
0 = 1 and W

(2,1)
0 = 0, consequently i) implies that during

adaptation the second row of G0 remains null and the first row is proportional
to H

(1,:)
0 .

The second row of Gd is initialized to G
(2,:)
d = W

(2,2)
0 H

(2,:)
d . During adaptation,

W0 is constrained to be invertible and W
(2,1)
0 is null consequently W

(2,2)
0 cannot

be null. Therefore the second row of Gd remains non null during adaptation but
i) implies that the first row G

(1,:)
d converges to zero.

Ideally all the other matrices Gj should be set to zero during adaptation in
order to fulfill ”as well as possible” the condition ii). For j > d it is possible
to do so. But due to the constraints imposed by the non invertibility of H(z)
and biproperness of W (z), all the coefficients cannot be simultaneously set to
zero for j ∈ [1, d − 1]. However, because of the structure of H(z), most of the
Gj have one null row. Consequently i) is fulfilled: All Gj have orthogonal rows.
But ii) is not achieved and the algorithm obtains Eq.(3). Extensive numerical
simulation shows that the repartition of these non null coefficients is balanced
between the two rows. (Note: If d is odd with r = (d − 1)/2 then second row of
Gj for j ∈ [0, r] and first row for j ∈ [r + 1, d] are null.)

3.2 Row Relative Degree Difference Estimation

After minimizing the mutual information MI[y(t)], the row relative degree dif-
ference between the rows of H(z) are determined by using the off-diagonal terms
of the covariance Γ (y, τ). Considering the 2× 2 case, the off-diagonal term is:

C12(y, τ) = E{y1(t)y2(t + τ)T }. (4)

By hypothesis the source signals are statistically independent and have unit
variance, as a result their covariance is: E{s1(p)s2(q)T } = δp,q. Since the transfer
from sources to output signals is of the form Eq.(3), thus Eq. (4) gives:

C12(y, τ) = G
(1,:)
0 G

(2,:)T
d δτ,d +

[
G

(1,:)
0 G

(2,:)T
d−1 + G

(1,:)
1 G

(2,:)T
d

]
δτ,d−1 + . . .

+
[
G

(1,:)
r−1G

(2,:)T
r + G(1,:)

r G
(2,:)T
r+1

]
δτ,1 (5)
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The covariance is null if τ is not in [1, d]. Therefore after minimizing MI[y(t)], the
row relative degree difference d can be estimated by inspecting the covariance
of the output signals: d is equal to the largest delay τ for which C12(y, τ) is not
null. (Note: In the case of a negative relative degree difference d, the covariance
is null if τ is not in [d,−1].)

3.3 Proposed Method

In practice, a threshold β, function of estimation variance, is chosen and the
largest delay τ0 such that C12(y, τ) > β is the row relative degree difference
estimation r̂12 = τ0. But finding such a threshold β is not an easy task.

However, a nice property appears when a relatively hight threshold β is chosen
in order to avoid selecting delay out of [1, d]. The estimated row relative degree
difference is r̂12 = r12 − ε with 0 ≤ ε < r12 an integer representing the error.
Then consider the shifted observations:[

v1(t + r̂12)
v2(t)

]
=
[
zd1−d2−ε 0

0 1

]
H(z)s(t) =

[
zd1−ε 0

0 zd2

]
H(z)s(t− d2)

– When ε = 0, diag(zd1 zd2)H(z) is biproper. Consequently, using the same
adaptation rule to adapt W (z) after shifting the observation results in a
blind deconvolution. Thus C12(y, τ) is null for all τ because output signals
are statistically independent.

– When ε �= 0 the row relative degree difference of the system whose outputs
are the shifted observations is ε ∈ [1, r12−1]. Thus using the same adaptation
rule to adapt W (z) after shifting the observation leads again to a cascade of
the form Eq.(3) and C12(y, τ) still presents non null values.

Thus iterating the same procedure ensures that ε → 0. In order to exploit this
property, the proposed method is iterative:

1. initialization r̂12 := 0,
2. adapt the biproper demixer to minimize the mutual information,
3. compute C12(y, τ) for delay in [−τmax, τmax],
4. if C12(y, τ) < β for all τ ∈ [−τmax, τmax] then stop iteration,
5. otherwise: Select τ0 the largest delay such that C12(y, τ) > β, update the esti-

mation r̂12 := r̂12 + τ0, shift the first observation v1(t) := v1(t+ τ0) and go to
step 2.,

4 Numerical Simulation

Consider the system H(z) =
[ 1

z+0.7
0.9
z−0.6−0.5

(z−0.3)(z+0.7)(z+0.4)
1

(z+0.2)(z−0.4)(z+0.6)

]
, whose

impulse response is given in Fig.2-(a). The row relative degrees are d1 = 1
and d2 = 3. Unknown source signals are i.i.d. processes uniformly distributed
with zero mean and unit variance. The number of samples used in this example
was T = 10000. 100 experiments were performed. The FIR filter has l = 20
coefficients.
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Fig. 2. Impulse response of H(z) (a) and mean (variances are all less than 2.5e−4) of
the impulse response of W (z)H(z) after: First, second and third iterations respectively
in (b), (c) and (d) (the subplot ij is the transfer from input j to output i)
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Fig. 3. C12(y, τ ) for: First (a)(b), second (c)(d) and third (e)(f) iterations. The upper
row shows results for all experiments (index n) and the bottom row shows the mean,
the minimum and the maximum of the covariance computed on all experiments.

The evolution of the impulse response of the cascade is presented in
Fig.2-(b), (c) and (d). After adapting W (z), the impulse response has the form
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of Eq.(3) in Fig.2-(b) and (c) but finally after the row relative degree difference
was estimated the cascade is equal to identity because the blind deconvolution
is achieved, Fig.2-(d).

The evolution of the covariance is depicted in Fig.3: First, second and third
iterations (in left, middle and right column respectively). Fig.3-(a), (c) and (e)
show C12(y, τ) versus the delay τ for all the 100 experiments. The mean, mini-
mum and maximum value of C12(y, τ) are also plotted in Fig.3-(b), (d) and (f).
During first iteration, the largest values are obtained for τ = 1, 2 as expected
from Eq.(5). But a threshold β such that τ = 2 is selected for all experiments
does not exist, see Fig.3-(b). For second iteration (after shifting first observation
by one sample for all experiments: r̂12 = 1), the value τ = 1 is selected in all
experiments. Thus the true row relative degree difference of two, i.e. r̂12 +1 = 2,
is correctly estimated for all experiments. Consequently, after shifting again of
one sample the first observation for all experiments and minimize the mutual
information, the covariance has only very small values and the algorithm stops.

5 Conclusion

In this paper we show how to blindly estimate the row relative degree difference
of a class of transfer matrices non-invertible at infinity by means of an iterative
method based on a blind signal deconvolution setting.
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Abstract. Recognition of planar objects from their images taken from
different viewpoints requires affine invariants calculated from the ob-
ject boundaries. The equivalence between affine transformation and the
source mixture model simplifies the recognition problem. The rotation,
scaling, skewing, and translation effects of the affine transformation can
be undone by using blind source separation (BSS) techniques to go back
to a canonical object view. Then, the problem is reduced from a more
involved affine invariant search to a simple shape matching task. Point
correspondence between two curves initially related by an affine trans-
formation is obtained with further processing.

1 Introduction

Object recognition is one of the major goals in machine vision. Typically, the
images of an object taken from different viewpoints should be registered as be-
longing to the same object. For this purpose, invariants, which are shape descrip-
tors that remain unchanged even when the viewing point changes are needed.
The transformation that the object has gone through in an image compared
to another view is approximated with the affine transformation if the object is
viewed from a distance that is an order or more greater than the maximum ob-
ject diameter along the direction of view [1]. Since this assumption always holds
for planar objects, recognition problem becomes a search for affine invariants
[2]. The affine transformation includes rotation, scaling, skewing and transla-
tion, and it is known to preserve parallel lines and equispaced points along a
line [3].

A large number of affine invariants for planar object recognition have been
proposed in the literature [1], [3]-[5]. These are classified as either boundary
or region based techniques. Yet another classification for invariants is whether
they are local or global. Local invariants, which use higher order derivatives, are
susceptible to noise [4]. Global invariants, on the other hand, suffer from the
occlusion of the object. The invariants proposed in [3]-[5] are all based on the
wavelet transform. These methods produce global invariants, since the whole
set of boundary points are used when calculating the wavelet coefficients. The
wavelet transform decomposes the object boundary into a number of scales and
the invariants use a subset of these scales. Although the wavelet transform based
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methods are easy to compute, their performance is very much dependent on
whether point correspondence between the object boundaries related by an affine
transformation exists or not.

In this paper, we show that planar object recognition problem can be sim-
plified by employing blind source separation (BSS) techniques based on meth-
ods that use time structure. Here, the separation is achieved by the second
order blind identification method in [6], where a set of covariance matrices are
jointly diagonalized. As a result; the rotation, scaling, skewing and translation
effects of the affine transformation are eliminated and the affine transformed
object is brought to its canonical view. With further processing, point corre-
spondence between the object boundaries extracted from two different images
of the same object is obtained. Then, it is possible either to use the wavelet
transform based shape descriptors [3]-[5] or any other shape descriptor to match
objects, where the shape descriptor does not need to have the affine invari-
ant property. In [7], Herault and Jutten have developed an adaptive algorithm,
which uses non-linear decorrelation concepts, to estimate the unknown inde-
pendent sources. They have applied this algorithm to a similar image process-
ing problem.

The organization of the paper is as follows. Section II is about the mathematics
of the object recognition problem. The BSS techniques using time structure and
the equivalence between the source mixture model and the affine transformation
are the subjects of Section III. The algorithm for obtaining point correspondence
is introduced in Section IV. Some experimental results are given in Section V.
Conclusions are made in Section VI.

2 Object Recognition

A typical recognition task involves the identification of an object from its image
taken from an arbitrary viewpoint. The boundaries of the objects in both the
reference images in the database and the query image have to be analyzed. The
coordinates of the boundaries of the objects in two images, which portray the
same object, are related by an affine transformation[

x̃
ỹ

]
=
[
a1 a2
a3 a4

] [
x
y

]
+
[
b1
b2

]
. (1)

(1) can be expressed in vector-matrix notation as

x̃ = Ax + b, (2)

where x and x̃ are the vectors that contain the coordinates of the original and the
affine transformed image boundaries, respectively. Here, the nonsingular matrix
A represents the scaling, skewing and rotation, and b is the translation in the
affine transformation. Thus, affine invariants are calculated from the boundaries,
which are expected to be identical whatever the particular value of the matrix A
is if the boundaries belong to the images of the same object taken from different
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viewpoints. The invariants should be distinct for different objects. The degree of
match between two invariant functions, I1 and I2 is given by their normalized
correlation value [3] ∑N−1

n=0 I1[n]I2[n]√∑N−1
n=0 I2

1 [n]
∑N−1
n=0 I2

2 [n]
, (3)

where N is the length of the invariant function. The invariants calculated from
two curves related by an affine transformation should be identically one if there
is perfect point correspondence and no noise. Deviation from this assumption
decreases the amount of correlation.

3 Blind Source Separation Techniques

The mixture model is given by[
m1(t)
m2(t)

]
=
[
w11 w12
w21 w22

] [
s1(t)
s2(t)

]
(4)

m = Ws, (5)

where mi(t) i ∈ {1, 2} and si(t) i ∈ {1, 2} are the mixtures and the sources,
respectively. The signals in the mixture model are assumed to have zero mean.
Both W and s are unknown and should be estimated. Various techniques have
been developed by assuming that the mixtures and the sources are random
variables instead of time signals. While some of those increase the nongaussianity
of the sources with respect to the mixtures, some others are based on nonlinear
decorrelation to increase the statistical independence of the sources [8]. In the
end, the sources are estimated up to a sign and amplitude ambiguity. Moreover,
the order of the sources cannot be determined.

If the sources are time signals, on the other hand, they carry a lot more
structure than when they are random variables [8]. The ordering of the time
series data can be exploited in many ways. Methods using time structure have
been developed based on covariances. The covariance matrix for lag τ of the zero
mean mixture signals is

Cm
τ = E{m(t)m(t− τ)T } (6)

=
[
E{m1(t)m1(t− τ)} E{m1(t)m2(t− τ)}
E{m2(t)m1(t− τ)} E{m2(t)m2(t− τ)}

]
,

where (·)T denotes transposition. The whitening of the mixtures is one of the
most important pre-processing operations. Specifically, the matrix V is applied
to the mixtures so that the resultant signals given by the vector z are white with
uncorrelated components having variances equal to unity: z = Vm. Information
from the covariance matrices corresponding to lags τ �= 0 is needed for source
separation. Sources are estimated with the transformation s̃ = Bz.

The simplest method using time structure is the Algorithm for Multiple
Unknown Signals Extraction (AMUSE) algorithm in [9], [10]. It uses only one
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(a) original (b) affine transformed

Fig. 1. The original object and its affine transformed version

lag, τ . The separating matrix B is estimated by whitening the zero mean data
m to obtain z, computing the eigendecomposition for C̄z

τ , and finally taking the
eigenvectors as the rows of the separating matrix. A modified covariance matrix
is used so that the matrix is symmetric and the eigendecomposition can be done:
C̄z
τ = 1

2

[
Cz
τ + (Cz

τ )T
]
. The covariance matrix of the mixtures is C̄z

τ = BT C̄s
τB,

which is, in fact, C̄z
τ = BTDB, where D is a diagonal matrix and this equal-

ity follows due to the uncorrelatedness of the sources. Thus, B is part of the
eigendecomposition of the matrix C̄z

τ . The algorithm fails if for the time lag
chosen, the eigenvectors of the covariance matrix are not distinct. The AMUSE
algorithm has been extended to several time lags by the Second Order Blind
Identification (SOBI) algorithm in [6]. For successful demixing of sources, it is
enough that only one of the covariance matrices has distinct eigenvectors. The
covariance matrices are diagonalized jointly by a matrix U.

The affine transformation (2) and the mixture model (5) are seen to be equiv-
alent if the object centroid given by the means of the x and y coordinates of
the boundary is moved to the origin (i.e., so that they have zero mean). The
coordinates of an affine transformed object boundary may be visualized as a
mixture of the coordinates in some canonical view. Fig. 1 shows an object from
the airplane object database in [3] and its affine transformed version, where
the affine transformation matrix has a1 = 1, a2 = 2, a3 = 7 and a4 = −3
in (1). The vector, b, is assumed to be an all-zeros vector for simplicity. The
x and y coordinates of the object boundaries are shown in Fig. 2. The si’s
found by using the SOBI algorithm are demonstrated in Fig. 3. From the figure,
it is seen that the SOBI algorithm has introduced a sign and order ambigu-
ity to the coordinates of the original object. Moreover, the si’s of the affine
transformed object are related to those of the original object by a sign and
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Fig. 2. The x and y coordinates of the original and transformed object boundaries,
horizontal axis - sample number, vertical axis - x or y coordinates
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Fig. 3. The si’s of the original and transformed object boundaries, horizontal axis -
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Fig. 4. Boundaries of the original and transformed objects processed with SOBI, stars
indicate the starting points of the boundaries

order ambiguity. The starting points of the boundaries, which are shown with
stars in Fig. 4 are different, as the boundary tracking algorithms can start from
any point.

4 Post Processing

Although applying BSS techniques to the object boundaries brings them to a
canonical view, there are still significant problems that need to be addressed.
Specifically, these techniques employ linear transformations of the mixtures to
arrive at the sources. According to affine invariants, this is yet another affine
transformation. Those that suffer from a lack of point correspondence between
the object boundaries still exhibit low correlation values.

First of all, the order and sign ambiguities are removed. The aim of SOBI, is to
make s1 uncorrelated with s2 for all possible time lags. The correlations between
the si’s of the original and transformed object boundaries for all possible shifts
of the transformed boundary show the correct order of the transformed si’s and
their signs with respect to the original si’s. The calculated correlations should
be maximized in magnitude when the corresponding si’s are used. For instance,
if there is an order ambiguity, then s1 (s2) of the original boundary is related
to the s2 (s1) of the transformed boundary. The correlation between original
s1 and affine s2 is maximized in magnitude when they are exactly aligned (i.e.
they have the same starting point). Note that the correlation between original
s2 and affine s1 should be maximized for the same shift in theory. Hence, the
starting points for the boundaries can be made the same. Before the correla-
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Table 1. Maximum correlation values between si’s

Correlation Shift
(i) s1,original-s1,affine -0.9500 529
(ii) s1,original-s2,affine -0.9993 264
(iii) s2,original-s1,affine 0.9672 265
(iv) s2,original-s2,affine -0.9445 530

tions are calculated, the boundaries are parameterized with arc length, which
means that the boundary samples are at approximately equal distances from
each other.

At this stage, we go back to the example in the previous section and give
the maximizing correlation values in Table 1. For this particular example, none
of the correlations is maximized for the same shift, but they are close enough
to be considered as equal. Here, both of the boundaries have a length of 210.
The decision as to whether there is a sign or order ambiguity and the proper
alignment of the boundaries is done looking at the magnitudes mag((i)×(iv))
and mag((ii)×(iii)) from Table 1. This tells us that the sign of affine s2 should
be reversed, and the order of the first and second si’s of the affine trans-
formed boundary should be switched. They should both be shifted in time by
265. For this shift, the correlations (i) and (iv) are 0.0133 and 0.0093, respec-
tively. The algorithm for obtaining point correspondence may be summarized as
follows:

1. Extract object boundaries from the images related by an affine transforma-
tion and perform SOBI algorithm to obtain si’s.

2. Parameterize the boundaries with arc length and calculate the correlations
(i)-(iv) in Table 1 for all possible shifts of the transformed si’s.

3. Choose maximum of mag((i)×(iv)) and mag((ii)×(iii)). If mag((i)×(iv)) is
chosen, then si’s of the affine object are in correct order. Reverse the sign of
affine s1 or s2 if (i) or (iv) is negative, respectively. Shift the starting point of
the boundary to the average of shift (i) and (iv). If mag((ii)×(iii)) is chosen,
reverse the sign of affine s1 or s2 if (iii) or (ii) is negative, respectively. Switch
the orders of the si’s. Shift the starting point of the boundary to the average
of shift (ii) and (iii). Finally, do a parametrization of the boundaries with
arc length.

The importance of the steps above and that the algorithm works is shown via
the affine invariant wavelet function in [3]. This invariant uses six wavelet scales.
When the boundary is sampled to a length of 27, seven scales of coefficients are
calculated and the finest scale, which is very much affected by noise is avoided.
The wavelet in [11] is being used. When the boundaries extracted from images
are used as they are, the correlation in (3) between the invariants is 0.5163. The
algorithm outlined above increases the correlation value to 0.9703. The final form
of the affine transformed object boundary normalized to a length of 27 and the
invariants are displayed in Fig. 5.
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Fig. 5. The final form of the transformed boundary and the invariant functions

5 Experimental Results

Two experiments have been carried out to test the proposed algorithm. The air-
plane object database in [3] with 20 objects is used. In the first experiment, uni-
formly distributed white noise at different signal-to-noise ratio (SNR) values has
been added to the boundaries of the affine transformed objects before the normal-
ized correlation in (3) is calculated. SNR is defined as the ratio of the average
squareddistance of theboundarypoints fromthe centroid to thevariance of theuni-
formly distributed noise. Each object in the database is transformed using a1 = 1,
a2 = 2, a3 = 7 and a4 = −3. For each SNR value, fifty realizations of noise are
added to the boundary of each affine transformed object and the correlation values
for the 1000 realizations are averaged. Fig. 6a shows the result of the experiment.
When SNR = 20 dB, it is not possible to distinguish the boundaries belonging to
different, but similar objects, since the details are lost. Uniformly distributed noise
moves the boundary points, which is an ordered set initially, in random directions.
Then, the object boundary is not a collection of ordered points like it should be.
Until SNR increases so much that the order of the boundary points is not altered,
the algorithm does not have so high correlation values. SOBI algorithm exploits the
order of the boundary points to arrive at the canonical object view.

In the second experiment, the transformationa1 = 20(1−γ),a2 = 10,a3 = −10
and a4 = 20(1 + γ) with γ = {0, 0.1, . . . , 0.9} is used to test how the algorithm
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Fig. 6. Experimental results
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works under increasing amount of affine distortion. The case γ = 0 corresponds to
a similarity transformation, which consists of scaling and rotation. Again, for each
transformation 20 airplane objects are used and the normalized correlation value
in (3) is averaged. The results are given in Fig. 6b. γ ≥ 0.5 implies a large affine
distortion of the object. The algorithm proposed still has very high correlation for
these values of γ as it undoes the affine transformation.

6 Conclusion

In this paper, we have shown that the recognition of planar objects problem can
be simplified from an affine invariant search to a simple shape matching task. The
rotation, scaling, skewing and translation introduced by the affine transformation
can be eliminated by using BSS techniques. Approximate point correspondence
between two curves related by an affine transformation is obtained with the
algorithm proposed. The proposed algorithm is shown to be successful under
practical levels of noise and large affine distortions.
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Abstract. Infrared spectroscopy provides direct information on the composition 
of interstellar dust grains, which play a fundamental role in the evolution of in-
terstellar medium ISM, from cold, quiet and low density molecular clouds to 
warm, active and dense protostellar ones. The determination of these compo-
nents is fundamental to predict under the appropriate environmental conditions 
their evolution, including the appearance of new molecules, radicals and com-
plex organics. The absorption spectrum of the astrophysical ice can be consid-
ered the additive linear absorption spectra of the multiple molecules present in 
the ice, so a linear instantaneous ICA mixture model is appropriate. We present 
the ICA statement of the problem, discussing the convenience of the model and 
its advantages in front of supervised methods. We obtain the MAP estimate of 
the mixing matrix, including its non-negative entries as a prior. We present the 
results carried out with an ice analogs database, confirming the suitability of the 
ICA approach. 

1   Introduction 

The origin of the biogenic elements in Earth is an intriguing question [1]. It is thought 
that prebiotic molecules were present on primitive Earth. Different processes could be 
responsible for their evolution into more complex ones. One of the most famous ex-
periments was carried out by Miller [2]. In this experiment, glycine was formed by 
energetic processes such as the electric discharge of a mixture of HCN and aldehydes 
acids. Other experiments [3] demonstrate that other molecules of interest such as car-
bonic acid (H2CO3) could be formed from simple molecules such as CO by protons 
implantation. The understanding of chemical evolution of elementary molecules as 
water, carbon monoxide, methane or carbon dioxide is one of the key questions for 
understanding the origin of life on Earth. 

These molecules are combined in different quantities, called concentrations, in other 
compounds and found usually in the frozen state, named from now on ice mixtures. 

One way to study this chemical evolution consists of the simulation of these proc-
esses in the laboratory. In the laboratory, we are interested in the analysis of the com-
position of different ices and their behavior in specific conditions that reproduce 
situations in which these substances are found outside of the laboratory. For example: 
to raise the temperature gradually or to radiate the samples with ions that are similar 
to the ones originated outside of the planet Earth. 
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The signal that identifies each molecule is the infrared absorption spectrum, where 
the absorption bands correspond to specific vibrational mode of the molecules, each 
one with different atoms and bonds. We know that the frequencies corresponding to 
the middle infrared spectrum (4000-400 cm-1; 2.5-25 μm) span the same range as the 
vibrational frequencies of the adjacent atoms in molecules associated with the cos-
mogenically most abundant species. The components are called endmembers and the 
spectra signatures or digital tracks. 

ICA performs a “multi-ice” unsupervised decomposition of the data in different 
spectra instead of a classical matched filter detection approach. The supervised ap-
proach raises other difficulties in our application; not only the requirement of an ex-
pert with the risk of misinterpretations, but furthermore, the library of endmembers 
could be very large because considering that the spectrum vary depending on many 
variables such as temperature or irradiation, we would need a description of every 
compound for every case. In fact, even under very controlled conditions, like in a 
laboratory, the spectra registered in different experiments for the same mixed ice can 
sometimes change. In Figure 1 we represent the CO2 spectrum band around 2350 cm-1 
obtained in Leiden and Polytechnic University of Valencia UPV laboratories. The 
mixed ice production consists of defining the mixture, preparing the gases necessary 
in the corresponding abundance, introducing them in the gas container using the gas 
law to convert pressures to abundances, and depositing on a cold substrate. The final 
ice can vary due to different problems, e.g., the purity of the gases, small changes in 
the temperature, sequential mixing of gases, or the influence of the molecular mass in 
the deposition rate [4]. 

2   Infrared Absorption Features of Astrophysical Ices 

Life on Earth originated in stars which formed out of interstellar gas and dust [5]. The 
lifecycle of an interstellar ice mantle consists of the following stages: a.) formation 
and growth by surface reactions on grains, b.) the ices are subject to energetic phe-
nomena associated to the origin of stars that lead to c.) thermal evaporation or 
photolysis into more complex organic solids and d.) the material is returned to the 
ISM or accreted to providing the necessary conditions for the formation of planetary 
bodies. To understand all this process, knowledge of the different components of the 
ices is fundamental and it is achieved through the infrared absorption signatures cor-
responding to each molecule. The spectrum is formed by absorption bands around 
some specific wavelengths determined by their atomic composition and bond struc-
ture, e.g., the 4.67 μm (2140 cm-1) C O stretching band; their peak position and width 
depend on the presence or absence of some molecules that can affect their dipolar 
moment, e.g.., when the break-up of the hydrogen bond weakens the O-H stretching 
feature of fully H bonded water at 3 μm (3280 cm-1) [6], in addition to temperature 
and particle shape. Besides, these bands usually have an area and a width related to 
the compound concentration in the ice. 

There are different magnitudes related to the absorption. One of them is the optical 
depthτ , which is defined as the integral of the absorption coefficient times the den-
sity along the path. It can be calculated for every frequency υ as: 

υτυυ −= eII )()( 0                  (1) 
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where I is the intensity which passes through the ice and 0I is the initial infrared beam 

intensity. The optical depth ranges between zero, when the radiation impinging goes 
through the material and arrives to the detector, therefore 0II = , i.e., there is no ab-

sorption at all, and infinite if the ice is able to absorb all the arriving radiation 0=I . 
As an example, in Fig. 2 we show the infrared spectra of the methane and water regis-
tered at the UPV laboratory. Obviously a background spectrum is first registered be-
fore the measurements of the ice under test. 

Some artifacts can appear due to preprocessing tasks, complex physics and noise 
sources, e.g., changes with time and temperature, calibrations or sensor noise. For ex-
ample, in Fig. 2 we can see wavelengths where the optical depth takes negative val-
ues, such as around the CH4 methane peak around 10 μm. 

Of all the preprocessing tasks, the most important one is the baseline removal, be-
cause in very attenuate absorption bands a bad approximation of the baseline can 
mask some compounds or produce negative values of the optical depth. 
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Fig. 1. CO2 spectrum. Absorbance vs. wave-
number. 

Fig. 2. Water and methane spectrum. Opti-
cal depth vs. wavelength. 

3   ICA Framework 

ICA has been applied in different astrophysical applications, e.g., to study celestial 
sources [7], to separate the cosmic microwave background, the galactic dust radiation, 
the synchrotron radiation and the free-free radiation components of the microwave 
sky radiation [8] or the mineralogical identification with the OMEGA spectra on 
board Mars Express [9]. The infrared spectrum has also been used in source separa-
tion problems [10], [11]. 

Only the sign factor indeterminacy of ICA must be considered, taking into account 
that it is really straightforward to detect the correct one, since the optical depth of the 
sharp absorption bands must be also positive. The restriction of at most one Gaussian 
source is not either a problem; the histogram analysis of pure molecules is far from 
corresponding to a Gaussian random variable. 
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3.1   ICA Model 

The ICA formulation of the problem is: the infrared absorption spectrum ijx  meas-

ured for Mi ,...,1= ice mixtures in the spectral band Pj ,...,1= , typically correspond-

ing to 4000 up to 400 cm-1 with resolutions 1 or 2 cm-1, is the linear combination of 

the independent absorption spectra kjs of the molecules (sources) Kk ,...,1= present 

in those ices. The concentration of molecule k in ice i is the mixing matrix entry aik. 
The concentrations aik and absorption spectra kjs  are non-negative, although some 

preprocessing tasks such as baseline removal, noise and complex physics in the meas-
urement process can produce a negative ijx . All these processes will be resumed in a 

noise term ijn for ice i in wavelength j. In matrix notation, for a given wavelength, we 

have: 
nAsx +=                       (2) 

3.2   Discussion of the Model 

We will review some physical considerations about the absorption spectra and end-
members in order to explain and discuss the conditions when the ICA model (2) is 
suitable for the problem. 

Independency of the sources. The sources correspond to the spectral signatures of 
the endmembers. At a first glance, the hypothesis sounds rather intuitive that the ab-
sorption of different molecules has nothing to do due to the fact that vibrational fre-
quencies of different components are not correlated. This is true, in general, but not 
always. As an example, at 10 K, the band width of the CO-stretch in CO/O2 mixtures 
increases with O2 concentration from 2.2 cm-1 up to 5.5 cm-1 when the amounts are 
equal, and then decreases again when O2 is more abundant [6]. To model these rela-
tionships with conditional densities for a general case is very complicated. The same 
problem arises when the spectrum changes with temperature and radiation, so the only 
thing we can do in such ill-conditioned situations is for practical purposes to suppose 
that there are different kinds of CO, i.e., the number of sources must be increased.  

Statistics of the sources. Considering the histogram of the spectra of the endmem-
bers, most of them correspond to supergaussian signals, due to there being no absorp-
tion in most wavelengths. 

Instantaneous mixture. The instantaneous model is clearly appropriate since ab-
sorption bands are not related. Nevertheless, a convolutive model could be suggested 
for the case aforementioned in the discussion about independency.  

Linear mixture. The linear mixing model is also a usual supposition, i.e., the total 
absorption spectrum is the linear addition of the absorption features of every ice com-
pound. But it is known that this is a simplified model in environments such as the 
planetary atmospheres, where the mixing is exponential [12]. 

Noise. It is basically due to measurement noise, although the preprocessing can 
also distort the actual signal. It is usually considered a white or coloured Gaussian 
noise. In our case, as the sensor noise level is relatively low (high quality measure-
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ments in the laboratory), it will not be considered in our model, so the relation be-
tween sources and mixtures becomes deterministic and equation (2) simplifies. 

Number of mixtures. Usually KM > , i.e., more ices than simple molecules are 
available. In fact, it will be usual in the whitening step to reduce the dimension of the 
problem. The list of sources usually include CO, CO2, H2O, NH3 and CH4. 

Priors. Absorption spectra are non-negative. However, as we explained before, the 
input samples can include some few low magnitude negative values, so this prior will 
not be included. The concentrations are also non-negative. This positive constraint is 
introduced in the model with a proper simple constraint. If both of them were consid-
ered, decompositions such as non negative matrix factorization [13] could be appro-
priate. Finally, the supergaussianity of the sources is used in the approximation of the 
densities of the independent components. 

3.3   A MAP Estimate 

Ignoring the noise term in (2) the problem becomes: 
Asx =           (3) 

 
For a given observation x of the optical depth in the ice mixtures at a given wave-

length, the posterior probability of A using Bayes rule is: 
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due to (3) and to the independence of the K sources. To maximize (4), the term 
)(xp is not relevant. Considering the posterior probability for the whole set of wave-

lengths Pjj ,...,1),( =x , normalizing and taking logarithms, the maximum a poste-

riori estimate is obtained: 
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This is the maximum likelihood estimate plus a term )(log Ap that tries to penalize A 

entries with low probability in the prior knowledge. The demixing problem is: 
Bxy =                (7) 

 
where B is the recovering matrix and y the recovered signals. For the square case, 

1−= AB , the equivalent function to (6) to be maximized is: 
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At this point we introduce the prior of the mixing matrix )(Ap . Because its entries 

must be non-negative, a simple constraint imposing that 0)( =ijap  for 0<ija  is 

enough. To maximize (8) we need to know the factorized pdf of the independent 
sources, but due to the supergaussianity of the sources, the derivative of the logarithm 
of the unknown pdf’s can be substituted by other non linear functions. The stochastic 
version of the algorithm that maximizes (8) is:  

old
T

oldnew ByyfIBB ))(( ++= α     (9) 

subject to 1−B does not have negative entries; α is the usual learning rate and f the 
non-linear component-wise function; i.e., the same updating rule as in the infomax al-
gorithm [14] with the prior restriction. Note that (9) corresponds to the natural gradi-
ent version of the algorithm. The algorithm can be understood as finding B such that 
the distribution of y in (7) is as close as possible in a Kullback-Leibler divergence 
sense to the supposed distribution of the sources [15] without violating the constraint; 
e.g., if )tanh(2)( yyf −= , then )cosh(log2)(log iii ssp −= β with β a parameter 

fixed to make this the logarithm of a pdf. As we mentioned before, usually there will 
be more ices than molecules, so a first step of prewhitening will be carried out to re-
duce the dimension of the problem. This step also accelerates the convergence of the 
algorithm and obviously the same transformation must be applied to the prior. 

4   Results 

We tested the algorithm with the ice analogs database of Leiden [16]. This database 
contains the infrared spectra of laboratory analogs of interstellar ices. Different mixtures 
of molecules (from one up to three components selected from H2, H2O, NH3, CH4, CO, 
H2CO, CH3OH, O2, N2 and CO2) at different temperatures and UV doses were pro-
duced, being the final spectrum calculated ratioing the measured and the background 
spectrum. The units of the data are cm-1 and absorbance, which is defined as optical  
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Fig. 3. Ice mixtures. Top to bottom, H2O+CO (10:100), H2O+CO (100:33), H2O+CO2 
(100:14), H2O+CO2 (100:125), CO+CO2 (100:70), CO+CO2 (100:23). 
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Fig. 4. Recovered Sources. Top to bottom, H2O, CO2 and CO. 

length/ln10. The baseline was removed with Origin software and the useful wavelengths 
intervals were selected.  

In Fig. 3 we show the ice mixtures, in this case ices containing H2O, CO and CO2. 
The three estimated components are shown in Fig. 4, where we can observe a CO and 
a CO2 residual in the H2O component due to the sharp peak value identifying the two 
components around 2150 cm-1 and 2350 cm-1 respectively.  

5   Conclusions 

In this paper we have presented the application of ICA to astrophysical ices. Mixture 
signals are the infrared absorption spectra of ices, being the sources the spectra of the 
different compounds present in the ices and the entries their concentrations. The study 
and decomposition of the components of these astrophysical ices is necessary in fu-
ture studies where, depending on the composition and environmental conditions, each 
ice can produce a different complex compound. An additional restriction is imposed 
in order to obtain a constrained MAP estimate: the entries of the mixing matrix are 
non-negative. The effectiveness of ICA to extract the molecules present in a collec-
tion of laboratory ices has been proved. 

The ICA approach has other advantages with respect to classical supervised meth-
ods: we do not need a complete library of endmembers for different situations, it is a 
multichannel method, concentration and endmembers can be estimated at the same 
time, and more challenging, it can extract signals corresponding to artifacts and un-
known compounds not included in the library. Future work will try to model the de-
pendencies between components for some molecules and to exploit the wavelength 
structure of the spectra. 
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Abstract. A multi-scale independent component analysis (ICA) ap-
proach is investigated for industrial process monitoring. By integrat-
ing the ability of wavelet on multi-scale analysis and that of ICA on
extracting independent components for non-Gaussian process variables,
the multivariate statistical monitoring techniques can obtain improved
performance. Contrastive tests have been carried out on the famous
benchmark chemical plant among ICA-like and PCA-like methods, which
reveals that multi-scale ICA approach has lower missed detection rate
of faults.

1 Introduction

Modern chemical processes, which are equipped with instrument and data col-
lector, contain thousands of measured variables, such as temperatures, pressures
and flow rates. The correlation among the process variables exists as a result
of either association or causation. Instead of univariable statistical process con-
trol (SPC), it is necessary and possible to apply multivariate statistical process
control (MSPC) to extract relevant information in the redundant process data,
and to detect if statistically significant abnormalities occur. As a methodology,
MSPC monitors whether the process is in control through the analysis of the
various control charts, such as T2 and SPE. While numerous procedures of uni-
variable SPC are available in manufacturing processes and are likely to be part of
a basic industrial training program, MSPC procedures are being used to monitor
chemical processes that are inherently multivariate [1].

Basically, as a mathematical tool, principal component analysis (PCA) can es-
sentially identifies important characteristics in multivariate redundant data and
has successfully been applied to performance monitoring and fault diagnosis for
industrial process [2], [3]. PCA makes variables de-correlated by means of maxi-
mizing the variance within the process data, which follows a Gaussian probabil-
ity distribution or independent identical distribution. Unfortunately, the process
variables and its statistical information are very complex in actual industrial
production, it is difficult to make certain about process variable’s probability
distribution [4].

As a blind source separation technique, independent component analysis
(ICA) has been founded wide applications in processing of medical signals, com-
pressing of images [5], and machine fault detection [6], etc. Compared with PCA,

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 376–383, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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ICA represents a set of random variables as linear combination of statistically
independent component variables, and is less sensitive to process variable’s prob-
ability. Benefited from this, recently, ICA has been introduced to process mon-
itoring [7], [8], which can be more efficacious in a non-Gaussian context. In the
real-world stochastic processes, the energy or power spectrum of variables often
changes with time or frequency, as a result, almost all the industrial processes
are multi-scale in nature. Accordingly, while the existing ICA process monitor-
ing has been adopted at a single scale, it may be more significant to improve the
process monitoring by means of multi-scale ICA. In fact, the concept of multi-
scale analysis already exists in the project of image processing [9], multi-scale
PCA monitoring [10] and blind source separation [11].

In this paper, a multi-scale independent component analysis (MSICA) ap-
proach is investigated for process monitoring, which integrates the ability of
wavelet on multi-scale analysis and that of ICA on extracting independent com-
ponents for non-Gaussian variables. While the process is in control, the genuine
model is decided by the reconstructed signals from the selected wavelet coeffi-
cients, which violate the threshold of the ICA model at the significant scales. By
means of the presented MSICA, the statistical monitoring method is discussed on
the famous benchmark plant, Tennessee-Eastman (TE) chemical process. Com-
pared with traditional MSPC methods (including existing PCA and MSPCA),
MSICA reveals lower missed detection rate of faults.

2 Multi-scale ICA Monitoring

2.1 Wavelet-Based MSICA Model

For an original data set X = (x(1), x(2), · · · , x(m)) ∈ Rn×m with m measure
variables and n samples, the standardization is firstly performed to make mea-
sure variables have zero mean and unit variance. By applying l steps wavelet
decomposes to every measure variable x(i), i = 1, 2, · · · ,m, there are l detail
coefficient vectors ak,i on scale k = 1, 2, · · · , l, and an approximate coefficient
vector bl,i. Assuming p is the sample length of ak,i and bl,i, on the kth scale,
there exist a detail coefficient matrix Ak = (ak,1, ak,2, · · · , ak,m)T ∈ Rm×p and
an approximate coefficient matrix Bl = (bl,1, bl,2, · · · , bl,m)T ∈ Rm×p. Moreover,
let Ak = CS̃ or S̃ = FAk, where S̃ ∈ Rp×m is source signal matrix, C ∈ Rp×p is
a nonsingular constant matrix, and F = C−1. In general, Ak may be whitened
by the transformation QAk, where Q = Λ−1/2UT , and Λ and U come from
the eigen-decomposition of the covariance, i.e. E(AkATk ) = UΛUT . To separate
statistical independent source signals from Ak, the notion of entropy is used,
which is a measure of uncertainty of a continuous stochastic variable. Under the
condition of the same variance, the smaller the differential entropy of a random
variable is, the greater non-Gaussianity it has. It is known that the Gaussian
random variable has maximal differential entropy and non-Gaussian implies in-
depedence [12]. This gives a way to judge the independent of stochastic variable
by comparing its differential entropy.
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Consider a continuous stochastic variable y with probability density function
f(y), its differential entropy is given by H(y) = −

∫
f(y)logf(y)dy. To avoid

estimating the probability density function f(y), the negentropy of H(y) is de-
fined as J(y) = H(yGauss) − H(y), where H(yGauss) is a Gaussian stochastic
variable with the same variance as y. As a fast algorithm,J(y) ≈ [E{G(y)} −
E{G(yGauss)}]2 is adopted here instead of negentropy definition [13], where G(·)
is a non-quadratic function.

For S̃ = FAk, single source signal can be expressed as s̃(i) = f ·Ak, where f is
a row vector in matrix F . In the setting of entropy, the modeling of independent
component is translated to following optimization problem: find an optimal f
satisfying E{fAk · (fAk)T } = ‖f‖2 = 1 to make J(f · Ak) maximum. Keep in
mind negentropy definition, the optimization problem is equivalent to following:

min
f

E{G(f ·Ak)}

s.t.E{fAk · (fAk)T } = ‖f‖2 = 1 (1)

Based on the Kuhn-Tucker conditions, that E{G(f · Ak)} is optimal while
E{Akg(f · Ak)} − βf = 0 where β = E{f0Akg(f0 · Ak)} with optimum f0,
Newton’s method is borrowed to solve above optimization problem (1), and here
is omitted. Obviously, all the row vectors of F can be estimated in the same way.
And then constant matrix C and source signal matrix S̃ can be computed via
S̃ = FAk.

Retaining d independent source signals, Ak = Q−1FdS̃d is the reconstruction
of detail coefficients matrix Ak, where Fd ∈ Rm×d, S̃d ∈ Rd×p are the corre-
sponding retained de-mixing matrix and source signal matrix, respectively [8].
Simultaneously, a threshold is set based on the median of serial signal ak,i for
removing residual of signals and acquiring information of significant events [14].
Similarly, Bl is reconstructed as Ak is done.

Applying reverse wavelet transformation on the retained detail coefficient at
every scale and approximate coefficient at the coarsest scale [9], the reconstructed
process data Y ∈ Rn×m is obtained and then modeled in ICA form, Y T =
TS + E, where S = (s(1), s(2), · · · , s(d))T ∈ Rd×n is independent components
matrix of process, T ∈ Rm×d is coefficient matrix, and E ∈ Rm×n is residual.
For mathematical convenience, assume E = 0, d = m, then S = T−1 · Y T =
W · Y T . Based on above multi-scale ICA model, in next subsection, the process
monitoring technique is investigated.

2.2 Statistical Monitoring

Two universal statistics, I2 or T 2 (I2 used in ICA-based monitoring method,
while T 2 in PCA-based method) and Q (i.e. Square Prediction Error, SPE),
have been employed in real-time process monitoring. At the tth sample, I2(t) =
STd (t)Sd(t), where Sd(t) is the tth column vector of the projection of the original
data in the directions of independent components, and SPE = eT (t) · e(t),
where e(t) = x(t) − x̂(t) is the residual between sample x(t) and prediction of
model x̂(t).
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Because independent components may not follow normal distribution, the con-
trol limit of statistic can not be decided by a special probability function, as done
in PCA. Instead, kernel density estimation is introduced, in which the univariate
kernel estimator is defined as f(x) = 1

nh

∑n
i=1 K{(x− xi)/h}, where K(·) is the

kernel function, x is the data point under consideration, xi is the sample data,
i = 1, 2, · · · , n, and h is the smoothing parameter. In practice, Gaussian function
is usually chosen as the kernel function. To get the point z, which occupies the
99% area of density function f(x), the following equation is used,∫ z

−∞
f(x)dx =

∫ z
−∞

1
nh

n∑
i=1

K{(x− xi)/h}dx

=
∫ z
−∞

1
nh

n∑
i=1

{exp[(x− xi)2/(2h2)]/
√

2π}dx = 0.99 (2)

The detailed selection of h may be found in [15]. The control limits of process
normal operation are then easily obtained.

3 Cases Study

3.1 Missed Detection Rate Comparison

The TE process is a realistic industrial plant for evaluating process control and
monitoring methods, which consists of five major units: reactor, condenser, com-
pressor, separator, stripper. It contains eight components: reactants A, C, D, E,
inert B fed to the reactor, products G, H and by-product F formed in the reac-
tor. The process contains 41 measured variables and 11 manipulated variables,
which are sampled per 3 minutes. All the process measurements involved faults
are introduced at sample 301. The reader may refer to [16] for details.

For some typical statistical control methods and statistics, the missed detec-
tion rates for all 20 faults are shown in Table 1. Because the variables in Fault
3, 9 and 15 have no remarkable mean and standard deviation changing, their
missed detection rates are high for all the statistics. It is conjectured that any
statistic based on data-driven methods will result in high missed detection rates
for these faults [2], thus in Table 1 they are marked by asterisk. Besides the
three faults, the minimum missed detection rates of all faults are denoted by
bold style. As a whole, it maybe true that MSICA has superiority in process
monitoring and detection.

3.2 Monitoring and Detection Tests

Introduce fault 4 to TE process, which is a step change in the reactor cooling
water inlet temperature. This leads a step change of the cooling water flow rate as
shown in Fig. 1(Left), and a sudden jump of the reactor temperature as shown in
Fig. 1(Right). The other 50 measure and manipulated variables retain steady, the
variance of the mean and the standard deviation of each variable is inapparent.
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Table 1. Missed detection rates for the testing set

Fault T 2(PCA) Q T 2(MSPCA) Q I2(MSICA) Q

1 0.0076 0.0045 0.0106 0.0061 0.0030 0.0030
2 0.1515 0.0136 0.0258 0.0152 0.0061 0.0045
3∗ 0.9682 0.9394 0.9652 0.9788 0.7242 0.8833
4 0.7833 0.0091 0.9061 0.2485 0.0515 0.0318
5 0.7015 0.6485 0.7242 0.6227 0 0
6 0.0106 0 0 0 0 0
7 0.4364 0 0 0 0 0
8 0.0227 0.0258 0.0545 0.0242 0.0303 0.0167
9∗ 0.9680 0.9409 0.9621 0.9758 0.8318 0.8788
10 0.5240 0.4273 0.6277 0.4318 0.1985 0.1621
11 0.6680 0.2440 0.8076 0.0403 0.1682 0.2289
12 0.0260 0.0227 0.0394 0.0167 0.0030 0.0136
13 0.0772 0.0651 0.0924 0.6515 0.0606 0.0470
14 0.1773 0.0015 0.0015 0.0030 0.0014 0.0015
15∗ 0.9970 0.9030 0.9545 0.9610 0.7575 0.9000
16 0.7591 0.6455 0.7515 0.5954 0.0742 0.1379
17 0.3197 0.0727 0.1682 0.1848 0.0379 0.1000
18 0.1318 0.0969 0.0985 0.1091 0.0818 0.0758
19 0.9878 0.6091 0.7864 0.9136 0.1303 0.5424
20 0.7727 0.4379 0.7848 0.5530 0.0970 0.1970

All these make the detection and diagnosis of fault 4 more challenging than other
faults. The T 2 statistic charts based on PCA, multi-scale PCA (MSPCA) are
shown in the Fig. 2. It is obvious that T 2 statistics are not beyond the threshold
after sample 301. However, I2 statistic chart of MSICA gives an exciting result
as shown in the Fig. 3. After sample 300, it can be seen that I2 statistic goes
beyond the control limit distinctly, its ability to detect fault 4 is better than
that of other methods.

Based on the process monitoring, furthermore, the fault detection and diagno-
sis is carried out to identify the observation variables most closely related to the
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Fig. 1. Cooling water flow rate (Left) and reactor temperature (Right)
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Fig. 2. The T 2 statistics of PCA (Left) and MSPCA (Right) powered by fault 4
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Fig. 3. The I2 statistic of MSICA powered by fault 4
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Fig. 4. The average contribution of fault 4 for the MSICA-based SPE

faults. As a basic tool, the average contribution of fault 4 at sample 301 is shown
in Fig. 4. Obviously, variable 9 (Reactor temperature) and variable 51(Reactor
cooling water flow rate) correlate with the fault 4 deeply. In fact, the two control
loops of reactor cooling water flow rate and reactor temperature are cascade.
This is consistent with the fault description.

Another interesting test is carried out by introducing fault 10, which involves
a random change in the temperature of stream 4 (C feed). Even though this
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Fig. 5. The T 2 statistic of MSPCA (Left) and the I2 statistic MSICA (Right) powered
by fault 10

fault has no some effect on product quality by the titer of product in the stream
11, it is a hidden trouble on the safety of the process because of its effect on
the pressure of the reactor. The T 2 statistic chart based on MSPCA and the I2

statistic chart based on MSICA are shown in Fig. 5. It is obvious that PCA-
like methods do not give an alarm in time, in which T 2 statistic is beyond the
threshold after sample 500. Contrastively, the monitoring response of MSICA is
acceptable.

4 Conclusion

By integrating the advantage of wavelet transform and independent component
analysis, a MSICA approach is introduced to the process monitoring. The ap-
plication results on TE plant illuminate some advantage over traditional MSPC
methods. The ICA-based monitoring methods can give some compellent outcome
in actual process operation.
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Abstract. Anomalous radiations of environmental electromagnetic
(EM) waves are reported as the portents of earthquakes. We have been
measuring the Extremely Low Frequency (ELF) range all over Japan
in order to predict earthquakes. The observed signals contain global
noise which has stronger power than local signals. Therefore, global noise
distorts the results of earthquake-prediction. In order to overcome this
distortion, it is necessary to eliminate global noises from the observed
signals. In this paper, we propose a method of global noise elimination by
Independent Component Analysis (ICA) and evaluate the effectiveness
of this method.

1 Introduction

Japan is a country where earthquakes occur frequently, and has received exten-
sive damage from huge earthquakes. The occurrence of giant earthquakes will
be worried about in the near future, too. The Earthquake Research Committee
of Japan reported in 2001 that the occurrence possibility of very giant earth-
quakes of Nankai and Tohnankai earthquakes (magnitude over 8) within 30 years
reached between 40% and 50% [1].

It is urgent task to achieve an accurate earthquake prediction to help minimize
the damages caused by earthquakes. Anomalous radiations of environmental
electromagnetic (EM) waves have been reported as the portent to be the earth’s
crustal motion including earthquakes [2],[3]. We have been measuring Extremely
Low Frequency (ELF) magnetic fields all over Japan since 1989, in order to try
to predict earthquakes.

However, the EM radiation data contains signals other than the earth’s crustal
motion. The recorded data are distorted by noise. It is important to remove noise
as a preprocessing step for earthquake prediction.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 384–391, 2006.
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In the present paper, we propose the method for noise elimination by Indepen-
dent Component Analysis (ICA) to extract the anomalous EM radiation data
more accurately, and evaluate effectiveness of this method.

2 Outline of ELF Band Observation of EM Radiation
Data

We have been observing power of 223Hz in EM radiation in about 40 places
around the country (Fig.1). This frequency band has been a little influenced
by solar activity and the global environment (Fig.2). Observation systems have
three axial loop antennas with east-west, north-south, and vertical ranges. Ob-
servation devices sample EM levels and average the signals over 6-second periods.
These data are transported to our institute on the Public Telephone Network.

The observed signals are composed of the local signals and the global noise.
The local signals are caused by regional EM radiation; for example, the earth’s
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crustal motion, thunderclouds, or other interferences. The local signals in each
observation point have different values. The global noise is caused by global EM
radiation; for example, heat thunderclouds in lower latitudes, the solar activity,
and many others. The radiation from southern heat thunderclouds is influenced
by the ionosphere in the spread process. The global noise has a circadian rhythm
because the ionosphere changes in a day by the effect of the sun. The global noises
in each observation point have almost same values because the global noise is
recorded all over the observation point.

The influence of the global noise is especially stronger than many other noises.
Eliminating global noise (or extracting local signals) is important as preprocess-
ing of earthquake prediction. The sources of each EM radiations are mutually
independent. We estimate the global noise by separating observed signals using
ICA next to remove it from the observed data.

3 Method of Global Noise Elimination Using ICA

To estimate the global noise and the local signals accurately, we must analyze
the data from all the observation points. However, it is unrealistic that all the
observed signals are processed because the number of all source signals is over
the number of separable signals. It is necessary to decrease the number of source
signals contained in the observed signals. Therefore, we approximately estimate
the components from the good signals recorded several observation points. In
that case, note that it is difficult to directly separate the global noise and the
local signals from all observed signals. We solve this problem by the idea of
subtracting global noise from the observed signals.

Procedures of global noise elimination by NG-FICA are as follow.

1. Selecting several good observation points from all observation points.
2. Estimating independent components by ICA from the observed signals

recorded in the selected observation points.
3. Selecting a global noise component from among the estimated signals.
4. Calculating the amplitudes of the global noises corresponding to each ob-

served signals.
5. Estimating the enhanced local signals by subtracting each global noises from

the observed signals.

3.1 Selecting Observation Points

Since the global noise is large, we must select signals similar to global noise.
Global noise has a strong correlation with all the observed signals because global
noise is the main component of the observed signals. Therefore, we establish the
observed signals priority list in the descending order of following expression.

|rxxj | =
∣∣∣∣∣∑
i

E [(xi − xi)(xj − xj)]√
E [(xi − xi)2]

√
E [(xj − xj)2]

∣∣∣∣∣ (1)
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where |rxxj | is the absolute of sum correlation coefficient between xj of all the
observed signals. We select observation points by hand based on this priority.
Experience shows that selecting around 6 observed signals give the best results.

3.2 Source Separation

In ICA, various algorithms are proposed with a focus on assumption indepen-
dence. The algorithm adopted by this paper is NG-FICA (Natural Gradient -
Flexible ICA) [4]. NG-FICA uses kurtosis as independency criterion and uses
natural gradient for the learning algorithm. This algorithm is implemented as a
part of the package, ”ICALAB for signal processing” [5].

In NG-FICA, input data of vector x is applied sphering (prewhitening) as a
linear transformation.

z = Q · (x− x), Q =
{
E
[
(x− x)(x− x)T

]}−1/2
(2)

where vector x is the mean of x. Q is calculated by Principal Component Anal-
ysis (PCA). The presumption method uses vector z as the input data.

The update nonlinear functions are based on the following expressions.

ΔW = η
(
I − E

[
yyT − (ϕyT + yϕT )

])
W (3)

ϕi = |yi|αi−1sgn(yi) (i = 1, 2, · · · , n) (4)

where η is the appropriate learning rate (constant number), y is the temporary
estimated signal (= Wz), and sgn(yi) is the signum function of yi. Gaussian
exponent αi is decided based on the kurtosis κi

(
= E[yi

4]
{E[yi

2]}2 − 3
)

of yi; αi is de-
cided near 0 if κi is big, but αi is decided 4 if κi is small. Finally, the independent
components y are estimated as:

y = WQx. (5)

3.3 Selection of Global Noise Component

By the ICA, a global noise is extracted as one of the estimated signals. However,
the estimated signals come out in a random fashion due the permutation ambi-
guity. Therefore, it is necessary to identify the global noise component from the
estimated signals. We select one component yg which has a maximal value by
the following expression.

|rxyg | =
∣∣∣∣∣∑
i

E [(xi − xi)(yg − yg)]√
E [(xi − xi)2]

√
E [(yg − yg)2]

∣∣∣∣∣ (6)

3.4 Calculation of Local Signals

The amplitudes of the estimated global noise component and the actual global
noise are not the same, because the estimated components may have arbitrary
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scale factors. Therefore, it is necessary to adjust the amplitude of the global
noise component for each observed signals. When the amplitude of global noise
component was appropriately weighted, the mean square error (MSE) between
the observed signal and global noise component would be minimized. The MSE
between the observed signal xj and the weighted global noise component bjyg is
calculated as E[((xj − xj) − bj(yg − yg))2]. The appropriately weight bj which
gives the least MSE, is obtained by the following expression:

bj =
E [(xj − xj)(yg − yg)]

E [(yg − yg)2]
(7)

Using vector b constructed from bj, local signals are calculated as:

xL = x− byg. (8)

4 Sample Case of Global Noise Elimination

4.1 Processing Data

An anomalous signal was observed for two days starting from January 4, 2001,
at the observation point in Nannoh, Gifu Prefecture (call Nannoh after this).
We tried to obtain local signals about this day by eliminating the global noise
by the proposed method. The recorded signals from Nannoh might have anoma-
lous signals related to the earthquake, because an earthquake (magnitude 4.8)
occurred in Tohnoh, Gifu Prefecture on January 6.

4.2 Results

Fig.3 and Fig.4 show the signals that were observed in Kawai, Gifu Prefec-
ture (call Kawai after this) and Nannoh on January 4, 2001. The vertical axes
show the EM levels (pT

√
Hz) and the horizontal axes indicate the time courses

(hours). Both of these signals have high amplitudes in nighttime and have low
amplitudes in daytime. Changes like these are mostly observed for all observa-
tion points throughout the year. In other words, these signals have global noises
like a circadian rhythm.

Fig.5 shows one of the separated components from the observed signals by the
ICA algorithm [4],[5]. The vertical axis shows the amplitude of estimated signal
and the horizon axis indicates the time course. This component has global noise
features, because it has a strong correlation to each observed signal (Table1).
and this signal has a high amplitude in nighttime and low in daytime. Therefore,
this component is selected as global noise.

The local signals of Kawai and Nannoh are shown in Fig.6 and Fig.7. Their
axes are the same as those in Fig.3. These signals do not have circadian rhythm
like the raw observed signals. In addition, the local signal in Nannoh has clearly
anomalous signals since about 6 a.m. From these results, it is evident that the
proposed method can eliminate global noise from observed signals.
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Table 1. Coefficients of observed sig-
nals and global noise (from Fig.5)

Kushiro, Hokkaido —
Sannohe, Aomori -0.82223442

Oga, Akita -0.83796101
Wakayagi, Miyagi -0.94404159
Ichihara, Chiba 0.05078791

Sasagami, Niigata -0.87207873
Yugawara, Kanagawa -0.81599893
Sagamiko, Kanagawa -0.64286322

Yamanakako, Yamanashi -0.80240557
ItohUsami, Shizuoka -0.95962168

ItohShiofuki, Shizuoka -0.75264114
ItohKawana, Shizuoka -0.81597344

Oosezaki, Shizuoka -0.80150511
Omaezaki, Shizuoka -0.64272118

Ohtaki, Nagano -0.94814968
KaidaKougen, Nagano -0.89521541

Kawai, Gifu -0.79121470
Shirakawa, Gifu -0.84631972
Hagiwara, Gifu -0.88124143
Tsukechi, Gifu -0.80214358
Sakauchi, Gifu -0.94820738
Nannoh, Gifu -0.62218944
Kasugai, Aichi —

Shinojima, Aichi —
Matsuzaka, Mie -0.53462919
Kitaku, Kyoto -0.92216432

Kumatori, Osaka -0.71976842
Ibaraki, Osaka -0.90787270

Chijiwa, Nagasaki -0.88037934
Tomochi, Kumamoto -0.81322911

Average -0.784147501
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5 Effectiveness of ICA in Global Noise Elimination

In above results, we confirmed that the proposed method can remove the global
noise from observed signals. In this section, we confirm how well this method can
remove the global noise compared with an observed signal and a signal processed
by the conventional method. In order to compare results, we focus on frequency
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of processed signals because the period of global noises is 1 day. The conventional
method is similar to the proposed method, but uses PCA instead of ICA.

5.1 Procedure and Processing Data

1. k = 1.
2. Extracting observed signals from k day to (k+3) day.
3. Computing local signals from the extracted observed signals by the proposed

and conventional methods.
4. Normalizing the observed and local signals.
5. Applying the Blackman window to each signal.
6. Processing the DFT of each signal.
7. k = k+1, and go to step 2.

The processing data are observed from Kawai, Gifu for January 2001. These
data did not have any anomalous signals.

5.2 Results

Fig.8 shows the amplitude spectrums of the observed signals from Kawai. The
vertical axis shows the amplitude spectrums and the horizon axis indicates the
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period. The plotted processing results during one month (28 lines) are overlap-
ping. From this figure, all observed signals have the peak at 1 day. The main
factor of these peaks is the circadian rhythm of the global noise.

Fig.9 and 10 show the amplitude spectrums of the local signals calculated
by the conventional method (Fig.9) and the proposed method (Fig.10). By the
conventional method, a few results have a large value at 1 day. Global noise
cannot be perfectly eliminated. On the other hand, proposed method succeeds
at elimination global noises from all data.

Fig.11 shows the average amplitude spectrums of each signals shown in Fig.8,9,
and 10. The shrinkage of the circadian rhythm in the case of the proposed method
is smaller than in the case of conventional method.

Thus, The proposed method is more effective in eliminating global noise than
the conventional method.

6 Conclusion

In this paper, we proposed a global noise elimination method by ICA. The
proposed method actually calculated local signals in sample case. Compared with
the conventional method by PCA, the proposed method can eliminate global
noise more effectively.

In future works, we plan to automatically select observation points. The cur-
rent selection method involves a heavy workload because it needs trial and error.
Investigation of applying alternative ICA algorithms is also important, because
NG-FICA sometimes does not provide good results for extracting global noise.
It is necessary to modify a preprocessing and/or apply more robust ICA algo-
rithms. Moreover, we will verify the effectiveness of the proposed method by
anomalous detection and source estimation.
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from Music�

Michael Syskind Pedersen, Tue Lehn-Schiøler, and Jan Larsen

Intelligent Signal Processing, IMM, Technical University of Denmark
{msp, tls, jl}@imm.dtu.dk

Abstract. In this paper we propose to use an instantaneous ICA
method (BLUES) to separate the instruments in a real music stereo
recording. We combine two strong separation techniques to segregate
instruments from a mixture: ICA and binary time-frequency masking.
By combining the methods, we are able to make use of the fact that the
sources are differently distributed in both space, time and frequency. Our
method is able to segregate an arbitrary number of instruments and the
segregated sources are maintained as stereo signals. We have evaluated
our method on real stereo recordings, and we can segregate instruments
which are spatially different from other instruments.

1 Introduction

Finding and separating the individual instruments from a song is of interest
to the music community. Among the possible applications is a system where
e.g. the guitar is removed from a song. The guitar can then be heard by a
person trying to learn how to play. At a later stage the student can play the
guitar track with the original recording. Also when transcribing music to get
the written note sheets it is a great benefit to have the individual instruments
in separate channels. Transcription can be of value both for musicians and for
people wishing to compare (search in) music. On a less ambitious level identifying
the instruments and finding the identity of the vocalist may aid in classifying
the music and again make search in music possible. For all these applications,
separation of music into its basic components is interesting. We find that the
most important application of music separation is as a preprocessing step.

Examples can be found where music consists of a single instrument only, and
much of the literature on signal processing of music deals with these examples.
However, in the vast majority of music several instruments are played together,
each instrument has its own unique sound and it is these sounds in unison that
produce the final piece. Some of the instruments are playing at a high pitch and

� This work is supported by the Danish Technical Research Council (STVF), through
the framework project “Intelligent Sound”, STVF no. 26-04-0092, the PASCAL net-
work, contract no. 506778. and the Oticon Foundation.
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some at a low, some with many overtones some with few, some with sharp onset
and so on. The individual instruments furthermore each play their own part in
the final piece. Sometimes the instruments are played together and sometimes
they are played alone. Common for all music is that the instruments are not all
playing at the same time. This means that the instruments to some extent are
separated in time and frequency. In most modern productions the instruments
are recorded separately in a controlled studio environment. Afterwards the dif-
ferent sources are mixed into a stereo signal. The mixing typically puts the most
important signal in the center of the sound picture hence often the vocal part
is located here perhaps along with some of the drums. The other instruments
are placed spatially away from the center. The information gained from the fact
that the instruments are distributed in both space, frequency and time can be
used to separate them.

Independent component analysis (ICA) is a well-known technique to sepa-
rate mixtures consisting of several signals into independent components [1]. The
most simple ICA model is the instantaneous ICA model. Here the vector x(n)
of recorded signals at the discrete time index n is assumed to be a linear super-
position of each of the sources s(n) as

x(n) = As(n) + ν(n), (1)

where A is the mixing matrix and ν(n) is additional noise. If reverberations
and delays between the microphones are taken into account, each recording is a
mixture of different filtered versions of the source signals. This model is termed
the convolutive mixing model.

The separation of music pieces by ICA and similar methods has so far not
received much attention. In the first attempts ICA was applied to separation of
mixed audio sources [2]. A standard (non-convolutive) ICA algorithm is applied
to the time-frequency distribution (spectrogram) of different music pieces. The
resulting model has a large number of basis functions and corresponding source
signals. Many of these arise from the same signal and thus a postprocessing step
tries to cluster the components. The system is evaluated by listening tests by the
author and by displaying the separated waveforms. Plumbley et al. [3] presents a
range of methods for music separation, among these are an ICA approach. Their
objective is to transcribe a polyphonic single instrument piece. The convolu-
tive ICA model is trained on a midi synthesized piece of piano music. Mostly,
only a single note is played making it possible for the model to identify the
notes as a basis. The evaluation by comparing the transcription to the original
note sheets showed good although not perfect performance. Smaragdis et al. has
presented both an ICA approach [4] and a Non-negative Matrix Factorization
(NMF) approach [5] to music separation. The NMF works on the power spec-
trogram assuming that the sources are additive. In [6] the idea is extended to
use convolutive NMF. The NMF approach is also pursued in [7] where an arti-
ficial mixture of a flute and piano is separated and in [8] where the drums are
separated from polyphonic music. In [9] ICA/NMF is used along with a vocal
discriminant to extract the vocal.
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Time-Frequency (T-F) masking is another method used to segregate sounds
from a mixture (see e.g. [10]). In computational auditory scene analysis, the
technique of T-F masking has been commonly used for years. Here, source sep-
aration is based on organizational cues from auditory scene analysis [11]. When
the source signals do not overlap in the time-frequency domain, high-quality
reconstruction can be obtained [12]. However, when there are overlaps between
the source signals good separation can still be obtained by applying a binary
time-frequency mask to the mixture [12, 13]. Binary masking is also consistent
with constraints from auditory scene analysis such as people’s ability to hear
and segregate sounds [14]. More recently the technique has also become pop-
ular in blind source separation, where separation is based on non-overlapping
sources in the T-F domain [15]. T-F masking is applicable to source separation/
segregation using one microphone [10, 16] or more than one microphone [12, 13].
In order to segregate stereo music into independent components, we propose a
method to combine ICA with T-F masking in order to iterative separate music
into spatially independent components. ICA and T-F masking has previously
been combined. In [17], ICA has been applied to separate two signals from two
mixtures. Based on the ICA outputs, T-F masks are estimated and a mask is
applied to each of the ICA outputs in order to improve the signal to noise ratio.

Section 2 provides a review of ICA on stereo signals. In section 3 it is described
how to combine ICA with masking in the time frequency domain. In section 4
the algorithm is tested on real music. The result is evaluated by comparing the
separated signals to the true recordings given by the master tape containing the
individual instruments.

2 ICA on Stereo Signals

In stereo music, different music sources (song and instruments) are mixed so
that the sources are located at spatially different positions. Often the sounds
are recorded separately and mixed afterwards. A simple way to create a stereo
mixture is to select different amplitudes for the two signals in the mixture.
Therefore, we assume that the stereo mixture x at the discrete time index n can
be modeled as an instantaneous mixture as in eqn. (1), i.e.

[
x1(n)
x2(n)

]
=
[
a11 · · · a1N
a21 · · · a2N

]⎡⎢⎣ s1(n)
...

sN (n)

⎤⎥⎦+
[
ν1(n)
ν2(n)

]
. (2)

Each row in the mixing matrix [a1i a2i]T contains the gain of the i’th source in
the stereo channels. The additional noise could e.g. be music signals which do
not origin from a certain direction. If the gain ratio a1i/a2i of the i’th source is
different from the gain ratio from any other source, we can segregate this source
from the mixture. A piece of music often consists of several instruments as well
as singing voice. Therefore, it is likely that the number of sources is greater
than two. Hereby we have an underdetermined mixture. In [18] it was shown
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Fig. 1. The two stereo responses a1(θ) and a2(θ) are shown as function of the direction
θ. The monotonic gain ratio is shown as function of the direction θ.

how to extract speech signals iteratively from an underdetermined instantaneous
mixture of speech signals. In [18] it was assumed that a particular gain ratio
a1i/a2i corresponded to a particular spatial source location. An example of such
a location-dependant gain ratio is shown in Fig 1. This gain ratio is obtained by
selecting the two gains as a1(θ) = 0.5

(
1− cos(θ)

)
and a2(θ) = 0.5

(
1 + cos(θ)

)
.

2.1 ICA Solution as an Adaptive Beamformer

When there are no more sources than sensors, an estimate s̃(n) of the original
sources can be found by applying a (pseudo) inverse linear system, to eqn. (1).

y(n) = Wx(n) = WAs(n) (3)

where W is a 2 × 2 separation matrix. From eqn. (3) we see that the output
y is a function of s multiplied by WA. Hereby we see that y is just a different
weighting of s than x is. If the number of sources is greater than the number of
mixtures, not all the sources can be segregated. Instead, an ICA algorithm will
estimate y as two subsets of the mixtures which are as independent as possible,
and these subsets are weighted functions of s. The ICA solution can be regarded
as an adaptive beamformer which in the case of underdetermined mixtures places
the zero gain directions towards different groups of sources. By comparing the
two outputs, two binary masks can be found in the T-F domain. Each mask
is able to remove the group of sources towards which one of the ICA solutions
places a zero gain direction.

3 Extraction with ICA and Binary Masking

A flowchart of the algorithm is presented in Fig. 2. As described in the previous
section, a two-input-two-output ICA algorithm is applied to the input mixtures,
disregarding the number of source signals that actually exist in the mixture. As
shown below the binary mask is estimated by comparing the amplitudes of the
two ICA outputs and hence it is necessary to deal with the arbitrary scaling
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ICA + scaling

Estimation of the two binary masks

BM 1 BM 2

Apply to original
stereo signals
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2ŷ1ŷ

Fig. 2. Flowchart showing the main steps of the algorithm. From the output of the ICA
algorithm, binary masks are estimated. The binary masks are applied to the original
signals which again are processed through the ICA step. Every time the output from
one of the binary masks is detected as a single signal, the signal is stored. The iterative
procedure stops when all outputs only consist of a single signal. The flowchart has been
adopted from [18].

of the ICA algorithm. As proposed in [1], we assume that all source signals
have the same variance and the outputs are therefore scaled to have the same
variance. From the two re-scaled output signals, ŷ1(n) and ŷ2(n), spectrograms
are obtained by use of the Short-Time Fourier Transform (STFT):

y1 → ŷ1 → Y1(ω, t) (4)
y2 → ŷ2 → Y2(ω, t), (5)

where ω is the frequency and t is the time index. The binary masks are then
found by a bitwise amplitude comparison between the two spectrograms:

BM1(ω, t) = τ |Y1(ω, t)| > |Y2(ω, t)| (6)
BM2(ω, t) = τ |Y2(ω, t)| > |Y1(ω, t)|, (7)

where τ is a threshold that determines the sparseness of the mask. As τ is
increased, the mask is sparser. We have chosen τ = 1.5. Next, each of the two
binary masks is applied to the original mixtures x1 and x2 in the T-F domain,
and by this non-linear processing, some of the music signal are removed by one
of the masks while other parts of music are removed by the other mask. After
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the masks have been applied to the signals, they are reconstructed in the time
domain by the inverse STFT and and two sets of masked output signals (x̂11, x̂21)
and (x̂12, x̂22) are obtained.

In the next step, it is considered whether the masked output signals consists
of more than one signal. The masked output signals are divided into three group
defined by the selection criterion in section 3.1. It is decided whether there is one
signal in the segregated output signal, more than one signal in the segregated
output, or if the segregated signal contains too little energy, so that the signal
is expected to be of too poor quality.

There is no guarantee that two different outputs are not different parts of
the same separated source signal. By considering the correlation between the
segregated signals in the time domain, it is decided whether two outputs con-
tains the same signal. If so, their corresponding two masks are merged. Also the
correlation between the segregated signals and the signals with too poor quality
is considered. From the correlation coefficient, it is decided whether the mask
of the segregated signal is extended by merging the mask of the signal of poor
quality. Hereby the overall quality of the new mask is higher.

When no more signal consist of more than one signal, the separation procedure
stops. After the correlation between the output signals have been found, some
masks still have not been assigned to any of the source signal estimates. All these
masks are then combined in order to create a background mask. The background
mask is then applied to the original two mixtures, and possible sounds that
remain in the background mask are found. The separation procedure is then
applied to the remaining signal to ensure that there is no further signal hidden.
This procedure is continued until the remaining mask does not change any more.
Note that the final output signals are maintained as stereo signals.

3.1 Selection Criterion

It is important to decide whether the algorithm should stop or whether the
processing should proceed. The algorithm should stop separating when the signal
consists of only one source or when the mask is too sparse so that the quality of
the resulting signal is unsatisfactory. Otherwise, the separation procedure should
proceed. We consider the covariance matrix between the output signals to which
the binary mask has been applied, i.e. Rxx = 〈xxH〉. If the covariance matrix
is close to singular, it indicates that there is only one source signal. To measure
the singularity, we find the condition number of Rxx. If the condition number
is below a threshold, it is decided that x contains more than one signal and the
separation procedure continues. Otherwise, it is assumed that x consists of a
single source and the separation procedure stops.

4 Results

The method has been applied to different pieces of music. The used window
length was 512, the FFT length was 2048. The overlap between time frames
was 75%. The sampling frequency is 10 kHz. Listening tests confirm that the
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Fig. 3. Correlation coefficients between the extracted channels and the original stereo
channels. The coefficients has been normalized such that the columns sum to one. The
last row shows the percentage of power of the tracks in the mixture.

method is able to segregate individual instruments from the stereo mixture. We
do not observe that correlations can be heard. However, musical artifacts are
audible. Examples are available on-line for subjective evaluation [19]. In order
to evaluate the method objectively, the method has been applied to 5 seconds
of stereo music, where each of the different instruments has been recorded sep-
arately, processed from a mono signal into a stereo signal, and then mixed. We
evaluate the performance by calculating the correlation between the segregated
channels and the original tracks. The results are shown in Fig. 3 As it can be
seen from the figure, the correlation between the estimated channels and the
original channels is quite high. The best segregation has been obtained for those
channels, where the two channels are made different by a gain difference. Among
those channels is the guitars, which are well segregated from the mixture. The
more omnidirectional (same gain from all directions) stereo channels cannot be
segregated by our method. However, those channels are mainly captured in the
remaining signal, which contains what is left when the other sources has been
segregated. Some of the tracks have the same gain difference. Therefore, it is
hard to segregate the ‘bass’ from the ‘bass drum’.

5 Conclusion

We have presented an approach to segregate single sound tracks from a stereo
mixture of different tracks while keeping the extracted signals as stereo signals.
The method utilizes that music is sparse in the time, space and frequency do-
main by combining ICA and binary time-frequency masking. It is designed to
separate tracks from mixtures where the stereo effect is based on a gain dif-
ference. Experiments verify that real music can be separated by this algorithm
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and results on an artificial mixture reveals that the separated channel is highly
correlated with the original recordings.

We believe that this algorithm can be a useful preprocessing tool for annota-
tion of music or for detecting instrumentation.
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and Juan-Manuel Górriz
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Abstract. A cumulant-based independent component analysis (Cum-
ICA) is applied for blind source separation (BSS) in a synthetic,
multi-sensor scenario, within a non-destructive pipeline test. Acoustic
Emission (AE) sequences were acquired by a wide frequency range trans-
ducer (100-800 kHz) and digitalized by a 2.5 MHz, 8-bit ADC. Four
common sources in AE testing are linearly mixed, involving real AE se-
quences, impulses and parasitic signals from human activity. A digital
high-pass filter achieves a SNR up to −40 dB.

1 Introduction

AE signal processing usually deals with the problem of separation multiple events
which sequentially occur in several measurement points during a non-destructive
test. In most situations, the test involves the study of the behavior of secondary
events, or reflections, resulting from an excitation (the main event). These echoes
carry information related with the medium through which they propagate, as
well as reflecting surfaces [1].

But, in almost every measurement scenario, an acquired sequence contains
information regarding not only the AE under study, but also additive noise
processes (mainly from the measurement equipment) and other parasitic signals,
e.g. originated by human activity or machinery vibrations. As a consequence, in
non-favorable SNR cases, BSS should be accomplished before characterization
[2], in order to obtain the most reliable fingerprint of the AE event.

The main goal of this paper is to show how an ICA algorithm (based in cumu-
lants) can separate signals from a multi-sensor array, which comprises synthetics
of AE events and additive signals, widespread used in non-destructive vibration
tests. The algorithm have proven success for a SNR=−40 dB situation, and uses
the cross-cumulants of the measured time-series to maximize the goal function.
These higher-order statistics take advantage from their noise rejection capabil-
ities to extract sources. A high-pass filter completes the post-processing in the
cases of low-frequency couplings.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 400–405, 2006.
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The paper is structured as follows: in Section 2 we make a brief progress
report on AE characterization. Section 3 summarizes the ICA model and out-
lines its properties. Results are displayed in section 4. Finally, conclusions and
achievements are drawn in section 5.

2 Analysis of Acoustic Emission Signals

AE is defined as the class of phenomena whereby transient elastic waves are gen-
erated by the rapid (and spontaneous) release of energy from localized sources
within a material, or the transient elastic wave(s) so generated. Elastic energy
travels through the material as a stress or strain wave and is typically detected
using a piezoelectric transducer, which converts the surface displacement (vibra-
tions) to an electrical signal.

AE signal processing is used for the detection and characterization of failures
in non-destructive testing and identification of low-level biological signals [2].
Most AE signals are non-stationary and they consist of overlapping bursts with
unknown amplitude and arrival time. These characteristics can be described
by modelling the signal [1], by means of neural networks, and using wavelet
transforms.

The above second-order techniques have been also applied in an automatic
analysis context of the estimation of the time of occurrence and amplitude of
the bursts. Multiresolution has provided good performance in de-noising (up to
SNR=-30 dB) and estimation of time instances, due to the selectivity of the
filters banks implemented in the wavelets [3].

Higher order statistics (HOS) have enhanced characterization in analyzing
biological signals due to the capability for rejecting noise [4].

3 The ICA Model and Its Properties

3.1 Outline of ICA

BSS by ICA is receiving attention because of its applications in many fields such as
speech recognition, medicine and telecommunications [5]. Statistical methods in
BSS are based in the probability distributions and the cumulants of the mixtures.
The recovered signals (the source estimators) have to satisfy a condition which is
modelled by a contrast function. The underlying assumptions are the mutual in-
dependence among sources and the non-singularity of the mixing matrix [6],[7],[8].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the transposed vector of sources (sta-
tistically independent). The mixture of the sources is modelled by

x(t) = A · s(t) (1)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [9]. We assume that A is a
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non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B ·A · s(t) (2)

where vector y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources. The
separating matrix has a scaling freedom on each of its rows because the relative
amplitudes of sources in s(t) and columns of A are unknown [7]. The transfer ma-
trix G ≡ BA relates the vector of independent original signals to its estimators.

3.2 CumICA

High order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes. Before cumulants, such processes had to be
treated as if they were Gaussian. Cumulants and polyspectra reveal information
about amplitude and phase, whereas second order statistics are phase-blind. The
relationship among the cumulant of r stochastic signals and their moments of
order p, p ≤ r, can be calculated by using the Leonov-Shiryayev formula [10]:

Cum(x1, ..., xr) =
∑

(−1)k · (k − 1)! ·E{
∏
i∈v1

xi}

·E{
∏
j∈v2

xj} · · ·E{
∏
k∈vp

xk}
(3)

where the addition operator is extended over all the set of vi (1 ≤ i ≤ p ≤ r)
and vi compose a partition of 1,. . . ,r.

It has been proved that a set of random variables are statistically independent
if their cross-cumulants are zero. This property is used to define a contrast func-
tion, by minimizing the distance between the cumulants of the sources s(t) and
the outputs y(t). As sources are unknown, it is necessary to involve the observed
signals. Separation can be developed using the following contrast function based
on the entropy of the outputs [6]:

H(z) = H(s) + log[det(G)]−
∑ C1+β,yi

1 + β
(4)

where C1+β,yi is the 1 + βth-order cumulant of the ith output, z is a non-linear
function of the outputs yi, s is the source vector, G is the global transfer matrix
of the ICA model and β > 1 is an integer verifying that β + 1-order cumulants
are non-zero.

Using equation 4, the separating matrix can be obtained by means of the
following recurrent equation [9]

B(h+1) = [I + μ(h)(C1,β
y,yS

β
y − I)]B(h) (5)

where Sβy is the matrix of the signs of the output cumulants. Equation 5 can
be interpreted as a quasi-Newton algorithm of the cumulant matrix C1,β

y,y . The
learning rate parameters μ(h) and η are related by
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μ(h) = min(
2η

1 + ηβ
,

η

1 + η‖C1,β
y,y‖p

) (6)

with η < 1 to avoid B(h+1) being singular; ‖.‖p denotes de p-norm of a matrix.
The adaptative equation 5 converges, if the matrix C1,β

y,yS
β
y tends to the identity.

Provided with the mathematical foundations the experimental results are out-
lined.

4 Experimental Results

The sensor is attached to the outer surface of the pipeline, which is under me-
chanical excitation. Each sequence comprises 2502 points (sampling frequency
of 2.5 MHz and 8 bits of resolution), and assembles the main AE event and the
subsequent reflections (echoes).

Four sources have been considered and linearly mixed. The real AE event, an
uniform white noise (SNR = −40 dB), a damped sine wave and an impulse-like
event. The damping sine wave models a mechanical vibration which may occur,
i.e. as a consequence of a maintenance action. It has a damping factor of 2000
and a frequency of 8000 Hz. Finally, the impulse is included as a very common
signal registered in vibration monitoring.

The results of the algorithm are depicted in figure 1. The damping sinusoid is
considered as a frequency component of the impulse-like event because IC3 and
IC4 are almost the same. The final independent components are obtained filter-
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Fig. 2. Joint distributions of the mixtures and the independent components

ing the independent components by a 5th-order Butterworth high-pass digital
filter (20000 kHz).

Finally, to test the independence of the independent components, some rel-
evant joint distributions have been included in figure 2. The left column shows
how for any IC, the values are quite random. This means that for a value (point)
of an IC, almost all the values of the another IC are allowed. On the other hand,
the joint distributions of the mixtures are linearly shaped, which leads us to infer
a dependency before separating by ICA.

The above results lead us to some conclusions on the use of HOS as a charac-
terizing and separating tool to be considered in a non-destructive measurement
system.

5 Conclusions and Future Work

ICA is far different from traditional methods, as power spectrum, which obtain
an energy diagram of the different frequency components, with the risk that low-
level sounds could be masked. This experience shows that the algorithm is able
to separate the sources with small energy levels in comparison to the background
noise. This is explained away by statistical independence basis of ICA, regardless
of the energy associated to each frequency component. The post filtering action
let us work with very low SNR signals. The next step is oriented in a double
direction. First, a stage involving four real mixtures will be developed. Second,
and simultaneously, the computational complexity of the algorithms have to be
reduced to perform an implementation.
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9. de la Rosa, J.J.G., Puntonet, C.G., Górriz, J.M., Lloret, I.: An application of
ICA to identify vibratory low-level signals generated by termites. Lecture Notes
in Computer Science (LNCS) 3195 (2004) 1126–1133 Proceedings of the Fifth
International Conference, ICA 2004, Granada, Spain.

10. Swami, A., Mendel, J.M., Nikias, C.L.: Higher-Order Spectral Analysis Toolbox
User’s Guide. (2001)



J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 406 – 413, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Two Applications of Independent Component Analysis 
for Non-destructive Evaluation by Ultrasounds 

Addisson Salazar, Jorge Gosálbez, Jorge Igual, Raul Llinares, 
and Luis Vergara 

Universidad Politécnica de Valencia, Departamento de Comunicaciones, 
Camino de Vera s/n, 46022 Valencia, Spain 

asalazar@dcom.upv.es, jorgocas@dcom.upv.es, 
jigual@dcom.upv.es, lvergara@dcom.upv.es, 

rllinares@dcom.upv.es 

Abstract. This paper presents two novel applications of ICA in Non Destruc-
tive Evaluation by ultrasounds applied to diagnosis of the material consolida-
tion status and to determination of the thickness material profiles in restoration 
of historical buildings. In those applications the injected ultrasonic pulse is bur-
ied in backscattering grain noise plus sinusoidal phenomena; this latter is  
analyzed by ICA. The mixture matrix is used to extract useful information con-
cerning to resonance phenomenon of multiple reflections of the ultrasonic pulse 
at non consolidated zones and to improve the signals by detecting interferences 
in ultrasonic signals. Results are shown by real experiments at a wall of a Basil-
ica’s restored cupola. ICA is used as pre-processor to obtain enhanced power 
signal B-Scans of the wall. 

1   Introduction 

Non-destructive evaluation (NDE) by ultrasounds is a very useful technique applied 
in fields such as construction, food, and biomedicine. The technique has basically two 
operation modes: pulse-echo (one sensor as emitter and receiver) and transmission 
(one emitter and one receiver). An ultrasound pulse is injected in the inspected mate-
rial and a response of the material microstructure is received [1,2]. The measured sig-
nal can contain echoes produced from discontinuities, inhomogeneities, borders of the 
material, plus material grain noise (superimposition of many small echoes due to the 
material microstructure). All of this information can be used for quality control and 
characterization of materials [3,4]. The present study used the pulse-echo technique, 
given the inspected material consisted of a wall with no possible access from opposite 
sides. This wall was a zone at the cupola of the Basilica de la Vírgen de los Desam-
parados in Valencia, Spain. 

This paper includes two novel applications of ICA [5,6] as pre-processor in ultra-
sound NDE applied to historical building restoration. The first application consists in 
using the mixture matrix to discern on useful material information of the consolida-
tion process that consists in injecting a product to fill cracks at the wall. The second 
application is detecting interferences in the recorded signals to cancel them improving 
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the quality of the signals. This procedure was applied to recorded signals for estimat-
ing thickness layer profile at the wall.  

Interferences can be due to the internal clocks of the measurement equipment, in-
terferences with other equipments, and so on. In many applications, the recording of a 
high quality raw data is a difficult task, especially in situations where the conditions 
can not be controlled during the experiment. One difficulty to have the measurements 
at the cupola was the use of a plastic for covering the transducer to avoid direct con-
tact of the ultrasonic coupling gel with artistic paintings on the walls. This kind of 
measurement produced attenuated signals  

B-Scans diagrams were used to visualize consolidated and non consolidated mate-
rial zones to check the quality of restoration and to detect interfaces between different 
materials in the wall. B-Scan is a 2D representation of a signal set. The evolution in 
time windows of a parameter such as power or spectrum was calculated for each one 
of the signals. Then all of the calculated information was put together in a representa-
tion of the measurement point versus the signal parameter evolution. Figure 1 shows 
different points of a B-Scan measured by ultrasound at the cupola. 

Measurement 1

Measurement 2

Measurement 12

Measurement 11

 

Fig. 1. Ultrasound inspection at the cupola 

Following sections describe the ICA model of the problem; the performed experi-
ments, including the equipment setup, a comparison between the B-Scans obtained 
using or not using ICA as a pre-processor and the sensitivity to detect interferences. 
Finally the conclusions and future work. 

2   ICA Statement of the Problem 

The recorded signals are modelled as the superposition of the backscattered signal 
plus sinusoidal phenomena. This latter sinusoidal contribution should be determined 
to know if it is due to useful information on the material structure, such as material 
resonances, or interferences due to the instrumentation during measurement. ICA 
statement of the problem is: 
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where M  is the number of measurements, ( )txk
 is the received signal from the mate-

rial at the position k  of the B-Scan, ( )tsk
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The backscattering signal, under certain assumptions related to the wavelength of 

the ultrasonic wave and the scattering size, can be modeled as a stochastic process 
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where x  is the transducer location (we obtain different backscattering registers for 
different transducer locations). The random variable, 

nA
~ ,  is the scattering cross-

section of the nth scatter  The r.v. 
nτ~  is the delay of the signal backscattered by the 

nth scatter and )(xN  is the number of scatters contributing from this position. The 

function )(tf  is a complex envelope of the ultrasonic frequency pulse, that is 

tjetptf 0)()( ω=     (3) 

where )(tp  is the pulse envelope and 
0ω  the transducer central frequency.  

Backscattering model of equation (2) is composed of a homogeneous non-
dispersive media, and randomly distributed punctual scatters depicting the composite 
nature of the received grain noise signal instead of a rigorous description of the mate-
rial microstructure [7].  

In the simplest case consisting of a homogeneous material and only one harmonic 
of the sinusoidal components, the ICA model of equation (1) is 

Mketstx kitj
kk ...1)()( )( =+= +θωα    (4) 

As we know, in usual ICA (no prior information ICA model included) we need as 
many mixtures as sources. In the case of equation (1), a B-Scan of 2 points would be 
enough. In the proposed applications M = 12 and 10, therefore 12 and 10 mixtures 
were used in order to include the anomalies of the material and allow a relative high 
number of interferences. Even more; if we think that there is not enough with the M 
points registered, the number of sensors can be virtually increased if we record re-
sponses to different pulses, considering that the echo is the same and the pulse repeti-
tion period is not a multiple of the sinusoid period [8]. 

Obviously the sinusoidal components have the same frequencies along the B-Scan, 
with possibly changing amplitude and phase. From a statistical point of view, consid-
ering the interference or resonance as a sinusoid with deterministic but unknown am-
plitude and uniform random phase, it is clearly guaranteed that the backscattering  
signal and it are statistically independent. 
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3   Experiments and Results 

The objectives of the experiments were visualizing non consolidated zones and to cal-
culate layer thickness at the wall of the cupola. Ultrasound transducers have a work-
ing transmission frequency; the higher transducer frequency the higher capacity to  
detect small details, but also lower capacity of material penetration. Therefore using 
high frequencies is possible to detect smaller details but they have to be closer to ma-
terial surface. The transducer used for consolidation analysis (application 1) was 1 
MHz and transducer used for thickness layer profile was 5 MHz (application 2). This 
latter was selected because we were interested in obtaining information of the  
superficial layers.  

3.1   Equipment Setup 

The equipment setup used for NDE of the historical building was the following: 

Table 1. Equipment setup 

Ultrasound equipment setup Acquisition equipment setup 
Ultrasound 
Equipment 

Matec PR5000 
Acquisition 
equipment 

Oscilloscope 
TDS3012 Tektronix 

1 MHz (application 1) 
Transducers 

5 MHz (application 2) 
Sampling frequency 

10 MHz and 
 250 MHz 

Pulse width 0.9 μs Sample number 10000 
Pulse amplitude 80 % Observation time 1 ms and 40 μs 

200 kHz – 2.25 MHz (ap. 1) 
Analog filter 

1 MHz – 7 MHz (ap. 2) 
Vertical resolution 16 bits 

Excitation signal 
Tone burst 

1 MHz and 5 MHz 
Dynamic range ± 2.5V 

Operation mode Pulse-echo Average 64 acquisitions 
Amplifier gain 65 dB PC connection GPIB 

Due to the temporal structure of recorded signals we selected the Temporal Decor-
relation Separation TDSEP algorithm based on simultaneous diagonalisation of time-
lagged correlation matrices. This algorithm exploits the temporal structure of the  
signals and can separate more than one Gaussian [9]. The mixture matrix obtained by 
ICA was used to separate the information concerning to the sinusoidal phenomena.   

3.2   Diagnosis of the Material Consolidation Status  

BSS by ICA was selected for this application because, on the contrary of the classic 
spectral analysis techniques [10], BSS is an unsupervised method that does not re-
quire any estimation of noise autocorrelation matrix in data corrupted by the sinusoi-
dal interference, considerations on sort of noise or model assumptions such as filter 
order in model based methods. 

Figure 2 shows the B-Scan estimated by signal power using a conventional non-
stationary analysis applying a moving window over the 12 ultrasonic recorded  
signals. Figure 2a shows two zones clearly differentiated; the first corresponds to con-
solidated zone (low level of signal) and the second corresponds to non consolidated 
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zone (high level of signal). The signal penetrates well into the wall at the consolidated 
zone and it is attenuated before reflecting any kind of signal. Conversely, the signal 
level is increased in a non consolidated zone due to multiple reflections of the ultra-
sonic pulse, see Figure 2b. 

 

Signal is
attenuated

Multiple reflections
are produced giving
a higher signal level

Air hole
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2a. Power B-Scan 2b. Scheme of the wall 

Fig. 2. Power signal B-Scan by non-stationary analysis 

From the spectral analysis, two frequencies (181 and 356 kHz) were found in all 
the recorded signals. After estimating B-Scan of Figure 2 was not clear enough the 
origin of those frequencies, they could be interferences or material resonances. Then 
we applied ICA to obtain more information from the mixture matrix and recovered 
sources. Figure 3 shows the recorded signals and the recovered sources by ICA; the 
sample numbers processed were from 600 to 6000.  
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3a. Recorded signals 3b. Recovered sources 

Fig. 3. Recorded signals and recovered sources (the supposed “interference” is highlighted) 

Figure 4a and 4b show two B-Scans obtained from the mixture matrix corresponding 
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B-Scan represents the sinusoidal phenomenon depicting the non consolidated zone. 
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Thus this phenomenon can be associated with the shape of the material non consoli-
dated zone. The second B-Scan is the complementary information concerning to the 
consolidated zone. The diagrams obtained from ICA information depict more precisely 
the two different zones of the material than the one obtained by non-stationary analysis. 

  
4a. B-Scan from sinusoidal components 4b. B-Scan from backscattered components 

Fig. 4. Power B-Scan after ICA preprocessing 

3.3   Thickness Material Layer Profile 

Figure 5a and 5b show the recorded signals plus 1 MHz artificial interference added 
and the corresponding B-Scan calculated by the evolution of the centroid frequency 
[11]. Following information is represented in the diagram: i.) axis x: transducer posi-
tion; from position 0 to 10, ii.) axis y: depth axis, and iii.) axis z: depicted by colours 
that denotes the parameter level at a given position in a given depth. 

The depth is obtained by 2/* timevelocitydepth =  where factor 2 is due to the 

round trip travel of the ultrasound pulse between the material surface and the layer. 
The first two layers of the cupola wall were composed of mortar and plaster respec-
tively. For calculation of depth, an average ultrasound propagation velocity of 1600 
m/s was used calculated from lab probes. Due to the 1 MHz interference, the B-Scan 
is not clear enough to represent a profile of a layer.  

Figure 6a and 6b show the results obtained by applying ICA on the ultrasonic signals. 
To assess the sensitivity of the ICA in detecting the interference, a controlled interfer-
ence was added to the signals, trying with different frequencies and amplitudes of the 
interference. Figure 6a shows the error in the extraction of the interference versus the ra-
tio power interference to power signal (Pinterference/Psignal ) for different interference fre-
quencies. The higher interference amplitude the better extraction of the interference and 
the higher interference frequency the worst extraction of the interference. Figure 6b de-
picts an enhanced centroid frequency B-Scan (cancelled interference) with a layer 
clearly defined at 4 mm. corresponding to the mortar layer of the cupola wall.  

Other alternatives for sinusoid extraction are based on the use of the so-called 
notch filtering [12]. They can be designed assuming prior knowledge of the pulsations 
to be cancelled. In this sense, BSS could be used as a prior step to notch filtering, but 
implying transient effects, possible instability problems and some distortion of the so 
obtained interference-free records (because of the finite notch bandwidth). 
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5a. Recorded signals 5b. Centroid frequency B-Scan 

Fig. 5. Recorded signals and centroid frequency B-Scan by non-stationary analysis 
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Fig. 6. Recorded signals and centroid frequency B-Scan by non-stationary analysis 

Results obtained from the Basilica’s cupola inspection were validated in testing an 
architectonic scale model replica. In addition some material samples were extracted 
from the replica and measured at lab to obtain an accurate calculation of material 
wave propagation. 

4   Conclusions 

The ICA model for ultrasound evaluation as the superposition of the backscattered 
signal plus sinusoidal phenomena has been tested by means of two novel applications.  

The application of ICA to NDE by ultrasounds has enabled the diagnosis of the 
consolidation status in restoration of historical buildings. The proposed procedure al-
lowed separating the sources corresponding to the contributions of consolidated and 
non consolidated zones to the backscattered recorded signals. 

The application of ICA to NDE by ultrasounds made possible the determination of 
the thickness layer profile allowed cancelling interferences from the recorded signals.  
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The enhanced B-Scan enabled determining the first thickness layer of mortar for the 
analyzed wall. ICA works well in the case of a relatively high interference level with 
respect to the ultrasonic signal. 

Enhanced power and centroid frequency B-Scans were obtained using ICA as pre-
processor of the non-stationary analysis. Future work is being addressed to apply the 
ICA for classification and characterization of materials.  
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Abstract. Spatial multiplexing is currently one of the most promising tech-
niques exploiting the spatial dimension to increase data rates. Most of existing 
methods are based on coherent detection techniques that imply multichannel es-
timation. This procedure, especially for time-varying channels, increases the 
overhead rate due to the periodical training requirement. A suitable approach 
dealing with this scenario proposes the use of Blind Source Separation (BSS) 
principles to minimize the mentioned overhead still offering the increased data 
rate. The authors have developed in previous publications a new BSS technique 
based on Order Statistics (OS) labeled as ICA-OS with very satisfactory per-
formance in static scenarios. In these studies it was already realized that the 
amount of data required for convergence was significantly less than other well 
known methods. Therefore, in this current contribution we present some results 
showing the capability of our procedure to deal with time-varying channels 
typical of mobile applications without training requirement. 

1   Introduction 

Modern communications require increased data rates without extra bandwidths in 
order to provide a suitable service for the incoming applications. Exploitance of the 
spatial dimension has been traditionally based on standard beamforming or spatial 
diversity. Additionally, few years ago it was pointed out the possibility of spatial 
multiplexing to increase data rate without involving other resources but just extra 
complexity at the RF parts and also more complex reception techniques. [1] and ref-
erences therein showed that capacity in MIMO (Multiple Input – Multiple Output) 
systems maybe even be multiplied by the minimum number of antennas at any side. 
This amazing result has driven the attention of researchers all over the world in the 
recent years. 
                                                           
* This work has been partly supported by National Spanish Projects PCT-350100-2004-1, 

TEC2004-06915-C03-02/TCM and the European Project AST-CT-2003-502910. 
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Most of the practical schemes trying to get this promised benefit are based on matrix 
eigendecompositions (if channel is known at both sides) or in a more attractive ap-
proach, BLAST-like implementations just require channel knowledge at the receiver 
side. Training, especially for time varying channels, reduces significantly the desired 
data rate due to the periodic interleaving of known data. This overhead is much more 
significant in MIMO applications because several antennas require specific training 
reducing the promised data rate gain. 

In this contribution we deal with this problem proposing a BSS approach suitable 
for time-varying channels. The main handicap of existing BSS techniques applied to 
this scenario is the very large amount of data required to get satisfactory performance, 
especially those based on Higher Order Statistics (HOS) estimation. This characteris-
tic is acceptable for delay non sensitive applications or static mixtures but seems to be 
less useful or impractical in MIMO communications. 

The authors proposed in several previous publications a new BSS method based on 
OS. In these proposals the Cummulative Density Function (cdf) estimation using 
several order statistics was shown to provide suitable means for signals separation. 
This procedure provided very satisfactory results for both subGaussian and super-
Gaussian distributions but specially promising for digital modulations as QAM. More 
indeed, the amount of data required for appropriate separation was much less than 
other well known procedures. In those previous publications this remarkable result 
was just mentioned as a procedure saving computational burden. 

In this contribution we are focused on MIMO communications using QAM com-
munications through time-varying channels, showing that ICA-OS is more suitable 
than other BSS as JADE [10] as one of the most representative schemes. Basically, 
JADE is a cumulant batch algorithm which optimizes a 4th order measure of inde-
pendence among the whole set of outputs.  

2   Our Model for ICA Procedures for Time-Varying Channels 

The standard linear mixture can be easily generalized to a time-varying MIMO com-
munication channel. 

[ ] [ ] [ ] [ ]kkkk nxHy +=  (1) 

Where y is the received vector whose dimension is the number of receiving antennas 

Nr and x  is the transmitted vector of size 1
t

N ×  where Nt is the number of transmit 

antennas. n is the additive Gaussian noise and H is the MIMO matrix sized 
t r

N N× . 

We have remarked the time dependence using the variable k. This model assumes flat 
fading transmission through a linear mixture with additive noise. 

MIMO channel model assumed considers uncorrelated spatial fading. This hy-
pothesis is realistic if the scatterers are located around the antennas and the antennas 
are enough separated. For terminals, typically this is fulfilled even for less than a 
lambda separation while for base stations with antennas under the roofs, a few 
lambdas may be enough. Thus, this model is especially suitable for urban or indoor 
communications which is the case where more data rate is required and spatial multi-
plexing is more demanded. 
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Fig. 1. MIMO channel Mode 

Time evolution of the spatial uncorrelated coefficients of matrix H is implemented 
using the procedure described by Hoeher in [2] for the flat fading case. This model is 
in fact based on an intuitive interpretation of the Bello’s model [3] as an incoherent 
superposition of N echoes, where each echo is characterized by a random phase, a 
random delay and a random Doppler shift. For the flat fading case, each element mn 
of matrix H collapses to 
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where θl are the random phases, fDl are the Doppler random variables following the 
standard Jake’s spectrum characterized by fDmax, and fs is the sampling frequency. In 
practical cases, N = 25 seems to provide satisfactory accuracy. 

Most of the BSS methods would collect a certain amount of y vectors along some 
time interval in order to estimate the needed statistics from the measured data to per-
form different algorithms. The degradation of different proposals will depend on the 
amount of data required for satisfactory separation. This behavior requires static mix-
tures that can not be guaranteed in time varying scenarios.  

3   The ICA-OS Method Applied to Communications 

Previously, let us remark that the separation scheme in the communication scenery 
presented at previous section is: 

=w BDy  (3) 

where w (
t

N n× ) are the output channels to be updated towards the 
t

N  estimated 

sources x, B is the (
r t

N N× ) unknown orthogonal separation matrix, D is the decorre-

lation matrix obtained through the well known whitening preprocessing scheme [11] 

and y (
r

N n× ) are the set of n symbols collected at every 
r

N  antenna. 

ICA-OS has been proposed and explained by the authors in several papers [6-9], 
therefore let us just expose the main ideas: 

ICA-OS is a deflation ICA procedure where at each stage, the separation vector bi 
is updated by means of the maximization of a certain non-Gaussianity measure; con-
sequently, one non-gaussian original source is obtained at the wi output channel. In 



 Blind Spatial Multiplexing Using Order Statistics for Time-Varying Channels 417 

other words, the non-Gaussianity measure J(bi) is used like ICA cost function. In the 
practical implementation J is maximized through a gradient rule plus some restriction 
which forces orthogonality between separation vectors: 
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In this sense, our main contributions have been a new family of Gaussianity meas-
ures based on Order Statistics [7, 8] as well as a new multistage deflation algorithm 
which decreases the dimension of the problem with each stage [9]. 

Our recommended Gaussianity distance (among the quoted family) for communi-
cation signals is the infinite norm applied to the difference between the implied in-
verse cdf’s -denoted as Q -: 

( ( )) max | ( ) ( ) |J w b Q u Q u
i i w gu i

= −  (5) 

Qwi corresponds to the analyzed signal wi and Qg to the  equivalent Gaussian distribu-
tion g. 

The practical way to calculate previous distance is based on the estimation of Q´s  
through the extreme Order Statistics (OS). It was proved in [6] after some mathemati-
cal development that Eq. (5) can be estimated through the following expression: 

( ) ( )
ˆ( ( )) | 2 ( ) |

w ( , ) ( ,1)

i i i k i l g

l
J w b w w Q

n
here k l n

= − +

≅
 

(6) 

Where wi(k) is the k order statistic obtained in a simple way ordering a set large 
enough of n samples: 

)()()()2()1( ....... nikiliii wwwww <<<<<<  (7) 

and the known value Qg(l/n) is the l order statistic of the Gaussian distribution. The 
advantages of using previous infinite norm instead of others p-norms [6, 7] either 
Gaussian distances are:  

- It just needs a couple of order statistics to be estimated in front of the whole set of 
OS used by other norms. 

- The OS are estimated easily just ordering the samples, instead of the complexity 
involved in HOS [10] and non-linearities used by other Gaussianity measures [11]. 

- Besides, it works more efficiently and robustly with a few samples (around n=100) 
compared with other ICA methods, especially when the sources are subGaussians 
which usually are the kind of communication distributions, (see compared per-
formance indexes in [7, 8]). This behavior is the main reason to use this measure 
like ICA cost Function in slowly variant MIMO channels (see next section). 

At this point, it is necessary to expose the gradient expression (for more details  
see [8, 9]): 
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In previous equation z is the vector (
r

N n× ) obtained as z = Dy (from Eq. (3)) after 

the well known sphering preprocessing [6, 11]. Other wise vector d is calculated by 
means of: 

( )

1...

1          [ ]
d [ ]

0         
i i r

r

m n

if w m w
m

otherwise =

=
=  

(9) 

Interested reader may review [6] in order to clarify the whole multistage procedure. 
We would like to remark that this scheme is also very efficient because in consecutive 
stages, the dimension of the vector space is consequently reduced. 

4   Simulations 

In order to show the ability of our method to cope with time variant channels we have 
run a set of simulations for different cases related to the ratio between the Doppler 
and the sampling frequencies. The maximum Doppler frequency is considered for 
pedestrian speed, 3 Km/h, and carrier frequency 2.4 GHz. These values are motivated 
by the fact that the most realistic scenario related to spatial multiplexing is probably 
the wireless Local Area Networks (WLAN). Assuming isotropic distribution, the 
Doppler density was derived by Clarke [4] and sometimes dubbed Jakes distribution. 
The main parameter to control the Doppler rate in terms of the symbol rate is defined 
in our simulations considering  

maxDs Mff =  (10) 

where factor M controls the relationship between both frequencies. When M in-
creases, that is the symbol rate is much larger than the fading rate, the channel is 
nearly constant along the processed data. If M is not so large, the batch size must be 
reduced decreasing the expected performance.  

In order to get a wide view about the performance of our method we have also im-
plemented one of the most representative BSS methods, JADE [10], and also we have 
implemented the V-BLAST (see for instance [5] for an exhaustive and detailed re-
view of BLAST and related techniques) as a non blind spatial multiplexing procedure 
to evaluate the loss of blind methods in front of trained procedures. Comparison with 
trained schemes includes the effect of some estimation noise modelled as AWGN 
added to every component of H whose power is the effective noise power. 

We have to remark that the implemented method requires some minimum training 
at the beginning of the transmission in order to solve the inherent ambiguity in the 
order of the recovered sources and also the phase ambiguity (although this point 
maybe overcome using noncoherent modulations). After ICA-OS a ZF demodulator is 
used to obtain the set of estimated bits. 
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Performance will be evaluated in terms of BER for a constellations 4QAM and dif-
ferent values of the parameter M in Eq. (11). 

a) Scenario 1. The following simulation shows the degradation of the separation 
scheme according to the MIMO channel variability increases (M decreases). Commu-
nication sources are 4-QAM with 4 antennas at both ends. Fig. 2 shows the effect of 
the window size for all the cases under consideration. Noise is added at reception 
antennas with Eb/N0 = 30 dBs. It can be observed that there should be a trade off 
between the window size and the channel variability. Clearly, for static channels, the 
longer the window size, the better performance. However, for dynamic scenarios 
there is an optimum window size where the channel remains nearly static and the 
separation is performed. Some of these values are summarized in the following table: 

Table 1. Optimal window size 

Factor M Windows Size 

500 50 

5000 100 

15000 250 

        

Fig. 2. Performance in terms of window 
and M 

Fig. 3. Time evolution of the channel 

Fig. 3 complements this view with the time evolution of an arbitrary channel com-
ponent (the real part for simplicity). It can be observed how fast it is the channel evo-
lution depending on the aforementioned factor M. 

b) Scenario 2. Communication sources 4QAM; 4 antennas at both sides and differ-
ent sampling frequencies where the window size is fixed according to the optimum 
value provided in Table 1. It can be observed in Fig. 4 that if the channel is highly 
variant (M=500) none of the schemes (ICA-OS and JADE) is able to separate the 
involved signals. However, as the channel becomes more static, the better perform-
ance of the ICA-OS is shown in front of JADE. It has to be remarked that these 
schemes are able to perform with satisfactory performance for high SNR scenarios, 
while for values below 10 dB are not suitable. We are currently working towards the 
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improvement of our approach combining the ICA-OS source separation with more 
complex MultiUser Detectors (MUDs) in a second stage. 

c) Additionally, in a stationary environment we have compared ICA-OS with a 
second stage using ZF or BLAST criteria in front of trained ZF and BLAST in Fig. 5. 
Main ideas are the following: 

1. ICA-OS method estimates the unknown MIMO channel H, afterwards ZF de-
modulators either is used to recover source bits.  

2. On the other side, ICA-OS estimates the unknown channel H and afterwards 
BLAST demodulates the separated symbols using the estimation of H. 

3. When H is known, but with channel estimation errors using instantaneous esti-
mators, BLAST algorithm and ZF schemes obtains the demodulated bit sources 

Results shown in Fig. 5 remark that V-BLAST is better than ZF in the trained 
mode, as expected. Logically blind techniques are worse than the previous ones that 
know the channel; anyway degradation could be acceptable in many applications. It 
can be also observed that ICA-OS with blast performs worse than ICA-OS with ZF 
due probably to the error propagation effect related to BLAST approaches, this last 
point remarks that BLAST techniques seems to be very sensitive to channel errors 
associated to estimation procedures. Although these are preliminary results, this ap-
proach combining BSS with more complex MUDs seems to be very promising for 
further work. 

         

Fig. 4. Comparison of BSS MIMO schemes 
for 4QAM 

Fig. 5. Comparison of different approaches 
for blind and trained MIMO processing 

5   Conclusions 

This paper addresses the implementation and assessment of the ICA-OS procedure for 
spatial multiplexing in MIMO time varying scenarios. This procedure is shown to 
perform very satisfactorily in front of other well known BSS method where the 
amount of data available is shortened in order to deal with significant Doppler scenar-
ios. These results may envision the possibility of spatial multiplexing without the 
overhead related to training the MIMO structure. The loss of performance of trained 
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ZF and trained BLAST is not very significant. Future work must be done in order to 
improve present results with the combination of BSS and more complex MUDs as 
BLAST. 
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Abstract. The semi-blind equalization for a wireless multiple-input
multiple-output (MIMO) system with frequency selective Ricean chan-
nels is addressed. A reformulation of the problem accepting higher com-
plexity allows to apply ordinary complex Independent Component
Analysis (ICA). An algorithm presented here resolves the increased num-
ber of permutations due to the reformulation of the convolutive blind
signal separation problem. The remaining ambiguities are as many as in
the non-frequency selective case and solved by a short preamble. The ef-
ficiency of the proposed method is illustrated by numerical simulations.
According to the Bit Error Rate the semi-blind equalization shows a
good performance in comparison to training based channel estimation &
equalization.

1 Introduction

Multiple-input multiple-output (MIMO) systems provide higher data rates that
data-demanding applications require. Training based channel estimation of fre-
quency selective MIMO channels reduces the effective transmission rate. The
semi-blind equalization approaches can reduce the amount of training to a min-
imum. A well-known challenge is to resolve the remaining ambiguities left by
blind signal separation.

The blind equalization of frequency selective MIMO channels is also known
as convolutive blind signal separation (BSS) or blind separation of convolutive
mixtures [1]. Methods for blind separation of convolutive mixtures can be sub-
divided into direct and indirect approaches. In a direct approach the separated
signals are extracted without explicit identification of the mixing matrix, while
indirect methods identify the unknown channels before separation and equaliza-
tion. A variety of two-step algorithms using the indirect approach are proposed.
The linear prediction (LP) based approaches [2] and the subspace method [3]
are most popular among them. A further approach is proposed in [4].

A different approach [5] uses Orthogonal Frequency Division Multiplexing
(OFDM). The convolutivemixture is transformed associating each subcarrierwith
an instantaneous ICA problem. This special case of performing ICA in the fre-
quency domain requires to solve the frequency dependent permutation problem.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 422–429, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper the direct approach is considered. A reformulation of the convo-
lutive blind signal separation problem is used to apply ordinary complex ICA.
The increased number of ambiguities due to the reformulation of the convolu-
tive blind signal separation problem are resolved by a three step algorithm. In
the first step the special structure of the reordered mixing matrix, a generalized
Sylvester matrix, is used to reduce the unknown permutations. The remaining
ambiguities are as many as in the non-frequency selective case. Considering a
communication system with M -QAM modulation, in a second step the phase
ambiguity can be reduced up to a multiple of π/2. Using differential modulation
the remaining phase ambiguity can be solved while the permutations remain. As
the permutations can not be solved with a differential modulation here a non-
differential M -QAM modulation scheme is utilized. To resolve the permutations
preamble symbols are transmitted. It will be shown that the required number of
preamble symbols is equal to the number of transmit antennas.

The paper is organized as follows. The MIMO system and the frequency se-
lective MIMO channel model is described in Section 2. Section 3 covers the
semi-blind equalization of the frequency selective wireless MIMO system. Sim-
ulation results are presented in Section 4. As a performance measure the blind
equalization method is compared with a training based channel estimation &
equalization. A summary and conclusion marks can be found in Section 5.

2 System Description

2.1 Transmitter

We consider a frequency selective MIMO wireless system with nT transmit and
nR receive antennas (see Fig. 1). The serial data stream is split into nT parallel
substreams, one for every transmit antenna. The substreams are mapped into
M -QAM symbols and organized in frames. Each frame of length NF consists of
NI information symbols and NP preamble symbols. The preamble sequences are
orthogonal to each other. The symbol substreams are subsequently transmitted
over the nT antennas at the same time. The symbol transmitted by antenna m
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Fig. 1. Wireless MIMO system with semi-blind equalization of frequency selective
channels and ambiguity resolution
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at time instant k is denoted by sm(k). The transmitted symbols are arranged in
vector s(k) = [s1(k), . . . , snT (k)]T of length nT , where (·)T denotes the transpose
operation.

2.2 Channel

Between every transmit antenna m and every receive antenna n there is a fre-
quency selective channel impulse response (CIR) of length L + 1, described by
the vector hn,m = [hn,m(0), . . . , hn,m(L)]T . Assuming the same channel or-
der L for all channels, the frequency selective MIMO channel can be described
by L + 1 complex channel matrices H(k), k = 0, ..., L, with the dimension
nR × nT .

H(k) =

⎡⎢⎣ h1,1(k) · · · h1,nT (k)
...

. . .
...

hnR,1(k) · · · hnR,nT (k)

⎤⎥⎦ (1)

We suppose that the channels remain constant over the transmission of a frame
and vary independently from frame to frame (block fading channel).

The elements hn,m(k), k = 0, . . . , L, of the channel impulse responses are
complex random variables with a Gaussian distributed real and imaginary part,
zero mean and variance σ2(k). The first element hn,m(0) includes also the di-
rect component with the amplitude pn,m and the power p2

n,m = cR · σ2(0),
where cR is the Rice factor. The power delay profile describes by the variances
σ2(k), k = 0, . . . , L how the power is distributed over the taps of the channel
impulse response. Here the variances decrease exponentially with k.

The channel energy is normalized by the condition

L∑
k=0

E
{
|hn,m(k)|2

}
= p2

n,m +
L∑
k=0

σ2(k) := 1. (2)

We assume additive white Gaussian noise (AWGN) with zero mean and variance
σ2
n per receive antenna.

2.3 Receiver

The symbol received by antenna n at time instant k is denoted by xn(k).
The symbols received by the nR antennas are arranged in a vector x(k) =
[x1(k), . . . , xnR(k)]T of length nR, which can be expressed with (1) and n(k) as
noise vector of length nR as

x(k) =
L∑
i=0

H(i) s(k − i) + n(k). (3)
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3 Semi-blind Equalization

3.1 Blind Signal Separation

A. Reorder Data for ICA
The convolutive mixture in (3) is reordered to apply ordinary ICA [1]. Consid-
ering the receive vector x(k) of length nR at K successive time instances the
receive symbols are arranged in a vector xK(k) = [ x(k), . . . , x(k + K − 1) ]T of
length K · nR. The transmitted symbols that are the Independent Components
(IC) are arranged in a vector sK(k) = [ s(k − L), . . . , s(k + K − 1) ]T of length
(K+L) ·nT . As the channel is assumed to be a block fading channel the received
data is processed in frames, which is represented by the receive signal matrix
XK = [xK(0), xK(1), . . . , xK(NF −K)] and the associated transmit signal ma-
trix SK = [sK(0), sK(1), . . . , sK(NF −K)]. With xK(k) and sK(k) the mixing
matrix HK becomes a Toeplitz matrix (called generalized Sylvester matrix) of
size K · nR × (K + L) · nT :

HK =

⎡⎢⎣H(L) · · · H(0) · · · 0
...

. . . . . . . . .
...

0 · · · H(L) · · · H(0)

⎤⎥⎦ , (4)

containing the channel matrices H(k), k = 0, ..., L. The convolutive mixture
in (3) simplifies to a multiplicative one, that is the reformulated ICA problem,
given by

XK = HK · SK +N . (5)

where N denotes the noise.
As ICA requires the number of observed mixtures to be at least equal to the

number of ICs, the matrix HK should have at least as many rows as columns,
which is expressed as K · nR ≥ (K +L) · nT . For K the following relation holds

K ≥
⌈

nT · L
nR − nT

⌉
. (6)

As a consequence, applying ICA to frequency selective MIMO systems requires
more receive than transmit antennas.

B. Whitening + ICA
Ordinary complex ICA algorithms like complex FastICA [6] with symmetric
orthogonalization or JADE [7] are applied to obtain estimates of the separated
signals ŜK0 and an estimate ĤK0 for the generalized Sylvester matrix. Recalling
the restrictions of ICA [1], every estimated IC shows a different unknown phase
offset. In addition the estimated ICs are arbitrary permuted. These permutations
are divided into outer permutations in ŜK0 , i.e. permutations of the vectors s(k)
in sK(k), and inner permutations, i.e. permutations of sm(k) in s(k).
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3.2 Ambiguity Resolution

C. Resolving Outer Permutations
To resolve the outer permutations, the special structure of the reordered mixing
matrix HK is used. Due to permutations of the rows in ŜK0 , only the columns
of ĤK0 are permuted. The same applies to the unknown phase offsets.

An algorithm to rearrange the matrix ĤK0 to a Toeplitz matrix is presented
for nT = 2, which can easily be extended to more transmit antennas. The channel
matrix H(k) for nT = 2 is split into subcolumns H(k) = [h1(k) h2(k)]. The
algorithm is described in two major steps:

1. The nT rightmost columns in ĤK0 can be found by two criteria:
(a) Assuming an exponential decreasing power delay profile channel, the sum

of the absolute values of subcolumn hm(0) in (7) is maximal compared
to other subcolumns in the same row.

(b) Considering the part of the column above subcolumn hm(0), the sum of
the absolutes values should be nearly zero.

These criteria require K ≥ 2, elsewise no zero submatrices could be found
in ĤK0 . The found columns, in (7) depicted by the boxed columns, will be
moved to the right side of the matrix as shown in (8). The columns including
h1(0) and h2(0) can be permuted (inner permutations).

⎡⎢⎢⎣
. . .
· · ·
· · ·

...
0 ejΔϕ1

h1(0) ejΔϕ1

· · ·
· · ·

...
0 ejΔϕ2

h2(0) ejΔϕ2

· · ·
· · ·
· · ·

⎤⎥⎥⎦ (7)

⎡⎢⎢⎢⎣
. . .

...
...

...

· · · h2(0) ejΔϕ3 · · · 0 ejΔϕ1 0 ejΔϕ2

· · · h2(1) ejΔϕ3 · · · h1(0) ejΔϕ1 h2(0) ejΔϕ2

⎤⎥⎥⎥⎦ (8)

2. The row one subcolumn above h2(0) is searched for a subcolumn having the
same absolute values as h2(0), depicted by the boxed subcolumns in (8). The
matching column is moved left to the already sorted ones as depicted in (9).⎡⎢⎣ . . .

...
...

...
· · · h2(0) ejΔϕ2 0 ejΔϕ1 0 ejΔϕ2

· · · h2(1) ejΔϕ2 h1(0) ejΔϕ1 h2(0) ejΔϕ2

⎤⎥⎦ (9)

The boxed submatrices in (8) have the same phase angle but different phase
offsets. To relate the phase offsets the differential angle Δψ is determined by

Δψ = � (h2(0) ejΔϕ3)− � (h2(0) ejΔϕ2) = Δϕ3 −Δϕ2. (10)

By multiplying the found column by e−jΔψ we get

h2(i) ejΔϕ3 · e−jΔψ = h2(i) ejΔϕ2 , i = 0, 1 (11)
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and the same phase offset Δϕ2 is achieved. This processing step is repeated
until ĤK0 is sorted.

The Toeplitz matrix is resorted up to the inner permutations in H(k). As
the rows in ŜK0 are permuted in the same way as the columns in ĤK0 , during
the execution of the algorithm a permutation matrix P1 is arranged to obtain
the corrected signal matrix ŜK1 = P1 · ŜK0 .

D. Phase Estimation to iπ2
By using M -QAM modulated signals the phase can be estimated by a set of
symbols and fourth order cumulants [8] up to a multiple of π2 . The estimated
phase of source m is denoted with ϕom . With the unitary matrix P2

P2 = IK+L ⊗ diag(e−jϕ̂o1 , . . . , e−jϕ̂onT ), (12)

where ⊗ denotes the Kronecker tensor product and I is the identity matrix, the
corrected signal matrix ŜK2 = P2 · ŜK1 is obtained.

E. Resolving Inner Permutations and the Remaining Phase Offsets
The remaining ambiguities are solved by orthogonal preamble sequences, de-
signed using Hadamard matrices, with a preamble length NP ≥ nT . The sym-
bols of the extracted preamble ŜP are hard decided, that is denoted by S̃P . The
unitary cross correlation matrix RS̃S, given by

RS̃S =
1
NP

S̃PSHP , (13)

where (·)H denotes the complex-conjugate (Hermitian) transpose, will be an
identity matrix if all phase offsets are zero and no inner permutations exist. As
the outer permutations are solved, the matrix

P3 = IK+L ⊗ RH
S̃S (14)

is used to obtain the corrected signal matrix ŜK3 = P3 · ŜK2 .

F. Extract & Combine Data
By solving the ICA problem in (5) the transmitted symbols sm(k) are estimated
(K+L) times. Prior to a demodulation the multiple estimated transmit symbols
can be combined to achieve a lower Bit Error Rate.

4 Simulation Results

For a performance comparison a training based channel estimation and equaliza-
tion is considered. A training sequence is used to estimate the channel matrices
by the Minimum Mean Square Error (MMSE) - estimator [9, 10]. We use ran-
dom training sequences [10] of length NP,T = 2 · nT · (L + 1) + L per transmit
antenna, which is slightly above the optimal training sequence length [10] of
NP,T = 1.8 · nT · (L + 1) + L. The channel estimate is used to equalize the re-
ceived data. For the training based equalization the successive FS-Blast [11] is
used.
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In Fig. 2(a) one can see a comparison of semi-blind and training based channel
estimation & equalization based on the Bit Error Rate (BER) versus the Signal-
to-Noise-Ratio (SNR). Also shown is the BER for the case of perfect knowledge
of the channel impulse response (CIR) at the receiver. As expected, the result
with training based channel estimation is closer to the result with perfect knowl-
edge than that with semi-blind equalization. The presented semi-blind approach
requires a 3 dB increased Signal-to-Noise-Ratio (SNR) to achieve a Bit Error
Rate of 4 · 10−3 compared to training based channel estimation & equalization.
Comparing the two ICA algorithms JADE shows a better performance than
FastICA. One can also see, that an increased number of preamble symbols NP
does not significantly change the BER. It is sufficient to use the minimal desired
number, which is NP = 2 for nT = 2. The mean square error (MSE) versus the
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Fig. 2. Comparison of semi-blind and training based channel estimation & equalization,
Simulation with nT = 2 and nR = 4, frequency selective MIMO channel order L = 2,
cR = 1, 4-QAM modulation, Semi-blind equalization with 500 symbols per frame with
combining multiple estimations

SNR for semi-blind and training based channel estimation is shown in Fig. 2(b).
The MSE of the channel estimation is calculated as

MSE = E

{
L∑
k=0

1
nT · nR

nT∑
m=1

nR∑
n=1

∣∣∣hn,m(k)− ρmĥn,m(k)
∣∣∣2} , (15)

in which ĥn,m(k) is the estimated channel impulse response and ρm is used
to compensate the scalar ambiguity associated with the estimation results
for the m-th antenna. This calculation of the MSE is equal to the one used
in the literature since (2) holds. For high SNR greater than 10 dB the MSE of
the training based approach does not differ from the MSE achieved with semi-
blind equalization. The BER of the training based approach in contrast is less
than the one obtained by semi-blind equalization. It is important to note that
the separation of the independent components do not depend on the estimated
mixing matrix and their accuracy.
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5 Conclusions

We showed that ordinary complex ICA can be used for semi-blind equalization of
MIMO frequency selective channels. An algorithm was presented that resolve the
increased number of ambiguities due to the reformulation of the convolutive blind
signal separation problem. Compared with training based channel estimation &
equalization the presented semi-blind approach requires a 3 dB increased Signal-
to-Noise-Ratio (SNR) to achieve a Bit Error Rate of 4 · 10−3.
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Abstract. In this paper, we tested the efficiency of a two-step blind source 
separation (BSS) approach for the extraction of independent sources of -
activity from ongoing electroencephalograms (EEG). The method starts with a 
denoising source separation (DSS) of the recordings, and is followed by either 
an independent component analysis (ICA) or a temporal decorrelation algorithm 
(FastICA and TDSEP, respectively). This two-step method was compared with 
DSS, ICA and TDSEP alone. The tests were performed with simulated data 
based on real EEG signal, to guarantee the existence of a “ground truth”. The 
most efficient algorithm, for proper component extraction (regardless of the 
amount of -activity in their spectra) is a combination of DSS and ICA. It 
provided also more stable results than ICA alone. TDSEP, in combination with 
DSS, was efficient only for the extraction of the components with prominent  

-activity. 

1   Introduction 

There is a considerable amount of work devoted to studying brain dynamics reflected 
in EEG/MEG signals using independent component analysis (ICA) (e.g., see [10, 4, 
9]). One particular application of this signal processing method is analysis of EEG -
activity [6, 2]. At the same time, the study of dynamics of ongoing EEG -activity 
taking into account the nonstationary nature of the EEG signal is very promising [5]. 
Using both approaches, it would be interesting to study the independent sources for 
different quasi-stationary segments of EEG -activity differentiated, for example, by 
their mean amplitude. 

It has been shown that, in noisy environments and in presence of insufficiently 
informative data set, as compared to the measuring space dimension, ICA tends to 
overfit into local minima (see [8]). Indeed, when we applied ICA for analysis of 
ongoing EEG -activity, we faced local minima problems, which resulted in the 
instability of the obtained results. This problem has motivated us to use in [1] a new 
BSS framework called denoising source separation (DSS) which takes into account a 
prior information about separated signals [7]. 

The independence criterion assumed in this method was the uncorrelatedness of -
content in different sources. Provided that this assumption is valid, the method is able 
to separate alpha sources containing different amount of -activity. In practice, 
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however, this difference was not large enough in all cases and therefore the reliable 
separation was not always achieved.  

Trying to solve both mentioned problems we suggest in this paper a combination 
of the -frequency based DSS and ICA in a two-step algorithm. In the first stage, DSS 
identifies the -subspace, while ICA separates statistically independent -components 
in the second stage. We also investigate the use of temporal decorrelation methods 
such as TDSEP, as a possible second step in the proposed approach (for details of 
TDSEP, see [12]).  

The goal of the present work is to test the efficiency of the proposed approach for 
the separation of the -components and to compare the results of the tests with those 
obtained by other single-step BSS algorithms such as ICA, DSS and TDSEP alone. 
We tested these approaches using simulated data, maximally resembling the 
properties of real EEG signals. 

2   Methods 

2.1   Simulated EEG Signal 

The “reference” 16-channel signal (i.e., targets to the BSS decomposition) was 
compiled from independent components extracted by ICA from EEG recordings 
registered from 16 healthy adolescents in rest condition with eyes closed (1 min, 7680 
points totally). From every subject, only one component was taken. The choice of the 
components was based on the amount of certain frequencies in their spectra. Two 
types of “reference” signals were compiled. The first dataset contained seven 
components (of 16) with prominent -activity (7-13 Hz) in their spectra (see Fig. 1), 
and the second dataset contained three such components. The rest of the components 
in both datasets could also contain some amount of alpha, but it was not the main 
frequency in their spectra. All components were normalized to unit variance.  

The simulated signal was produced with three different mixing matrices to reach 
some sort of statistical measure of result consistency. All matrices were obtained 
using aforementioned real EEG data, as result of ICA decomposition. Each matrix 
 

 

Fig. 1. Reference 16-channel signal containing seven components with prominent -activity  
(10 s fragment, 1280 points; left) and spectral power of each component of the signal (right) 
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corresponds to a spatial distribution of a set of sources. They were chosen to reflect 
different weightings from the brain regions, hence various alpha contributions. Such 
contribution Cj of each source, say, the jth source, to the total variance of the mixed 
signal is given by the squared norm of the corresponding mixing vector aj, normalized 
by the total variance of the mixing matrix: 

,C
2

2

 j=

i j
ij

i
ij

a

a
 

(1) 

where aij is the ij-th element of mixing matrix A. This characteristic can be interpreted 
as a power of certain source in terms of forming the mixed signal. The first mixing 
matrix, (a), emphasized sources 4, 5, 6, 9 and 12; the second matrix, (b), highlighted 
sources 1-4, 9, 11, and 13, whereas the third, (c), gave clear relevance to source 1 and, 
in essentially lesser degree, - to source 2 (see Fig. 2). 

a b c  

Fig. 2. Contributions of each component of reference signal into forming mixed signal as 
determined by mixing matrixes (a, b, c). Each column corresponds to Cj for each mixing vector 
of certain mixing matrix (see description in the text). 

To simulate additional noise artifacts in the simulated data we added to each of the 
mixed signals white noise with variance equal to 36% of the variance of the reference 
signal. 

The generation of the simulated signal is summarized in Fig. 3. With two types of 
reference signal and three different mixing matrices, we generated six different 
simulated datasets to be analyzed with a set of algorithms. 

* Known mixing 
matrix A (16,16) = Simulated signal  

x (16,7680)+Reference signal  
s (16,7680)

White noise 
 (16,7680) 

 

Fig. 3. Scheme of generation of the simulated signal 

2.2   Algorithms 

The main approach we propose and test here was a two-step algorithm containing 
both DSS and ICA. The first step in each combined algorithm consisted of a 
frequency-based DSS, targeting the -band content in the recordings. It can be 
summarized in a series of operations starting by spatial whitening, followed by 
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filtering the white data in the frequency of interest. Then a new projection from the 
original recordings is sought which maximizes the power of the filtered data.  

Only eight components obtained by DSS, containing most pronounced alpha in 
their spectra, were selected for further analysis in a second step. In the second step, 
we used two well-known BSS algorithms. One was FastICA [13], a fast and robust 
fixed-point algorithm, which maximizes the non-Gaussianity of the projected 
components (for details, see [3]). Another algorithm tested was TDSEP [14] - an 
algorithm for temporal decorrelating the output signals, based on the joint 
diagonalization of delayed correlation matrices [12]. This method should be suitable 
for extracting time-structured sources, in particular, -activity. 

In both two-steps algorithms (with ICA or TDSEP), we also studied the influence 
of adding an intermediate filtering of the components obtained in the first stage (result 
of DSS). This filtering targeted the -band (7-13 Hz). Although the DSS procedure 
aims at boosting this frequency band, we have often observed that other frequencies 
were also included in the estimates. The additional filtering stage aims at reducing the 
effect of such undesired frequencies, and hence results in an improvement in the 
detection of the -components.  

As a control for described testing, we processed the same datasets using DSS, ICA 
and TDSEP separately. Thus, seven algorithms were tested in total; see Fig. 4. 

Simulated signal
x (16, 7680)

  DSS 

s (16, 7680)

FastICA 

s (16, 7680)

TDSEP

s (16, 7680)
TDSEP

s (8, 7680)

One-step Two-step

FastICA

s (8, 7680)

filtering in 
alpha band 

TDSEP

s (8, 7680)

filtering in 
alpha band 

FastICA 

s (8, 7680)

DSS

sdss (16, 7680)
Selecting 8 components with most prominent -

activity in their spectra 

 

Fig. 4. Scheme of processing the simulated signal with different algorithms 

2.3   Estimation of Algorithm Accuracy  

The source separation efficiency, for the compared algorithms, was estimated using 
cross-correlation calculated between separated sources and the “reference” signals. 
The obtained cross-correlation matrices were then analyzed: we selected the 
maximum value of the cross-correlation coefficient (CC) for each of eight rows of the 
matrices. Because we are only interested in -activity, only the eight rows of CC 
corresponding to the components with most pronounced alpha were analyzed. The 
obtained values had to correspond to the cases when the given channel of the obtained 
signal correlates well with some channel of the reference signal. We averaged these  
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eight values, for each type of simulated signal, thus getting an integral estimation of 
the algorithm effectiveness in extracting those eight components from the six 16-
channel simulated signals.  

It has been observed that different runs of ICA on finite data sets may result in 
somewhat different estimates of the independent sources [11]. To test the stability of 
the results obtained by the algorithms containing ICA, we run those algorithms 50 
times changing initial conditions. Then we calculated the CC between the obtained 
components and the reference signal and estimated the mean and the standard 
deviation of mean (STD) for every entry of the 50 CC matrices. We calculated the 
coefficient of variation (CV) of CC as a ratio of mean and STD values for every entry, 
and than averaged CV across the rows of the matrix. This value reflected the average 
level (for a certain row) of CC variations across the repeated calculations, hence was 
an estimate of the stability for each of eight extracted components.  

3   Results 

3.1   Processing the Signals Containing Seven Alpha-Components 

The results of processing simulated signal containing seven alpha components show 
quite high effectiveness for four algorithms: DSS, ICA in combination with DSS, 
both with and without intermediate filtering (DSS_f_ICA; DSS_ICA), and TDSEP in 
combination with DSS, with -filtering (DSS_f_TDSEP). The average maximum CC 
were always greater than 0.8, for all three types of the simulated signal (Table 1). At 
the same time, the STD values were seldomly above 12% of the mean values of CC. 
This fact suggests that all eight components were extracted by the mentioned methods 
quite accurately. ICA alone could also extract the components well, but only from 
dataset mixed with mixing matrix (a). TDSEP and TDSEP in combination with DSS 
(without intermediate -filtering) show the same, rather poor, results. Since the results 
were very close for both approaches, we present only the results for TDSEP alone. 

Table 1. The average maximum CC (± STD) between the components extracted from the 
simulated signal containing seven alpha sources, and reference signal. a, b and c – results for 
the simulated signals mixed with mixing matrixes (a), (b) or (c) respectively. The coefficients 
were averaged across all eight extracted components. Every column represents the result for 
one of the applied BSS methods. The values above 0.8 are marked with bold font. 

 DSS ICA DSS_ICA DSS_f_ICA TDSEP DSS_f_TDSEP 
a 0.85±0.05 0.87±0.04 0.84±0.12 0.82±0.09 0.67±0.11 0.87±0.05 
b 0.87±0.05 0.74±0.17 0.82±0.10 0.83±0.08 0.71±0.08 0.86±0.09 
c 0.84±0.04 0.73±0.12 0.89±0.04 0.89±0.04 0.67±0.11 0.88±0.05 

3.2   Processing the Signals Containing Three Alpha-Components 

Results obtained for the signals containing only three components with prominent -
activity differ from the ones described above. The maximum CC were found between 
the reference signal and the components extracted by ICA and particularly by 
DSS_ICA (see Table 2). According to the STD values for average CC, CC for data 
obtained by these algorithms were high for all eight extracted components. 
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Table 2. The average maximum CC (± STD) between components extracted from the simulated 
signal containing three alpha sources and reference signal. For the legend see Table 1. 

The components extracted by DSS, DSS_f_ICA and DSS_f_TDSEP had lower 
values of CC compared with the two algorithms mentioned above. At the same time, 
the STD values for these average CC were essentially higher (Table 2). The last fact 
should be interpreted so that the CC between the reference signal and components 
obtained by DSS, DSS_f_ICA and DSS_f_TDSEP are low for some components and 
are high for others. Indeed, more detailed analysis of the CC obtained for the 
simulated signal mixed with mixing matrix (b) confirms that suggestion (see Fig. 4). 
The high correlation with reference signal (about 0.8 and higher) was found for three 
and four components extracted by DSS and DSS_f_TDSEP respectively, and only for 
two components extracted by DSS_f_ICA. At the same time, there are five such 
components extracted by ICA alone and all eight – extracted by DSS_ICA. 
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Fig. 4. The maximum correlation coefficients between eight components extracted from the 
simulated signal (mixed with mixing matrix (b)) containing 3 -sources and reference signal. 
Every bar represents the result for one of the applied BSS methods. 

It is interesting to note that the highest values of CC for components extracted by 
DSS and DSS_f_TDSEP were observed for the components containing high amount 
of alpha (see the first three sets of bars in Fig. 4). That means that in case when 
there are only few -components in the mixed signal, these methods will be able to 
extract these components accurately, but they would not extract properly other 
components. Yet, ICA in combination with DSS without alpha-filtering could 
extract well both types of components with and without -activity. This is to be 
expected, because the ICA block will be able to use additional information present 
in the other components. Remember that, in real applications, we do not have 
access to the number of the alpha components, and are, therefore, not able to restrict 
our search only to that frequency. 

 DSS ICA DSS_ICA DSS_f_ ICA TDSEP DSS_f_TDSEP 
a 0.72±0.11 0.87±0.04 0.89±0.02 0.77±0.12 0.76±0.08 0.74±0.17 
b 0.74±0.15 0.80±0.12 0.90±0.03 0.67±0.11 0.62±0.12 0.79±0.14 
c 0.75±0.15 0.85±0.08 0.84±0.09 0.71±0.16 0.65±0.03 0.74±0.17 
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3.3   Stability of Results Obtained by ICA-Based Algorithms 

From the results presented above, the DSS_f_ICA algorithm was the least effective 
ICA-based method. Hence, we exclude it from testing the stability results. The 
average CV of CC for components extracted with multiple runs of ICA and DSS_ICA 
are presented in Table 3.  

Table 3. The CV values averaged across the rows of the average cross-correlation matrix for 50 
CC, for components obtained by ICA-based algorithms. The calculations were performed for 
both types (7 alpha, 3 alpha) of simulated signal mixed with mixing matrix (b). The lowest 
values of CV comparing between the methods are marked in bold. 

ICA 0.94 1.39 1.13 0.88 0.85 1.22 0.89 0.93 7 
alpha DSS_ICA 0.26 0.64 0.74 0.64 0.39 0.27 0.25 0.33 

ICA 0.91 1.40 1.15 0.92 0.78 1.04 0.94 0.87 3 
alpha DSS_ICA 0.70 0.59 1.05 0.76 0.47 0.57 0.20 0.17 

As follows from Table 3, the CV values were higher (in most cases more than 
twice higher) for both types of the signal, for the results obtained by ICA. That allows 
us to conclude that results obtained by DSS_ICA are more stable than the ones 
obtained by ICA alone. 

4   Discussion 

In the present work we tested a set of BSS methods for the extraction of independent 
components of EEG -activity. To estimate the methods’ efficiency, we generated 
simulated recordings with known parameters. These recordings were based on real 
EEG signals taken from different subjects. The signals were linearly mixed with 
matrices obtained from real EEG data. Hence, we insured to have clear target signals 
for the separation, while preserving their independence and properties close to real 
EEG. Yet, we need to notice that the present results were obtained using modeled data 
and are therefore not guaranteed to be completely reproducible on real data. 

Testing the suggested algorithms using two simulated dataset types demonstrates 
that the most effective approach is ICA following DSS, without an intermediate -
filtering. This algorithm shows good results of component extraction for the set 
containing seven -sources (see Table 1), and the best results for the set with three -
sources (see Table 2). In the second data set, ICA alone was also quite efficient, but 
for the set with seven -components its efficiency was rather weak. Besides, in both 
cases the stability of the results obtained by ICA alone was noticeably lower.  

The approach of DSS followed by TDSEP, with intermediate filtering, was much 
more efficient in terms of -component extraction than TDSEP alone or 
DSS_TDSEP. In fact, DSS_f_TDSEP algorithm could extract the -components very 
accurately, in some cases even better than DSS_ICA (see Table 1). It means that this 
algorithm can be useful for the extraction of prominent -components from real data. 
Yet, since we can not know what kind of sources a real signal contains, the validation 
of the obtained components is required. One such verification is possible, for instance, 
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by its discriminative power in the corresponding frequency band, i.e., how prominent 
the peak is as compared to the background spectrum. Another method is to run the 
DSS step using white Gaussian data as inputs, and see the power of the -components 
that will be estimated. The highest power of these components will be some sort of 
lower bound to true estimates found on real data. 

At the same time, as follows from our results, it is not clear that DSS_f_TDSEP 
will accurately estimate “not-prominent” -components containing other frequencies 
in addition to -activity. On the contrary, using DSS_ICA we can expect that most of 
components will be extracted properly, regardless of the amount of -activity they 
contain. 
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Abstract. Recently an independent component analysis (ICA) becomes
powerful tools to processing bio-signals. In our studies, the ICA is applied
to processing on saccade-related EEG signals in order to predict saccadic
eye movements because an ensemble averaging, which is a conventional
processing method of EEG signals, is not suitable for real-time process-
ing. We have already detected saccade-related independent components
(ICs) by ICA. However, features of saccade-related EEG signals and
saccade-related ICs were not compared. In this paper, saccade-related
EEG signals and saccade-related ICs in visually and auditorily guided
saccade task are compared in the point of the latency between start-
ing time of a saccade and time when a saccade-related EEG signal or
an IC has maximum value and in the point of the peak scale where a
saccade-related EEG signal or an IC has maximum value.

1 Background

Nowadays, many researchers have been researching ”Brain Computer Interfaces
(BCIs)”. BCIs connect computers and human by EEG signals. BCIs have some
advantages compared with conventional interfaces. First is that users do not use
inputs with body movements but use inputs with thinking, emotion, and mo-
tivation. Second is that computers work before user’s movements because EEG
signals include information for predicting beginning time of user’s movement.

The BCI, which is introduced by our group, predict eye movements by EEG
signal before eye movements and move a mouse cursor by the EEG signal before
eye movements. This BCI can improve the latency between beginning time of
eye movements and beginning time of working system. Therefore, this advantage
of our BCI is attractive for the alarm of inattentive driving and the high-speed
targeting system. In conventional research, a saccade-related EEG was detected
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before eye movements by ensemble averaging method [1]. However, ensemble
averaging method has a disadvantage because ensemble averaging method needs
many repetitive trials. Therefore independent component analysis (ICA) method
was applied to analysis on saccade-related EEG signals because the ICA method
can process raw EEG signals and find indepedent components (ICs) related to
various EEG activities.

In our previous research, the ICA method can extract saccade-related inde-
pendent components [2]. However, saccade-related ICs were extracted in case
of visually guided saccade task. Therefore, in this paper, we confirm whether
saccade-related ICs can be extracted in case of auditorily guided saccade task
and compare saccade-related ICs in case of auditorily guided saccade task with
saccade-related ICs in case of visually guided saccade task.

2 Fast ICA with Reference Signal [3]

Recently, the ICA method has been introduced in the field of bio-signal process-
ing as a promising technique for separating independent sources [4]. The ICA is
based on the following principle. Assuming that the original (or source) signals
are mutual independent and have been linearly mixed, and that these mixed
signals are available, the ICA finds in a blind manner a linear combination of
the mixed signals which recovers the original source signals, possibly re-scaled
and randomly arranged in the outputs.

The s = [s1, s2, · · · , sn]T means n independent signals from EEG sources
in the brain, for example. The mixed signals (or the recorded signals) x are
thus given by x = As, where A is an n × n invertible matrix. A is the ma-
trix for mixing independent signals. In the ICA, only x is observed. The value
for s is calculate by s = Wx (W = A-1). However, it is impossible to calcu-
late A-1 algebraically because information for A and s is not already known.
Therefore, in the ICA algorithm, W is estimated non-algebraically. In order
to calculate W, the assumption of the ICA algorithm that s is mutually inde-
pendent is used. Different cost functions, which are defined from the assump-
tion, are used in the literature, usually involving a non-linearity that shapes the
probability destiny function of the source signals. However, high-order statis-
tics, such as the kurtosis, are widely used as well. The kurtosis shows how
independent a signal is because the kurtosis is the classical measure of non-
gaussianity. The Fast ICA which is one of the ICA algorithms, is based on a
cost function minimization or maximization that is a function of the kurtosis
κ(wTx) = E(wTx)4 − 3[E{wTx}2]2 = E{(wTx)4} − 3||w||4; w is one of the
raw of W. Then Fast ICA changes the weight w to extract an IC with the
fixed-point algorithm.

From among several ICA algorithms, we selected the ”Modified Fast ICA with
Reference signal (FICAR)” algorithm to use in this study [3]. This algorithm
can extract only the desired components by initializing the algorithm with prior
information on the signal of interest. The main advantage of this approach is
users can give instructions to extract a desired signal more strongly.
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Original Data

PCA

1st Stage: Pre-whiting 2nd Stage: Initializing w0

3rd Stage: Fixed Point Algorithm
PCA Outputs

PCA Outputs

Output initialized
by Wiener weight 

Output initialized
by wiener weight 

Reference Signal

2. Minimize MSE

Independent Component

3. Maximize kurtosis

Fig. 1. Conceptual three stage for extraction of desired ICs

Fig.1 shows an overview of the procedures of FICAR algorithm. First, prin-
cipal component analysis (PCA) outputs are calculated from original recorded
signals to speed up the convergence of the algorithm. Second, this algorithm
initialized wk (k = 0; k is the iteration number.) using some priori information
included in a reference signal, d, correlated with si, i.e. E[dsi] �= 0. This algo-
rithm estimates a weight vector w. Therefore, we calculate the error ε between
d, which is a reference signal, and u = wTx; ε = d − u. The initial weight w0
are calculate by the minimization of the mean-squared error (MSE) given by
E[ε2]. To calculate the MSE, the least mean square (LMS) is used in order to
calculate the MSE. After some calculations, the optimum weight (also called the
Wiener weight) to minimize the MSE was found to be w* = E[dx]. This algo-
rithm initialized w0 = E[dx]/||E[dx]||. Third, this algorithm calculates wk+1

by wk+1 = E[x(wT
k x)3] − 3w to maximize kurtosis. Then this algorithm can

extract an IC closest to a reference signal or strictly speaking an IC which is
correlated with the reference signal.

3 Experimental Settings

There are four tasks in this study. The first task is to record EEG signals during
a saccade to a visual target that is on his right side or left side. The second
task is to record EEG signals as a control condition when a subject dose not
perform a saccade even though a visual stimulus has been displayed. First task
and second task are called visual experiments. On the other hand, the third task
is to record EEG signals during a saccade to a auditory target that is on his
right side or left side. The fourth task is to record EEG signals as a control
condition against the third task when a subject dose not perform a saccade even
if a auditory stimulus has been turned on. The third task and fourth task are
called auditory experiments. Each experiment is comprised of 50 trials in total:
25 trials on the right side and 25 trials on the left side.

The EEG signals are recorded through 19 electrodes (Ag-AgCl), which are
placed on a subject’s head in accord with the international 10-20 electrode po-
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sition system. The electrooculogram (EOG) signals are simultaneously recorded
through two pairs of electrodes (Ag-AgCl) attached to the top-bottom side and
right-left side of the right eye.The number of subjects is five (Subject A, B, C, D,
E). All subjects are men and have normal vision. All subjects are right-handed.
All data are smpled at 1000[Hz], and stored on a hard disk for off-line data
processing after post-amplification.

In this paper, the shape of the reference signal is that of an impulse signal
having one peak. This shape is caused for two reasons. First, the saccade-related
EEG had a sharp change like am impulse [1]. Second, the main components of an
EEG signal are the neural responses, and the waveform of the neural responses
is resembled to impulse.

4 Experimental Results and Discussion

4.1 Results of Ensemble Averaging

Fig.2 shows the experimental results obtained for ”Subject A” when the visual
stimulus on the right side is illuminated. This EEG data is processed with en-
semble averaging and high-pass filter (cut-off 4 [Hz]). Fig.2-a and 2-b show the
data with and without eye movement to right side, respectively. Black lines in-
dicate results in visual experiments and gray lines represent results in auditory
experiments. The top boxes show the voltage generated in response to the LED
becoming illuminated. The middle boxes indicate the potential of EOG signals.
The increase of EOG signals means an eye movement to right side. The bottom
boxes represent EEG potential recorded at the right occipital lobe (at O2 in
the international 10-20 electrode position system). The horizontal axes indicate
the time span, where 0 [ms] indicates the start point of the eye movement. The
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Table 1. Peak time and amplitude on sharp change of EEG

In visual In auditory
experiments experiments

Peak time n = x−μ
s

Peak time n = x−μ
s

[ms] [ms]

Right/Left Right/Left Right/Leftt Right/Left

A -3 / -2 8.6 / 9.3 -4 / -4 6.3 / 7.0
B -5 / -3 6.3 / 7.8 -6 / -2 4.4 / 4.7
C -3 / -4 7.0 / 6.9 -4 / -4 6.3 / 7.0
D -3 / -2 8.2 / 8.2 -3 / -3 8.0 / 6.7
E -3 / -3 7.8 / 7.9 -4 / -5 6.5 / 7.3

Ave. -3.4 / -2.8 7.6 / 8.0 -4.2 / -3.6 6.3 / 6.5
STD 0.9 / 0.8 0.9 / 0.9 1.1 / 1.1 1.3 / 1.1

amplitude of the EEG signal is sharply changed just before eye movement in the
case of an eye movement. However, there was no change for the case of no eye
movement. The same tendency was observed for all five subjects in the case of
both visual and auditory experiments.

In order to focus on features of saccade-related EEG signal, a time when
saccade-related EEG signals have maximum amplitude and maximum amplitude
is checked in Table 1. Amplitude was defined as n which is how many times
standard deviation during 1000 [ms] before saccade is difference between mean
of EEG potential during 1000 [ms] before saccade and maximum amplitude.

n = x̄−μ
s ; where x̄ is mean of EEG potential during 1000 [ms] before saccade,

μ is maximum amplitude, and s is standard deviation during 1000 [ms] before
saccade.

Peak time when saccade-related EEG signal is from -6 [ms] to -2[ms]
(Ave. = -3.5, STD = 1.1) and n is from 4.4 to 9.3 (Ave. = 7.1, STD = 1.1)
in Table 1. From Table 1, features of saccade-related EEG signals were observed
before saccade and these features were observed remarkably.

4.2 Results of FICAR

We prepared about 500 reference signals for use in this experiment. As describe
above, a reference signal has one peak point because waveform of a reference sig-
nal is a impulse wave. The signals differ in the time it took each to peak. The first
reference signal has a peak when the stimulus is illuminated, and the time when
the second reference signal has a peak is (the time when the first reference signal
has a peak)+1 [ms]. The time when each reference signal has a peak is (the time
when the previous reference signal has a peak)+1 [ms]. The final reference signal
peaked in 300 [ms] after an eye movement.

Fig.3 shows the experimental results obtained when a subject move his eyes to-
ward a visual and auditory target on the right side. These data are processed using
the FICAR against the raw EEG data. The left figures indicate results in visual
experiments and the right figures show results in auditory experiments. Top boxes
represent the shapes of reference signals and bottom boxes indicate the amplitude
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Fig. 3. Extracted signals for FICAR in visual and auditory experiments

of the ICs obtained by using the FICAR. The horizontal axes in these graphs rep-
resent the time course, where 0 [ms] indicates the start point of eye movement.

The results show that the amplitude of the signal obtained by the FICAR is
sharply changed when a reference signal is set just before eye movements. The
shape of the IC that is obtained when the peak of the reference signal occurred
prior to an eye movements resembles the shape obtained with the ensemble
averaging method (See Fig.2 and 3). The IC which has a peak just before eye
movements bears a resemblance to the features of ensemble averaging in respect
to the time when the potential incurs a sharp change. In the case of all subject
and trials, this component is extracted. Therefore, we conclude that this pre-
movement component is related to the saccade-related IC.

4.3 Extraction Rate

Next, we will determine how many of the saccade-related ICs obtained by using
the FICAR. Table 2-(a) and 2-(b) represents the rate for extracting saccade-
related ICs from the raw EEG data. The extraction rate is defined by ratio:
(the number of trials in which saccade-related IC are extracted)
/ (The total number oftrials).

Table 2. Extraction rate for extracting saccade-related ICs in visual and auditory
experiments

(a) In visual experiments
Subject Subject B Subject C Subject D Subject E

Right / Left Right / Left Right / Left Right / Left Right / Left
60%/88% 60%/64% 52%/64% 80%/80% 88%/80%

(b) In auditory experiments
Subject A Subject B Subject C Subject D Subject E

Right / Left Right / Left Right / Left Right / Left Right / Left
92%/84% 68%/72% 76%/68% 60%/80% 52%/88%



444 A. Funase et al.

The lowest rate was 52%. However, the rate for most of the subjects was over
60% and the highest rate was 92%. The average rate was 72.8%.

In the ensemble averaging results, a sharp change of the EEG signal is recorded
each time; however, a subject had to perform the task over 20 trials. On the other
hand, in the case of the FICAR, the rate for extracting saccade-related IC is
below 100%. However, the saccade-related IC was extract in only two trials, and
the ICA method extracted the same feature as the ensemble averaging results
in a shorter time than ensemble averaging. Therefore, from the results, we find
that the ICA method is more suitable for extracting saccade-related components
than the ensemble averaging method. In other words, we have confirmed that
ICA is potentially useful for developing BCI.

4.4 Comparison Between Saccade-Related EEG Signal and IC

In order to compare the saccade-related EEG with saccade-related IC, we focus
on a time when saccade-related ICs have a maximum amplitude and maximum
amplitude. Table 3 shows a time when saccade-related ICs have maximum ampli-
tude and maximum amplitude in results of FICAR. Definition of n was the same
as results of ensemble averaging. Value of each cell was calculated by averaging.

Table 3. Peak time and amplitude on sharp change of ICs

In visual In auditory
experiments experiments

Peak time n = x−μ
s

Peak time n = x−μ
s

[ms] [ms]

Right/Left Right/Left Right/Leftt Right/Left

A -12.7 / -12.7 5.6 / 5.2 -13.0 / -16.0 4.8 / 4.6
B -8.9 / -11.9 3.3 / 5.6 -19.1 / -13.1 3.7 / 3.8
C -7.8 / -12.5 3.5 / 4.8 –13.4 / -18.6 3.7 / 3.6
D -12.4 / -16.1 5.9 / 6.1 -7.8 / -13.8 4.5 / 5.0
E -13.8 / -15.1 6.8 / 6.4 -7.8 / -9.7 4.5 / 5.7

Ave. -11.5 / -13.7 5.0 / 5.6 -12.2 / -14.2 4.3 / 4.5
STD 3.0 / 1.8 1.5 / 0.6 4.7 / 3.3 0.5 / 0.9

Peak time when saccade-related ICs have maximum amplitude is from -19.1
[ms] to -7.8[ms] (Ave = -12.9, STD = 3.3) and n is from 3.3 to 6.8 (Ave. =
4.9, STD = 1.0) in Table 3. From Table 3, features of saccade-related ICs were
observed before saccade and these features were observed remarkably.

Comparing results of saccade-related EEG signal with results of saccade-
related ICs, Peak time when saccade-related ICs have maximum amplitude is
earlier than peak time when saccade-related EEG signals have maximum ampli-
tude. This is big advantage in the case of developing proposed BCI, the alarm
of inattentive driving, and the high-speed targeting system. However amplitude
calculated as n in the case of saccade-related ICs is not larger than in the case
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of saccade-related EEG signal. Therefore, in the point of S/N ratio, results of
ensemble averaging are better than results of FICAR. However, if pre-processing
is used before EEG signals are processed by ICA, S/N ratio become better in
the case of ICA results.

5 Conclusion

This paper present extraction of saccade-related ICs and compared features of
saccade-related EEG signals and saccade-related ICs in the point of a time when
saccade-related ICs have a maximum amplitude and maximum amplitude in vi-
sual experiments and auditory experiments. Our study shows that EEG signals
related to saccade can be extracted by the ICA method. The extraction rate for
the saccade-relate IC was 72.8%. This rate is not high enough to apply the ICA
method to signal processing for BCIs. Therefore, EEG signals must be used with
pre-processing. Comparing results of saccade-related EEG signals with results of
saccade-related ICs, peak time when saccade-related ICs have maximum ampli-
tude is earlier than peak time when saccade-related EEG signals have maximum
amplitude. This is very important advantage for developing our BCI. However,
S/N ratio in being processed by FICAR is not improved comparing S/N ratio
in being processed by ensemble averaging. In the future, we will try to obtain
a higher extraction rate for extracting the saccade-related ICs and to improve
S/N ratio in being processed by FICAR using by advanced ICA algorithms and
pre-processing.
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Abstract. Cognitive component analysis (COCA) is defined as the pro-
cess of unsupervised grouping of data such that the ensuing group struc-
ture is well-aligned with that resulting from human cognitive activity.
We present evidence that independent component analysis of abstract
data such as text, social interactions, music, and speech leads to low
level cognitive components.

1 Introduction

During evolution human and animal visual, auditory, and other primary sensory
systems have adapted to a broad ecological ensemble of natural stimuli. This long-
time on-going adaption process has resulted in representations in human and ani-
mal perceptual systems which closely resemble the information theoretically
optimal representations obtained by independent component analysis (ICA), see
e.g., [1] on visual contrast representation, [2] on visual features involved in color
and stereo processing, and [3] on representations of sound features. For a gen-
eral discussion consult also the textbook [4]. The human perceptional system can
model complex multi-agent scenery. Human cognition uses a broad spectrum of
cues for analyzing perceptual input and separate individual signal producing
agents, such as speakers, gestures, affections etc. Humans seem to be able to read-
ily adapt strategies from one perceptual domain to another and furthermore to
apply these information processing strategies, such as, object grouping, to both
more abstract and more complex environments, than have been present during
evolution. Given our present, and rather detailed, understanding of the ICA-like
representations in primary sensory systems, it seems natural to pose the question:
Are such information optimal representations rooted in independence also rele-
vant for modeling higher cognitive functions? We are currently pursuing a research
programme, trying to understand the limitations of the ecological hypothesis for
higher level cognitive processes, such as grouping abstract objects, navigating so-
cial networks, understanding multi-speaker environments, and understanding the
representational differences between self and environment.

Wagensberg has pointed to the importance of independence for successful ‘life
forms’ [5]

A living individual is part of the world with some identity that tends to
become independent of the uncertainty of the rest of the world

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 446–453, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Thus natural selection favors innovations that increase independence of the agent
in the face of environmental uncertainty, while maximizing the gain from the
predictable aspects of the niche. This view represents a precision of the classical
Darwinian formulation that natural selection simply favors adaptation to given
conditions. Wagensberg points out that recent biological innovations, such as ner-
vous systems and brains are means to decrease the sensitivity to un-predictable
fluctuations. An important aspect of environmental analysis is to be able to rec-
ognize event induced by the self and other agents. Wagensberg also points out
that by creating alliances agents can give up independence for the benefit of
a group, which in turns may increase independence for the group as an entity.
Both in its simple one-agent form and in the more tentative analysis of the group
model, Wagensberg’s theory emphasizes the crucial importance of statistical in-
dependence for evolution of perception, semantics and indeed cognition. While
cognition may be hard to quantify, its direct consequence, human behavior, has a
rich phenomenology which is becoming increasingly accessible to modeling. The
digitalization of everyday life as reflected, say, in telecommunication, commerce,
and media usage allows quantification and modeling of human patterns of activ-
ity, often at the level of individuals. Grouping of events or objects in categories is
fundamental to human cognition. In machine learning, classification is a rather
well-understood task when based on labelled examples [6]. In this case classifica-
tion belongs to the class of supervised learning problems. Clustering is a closely
related unsupervised learning problem, in which we use general statistical rules
to group objects, without a priori providing a set of labelled examples. It is a
fascinating finding in many real world data sets that the label structure discov-
ered by unsupervised learning closely coincides with labels obtained by letting a
human or a group of humans perform classification, labels derived from human
cognition. We thus define cognitive component analysis (COCA) as unsupervised
grouping of data such that the ensuing group structure is well-aligned with that
resulting from human cognitive activity [7]. This presentation is based on our
earlier results using ICA for abstract data such as text, dynamic text (chat),
web pages including text and images, see e.g., [8,9,10,11,12].

2 Where Have We Found Cognitive Components?

Text Analysis. Symbol manipulation as in text is a hallmark of human cog-
nition. Salton proposed the so-called vector space representation for statistical
modeling of text data, for a review see [13]. A term set is chosen and a doc-
ument is represented by the vector of term frequencies. A document database
then forms a so-called term-document matrix. The vector space representation
can be used for classification and retrieval by noting that similar documents
are somehow expected to be ‘close’ in the vector space. A metric can be based
on the simple Euclidean distance if document vectors are properly normalized,
otherwise angular distance may be useful. This approach is principled, fast, and
language independent. Deerwester and co-workers developed the concept of la-
tent semantics based on principal component analysis of the term-document
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Fig. 1. Generic feature distribution produced by a linear mixture of sparse sources
(left) and a typical ‘latent semantic analysis’ scatter plot of principal component pro-
jections of a text database (right). The characteristics of a sparse signal is that it
consists of relatively few large magnitude samples on a background of small signals.
Latent semantic analysis of the so-called MED text database reveals that the semantic
components are indeed very sparse and does follow the laten directions (principal com-
ponents). Topics are indicated by the different markers. In [16] an ICA analysis of this
data set post-processed with simple heuristic classifier showed that manually defined
topics were very well aligned with the independent components. Hence, constituting
an example of cognitive component analysis: Unsupervised learning leads to a label
structure corresponding to that of human cognitive activity.

matrix [14]. The fundamental observation behind the latent semantic indexing
(LSI) approach is that similar documents are using similar vocabularies, hence,
the vectors of a given topic could appear as produced by a stochastic process
with highly correlated term-entries. By projecting the term-frequency vectors on
a relatively low dimensional subspace, say determined by the maximal amount
of variance one would be able to filter out the inevitable ‘noise’. Noise should
here be thought of as individual document differences in term usage within a
specific context. For well-defined topics, one could simply hope that a given
context would have a stable core term set that would come out as a eigen ‘di-
rection’ in the term vector space. The orthogonality constraint of co-variance
matrix eigenvectors, however, often limits the interpretability of the LSI rep-
resentation, and LSI is therefore more often used as a dimensional reduction
tool. The representation can be post-processed to reveal cognitive components,
e.g., by interactive visualization schemes [15]. In Figure 1 (right) we indicate
the scatter plot of a small text database. The database consists of documents
with overlapping vocabulary but five different (high level cognitive) labels. The
‘ray’-structure signaling a sparse linear mixture is evident.

Social Networks. The ability to understand social networks is critical to hu-
mans. Is it possible that the simple unsupervised scheme for identification of
independent components could play a role in this human capacity? To investi-
gate this issue we have initiated an analysis of a well-known social network of
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Fig. 2. The so-called actor network quantifies the collaborative pattern of 382.000
actors participating in almost 128.000 movies. For visualization we have projected
the data onto principal components (LSI) of the actor-actor co-variance matrix. The
eigenvectors of this matrix are called ‘eigencasts’ and they represent characteristic
communities of actors that tend to co-appear in movies. The network is extremely
sparse, so the most prominent variance components are related to near-disjunct sub-
communities of actors with many common movies. However, a close up of the coupling
between two latent semantic components (the region ∼ (0, 0)) reveals the ubiquitous
signature of a sparse linear mixture: A pronounced ‘ray’ structure emanating from
(0,0). The ICA components are color coded. We speculate that the cognitive machinery
developed for handling of independent events can also be used to locate independent
sub-communities, hence, navigate complex social networks.

some practical importance. The so-called actor network is a quantitative rep-
resentation of the co-participation of actors in movies, for a discussion of this
network, see e.g., [17]. The observation model for the network is not too different
from that of text. Each movie is represented by the cast, i.e., the list of actors.
We have converted the table of the about T = 128.000 movies with a total
of J = 382.000 individual actors, to a sparse J × T matrix. For visualization
we have projected the data onto principal components (LSI) of the actor-actor
co-variance matrix. The eigenvectors of this matrix are called ‘eigencasts’ and
represent characteristic communities of actors that tend to co-appear in movies.
The sparsity and magnitude of the network means that the components are dom-
inated by communities with very small intersections, however, a closer look at
such scatter plots reveals detail suggesting that a simple linear mixture model in-
deed provides a reasonable representation of the (small) coupling between these
relative trivial disjunct subsets, see Figure 2. Such insight may be used for com-
puter assisted navigation of collaborative, peer-to-peer networks, for example in
the context of search and retrieval.

Musical Genre. The growing market for digital music and intelligent music
services creates an increasing interest in modeling of music data. It is now feasible
to estimate consensus musical genre by supervised learning from rather short
music segments, say 5-10 seconds, see e.g., [18], thus enabling computerized
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handling of music request at a high cognitive complexity level. To understand
the possibilities and limitations for unsupervised modeling of music data we here
visualize a small music sample using the latent semantic analysis framework.
The intended use is for a music search engine function, hence, we envision that
a largely text based query has resulted in a few music entries, and the algorithm
is going to find the group structure inherent in the retrieval for the user. We
represent three tunes (with human genre labels: heavy, jazz, classical) by
their spectral content in overlapping small time frames (w = 30msec, with an
overlap of 10msec, see [18], for details). To make the visualization relatively
independent of ‘pitch’, we use the so-called mel-cepstral representation (MFCC,
K = 13 coefficients pr. frame). To reduce noise in the visualization we have
further ‘sparsified’ the amplitudes. PCA provided unsupervised latent semantic
dimensions and a scatter plot of the data on the subspace spanned by two such
dimensions is shown in Figure 3. For interpretation we have coded the data
points with signatures of the three genres involved. The ICA ray structure is
striking, however, we note that the situation is not one-to-one as in the small text
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Fig. 3. We represent three music tunes (genre labels: heavy metal, jazz, classical)
by their spectral content in overlapping small time frames (w = 30msec, with an over-
lap of 10msec, see [18], for details). To make the visualization relatively independent of
‘pitch’, we use the so-called mel-cepstral representation (MFCC, K = 13 coefficients pr.
frame). To reduce noise in the visualization we have ‘sparsified’ the amplitudes. This
was achieved simply by keeping coefficients that belonged to the upper 5% magnitude
percentile. The total number of frames in the analysis was F = 105. Latent semantic
analysis provided unsupervised subspaces with maximal variance for a given dimension.
We show the scatter plots of the data of the first 1-5 latent dimensions. The scatter
plots below the diagonal have been ‘zoomed’ to reveal more details of the ICA ‘ray’
structure. For interpretation we have coded the data points with signatures of the three
genres involved: classical (∗), heavy metal (diamond), jazz (+). The ICA ray structure
is striking, however, note that the situation is not one-to-one (ray to genre) as in the
small text databases. A component (ray) quantifies a characteristic musical ‘theme’ at
the temporal level of a frame (30msec), i.e., an entity similar to the ‘phoneme’ in speech.
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databases. A component quantifies a characteristic ‘theme’ at the temporal scale
of a frame (30msec), it is an issue for further research whether genre recognition
can be done from the salient themes, or we need to combine more than one
theme to reach the classification performance obtained in [18].

Phonemes as Cognitive Components of Speech. There is a strong recent
interest in representations and methods for computational auditory scene anal-
ysis, see e.g., Haykin and Chen’s review on the cocktail party problem [19]. Low
level cognitive components of speech encompass language specific features such
as phonemes and speaker’s voice prints. Such features can be considered ‘pre-
semantic’ and would be recognized by human cognition without comprehension
of the spoken message. We have recently investigated such low-level features and
found generalizable features using ICA representations [20,21], here we give an
example of such analysis based on four simple utterances s, o, f, a. We analysed
40 msec windows of length (95% overlap). The windows were represented by 16
Mel-cepstrum coefficients. After variance normalization the features were sparsi-
fied based on energy zeroing windows of normalized magnitudes with a statistical
z < 1.7. This threshold process retains 55from original features. LSI/PCA was
performed on the sparsified feature coefficients to get the most variant PCA
components. The results in figure 4 seem to indicate that cognitive components
corresponding to the phoneme /ae/ which opens the utterances s and f, can be
identified using linear component analysis. For more details on such analysis see
[20,21].
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Fig. 4. Four simple utterances s, o, f, a were analysed. We analysed 40 msec windows of
length (95% overlap). The windows were represented by 16 Mel-cepstrum coefficients.
After variance normalization the features were sparsified based on energy zeroing win-
dows of normalized magnitudes with a statistical z ≤ 1.7. This threshold process retains
55% of the power in the original features. LSI/PCA was then performed on the sparsi-
fied feature coefficients for visualization. The results seem to indicate that generalizable
cognitive components corresponding to the phoneme /ae/ opening the utterances s and
f, can be identified using linear component analysis.
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3 Conclusion

Cognitive component analysis (COCA) has been defined as the process of unsu-
pervised grouping of data such that the ensuing group structure is well-aligned
with that resulting from human cognitive activity. It is well-established that in-
formation theoretically optimal representations, similar to those found by ICA,
are in use in several information processing tasks in human and animal percep-
tion. By visualization of data using latent semantic analysis-like plots, we have
shown that independent components analysis is also relevant for representing
semantic structure, in text and other abstract data such as social networks, mu-
sical features, and speech. We therefore speculate that the cognitive machinery
developed for analyzing complex perceptual signals from multi-agent environ-
ments may also be used in higher brain function. Hence, we hypothesize that
independent component analysis –given the right representation– may be a quite
generic tool for COCA.
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Abstract. We present the use of KICA to perform clustering of gene expression 
data. Comparison experiments between KICA and two other methods, PCA and 
ICA, are performed. Three clustering algorithms, including weighted graph par-
titioning, k-means and agglomerative hierarchical clustering, and two similarity 
measures, including Euclidean and Pearson correlation, are also evaluated. The 
results indicate that KICA is an efficient feature extraction approach for gene 
expression data clustering. Our empirical study showed that clustering with the 
components instead of the original variables does improve cluster quality. In 
particular, the first few components by KICA capture most of the cluster struc-
ture. We also showed that clustering with components has different impact on 
different algorithms and different similarity metrics. Overall, we would recom-
mend KICA before clustering gene expression data. 

1   Introduction 

Monitoring tens of thousands of genes in parallel under different experimental envi-
ronments or across different tissue types provides a systematic genome-wide ap-
proach to help in understanding a wide range of problems, such as gene functions in 
various cellular processes, gene regulations in different cellular signaling pathways, 
the diagnose of disease conditions, and the effects of medical treatments. There are 
two major methods of measurement for gene expression data at a certain point in 
time: the Microarray method and the SAGE method [1,3,17].  

A key step in the analysis of gene expression data is the clustering of biologically 
relevant groups of genes or tissue samples that have similar expression patterns [2, 9]. 
However, one main challenge in this task is the high dimensional gene data. Feature 
extraction methods, whether in linear or a nonlinear form, produce preprocessing 
transformations of high dimensional input data, which may increase the overall per-
formance of clustering.  

Principal Component Analysis (PCA), also known as Karhunen-Loeve expansion, 
is a classical feature extraction and data representation technique widely used in the 
areas of pattern recognition. Independent Component Analysis (ICA) [11] is a 
relatively recent method that can be considered as an extension of PCA. ICA is a 
general-purpose statistical method that originally arose from the study of blind source 
separation (BSS). Another application of ICA is unsupervised feature extraction, 



 Kernel Independent Component Analysis for Gene Expression Data Clustering 455 

where the aim is to linearly transform the input data into uncorrelated components, 
along which the distribution of the sample set is the least Gaussian. However ICA is a 
linear method in nature, so it is inadequate to describe the complex nonlinear varia-
tions. The kernel trick is one of the crucial tricks for machine learning. Its basic idea 
is to project the input data into a high-dimensional implicit feature space F with a 
nonlinear mapping at first, and then the data are analyzed in F space so that nonlinear 
relations of the input data can be described.  

In this paper, we will illustrate the potential of Kernel-ICA for gene expression 
data clustering. This paper is organized as follows: In section 2, three feature extrac-
tion methods, PCA, ICA and KICA, are described. Section 3 focuses on three  
clustering algorithms and two similarity measures. In section 4, we describe the gene 
expression dataset, performance measures and the results. Finally, the main conclu-
sions are presented in section 5. 

2   Components Based Feature Extraction 

PCA: Principal Component Analysis (PCA) is a classical multivariate data analysis 
method that is useful in linear feature extraction [8,12]. One simple approach to PCA 
is to use singular value decomposition (SVD). Let us denote the data covariance ma-
trix by Rx (0) = E{x (t)xT (t)}. Then the SVD of Rx (0) gives Rx (0) =UDUT, where 
U= [Us,Un] is the eigenvector matrix (i.e. modal matrix) and D is the diagonal matrix 
whose diagonal elements correspond to the eigenvalues of Rx (0) (in descending or-
der). Then the PCA transformation from m-dimensional data to n-dimensional sub-
space is given by choosing the first n column vectors, i.e., n principal component 
vector y is given by y=Us

Tx. 
ICA: Independent Component Analysis (ICA) first performs the dimensionality re-

duction by data sphering (whitening) which project the data onto its subspace as well 
as normalizing its variance. In other words, the data sphering transformation Q is 
given by Q =Ds

-1/2
 Us

T, The whitened vector z∈Rn
 is given by z = Qx. The orthogonal 

factor V in ICA can be found by minimizing the mutual information in z. The natural 
gradient in orthogonality constraint [13] or relative gradient (EASI algorithm) [14] 
leads to the learning algorithm that has the form: 

V = t {I− y yT − (y)yT + y T(y) }V      (1) 

where y = Vz and (y) is an elementwise non-linear function whose ith element is 
given by: 

i

ii
ii dy

ypd
y

)(log
)( −=ϕ  (2) 

where {pi (·)} are the probability density functions of sources. Then the ICA transfor-
mation W' is given by y =  W'x, where W'=VQ. Since we do not know the probability 
density functions of sources in advance, we have to rely on the hypothesized density 
functions. The ICA [15] adopts a generalized Gaussian density which is able to ap-
proximate all kinds of unimodal distributions. 
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KICA: KICA is the kernel counterpart of ICA [10]. Let the inner product be implic-
itly defined by the kernel function k in F with associated transformation . Now we 
will extend nonlinearly the centering and whitening of the data.  

Centering in F: We shift the data ( )
i

x (i=1,…,k) with its mean ( ))E( x , to obtain 

data ( ) ( ) ( ( ))i ix x E x′ = − with a mean of 0. 

Whitening in F: The goal of this step is to find a transformation matrix Q̂ such that 
the covariance matrix of the samples ˆ ( ) ( )i ix Q x′=  (i=1,…,k) is a unit matrix.  

Transformation of test vectors: For an arbitrary test vector z ∈ X the Kernel-ICA 

transformation can be made using * ˆˆ ˆz ( ) ( , z)kz X= =WQ WA . Here Ŵ denotes the or-

thogonal transformation matrix we obtained as the output from the iterative section of 
ICA, while Q̂ is the matrix obtained from kernel centering and whitening. Practically 
speaking, Kernel-ICA = Kernel-Centering + Kernel-Whitening + ICA. Selecting an 
appropriate kernel function for a particular application area is very important. In this 
paper, we adopt cosine kernel for gene expression data. 

3   Clustering Algorithms 

We used three clustering algorithms in our empirical study: the hierarchical average-
link algorithm, the k-means algorithm (with random initialization, 20 times for each 
experiment) and weighted graph partitioning. 

Hierarchical Clustering: Hierarchical clustering techniques produce a nested se-
quence of partitions, with a single, all-inclusive cluster at the top and singleton clus-
ters of individual points at the bottom [16]. Each intermediate level can be viewed as 
combining two clusters from the next lower level (or splitting a cluster from the next 
higher level). There are two basic approaches to generating a hierarchical clustering: 
Agglomerative and Divisive. Agglomerative algorithm is more common, and this is 
the technique that we will use. We summarize the traditional agglomerative hierarchi-
cal clustering procedure as follows. 

1. Compute the similarity between all pairs of clusters, i.e., calculate a similarity 
matrix whose ijth entry gives the similarity between the ith and jth clusters. 

2. Merge the most similar (closest) two clusters. 
3. Update the similarity matrix to reflect the pairwise similarity between the new 

cluster and the original clusters. 
4. Repeat steps 2 and 3 until only a single cluster remains. 

Hard Partitional Clustering: In contrast to hierarchical techniques, hard partitional 
clustering techniques create a one-level (unnested) partitioning of the data points. If k 
is the desired number of clusters, then partitional approaches typically find all k clus-
ters at once. There are a number of partitional techniques, among which the k-means 
algorithm is mostly widely used [1]. K-means is based on the idea that a center point 
can represent a cluster. In particular, for k-means we use the notion of a centroid, 
which is the mean or median point of a group of points.  
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The basic k-means clustering technique is presented below.  

1. Select k points as the initial centroids. 
2. Assign all points to the closest centroid. 
3. Recompute the centroid of each cluster. 
4. Repeat steps 2 and 3 until the centroids don’t change or change little. 

Weighted Graph Partitioning: Weighted graph partitioning is a graph based cluster-
ing method that has the characteristics of both hierarchical and partitional techniques. 
The objects to be clustered can be viewed as a set of vertices V, two points X and Y (or 
vertices V1 and V2) are connected with an undirected edge of positive weight w(X, Y), 
or (X, Y, w(X,Y)) ∈E. The cardinality of the set of edges |E| equals the number of non-
zero similarities between all pairs of samples. A set of edges whose removal partitions 
a graph G=(V, E) into k pairwise disjoint sub-graphs Gi=(Vi, Ei), is called an edge sepa-
rator. Our objective is to find such a separator with a minimum sum of edge weights. 
While striving for the minimum cut objective, the number of objects in each cluster has 
to be kept approximately equal. We use OPOSSUM [4], which produces balanced 
(equal sized) clusters from the similarity matrix using multilevel multi-constraint graph 
partitioning [5]. Balanced clusters are desirable because each cluster represents an 
equally important share of the data. However, some natural classes may not be equal 
size. By using a higher number of clusters we can account for multi-modal classes 
(e.g., XOR-problem) and clusters can be merges at a latter stage. In gene expression 
data clustering, sparsity can be induced by looking only at the v strongest edges or at 
the sub-graph induced by pruning all edges except the v nearest neighbors for each 
vertex. Sparsity makes this approach feasible for large datasets.  

We used two similarity measures for each of the three clustering algorithms de-
scribed above.  

Euclidean: The Minkowski distances Lp(X,Y)=( i|Xi−Yi|
p)1/p are commonly used 

metrics for clustering problems. For p=2 we obtain the Euclidean distance. For 
Euclidean space, we chose to relate distances d and similarities S using S=pow(e−d,2). 
Consequently, we define Euclidean [0,1] normalized similarity as 

2
2||||)( ),( YXE eYXS −−=                                               (3) 

which has important properties that the commonly adopted S(X,Y)=1/(1+|| X−Y||2) lacks. 
Pearson Correlation: In collaborative filtering, correlation is often used to predict 

a feature from a highly similar mentor group of objects whose features are known. 
The [0,1] normalized Pearson correlation is defined as 

)1
||||||||

)()(
(

2

1
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22

)( +
−×−

−⋅−=
YYXX

YYXX
YXS P                        (4) 

where X  denotes the average feature value of X over all dimensions. 

4   Case Studies 

We used two standard data sets to evaluate the effectiveness of PCA, ICA and KICA 
for clustering gene expression.  
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The Leukemia dataset: The Microarray dataset, which is described in [3] and avail-
able at [18], comes from a study of gene expression in two types of acute leukemia: 
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Gene ex-
pression levels were measured using Affymetrix high-density oligonucleotide arrays 
containing 6,817 human genes. The dataset comprise 47 cases of ALL (38 ALL B-cell 
and 9 ALL T-cell) and 25 cases of AML.  

NCBI SAGE data: The SAGE gene expression data we used is based on 52 Hs (hu-
man sapiens) SAGE brain libraries which are publicly available on the NCBI SAGE 
website [6]. These libraries are made of samples from human brain and fall in to four 
categories: Astrocytoma (11 libraries), Ependymoma (9 libraries), Glioblastoma (8 
libraries) and Medulloblastoma (24 libraries). There are 64558 genes in the dataset. 

4.1   Performance Measures 

Mutual Information: While entropy and purity are suitable for measuring a single 
cluster’s quality, they are biased to favor smaller clusters. Consequently, for the over-
all (not cluster-wise) performance evaluation, we use a symmetric measure called 
mutual information. Given g categories (classes) Sh (h∈{1,...,g}, Xi∈ Sh⇔κi=h), we 
use the “true” classification labels κ to evaluate the performance. Let nj

(h) denote the 
number of objects in cluster Cj that are classified to be h as given by κ. Then mutual 
information is defined as: 

)log(
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We use the mutual information criterion because it successfully captures how re-
lated the labeling and categorizations are without a bias towards smaller clusters. 

Precision: Since mutual information is not intuitive, we choose another measure to 
evaluate the clustering performance, i.e. precision. We choose the class label that 
shares with most samples in a cluster as the class label. Then, the precision for each 
cluster is defined as: 

i i j

1
P(A) max(|{X | label(X )=C }|)

| A |
=                             (6) 

In order to avoid the possible bias from small clusters which have very high preci-
sion, the final precision is defined by the weighted sum of the precision for all clus-
ters, as shown in the following equation: 

G
k

k
k=1

|A |
P= P(A )

N
                                                (7) 

4.2   Results and Discussion 

Here are the overall results from our empirical study. 

1. Feature extraction does improve the performance of high dimensional clustering. 
2. The performance of clustering results (i.e., mutual information and precision) on 

the KICA transformed data is higher than PCA, ICA and than on the original data. 

3. In most cases, the first few IC’s do give the highest performance. 
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Fig. 1. Feature extraction results on the SAGE data using K-means as the clustering algorithm 
and Euclidean as the similarity metric 
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Fig. 2. Feature extraction results on the Leukemia dataset and SAGE dataset using three clustering 
algorithms: Graph (weighted graph partitioning), K-mean and Agglom (agglomerative hierarchi-
cal clustering) with two similarity measures: Ucl (Euclidean) and Corr (Pearson Correlation) 
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Fig.1 shows the results on the SAGE data using k-means as the clustering algorithm 
and Euclidean as the similarity metric. The best clustering performance is achieved by 
KICA when the first three components are used. The figure shows that clustering with 
the first few components instead of the original data can help extract the clustering in 
the data. Other clustering algorithms and similarity metrics have similar results on 
both SAGE and Microarray datasets 

Fig. 2 shows the best performance of PCA, ICA, KICA and None-feature-extraction 
on both data sets using three clustering algorithms with two similarity measures. Clus-
tering based on extracted features is better than clustering on the original data. Among 
the three feature extraction methods, KICA is the best. 

5   Conclusions 

This paper presents the use of KICA to perform clustering of gene expression data 
obtained from two major techniques: Microarray and SAGE. A number of different 
clustering algorithms (hierarchical average-link clustering, k-means and weighted 
graph partitioning) and similarity measures (Euclidean and Pearson Correlation) are 
compared. The results (using Mutual Information and Precision as performance meas-
ures) show that KICA based clustering performs better than those clustered by the 
PCA, ICA and the raw data. 
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Abstract. Topographic independent component analysis (TICA) is an
interesting extension of the conventional ICA, which aims at finding a
linear decomposition into approximately independent components with
the dependence between two components is approximated by their prox-
imity in the topographic representation. In this paper we apply the topo-
graphic ICA to gene expression time series data and compare it with the
conventional ICA as well as the independent subspace analysis (ISA).
Empirical study with yeast cell cycle-related data and yeast sporulation
data, shows that TICA is more suitable for gene clustering.

1 Introduction

Microarray technology allows us to measure expression levels of thousands of
genes simultaneously, producing gene expression profiles that are useful in dis-
criminating cancer tissues from healthy ones or in revealing biological func-
tions of certain genes. Successive microarray experiments over time, produces
gene expression time series data. Main issues in these experiments (over time),
are to detect cellular processes underlying regulatory effects, to infer regula-
tory networks, and ultimately to match genes with associated biological
functions.

Linear model-based methods explicitly describe expression levels of genes as
linear functions of common hidden variables which are expected to be related
to distinct biological causes of variations such as regulators of gene expression,
cellular functions, or responses to experimental treatments. Such linear model-
based methods include principal component analysis (PCA) [1], factor analysis
[2] independent component analysis (ICA) [3,4], and independent subspace anal-
ysis (ISA) [5,6]. Standard clustering methods (such as k-means and hierarchical
clustering) assign a gene (involving various biological functions) to one of clus-
ters, however linear model-based methods allow the assignment of such a gene
to null, single, or multiple clusters.

In the context of bioinformatics, Liebermeister [4] showed that expression
modes and their influences, extracted by ICA, could be used to visualize the
samples and genes in lower-dimensional space and a projection to expression
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modes could highlight particular biological functions. In addition, ICA was suc-
cessfully applied to gene clustering [7,8]. ISA [9] is a generalization of ICA where
invariant feature subspace is incorporated with multidimensional ICA, allowing
components in the same subspace to be dependent but requiring independence
between feature subspace. It was shown in [5,6] that ISA is more useful in gene
clustering and gene-gene interaction analysis, compared to ICA.

Topographic independent component analysis (TICA) is a further generaliza-
tion of ISA, which aims at finding a linear decomposition into approximately
independent components with the dependence between two components is ap-
proximated by their proximity in the topographic representation [10]. In other
words, TICA incorporates some nonlinear dependency into a linear model, which
is more suitable for gene expression time series data where there might exist some
dependency between expression modes. In this paper we apply TICA to gene ex-
pression time series data and compare it with the conventional ICA as well as
the independent subspace analysis (ISA). Empirical study with yeast cell cycle-
related data and yeast sporulation data, shows that TICA is more suitable for
gene clustering.

2 Methods: ICA, ISA, TICA

2.1 ICA

ICA is a statistical method that decomposes a multivariate data into a linear
sum of non-orthogonal basis vectors with basis coefficients being statistically
independent. The simplest form of ICA consider the linear generative model
where the data matrix X = [Xij ] (where the element Xij represents the expres-
sion level of gene i associated with the jth sample, i = 1, . . . ,m, j = 1, . . . , N)
is assumed to be generated by

X = SA, (1)

where S ∈ Rm×n is a matrix consisting of latent variables (or encoding variables)
and the row vectors of A ∈ Rn×N are basis vectors corresponding to linear modes
in [4].

Given a matrix X ∈ Rm×N , its row and column vectors are denoted by xi,
i = 1, . . . ,m and by xj , j = 1, . . . , N . Throughout this paper, we assume that
the data matrix X is already whitened. In other words, the row vectors of A are
confined to be orthogonal each other and to be normalized to have unit norm.
Non-orthogonal factor is reflected in a whitening transform. In order to avoid
an abuse of notations, we use the notation X for the whitened data matrix and
n ≤ N represents an intrinsic dimension estimated by PCA.

ICA searches for a parameter matrix W ∈ Rn×n which maximizes the nor-
malized log-likelihood Lica given by

Lica =
1
m

m∑
t=1

n∑
i=1

log p (〈wi,xt〉) + log |detW | , (2)
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where 〈·, ·〉 denotes the inner product between two arguments. The estimated
parameter matrix W leads us to calculate the latent variable matrix by S =
XW T (W T = A−1). For an orthogonal matrix A, the row vectors of W coincide
with the row vectors of A.

2.2 ISA

In contrast to ICA, multidimensional ICA [11] assumes that latent variables
si = 〈wi,x〉 are divided into J number of κ-tuples (where κ represents the di-
mension of subspace) and find a linear decomposition such that J κ-tuples are
independent with allowing the components in the same tuple to be dependent.
For the sake of simplicity, we assume identical dimension, κ for every feature
subspace. ISA [9] incorporates the invariant feature subspace into the multidi-
mensional ICA. To this end, the pooled energy Ej(x) for the jth feature subspace
Fj is defined by

Ej(x) =
∑
i∈Fj

〈wi,x〉2 . (3)

With these definitions, the normalized log-likelihood Lisa of the data given the
ISA model, is given by

Lisa =
1
m

m∑
t=1

J∑
j=1

log p

⎛⎝∑
i∈Fj

〈wi,xt〉2
⎞⎠+ log |det W | , (4)

where p
(∑

i∈Fj
s2
i

)
= pj(si, i ∈ Fj) represents the probability density inside

the jth κ-tuple of si.
The parameter matrix W which maximizes the log-likelihood (4), finds a

linear decomposition such that pooled energies Ej(x) are independent but the
components si ∈ Fj are allowed to be dependent. Learning W can be carried
out by a gradient-ascent method. More details on ISA can be found in [9].

2.3 TICA

TICA is a further generalization of ISA, which aims at finding a linear de-
composition into approximately independent components with the dependence
between two components is approximated by their proximity in the topographic
representation [10].

The following normalized log-likelihood Ltica was considered for TICA,

Ltica =
1
m

m∑
t=1

n∑
j=1

Ψ

(
n∑
i=1

h(i, j) 〈wi,xt〉2
)

+ log |det W | , (5)

where Ψ(·) is a function of local energies that plays a similar role to the log-
density in the conventional ICA and h(i, j) is a neighborhood function. See [10]
for more details.
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3 Experiments and Results

3.1 Datasets

Our experiments were conducted with publicly available yeast cell cycle datasets
[12,13] and yeast sporulation dataset [14] (see Table 1).

Table 1. Four datasets used in our experiments, are summarized. First three datasets
are yeast cell cycle-related data that was also used in [12,13] and the last dataset is
yeast sporulation data [14]. Experiments in yeast cell cycle-related data, are named by
the method used to synchronize yeast cells. The number of open read frames (ORFs)
is the number of time-series that have no missing values in them, time interval is the
interval between measurements, # time points is the number of measurements, and #
of eigenvectors indicated the number of eigenvectors chosen by PCA-L [15].

no experiment # of ORFs time interval # time points # of eigenvectors
1 alpha 4579 7 min 18 6
2 cdc15 5490 10-20 min 24 8
3 cdc28 3167 10 min 17 6
4 sporulation 6118 0.5-3 hr 7 4

3.2 Procedures

Procedures that we took from a preprocessing till statistical significance test,
are summarized below.

1) Preprocessing: The gene expression data matrix X was preprocessed such
that each element is associated with Xij = logRij − logGij where Rij and Gij
represent red and green light intensity, respectively. In practice, gene expression
data usually contain missing values. We removed genes whose profiles have miss-
ing values more than 10%. Then we applied the KNNimput method [16], in order
to fill in missing values. The data matrix was doubly centered such that each
row and each column have zero mean.

2) Data whitening: Given the gene expression data matrix X ∈ Rm×N where
m is the number of genes and N is the number of arrays (time points), we chose
the dimension n using the PCA-L method [15]. Data whitening was carried out
through PCA with n principal eigenvectors.

3) Decomposition by ICA, ISA, and TICA: We applied ICA, ISA, and TICA
algorithms, to whitened data matrix, in order to estimate the parameter matrix
W ∈ Rn×n.

4) Gene clustering: For each column vector si, genes with strong positive and
negative values are grouped, which leads to two clusters related to induced and
repressed genes. We considered standard deviation σ for each column vector as
a threshold. Genes with expression levels higher than c × σ and with expres-
sion levels lower than −c × σ, are grouped as two significant clusters. In our
experiments, we chose c = 1.5.
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5) Statistical significance test: To determine statistical significance of func-
tional category enrichment for each cluster, we used the Gene Ontology (GO)
annotation database [17] where genes were assigned to an associated set of func-
tional categories. We calculated p-values for statistical significance test, using
the hypergeometric distribution that is used to obtain the chance probability
of observing the number of genes from a particular GO category within each
cluster. The p-value is the probability to find at least k genes from a functional
category within a cluster of size c:

p = 1−
k−1∑
i=0

(
f
i

)(
g − f
c− i

)
(
g
c

) , (6)

where f is the total number of genes within a functional category and g is the
total number of genes within the genome [18].

3.3 Results

It was shown in [7] that ICA-based gene clustering method outperformed several
existing methods such as PCA, k-means, and hierarchical clustering. However,
the conventional ICA model do not take into account the temporal dependence of
gene expression time series data. The inherent time dependencies in the data sug-
gest that clustering techniques which reflect those dependencies yield improved
performance. ISA and TICA-based gene clustering methods consider somewhat
dependencies of gene expression patterns. Clustering results with 4 different data
sets (described in Table 1), confirm that TICA and ISA indeed yield better clus-
tering, compared to ICA (see Fig. 1).

For TICA, a square neighborhood function of size 3×3, was used. The intrinsic
dimension n determined by the PCA-L for each data set is summarized in Table
1. For ISA, the number of feature subspace, was chosen as J = 2 for Dataset
1, 3, 4 and J = 4 for Dataset 2. Thus, the dimension of the feature subspace is
κ = 3 for Dataset 1, 3, 4 and κ = 2 for Dataset 2.

For each data set, we determined n latent variables by ICA, ISA, and TICA
and investigate the biological coherence of 2n clusters consisting of genes with
significantly high and low expression levels within independent components. For
each cluster, we calculated p-values and considered only p-values less than 10−5.
Scatter plots of the negative logarithm of p-value, are shown in Fig. 1.

The TICA decomposition of the gene expression data matrix of rank n, leads
to n temporal modes (corresponding to n basis vectors). Each temporal mode
defines two gene clusters that show a strong positive or negative response. These
clusters contain subgroups related to particular biological functions, mostly con-
sistent with the temporal modes. Fig. 2 depicts 3 temporal modes during sporu-
lation. The temporal modes mainly reflect the sporulation behavior (see also
Table 2).
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(b) Dataset 2
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(d) Dataset 3
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(d) Dataset 4
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Fig. 1. Performance comparison of three different ICA methods (ICA, ISA, and TICA)
with yeast cell cycle-related data and yeast sporulation data (see Table 1). Through
Dataset 1-4, TICA has more points above the (anti-diagonal) line representing equal
performance, compared to ICA and ISA, which indicates the enrichment of the TICA-
based clustering.
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Table 2. Temporal modes extracted by TICA from Dataset 4 (sporulation). The modes
were characterized according to functionally related clusters.

Mode Induced functions Repressed functions
1 sporulation, spore wall assembly, alcohol metabolism, carbohydrate

metabolism, oxidoreductase activity
2 ribosome biogenesis and assem-

bly, rRNA processing, rRNA
metabolism, cytosolic ribosome,
ribosome, structural constituent of
ribosome

organic acid metabolism, carboxylic
acid metabolism, amine metabolism

3 sulfur metabolism, cytosolic ribo-
some (sensu Eukarya), ribosome

cell cycle, cell proliferation, nuclear
division, chromosome
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Fig. 2. Temporal modes of clusters computed by TICA are shown for Dataset 4 (sporu-
lation)

4 Conclusions

In this paper we have applied the method of topographic ICA to gene expres-
sion time series data, in order to evaluate its performance in the task of gene
clustering. Empirical comparison to the conventional ICA and the independent
subspace analysis, have shown that the topographic ICA is more suitable in
grouping genes into clusters containing genes associated with similar functions.
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Astrid Pietilä1, Milad El-Segaier2, Ricardo Vigário1, and Erkki Pesonen2

1 Neural Networks Research Centre, Helsinki University of Technology, Finland
Astrid.Pietila@tkk.fi

2 Department of Paediatrics, Division of Paediatric Cardiology,
Lund University Hospital, Sweden

Abstract. A significant percentage of young children present cardiac
murmurs. However, only one percent of them are caused by a congen-
ital heart defect; others are physiological. Auscultation of the heart is
still the primary diagnostic tool for judging the type of cardiac murmur.
An automated system for an initial recording and analysis of the car-
diac sounds could enable the primary care physicians to make the initial
diagnosis and thus decrease the workload of the specialised health care
system.

The first step in any automated murmur classifier is the identification
of different components of cardiac cycle and separation of the murmurs.
Here we propose a new methodological framework to address this issue
from a machine learning perspective, combining Independent Component
Analysis and Denoising Source Separation. We show that such a method
is rather efficient in the separation of cardiac murmurs. The framework
is equally capable of separating heart sounds S1 and S2 and artifacts
such as voices recorded during the measurements.

1 Introduction

Recent advances in data recording technology and digital signal processing have
enabled systematic collection and analysis of heart recordings [1,2,3,4]. In com-
puter analyses, it is crucial that different components of the heart cycle are
identified and some of their most prominent features are accurately timed [5,6].
The computer analysis of acoustic heart signals has appeared to be particularly
sensitive, specific and cost effective in the diagnosing and evaluating congenital
cardiac defects [7,8,9].

The fact that cardiac specialists are able to distinguish between the patho-
logical and physiological murmurs indicates that there are physiological and
hemodynamical principles behind the generation of the different murmur types.
There are special characteristics in the cardiac murmurs that can be used by the
specialists for classifying them into pathological and physiological groups.

The computer analysis has some advantages over the auscultation by special-
ists, though: the findings will be automatically documented, and the computer
has a higher frequency sensitivity than the human ear [10].
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Because of the overlap between heart sounds and systolic murmur, it has been
difficult to identify the beginning and the end of systolic murmurs, let alone some
further details in the overlapping periods. In earlier reports, the early and late
parts of systole have been removed [6,7]. Removing the early parts of systole may
potentially wholly remove some murmurs. This may increase the risk of totally
missing the diagnosis of certain cardiac defects. The murmurs caused by small
muscular ventricular septal defect or mild semilunar valve stenosis occur early
in the systole and are thereby usually overlapped by the first heart sound.

In this study, we suggest a blind source separation (BSS) method for the
identification of cardiac murmurs. This solution is sought as a combination of
Singular Spectrum Analysis (SSA, [11,12]), Independent Component Analysis
(ICA, [13]) and Denoising Source Separation (DSS, [14]). The first two steps
take into account the convolutive nature of the recordings and the intrinsic
statistical characteristics of the sources, while producing a good set of filtering
templates for DSS. In this way, we isolate murmurs from the main cardiac sounds,
conventionally labelled as S1 and S2. This is achieved even in presence of some
overlap between the murmur and S1 or S2, without the need for truncation of
potentially relevant information. We also show that we can extract measuring
artifacts such as doctor or patient voices, captured by the recording apparatus.

2 Data and Methods

2.1 The Data

The cardiac sounds were recorded from nine patients with known congenital
cardiac defects, aged from 3 to 17 years, the median being six years. The length
of the recordings varied between 45 and 50 seconds. A PC-based, six-channel
recording system (cf. [15]) developed at the Helsinki University of Technology
was used. The cardiac sounds were recorded at right parasternal intercostal
spaces 2 and 3, left parasternal intercostal spaces 2, 3 and 4, and at the cardiac
apex, all in a supine position. The signal was amplified by 40 dB in order to
compensate for the signal intensity attenuation, due to the acoustic properties
of the chest wall, such as subcutaneous fat. The amplified signal was digitised
with 16 bits resolution and 11.025 kHz sampling frequency. Customised software
was written for recording and monitoring of the sound signals. The recordings
were supplied to the first author without the information about the type of
cardiac defects they contained. Thus, the processing of the data sets was done
in a completely blind manner.

2.2 Independent Component Analysis and Deconvolution

In BSS, we assume that a set of observations is generated via an instantaneous
linear mixing of underlying source signals, following the standard model: x = As.
There, x is a vector with the observations, s are the underlying source signals,
and A expresses the mixing process. In order to solve the BSS problem, a set of
general assumptions needs to be made, either on the sources or on the mixing.
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ICA, one of the most widely used tools to estimate the BSS solutions, assumes
the sources to be statistically independent. An additional assumption is the non-
Gaussian distribution of those sources. Algorithms performing ICA can be based
on concepts such as negentropy, maximum likelihood, or mutual information (for
further details on the theory, as well as historical background of ICA, cf. [13]).

There is a considerable amount of algorithms capable of performing ICA.
Without a great loss of generality, we have used the FastICA algorithm in this
study, because of its robustness and convergence speed (a MatlabTM package for
FastICA can be found online in [16]). It is a fixed-point algorithm that estimates
the sources by maximizing an approximation of their negentropy.

Although instantaneous ICA has been successfully applied to many biomedical
signal processing problems, its model does not fully apply to the current data.
In fact, because of finite speed of sound and the multiple paths that cardiac
sounds take to reach the microphone array, the mixture process can not be
considered instantaneous, but rather convolutive. To deconvolve the recordings,
we follow the suggestion in [13], and perform instantaneous ICA on the embedded
recordings. With the embedding of the recordings, the number of parameters to
be estimated also increases, and a dimension reduction may be needed. If the
data is not sufficiently informative and the reduction is not performed, the ICA
algorithm may tend to overfit the data [17].

2.3 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) [11,12] consists of the Principal Component
Analysis (PCA) of an augmented data set, containing the original data and
copies of it lagged by a range of time steps. Often this method is proposed for
single channel analysis, but multichannel versions exist.

The eigenvectors resulting from SSA decomposition contain information of
the frequency content of the data. Hence, it is often used to isolate the dynamics
of a given signal into a trend, oscillatory components and noise. Another use is
to build data-driven filters for the signals.

As stated earlier, embedded ICA requires a certain degree of dimension re-
duction in the whitening stage. Aside from the scaling, this whitening is simply
SSA. Reducing the dimension of the whitened data corresponds to the removal
of certain undesired frequencies.

2.4 Denoising Source Separation

Denoising Source Separation [14] is a recently proposed algorithmic framework,
where source separation algorithms are constructed around denoising principles.
In this way, different kinds of prior information about the sources can easily be
added to solve the BSS problem. DSS can be seen as a generalization of ICA: in
ICA, the additional prior information is the non-Gaussianity assumption of the
sources.

The general DSS framework assumes that a pre-whitening stage has been
performed, and comprises of the additional four steps:
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1. Estimate one source:
s = wTX.
X holds information from all channels and samples. s is the source estimate
and w is the estimate of the demixing vector.

2. Denoise the estimate:
s+ = f(s).
f(s) is selected according to the available information about the sources.

3. Optimize the linear mapping to the filtered estimate:
w+ = Xs+T .

4. Normalization step:
wnew = w+

‖w+‖ .

If not fully converged, or further information can be retrieved from the new
estimates, one can return to the first step, and apply further filtering strategies.
More sources can also be estimated by imposing orthogonalization between the
estimated components. Step 3 can also be performed by a simple PCA projection
of the filtered estimates.

The denoising function f(s) reflects the knowledge one has of the sought
sources. When there is clear information about them, one way to perform the
filtering step consists of a simple masking of the sections of interest in the data.
This can be done either in time, frequency or time-frequency domains. If possible,
sections in the data that are completely uninteresting are then removed from the
estimate. In practice, often the best we can do is to pick sections dominated by
the characteristics of interest (i.e. energy or frequency contents). The denoising
procedure will enhance these characteristics, possibly revealing them even in
sections previously dominated by noise. One can then design an even more refined
mask for further search.

2.5 The Methodological Framework

In this study, we have used a two-dimensional masking approach for denoising
in DSS. The mask was designed to be applied in spectrograms, hence aiming at
both time and frequency detection of the signals of interest.

The proposed approach can be described by the following steps:

1. Preprocessing with SSA
The original signals are first embedded. The degree of embedding is 11. It is
chosen based on the maximum time delay between the heart sounds and the
various microphones used. The distances in children’s chests are usually quite
short, hence the low degree of embedding. PCA then projects the signals onto
components that account for different frequency ranges in the data. In order to
partially reduce noise, while rendering the ICA analysis more reliable, the lowest
and highest frequency bins are pruned away with SSA.

2. Mask creation and development
FastICA with a deflation approach and third power nonlinearity is used for
extracting independent components from the SSA-preprosessed data. Due to
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embedding there are now 66 channels in the data. After a dimension reduction,
the amount of independent components will be 24. One of the found components
is chosen to be a model for the S1 mask. It often also presents strong S2 peaks.
The mask is defined by lowpass-filtering the selected component in dct domain.
In mask-based DSS, the function f(s) (see section 2.4) equals element-wise prod-
uct of the mask and the signals.

Before going to the next step, the mask model found by ICA can be further
tuned with a time-based DSS procedure.

3. Mask-based DSS in the time and frequency domains
A mask-based two-dimensional denoising will separate components that have
broad frequency content, and short time span. Hence, S1 and S2 are expected
to be isolated from other components. The other components are then pro-
jected back to the original signal space, now without the contamination from S1
and S2.

Naturally, as we isolate particular components, the remaining signals are free
to show their characteristics and possibly dictate the design of further masks.

Fig. 1. Recording from one patient. All six channels are shown together with their
spectrograms. The S1 and S2 are clearly visible in the first spectrogram as periodic
pairs of vertical bars covering all the frequencies. Murmur is visible in the systole,
between the S1 and S2, present on all six recordings.
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3 Results

We can see in Fig. 1 one example of the recordings. All six channels recorded on
the chest of the patient are depicted together with their spectrograms. Only the
first 9 seconds of the signals are shown so the features are more clearly seen. It is
easy to see the different time and frequency characteristics of the heart sounds
S1 and S2, and of the murmurs. While the former are burst-like, with broad
frequency content, the latter have frequencies typically over 35 Hz, and occupy
a much longer time interval, typically between S1 and S2. In addition, one can
see also occasional overlap between the murmur and either S1 or S2.

Figure 2 shows the results of our signal separation, targeting both S1 and
S2 (Fig. 2a) or the murmurs (Fig. 2b). Note that we are capable of isolating

Fig. 2. Examples of results obtained from the recordings shown in Fig. 1. In a) are
some estimates of heart sounds S1 and S2. In b) are extracted heart murmurs.

Fig. 3. In a) we show two signals from another patient together with their spectro-
grams. In b), the speech is separated from the recordings. The heart sounds S1 and S2
are still somewhat visible, but their relative power was decreased significantly.
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each of these signals with minimal interference from the other. These signals are
better evaluated acoustically, hence we recommend the visit to the internet-based
additional information [18].

Finally, we show in Fig. 3 that we can also identify some artifacts present
in the recordings. In Fig. 3a we show a couple of signals collected from another
patient: in those recordings, clear speech contamination is present. In Fig. 3b
we show the results of our signal separation. Note the clear formant structure
present in the estimate, characteristic of any vowel utterance.

4 Discussion

Cardiac auscultation and murmur characterization is a highly sensitive and cost
effective method in diagnosing congenital heart diseases. An automated analysis
of cardiac recordings and the primary classification of murmurs to physiological
and pathological would lead to a significant saving of specialized health care
resources. We have tackled the first step in the separation of recorded signals
into sounds of interest.

In addition to the ability to isolate sound artifacts such as the doctor and
patient’s voices, we have shown that DSS, with a suitable pre-processing by SSA
and ICA, gives clear estimations of S1, S2 and the murmurs. Our statistical
signal processing method also avoids the need for excluding parts of the signals
from the analysis, in particular when murmurs partially overlap the S1 and S2.
Therefore, we expect to be able to decrease the risk of missing the diagnoses of
small muscular ventricular septal defect and mild semilunar valve stenosis.

Still, our methodological framework includes a manual step in which a re-
searcher chooses the most appropriate S1 model among all components. In the
future, this selection could be done automatically by using statistical measures
for selecting the best S1 among the components that have first been normalized.

To conclude, many of the important murmur characteristics, such as timing
and frequency content, can now be calculated and analyzed. Additional classifi-
cation of the murmurs into pathological vs. physiological or septal vs. valvular
groups should now be addressed. By identifying the features that discriminate
between these sub-classes, one may in the future be able to also use the DSS
framework in this context.
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Abstract. In this study a set of patients undergoing cardiac surgery,
that developed postoperative atrial fibrillation, were selected to verify
if the information available on the atrial surface can be derived with
the only use of body surface recordings. Standard electrocardiograms
were obtained and processed by independent component analysis (ICA)
to extract a unified atrial activity (AA) that takes into account the
atrial contribution from each surface lead. Next, this AA has been com-
pared with internal recordings. Main atrial frequency, cross-correlation
between power spectral densities and spectral coherence have been ob-
tained in this study. Results show that information provided by surface
ICA-estimated AA allows to derive atrial surface reentries in AF pa-
tients, thus improving the noninvasive knowledge of atrial arrhythmias
when internal atrial recordings are unavailable.

1 Introduction

Atrial fibrillation (AF) is the most commonly diagnosed sustained arrhythmia in
clinical practice and affects up to 1% of the general population. Considering its
prevalence with age, this arrhythmia affects up to 15% of the population older
than 70 and has an incidence that doubles with each advancing decade [1]. There
exist evidence that AF is one of the main causes of embolic events that, in 75%
of the cases, develop complications associated with cerebrovascular accidents,
provoking that a patient with AF has twice the risk of death than a healthy
person [2]. On the other hand, AF is one of the most common complication
of cardiothoracic surgery, affecting up to 60% of the patients undergoing this
procedure, especially in the first days after the intervention, thus increasing
morbidity, hospital stay and associated costs [3].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 478–485, 2006.
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AF occurs when the electrical impulses in the atria degenerate into a chaotic
pattern, resulting in an irregular and rapid heartbeat due to the unpredictable
conduction of these impulses from the atria to the ventricles [1]. Reentries are
the main consequence of this chaotic wavefront propagation within the atrial
tissue, involving one or more circuits caused by the continuous spreading of
multiple wavelets wandering throughout the atria [1]. The fractionation of the
wavefronts as they propagate results in self-perpetuating independent wavelets.
On the ECG, AF is described by the replacement of P waves by fibrillatory
waves that vary in size, shape and timing [2].

Independent Component Analysis (ICA) and methods related to blind signal
separation (BSS) have been applied successfully to different biomedical challen-
ges during last years. Regarding the electrocardiogram (ECG) and AF, principal
component analysis (PCA) has been used to extract the atrial activity (AA)
from the 12–lead surface ECG in patients with AF in order to study the effects
of drug administration [4], to measure the degree of local organization of this
arrhythmia [5] and to study linear ablation procedures [6]. With respect to ICA,
it has also been applied for the extraction of AA in AF episodes from the surface
ECG [7,8], the suppression of artifacts from internal epicardial recordings [9] and
the discrimination among supraventricular arrhythmias [10].

To study AF from surface ECG, AA and ventricular activity (VA) have to
be separated. One solution consists of applying ICA-based methods, which are
able to use the multi-lead information provided by the ECG to obtain a unified
AA [7, 8]. On the other hand, the relation between body surface and epicardial
(heart’s surface) atrial waveforms is of clinical interest for non-invasive assess-
ment of electrical remodeling in AF [11]. This phenomenon is related with the
progressive shortening of effective refractory periods, which involves the perpet-
uation of the desease [1]. Considering the aforementioned interest, it has to be
demonstrated clinically if the result obtained via the ICA-based AA estimation
methodology is able to offer the same (or similar) information than that provided
by atrial epicardial recordings. The present work is focused on clinically assess
the similarity and equivalence of both informations and, as a consequence, vali-
date the ICA-based estimation methodology to derive the main epicardial atrial
activation patterns. Obviously, this way to derive the atrial reentries from body
surface recordings has the great advantage of being a noninvasive technique. In
addition, this procedure may serve as the starting point of ECG and ICA-based
studies where internal recordings are unavailable.

2 Selection of Patients and Recording Procedure

In this work 15 patients undergoing cardiac surgery that developed postoperative
AF were selected. For these type of patients it is usual to attach a set of electrodes
on the heart’s surface (epicardial electrodes) during the surgery intervention.
This will allow a very precise and comfortable postoperative monitoring. Two
epicardial electrodes were placed on the right atrium free wall in order to follow
those patients that developed AF after the surgery.
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For each patient, Standard 12 lead ECGs were recorded during several min-
utes. Next, one segment of 8 seconds in length was selected for each patient trying
to obtain the most significant AF characteristics and avoid patient movements
and other disturbances. The sampling frequency was 1kHz and the resolution
of the digital recording system was 16 bits, thus providing a sensibility better
than 0.4μV. The 12 leads were recorded following standard procedures except
for monopolar leads V3 and V4, that were connected to the atrial epicardial elec-
trodes. In this way it was possible to record simultaneously body surface and
epicardial activity with the only use of a standard 12-lead ECG system, which
is the most popular equipment in clinical cardiology.

The fact of discarding V3 and V4 from surface recordings has been motivated
because AA information is mainly present in leads II, aVF and V1 [1] and, in
addition, it is preferred to preserve leads V2 and V5 to record 3-dimensional
information of the ECG [12].

3 Methods

3.1 ICA Estimation of Reentries

Before the application of ICA, the selected segments from each ECG recording
have been normalized in amplitude, notch filtered (fn = 50Hz), to cancel out
powerline interference, and high-pass filtered (fh = 0.7Hz) to suppress base line
wandering. Next, after the ICA stage, the recordings have been low-pass filtered
(fl = 70Hz) to reduce high frequency noise. The sequence of these operations
is justified because preprocessing can have a significant impact on the separa-
tion performance of ICA-based AA estimation methods. Specifically, it has been
proved that low-pass filtering, though itself is a linear operation, involves a data
reduction that decreases the quality of the ICA-based AA estimation [13]. To
solve this problem, the ICA approach has to be applied before the low-pass filter-
ing and then, any other post-ICA processing could be performed over the data.
In addition, the impact of notch and baseline wander filtering is not relevant
and, therefore, can be applied before ICA in order to reduce noise before the
blind separation stage. All the filtering operations have been performed using a
forward–backward procedure to avoid phase distortion of the signals.

Each ECG recording has been processed with the FastICA algorithm, which
is a robust and fast way of solving blind signal separation problems [14]. In
addition, FastICA can operate in a deflation mode, in which the independent
components are estimated one by one. Hence, the algorithm can be stopped as
soon as the AA sources have been extracted, with the consequent benefit in com-
putational complexity. There was not performed any dimensionality reduction
in the whitening process before ICA computation. The use of ICA to estimate
the AA from ECG surface recordings allows to take into account the atrial con-
tribution in every lead to generate a unified signal estimate condensing the AA
information [7]. This procedure of extracting the AA globally can be considered
as an improvement in those situations where 12-lead ECGs are available [4,6,7].
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After the ICA stage, the subgaussian character of AA as opposed to the super-
gaussian behaviour of VA allows its identification using a kurtosis-based source
reordering [7]. In general VA presents high values within the heart beat (QRS
complex) and low values in the rest of the cardiac cycle. Hence the histogram
analysis of VA reveals an impulsive (supergaussian) behaviour with typical kur-
tosis values above 15. On the other hand, the AA of an AF episode has been
modeled as a saw-tooth signal, consisting of a sinusoid with several harmon-
ics, which behaves as a subgaussian random process [15]. As a consequence, the
kurtosis-based reordering arranges first the subgaussian sources, associated to
AA, then the Gaussian ones, associated to noise and artifacts, and finally the
supergaussian sources, corresponding to VA. Therefore, the signals with lower
kurtosis are considered as the AA, taking as the main AA source the signal with
largest spectral power around the main atrial frequency [7].

As an example, Fig. 1 plots surface lead V1 (widely accepted as the lead
with larger atrial contribution [1]), atrial epicardial leads, AAE1 and AAE2, and
the estimated AA via ICA from surface recordings AAS for patient #14 in the
database. As can be observed, the ICA-based estimation is able to extract the
main reentry patterns observed in epicardial recordings.

After the ICA stage it was always possible to identify the AA source among
the whole set of separated sources. The identification was carried out following
the aforementioned steps based on reordering the sources from lower to higher
kurtosis, obtaining and analyzing the power spectral density of the sources with
subgaussian kurtosis and, finally, visually inspecting the fibrillatory waves in the
original ECG against the estimated AA source obtained by the ICA separation.

AAS

1AAE

2AAE

0 1 2 3 4 5 6 7 8
time (seconds)

V1

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Fig. 1. Comparison between surface, epicardial and estimated atrial activities. Record-
ing V1 comes from surface lead V1, AAE1 and AAE2 are from epicardial electrodes
and AAS is the ICA-based AA estimation from body surface electrodes.
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3.2 Frequency Domain Assessment

During last years it has been usual to perform AF studies making use of the AA
power spectral density to analyze the main atrial frequency and its variations
with time or with drug administration [2,4,15]. This frequency is identified with
the fundamental harmonic of the arial spectrum.

Through the study of the fibrillatory frequency it has been extracted relevant
information about the success of electric cardioversion for AF treatment [16].
Moreover, atrial fibrillatory frequency correlates well with intraatrial cycle
length, a parameter of primary importance in AF domestication and response
to therapy [11]. Because of that, the comparison and estimation parameters de-
fined in this study are focused in the frequency domain. Therefore, after the ICA
stage in which the full signal bandwidth is employed, the AA frequency band is
limited from 0 to 20Hz, which is a wide enough margin to include all the atrial
spectral information [2, 4, 15].

In order to compare surface and epicardial signals, the power spectral den-
sity (PSD) has been computed using Welch–WOSA modified periodogram, with
4096-point Hamming windowing, 50% overlapping and 8192-point FFTs. As a
comparison reinforcement, the atrial frequency associated to the main atrial
peak has been calculated. Fig. 2 shows an example, obtained for patient #14, of
epicardial (PEE1 and PEE2) and ICA-estimated surface spectra (PSS). Taking
as a starting point the PSD, additional spectral parameters have been defined.
The spectral cross-correlation, |RPSSPEE

|, is computed as

|RPSSPEE
| =
∣∣∣∣ CPSSPEE

σPSS
σPSS

∣∣∣∣ (1)

where CPSSPEE
is the covariance of PSS and PEE , σPSS

and σPEE
being the

standard deviation of the PSDs. On the other hand, the spectral coherence
between epicardial and surface recordings SPSSPEE

has been obtained as

SPSSPEE
=
|PSE |2
PSSPEE

(2)

where PSE is the cross PSD, in other words, the averaged product between
surface (PS) and epicardial (PE) spectra, respectively. Because the result of
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Fig. 2. Normalized power spectral density (patient #14) for atrial epicardial activities,
PEE1 and PEE2, and the body surface ICA-estimated AA, PSS . It is also indicated the
main atrial frequency for each case.
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spectral coherence is a vector, with the same number of points than the original
PSDs involved in its computation, it has been defined an index to evaluate the
spectral similarity. This index has been obtained as the average value of the
spectral coherence vector in the AA frequency band of interest (0–20Hz). For
simplicity, this index will also be called spectral coherence from now on.

4 Results and Discussion

The exposed methodology has been applied to the patients’ database. After
the ICA stage, atrial and ventricular components were separated and identified
satisfactory. For each patient, main atrial frequencies have been obtained both
from epicardial and ICA-based recordings. In all the cases, a high degree of
similarity has been observed between pairs of frequencies. The obtained set of
atrial frequencies had normal values, 5.45±1.27Hz (range 3.41–7.69Hz) and the
difference between epicardial and surface frequencies is negligible, the average
result being 0.026±0.039Hz (range 0–0.125Hz).

To condense comfortably all the information computed for the analyzed cases,
Fig. 3 plots a normalized diagram illustrating the spectral cross-correlation re-
sults (RPSSPEE

) and mean spectral coherence (S̄PSSPEE
) between epicardial and

surface recordings. The average value of the spectral cross-correlation has been
85.34±11.08% (range 60.57–97.31%) and for the spectral coherence 70.10±9.46%
(range 54.92–83.95%). As can be observed in both indexes, results indicate a
great similarity between epicardial and ICA-surface information.

With respect to the ICA-estimated AA waveform, it has been observed its
regularity and the maintenance of the fundamental period associated with the
dominant atrial reentry. Of course, this affirmation can be made thanks to the
parallel observation of the epicardial recordings. However, some specifical com-
ments have to be made with respect to a concrete epicardial recording.

Fig. 3. Percentage of spectral cross-correlation coefficient (square) and the average
spectral coherence (triangle) for the 15 patients under study
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Firstly, an epicardial recording comes from an electrode attached directly to
the atrial tissue, and will provide the AA present in that point. Therefore, if a
concrete reentry is unable to reach the point, that AA could be hidden in the
recording provided by the epicardial lead. In other cases, that reentry could be
masked by other large amplitude reentries present at the same place and time
instant. On the other hand, it is also possible the existence of a local reentry very
close to the place where the electrode has been attached to. In this case, local
reentry will be registered by the electrode but, at the same time, other epicardial
electrodes attached to different places could miss or mask this activity because
its locality. This fact can also be applicable to the surface ECG.

As a consequence, the signal provided by an epicardial electrode is strongly
dependent both on its placement and on the concrete atrial depolarization pat-
tern of that patient and recording instant. Therefore, epicardial signal variability
could be significative, as has been shown in Fig. 1. Anyway, the most usual sit-
uation will provoke the dominant reentries to be manifested in all epicardial
leads. In addition, each lead will present its local singularities. This fact is the
explanation of the differences between epicardial waveforms in Fig. 1 and spectra
in Fig. 2. Moreover, in this latter case, the signals (AAE1 and AAE2) present
some ventricular contamination and, hence, it is normal to observe additional
frequency components than that present in the surface ICA-based AA estima-
tion (AAS). Finally, in all the spectra of Fig. 2 it is possible to observe the
existence of a main reentry, with an atrial frequency of 5.66Hz, clearly showing
the maintenance of the fundamental regularity associated to that reentry.

5 Conclusions

The present study has assessed that atrial activity estimation, using body surface
recordings and ICA techniques, is a valid and useful tool to obtain information
very close to that provided by epicardial recordings, thus allowing to study atrial
activation patterns in AF patients. In addition, the great advantage of ICA to
estimate AA is the consideration of multi-lead information and its unification to
provide a single AA waveform. This information can be cardiologically relevant
in pharmacologic and surgical treatment of AF. Considering the satisfactory
results obtained, these techniques could become a useful and valuable tool for
atrial activation pattern analysis and reentry study in patients with AF where
epicardial recordings are unavailable or where their obtention needs an expensive
and uncomfortable procedure.
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Abstract. Blind Source Separation (BSS) has been probed as one of the
most effective techniques for atrial activity (AA) extraction in supraven-
tricular tachyarrhythmia episodes like atrial fibrillation (AF). In these
situations, a wavelet transform denoising stage can improve the extrac-
tion quality with low computational cost. Each ECG lead is processed
to obtain its representation in the wavelet domain where the BSS sys-
tems improve their performance. The comparison of spectral parame-
ters (main peak and power spectral density concentration) and statistics
values (kurtosis) proves that the sparse decomposition in the wavelet
domain of the observed mixtures reduces Gaussian contamination of
these signals, speeds up the convergence and increase the quality of
the extracted signal. The easy and fast implementation, robustness and
efficiency are some of the main advantages of this technique making pos-
sible the application in real time systems as a support tool to clinical
diagnostics.

1 Introduction

Atrial fibrillation (AF) is one of the most common arrhythmias and causes the
highest number of admissions in casualty department of hospitals.

The prevalence of this supraventricular tachyarrhythmia is estimated at 0.4%
of the general population and the median age of the AF patients is 75 years.
The incidence increases with the age [1] and is slightly more common in women.
About the 1% of the people above 60 years suffer from AF. These numbers raise
by 6% in people above 80. AF is relatively rare in the people below 20 years.
Symptoms associated with AF depend on several factors but most patients expe-
rience palpitations, chest pain, lightheadedness, presyncopes, dizziness, fatigue
and dyspnea. Clearly, this arrhythmia may directly impact the quality of life.
Nowadays, the treatment and analysis of AF is not completely satisfactory, and
the high levels of morbidity, mortality and associated costs give rise to many
scientific works and publications about this theme [2].
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Blind Source Separation (BSS) has been probed as one of the most effec-
tive techniques for the atrial activity (AA) extraction in supraventricular tach-
yarrhythmia episodes like atrial fibrillation (AF) [3], [4]. Nevertheless, a reduced
number of available reference signals (leads) and the presence of noise can de-
crease the efficiency of these methods. Low-pass filtering as a possibility to re-
move noise can reduce the information in the data, since high-frequency features
of the data are lost. Hence, this information reduction may involve a reduction
of independence. In addition, low-pass filtering performs some kind of averaging
over the data, and sums tend to increase Gaussianity, thus, decreasing perfor-
mance [5]. In recent works, a denoising wavelet stage has been proved as a
very efficient preprocessing technique which improves the performance of cer-
tain BSS applications [6], [7], [8]. The definition of the observed mixtures in
the wavelet domain reduces the Gaussian contamination of these signals and
speeds up the convergence. This paper shows how the use of the wavelet domain
can give higher quality AA extraction indexes than the isolated BSS systems
when 12 leads ECG registers are used. The comparison of the spectral concen-
tration, main peak and kurtosis values justify the convenience of the proposed
algorithm.

1.1 Wavelet Transform Principles

Wavelet analysis is used to transform the signal under investigation into another
representation that presents the signal information in a more useful form, joining
spectral and temporal analysis [9].

Mathematically speaking, the Wavelet Transform (WT) is a convolution of the
wavelet function ψa,b (a dilated and displaced version of the ”mother wavelet”
ψ, where the parameters a and b indicate scale and translation, respectively)
with the signal x(t).

The discrete wavelet transform (DWT) results from discretizing scale and
translation parameters. The definition of parameters as a = 2j and b = k · 2j
leads to the dyadic DWT (DyWT), expressed as (1).

c(j, k) =
∑
n∈Z

[x[n]ψj,k[n]]

ψj,k(n) = 2−j/2ψ
[
2−jn− k

]
(1)

a = 2j b = k2j (j, k) ∈ Z2

The implementation of the DyWT is very easy and can be done with a hi-
erarchical structure decomposition. It consists of a filter cascade banks which
provide the detail and approximation coefficients in several steps of filtering and
downsampling. The decomposition is obtained by iterating an M-channel filter
bank on its lowpass output. The cut-off and pass bands of the resulting filters
in every family of wavelet sets the final resolution quality of the system. The
possibility of reconstructing the original signal from some of the obtained basic
blocks without loss of information is other important advantage of this discrete
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transforms. This mathematical synthesis is called the Inverse Discrete Wavelet
Transform (IDWT) and has the next representation in the discrete domain:

x[n] =
∑
j∈Z

∑
k∈Z

c(j, k)ψj,k[n] (2)

2 Database

The signals are created from recordings of an own database of 12 leads ECG, with
signals obtained at the Cardiac Electrophysiology Laboratory of the University
Clinical Hospital in Valencia and diagnosed by cardiologists. 35 real AF registers
of 22 patients have been selected. All the registers have been pre-processed and
normalized to remove possible fluctuations of the base line, interferences, etc. The
sampling frequency was 1kHz and the ECG selected segments were 6 seconds in
length.

3 Method

The simplest model of BSS takes on the presence of n statistically independent
signals and n observed linear and instantaneous mixtures. In this work, the inde-
pendence and nongaussianity of the atria and ventricles as signal sources is taken
on. Recent works have studied the propagation mechanisms and uncoordinated
atrial activation in AF to demonstrate this assumption [11].

The BSS model in its more compact form is given by

x(t) = A · s(t) (3)

ŝ(t) = y(t) = B · x(t) (4)

where ŝ(t) is the vector of estimated sources and B is the separation matrix
that recovers the independent sources. Taking the classic definition of the BSS
problem as a starting point, Equation (3), the wavelet coefficients of each signal
can be expressed as:

cx(j, k) =
∑

x(t)ψj,k(t) (5)

cs(j, k) =
∑

s(t)ψj,k(t) (6)

where cx and cs represent the wavelet coefficient vectors of the mixtures and the
original sources respectively. Using a de-noising stage, some of these coefficients
become zero and the decomposition can be considered as optimal if the sparse
representability have to be exploited [12], [13], [14]. After that, a new formulation
of the blind separation problem can be done:

cx(j, k) = A · cs(j, k) (7)



Wavelet Denoising as Preprocessing Stage to Improve ICA Performance 489

k=13.95

k=101.69

(b)(a)

(d)( c)

Fig. 1. Example of AF recording, histogram and kurtosis value in time domain (a-b)
and wavelet domain (c-d). The wavelet domain decomposition presents statistics of the
source signals less Gaussian than in the time domain.

These new mixtures present higher kurtosis values (see Figure 1) becoming less
Gaussian [6]. According with (4), in the wavelet domain, the estimated sources
are expressed by:

ĉs(j, k) = ys(j, k) = B · cx(j, k) (8)

Finally, the original sources are obtained with the inverse wavelet transform of
the vectors defined by (8):

s(t) =
∑
j

∑
k

cs(j, k)ψj,k(t) (9)

Several wavelet functions (daubechies, symlets, splines) have been tested but
the results are similar in all cases. The function biorthogonal 4.4 and five levels
of decomposition are the wavelet family and the configuration with the best
performance respectively. The FastICA algorithm was preferred to perform the
BSS process, due to its fast convergence and robust performance, previously
demonstrated in a variety of different applications [15], [16].

Spectral analysis has been used to identify the AA between the obtained
signals. The signal with a main frequency peak in the band of 5-8 Hz and higher
spectral concentration in this range -as it is usual in an AF episode- is identified
as AA.

4 Results

Both methods have been applied to the selected registers and the final results
with their mean value and standard deviation have been presented in Table 1.
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Spectral parameters have been considered, for example, principal peak (fp) and
spectral energy concentration in the band of 5-8 Hz (named as SCBP). The
high energy concentration in this band in respect of the total energy is typ-
ical in AF episodes that present a dominant peak in this range. An increase
of this concentration involves a greater purity of the extracted AA and can be
considered as a quality extraction. The Welch’s averaged, modified periodogram
method (50% overlap, Hamming window, NFFT=8192) has been used to esti-
mate the power spectral density (PSD). On the other hand, kurtosis is a measure
of non-Gaussianity of a signal and can be used to identify the convenience of the
transformation to the wavelet domain in this work.

As can be observed in Table 1, there is a clare improvement in the quality
of the extracted AA. The obtained main peak values denote the high remanent
presence of ventricular activity in the case of the isolated ICA method. The
increase of the spectral concentration levels suggests the greater efficiency of the
Wavelet-ICA algorithm.

The calculated kurtosis values from the wavelet coefficients in each lead ex-
plain the better convergence and prove the advisability of the proposed method,
see Table 2. In this case, the statistics of the sources become clearly less Gaus-
sian (greater kurtosis) than they are in the time domain. In 9 out of the 35
considered registers the isolated ICA method has presented convergence

Table 1. Spectral Parameters; main peak and spectral energy concentration in the
band 5-8 Hz (mean value and standard deviation)

FastICA Wavelet+FastICA
Fp(Hz) 4.89±0.13 6.52±0.06
SCBP 0.21±0.08 0.36±0.10

Table 2. Kurtosis values of the mixtures in the wavelet and time domain (mean value
and standard deviation)

I II III
Wavelet Domain 214.3±12.3 406.1±15.1 379.2±9.3
Time Domain 19.9±0.92 12.7±1.10 12.7±1.32

aVR aVL AVF
Wavelet Domain 421.8±19.3 344.2±11.2 393.2±16.4
Time Domain 14.3±0.76 12.4±0.10 7.6±2.52

V1 V2 V3
Wavelet Domain 178.7±9.93 182.8±10.2 339.6±9.3
Time Domain 7.6±1.00 8.9±2.23 13.7±0.62

V4 V5 V6
Wavelet Domain 429.4±11.2 500.8±10.9 400.4±12.5
Time Domain 17.7±1.09 18.1±1.99 14.9±2.65
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Samples Samples

Wavelet-ICA ICA

Fig. 2. Obtained sources with Wavelet-ICA and ICA method
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Original Lead V1
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Fig. 3. Wave form comparison between extracted AA and original f waves
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Fig. 4. Spectral comparison of extracted AA PSD

problems and high computational load (up to two minutes with a PC Pentium IV
3 GHz, 512 Mb RAM), whereas the Wavelet-ICA algorithm has presented these
problems in only one register with computational time lower than 12 seconds in
all cases.

Figure 2 shows the obtained signals using the isolated ICA method and the
Wavelet-ICA method, respectively. Strictly speaking, movements of the heart,
such as contraction of the atria and ventricles, could violate the ICA assumption
of spatial stationarity of the physical sources but, in general, the authors consider
that these possible variations do not significantly affect the BSS instantaneous
linear mixing model for AF episodes [3]. This consideration is reinforced by the
fact that results providing the estimation of the main atrial frequency of AA
using this ICA-based BSS technique are the same as those obtained through the
application of other accepted AA extraction techniques [11].

In Figure 3, the comparison between the wave forms in leads I and V1 and
the extracted AA with the analysed methods is presented. The correllation in
the f waves segments is clearly high. Figure 4 demonstrates the increase of the
quality extraction using Wavelet-ICA according with the obtained PSD of each
extracted AA in a selected register.

5 Conclusions

As the low pass filter used a preprocessing stage can impact the performance of
ICA methods in the case of AA extraction from AF episodes, the Wavelet pre-
processing method is presented as an alternative to these traditional de-noising
systems. Some additional examples of the applicability of this method can be
the fetal ECG extraction [6], analysis of supraventricular arrhythmias in Holter
registers [7], etc.

The Gaussian feature reduction of the mixtures in the wavelet domain im-
proves the convergence of the ICA algorithm. This increase of the computational
speed makes the proposed method suitable for real time applications.

The positive results reported in this paper show that the Wavelet-ICA pro-
cess presents evident advantages in contrast with the isolated ICA systems; less
processing time and convergence problems and increase of quality AA extraction.
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Therefore, the proposed method could be a powerful clinical diagnostics tool as
a previous stage for early detection and AF classification algorithms.
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Abstract. Atrial Fibrillation (AF) is one of the atrial cardiac arryth-
mias with highest prevalence in the elderly. In order to use the elec-
trocardiogram (ECG) as a noninvasive tool for AF analysis, we need to
separate the atrial activity (AA) from other cardioelectric signals. In this
matter, Blind Source Separation (BSS) techniques are able to perform a
multi-lead analysis of the ECG with the aim to obtain a set of indepen-
dent sources where the AA is included. Two different assumptions on the
mixing model in the human body can be done. Firstly, the instantaneous
mixing model can be assumed in spite of the inaccuracy of this approxi-
mation. Secondly, the convolutive model is a more realistic model where
weighted and delayed contributions in the generation of the electrocar-
diogram signals are considered. In this paper, a comparison between the
performance of both models in the extraction of the AA in AF episodes
is developed by analyzing the reults of five distinct BSS algorithms.

1 Introduction

Atrial fibrillation (AF) is one of the most commonly encountered atrial arrhyth-
mias in routine clinical practice [1]. The analysis of the electrocardiogram (ECG)
is the most extended noninvasive technique in medical treatment of AF. The ex-
haustive analysis of the AF requires previously to separate the atrial activity
(AA) component from other cardioelectric signals like the ventricular activity
(VA). The early extraction techniques worked in time domain and obtained the
atrial activity by the substraction of the average QRS complex and the average
T wave.1 This family of techniques, widely used in medical applications, are only
applied to the ECG lead where atrial fibrillation is more easily distinguishable,

1 The tracing recorded from the electrical activity of the heart forms a series of waves
and complexes that are labelled in alphabetical order. The depolarization of the
ventricles produces the QRS complex and their repolarization causes the T wave.
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e.g. V1, and they do not make use of the information included in every lead. On
the contrary, Blind Source Separation (BSS) techniques make a multi-lead sta-
tistical analysis with the aim to obtain a set of independent sources that include
a unified AA signal [2].

The applicability of BSS techniques for AA estimation in AF episodes is justi-
fied in [3]. Firstly, in AF episodes the bioelectric sources of the heart generating
AA and VA are proved to be uncoupled and statistically independent, given the
uncoordinated operation of AA and VA during AF episodes. Secondly, it is also
proved that both activities present a non-Gaussian behavior (AA has a subgau-
ssian probability distribution whereas the VA is clearly supergaussian). Finally,
it is demonstrated that ECG recordings are linear mixtures of bioelectric signals
that depend on the position of the ECG electrodes. Therefore, the extraction of
the AF from the ECG can be tackled as a BSS problem where the mixture of
AA, VA, noise and some other bioelectric signals produces the registered ECG
signals of every lead [3], as depicted in Fig. 1. The standard 12-leads ECG con-
sists of three limb leads (I, II and III), three augmented limb leads (aVR, aVL
and aVF ) and six precordial leads (from V1 to V6).

Two different mixing models of the bioelectric signals can be considered under
the assumption of linearity. On the one hand, in some BSS algorithms the ins-
tantaneous mixture of the cardioelectric sources in the human body is assumed.
For instance, the FastICA algorithm [4], which has already been applied to the
extraction of the AA from ECGs of AF episodes, is based on the instantaneous
mixing model. Therefore, FastICA assumes that no propagation delay of the car-
dioelectric signals exists in the human body. The error introduced by FastICA
as a consequence of assuming instantaneous mixtures resulted to be negligible
and quite good results in the extraction of the AA have been obtained [3]. On
the other hand, in convolutive BSS (CBBS) algorithms the more realistic case of
weighted and, besides, delayed contributions in the generation of the observed
signals is considered. CBSS algorithms have not been applied yet to the ex-
traction of the AA. The main objective of this essay is to test the performance
of convolutive BSS algorithms in the extraction of atrial activity. Therefore, a
comparison between the performance of FastICA and CBSS algortihms in the
extraction of the AA in AF episodes is developed in this work.

(VA)

(AA)

(Noise)

Linear
Mixture

(A matrix)

(I)

(V6)

Fig. 1. Generation of the standard 12-leads ECG as the linear mixture of atrial activity
(AA), ventricular activity (VA), and other independent cardioelectric sources
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2 Tested Algorithms

Four CBSS algorithms have been selected as those that optimize the separation
of audio sources in reverberant spaces (i.e. convolutive mixtures) [5], and they
are briefly described in the following subsections.

2.1 MBLMS

Lambert [6] has obtained a cost function for the LMS (Least-Mean Square)
algorithm that can be extended to the multiple inputs case:

Ψ = trace E
{
(y − g((s))(y − g(s)H

}
(1)

The algorithm that use the previous cost function is called the Multi-channel
Blind Least-Mean Square (MBLMS) algorithm. With the cost function described
above, the update of the adaptative filter weights can be expressed as a func-
tion that only depends on the observed signals and the pdf of the original
sources [6].

2.2 TDD

Ikeda and Murata[7] proposed a BSS algorithm that extends the application
of the TDD (Time-Delayed Decorrelation) algorithm to the case of convolu-
tive mixtures of signals. This algorithm uses the windowed-Fourier transform
(i.e. the spectrogram) to transform mixed source signals into the time-frequency
domain. Then, the TDD algorithm is applied to the signals of each frequency
independently.

One main difficulty of BSS algorithms that work in time-frequency domain
is the ambiguities of amplitude and permutation. In [7] this is solved by using
the inverse of the decorrelating matrices and the develop of signals. On one
the hand, the problem of amplitude ambiguity is solved by putting back the
separated independent components to the sensor input with the inverse matrices
B(w). On the other hand, the problem of permutation is solved by the similarity
among envelopes. As a result, the algorithm proposed by Ikeda and Murata
obtains separated spectrograms Si(f, t) which inverse Fourier transforms yield
the estimated original time-domain signal sources si(t)[7].

2.3 Infomax

Asano et al [8] proposed to combine the Infomax principle of maximizing the out-
put entropy with two array signal processing techniques to enhance the perfor-
mance of blind separation. The first technique is based on the subspace method
for reducing the effect of reflections and noise. The second technique is a new
method for solving the permutation in the frequency domain. In this method
the coherency of the mixing matrix in adjacent frequencies is utilized, which is
termed Inter-Frequency Coherency (IFC). We will henceforth refer this combi-
nation of techniques as the Infomax algorithm [8].
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2.4 CoBliSS

Schobben and Sommen worked in the BSS problem applied to the separation of
multiple speakers in a room using multiple microphones [9]. They presented a
new BSS algorithm that was entirely based on Second Order Statistics (SOS),
which was entitled ’Convolutive Blind Signal Separation (CoBliSS)’ algorithm.
In this algorithm, the optimization is done by minimizing the cross-correlation
among the outputs of the multichannel separating filter. This criterion is trans-
formed to the frequency domain in order to achieve a computationally inex-
pensive algorithm with fast convergence. The filter coefficients are calculated in
the frequency domain such that the cross-correlation become equal to zero. An
iterative method is proposed in which the weights are adjusted iteratively in
alternately one and the other domain [9].

3 Notation

The performance of the algorithms is measured by using two parameters. On the
one hand, SIRAA measures the performance as an improvement of a signal to in-
terference ratio. Considering xi as the observation with the highest contribution
of AA, the signal to interference ratio of xi is defined as [5]:

SIRoAA = 10 log
E{(hij ∗ sj)2}

E{(
N∑
k=1

k �=j

hik ∗ sk)2}
(2)

where hij are the FIR filters of the A mixing matrix. In the same way, considering
that ŝp is the estimated source with the highest contribution of AA, the signal
to interference ratio of ŝp is [5]:

SIReAA = 10 log
E{(gpj ∗ sj)2}

E{(
N∑
k=1

k �=p

gpk ∗ sk)2}
(3)

where gpk are the FIR filters of the G global system matrix so that G = W ∗A,
and G is the estimated separation matrix. Finally, by using logarithmic units
the SIRAA is defined as:

SIRAA = SIReAA − SIRoAA (4)

On the other hand, we also measure the performance of the extraction as a
cross-correlation between the original AA and the estimated AA [4]:

RAA =
E{sAA · ŝAA}√
E{s2

AA}E{ŝ2
AA}

(5)

where sAA and ŝAA are the original and the estimated AA respectively.
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4 ECG Database

The calculation of the parameters defined in the previous section needs the
original sources and the mixing matrix to be known. Given that all of them are
unknown in the case of real ECGs, we have established two environments of
synthesized AF ECGs, so that the measure parameters can be calculated.

In the first environment, 15 pairs of separated AA and VA recordings of AF
ECG episodes are convolutively mixed by aleatory A mixing matrices in which
FIR filters length has been changed from 1 to 8. All recordings are 12 seconds
long and were obtained at a sampling rate (fs) of 1 kHz. The length of the filters
of the W separation matrix is an adjustable parameter in the CBSS algorithms.
It has been changed in the tests from 2 to 32. The value of two is the lowest value
allowed by all the tested CBSS algorithms. The value of 32 has been chosen so
that the controlled maximum length of the gij filters is lower than 40 (40 ms in
duration), accordingly to the aforementioned maximum value of Nm[6].

In the second environment, AF 12-leads ECG are synthesized by adding AA
and VA of every lead, previously separated from real AF ECGs by using QRST
cancellation:

x = xAA + xAV (6)

where xAA is a matrix that contains the 12 atrial signals, xAV is a matrix that
contains the 12 corresponding ventricular signals and x is the 12 leads synthe-
sized ECG. All resulting ECG recordings last for 8 seconds and are sampled at
1 KHz. This second environment comprises 20 synthesized ECGs. The maximum
value of Ns has been fixed to 128 by considering 128 ms as a reasonable maximum
propagation delay for all the bioelectric signals in the human body [10].

5 Results

In Fig. 2 mean values of SIRAA obtained in the first environment are presented
for different lengths of the mixing matrix filters (Nm). Four different values
of Nm (1, 2, 4 and 8) have been tested. This figure shows the results of the
four aforementioned CBSS algorithms. Also the results obtained by FastICA are
included . This was made to compare ICA and CBSS methods. We can appreciate
that FastICA SIRAA mean values are higher than MBLMS SIRAA mean values
for any value of Nm. More specifically, maximum FastICA SIRAA mean values
are around 40 dB whereas MBLMS SIRAA mean values are always lower than
5 dB. In other words, the application of MBLMS to mixtures of AA an VA does
not yield any source signal separation. On the contrary, the values obtained by
TDD are much better than values obtained by MBLMS. In fact, SIRAA mean
values of FastICA are only around 10 dB higher than TDD SIRAA mean values
for instantaneous mixtures (Nm = 1). Furthermore, both values decrease and
tend to be equal when Nm increases. Indeed, TDD SIRAA exceeds FastICA
SIRAA when Nm equals to 8. Infomax algorithm presents a similar behavior
to TDD, that is, both SIRAA and RAA are quite lower than the respective
FastICA values for instantaneous mixtures and much more similar when Nm
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Fig. 2. First environment SIRAA and RAA mean values for four lengths of the mixing
matrix FIR filters (Nm). Four CBSS algorithms and FastICA results are included.

increases. Finally, CoBliSS SIRAA mean values are around two decades lower
than FastICA SIRAA mean values, that is, the performance in the extraction of
the AA is much better than the performance obtained by MBLMS. However, it
does not reach the performance obtained by TDD and Infomax.

Also in Fig. 2 we can observe the same tendencies of the quality of the extrac-
tion in terms of the RAA parameter. We can see that FastICA RAA values are
always near to one (i.e. the original and estimated AA are very similar). RAA
of CBSS algorithms is always lower than RAA of FastICA. TDD and Ifomax are
the CBSS algorithms which RAA mean values are nearest to one, and they tend
to the FastICA RAA values when Nm increases.

Fig. 3 illustrates the influence of the length of the separation matrix filters
(Ns) in the quality of the extraction. Five different cases of Ns have been tested
(2, 4, 8, 16 and 32). The mean values of FastICA are included only as a reference
constant value, given that FastICA does not match the convolutive model and,
therefore, the filters length parameter cannot be chosen. In the four considered
CBSS algorithms, SIRAA and RAA decreases when Ns increases and they are
always lower than the respective FastICA parameters. TDD and Infomax are
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Fig. 3. First environment SIRAA and RAA mean values for five lengths of the separa-
tion matrix FIR filters (Ns). Four CBSS algorithms and FastICA are included.
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Fig. 4. Second environment mean values of SIRAA and RAA for seven lengths of the
separation matrix FIR filters (Ns). Infomax algorithm and FastICA results are included.

the CBSS algorithms that obtain the highest values of SIRAA and RAA for any
value of Ns.

Second environment performance was only tested for the Infomax algorithm,
given that this is the only analyzed CBSS algorithm that simultaneously offers
good AA extraction quality in the first environment and the possibility of being
successfully adapted to the 12 leads ECG case. We summarize the results of
the second environment in Fig. 4. We consider seven different lengths of the
separation matrix FIR filters (Ns = 2, 4, 8, 16, 32, 64 and 128). Also here
FastICA mean values are included only as a reference constant value. It can be
seen that FastICA SIRAA mean value is several decibels greater than Infomax
SIRAA mean values. Furthermore, FastICA correlation is nearer to one than
Infomax correlation. In other words, the AA estimated by FastICA is more
similar to the original AA than the AA estimated by Infomax.

6 Conclusions

The differences between performances of the tested CBSS algorithms reveal that
not all of them are useful to extract AA from ECGs of AF episodes. Only TDD and
Infomax obtained acceptable results in comparison with FastICA. With regard to
the Nm parameter in the first environment, FastICA always exceeds the results
obtained by the analyzed CBSS algorithms in the case of instantaneous mixtures
(Nm = 1). Hence the instantaneous linear mixing model can be considered as
an adequate model for the bioelectric mixtures in the human body. Obviously,
the instantaneous linear mixing model is the particular case of the convolutive
mixing model when Nm is equal to one. Consequently, CBSS algorithms need an
improvement to reach at least the performance of ICA algorithms in the instan-
taneous case. By contrast, TDD and Infomax tend to reach FastICA results when
Nm increases. Therefore, in the case of convolutive mixtures, these two CBSS al-
gorithms are feasible to be used in the extraction of the AA in AF episodes.

In relation to Ns in the first environment, the optimal values of SIRAA and
RAA are obtained for the shortest length of the separation matrix FIR filters
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(Ns = 2) in all the CBSS algorithms. TDD and Infomax are the CBSS algorithms
that are least influenced by the value of Ns. This means that these are the
algorithms that best adapt their filters coefficients in any case of convolutive
mixtures.

To sum up, Infomax and TDD are the CBSS algorithms that obtain the best
quality in the AA extraction. Furthermore, the Infomax algorithm has been
easily adapted to the standard 12-leads ECG of the second environment. An
in-depth analysis of the Infomax algorithm and its adjustment to the special
features of ECG signals are possible subjects for future research.
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Abstract. Biomedical signal processing is arguably the most success-
ful application of independent component analysis (ICA) to real world
data. For almost a decade, its use in connection with functional magnetic
resonance imaging (fMRI) has allowed for data-driven analysis, partly re-
moving the constraints for stringent experimental setups, which are often
required by traditional methods based on the use of temporal references.
Recent studies on the consistency of independent components have re-
sulted in a series of tools enabling a more reliable use of ICA. In partic-
ular, it is now rather easy to detect algorithmic overfitting and isolate
subspaces of related activation. Yet, often the nature of the components
may not be determined unambiguously. Focal fMRI signals, seemingly
originating from within a subject’s brain and showing physiologically
plausible temporal behavior, are typically considered relevant. This pa-
per presents a study, which makes use of a standard homogeneous spher-
ical phantom and shows evidence for artifacts caused by the measuring
device or environment, with characteristics that could easily be misin-
terpreted as physiological. Our results suggest that reliable analysis of
fMRI data using ICA may be far more difficult than previously thought.
At least, artificial behavior revealed by phantom analysis should be con-
sidered when conclusions are drawn from real subject measurements.

1 Introduction

Searching for a set of generative source signals from their linear mixing, with
little to no knowledge on the sources or the mixing process, is referred to as blind
source separation (BSS). Independent component analysis (ICA) is possibly the
most widely used data-driven method to solve such problems (a good introduc-
tion to ICA, including its historical debuts and theoretical frameworks can be
found in the textbook [1]; further reading and applications can also be found in
[2, 3]). Biomedical signal processing is arguably the most successful application
of ICA to real world data (representative examples can be found in, e.g., the
following review papers [4, 5, 6, 7]).
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On the other hand, functional magnetic resonance imaging (fMRI) has secured
a strong position in non-invasive studies of the living human brain. It provides
indirect information on neural activity, by measuring the blood oxygenation
level dependent (BOLD) signal (cf., [8]). When analyzing fMRI data under the
statistical parametric mapping (SPM) framework [9], researchers validate an
active brain region through the match of its temporal activation pattern with
a carefully predetermined experimental setup. Therefore, they can only validate
predictions. When performing a data-driven analysis, such as ICA, the researcher
is given greater freedom and is thus capable of detecting unforeseen activity. This
allows the study of a whole new set of more complex research questions. Yet,
the problem of interpreting the nature of the detected components remains,
since not all components have a physiological origin. The key rationales often
used in identifying components of interest include the focal nature and potential
symmetry of the spatial patterns; whether the activation is located inside the
brain and if it falls on expected regions for given stimuli; and how plausible the
corresponding time-courses are.

Recent studies on the consistency of independent components resulted in a
series of tools enabling a more reliable use of ICA (cf., [10, 11, 12]). In particular,
it is now rather easy to detect algorithmic overfitting and isolate subspaces of re-
lated activation. However, some results (cf., [13, 11, 14]) suggest that identifying
the relevant components may, in fact, not be as straightforward as previously
thought, e.g., in the presence of artifacts with characteristics matching the afore-
mentioned rationales on activation volumes and temporal patterns.

In this paper we confront the analyses of brain responses to auditory stimuli
(presented earlier in [14]) and of recently collected data from a standard MRI
phantom. Our results suggest that the analysis of fMRI data using ICA may be
more difficult than previously thought.

2 Data and Methods

2.1 Functional Magnetic Resonance Imaging

Varying concentrations of oxygen in the blood result in changes of its magnetic
properties. Because active brain areas produce a local increase in the blood flow,
measuring the MR-signal during rest periods and during task conditions, e.g.
when attending to stimulus presentation, results in detectable differences in the
measured images. This is the general basis of fMRI.

When using controlled stimuli, it is common to look for voxels in the brain
with a temporal activation pattern that matches the time-courses of the stimuli
(cf., [9]). However, the use of general data-driven methods, such as ICA, have
been suggested when attempting to observe epiphenomena that are hard to tie
to the stimuli or tasks, or when searching for brain reaction to unlabeled stimuli.

2.2 Phantom fMRI Measurements

Artifacts caused by the measuring device or environment can corrupt the fMRI
signal. Hence, their characteristics have to be assessed in order to reliably sepa-
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rate them from genuine BOLD signals. One example of a known artifact in fMRI
signal is the low frequency drift [15], but also more complex artifacts do exist.

Test objects, i.e., phantoms, are often used for assessing the quality of data
collected by MRI equipments (cf., [16, 17]), in terms of image properties, such
as, signal-to-noise ratio and image uniformity. They can also be used for testing
and guiding further analysis applied to the data (cf., [13]).

Here, we use a homogeneous spherical phantom, provided by GE Healthcare.
It has a diameter of about 15 cm, and is filled with silicone gel, in order to
produce images with intrinsically uniform brightness over the whole phantom.
Half an hour before starting the measurements, the phantom was placed within
the head coil and the patient bed moved into measurement position to avoid any
movement induced artifacts. We used the Gradient Echo (GRE) Echo Planar
Imaging (EPI) technique, commonly used for fMRI. All the data were acquired
using a 3.0 Tesla MRI scanner (Signa EXCITE 3.0T; GE Healthcare, Chalfont
St. Giles, UK), with a quadrature birdcage head coil at the Advanced Magnetic
Imaging Centre of Helsinki University of Technology.

The data consisted of 300 fMRI time points with TR = 3000 ms (i.e., a 3 sec-
ond time resolution). The first four scans were excluded from further processing.
For each time point, we acquired 37 axial 3.0 mm slices (spacing = 0 mm) with
a 96× 96 acquisition matrix and a field of view of 200 mm. We used a flip angle
of 90 deg and TE = 32 ms, all typical values in fMRI studies. Since we were
interested in seeing possible artifacts arising from the measurement equipment
or the environment, the data was not preprocessed before the analysis.

2.3 Real Auditory Measurements

To compare the components found from the phantom data to the ones found
from real measurements, we also used fMRI data of 14 human subjects attending
auditory word stimuli. The stimuli consisted of repetitions of resting and listening
periods. The data consisted of 80 fMRI time points and were acquired with the
same imaging parameters, head coil, and MRI scanner as the phantom data
(further information about the experimental paradigm, and data analysis with
a reliable ICA procedure can be found in [14]). However, in contrast to the
phantom data, these measurements were acquired prior to the EXCITE upgrade
for the imaging equipment.

2.4 Reliable ICA

In BSS, the measured data is an instantaneous linear mixture of generative
source signals, i.e., X = AS, for X, A and S, respectively, the observed data,
the mixing matrix and the underlying sources. The goal is to identify both the
sources and the mixing process with as few assumptions as possible. ICA solves
the BSS problem by assuming only that the generative sources are statistically
independent from each other. Hence, when applied to fMRI data, we often look
for spatially independent neuronal activity, with the columns of the mixing ma-
trix giving the temporal activation of such components.
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Theoretically, statistical independence means that the joint probability den-
sity of the sources is factorisable on its marginal densities. In practice, several
estimation algorithms have been proposed to perform ICA, mainly based on con-
cepts such as negentropy, mutual information or maximum likelihood (for further
information, cf., [1, 2, 3]). The experiments in this study use the FastICA algo-
rithm [18], an iterative method with fixed-point optimization. The considerations
based on the FastICA algorithm should also be valid for other implementations.

When analyzing a finite data set, the estimated components may change
slightly each time the analysis is performed. This behavior can be caused by
many factors. For example, the theoretical assumption of statistical indepen-
dence may not hold for the analyzed data [19, 4]. In this case, the somewhat
less restrictive sparse constraint for the underlying sources may still hold, as
suggested in [5]. Also, the algorithmic implementation of ICA may be inher-
ently stochastic. Furthermore, additive noise or other data features can cause
variations in the solutions. When the degrees of freedom is high, there is also
a tendency for overfitting the data [20]. For ICA, this corresponds to bumps or
spikes, which occur quite randomly each time the algorithm is run.

In this paper, the consistency of the estimated signals is tested by running the
algorithm with many different initial conditions, and bootstrapping of the data.
FastICA was used in symmetric mode with tanh nonlinearity, other parameters
where left at default values. The solutions found are combined according to
their similarities. Estimates that differ greatly from run to run are less likely
to correspond to true components, whereas the ones with small variances are
considered reliable (further details, including the combination strategy, can be
found in [14]). Similar approaches for consistency analysis and visualization can
be found in, e.g., [10, 11, 12].

3 Results

A set of independent components showing the simplest or the most structured
time-courses found by analyzing the phantom measurement is shown in Fig. 1.
The disks on the left hand side show the spread of the estimates from the different
runs. The upper disk depicts the intra-group and the lower disk the inter-group
distances. The circles represent mean distances. In ideal estimate discrimination,
the upper disk should fit within the hole in the lower disk. The slices represent,
clockwise from top-left, the sum of the whole volume; the slice containing the
highest power; the slice with the maximum voxel value; and the slice with the
minimum voxel value. The mean time-course is shown as a line, superimposed on
the spread from all the runs, shown as quantile bands with different intensities.
More details on the reliability measures can be found in [14].

All the shown components were found to be very reliable, although some
exhibit a small amount of variability. It appears that none of the components
results from the signal processing related to the analysis itself, or random noise
in the data. Furthermore, the time-courses of the components show clear and
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Fig. 1. A set of independent components with simple or structured time-courses, found
from the phantom measurement. A time period of 240 seconds is shown.

Fig. 2. A set of independent components, found from the measurement of a real subject,
which resemble the ones found from the phantom data. A time period of 240 seconds
is shown.

systematic structures on time scales of several seconds. In other words, com-
ponents like these could be considered as relevant activity, in real brain data.
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Another set of components found from the real brain measurements with
time-courses resembling the ones found from the phantom data are shown in
Fig. 2. The results are from a single subject, but similar components were found
in the data of all the 14 subjects studied. Here the slices are superimposed on a
structural MRI of the subject. The first component has a well structured time-
course, which could easily be misinterpreted as being related to the on-off type
stimuli. In addition, the volume contains a very focal and symmetric activation
pattern in the mid-brain area. However, the time-course, i.e., mixing vector,
shares so much of the characteristics of the first component of the phantom data,
that a more probable explanation is that both components are manifestations
of the same scanner or environment induced artifact. This, however, would be
impossible to notice without having performed the phantom analysis.

Similarly, the other components shown in Fig. 2 exhibit focal activation pat-
terns within the brain and/or structured time-courses, e.g., periodic or slowly
varying. Therefore fitting the aforementioned rationales for identifying interest-
ing components. A close match for many of the time-courses can be found from
the phantom data, with correlations reaching as high as 90%. However, simple
mathematical measures, such as cross-correlation do not show the complete pic-
ture. For example, temporal delays may need to be taken into account. Also, at
times, the phantom components show temporal behavior close to the one used in
the block design of the experiment, causing very strong correlations with several
components. The crucial question is whether in human evaluation the charac-
teristics of the phantom and brain components are confusingly similar, e.g. the
time-course associated with the primary auditory cortex is remarkably close to
the first two phantom components in Fig. 1 (mean correlations 43% and 38%,
respectively). However, in this study, the auditory component can unquestion-
ably be labeled as physiological. Yet, it may still contain contribution from an
artificial signal. Furthermore, artificial signals can be much harder to rule out in
less controlled experimental setups.

The spatial differences between the phantom and brain components may be
attributed to the homogeneity of the phantom, in contrast to the highly non-
uniform MR signal of the human brain. The structural differences may also affect
the magnitude of the measured components. Some of the components could
be related to, e.g., heating of the gradient coils during the imaging or time-
dependent changes in the magnetic fields. Other hardware instabilities and the
imaging environment can also produce artifacts (cf., [15] and references therein).
However, a detailed discussion on the origin of the components is beyond the
scope of this paper.

With a real subject, artifacts can also be caused by, e.g., cardiac pulsation or
head movements. For instance, some of the components in Fig. 2 show charac-
teristics typical for head movements that have not been completely compensated
in the preprocessing of the data. Interestingly, similar behavior in the phantom
data suggests that they may in fact be caused by other phenomena.
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4 Discussion

Phantom measurements are routinely used for verifying and calibrating the qual-
ity of MRI machinery. However, data-driven analysis of phantom fMRI data has
been largely overlooked, possibly due to the lack of a method for assessing the
reliability of the solutions. Although some earlier work (cf., [13]) has shown that
consistent independent components can indeed be found from phantom mea-
surements, to our knowledge, such components have never before been shown
publicly and compared with components found from fMRI studies with real sub-
jects. However, the results presented here strongly suggest that such comparisons
may be very valuable for the whole research field.

The presented results from analyzing phantom data using ICA reveal evidence
for possible misinterpretations in ICA studies with real subjects. The evidence
suggests that analyzing fMRI data using ICA may actually be far more difficult
than previously thought. It is possible that other methods than ICA are also
affected. For example, the reference time-course of the stimuli could have points
of coincidence with artificial signals. The analysis would thus mix real brain
activations with artifacts.

Although not shown, the results also suggest that the imaging parameters
affect the scanner induced components. Therefore, it is important that the phan-
tom measurements are made with the same parameters as those used with the
real subjects. It is also expectable that the artifacts can differ with, e.g., time,
scanner and measurement coils used. This suggests that data-driven analysis,
such as ICA, of phantom data may be useful for quality control of fMRI machin-
ery. The possible effects of different preprocessing steps, typical in fMRI analysis,
could also be tested with a similar approach.

The purpose of this paper is to be a word of warning for the ICA community
involved in analyzing fMRI data. Clearly, we need a better understanding of the
artificial, scanner or environment induced, signals, and of the way they are mani-
fested in phantom and real brain measurements. Possible methods for automatic
exclusion of such artifacts should also be considered. If artifacts with systematic
characteristics are observed, they could be used for designing real brain measure-
ments such that the stimulus timing does not coincide with the known artifacts.
However, the present results strongly suggest that if a researcher wants to base
conclusions on components with a purely physiological origin, the ICA results
should be compared with phantom measurements.
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Abstract. The application of Independent Component Analysis (ICA) to 
achieve blind source separation is now an accepted technique in the field of 
biosignal processing. The reduction of biological artifacts in magneto- and 
electroencephalographic recordings is a frequent goal. Four of the most 
common ICA methods, extended Infomax, FastICA, JADE, and SOBI are 
compared here with respect to their ability to isolate magnetoencephalographic 
(MEG) artifacts. The four algorithms are applied to the same data set containing 
heart beat and eye movement artifacts. For a quantification of the result simple 
spatial and temporal correlation measures are suggested and the usage of 
reference signals. Of the four algorithms only JADE was marginally less 
successful. 

1   Introduction 

For the analysis of magnetoencephalographic (MEG) recordings the suppression of 
unwanted signal components is an important preprocessing step. Independent 
Component Analysis (see recent introductory texts [1-3] for references) is widely 
used for this purpose. From the multitude of algorithms described theoretically it is 
very difficult for the practitioner to choose a suitable algorithm for the task at hand. 
Only very few studies address this for experimental data important issue. The power 
line interference artifact in MEG was isolated in [4] using three ICA algorithms. In 
[5] respiratory and eye movement artifacts were removed from MEG data using a 
second-order algorithm followed by a higher order algorithm. Four algorithms were 
applied to remove eye movement and blinking artifacts from EEG data in [6].  

These studies differ considerably in their methodology. In the present study the 
focus is on the two most common biological artifacts in MEG data: heart beat and eye 
movements. Investigating these artifacts we suggest a testing framework using 
temporal and spatial correlation. To start, results for four frequently used algorithms 
are presented: extended Infomax, FastICA, JADE, and SOBI.  

Success of ICA can only be proven on simulated data. As a simulation is not possible 
in all situations (ICA is often applied because the signal content is unknown) the more 
practical route of validation using separately recorded reference signals is applied here. 
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2   Algorithms Used 

These algorithms are derived from the ICA concept, which supposes that each 
observed signal xi of a multi-channel recording with m channels can be described by a 
linear superposition  

of n source signals sj, i.e. number of components n equals number of  sensors m.  
Assuming that the sources are statistically independent the joint probability density 

function of the signals sj factorizes. Then the sources can be separated theoretically by 
estimating a demixing matrix W. Estimates yi of the original sources sj are found by 
applying the demixing matrix to the measured variables: y(t) =Wx(t). 

Before the ICA algorithms are applied the observed signals are pre-processed in 
two steps: Centering[1-3] and whitening[1-3]. 

FastICA. The FastICA[7] algorithm estimates the non-Gaussianity of the signal 
distributions using higher-order statistics and the negentropy, which is a non-negative 
function of the differential entropy. FastICA is based on an iteration scheme for 
finding a projection u=WTx maximizing non-Gaussianity. It can be summarized by 
the update rule  

'( ) ( )W x W x W x WT Tg g∝ −  , (2) 

and the subsequent normalization of the updated W until convergence is reached. 
There exist several possible choices for the non-linear function g(u). 

Extended Infomax. This extended Infomax[9] is an extension of the Infomax 
algorithm, which is based on the information maximization principle[8] with the 
ability of separate mixed signals with sub- and super-Gaussian distributions. This is 
achieved by introducing a learning rule able to switch between both distributions. 

The switching criterion between the sub- and super-Gaussian distributions for y(t) 
is contained in the following learning rule 

  tanh( )W I K y y yy WT TΔ ∝ − −     1    :supergaussian

1 :subgaussian.
i

i

k

k

=
= −

 (3) 

The elements of the diagonal matrix K are obtained according to 

2 2sign sech ( ) [tanh( )]ik y y y yi i ii= − . (4) 

The Infomax algorithm maximizes the entropy of the outputs H(y). The 
maximization of this joint entropy consists of maximizing the individual entropies 
while minimizing the mutual information I(x) shared between them. When this latter 
quantity is zero, the variables are statistically independent.  
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JADE. The Joint Approximate Diagonalization of Eigenmatrices[10,11] (JADE) 
algorithm uses fourth-order cumulants Q = Cum(xi,xj,xk,xl), which present in a clear 
form the additional information provided for the high-order statistics. 

The JADE algorithm aims to reduce the mutual information contained in the 
cumulant matrices by looking for a rotation matrix such that the cumulant matrices 
are as diagonal as possible. The joint diagonalization is found by the Jacobi technique. 

SOBI. In contrast to the three algorithms sketched so far the Second Order Blind 
Identification algorithm(SOBI[12], TDSEP[13,14]) takes advantage of the temporal 
structure in the observed data. 

The basis of the SOBI algorithm is a set of time-lagged covariance matrices 

Rx( )=<x(t+ )xT(t)>    0 . (5) 

For independent sources these matrices have to be diagonal. To estimate the 
sources a joint diagonalization of the time-lagged covariance matrices is performed 
similarly to the JADE algorithm. The approach to use a set of  values is intended to 
avoid an inferior source separation as there is no theoretically proven choice of  
values. 

3   MEG Measurement and ICA Calculations 

The MEG recordings were performed in a shielded room, where the level of technical 
interference signals was reduced. The data were measured using a helmet shaped 
MEG sensor (www.eagle-tek.com) with 93 channels. For the purpose of generating 
typical biological artifacts the subject was instructed along the following protocol 
during the measurement: Rest for 30 s, horizontal eye movements for 30 s, rest for 30 
s, vertical eye movements for 30 s, rest for 30 s, and eye blinking for 30 s. To 
simplify the artifact identification in the MEG the Electroocullogram (EOG: single 
lead below the eye relative to the forehead) and the Electrocardiogram (ECG: single 
lead on sternum relative to forehead) signals were simultaneously recorded.  
   The raw data sampled at 2 kHz were downsampled offline by a factor of 8 to 250 
samples/s to reduce the computational load for the ICA algorithms. In total 62500 
data points (250 s * 250 samples/s) were input into the ICA calculations for each of 
the 93 channels without dimension reduction of the signal space. 

This study was realized using the software package EEGLAB[15]. EEGLAB is a 
freely available MATLAB® package for the analysis of single-trial EEG dynamics 
including various ICA algorithms. The following parameters were chosen: FastICA 
with g(u) = u3, SOBI with vector  = {1,2,…,100} (no specific parameters for JADE 
and extended Infomax). 

4   Results 

After the ICA calculation the component due to the heart beat was identified manually 
by comparison with the ECG signal and the result is shown in Fig. 1. All algorithms 
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have successfully isolated a Cardiac Artifact (CA) component. On the left side the 
time series for the CA components (FastICA = FICA, extended Infomax = eINFO) 
are shown together with the ECG reference signal. The algorithm associated with 
each time series is indicated and the time series were rescaled for ease of comparison. 
The time series shown in Fig. 1 a) is only a short section of the time series input into 
the calculation. On the right side the CA maps for the four different algorithms are 
shown. The maps are interpolations using a projection of the three dimensional MEG 
sensor coordinates onto a plane showing the magnetic field as level curves. The maps 
shown are views onto the top of the head with nose and ears indicated. 
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(a) (b) 

Fig. 1. a) Typical ECG signal (top trace) and the time series of the CAs isolated from MEG by 
the ICA algorithms, b) associated CA maps (nose and ears indicated)  

The four ICA time series in Fig. 1a) agree with each other, but they are different 
from the ECG (S-peak not visible as in the ECG trace). Such differences are well 
known[17] and reflect the complementary nature of electrical and magnetic 
measurements. Comparing the maps in Fig. 1b) visually it can be seen that the 
CAJADE map is different from the others and the CAeINFO and CASOBI maps are most 
similar. The CA map is expected[16] to exhibit a homogeneous (smooth) field 
distribution due to the relatively large sensor to source distance. The small extrema 
in the CAJADE map indicate a suboptimal identification of the CA. The strongest 
field in all maps is on the left side in agreement with the position of the heart on 
the left side of the body. 

For a quantitative analysis of the ICA result two types of comparison were made. 
Firstly the appropriate reference time series (ECG, EOG) was correlated using Eq. 7 
with the full length time series yi(t) resulting from the ICA after demixing, i.e. 
inverting Eq. 1, and the ICA time series were correlated with each other. Secondly the 
vector angle between the ICA field maps, i.e. the ICA base vectors, was calculated 
using Eq. 6, where iv

r
 with V=W-1 denotes the base vector. 
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The angles between the CA components maps resulting from the different ICA 
calculations are shown in matrix format in Fig. 2a), where the labels are FastICA = F, 
extended Infomax = eI, J = JADE, S = SOBI and the grey scale for the angles is 
indicated on the right side. It can be seen immediately that the JADE results is 
different from the other results. The angle between CAJADE and the others CAs has a 
minimum value of 29° and a maximum of 41°. In comparison the angles between the 
others CAs are less than 12° (Figure 2a). 
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Fig. 2. a) Matrix representation of angles between the CA component maps calculated using 
Eq. 6, b) the correlation values between the CA time series calculated using Eq. 7. The labels 
are F = FastICA, eI = extended Infomax, J = JADE, S = SOBI. 

The correlations between the CA time series are shown in Fig. 2b). The correlations 
have generally high values between 0.92 and 0.99 and the lowest correlation occurs 
between the time series of SOBI and JADE. In contrast to the high correlations 
between the results from the ICA algorithms the correlation between ECG and the ICA 
result was 0.42 to 0.45 (values not shown in Fig. 2b). This is a consequence of the 
differences in signal morphology as mentioned above. 

The ICA results for the horizontal eye movement artifact (hEMA) are shown in 
Fig. 3, which displays time series on the left and maps on the right as in Fig. 1. All 
algorithms identified the hEMA as can be seen from the time series in Fig. 3 a), 
although the JADE time series appears noisier. The maps on the right side have 
basically the same structure with the strongest signals at the front. This is expected for 
the signal due to eye movements. Similar to the behavior observed for the CA the 
JADE map of the hEMA appears less regular compared to the other maps. 

A quantification of these observations was made using Eqns. 6 and 7 on the hEMA 
maps and time series and additionally the correlation between EOG and hEMA time 
series was calculated. The smallest angle between ICA maps is 6° occurring between 
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extended Infomax and FastICA. The angle between the JADE hEMA map and the 
other maps is 13° to 20° indicating that the JADE result is slightly different from the 
others. For the correlation values the result is similar: The JADE time series has 
always the lowest correlations in the range from 0.94 to 0.96. The correlations 
between the other algorithms and the EOG signal always exceed 0.98. 
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Fig. 3. a) EOG signal (top trace) and the time series of the horizontal EMAs isolated by the 
ICA algorithms, b) associated EMA maps (nose and ears indicated) 
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Fig. 4. EOG signal (top trace) and the time series of: a) the vertical EMAs and b) the blinking 
EMAs isolated by the ICA algorithms 

The ICA results for the vertical and blinking eye movement artifact (vEMA and 
bEMA respectively) are shown in Fig. 4 displaying the time series only. In case of 
vEMA in Fig. 4a), JADE found two separate components related to the vertical EOG, 
while ext. Infomax, SOBI and FastICA extracted only a single component appearing  
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less noisier than the others. The JADE and ext. Infomax time series have relatively 
low correlations (Eq. 7) to the vertical EOG in the range from 0.6 to 0.88, while the 
corresponding correlations for the other algorithms always exceed 0.95.  

The separation of the bEMA in Fig. 4b) shows that SOBI found two components 
related to the blinking EOG, while the other algorithms found only one. The 
correlations between bEOG and bEMA of SOBI are in the range from 0.5 to 0.83. 
The corresponding JADE and ext. Infomax correlations are in the range from 0.8 to 
0.9. The best correlation was 0.95 for the FastICA algorithm. The angles calculated 
using Eq. 6 do not contradict the correlation result (omitted due to lack of space).  

Principal Component Analysis (PCA) was also applied to the full data set. The five 
strongest PCA components are artifact related. The CA is well identified in one 
component, but in contrast to the ICA algorithms PCA was not able to separate the 
EMAs into single PCA components. Furthermore their time series show temporal 
overlap between CA and the EMAs. As it is well known decorrelation is not sufficient 
to achieve independence. 

5   Conclusions 

Four different ICA algorithms were applied to a 93 channel MEG data set containing 
heart beat and eye movement artifacts signals. Using the simultaneously measured ECG 
and EOG and prior knowledge artifact related independent components could be 
identified in the result from all four algorithms. Comparing the results from the four 
algorithms using a correlation between the time series and the angle between the maps it 
was found that JADE performs slightly inferior to the other algorithms for the single data 
MEG data set used here. The computation time needed to obtain the independent 
components using JADE was ten times longer compared to the other ICA algorithms.  

All algorithms were capable of isolating the super-Gaussian probability 
distribution of the heart beat and most algorithms succeeded for the essentially 
bimodal distributions of the eye movements.  

In contrast to the continuous presence of the heart beat eye movements can be 
controlled to a certain degree during an experiment and the data set used seems to be 
unrealistic in this respect. There were two reasons for this choice: Firstly, patients or 
elderly people often cannot control their eye movements, and secondly, infrequently 
occurring artifacts violate the stationarity assumption of ICA. Therefore a 
comparative study using a data set with infrequent artifacts might mainly test the 
ability of algorithms to cope with non-stationarity. 

To summarize it seems that the suggested comparative framework is of high 
practical value as demonstrated on a limited data set. Future work will assess the 
separability between cortical activity and artifact signals.  

Acknowledgments 

Help with the measurements by Alf Pretzell, the DAAD (German Academic 
Exchange Service) scholarship for H.Z.F. (PKZ: A/04/21558), and the Berlin 
Neuroimaging Centre (BMBF 01GO0208 BNIC) are gratefully acknowledged. 



518 H. Zavala-Fernández et al. 

References 

1. Hyvärinen, A., Karhunen, J., Oja, E.: ICA, John Wiley and   Sons, New York, 2001. 
2. Roberts, S., Everson, R., Eds.: ICA - Principles and Practice, Cambridge University Press, 

Cambridge, 2001. 
3. Cichocki, A.,  Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley and 

Sons, New York, 2002.  
4. Ziehe, A., Nolte, G., Sander, T.H., Mueller, K.-R., Curio, G.: A comparison of ICA-based 

artifact reduction methods for MEG, in Proc of Biomag2001, J. Nenonen, R.J. Ilmoniemi, 
and T. Katila Eds., Helsinki Univ. of Technology, pp. 895–899, 2001.  

5. Moran, J.E., Drake, C.L., Tepley, N.: ICA Methods for MEG Imaging, Neurol. And Clin. 
Neurophysiol., vol. 72, pp. 1-4, 2004. 

6. Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic Removal of Eye Movement and 
Blink Artifacts from EEG Data Using Blind Component Separation, Psychophysiol., vol. 
72, pp. 313-325, 2005. 

7. Hyvärinen, A., Oja, E.: A Fast Fixed-Point Algorithm for Independent Component 
Analysis, Neural Computation, vol.  9, p.  1483–1492, 1997.  

8. Bell, A., Sejnowski, T.: An Information Approach to Blind Separation and Blind 
Deconvolution, Neural Comput., 7, pp. 1129-1159, 1995.  

9. Lee, T.-W., Girolami, M., Sejnowski, T.-J.: ICA Using an Extended Infomax Algorithm 
for Mixed Sub- and Supergaussian Sources. Neural Comp., vol. 11, pp. 417–441, 1999. 

10. Cardoso, J.-F., Souloumiac, A.: Blind Beamforming for Non Gaussian Signals. IEE-
Proceedings-F, vol. 140, no 6, pp. 362–370, 1993. 

11. Cardoso, J.-F.: High-Order Contrasts for Independent Component Analysis. Neural 
Computation, vol. 11, pp. 157–192, 1999. 

12. Belouchrani, A.,  Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A Blind Source 
Separation Technique Based on Second-Order Statistics, IEEE Trans.  on Sig. Proc., vol.  
45, pp. 434–444, 1997. 

13. Ziehe, A., Müller, K.-R.: TDSEP – An Efficient Algorithm for Blind Separation Using 
Time Structure, in Proceedings of the 8th ICANN, L. Niklasson, M. Bodén, and T. Ziemke 
Eds., pp. 675–680, Springer Verlag, 1998. 

14. Köhler, B.-U., Orglmeister, R.: A Blind Source Separation Algorithm Using Weighted 
Time Delays, in Proc.  of the 2nd Intern.  Workshop on ICA and BSS, P. Pajunen and 
J. Karhunen Eds., Helsinki, pp. 471–475, 2000. 

15. Delorme, A., Makeig, S.: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial 
EEG Dynamics Including Independent Component Analysis, Journal of Neuroscience 
Methods., vol. 134, pp. 9-21, 2003.  

16. Sander, T.H.,  Wuebbeler, G., Lueschow, A., Curio, G.,  Trahms, L.: Cardiac Artifact 
Subspace Identification and Elimination in Cognitive MEG-Data Using Time-Delayed 
Decorrelation, IEEE Trans.  Biomed.  Eng., vol.  49, p. 345–354, 2002. 

17. Brockmeier, K., Schmitz, L., Bobadilla-Chavez, J.-J., Burghoff, M., Koch, H., 
Zimmermann, R., Trahms, L.: Magnetocardiography and 32-Lead Potential Mapping: 
Repolarization in Normal Subjects During Pharmacologically Induced Stress, J. 
Cardiovasc. Electrophys., vol. 8, p. 615-626, 1997. 



J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 519 – 526, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Automatic De-noising of Doppler Ultrasound Signals 
Using Matching Pursuit Method 

Yufeng Zhang, Le Wang, Yali Gao, Jianhua Chen, and Xinling Shi 

Department of Electronic Engineering, Yunnan University, Kunming, Yunnan Province, 
650091, The People’s Republic of China 

yfengzhang@yahoo.com,  
{wangle, gaoyl, chenjh, shixl}@ynu.edu.cn 

Abstract. A novel de-noising method, called matching pursuit method, for im-
proving the signal-to-noise ratio (SNR) of Doppler ultrasound blood flow  
signals is proposed. Using this method, the Doppler ultrasound signal is first 
decomposed into a linear expansion of waveforms, called time-frequency at-
oms, which are selected from a redundant dictionary named Gabor functions. 
Then a decay parameter-based algorithm is employed to determine the decom-
position times. Finally, the de-noised Doppler signal is reconstructed using the 
selected components. The SNR improvements and the maximum frequency es-
timation precision  with  simulated Doppler blood flow signals have been used 
to evaluate a performance comparison based on the wavelet, the wavelet pack-
ets and the matching pursuit de-noising algorithms.  From the simulation and 
clinical experiment results, it is concluded that the performance of the matching 
pursuit approach is the best for the Doppler ultrasound signal de-noising.   

1   Introduction 

Doppler ultrasound provides a noninvasive assessment of the hemodynamic flow 
condition within blood vessels and cardiac cavities [1, 2]. Diagnostic information is 
extracted from spectrograms of the Doppler blood flow signal which results from the 
backscattering of the ultrasound beam by moving red blood cells. The spectral estima-
tion of Doppler ultrasound signals is normally performed using the short-time Fourier 
transform  (STFT). Then the mean and maximum frequency waveforms, which are 
used to evaluate the mean flow volume and determine the flow statues, are extracted 
from the estimated spectrogram. Meanwhile, indices estimated from the maximum 
frequency waveform, such as SBI (spectral broadening index), S/D (the ratio of systolic 
maximum velocity to diastolic velocity),  PI (pulsatility index) and RI (resistive index), 
are used for quantification of vascular diseases’ severity [1, 2]. Any extra frequency 
component in the Doppler signal coming from noise may reduce the spectral estimation 
resolution, which harms extraction of maximum frequency waveform and further proc-
essing. Therefore, it is a preliminary and important step to de-noise the Doppler ultra-
sound signal, especially when the signal-to-noise ratio (SNR) is low. 

The wavelet shrinkage method with the standard discrete wavelet transform 
(DWT), first proposed by Donoho [3], has been employed to de-noise Doppler ultrasound 
signals [4]. Here the DWT using real-valued wavelet filter coefficients was applied to 
the data, and the resulting wavelet coefficients were soft-thresholded. The inverse 
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DWT then returned the de-noised data and the signal’s spectrogram was found 
through the STFT. An alternative method, called discrete wavelet frame (DWF)[5, 6], 
was also used to de-noise the Doppler ultrasound signals.  Unlike the standard DWT, 
the output of the filter bank in this method is not sub-sampled, leading to the wavelet 
coefficients from the DWF decomposition invariant with respect to the translations of 
the input signal. This method has proved to be superior to methods based on the 
DWT. 

The matching pursuit (MP) algorithm, introduced by Mallat and Zhang [7], relies 
on adaptive decomposition of a signal into waveforms called atoms from a large and 
redundant dictionary of functions. Unlike the DWT and the wavelet packets (WPs) 
algorithms, which select the basis that is best adapted to the global signal properties, 
the MP is a greedy algorithm that chooses at each iteration a waveform that is best 
adapted to approximate part of the signal.  The global optimization does not perform 
well for decomposition of non-stationary signal because the information is diluted 
across the whole basis, as opposed the greedy approach of a matching pursuit. Thus 
the MP algorithm is a locally adaptive method, which is efficient to represent non-
stationary signals, such as the Doppler blood flow signals, which have a relative wide 
bandwidth changing rapidly with time. The present paper is the first attempt to de-
noise Doppler ultrasound signals using the MP algorithm. Commonly used methods, 
the DWT and the WPs, are compared with the adaptive decomposition method based 
on the MP technique with a Gabor dictionary. 

In this paper we shall first briefly describe the mathematical background of the 
used de-noising methods. The simulation of the Doppler blood flow signals, experi-
ments on simulated Doppler signals and clinical cases based on three methods will be 
presented in Section III, followed by the results, discussion, and conclusion.  

2   Methods 

2.1   Wavelet and Wavelet Packets De-noising Algorithms  

The mathematical description of the continuous wavelet transform (CWT) of 
∈f L2( ) was described by Mallat [8] as 

+∞
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where )(, tsuψ  is a family of orthogonal wavelets. s and u denote the dilation and 

translation parameters respectively. The DWT calculates the wavelet coefficients at 
discrete intervals of time and scale instead of at all scales.  In this case, a vector 
space is generated by scaling and translating two basic functions, )(tφ and )(tϕ , 
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By combining the two, the function )(tf  is precisely obtained as 
∞

=

+=
k jj

kjj
k

kjj tkdtkctf
0

00
)()()()()( ,, φϕ  

(3) 

In Eq. (3), two kinds of coefficients, called discrete wavelet transform, are used as 
projections in the vector space: the scaling coefficients )(

0
kc j

 which are rough de-

tails, and the wavelet coefficients )(kd j
 which are finer details.  

Mallat developed an efficient way to implement this algorithm, which is known as a 
two-channel sub-band coder[8]. For a single level of decomposition, this algorithm 
passes the signal through two complementary (high-pass and low-pass) filters resulting 
in approximations which are high-scale, low-frequency components of the signal, and 
details which are low-scale, high-frequency components of the signal. For further levels 
of decomposition, successive approximations may be iteratively broken down into de-
tails and approximations. WPs also spread the DWT, decomposing the high pass filter 
output, that is, the finer details. This results in a binary tree filter bank with a number of 
levels depending on the desired scale of resolution. The binary tree can be considered as 
a library of bases called WPs [9]. The objective is to select the best base to represent the 
signal by adequately pruning the tree. This is done by using a certain criterion of meas-
uring the information cost of each node. In this paper, Shannon entropy has been used 
[9]. When reconstructing the signal, coefficients below a certain level are regarded as 
noise and thresholded out. Thresholding may be soft or hard. The soft thresholding-
based de-noising algorithm has been proven to have the advantages of optimizing mean 
square error and keeping the smoothness of the de-noised signal [3]. A Gaussian white 
noise with a noise level σ  is presumed in Doppler signals. A soft-thresholding nonlin-
earity is applied to all wavelet detail coefficients with a threshold defined as 

)log(21 LrT σ=  (4) 

where the constant 1r  can be set to 1 while choosing the orthogonal wavelet, L is the 

length of the signal. The thresholded wavelet coefficients )(ˆ kd j
can be obtained by: 
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(5) 

It is easy to find that the threshold T is proportional to the noise level σ , which 
can be estimated from the standard deviation of the detail coefficients at the first reso-
lution level because the Doppler ultrasound signal is band-limited[4, 6]. Then the 
noise-free signals based on the DWT and WP algorithms can be estimated from the 
reconstructions based on the thresholded coefficients, respectively. 

2.2   Matching Pursuit De-noising Algorithm  

MP decomposition of a signal )(tf  is carried out by first approximating the signal 

with its orthogonal projection onto an atom that can best match the local structure of 
the signal [7]. Then, the same procedure is repeated on the residual vector until the 
signal is decomposed into a series of time-frequency atoms in decreasing energy order 
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where fR m  is the residual vector after )(tf is approximated by m atoms, and 

nn
ggfR n

γγ, represents the projection of fR n onto an atom 
n

g γ  (note ffR =0 ).  

The discrete implementation of a matching pursuit is explained for a dictionary of 
Gabor time-frequency atoms. A real Gabor function can be expressed as 

))(2sin()()(
2)/)(( φωπγ π

γ +−= −− ut
N

eKtg sut  (7) 

where N  is the size of the signal for which the dictionary is constructed, and )(γK  

is such that 1=γg . { }φωγ ,,, su= denotes parameters of the dictionary’s func-

tions (time-frequency atoms). In the dictionary implemented originally by Mallat [7], 
the parameters of the atoms are chosen from dyadic sequences of integers. Parameters 
u andω  are sampled for each octave j  with interval js 2= . Lj ≤≤0, , (signal 

size LN 2= ). 
MP decomposition is an iterative algorithm. In this work, decomposition is 

stopped after extracting the first M coherent structures of the signal. The first M co-
herent structures are determined using a decay parameter, denoted by  

21

2

1)(
fR

fR
M

M

M

−
−=λ

 
(8) 

where fR M  is the residual energy level at the Mth iteration. The decomposition is 

continued until the decay parameter does not reduce any further. At this stage, the 
selected components represent the coherent structures, and the residue represents the 
incoherent structures in the signal with respect to the dictionary. The residue can be 
assumed to be due to random noise, as it does not show any time frequency localiza-
tion. The signal reconstructed using M coherent structures, i.e. 

=
=

M

n

n

nn
ggfRf

0

., γγ
 (9) 

3   Experiments 

In the experimental study, the Symmlet wavelets are selected to implement the DWT 
and WPs algorithms. The eighth-order wavelet is used in the standard DWT, and 
sixth-order wavelets are tested in the WPs. The computational complexity of the 
DWT and the WPs increase with the analyzing resolutions, and the low frequency 
part of the Doppler ultrasound signal is usually filtered away by the wall filter. Con-
cerning these two aspects, the coarsest resolution I is chosen as 6 in this paper. For the 
MP method, the decomposition is continued until the decay parameter is less than or 
equal to 0.01, which approximately means that it does not reduce any further.  
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In simulation study, the Doppler blood flow signal model proposed by Wang and 
Fish [10] has been used. Normal carotid artery signals are simulated based on this 
model. The sample frequency is 20 kHz, above the Nyquist rate; the cardiac cycle 
period is 1000 ms. The prespecified SNRs (SNR = 0 dB and SNR = 10 dB) are ob-
tained by adding white Gaussian noise to the simulated Doppler signals. The quantita-
tive indices, SNR of the Doppler signal is defined as: 

,log10
0

0
10 N

S
SNR ×=    

,))((
1 1

0

2
0
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=
−=

L

l
SlS
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l
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L
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(10) 

where S and N are the simulated signal and the noise of the length L,  
Sμ  and 

Nμ  

are the mean values of the S and N , respectively. The Doppler spectrograms are cal-
culated by using the STFT with a 10 ms Gaussian window )3( =α . The theoretical 

maximum frequency of the simulated Doppler signal can be determined by 
)(3)()(max ttftf fm σ+= . The maximum frequency waveforms of the de-noised Dop-

pler signals are extracted from the estimated spectrograms using the percentile 
method, whose percentile factor is chosen as 0.1 in this study. The SNR and the RMS 
error of the maximum frequency waveform are calculated before and after de-noising 
to compare the performance improvements of the three de-noising algorithms. 

In the clinical study, the measurement system employed consists of the pulsed 
Doppler unit of a HP SONOS 5500 ultrasound imaging system, analog/digital inter-
face card (sound Blaster Pro-16 bit), one PC and one printer. The Doppler unit is used 
in pulse mode, and the applied frequency of the ultrasound is 2.7 MHz. The clinical 
Doppler signals are recorded from a child’s aorta by placing sample volume just near 
the center of the aortic arch. The audio Doppler signals are sampled using the Sound 
Blaster Card in the PC. The sample rate is set to 22.05 kHz. The three de-noising algo-
rithms with the same parameters described in simulation study are used to de-noise 
the clinical signals. The overall enhancement of the spectrogram and the smoothness of 
the maximum frequency waveform are used to compare the de-noising performance. 

4   Results and Discussion 

Fig.1 shows the SNR values of the results of the three de-noising methods applied to 
the simulated noisy Doppler blood flow signals. From this figure, it can be found that 
the MP technique has provided the best de-noising result (the highest SNR value)  
of the three methods studied. 

 

Fig. 1. The SNR values of the results of the three de-noising methods applied to the simulated 
Doppler blood flow signal with SNRs of 0 dB (a) and 10dB (b) 
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Fig. 2. The spectrogram and the maximum frequency waveform, which is superimposed on the 
spectrogram with a solid curve, of the simulated original signal (a), the signal added noise 
(SNR=5 dB) (b). The de-noised versions using the DWT (c), the WPs (d), and the MP (e). 

Fig. 2 presents the estimated Doppler spectrograms of one original simulated sig-
nal, the noisy signal with SNR=5 dB and the de-noised signals. In Fig. 2(b), it is ob-
served that the Doppler spectrograms include a mass of disturbance distributed in 
whole frequency band. The maximum frequency waveform extracted from the esti-
mated spectrogram includes considerable distortion, which indicates the difficulty in 
finding correct indices used for quantification of vascular diseases’ severity from the 
spectrograms under the lower SNR situation. Fig. 2 (c)-(e) show the enhancements of 
the spectrograms and the improvements of the maximum frequency waveforms after 
de-noising using the DWT, the WPs and the MP, respectively. It is obvious that there 
are the least extra frequency components in the spectrogram and the least distortion in 
maximum frequency waveform shown in Fig. 2 (e), de-noised using the MP  
algorithm. 

Table1. The mean maxfμ and standard deviation maxfσ  of the RMS errors of the maximum 
frequency waveforms extracted from the original noisy signal (SNR=5 dB), the de-noised 
signals based on three different algorithms  

Signal Noisy 
signal 

De-noised  
by DWT 

De-noised 
by WPs 

De-noised 
by MP 

maxfμ (Hz) 1461 308 211 104 

maxfσ (Hz) 191 66 31 17 

 
 
Table 1 lists the RMS errors of the maximum frequency waveforms extracted 

from the de-noised spectrograms over 30 independent realizations of noisy Doppler 
signal with SNR=5 dB. It is found that all RMS errors of the maximum frequency 
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waveform of the de-noised signals have decreased much more than those before de-
noising. The maximum frequency waveform of the signal de-noised using the WPs 
has a lower RMS error and deviation than that associated with the DWT. However, 
the mean and standard deviation of the RMS error  in the maximum frequency are the 
lowest when the MP method is used to de-noise the Doppler signal.  
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Fig. 3. The spectrogram and the maximum frequency waveform, which is superimposed on the 
spectrogram with a solid curve, of the clinical original noisy signal (a), The de-noised versions 
using the DWT (b), the WPs (c), and the MP (d) 

The three different algorithms are applied to de-noise the clinical Doppler ultra-
sound signals. The spectrograms and maximum frequency waveforms are estimated 
for the comparison. As an illustration, a segment of Doppler ultrasound signal re-
corded from a child’s aortic arch is shown in Fig. 3. (a). The de-noised versions based 
on the DWT, the WPs and the MP are shown in Fig.3 (b)-(d). It can be found that all 
three algorithms have removed noises and distortions in the spectrograms and maxi-
mum frequency waveforms. From Fig. 3. (c), we can also observe that the spectro-
gram of the signal after de-noising using the WPs has fewer additional noises than 
that using the DWT shown in Fig. 3. (b). As observed in Fig. 3(d), it is obvious that 
the most significant amount of random noise has been removed from the original 
signal by the MP de-noising method. The superimposed maximum frequency wave-
forms also confirm that the algorithm using the MP achieves the best performance. 

It is worthwhile to mention that the de-noising results with wavelets and the WPs 
are highly dependent on the selection of the threshold value for the coefficients. In the 
case of the MP method, the decay parameter is a more objective measure. 

5   Conclusion 

A novel approach to de-noise Doppler ultrasound signals for enhanced spectrogram 
estimation using the MP is proposed. The MP algorithm isolates signal structures that 
are coherent with respect to a given dictionary. After removing the coherent structures 
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from a signal, the residue behaves like a realization of the noise. Thus, the MP 
method is based on local optimization and very suitable for decomposition of nonsta-
tionary signals, whereas the wavelet techniques are well adapted to global signal 
properties. From the simulation and clinical experiment results, it is concluded that 
the performance of the decay parameter-based approach using the matching pursuit 
algorithm is the best for the Doppler ultrasound signal de-noising. 
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Abstract. In this paper we propose a novel blind source separa-
tion (BSS) algorithm for convolutive mixtures combining advantages of
broadband algorithms with the computational efficiency of narrowband
techniques. It is based on a recently presented generic broadband algo-
rithm. By selective application of the Szegö theorem which relates prop-
erties of Toeplitz and circulant matrices, a new normalization is derived
which approximates well the exact normalization of the generic broad-
band algorithm presented in [2]. The new scheme thus results in a com-
putationally efficient and fast converging algorithm while still avoiding
typical narrowband problems such as the internal permutation problem
or circularity effects. Moreover, a novel regularization method for the
generic broadband algorithm is proposed and subsequently also derived
for the proposed algorithm. Experimental results in realistic acoustic en-
vironments show improved performance of the novel algorithm compared
to previous approximations.

1 Introduction

The problem of recovering signals from multiple observed linear mixtures is com-
monly refered to Blind source separation (BSS) [4]. To deal with the convolutive
mixing case as encountered, e.g., in acoustic environments, we are interested
in finding a corresponding demixing system, where the output signals yq(n),
q = 1, . . . , P are described by yq(n) =

∑P
p=1
∑L−1
κ=0 wpq,κxp(n − κ). Here wpq,κ,

κ = 0, . . . , L − 1 denote the current weights of the MIMO filter taps from the
p-th sensor channel xp(n) to the q-th output channel. In this paper the number
of active source signals Q is less or equal to the number of microphones P . BSS
algorithms are solely based on the fundamental assumption of mutual statisti-
cal independence of the different source signals. The separation is achieved by
forcing the output signals yq to be mutually statistically decoupled up to joint
moments of a certain order.

In [2] a general derivation of broadband convolutive BSS algorithms based
on second-order statistics has been presented for both, the time and frequency
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domain. This broadband derivation yields an algorithm which possesses an in-
herent normalization of the coefficient update leading to fast convergence also
for colored signals such as speech. However, for realistic acoustic environments
large correlation matrices have to be inverted for every output channel. An ap-
proximation of this matrix by a diagonal matrix led to a very efficient algorithm
which allows real-time implementation using a block-online update structure
[1]. In this paper we first briefly summarize the generic second-order broadband
algorithm and then present a novel normalization strategy leading to an im-
proved algorithm combining broadband advantages with narrowband efficiency.
Moreover, a new regularization method for the obtained algorithm is presented.

2 Generic Broadband Algorithm

A block processing broadband algorithm simultaneously exploiting nonwhiteness
and nonstationarity of the source signals was derived in [2] based on the natural
gradient of the cost function J :

∇NG
W J (m) = 2

∞∑
i=0

β(i,m)W {Ryy(i)− bdiag Ryy(i)} bdiag−1 Ryy(i). (1)

The variables m and i denote the block time index. W is the demixing matrix
containing the filter weights and exhibits a Sylvester structure, i.e., each column
of the submatrices Wpq is shifted by one sample containing the current weights
of the MIMO sub-filter of length L from the p-th sensor channel to the q-th
output channel [2]. The short-time correlation matrix Ryy(i) of size PL×PL is
composed of channel-wise L × L submatrices Rypyq

(i) each containing L time-
lags and thus exploiting nonwhiteness of the source signals. The bdiag operation
on a partitioned block matrix consisting of several submatrices sets all submatri-
ces on the off-diagonals to zero. Therefore, the update becomes zero if and only
if Rypyq

, p �= q, i.e., all output cross-correlations over all time-lags become zero.
Thus, the algorithm explicitly exploits the nonwhiteness property of the output
signals. The variable β denotes a weighting function with finite support that is
normalized according to

∑m
i=0 β(i,m) = 1 allowing for offline, online or block-

online realizations of the algorithm. In [1] a block-online update rule was derived
for the coefficient update (1) by specifying β(i,m) such that it leads to a combi-
nation of an online update and an offline update exploiting the nonstationarity
of the source signals (in addition to their nonwhiteness).

In principle, there are two basic methods for the block-based estimation of the
short-time output correlation matrices Rypyq

(i) for nonstationary signals: the
so-called covariance method and the correlation method, as they are known from
linear prediction problems [5]. In contrast to [2] the computationally less complex
correlation method was used in [1] which is obtained by assuming stationarity
within each block i. This method is also considered here as it leads to a Toeplitz
structure of the L × L matrices Rypyq

(i). Using the correlation method, the
Toeplitz matrix Rypyq

can be written as a matrix product
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Rypyq
(i) = ỸH

p (i)Ỹq(i) (2)

where Ỹq is a N + L − 1 × L Sylvester matrix (N denotes the block length
for estimation of the correlations), i.e., for each subsequent column the first N
output signal values are shifted by one sample.

Ỹq(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yq(mL) · · · 0

yq(mL + 1)
. . .

...
...

. . . 0

yq(mL + N − 1)
. . . yq(mL)

0
. . . yq(mL + 1)

...
...

0 . . . yq(mL + N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

3 Normalization Strategies

3.1 Exact Normalization Based on Matrix Inverse

The update of the generic algorithm based on the natural gradient (1) exhibits
a normalization by the inverse of a block-diagonal matrix. This means that for
the correlation method the L × L Toeplitz matrices Ryqyq

, q = 1, . . . , P , given
by (2), have to be inverted in (1). The complexity of a Toeplitz matrix inversion
is O(L2). For realistic acoustic environments, large values for L (e.g., 1024)
are required which are prohibitive for a real-time implementation of the exact
normalization on most current hardware platforms.

3.2 Normalization Based on Diagonal Matrices in the Time-Domain

In [1] an approximation of the matrix inverse has been used to obtain an efficient
algorithm suitable for real-time implementation. There, the off-diagonals of the
auto-correlation submatrices have been neglected, so that for the correlation
method it can be approximated by a diagonal matrix with the output signal
powers, i.e., Ryqyq

(i) ≈ diag
{
Ryqyq

(i)
}

= σ2
yq

(i)I for q = 1, . . . , P , where the
diag operator applied to a matrix sets all off-diagonal elements to zero. Thus,
the matrix inversion is replaced by an element-wise division.

3.3 Novel Approximation of Exact Normalization Based on the
Szegö Theorem

The broadband algorithm given by (1) can also be formulated equivalently in
the frequency domain as has been presented in [2]. Additionally it has been
shown that by certain approximations to this frequency-domain formulation a
purely narrowband version of the broadband algorithm can be obtained. In this
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section we will derive a novel algorithm combining broadband and narrowband
techniques by using two steps. First, the exact normalization is formulated equiv-
alently in the frequency domain. In a second step the Szegö theorem [3] is applied
to the normalization to obtain an efficient version of the exact normalization.
The Szegö theorem allows a selective introduction of narrowband approximations
to specific parts of the algorithm. This approach allows to combine both, the ad-
vantages of the broadband algorithm (e.g. avoiding internal, i.e., discrete Fourier
transform (DFT) bin-wise permutation ambiguity and circularity problem) and
the low complexity of a narrowband approach.

Exact Normalization Expressed in the Frequency Domain. In [3] it was
shown that any Toeplitz matrix can be expressed equivalently in the frequency
domain by first generating a circulant matrix by proper extension of the Toeplitz
matrix. Then the circulant matrix is diagonalized by using the DFT matrix FR
of size R × R where R ≥ N + L denotes the transformation length. These two
steps are given for the Toeplitz output signal matrix Ỹq as

Ỹq = W01N+L

N+L×RCỸq
W1L0
R×L (4)

= W01N+L

N+L×RF−1
R ỸqFRW1L0

R×L, (5)

where CỸq
is an R×R circulant matrix, and the window matrices are given as

W01N+L

N+L×R = [0N+L×R−N−L, IN+L×N+L] (6)

W1L0
R×L = [IL×L,0R−L×L]. (7)

Here the convention is used that the lower index of a window matrix denotes its
dimensions and the upper index describes the positions of ones and zeros. The
size of the unity submatrices is indicated in subscript (e.g., “01L”). The matrix
Ỹq exhibits a diagonal structure containing the eigenvalues of the circulant ma-
trix CỸq

on the main diagonal. The eigenvalues are calculated by the DFT of

the first column of CỸq
and thus Ỹq can be interpreted as the frequency-domain

counterpart of Ỹq:

Ỹq = Diag{FR[0, . . . , 0, yq(iL), . . . , yq(iL + N − 1), 0, . . . , 0]T }. (8)

The operator Diag {a} denotes a square matrix with the elements of vector a on
its main diagonal. As an illustration of (4), the circulant matrix CỸq

and the

window matrices, which constrain the circular matrix to the original matrix Ỹq,
are shown in Fig. 1. With (5) we can now write Rypyq

as

Rypyq
= W1L0

L×RF−1
R Ỹ

H

p FRW01N+L

R×N+LW
01N+L

N+L×RF−1
R ỸqFRW1L0

R×L. (9)

It can be seen in the upper left corner of the illustration in Fig. 1 that by
extending the window matrix W01N+D

N+D×R to W01R

R×R = IR×R only rows of zeros
are introduced at the beginning of the matrix Ỹq. These appended zeros have
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Fig. 1. Illustration of (4) showing the relation between circulant matrix CỸq
and

Toeplitz matrix Ỹq

no effect on the calculation of the correlation matrix Rypyq
and thus we can

replace the multiplication of the window matrices in (9) by

W01R

R×RW01R

R×R = IR×R. (10)

This leads to

Rypyq
= W1L0

L×RF−1
R Ỹ

H

p ỸqFRW1L0
R×L (11)

= W1L0
L×RCỸpỸq

W1L0
R×L (12)

The correlation matrix in (11) is an equivalent expression to (2) in the fre-
quency domain. Thus, the normalization based on the inversion of (11) or (12)
for p = q = 1, . . . , P still corresponds to the exact normalization based on the
matrix inverse of a Toeplitz matrix as described in Sect. 3.1. In the following
it is shown how the inverse of (12) can be approximated to obtain an efficient
implementation.

Application of the Szegö Theorem. In the tutorial paper [3] the Szegö the-
orem is formulated and proven for finite-order Toeplitz matrices. A finite-order
Toeplitz matrix is defined as an R × R Toeplitz matrix where a finite L exists
such that all elements of the matrix with the row or column index greater than
L are equal to zero. It was shown in [3] that the R×R Toeplitz matrix of order
L is asymptotically equivalent to the R × R circulant matrix generated from
an appropriately complemented L × L Toeplitz matrix. Moreover, if the two
matrices are of hermitian structure, then the Szegö theorem on the asymptotic
eigenvalue distribution states:

1. The eigenvalues of both matrices lie between a lower and an upper bound.
2. The arithmetic means of the eigenvalues of both matrices are equal if the

size R of both matrices approaches infinity.

Then, the eigenvalues of both matrices are said to be asymptotically equally
distributed.
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It can be seen in (12) that the autocorrelation matrix necessary for the nor-
malization can either expressed as an L×L Toeplitz matrix Ryqyq

or an R×R
circulant matrix CỸqỸq

generated from the Toeplitz matrix by extending it ap-
propriately and multiplying it with some window matrices. According to [3] both
matrices are asymptotically equivalent. As both, the Toeplitz and the circulant
matrices are hermitian, it is possible to apply the Szegö theorem. The eigen-
values of CỸqỸq

are given in (11) as the elements on the main diagonal of the

diagonal matrix Ỹ
H

q Ỹq. The Szegö theorem states that the eigenvalues of the
R×R Toeplitz matrix generated by appending zeros to Ryqyq

can be asymptot-

ically approximated by Ỹ
H

q Ỹq for R → ∞. The benefit of this approximation
becomes clear if we take a look at the inverse of a circulant matrix. The inverse
of a circulant matrix can be easily calculated by inverting its eigenvalues

C−1
ỸqỸq

= F−1
R

(
Ỹ
H

q Ỹq

)−1
FR. (13)

By using the Szegö theorem we can now approximate the inverse of the Toeplitz
matrix Ryqyq

by the inverse of the circulant matrix (13) for R→∞

R−1
yqyq

≈W1L0
L×RF−1

R

(
Ỹ
H

q Ỹq

)−1
FRW1L0

R×L. (14)

This can also be denoted as narrowband approximation because the eigenvalues
Ỹ
H

q Ỹq can easily be determined as the DFT of the first column of the circu-
lant matrix CỸqỸq

. The inverse in (14) can now be efficiently implemented as a

scalar inversion because Ỹ
H

q Ỹq denotes a diagonal matrix. Moreover, it is im-
portant to note that the inverse of a circulant matrix is also circulant. Thus, after
the windowing by W1L0

... the resulting matrix R−1
yqyq

exhibits again a Toeplitz
structure.

In summary, (14) can be efficiently implemented as a DFT of the first column
of CỸqỸq

followed by a scalar inversion of the frequency-domain values and then
applying the inverse DFT. After the windowing operation these values are then
replicated to generate the Toeplitz structure of R−1

yqyq
. This approach reduces the

complexity from O(L2) to O(logR) (e.g., experiments in Sect. 5: R = 4L) which
resulted in a real-time implementation on a regular laptop. Obtaining a Toeplitz
matrix after the inversion has the advantage that in the update equation (1) again
a product of Toeplitz matrices has to be calculated which can be efficiently imple-
mented using fast convolutions. For more details see [1].

4 Regularization of the Matrix Inverse

Prior to inversion of the autocorrelation Toeplitz matrices according to (2) a
regularization is necessary as these matrices may be ill-conditioned. Here we
propose to attenuate the off-diagonals of Ryqyq

by multiplying them with the
factor ρ

R̆yqyq
= ρRyqyq

+ (1− ρ)diag
{
Ryqyq

}
, (15)
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where diag
{
Ryqyq

}
= σ2

yq
I. The weighting factor ρ is chosen such that 0 ≤ ρ ≤ 1.

Using this regularization the algorithm performs well even if there is just one ac-
tive source. It should be noted that for ρ = 0 the previous approach in [1] sum-
marized in Sect. 3.2 can be seen as a special case of the regularized version of the
novel normalization presented in Sect. 3.3.

As outlined in Section 3.3 the selective narrowband approximation leads to an
inversion of circulant matrices CỸpỸq

instead of Toeplitz matrices Ryqyq
. Thus,

analogously to (15) it is desirable for the proposed algorithm to also regularize
CỸpỸq

prior to inversion:

C̆ỸqỸq
= ρCỸqỸq

+ (1− ρ)diag
{
CỸqỸq

}
. (16)

In Section 3.3 it was pointed out that every circulant matrix can be expressed
using the DFT and inverse DFT matrix and a diagonal matrix

CỸqỸq
= F−1

R Ỹ
H

q ỸqFR. (17)

As shown in [3] the diagonal matrix Ỹ
H

q Ỹq contains the DFT elements of the
first column of the circulant matrix on its diagonal. Thus, by applying the diag
operator on CỸqỸq

we can write

diag
{
CỸqỸq

}
= ryqyq

(0) · I = σ2
yq
· I

= F−1
R σ2

yq
· I · FR. (18)

Thus, (16) can be simplified to a narrowband regularization in each frequency
bin as

C̆ỸpỸq
= ρF−1

R Ỹ
H

q ỸqFR + (1− ρ)σ2
yq

I (19)

= F−1
R

(
ρỸ

H

q Ỹq + (1− ρ)σ2
yq

I
)
FR. (20)

It should be noted that the regularization in (19) can also be applied to purely
narrowband algorithms (e.g., Sect. IV-C in [2]). There, considerable separation
performance improvements compared to a regularization which adds a constant
to the diagonal have been observed, too.

5 Experiments

The experiments were conducted using speech data convolved with measured
impulse responses of (a) speakers in a real room with reverberation time
T60 = 250ms at ±45◦ and 2m distance of the sources to the array and (b)
impulse responses of a driver and co-driver in a car (T60 = 50ms) with the array
mounted to the rear mirror. In the car scenario recorded background noise with
0dB SNR was added. The sampling frequency was fs = 16kHz. A two-element
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microphone array with a spacing of 20cm was used for both recordings. To evalu-
ate the performance, the signal-to-interference ratio (SIR) was calculated which
is defined as the ratio of the signal power of the target signal to the signal power
from the jammer signal. The demixing filter length L was chosen to 1024 taps,
the block length N = 2L and the DFT length R = 4L. The frameshift was L
samples, K = 8 blocks have been used to exploit nonstationarity and jmax = 5
iterations have been used as number of iterations for the offline update. The
adaptive stepsize proposed in [1] has been used with the minimum and maxi-
mum values μmin = 0.0001, μmax = 0.01, respectively and the forgetting factor
λ = 0.2. The factor ρ for the novel regularization was set to ρ = 0.5. The
demixing filters were initialized with a shifted unit impulse where wqq,20 = 1 for
q = 1, . . . , P and zeros elsewhere.

Robert Aichner et al.
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Fig. 2. SIR results for reverberant room (left) and car environment (right)

In Fig. 2 the results of the broadband algorithm with the three different nor-
malization schemes presented in Sect. 3 are shown. It can be seen that the novel
normalization scheme (solid) approximates the exact normalization (dashed)
very well and yields improved performance compared to the time-domain ap-
proximation (dash-dotted). Sometimes the novel algorithm even seems to slightly
outperform the exact normalization. This can be explained by the usage of an
adaptive stepsize [1] which may result in slightly different convergence speeds
for all three algorithms.

6 Conclusion

In this paper a novel efficient normalization scheme was presented resulting
in a novel algorithm combining advantages of broadband algorithms with the
efficiency of narrowband techniques. Moreover a regularization method was pro-
posed leading to improved convergence behaviour. Experimental results in real-
istic acoustic environments confirm the efficiency of the proposed approach.
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A Robust Method to Count and Locate Audio Sources
in a Stereophonic Linear Instantaneous Mixture

Simon Arberet, Rémi Gribonval, and Frédéric Bimbot

IRISA, France

Abstract. We propose a robust method to estimate the number of audio sources
and the mixing matrix in a linear instantaneous mixture, even with more sources
than sensors. Our method is based on a multiscale Short Time Fourier Trans-
form (STFT), and relies on the assumption that in the neighborhood of some
(unknown) scales and time-frequency points, only one source contributes to the
mixture. Such time-frequency regions provide local estimates of the correspond-
ing columns of the mixing matrix. Our main contribution is a new clustering al-
gorithm called DEMIX to estimate the number of sources and the mixing matrix
based on such local estimates. In contrast to DUET or other similar sparsity-based
algorithms, which rely on a global scatter plot, our algorithm exploits a local
confidence measure to weight the influence of each time-frequency point in the
estimated matrix. Inspired by the work of Deville, the confidence measure relies
on the time-frequency local persistence of the activity/inactivity of each source.
Experiments are provided with stereophonic mixtures and show the improved
performance of DEMIX compared to K-means or ELBG clustering algorithms.

1 Introduction

The problem of estimating the number of audio sources and the mixing matrix is
considered in a possibly degenerate noisy linear instantaneous mixture xm(τ) =
∑N

n=1 amnsn(τ)+ em(τ), 1 ≤ m ≤ M, more conveniently written in matrix form x(τ) =
As(τ)+ e(τ). While the M signals xm(τ) are observed, the number N of sources as well
as the M×N mixing matrix A, the N source signals sn(τ) and the noise signals em(τ)
are unknown.

Our approach relies on assumptions similar to those of DUET [1] and TIFROM [2,3].
It exploits the fact that for each source, there is at least one time-frequency region where
it is the only source contributing to the mixture. This assumption is related to sparsity
of the time-frequency representation of the sources, which is a well-known property of
a variety of audio sources. In many sparsity-based source separation approaches [4,5,1]
this property is exploited globally by drawing a scatter plot of the time-frequency values
X(t, f )}t, f – which more or less displays lines directed by the columns an of the mixing
matrix – and cluster them into N clusters. Such a global clustering approach is sensitive
to the parameters of the clustering algorithm, and to the fact that the direction of some
sources of weak energy might not appear clearly in the global scatter plot. Rather than
using a full scatter plot, our approach is to exploit the local time-frequency persistence
[2,3] of the activity/inactivity of each source to get a robust estimation of the number
N of sources and the mixing matrix A. This is similar to the TIFROM [2,3] method,

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 536–543, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Robust Method to Count and Locate Audio Sources 537

which –in the stereophonic case– uses the variance of the ratio X2(t, f )
X1(t, f ) within a time-

frequency region to determine whether the region contains a single active source or
more. Our main contributions are to:

1. use a multi-resolution framework (multiple window STFT) to account for the dif-
ferent possible durations of audio structures in each source.

2. rely on a local confidence measure to determine how valid is the assumption that
only one source contributes to the mixture in a given time-frequency region;

3. propose a new clustering algorithm called DEMIX, based on the confidence mea-
sure, that counts the sources and locates them.

In Section 2, after some reminders on related approaches to estimate the mixing matrix,
we give the outline of our approach and describe the confidence measure. In Section 3
we describe the new clustering algorithm DEMIX, and Section 4 is devoted to experi-
ments that compare several methods on audio mixtures.

2 Exploiting Sparsity and Persistence

Let us analyze briefly the most simple sparse source model: assume that at each time
τ, only one source n := n(τ) is active (sn(τ) �= 0 and sk(τ) = 0 ∀k �= n). In such a case,
the noiseless mixture at time τ is x(τ) = ansn(τ). In other word each point x(τ) ∈RM is
aligned on one of the columns an of the mixing matrix A. In fact this simple model is not
very sparse, but (the real and imaginary parts of) STFT values X(t, f ) approximately
displays such a behaviour, since the linear mixture model X(t, f ) = AS(t, f )+ E(t, f )
holds and in many time-frequency points (t, f ), only one source is dominant compared
to the others. However, there are points where several sources are similarly active,
which can make it difficult to estimate the mixing matrix by simply clustering the global
scatter plot.

2.1 Related Work

Many source separation methods for the stereophonic case (M = 2) use the idea of
sparsity in order to find mixing directions. In Bofill and Zibulevsky’s algorithm [4] and
DUET [1], the global (time-frequency) scatter plot is transformed into angular values
θ(t, f ) = tan−1 (X2(t, f )/X1(t, f )), and the columns of the mixing matrix are estimated
by finding maxima in an energy weighted smoothed histogram of these values. One of
the difficulties with this approach is that it seems difficult to adjust how much smoothing
must be performed on the histogram to resolve close directions without introducing
spurious peaks.

Another approach is the TIFROM method [2,3] which consists in selecting only
time-frequency points that have a great chance of being generated by only one source. In
TIFROM, for each time-frequency point (t, f ), the mean ᾱt, f and variance σ2

t, f of Time-
Frequency Ratios Of Mixtures α(t ′, f ′) = x̂2(t ′, f ′)/x̂1(t ′, f ′) are computed using all
times t ′ within a neighborhood of t and f ′ = f . By searching for the lowest value of the
variance, a time-frequency domain is located where essentially one source is present,
and the corresponding column of A is identified as being proportional to (1, ᾱt, f )T .
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However, it seems quite difficult to exploit TIFROM to actually determine how many
sources are present in the mixture and find their directions. In addition, the asymmetric
roles given by α(t ′, f ′) to the left and right channels of a stereophonic mixture is not
fully satisfying as for sources located almost on the first channel (i.e., with mixing
column close to (0,1)T ), the corresponding variance are likely to remain high, even at
good time-frequency points.

2.2 Proposed Approach

We propose to overcome these limitations of TIFROM by replacing the local vari-
ance and mean of the ratios x̂2(t, f )

x̂1(t, f ) with the principal direction of the local scatter

plot (x̂1(t, f ), x̂2(t, f )), together with a measure of how strongly it points in its prin-
cipal direction. For this, we first define time-frequency neighborhoods Ωt, f around
each time-frequency point (t, f ). A discrete STFT with a window of size L computed
with half overlapping windows and no zero padding provides values on the discrete
time-frequency grid t = kL/2, k ∈ Z and f = l/L, 0 ≤ l ≤ L/2. A possible shape of
time-frequency neighborhood of a time-frequency point (t, f ) is Ωt, f = {(t +kL/2, f +
k′/L), |k| ≤ ST , |k′| ≤ SF} but the approach is amenable to using or combining several
shapes and size of neighborhoods. Each neighborhood provides a local scatter plot cor-
responding to a M× card(Ωt, f ) matrix XΩt, f with entries Re[X(t ′, f ′)] and Im[X(t ′, f ′)]
for (t ′, f ′) ∈Ωt, f . Performing a Principal Component Analysis (PCA) on XΩt, f we ob-
tain a principal direction as a unit vector û(t, f ) ∈ RM . In the stereophonic case M = 2,
the direction of the estimated principal unit vector û(t, f )∈R2 is equivalently translated
into an angle θ̂(t, f ).

2.3 A Confidence Measure

To have an idea of how likely it is that the unit principal vector û(t, f ) corresponds to a
direction of the mixing matrix, we need to know with what confidence we can trust the
fact that a single source is active in the corresponding local scatter plot. We propose to
rely again on PCA to define the confidence measure

T̂ (t, f ) := λ̂1(t, f )/
M

∑
i=2

λ̂i(t, f ) (1)

where λ̂1(t, f )≥ . . .≥ λ̂M(t, f ) are the eigenvalues of the M×M matrix XΩt, f XT
Ωt, f

. As
explained in Appendix A, this measure can be viewed as a local signal to noise ratio
between the dominant source and the contribution of the other ones together with the
noise, so we will often express it in deciBels, that is to say 20log10 T̂ .

Figure 1(a)-(b) shows the local scatter plot in two time-frequency regions: one where
many sources are simultaneously active, and another one where essentially one source
is active. It illustrates the good correlation of the value of the confidence measure with
the validity of the tested hypothesis.

Figure 2(a) displays the collection of pairs (θ̂(t, f ),20log10 T̂ (t, f )), or direction-
confidence scatter plot (DCSP), obtained by PCA for all time-frequency regions of the
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Fig. 1. Two local scatter plots for a stereophonic noiseless mixture of four audio sources. Solid
lines indicate all possible true directions, the dashed line indicates the direction estimated by
PCA. (a) Local scatter plot in a region where multiple sources contribute to the mixture. The
measured confidence value is low (9.4 dB) (b) Region where essentially only one source con-
tributes to the mixture. The measured confidence value is high (101.4 dB) and the dashed line
coincides with one of the solid lines.

signal, together with four lines indicating the angles corresponding to the true underly-
ing directions. One can observe that the higher the confidence, the smaller the average
distance between the point and one of the true directions. We discuss in Appendix A
a statistical analysis of the Significance of the confidence measure in the stereophonic
case, which is used to build the DEMIX clustering algorithm described in the next
section.

3 The DEMIX Algorithm

We propose a clustering algorithm called DEMIX (Direction Estimation of Mixing ma-
trIX) which estimates both the number of sources and the directions of the columns of
the mixing matrix. The algorithm is deterministic and does not rely on a prior knowl-
edge on the number N of columns of A. However, in the case where this number is
known the algorithm can be adapted to incorporate this information. The algorithm is
described in the stereophonic case M = 2 using angles θ̂ to denote mixing directions,
but the approach extends to M > 2 mixtures by clustering the directions û(t, f ) instead.

The first step of the algorithm consists in iteratively creating K clusters by selecting
points (θ̂k, T̂k) with highest confidence and aggregating sufficiently close points around
them. The second step is to estimate the direction θ̂c

k of each cluster. Finally, we use
a statistical test to eliminate non significant clusters and keep N̂ ≤ K clusters which
centroids provide the estimated directions of the mixing matrix.

3.1 Step 1: Cluster Creation

DEMIX iteratively create K clusters Ck ⊂P –where P is the DCSP– starting from K = 0,
PK = P0 = P:
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1. find the point (θ̂K , T̂K) ∈ PK with the highest confidence;

2. create a cluster CK with all points (θ̂, T̂ ) ∈ P “sufficiently close” to (θ̂K , T̂K);
3. if PK+1 := PK \CK = /0, stop; otherwise increment K← K +1 and go back to 1.

Note that in step 2 the newly created cluster might interesect previous clusters. To give
a precise meaning to the notion of being “sufficiently close” to (θ̂K , T̂K), we rely on
the statistical model developped in Appendix A and include in CK all points (θ̂, T̂ )
such that |θ̂− θ̂K | ≤ σ(T̂ , T̂K) where the expression of σ(T̂ , T̂K) is given in Equa-
tion (8).

3.2 Step 2: Direction Estimation

Since the clusters might intersect, the estimation of the centroid θ̂c
k of a cluster Ck is

based on a subset C′′k ⊂ Ck of “unbiased” points that belong exclusively to Ck. Due to
lack of space we skip the description of how these subsets are selected. In light of the
statistical model developped in Appendix A, the points (θ̂, T̂ ) ∈C′′k are assumed inde-
pendent and distributed as θ̂∼N

(
θtrue

k ,σ2
θ(T̂ )

)
where θtrue

k is the unknown underlying

direction and σ2
θ(T̂ ) is defined in equation (6). The centroid of the cluster if therefore

defined as the minimum variance unbiased estimator of θtrue
k

θ̂c
k := ∑

(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ )θ̂/ ∑

(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ ). (2)

3.3 Step 3: Cluster Elimination

The last step aims at removing possibly spurious clusters among the K that have been
built. We propose to use the variance 1/∑(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ ) of the centroid estimator θ̂c

k

to help decide which clusters should be kept. We define two strategies: (DEMIXN) if
we know the true number N of true directions, we keep the directions of the N clusters
with the smallest centroid variance; (DEMIX) otherwise, we remove the directions of a
clusters Cj whenever there is another cluster Co �= Cj with

|θ̂c
j− θ̂c

o| ≤ q2/ ∑
(θ̂,T̂ )∈C′′j

σ−2
θ (T̂ ) (3)

where the quantile q2 defines a confidence interval (see the Appendix). It is also possible
to replace σθ with a slightly modified version σ̂θ relying on a quantile q1 to define a
confidence interval, see Eq. (7). To finish, we recompute the centroids of the clusters
defined by the remaining directions, as described in Sections 3.1 and 3.2.

4 Experiments

We compared on several test mixtures the proposed algorithms (DEMIX and DEMIXN)
and the classical K-means [6] and ELBG [7] clustering algorithms. Two variants of
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K-means and ELBG were considered, one on the scatter plot of tan−1(X2/X1)(t, f ),
the other one on that of the angles θ̂(t, f ) obtained after the proposed local PCA.
The mixtures were based on signals taken from a set of 200 Polish voice excerpts
of 5 seconds sampled at 4kHz1. Noiseless linear instantaneous mixtures were per-
formed with mixing matrices in the most favorable shape where all directions are
equally spaced (as in [4]), with a number of directions ranging from N = 2 to N = 15.
For each N, we chose T = 20 differents configurations of signals sources among the
200 available. A first measure of performance was the rate of success in the esti-
mation of the number of sources (for DEMX and DEMXN only, because K-means
and ELBG have a fix number of clusters). We observed that up to N = 8 sources,
DEMIX estimates correctly the number of directions in more than four cases out of
five, but when N > 10 it always fails to count the number of sources. DEMIXN is sim-
ilarly successful up to N = 10 sources and always fails for N > 12. The reason why
DEMIXN can fail in finding the right number of sources while it is known is that the
cluster creation stage might result in K < N clusters. In case success, we could also
measure the angular mean error (AME) which is the mean distance in degrees be-
tween true directions and estimated ones. Distances are computed in the best way to
pair estimated directions with the true ones. For each tested algorithm, we computed
the average AME among test mixtures where N̂ = N. Since K-means and ELBG are
randomly initialized, we ran them I = 10 times for each test mixture and focussed
on the smallest AME over these 10 runs, which gives an optimistic estimate of their
performance.

As can be seen on Figure 2(b), DEMIX and DEMIXN algorithms obtain the best
performance. Since the AME for DEMIX and DEMIXN can only be measured when a
correct number of sources is estimated, it is not computed when N > 10 (resp. N > 12)
for DEMIX (resp. DEMIXN).
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Fig. 2. (a) Direction-confidence scatter plot of points (θ̂,20log10 T̂ ) obtained by PCA on time-
frequency regions based on a single STFT with window size is L = 4096 and neighborhoods of
size |Ωt, f |= 10. (see section 2.3). (b) Experimental results of section 4.

1 The signals are available at http://mlsp2005.conwiz.dk/index.php?id=30
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5 Conclusion

We designed,developped, and evaluated a new algorithm to estimate the source direc-
tions of the mixing matrix in the instantaneous underdetermined two-sensor case. The
proposed DEMIX algorithm yields better experimental results than those obtained by
K-means and ELBG clustering algorithms on the same multiscale STFT data. Further-
more DEMIX estimates itself the number of mixing sources. This algorithm was de-
signed using a confidence measure which is one of the main contribution of the article.
The confidence measure allows to well detect regions of time-frequency points where
essentially one source is active. This confidence measure could also be used in the
source separation process, in addition with the estimated mixing matrix, to determine
which source should be estimated in which time-frequency region, possibly providing
a fully adaptive local (pseudo) Wiener filter. Further works include the extension of the
DEMIX algorithm to delayed and convolved mixtures. We are also looking into the
practical aspects and validation of the algorithm for source separation with more than
two sensors.
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A Statistical Analysis in the Stereophonic Case

In this appendix we make a statistical model in the stereophonic case (M = 2) to better
understand the significance of the confidence measure T̂ (t, f ) as a measure of how ro-
bustly θ̂(t, f ) estimates the “true” underlying direction of the dominant source. For that,
we model the STFT coefficients of the most active source in the time-frequency region
Ωt, f with a centered normal distribution of (large) variance σ2, and the contribution
of all other sources, plus possibly noise, as 2-dimensional centered normal distribution
with covariance matrix σ̃2Id2. Letting a be the normalized (‖a‖2 = 1) column of the
mixing matrix A which corresponds to the most active source, then the model is that for
(t ′, f ′) ∈Ωt, f we have:

x(t ′, f ′) = s(t ′, f ′)a+n(t ′, f ′) (4)
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where
s(t ′, f ′)∼N

(
0,σ2) , n(t ′, f ′)∼N

(
0, σ̃2Id2

)
(5)

therefore x(t ′, f ′) ∼ N
(
0, σ̃2Id2 +σ2aaT

)
. Let λ1 ≥ λ2 be the eigenvalues of the co-

variance matrix Σ := σ̃2Id2 +σ2aaT and u = (u1,u2)T be a unit eigenvector correspond-

ing with λ1. By elementary linear algebra we have λ1
λ2

= σ̃2+σ2

σ̃2 = 1+ σ2

σ̃2 and, if λ1 > λ2

(i.e., σ > 0), u is colinear to a. Therefore, the true direction θtrue = tan−1( a2
a1

) is given
by the direction of the principal component. Note that in this model λ1/λ2 is related to
the “local signal to noise ratio” σ2/σ̃2 between the most active source and the others.

A.1 Precision of PCA

Since the values θ̂(t, f ) and T̂ (t, f ) = λ̂1/λ̂2 are computed by PCA on sample of m :=
card(Ωt, f ) points, they only provide estimates of the true direction and of the “true”
confidence λ1/λ2 with a finite precision which we want to estimate as a function of the
sample size m. For that, we use the following result which is an immediate application
of [8, Theorems 4.11, 5.7, 9.4] : for large sample size, T̂ /(λ1/λ2) converges in law to
N
(
1,σ2

T
)

with σ2
T = 4/(m−1), and θ̂ converges in law to N (θtrue,σ2

θ(λ1/λ2)) with

σ2
θ(T ) :=

1
m−1

T
(T −1)2 . (6)

A.2 Confidence Intervals

If λ1/λ2 is known, then we know the standard deviation of the estimated angle θ̂ with
respect to the true one. Since we know the distribution of the confidence measure T̂
which is close, but not equal to λ1/λ2, we can only predict the deviation of θ̂ with
respect to a “true” direction” using confidence intervals. With probability exceeding
1−α(q1)/2, we have λ1/λ2 ≥ T̂ /(1+q1σT ). Therefore, instead of σ2

θ(T̂ ) we can use

σ̂2
θ(T̂ ) := σ2

θ

(
T̂ /(1+q1σT )

)
(7)

and model θ̂ as θ̂∼N
(

θtrue, σ̂2
θ(T̂ )

)
instead of θ̂∼N

(
θtrue,σ2

θ(T̂ )
)

.

Neglecting the possible dependencies between θ̂ and T̂ and following the same
path, we get a statistical upper bound |θ̂− θtrue| ≤ q2σ̂θ(T̂ ) with confidence level
1−α(q2)/2. We use it to determine whether two points belong to the same cluster
in the cluster creation step. This leads to the definition

σ(T̂ , T̂ c) = q2

(
σ̂θ(T̂ )+ σ̂θ(T̂ c)

)
(8)

We use quantil values q1 = q2 = 2.33 to provide confidence levels of 99 percent.
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Abstract. In this paper we present a new source separation method
based on dynamic sparse source signal models. Source signals are mod-
eled in frequency domain as a product of a Bernoulli selection variable
with a deterministic but unknown spectral amplitude. The Bernoulli vari-
ables are modeled in turn by first order Markov processes with transition
probabilities learned from a training database. We consider a scenario
where the mixing parameters are estimated by calibration. We obtain
the MAP signal estimators and show they are implemented by a Viterbi
decoding scheme. We validate this approach by simulations using TIMIT
database, and compare the separation performance of this algorithm with
our previous extended DUET method.

1 Introduction

Signal Separation is a well studied topic in signal processing. Many studies were
published during the past 10 years, each of them considering the separation
problem from different points of view. Once can use model complexity to classify
these studies into four categories:

1. Simple models for both sources and mixing. Typical signals are modeled
as independent random variables, in their original domain, or transformed
domain (e.g. frequency domain). The mixing model is either instantaneous,
or anechoic. The ICA problem [1], DUET algorithm ([2]), or [3] belong to
this category;

2. Complex source models, but simple mixing models. An example of this type
is separation of two speech signals from one recording using one microphone.
In this case, source signals are modeled using complex stochastic models, e.g.
AR processes in [4], HMMs in [5], or generalized exponentials in [6];

3. Complex mixing models, but simple source models. This is the case of stan-
dard convolutive ICA. For instance source signals are i.i.d. but the mixing
operator is composed of unknown transfer functions. Thus the problem turns
into a blind channel estimation as in e.g. [7-9];

4. Complex mixing and source models. For instance [10] uses AR to model
source signals, and FIR transfer functions for mixing.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 544–551, 2006.
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We chose the complexity criterion in order to point out the basic trade-off of
signal separation algorithms. A more complex mixing or source model may yield
a better performance provided it fits well the data. However more complex mod-
els are less robust to mismatches than a simpler model, and may perform un-
expectedly worse on real world data. In our prior experiments [11] we found
that simple signal and mixing models yield surprisingly good results on real
world data. Robustness to model uncertainties explains these good results. In-
deed this is the case with DUET. The basic idea of the DUET approach is
the assumption that for any time-frequency point, only one signal from the
ensemble of source signals would use that time-frequency point. In [12] we ex-
tended this assumption in a system with D sensors to what we called gener-
alized W-disjoint orthogonality hypothesis by allowing up to D − 1 source sig-
nals to use simultaneously any time-frequency point. In both cases source sig-
nals were assumed mutually independent across both time and frequency. In
other words, any two different time-frequency coefficients of the same source are
assumed independent. However we would like to increase the power of source
separation particularly when there exists prior knowledge about the sources
(see also [5,6,13]). In this paper we propose an incremental increase in source
model complexity combined with simple mixing model that conforms to our
basic belief that models should not be more complicated than what is really
needed in order to solve the problem. For this we allow for statistical depen-
dencies of source signals across time. More precisely [14] postulates a signal
model that states that the time-frequency coefficient S(k, ω) of a (speech) sig-
nal s(t) factors as a product of a continuous random variable, say G(k, ω), and
a 0/1 Bernoulli b(k, ω), S(k, ω) = b(k, ω)G(k, ω). This formula models sparse
signals. See also [15] for a similar signal model. Denoting by q the proba-
bility of b to be 1, and by p(·) the p.d.f. of G, the p.d.f. of S turns into
pS(S) = qp(S) + (1 − q)δ(S), with δ, the Dirac distribution. For L indepen-
dent signals S1, . . . , SL, the joint p.d.f. is obtained by conditioning with respect
to the Bernoulli random variables. The rank k term, 0 ≤ k ≤ N , is associated
to a case when exactly k sources are active, and the rest are zero. In [12] we
showed that by truncating to the first N+1 terms the approximated joint p.d.f.
corresponds to the case when at most N sources are active simultaneously, which
constitutes the generalized W-disjoint hypothesis. This paper extends the signal
model introduced before by assuming the Bernoulli variables are generated by
a Markov process, while the complex amplitudes G(k, ω) are modeled as un-
known deterministic variables. The application we target is a meeting transcrip-
tion system (see Figure 1) where an array of microphones records the meeting,
and the convolutive mixing parameters are learned during an initial calibration
phase. Section 3 describes the statistical signal estimators. We show that sig-
nal estimation is similar to a Viterbi decoding scheme. Section 4 presents the
methods for learning the transition probabilities of source models, and of the
mixing parameters. Section 5 contains numerical results, and is followed by the
conclusion section.
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Fig. 1. Transition probabilitites of one signal for τ = 0.1 (left plot), and the experi-
mental setup (right plot)

2 Signal and Mixing Models

2.1 Convolutive Mixing Model

Consider the measurements of L source signals by an array of D sensors. In time
domain the mixing model is xd(t) =

∑L
l=1 hd,l % sl(t) + nd(t), 1 ≤ d ≤ D where

n1, . . . , nD are sensor noises, and hd,l are the impulse responses from source l
to sensor d. We renormalize the sources by absorbing h1,l into the definition of
source sl.

We denote by Xd(k, ω), Sl(k, ω), Nd(k, ω) the short-time Fourier transform
of signals xd(t), sl(t), and nd(t), respectively, with respect to a window W (t),
where k is the frame index, and ω the frequency index. Then the convolutive
mixing model turns into Xd(k, ω) =

∑L
l=1 Ad,l(ω)Sl(k, ω) + Nd(k, ω). When no

danger of confusion arises, we drop the arguments k, ω in Xd, Sl and Nd.

2.2 Signal Model

Consider a source signal s(t), 1 ≤ t ≤ T , and its associated short-time Fourier
transform S(k, ω), 1 ≤ k ≤ Kmax, 0 ≤ ω ≤ Ω. Each time-frequency coeffi-
cient S(k, ω) is modeled by the product b(k, ω)G(k, ω) as before, where b is a
Bernoulli (0/1) random variable, and G is an unknown deterministic complex
amplitude. In previous work we assumed {b(k, ω) ; k, ω} is a set of independent
random variables. In this paper we preserve independence along the frequency
index, but we introduce a Markov dependence along the time index. The in-
dependence in frequency is supported by the remark that local stationarity in
time domain implies decorrelation of frequency components. Along the time in-
dex, our assumption amounts to P (b(k, ω)|b(k− 1, ω), b(k− 2, ω), . . . , b(1, ω)) =
P (b(k, ω)|b(k − 1, ω)) = πω(b(k, ω), b(k − 1, ω)) where {πω} is the set of 2 × 2
matrices of probabilities of transition. By successive conditioning we obtain that:
P ({b(k, ω) ; k, ω}) =

∏
ω P (b(1, ω))

∏Kmax

k=2 πω(b(k, ω), b(k − 1, ω)). For each
source in the mixture we assume we have a database of training signals where we
learn the matrices of transition probabilities and the set of initial probabilities
(see Section 5).
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For a collection of L source signals, we assume that only N Bernoulli variables
are nonzero; the rest are zero. We denote by {(bl(k, ω))1≤l≤L; k, ω} the collection
of Bernoulli random variables, σ(k, ω) = {l ; bl(k, ω) = 1} the N -set of nonzero
components of S(k, ω), (πlω)1≤l≤L,0≤ω≤Ω the collection of transition probability
matrices, (P lω)1≤l≤L,0≤ω≤Ω the collection of initial probabilities. Then the joint
pdf becomes:

P ({bl(k, ω) ; l, k, ω}) =
∏
ω

Q0
ω(σ(1, ω))

∏
k≥2

Qω(σ(k, ω), σ(k − 1, ω))

where Qω(σ(k, ω), σ(k − 1, ω)) =
∏L
l=1 π

l
ω(bl(k, ω), bl(k − 1, ω)), Q0

ω(σ(1, ω)) =∏L
l=1 P

l
ω(bl(1, ω)). The collection of all subsets σ(k, ω) defines a trajectory

through the selection space SNL , the set of N -subsets of {1, 2, . . . , L}. Thus for
each frequency ω we associate Σω = {σ(k, ω) ; 1 ≤ k ≤ Kmax} the selection
space trajectory. Source estimation is then equivalent to estimating both the
selection space trajectories (Σω)ω and the complex amplitudes {Gl(k, ω) ; l ∈
σ(k, ω)}.

In this paper we assume that the mixing model is given by a convolutive
mixture, signals Sl(k, ω) satisfy the signal model above, and noise components
Nd(k, ω) are Gaussian i.i.d. with zero mean and spectral variance σ2.

Our problem is: Estimate the source signals (s1(t), . . ., sL(t))1≤t≤T given
measurements (x1(t), . . ., xD(t))1≤t≤T of the linear convolutive mixing model,
and assuming the following:

1. The mixing matrix A = (Ad,l(ω))1≤d≤D,1≤l≤L is known;
2. The noise {n(t)} is i.i.d Gaussian with zero mean and known spectral

power σ2;
3. The components of signal S are independent and satisfy the stochastic model

presented before, with known probabilities of transition (πlω)l,ω and initial
probabilities P lω;

4. At every time-frequency point (k, ω) at most N components of S(k, ω) are
non-zero, and N is known.

3 MAP Signal Estimation

In this paper we estimate the signals (sl(t))l,t by maximizing the posterior distri-
bution of the Bernoulli variables, and the likelihood of the complex amplitudes.
Alternatively, using a uniform prior model on the amplitudes, our solution is a
MAP estimator of both the selection variables and the complex amplitudes. The
criterion to maximize is:

I =
∏
ω

P ({X(k, ω); 1 ≤ k ≤ Kmax}|{bl(k, ω), G(k, ω); l, 1 ≤ k ≤ Kmax})

×P ({bl(k, ω); l, 1 ≤ k ≤ Kmax}) (1)

We replace the Bernoulli variables by the set-valued variablesΣω=(σ(k, ω))k,ω,
and we consider the reduced complex amplitudeN -vector Gr(k, ω) corresponding
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to nonzero components of S (in turn selected by σ(k, ω)). We let Ar(k, ω) denote
the D×N mixing matrix whose columns corresponds to the nonzero components
of S(k, ω): (Ar(k, ω))d,m = Ad,l(m)(ω), where l(m) is the mth element of σ(k, ω).
The first term decouples into a product of likelihoods at each time k; the second
term is estimated before. Putting these two expressions together, the criterion to
maximize becomes (up to a multiplicative constant term):

I(Σ,Gr) =
∏
ω

[∏
k

exp{− 1
σ2 ‖X −ArGr‖2}

]

×

⎡⎣∏
k≥2

Qω(σ(k, ω), σ(k − 1, ω))

⎤⎦Q0
ω(σ(1, ω))

Given σ(k, ω), at every (k, ω) we can solve for Gr(k, ω) and obtain Gr(k, ω) =
(A∗
rAr)

−1A∗
rX. Taking the logarithm, flipping the sign, ignoring some constants,

and replacing Gr by the above estimate, we obtain the following optimization
problem

minΣ

∑
ω

∑
k

[X∗(1 − Ar(A∗
rAr)−1

A
∗
r)X − σ2 logQω(σ(k, ω), σ(k − 1, ω))] − σ2 logQ0

ω(σ(1, ω))

Let us denote by

C(σ(k, ω)) = X(k, ω)∗(1 − Ar(k, ω)(A∗
r(k, ω)Ar(k, ω))−1A∗

r(k, ω))X(k, ω)

and
D(σ(k, ω), σ(k − 1, ω)) = −σ2 logQ(σ(k, ω), σ(k − 1, ω))

for k ≥ 2. Then the optimization becomes

min
Σω

∑
k≥2

C(σ(k, ω)) + D(σ(k, ω), σ(k − 1, ω)) + C(σ(1, ω) − Q0
ω(σ(1, ω))

at every frequency ω. The solution represents a trajectory Σω in the selec-
tion space (SNL )Kmax . The optimization can be efficiently implemented using
a backward-forward best path propagation algorithm (Viterbi) widely used in
channel decoding problems. The algorithm is as follows:

Algorithm

Step 1. (Initialization) Set k = Kmax, and J∗
k (s) = 0 for all s ∈ SNL .

Step 2. (Backward propagation) For all s ∈ SNL N -subsets of {1, 2, . . . , L}
repeat
– For all s′ ∈ SNL compute J(s, s′) = J∗

k (s
′) + C(s′) + D(s′, s)

– Find the minimum over s′, and set J∗
k−1(s) = mins′J(s, s′)

Step 3. Decrement k = k − 1, and if k > 1 go Step 2.
Step 4. At k = 1, replace C(s′) by C(s′) − σ2 logQ0

ω(σ(1, ω)) and
perform Step 2. Denote σ∗(1, ω) = argminsJ

∗
1 (s).

Step 5. (Forward iteration) Set k = 2 and repeat until k = Kmax:
– For all s ∈ SNL compute J(s) = C(s) + D(s, σ∗(k − 1, ω))
– Find the minimum and set σ∗(k, ω) = argminsJ(s)
– Increment k = k + 1.



Convolutive Demixing with Sparse Discrete Prior Models for Markov Sources 549

4 Model Training

4.1 Transition and Intial Probabities Estimation

For training we used a fixed sentence uttered by the corresponding speaker.
We assumed the recorded voice is made of two components: one part which is
critical to understanding, and a second component which can be removed loss-
lessly from an information point of view. Thus s = scritic + sextra. Assuming
the first component has a Laplace (or even peackier) distribution in frequency
domain whereas the second component is Gaussian, the estimation of scritic is
done by (soft, or hard) thresholding of the measured signal. We chose a thresh-
old proportional to square root of signal spectral power. Thus, in case of hard
thresholding Scritical(k, ω) = S(k, ω) if |S(k, ω)| ≥ τ

√
Rs(ω), and is zero other-

wise. The factor τ is chosen so that the thresholded signal sounds almost iden-
tical to the original signal s. Subjective experimentation showed that a factor
τ = 0.1 satisfies this requirement. Once {Scritical(k, ω); k, ω} has been obtained,
we estimate the binary sequence {b(k, ω); k, ω} simply by setting b(k, ω) = 1
for Scritical(k, ω) �= 0, and 0 otherwise. From the binary sequence {b(k, ω); k, ω}
we estimate the transition probability matrices πω and initial probabilitites Pω
by maximum likelihood estimators: πω(0, 0) = N00

N00+N01
, πω(1, 0) = 1− πω(0, 0),

πω(1, 1) = N11
N10+N11

, πω(0, 1) = 1− πω(1, 1), Pω(1) = N1
N0+N1

, Pω(0) = 1−Pω(1),
where N0, N1, N00, N01, N10, N11 are, respectively, the number of 0’s, 1’s, 00’s,
01’s, 10’s, 11’s in the binary training sequence (b(k, ω))k. Figure 1 plots an ex-
ample of the distributions πω(0, 0) and πω(1, 1).

4.2 Mixing Parameters Estimation

Consider the case one source only is active. Then the frequency representation
of the recorded signal turns into X(k, ω) = a(ω)S(k, ω) + N(k, ω), where a(ω)
is the “steering vector” associated to source S. We use the maximum likelihood
estimation to estimate a. Assuming Gaussian i.i.d. noise, the resulting maximum
likelihood estimator yields â(ω) the eigenvector corresponding to the largest eigen-
value of the sampled covariance matrix, normalized so that â1 = 1, Râ = λâ,
R(ω) =

∑
kX(k, ω)X∗(k, ω).

5 Experimental Evaluation

Consider the setup of a meeting recording system as depicted in Figure 1:
L = 7 speakers placed around a conference table are recorded by a video camera
(for eventual postprocessing) and an array of microphones. During the calibra-
tion phase both the source model parameters and the mixing parameters were
learned. In our simulations we used a linear array with inter-microphone dis-
tance da = 5 cm and sampling frequency fs = 16 KHz. The simulated mixing
environment was weakly echoic with a reverberation time below 10ms. We used
4 female and 3 male speakers from the TIMIT database at positions located at
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multiple of 30 degrees. Testing was done on wavefiles of around 10 seconds of nor-
mal speech. We added Gaussian noise with σ = 0.1 (note σ is an absolute value
rather than relative to signals). We tested for N = 1 and N = 2 (the number
of simultaneous speakers), even though all L = 7 speakers were active most of
the time. We estimated each source using the MAP-based Estimation Algorithm
presented in Section 4 for four choices of priors: 1) use the initial distribution and
transition probabilities learned from the training database as presented before;
2) use uniform initial distribution probabilities but the transition probabilities
learned from the training database; 3) use uniform transition probabilities, but
initial probabilities learned from the training database; 4) use uniform distribu-
tions for both the initial distribution and for the transition probabilities. This
last combination of priors turns our MAP algorithm into the extended DUET
presented in [12].

We compared these algorithms with respect to the Signal To Interference Plus
Noise Ratio (SINR) Gain. The SINR gain for component l is defined by:

SINRgl = oSINR − iSINR = 10 log10
E(x1 − sl)
E(ŝl − sl)

where E(z) is the energy of signal z, and x1, sl, ŝl are respectively, the microphone
1 measured signal, input signal l at microphone 1, and the lth estimated signal.
The larger the SINRg the better. We experimentally verified that the choice for
initial distribution probabilities does not have almost any effect on the outputs.
In Figure 2 we plot the SINR gain as function of number of microphones D, for
our setup with L = 7 sources, and a variable number of microphones ranging
from 2 to 6, for two hypotheses: N = 1 and N = 2, respectively. We notice the
gain is an increasing function of number of microphones, and our MAP algorithm
(called Markov, in Figure) outperforms DUET by about 1 dB in average.
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Fig. 2. SINR Gain for N = 1 (left plot) and N = 2 (right plot), for L = 7 sources and
a variable array ranging from 2 to 6 microphones

6 Conclusions

In this paper we presented a novel signal separation algorithm that extends our
past DUET algorithm. The algorithms works for underdetermined cases, when
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there are fewer sensors than sources, and in the presence of noise. The main
assumptions are: (i) source signals have sparse time-frequency representations
(although another representation, such as time-scale, would work as well); (ii)
each frequency is independent from one another; (iii) the binary selection vari-
ables obey a homogeneous Markov process model, with transition and initial
probabilities learned from a training database. We derived the MAP estimator
of binary selection variables and ML of the complex signal TF coefficients, and
show it can be efficiently implemented using a Viterbi decoding scheme. Next
we validated our solution in a 7-voice, and 2 to 6 calibrated microphone array
setup. We obtained an improvement of about 1 dB compared with the previous
DUET algorithm, and no noticeable distortions.
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Abstract. We address the problem of Speech Enhancement in a setting
where parts of the time-frequency content of the speech signal are miss-
ing. In telephony, speech is band-limited and the goal is to reconstruct a
wide-band version of the observed data. Quite differently, in Blind Source
Separation scenarios, information about a source can be masked by noise
or other sources. These masked components are “gaps” or missing source
values to be “filled in”. We propose a framework for unitary treatment of
these problems, which is based on a relatively simple “spectrum restora-
tion” procedure. The main idea is to use Independent Component Anal-
ysis as an adaptive, data-driven, linear representation of the signal in the
speech frame space, and then apply a vector-quantization-based match-
ing procedure to reconstruct each frame. We analyze the performance of
the reconstruction with objective quality measures such as log-spectral
distortion and Itakura-Saito distance.

1 Introduction

Speech enhancement for real-world environments is still a signal processing chal-
lenge in spite of steady progress over the last forty years [1]. The work reported
here addresses this problem in a setting where signal corruption consists of “hid-
ing”, zeroing out, various parts of the time-frequency (TF) content. Alterna-
tively, we refer to this TF information as “missing” from the observed signal
spectrogram. Our objective is to reconstruct the signal, or at least to infer the
missing content, using the observable TF content and clean speech training data.

Two very different speech enhancement applications motivate this approach.
On one side, present digital telephony operates at the minimum bandwidth
requirements (e.g. 300Hz − 4kHz) although speech is much richer. Wide-band
speech is desirable. This is the bandwidth extension problem (BWE) [2] and is
typically approached using clean speech models. Linear predictive coding analy-
sis decomposes the estimation problem into the extension of the excitation signal
and the extension of the spectral envelope. The excitation can be extended e.g.
with a spectral copy of the low-frequency excitation or by bandpass modulated
Gaussian noise [3,4]. The spectral envelope can be extended using pattern recog-
nition techniques relying on a Hidden Markov Model (HMM) of clean speech.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 552–560, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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On the other side, source extraction using blind source separation (BSS) tech-
niques results in a limited fidelity reconstruction of the speech sounds in complex
auditory scenarios. One reason is that many of the BSS techniques make simpli-
fying assumptions about the underlying signal or mixing models, e.g. anechoic
or single-path propagation models or sparsity and disjointness of TF represen-
tations, in order to be able to deal with more difficult realistic cases [5]. Such
techniques do not presently take advantage of prior statistical speech models
[6]. Statistical models of clean speech (e.g. [7]) capture the principal spectral
shapes, or speech units, and their dynamics in order to be able to distinguish
and recognize the speech units. This is the case of Hidden Markov Models in
present Automatic Speech Recognition technology.

In our approach, the pattern of missing data could be either time invari-
ant or variable in time, however the conceptual approach for restoring the
signal does not depend on it and is rather general. We organize the descrip-
tion of the method as follows. The formal description of the problem in Sec-
tion 2 is followed by the training-based procedure for the inference of missing
data, and by the analysis of alternative choice of transforms. Section 5 presents
experimental results. Section 6 highlights the main contributions and future
work.

2 Formal Description and Notations

Given an observed signal x̃ as an altered version of a “clean” signal xc, we
want to reconstruct xc. Let X̃ and respectively Xc be the Short-Time Fourier
Transform (STFT) versions of x̃ and xc, where the frame length is denoted by
L, the overlap by δ, and the length of x̃ is N . We can therefore consider X̃ and
Xc as L× "(N − δ) / (L− δ)# complex matrices.

To intuitively describe the missing data locations, we introduce the concept
of “mask” associated with an observed signal. A mask M is simply a binary
(0-1) matrix over TF domain, of the same size as X̃, with the obvious meaning:
M (ω, t) = 0, if and only if the TF point at “location” (ω, t) in the spectrogram
X̃ is missing. In this case, we regard X̃ as being a “masked” version of Xc:

X̃ = M �Xc (1)

where � is point-wise multiplication. The equation above immediately implies,
for each time frame t:

X̃ (:, t) = M (:, t)�Xc (:, t) = diag (M (:, t)) ·Xc (:, t) (2)

Let us denote F and F−1 to represent the direct and the inverse Fourier Trans-
form operators 1 respectively, and define x (t) = F−1

(
X̃ (:, t)

)
, and analogously

xc (t) = F−1 (Xc (:, t)). It follows that:

1 Here, they are considered L × L complex matrices, normalized such that F−1 = F̄ .
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x (t) = F−1 · diag (M (:, t)) · F · xc (t) (3)

From here it follows that the observed speech frame is the filtered version
of some clean speech frame. However, xc can not be uniquely recovered just
from equation 3. To reconstruct the clean frame xc, we will exploit the valu-
able information given by mask M about how the original clean data was
transformed.

We can identify various particular cases of the problem, by inspecting the
distribution of 1-entries in the mask. For example, if all the columns of M are
identical, we denote this as the “constant missing data pattern” case, otherwise
we refer to M as the description of a “variable missing data pattern”. If all the
entries of M corresponding to low-frequency entries in X̃ (up to some cut-off
frequency Fcut) are equal to 1, we have a particular sub-case of the “constant
pattern” case, namely BWE. Alternatively, we may obtain the mask by applying
the BSS algorithm in [5]. Namely, when a mixture of 3 or more speech signals
is given, the TF contents of these sources are assumed mutually disjoint, and
a maximum-likelihood map is generated for each of them, to indicate the most
informative positions of the sources in the TF plane. In this case, the masks we
work with will have a variable, random-looking aspect, and the source restoration
will fall under the “variable pattern” case 2.

In the following, we show how clean speech can be used to aid in the speech
enhancement problem, present a unified methodology to treat these different
situations, and identify the virtues and the limitations of our approach.

3 Inference of Missing Data

To restore the spectrogram of the corrupted speech signal, we need to de-
sign a procedure for the reconstruction of each data frame. As we noted in
the previous section, we have good knowledge about how the clean data is
processed to produce the observed data. Unfortunately, the information we
have is not sufficient, since the frame filtering involved here is not an invert-
ible process except in the trivial case when the entries in the corresponding
mask column are all 1. Equation 3 has in general infinitely many solutions for
xc (t).

Fortunately, not all these possible choices are likely to correspond to real
speech data frames. Furthermore, two (or more) consecutive observed frames
should have originated in consecutive clean speech frames, and the smoothness
of clean speech TF representation induces strong additional constraints on the
reconstructed speech signal. Clean speech training data will help us restrict our
search, by giving valuable hints of optimal (or plausible) solutions.

2 In the constant pattern case, it is possible to give a very intuitive meaning to x (t),
namely x (t) = W �

(
x̃ ((t − 1) (L − δ) + 1, ..., (t − 1) (L − δ) + L)T

)
is a windowed

version of the tth frame extracted from x̃. In the variable pattern case, approximating
consecutive frames in x̃ with filtered versions of consecutive frames in xc is generally
not accurate.
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Now, we introduce several notations that are useful in describing the proposed
reconstruction procedure. Let Xtrain denote a L× T matrix whose columns are
speech frames, extracted at random positions from clean speech example sen-
tences. We will denote by xmtrain(t) the result of filtering xtrain(t), (the tth column
of Xtrain) using mask vector m, as in Eqn. 3:

xmtrain (t) = F−1 · diag (m) · F · xtrain (t) (4)

The procedure we propose to infer the missing data is relatively simple. For
a certain observed frame x(t), and known M(:, t) we filter the training frames
accordingly, thus obtaining xM(:,t)

train (t1), t1 = 1, ..., T . Then, for a distance criterion
d of our choice, we find the index:

t∗ = arg min
t1

d
(
x (t) ,xM(:,t)

train (t1)
)

(5)

To obtain the reconstructed frame x̂(t), we simply add the “missing” part of
xtrain(t∗) to the observed frame x(t):

x̂(t) = x(t) +
(
xtrain(t∗)− xM(:,t)

train (t∗)
)

= x(t) + x1−M(:,t)
train (t∗) (6)

The matching step (that is, finding t∗ in Eqn. 5) is solvable by exhaustive
search for each test frame in the training database3. However, matching can be
efficiently defined and performed by vector quantization [8].

The quality of the reconstruction is strongly dependent on the distance crite-
rion we choose. To address this problem, let us emphasize first that the signal
representation (set of vectors in L-dimensional real or complex space) lends it-
self to very natural distance measures, among which the most intuitive is the
Euclidean distance. It should be very clear though that this distance measure
is only useful if the distribution of the data is suitably described in the “frame
space” (for instance, if it is axis-aligned). Otherwise, a small distance might not
necessarily mean good perceptual similarity and the best match might actually
be completely erroneous from reconstruction point of view. There are two ways
(not necessarily orthogonal) to avoid this obstacle.

One way is to choose several best matches (e.g. best ten) and combine them
to produce a better reconstruction of the current frame. The second one refers
to finding and using the best description of the data as linear combination of
vectors in the space.

Independent Component Analysis (ICA) is an adaptive, linear representation
method. When applied to speech frames, ICA provides a linear representation
that maximizes the statistical independence of its coefficients, and therefore finds
the directions with respect to which the coefficients are as sparsely distributed as
possible. It is therefore a good idea to employ an ICA algorithm such as FastICA
[9], which learns the ICA representation matrices from the clean training data.
We denote the ICA basis function matrix by A, and the filter matrix by W.
3 From now on, we refer to the observed data frames as “test data”, to fit into the

“testing vs. training” Machine Learning terminology.
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The next step is to transform both the testing data and the filtered training
data into the ICA domain (by multiplying each frame vector by matrix W) and
obtain the new vectors:

s(t) = W · x(t) ; sM(:,t)
train t) = W · xM(:,t)

train (t) (7)

Next, find the best match by using the Euclidean distance in this space rather,
than in the frame space (further referred to as “time domain”). Further justifi-
cation and analysis of the inference in the ICA domain is given in [10].

Using ICA to represent speech has already been investigated, and its char-
acteristics have been reported in several papers (e.g. [11], etc.). The ICA filters
(rows of W) tend to have high sensitivity to relatively narrow frequency bands,
and therefore the ICA basis functions (columns of A) will tend to represent
primarily frequency information within these bands. We can easily demonstrate
this behavior in Figure 1.
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Fig. 1. Frequency selectivity of ICA basis functions: representation of both A and the
Fourier domain representation of the columns of A; Columns are sorted according to
the peak frequency response

As a general practice, we note that we can obtain completely new distance
criteria simply by mapping the test data and the filtered training data into some
new space (either by a linear, or by a nonlinear mapping) and compute the
Euclidean distance between the mapped vectors. In the following, we investigate
the performance of computing these distances in various domains.

4 Alternative Domain Transforms

Let us examine particular cases of distance matching criteria, as well as their
performance in speech signal reconstruction. Alternatively, we can regard a
particular distance choice as the Euclidean distance in a certain transformed
space, and we can talk about the choice of transform, instead of the choice of
distance.
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4.1 Euclidean Distance in Time-Domain

Let Λ = diag (M (:, t)). The expression of this distance is:∥∥∥x (t)− xM(:,t)
train (t1)

∥∥∥2
2

=
(
x (t)− xM(:,t)

train (t1)
)T (

x (t)− xM(:,t)
train (t1)

)
=
(
x (t)−F−1 · Λ · Fxtrain (t1)

)T · (x (t)−F−1 · Λ · Fxtrain (t1))

= (Fx (t)− Λ · Fxtrain (t1))
T ·
(
F−1)T · F−1 · (Fx (t)− Λ · Fxtrain (t1))

= (Λ · Fxc (t)− Λ · Fxtrain (t1))
T · (Λ · Fxc (t)− Λ · Fxtrain (t1))

= (Fxc (t)−Fxtrain (t1))
T · Λ · (Fxc (t)−Fxtrain (t1))

= (xc (t)− xtrain (t1))
T ·
(
FΛF−1) · (xc (t)− xtrain (t1))

As we can see, this distance reflects somehow the “closeness” between the
clean frame (from which the observed data supposedly originated) and the clean
training data, but the weighting matrix F ·Λ · F−1 alters this natural closeness
according to the missing data pattern M (:, t) in a rather non-intuitive way.
Speech signals do not have a too informative description in the (frame-based)
time domain representation and our setting is apparently quite sensitive to this
issue, especially when training data is scarce.

4.2 Euclidean Distance in Fourier Domain

Instead of
∥∥∥x (t)− xM(:,t)

train (t1)
∥∥∥

2
, we use

∥∥∥Fx (t)−FxM(:,t)
train (t1)

∥∥∥
2
:

∥∥∥Fx (t)−FxM(:,t)
train (t1)

∥∥∥2
2

=
(
Fx (t)−FxM(:,t)

train (t1)
)T
·
(
Fx (t)−FxM(:,t)

train (t1)
)

=
(
x (t)− xM(:,t)

train (t1)
)T (

x (t)− xM(:,t)
train (t1)

)
=
∥∥∥x (t)− xM(:,t)

train (t1)
∥∥∥2

2

Under our working assumptions, using Euclidean distance in time or Fourier
domain will produce exactly the same results.

4.3 Euclidean Distance in ICA Domain

One problem with the previous two distance measures is that neither representa-
tion is the most appropriate one for describing the distribution of speech frames.
One reason for their limited power is that they are both fixed, data independent
representations. Since the distribution of speech frames is different from one
speaker to another it is meaningful to consider adaptive representations of the
data. We mentioned earlier ICA as a data-driven linear representation, whose
objective is to maximize the statistical independence of the coefficients. Under
this assumption, the basis functions will point into directions that determine
maximally sparse (sharply peaked, with heavy tails) marginal distributions of
the coefficients. Let us inspect what the Euclidean distance is in the ICA domain:
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train (t1)

∥∥∥2
2

=
(
s (t)− sM(:,t)

train (t1)
)T
·
(
s (t)− sM(:,t)

train (t1)
)

=
(
Wx (t)−WxM(:,t)

train (t1)
)T (

Wx (t)−WxM(:,t)
train (t1)

)
=
(
x (t)− xM(:,t)

train (t1)
)T
·WTW ·

(
x (t)− xM(:,t)

train (t1)
)

Since matrix W is in general not orthogonal, the weighted distance it induces
will be different from the previous two distance measures. Furthermore, we can
use the Mahalanobis distance (in either time or ICA domains) to normalize
the data covariance, and thus to reduce the dependency of the distance on the
relative scaling along the principal axes of the corresponding space.

5 Experimental Results

To demonstrate the performance of the proposed method, we tested it in several
special settings, on data taken from the NTT database. The signals represent
sentences, several seconds long, sampled at Fs = 16kHz, and read by either
male or female native English language speakers. We illustrate the reconstruc-
tion performance both qualitatively, by displaying the spectrogram of corrupted
and reconstructed speech signals, and quantitatively, by computing objective
reconstruction quality measures, such as log-spectral distortion (LSD) [2] and
Itakura-Saito distance (IS) [1].

Table 1. (a) Left - Numerical values of mean values for LSD and IS, in the case of
BWE (Fcut = 4kHz). (b) Right - Mean LSD and IS values, in the case of alternative
constant pattern setting. Amount of training data is either 20000 or 100000 frames of
clean speech.

(a) 20,000 100,000 (b) 20,000 100,000
Domain LSD IS LSD IS LSD IS LSD IS
Time 5.728 0.166 5.518 0.0756 5.935 0.164 5.827 0.132
ICA 5.574 0.157 5.462 0.0670 5.829 0.147 5.670 0.106

First, we applied the proposed method for BWE, where the observed signal
was obtained by low-pass filtering a wideband speech signal. As the value for
the cut-off frequency, we used Fcut = 4kHz. We display the results obtained (see
Table 1 (a)) when using Euclidean distance in time domain and in ICA domain.
Although the difference is not big, the experiment shows that the performance in
the latter case was consistently better. Also, by increasing the number of training
speech frames, the performance is improved. Overall, results are comparable in
terms of LSD with the state-of-the-art [2].

In the second experiment, we chose a fixed, multi-band pattern and again we
tried to reconstruct a wideband signal (see example in Figure 2). The missing
frequency bands were 1kHz−2kHz, 3kHz−4kHz, 5kHz−6kHz, and 7kHz−8kHz.
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Fig. 2. Example of observed male speech data and the reconstructed signal

The numerical values obtained for LSD and IS resulted after the bandwidth
extension are shown in 1 (b). The results display the same behavior we noticed
in the previous experiment.

6 Conclusions

This paper addresses the problem of speech enhancement in a setting where
parts of the time-frequency content of the speech signal are missing. We ana-
lyze a simple but general algorithm for inferring the missing spectral data, and
demonstrate the wide applicability of the method to bandwidth expansion, to
a multi spectral band inference problem, and show applicability to enhancing
speech resulting from TF BSS methods. Interesting areas of further work are
coding for VQ-based training data compression and algorithm speed-up, appli-
cations to BSS, and extensions of the algorithm to exploit models of temporal
relationships between successive frames.
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Abstract. Detecting multiple pitches (F0s) and segregating musical instrument 
lines from monaural recordings of contrapuntal polyphonic music into separate 
tracks is a difficult problem in music signal processing. Applications include 
audio-to-MIDI conversion, automatic music transcription, and audio enhance-
ment and transformation. Past attempts at separation have been limited to sepa-
rating two harmonic signals in a contrapuntal duet (Maher, 1990) or several 
harmonic signals in a single chord (Virtanen and Klapuri, 2001, 2002).  Several 
researchers have attempted polyphonic pitch detection (Klapuri, 2001; Eggink 
and Brown, 2004a), predominant melody extraction (Goto, 2001; Marolt, 2004; 
Eggink and Brown, 2004b), and instrument recognition (Eggink and Brown, 
2003). Our solution assumes that each instrument is  represented as a time-
varying harmonic series and that errors can be corrected using prior knowledge 
of instrument spectra. Fundamental frequencies (F0s) for each time frame are 
estimated from input spectral data using an Expectation-Maximization (EM) 
based algorithm with Gaussian distributions used to represent the harmonic se-
ries. Collisions (i.e., overlaps) between instrument harmonics, which frequently 
occur, are predicted from the estimated F0s.  The uncollided harmonics are 
matched to ones contained in a pre-stored spectrum library in order that each 
F0`s harmonic series is assigned to the appropriate instrument. Corrupted har-
monics are restored using data taken from the library. Finally, each voice is ad-
ditively resynthesized to a separate track. This algorithm is demonstrated for a 
monaural signal containing three contrapuntal musical instrument voices with 
distinct timbres. 

1   Introduction 

Ordinarily, before separating individual instrument voices into separate tracks, poly-
phonic pitch detection must be performed on a monaural file instrument mixture. 
However, we considered two cases: 1) Obtaining F0 data and spectrum analysis from 
solo recordings before mixing them to monaural.  2) Obtaining F0 data directly from 
the monaural polyphonic mixture. While our ultimate objective is to solve the more 
general second case, because of the difficulty of polyphonic pitch detection, we have 
decided, for now, to focus on the first method. Moreover, starting with solo signals is 
necessary for evaluating the performance of our separation algorithm by comparing 
the original solo and separated signals, via listening and computing rms spectral er-
rors. See Fig. 1 for an overview of the pitch detection/separation method. 
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Fig. 1. Flow diagram of the pitch detection/separation algorithm 

2   Method 

2.1   Spectral Analysis  

The first stage of the method performs short-time peak-tracking spectral analysis  of 
the test signal to find a set of spectral peaks for each frame (McAulay and Quatieri, 
1986; Smith and Serra, 1987; Beauchamp, 1993).  Fig. 2 shows the spectral peaks for 
a single frame corresponding to 1.4 s from the start of a three instrumental voice mix-
ture (Bb clarinet, trombone, and alto saxophone). The 5 s clarinet and saxophone solo 
passages were clipped from a jazz CD (Art Pepper, 1996) and from a Mozart's Req-
uiem trombone solo recorded by Jay Bulen at the University of Iowa.  Obviously, the 
solos were not intended to harmonize or synchronize in any way. 
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Fig. 2. Spectrum of three instrument mixture at t=1.4 s 

2.2   Polyphonic Pitch Detection 

For each frame, each fundamental frequency (F0) candidate is represented as mixture 
of 10 Gaussian PDFs whose means are located at integer multiples of F0 and whose 
STD bandwidths are 30 Hz. Then the expectation of this candidate F0 is calculated by 
integrating the product of the mixture of Gaussian distruburions with the input spec-
trum (see Fig. 3).  This is in essence is the correlation of the input with the GMM in 
the frequency domain. 
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Fig. 3. Using a mixture of Gaussian distributions  to calculate the expectation of an F0 candidate 

Assuming that the input signal contains N simultaneous instrumental voices, the 
expectations of all possible combinations of N F0s are calculated in a specified F0 
search range. The optimum combination which yields the highest expectation is cho-
sen. However, as mentioned above, this method has so far only proved robust for 
N=1, so at this point we are using F0s based on the original individual tracks.  

2.3   Harmonic Collision Detection and Initial Separation  

For each frame, the frequencies of collided harmonics are calculated theoretically 
according to the location of the harmonics of the estimated F0s, within the resolu-
tion of the spectral analysis. These harmonics are ignored in the spectrum matching 
step. (see Fig. 4). So at this point, three spectra with missing harmonics for the  
current frame have been resolved, but they haven't been identified as paricular in-
struments yet.  
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Fig. 4. Initially separated uncorrupted harmonics (denoted by .) for one of the estimated F0s 
from the spectrum of Fig. 2. * denotes the positions of estimated collisions where harmonic 
amplitudes are set to zero. 

2.4   Instrument Spectrum Library 

An instrument spectrum library (the training set) was created using University of 
Iowa musical instrument samples (Fritts, 1997-). This database includes individual 
tones performed at three different dynamics (pp, mf, and ff) in semitone F0 increments 
for clarinet, saxophone, and trombone. For each F0, the tones were analyzed 
(Beauchamp, 1993) and a spectrum space created consisting of the harmonic spectra 
of all of the frames for the three tones performed at that F0. The number of harmonics 
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for each F0 is given by floor(.5fs /F0), where fs is the sampling frequency. Then a K-
means clustering algorithm (Rabiner and Juang, 1993) partitioned the space into 10 
different clusters, and each cluster's centroid was calculated. (Fig. 5 shows an exam-
ple K-means “cluster spectrum”.) 10 spectra, which form a "sublibrary", were chosen 
as a compromise between providing adequate spectral diversity while having a suffi-
cient number of candidates  to average within each cluster. We have also experi-
mented with clustering according to spectral centroid ranges of the training data and 
calculating the average spectrum for each spectral centroid cluster (Beauchamp and 
Horner, 1995). Both methods yield similar results, but K-means avoids the problem of 
sparsity of data for some clusters. 
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Fig. 5. One of the K-means cluster spectra from the  clarinet library for F0=261.6Hz  

2.5   Instrument Spectrum Matching 

To replace the corrupted harmonics in an initially separated harmonic spectrum, the 
corresponding F0 sublibraries of the entire spectrum library are searched to find the 
best match to the uncorrupted input harmonics  (see Fig. 4). A least squares (LMS) 
algorithm is used to obtain the optimum scaling factor between the input and 
prestored spectra.  Basically, the instrument matching part is a nearest-neighbor 
classifier where the distance measure is a (possibly frequency-weighted) Euclidian 
distance between the corresponding harmonics of the initially separated and the 
sublibrary spectra. However, we have found that even 10 cluster spectra are insuffi-
cient to avoid artifacts that occur when switching between spectra. Therefore, after 
choosing the instrument library for the initially separated spectra, LMS is applied 
again to find an optimum interpolation between the best two spectra out of the 10. 
This improves matching for individual frames while smoothing transitions as the 
spectrum changes from one frame to the next. For synthesis we can either replace 
only the corrupted harmonics (see Fig. 6) or replace all of the spectrum components 
from the interpolated library spectra.  While the former method may yield better 
fidelity to the test spectra, the latter method can yield a result with fewer audible 
artifacts.  

Finally the reconstituted spectra are resynthesized to the individual instrument 
tracks using sinusoidal additive synthesis (Beauchamp, 1993). Frequencies and ampli-
tudes of  the corresponding harmonics are linearly interpolated and phases accumu-
lated between frames, with initial phases set to random values.  
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Fig. 6. The uncorrupted harmonics of an initially separated spectrum (denoted by .) are classified 
as clarinet and the collisions (denoted by *)  are replaced from the best-match prestored spectrum. 
Note that zero values in the initially separated spectrum are due to the test clarinet's spectrum 
above 2500 Hz being weaker than the training clarinet's spectrum in the same frequency range.  

3   Results 

Since at the current stage of our research our pitch detection algorithm does not per-
form well enough for subsequent instrument separation, we used F0s obtained from 
the solo tracks (see Fig. 7). Nevertheless, instrument matching was blind with respect 
to the source of each F0.  For each frame and each F0, instrument classification re-
sulted from matching the three corrupted harmonic spectra across all three instrument 
libraries. As it turned out, with the correct F0 contours, the correct instruments were 
chosen with 100% accuracy.   
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Fig. 7. Pitch contours estimated from the mixture signal (upper) and individual solos (lower) 

Original and the separated tracks were compared by listening and by measuring  
spectral rms error. Most audible artifacts in the separated tracks seemed to be due to 
unison and octave collisions. Nearly all harmonics of two instruments played in uni-
son are corrupted, while in the octave case every second harmonic of the lower voice 
and nearly all harmonics of the higher voice are corrupted. However, in practice, two 
voices are usually not pitched exactly an octave apart, so we could retrieve some up-
per harmonics of the higher tone in order to estimate its lower harmonics. Figs. 8, 9, 
and 10 each show spectrograms of the original instrument solo tracks and the corre-
sponding tracks separated from the mixture with collided harmonics replaced. 
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Fig. 8. Original (upper one) and separated  (lower one) clarinet spectra   

 

 

Fig. 9. Original (upper one) and separated  (lower one) trombone spectra 

 

 

Fig. 10. Original (upper one) and separated (lower one) saxophone spectra 

Audible differences between the original and synthetic tracks include a) inherent 
differences between original and best-match library spectra, b) loss of reverberation 
and other noise, c) occasional sound "bobbling" due to high occurrence of harmonic 
collisions, resulting in insufficient data to estimate the corrupted harmonics correctly, 
thus resulting in sharp discontinuities, and d) upper harmonic "chattering" due to 
switching between different library spectra. The latter effect is alleviated by LMS 
interpolation between the two best library spectra matches. 

Since the resynthesized tracks are not phase-locked with the originals, we cannot 
compute an accurate time-domain difference residual.  However, we can compute the 
rms difference between the time-varying harmonic amplitudes of the separated tracks 
and the originals. Fig. 11 shows graphs of relative-amplitude spectral rms error vs. 
time for the three instruments. The rms error was calculated using the equation 
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Fig. 11. Spectral rms error for clarinet, trombone, and saxophone 

where  j = frame number, J = number of frames, k = harmonic number, K = number of 
harmonics, xjk  = original track harmonic amplitude, x̂ jk  = separated track harmonic 

amplitude, and α is a constant scale factor which minimizes the error for the entire 
signal. The rms error is normalized by the average rms amplitude of the original sig-
nal instead of  rms value for that frame because in the latter case when the amplitude 
is very small the error gets extremely high although it is not really audible. 

Averaging the rms errors over time yielded  21.57% for the clarinet, 14.65% for 
the trombone, and 27.27% for the alto saxophone. Evaluating the performance by the 
spectral rms difference might be misleading because although the separated trombone 
has the lowest rms error, in the authors' opinion the clarinet sounds better. The origi-
nal, mixture, and separated samples can be found at http://ems.music.uiuc.edu/ 
beaucham/sounds/separation/. 

4   Summary 

Using pitch-vs.-time tracks derived from three non-harmonizing instrument solos with 
distinctive timbres and prestored independent instrument spectra to correct collided 
harmonics, we were able to separate the solos from their monaural mixture with rea-
sonable preservation of quality. rms spectral accuracy varied from about 14% to 27%. 
An objective evaluation of separation quality would be highly desireable but is non-
trivial because of the necessity of comparing to a standard level of degradation 
(Thiede et al., 2000).  We attempted to derive the pitch-vs.-time tracks directly from 
the monaural mixture, but the results were not accurate enough for reasonable quality 
separation.  However, our method has demonstrated that it is not necessary to have 
prior knowledge of each initially separated spectrum's instrument identity, because 
this is sorted out in the spectral matching process. 

5   Future Work 

First, we plan to try out different polyphonic pitch detection algorithms in an effort to 
improve this important, and ultimately necessary, analysis step.  Transition probabili-
ties between notes may be utilized. Second, we plan to increase the size of the spectral 
data base to handle a wider variety of instruments. Third, we will attempt to use  
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estimates of corrupting spectra in order to estimate the true amplitudes of corrupted 
harmonics so as to obviate their replacement.  Fourth, we will attempt to find note 
boundaries and optimize spectral choices over notes.  Fifth, we will attempt to utilize 
time behavior over notes (vibrato, beating) to more intelligently separate partials. 
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Abstract. The middle-term goal of this research project is to be able to
recover several sound sources from a binaural life recording, by previously
measuring the acoustic response of the room. As a previous step, this
paper focuses on the reconstruction of n sources from m convolutive
mixtures when m < n (underdetermined case), assuming the mixing
matrix is known.

The reconstruction is done in the frequency domain by assuming that
the source components are Laplacian in their real and imaginary parts.
By posterior likelihood optimization, this leads to norm 1 minimization
subject to the mixing equations, which is an instance of linear program-
ming (LP). Alternatively, the assumption of Laplacianity imposed on the
magnitudes leads to second order cone programming (SOCP).

Performance experiments are run from synthetic mixtures based on
realistic simulations of each source-microphone impulse response. Two
sets of sources are used as benchmarks: four speech utterances and six
short violin melodies. Results show S/N reconstruction ratios around
10dB. If any, SOCP performs slightly better.

SOCP is probably too slow for real-time processing. In the last part
of this paper we train a neural network to predict the response of the
optimizer. Preliminary results show that the approach is feasible but yet
inmature.

1 Introduction

Our long-term goal is to be able to separate each of the sources from a bin-
aural life recording of several instruments or voices playing simultaneously in
a room. This is an instance of the blind source separation problem, in a con-
volutive underdetermined setting (room reverberation and more sources than
microphones):

x1(t) = h11(t) ∗ s1(t) + . . . + h1n(t) ∗ sn(t)
. . . (1)

xm(t) = hm1(t) ∗ s1(t) + . . . + hmn(t) ∗ sn(t) ,

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 569–576, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where xi(t) is the signal recorded at microphone i, sj(t) is the signal from source
j, hij is the room’s impulse response from source j to microphone i, and ∗ is the
convolution operator. The general problem is to blindly determine the sources
sj(t), given only the mixtures xi(t).

In the discrete frequency domain, for a given K-sample short-time window or
frame, the mixing equations are rewritten as

Xk
1 = Hk

11S
k
1 + . . . + Hk

1nS
k
n

. . . (2)
Xk
m = Hk

m1S
k
1 + . . . + Hk

mnS
k
n ,

for k = 0 . . .K/2, where k stands for the frequency bin (since all signals are real,
only K/2 + 1 bins are necessary). In matrix notation,

Xk = ZkSk, k = 0, . . . ,K/2 . (3)

In this model, for every frequency bin k, the data is the set of spectral mixture
vectors corresponding to every time frame.

The problem of blind source separation was first formulated for m = n and the
instantaneous mixture case (i.e., hij(t) = βij and Zk = B, an attenuation matrix
of real coefficients). The usual approach to the separation has been indepent
component analysis , which solves the system by assuming only the statistical
independence of the source components. Of particular interest to our work is the
so called sparse case [1,2], which is usually modelled by further assuming that
the source components have a Laplacian pdf.

A harder problem is the delayed mixture case, corresponding to the anechoic
room recording. That is, when signal delays are taken into account, without
echoes or reverberation (i.e., hij(t) = βijδ(t−τij) and Zk = B ·ej2πkT/K with T
a delay matrix, and · the component to component product). The delayed case
is considered, for instance, in [3].

Equation 3 describes the most general and hardest situation, the convolutive
mixture case. For n = m the convolutive case has been tackled either in the time
domain [4] or in the frequency domain [5,6], among others. In the time domain
the difficulty is the number of echoes that have to be considered for a realistic
characterization of the impulse response, whereas in the frequency domain the
difficulty lies in the gain and ordering undeterminacies.

When the number m of sensors is smaller than the number n of sources,
inferring the mixing matrix, on the one side, and inferring the sources, on the
other, can be formulated as two separate problems. Even when the mixing matrix
is known, the mixing equations are still underdetermined and some additional
assumption must be imposed on the sources to solve the system unambiguously.

In our previous work [7,8], the assumption of sparsity turns out to be of
help. The reason why sparse representations lend themselves to good separabil-
ity is because, since only a few coefficients are significantly different from zero,
the likelihood that a particular data point belongs mainly to a single source is
high. In other words, sparse representations are separable because sparse sources
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are, to some extent, disjoint. Sparsity depends on the representation domain.
For speech and music signals, the time-domain representation is definetly not
sparse. Yet, the frequency-domain representation, being pseudo-harmonic, is sig-
nificantly sparse. Therefore, we use the frequency-domain.

Results for the delayed underdetermined case and for the convolutive under-
determined case can be found in [9,10] and [11], respectively.

In this paper we tackle the recovery of the sources given the convolution ma-
trix . After all, the approach is feasible since the impulse response of the room
can be measured [12,13].

In a maximum posterior likelihood framework, this paper presents an exper-
imental comparison between LP and SOCP [14] for the reconstruction of the
sources, and suggests the use of a neural network approximator to predict the
behaviour of the optimizer. SOCP was proposed for the delayed underdeter-
mined case in [9]. A different analysis of the performance of SOCP in a setting
very similar to this paper can be found in [15].

2 A Maximum Posterior Likelihood Formulation

Reverting to Eqn. 3, our goal is to solve

Xk = ZkSk, k = 0, . . . ,K/2,

given Xk and Zk when m < n, with m the dimension of Xk and n the dimension
of Sk. Since the system is underdetermined, some additional restriction must be
imposed to get an unambiguous solution.

As in our previous work [7,9] the assumption we are going to use is the Lapla-
cianity of the sources. But, since we are working in the frequency domain, such
assumption can be imposed either on the real and imaginary parts of Sk (Sec-
tion 2.1) or on the magnitude of Sk (Section 2.2).

2.1 Laplacianity of the Real and Imaginary Parts: An Instance of
Linear Programming

The separation in this case is modeled by rewritting Eqn. 3 in terms of the real
and imaginary parts. Let

X =
(

Re(X)
Im(X)

)
be the aggregate vector of real and imaginary components, and let

S =
(

Re(S)
Im(S)

)
and

Z =
(

Re(Z) −Im(Z)
Im(Z) Re(Z)

)
.
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Then,
X k = ZkSk, k = 0, . . . ,K/2 , (4)

which, for every k, is a linear underdetermined mixture model.
The assumptions we make in this case are the following: (a) The source com-

ponents are statistically independent, (b) their real and imaginary parts follow
a Laplacian distribution with (c) equal variances. These assumptions can be
modeled by

P (Skl ) = e−μ|S
k
l | , (5)

with | · | the absolute value. Maximizing the posterior probability of the source
components (S) given the data (X ),

maxSP (Sk|X k) ∝ maxSP (X k|Sk)P (Sk) . (6)

In the absense of noise, X k = ZkSk, and P (X k|Sk) = 1. Therefore, under the
assumptions above,

maxSP (Sk|X k) ∝ Πle
−μ|Sk

l | . (7)

Taking logarithms, the above is equivalent to

minS
∑
l |Skl |

subject to X k = ZkSk , (8)

which can easily be expressed as a linear programming problem [16].

2.2 Laplacianity of the Magnitudes: An Instance of Second Order
Cone Programming

Going back to the mixing model of Eqn. 3, and like we did for the delayed case
in [9], an alternative formulation comes from the following assumptions: (a) the
source components are statistically independent, (b) their phases are uniformly
distributed, and (d) their magnitudes follow a Laplacian distribution with (d)
equal variances. That is,

P (Skl ) ∝ e−μMag(Sk
l ) . (9)

Proceeding like in the previous section, the posterior likelihood formulation
leads to

minS
∑
lMag(Skl )

subject to Xk = ZkSk . (10)

This problem is an instance of second-order cone programming.
Notice that, even though the objective function depends only on the magni-

tudes, the phase information is preserved by the constraints.
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3 Simulations in a Synthetic Room

Experiments were conducted on two data sets: FourVoices, a set of 4 speech
utterances of 2.9 s of duration, and SixFluteMelodies, a set of 6 flute excerpts
of 5.7 s of duration. Details of the signal analysis and resynthesis can be found
in [7].

Synthetic mixtures were obtained in the frequency domain by previously sim-
ulating the impulse response of the room for each source-microphone pair. The
reflections of the sound on the room were computed by speculation using the
simulator in [17], using 0.6 as the reflection coefficient of the room. The impulse
response was truncated to fit the length of the frames (100ms and 400ms for
each data set, respectively). The room settings were those of Fig. 1.

Reconstruction of the sources was done by SOCP using the software package
in [18].

After resynthesis back to the time domain, the S/N reconstruction error for
a given source l is defined as

S/N = 10 log
||ŝl(t)||2

||ŝl(t)− sl(t)||2
, (11)

with ŝl(t) the reconstructed signal and || · ||2 the sum of squares, and t stands
for discrete time.

Results are shown in Table 1. As can be seen, in all the experiments the
separation is around 10dB which, for speech signals, corresponds roughly to a
97% intelligibility at the sentence level [19,13]. SOCP performs sligthly better
on the FourVoices data, and SixFluteMelodies is the hardest of the two. Audio
files will be played at the conference.
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Fig. 1. Spatial arrangement of the sources for the FourVoices and the SixFluteMelodies
experiments. Crosses represent the sources and circles represent the microphones. Dis-
tances are represented in meters. Both sources and microphones are 1.6m above the
floor, and the room is 2.5m high.
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Table 1. S/N ratios (dB) of the recovered sources with LP and SOCP. Average and
worst case values.

LP SOCP
FourVoices 12.5 9.3 12.0 9.0
SixFluteMelodies 9.9 6.9 11.4 7.4

For the sake of comparison, in [7] S/N ratios around 19dB were found on the
same data for the instantaneous mixture case, and results presented here are of
the same order of magnitude as those in [11], even though the actual experiments
are completely different.

4 A Neural Approximator of the Optimizer

In an attempt to eventually replace the SOCP optimizer by a feed forward
network, we trained a multilayer perceptron with the sensor data as input and
the reconstructed sources as target. In fact, since this was done in the frequency
domain, a neural network was used for every frequency bin k. The input was
X k, the aggregate vector of real and imaginary parts of the mixtures as defined
in Section 2.1, and the target was Ŝk the aggregate vector of real and imaginary
parts of the reconstructed sources. Three layers were used with 2m,3 and 2n
units, respectively.

The data was divided in a training set with 50% of the frames, a validation
set with 25% of the frames, and a test set with the remaining 25% frames (for
every 4 consecutive frames, the first two were assigned to the training set, the
next one was assigned to the validation set, and the last one was assigned to the
test set).

The training was done with the Matlab/network toolbox [20], using an hyper-
bolic tangent transfer function for the hidden layer, a linear transfer function for
the output layer, an the Levenberg-Marquardt algorithm with regularization as
the learning rule (in the toolbox terminology, the network was initialized using
the newff function and the ’tansig’, ’purelin’ and ’trainbr’ parameter settings,
respectively). The stop condition was based on the validation set. Each network
was restarted seven times, and the best configuration on the validation test was
chosen.

After training, the networks were applied to the test set yielding Rk, the
approximated sources for the subset of frames in the test set. A S/N prediction
ratio was defined for every signal l as

S/N = 10 log
||Rkl ||2

||Rkl − Ŝkl test||
2
. (12)

Preliminary results are shown in Table 2 for the SOCP data. The SixFlute-
Melodies experiment results are poor, but still, the shape of the data is predicted
for most of the signals. Further experiments will be reported in the conference.
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Table 2. S/N ratios (dB) of the output approximated by the neural network, with
respect to the sources recosntructed by the SOCP optimizer, for the subset of frames
of the training set. Average and worst case values.

SOCP
FourVoices 6.5 4.9
SixFluteMelodies 4.1 0.6

5 Conclusions and Further Work

In this paper we presented a comparison between LP and SOCP for the recon-
struction of audio sources using the simulated impulse response of a synthetic
recording room over two signal sets, FourVoices and SixFluteMelodies, using
two microphones. SOCP performed slightly better. A neural network was then
used to predict the output of the SOCP optimizer. Preliminary results were
encouraging.

As future work, we plan to actually record the mixed sources in a physical
room, using an actual measurement of its transfer function. In relation to the
neural approximator, the approach needs further evaluation, both in terms of
performance and in terms of computational cost.
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Abstract. In this paper we investigate the application of Blind Source
Separation (BSS) algorithms for the decoding of linearly precoded MIMO
communication systems and for the design of limited feedback channels
that send the Channel Status Information (CSI) from the receiver to the
transmitter. The advantage of using BSS is that the MIMO channel can
be continuously tracked without the need of pilot symbols. CSI is only
sent through the feedback channel when the BSS algorithm indicates the
presence of a strong channel variation.
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1 Introduction

The continuous development of the wireless communication industry creates an
enormous demand of high bit rate radio interfaces. Recently, it has been de-
monstrated that it is possible to achieve higher spectral efficiencies when using
multiple antennas at both transmission and reception [1]. Transmitting over
these Multiple–Input/Multiple–Output (MIMO) channels requires sophisticated
signal processing methods in order to compensate the channel impairments. In
particular, the receiver has to perform a Space–Time (ST) equalization to sepa-
rate the streams transmitted through the multiple antennas. ST equalization is
a difficult task that is traditionally carried out at the receiving side thus increa-
sing complexity and cost of receivers. The cost of ST equalization at reception
can be considerably reduced if an important part of the channel compensation is
performed at the transmitter by means of precoding techniques. Besides, jointly
optimal ST precoder and decoder designs provide better performance when com-
pared to ST optimization only in the receiver side [2, 3].

Contrary to non linear approaches [4, 5], this paper focuses in linear precoding
schemes that end up with the simplest possible receivers. In linearly precoded
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systems, the signals received by the antennas (observations) are instantaneous
mixtures of the original signals (sources). The mixing system results from the
joint consideration of the precoding matrix and the channel matrix. As a conse-
quence, Blind Source Separation (BSS) algorithms [6] can be employed in order
to decode the observations.

An important issue to consider in precoding schemes is that the encoding
matrix must be adapted to changes in the channel. Towards this aim, we will
apply Adaptive BSS (ABSS) algorithms [7, 8] to update the separating matrix in
each data slot in accordance with channel time variations. In order to obtain a
good tracking performance, a one–bit flag will be transmitted to the encoder over
a limited–rate feedback channel [9]. By means of that bit the transmitter knows
if the channel has changed or not and, therefore, if it has to request a training
sequence for estimating it. In addition, we will propose a simple way to initialize
ABSS algorithms in precoding systems in order to obtain faster convergence.

This paper is organized as follows. Section 2, describes the signal model cor-
responding to a MIMO communication system with linear precoding. Section
3 presents three novel strategies to decode the received signals using adaptive
BSS algorithms. Illustrative computer simulations are presented in Section 4 and
some concluding remarks are made in Section 5.

2 Signal Model

Let us consider the precoded MIMO communication system shown in Figure 1.
The input bit–stream is modulated to generate the output stream of (possibly
complex) symbols s(n). Let s(n) = [s1(n), ..., sNT (n)]T be the vector formed by
NT original signals. We assume that they are zero-mean, stationary, temporally-
white, non-Gaussian distributed and statistically independent. The signals s(n)
are then filtered using a linear precoder system represented by an NT × NT
complex-valued matrix F. As a consequence, the coded symbols, st(n), and the
original ones, s(n), are related by the following expression

st(n) = Fs(n) (1)

These signals arrive at an array of NR antennas whose output at time n, denoted
by x(n) = [x1(n), ..., xNR(n)]T , is given by

x(n) = H(n)Fs(n) + v(n) (2)

+

v(n)

H
s(n)

F
st(n) ŝ(n)x(n)

G

Fig. 1. Precoding communication scheme
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where H(n) is a NR ×NT matrix representing the MIMO channel and v(n) is
the white Gaussian noise.

Throughout this paper we will assume that all entries into H(n) are complex
Gaussian with i.i.d. real and imaginary parts with zero mean and unit variance.
Denoting the gain from transmit antenna j and the receiver antenna i by hij(n),
the magnitudes of the channel gains |hij(n)| will have a Rayleigh distribution.
We also consider a block fading channel in which the channel matrix response
remains constant for blocks of L symbols and changes according to an autore-
gressive model of order p = 1 from one block to another in the following form,

H(n) = AH(n− 1) + (I−A)w(n) (3)

where A is a diagonal matrix whose entries akk are given by Jo(2πfDTτ), being
fD the Doppler frequency, T the duration of a data frame, Jo the zero-order Bessel
function of the first kind and τ = 1. Vector w(n) is a zero–mean, i.i.d. and complex
Gaussian vector process. The speed in channel changes is decided by means of the
parameter L. For low values of L we will have fast fading channels whereas higher
values of L lead to more static channels. A flat fading channel is assumed in which
the symbol time–period is much larger than the channel delay–spread.

Finally, we assume that a linear decoder is employed to produce estimates of
the transmitted symbols. The decoder is represented by a NT × NR matrix G
and the symbol estimates are given by

ŝ(n) = Gx(n) (4)

2.1 Linear Transmission/Reception Optimization

The goal in precoding schemes is to design the matrices F and G that provide
the best performance with respect to some optimization criterion. In this paper,
we employ a Zero–Forcing (ZF) approach in order to minimize the symbol esti-
mation errors under a transmit power constraint (see, for instance [3, 10]). The
optimization problem can be formulated as

{FZFopt ,GZF
opt } = argmin

F,G
E{||s(n)− ŝ(n)||22} (5)

subject to GHF = I and tr(FRsFH) = Pt. In order to obtain the optimal linear
precoding/decoding matrices F and G we define the following channel eigenvalue
decomposition

HH(n)R−1
n (n)H(n) = V(n)Δ(n)VH(n) (6)

Applying the Lagrangian method, it is possible to demonstrate that the joint
ZF solution for the design of the linear precoder/decoder is given by [10]

FZFopt =

√
Pt

tr(Δ−1/2)
VΔ−1/4 (7)

GZF
opt =

√
tr(Δ−1/2)

Pt
Δ−3/4VHHHR−1

n (8)
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3 Proposed Decoding Schemes

It is interesting to note that the received signals (observations) x(n) given by
equation (2) are instantaneous mixtures of the original signals s(n), where H(n)F
represents the mixing system. Consequently the decoding matrix G can be in-
terpreted as the separating system needed to recover the original signals from
the observations and it can be estimated using many BSS algorithms. Based on
this idea, we propose in the sequel several decoding strategies for time–varying
MIMO channels.

3.1 Approach I: Basic Decoding Scheme

Figure 2 shows a block diagram of a general linearly precoded MIMO system
with limited feedback channel. We propose to use an adaptive BSS algorithm to
find the separating (decoding) matrix GABSS from the received symbols. The
decoded (separated) signals are thus obtained according to

ŝ(n) = GABSSx(n) (9)

In order to detect variations in the channel we make use the following per-
formance index LI(W(l)) that measures the likeliness between the decoding
matrices obtained for consecutive symbols

LI(W(i)) =
N∑
i=1

⎛⎝ N∑
j=1

|wij |2
maxl(|wil|2)

− 1

⎞⎠+
N∑
j=1

(
N∑
i=1

|wij |2
maxl(|wlj [k]|2) − 1

)
(10)

LI(W)

ABSS

BUFFER

+

Feedback channel
G(i−1)
ABSS

ŝ(n)x(n)
F

s(n) st(n)
H

G(i)
ABSS

G

v(n)

Fig. 2. Basic Decoding Scheme
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where W(i) = G(i−1)
ABSS(G(i)

ABSS)−1. The superscript (i) denotes the symbol for
which the decoding matrix has been calculated1. We consider that a channel
change has occurred when this performance criterion exceeds a threshold value
ε, i.e., when

LI(W(i))− 1
i− ic

i−1∑
l=ic

LI(W(l)) > ε (11)

where ic denotes the last symbol for which a channel change has been detected.
When a change in the channel is detected, a bit is transmitted through the

feedback channel to indicate that a training sequence must be transmitted. From
this training sequence, the receiver estimates the channel matrix H(n) using a
supervised algorithm. Finally, the feedback channel is also used to send from
the receiver to the transmitter the channel estimate needed to adapt F in the
transmit side by evaluating (7).

Note also that since GABSS is an estimation of the mixing system inverse, the
channel matrix H(n) can be easily estimated without using training sequences
by using a totally blind method such that Ĥ(n) = (FGABSS)−1. However, we
have observed that this approach produces a poor performance in terms of bit
rate error.

3.2 Approach II: Decoding Using a Stored Matrix G

The performance of the previous approach can be substantially improved for
slow fading channels (see Section 4) by evaluating equation (8) at the receiver to
obtain matrix G each time a change in the channel is detected. Thus, this matrix
will be used in the receiver, instead of G(i)

ABSS , to decode the received signals.

3.3 Adaptive Algorithms: Initial Conditions

The initial conditions of the separating system is a crucial issue to consider when
adaptive algorithms are used to obtain the separating coefficients. In the previ-
ously proposed approaches, the algorithm is used to obtain an estimation of the
decoding matrix G given in equation (8). For this reason it is sensitive to think
that equation (8) is a good starting point. Recall that this matrix can be obtained
for the channel matrix H(n) each time a change in the channel is detected. This
initialization has two important advantages: the convergence speed is increased
and the permutation indeterminacy inherent to BSS algorithms is avoided.

4 Computer Simulations

In this section we present the results of several computer simulations that we
carried out to validate the proposed systems. It is assumed that the sources have
1 The index LI(W) has been used in previous BSS work to measure the performance

of BSS algorithms [11].
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been passed through a mixing system with NT = 3 and NR = 4 antennas. We
considered 10, 000 QPSK symbols transmitted over normalized Rayleigh chan-
nels such that E[||H||2F ] = 1, where ||·||F denotes the Frobenius norm. The SNR
plotted is given by input SNR = 10 logPT /σ2

v, where PT is the transmit power.
Note that possible channel attenuation/gain is not considered. We set the trans-
mit power to Pt = 20. In order to reduce the computational cost associated to
track the channel variations, we have evaluated the decision criterion (11) after
processing 10 received symbols instead of symbol by symbol.

Many conventional BSS algorithms can be used in the proposed schemes to
estimate the mixing system. Among of all of them, we have selected the adap-
tive EASI algorithm proposed by [7, 8]. As regards EASI parameters, we have
considered ε = 0.05 and a constant adaptation step equal to λ = 0.1, with non–
linear functions given by gi = (diag(ŝŝH))iŝi, for 1 ≤ i ≤ NT (see [7, 8]). We will
track the MIMO channel with the matrix given by the adaptive BSS algorithm
according to the system described in Section 3. The channel is constant along
L = 1 or L = 1000 data symbols. Obviously, the size of L determine of speed in
channel time variations. You can see in the Figure 3 how for larger blocks (i.e.,
more slow fading channels) a better performance could be obtained. Finally, you
can see in this figure how employing the optimum decoding matrix GZF

opt accord-
ing to the approach II described in Section 3 produces too better results. This
is because the ABSS algorithm provides a suboptimum decoding matrix. In the
figure can be also seen the curve when perfect channel information is available,
i.e., when ε = 0, at the transmitter side. Smaller values of ε will yield to better
BER performances due to the larger number of channel re–estimations and pre-
coder updates at cost of greater number of initializations and therefore, greater
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overhead in the feedback channel. This means that the optimal value of ε must
be modified depending on the fading speed to ensure a good performance.

Figure 4 plots the number of initializations of the matrix GABSS (and updates
of F and G) for different values of SNR as a function of L when approach
II is employed. This value will depend weakly on the block size L and on the
signal to noise ratio employing the proposed approach. Obviously, for lower SNR
the precoder matrix F will be adapted more times in order to get a correct
channel tracking. Note that if we evaluate the proposed decision criterion each
received symbol the algorithm complexity is not only increased but the number
of initializations would be extend greatly, specially for low SNR.

5 Conclusions

In this work we have studied the utilization of Blind Source Separation algo-
rithms for decoding linearly precoded MIMO communication systems. The basic
idea is to consider that the received precoded signals are instantaneous mixtures
of the sources and that they can be decoded using adaptive BSS algorithms.
This simple strategy has been combined together with the low rate characteris-
tic of limited feedback channels available in wireless communications to track
channel variations. Simulation results show that the performance of this scheme
can be improved for slow varying channels by including a buffer in the receiver
that contains previous decoding matrices if an adequate start matrix for the
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BSS algorithm is selected. In this approach, we examine the likeness between
the separating matrix and the matrices stored in the receiver side in order to
track the channel variations.

References

1. G. Foschini and M. Gans, “On limits of wireless communication in a fading envi-
ronment when using multiple antennas”, Wireless Personal Communications, pp.
311-335, March 1998.

2. L. Hanzo, C. H. Wong and R. M. S. Yee, Adaptive Wireless Transceivers, John
Wiley & Sons Ltd, 2002.

3. R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission, John
Wiley & Sons, Inc., Publication, New York, 2002.

4. M. Tomlinson, “New Automatic Equalizer Employing Modulo Arithmetic”, Elec-
tronic Letters, pp. 138-139, March 1971.

5. H. Harashima, Miyakawa, “Matched–Transmission Technique for Channels with
Intersymbol Interference”, IEEE Journal on Communications, pp. 774-780, August
1972.

6. T-W. Lee, Independent Component Analysis: Theory and Applications, Kluwer
Academic Publishers, Boston, 1998.

7. J. F. Cardoso and B. H. Laheld, “Equivariant adaptive source separation”, IEEE
Transactions on Signal Processing, vol. 44, pp. 3017-3030, December 1996.

8. B. H. Laheld and J. F. Cardoso, “Adaptive source separation with uniform perfor-
mance”, EUSIPCO, 2004.

9. David J. Love, Robert W. Heath Jr., Wiroonsak Santipach and Michael L. Honig,
“What is the value of the limited feedback for MIMO channels?”, IEEE Commu-
nications Magazine, pp. 54-59, October 2004.

10. T. P. Kurpjuhn, M. Joham, and J. A. Nossek, “Optimization Criteria for Linear
Precoding in Flat Fading TDD–MIMO Downlink Channels with Matched Filter
Receivers”, in Proc. VTC 2004 Spring, vol. 2, pp. 809-813, May 2004.

11. E. Moreau and O. Macchi, “High-Order Contrasts for Self-Adaptive Source Separa-
tion”, International Journal of Adaptive Control and Signal Processing, pp. 19–46,
1996.



Speech Enhancement Based on the Response
Features of Facilitated EI Neurons
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Abstract. A real-time approach for the enhancement of speech at zero
degree azimuth is proposed. This is achieved inspired by the response fea-
tures of the “FacilitatedEI neurons”.Thisway, frequency segregation thro-
ugh a bandpass filter bank is followed by “supression analysis” which
inhibits sources that are not at “facilitated” positions. Unlike with the ex-
isting approaches for the solution of cocktail party problem, where the per-
formance under low SNR (signal-to-noise ratio) reverberation conditions
is severely limited, the proposed approach has the capability to circumvent
these problems. This is quantified through both objective and subjective
performance measures and supported by real world simulation examples.

1 Introduction

The cocktail party effect is an important and comprehensively addressed phe-
nomenon in both psychology and machine learning [1,2]. Indeed, the area of blind
source separation (BSS) focuses on recovering a desired source or a group of un-
observable sources from their observed mixtures. Despite the relative success
and excitement associated with the early BSS techniques, in real world situa-
tions several critical issues need to be tackled prior to achieving this goal, these
include reverberation effects together to the ambiguities coming from different
power levels of the interference sources.

In terms of human physiology, it is now well understood that the peripheral
and central auditory system employ sets of highly specialized structures dedi-
cated to the psycho-acoustic separation, these aim specifically at tackling the
generic cocktail party problem [3]. Consequently, research on speech enhance-
ment has been influenced by results related to the response features of both the
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inner ear and the neural auditory complex. Thus, for instance, results from [4]
show that based on a subspace of basis functions and Wiener coefficients, it is
possible to recover speech discourse from a single corrupted signal. The basis
functions employed were generated based on the independent component anal-
ysis (ICA) class of algorithms [2]. The success of this approach was also due to
the underlying use of “efficient coding”, a concept borrowed from the research
on cochlear nerves [5]. In [6], binaural cues, that is interaural time difference
(ITD) and interaural intensity difference (IID), were used to aid source separa-
tion, and were extracted by means of second order time and frequency features.
This has also enabled features to create a training set for the associated learning
algorithms. Despite the success and excellent performance of these methods, an
open problem remains the need for training, which is not guaranteed or feasible
in a real-world context.

The real-time models proposed are heavily based on either the properties of
human auditory system [7] or harmonic characteristics of speech [8]. The former
approaches employ subtraction methods in order to mimic the auditory masking
phenomenon. This however assumes unrealistic assumtions, such as uncorrelated
noise sources, which is not realistic in reverberant environments. The latter
approaches are based on the extraction of the fundamental frequency and its har-
monics from a corrupted speech signal. Notice that harmonic tracking implies con-
straints on the power ratio of the target and interference signal, in addition to the
smearing effect caused by reverberation (which degrades the harmonic content).

The purpose of this work is therefore to propose a real-time binaural approach
for the enhancement of the unknown speech the source at zero degree azimuth.
This is achieved based on the response features of “Facilitated EI neurons” re-
ported in [9]. These cells are located in an important nucleus for localization tasks
called the inferior colliculus, and they possess high spatial selectivity, resulting in
high signal enhancement in even very noisy and reverberant environments. Our
proposed approach aims at mimicing the behavior of these cells, based upon
building of suppression curves through an evaluation of IID cue.

2 Methods

Let S = [s1(t), s2(t), . . . , sn(t)] be a set of source signals at time t, and let
us assume a set of two receivers X = [x1(t), x2(t)]. To simulate a reverberant
environment, let model a binaural receiver signal as

xi(t) =
n∑
j=1

[hij(t) ∗ sj(t)] i = 1, 2 (1)

where symbol “∗” denotes the convolution operator and hij(t) represents the
room impulse response between the jth sound source and ith receiver. We employ
the time required for the signal energy to decay down to 60dB below the initial
level as a measure to characterise the room impulse response (the reverberation
time RT60).
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Fig. 1. Proposed speech enhancement structure. (a) Frequency segregation by a band-
pass filter bank. (b) IID functions used to create position cue over the time. (c) Facil-
itated EI neurons bank to perform the selection of the target source. (d) Synthesis.

Notice that a room impulse response is a non-minimum phase function, this
makes the enhancement of the target source from (1) based on hij(t) to be a
difficult and ill–posed inverse statistical problem. To that cause, we propose a
model, shown in Figure 1, which does not require the solution of this inverse
problem. Instead, it is based on the knowledge coming from the human psychol-
ogy and the physics of biological cells. The following subsections provide a full
explanation of the structure from Figure 1.

2.1 Frequency Segregation

The mathematical description of the inner ear is usually based on a bank of band-
pass filters. Following this idea, the first step in our proposed model performs
frequency segregation of the binaural input into narrow subbands. In techical
terms, we explore spectral sparseness of the sound sources. To decompose such
spectrum into N subbands, we employ a bank of N non–overlapping and equidis-
tantly distributed Butterworth bandpass filters. These filters are designed so as
to have the same bandwidth Δω; this way the kth subband can be expressed as

vi(k, t) =
∫
t

f(k, τ)xi(t + τ)dτ i = 1, 2 (2)

where f(k, t) denotes the kth filter within the filter bank.

2.2 Evaluation of IID Functions

Notice that the central auditory nuclei employ IID cues for psycho-acoustical
tasks [9], whereas the majority of work in speech enhancement research employ
time windowed power differences of subbands as IID cues [6]. However, we used
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here a different interpretation. To conform with the biological mechanism behind
speech enhancement, we propose a simple measure of instantanaous intensity
differences for every subband, given by

IID(k, t) = v1(k, t)− v2(k, t) . (3)

2.3 Facilitated EI Neurons (FEI)

The central auditory system comprises an intricate circuitry of nuclei [10], where
the acoustic information is systematically processed and encoded. This circuitry
consists of monaural and binaural nuclei, where monaural nuclei receive infor-
mation from only one ear, whereas binaural nuclei receive information from both
the left and right ear.

The binaural nuclei are formed by excitatory/inhibitory (EI) cells. These
cells are excited by one ear and inhibited by the other ear through excita-
tory/inhibitory projections provided by other nuclei. The inferior colliculus (IC)
is an example of nucleus formed by EI cells. Within the IC, the EI cells are
excited by the contralateral ear and inhibited by the ipsilateral ear. To explain
this, assume that a positive IID points out that the acoustical stimuli has more
intensity at the contralateral plane. A negative IID points out the opposite.
Thus, the EI cells in IC are excited by acoustical stimuli with positive IID and
inhibited by those with negative IID. Furthermore, the higher the IID, the more
pronounced the activity of these cells.

On the other hand, there is a group of EI cells in the inferior colliculus of some
animals that does not follow that behavior: the Facilitated EI neurons (FEI).
These cells are only excited over a small range of IID, in contrast to common EI
cells, hence the stimulus must be at a specific position which is “facilitated” by
FEI cells.

In this work, we create a mechanism inspired by the response features of
FEI neurons. This mechanism roughly represents these features and is based on
“suppress curves” which supress acoustic stimuli that do not correspond to the
“facilitated” positions. This phenomenon can be expressed as have

g(k, t) =
{

1 if |IID(k, t)| ≤ φ
0 otherwise , (4)

where symbol φ represents a directional bias. To enhance the source at zero
degree azimuth, φ must be a very small number. Observe that g(k, t) is a binary
function which does not correspond to the activity pattern of nervous cells, and
does not mimic the humans who have a limited sensitivity to brief changes in
binaural cues such as IID [11]. To remedy this, we represent the real behavior of
FEI neurons as a soft version of g(k, t) where only low frequencies are preserved
in order to exclude the influence of brief changes in IID(k, t). We thus consider
a FEI neuron function given by

FEI(k, t) =
∫
t

l(τ)g(k, t + τ)dτ , (5)

where l(t) is lowpass filter with a normalized cutoff frequency ωN .
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2.4 Synthesis

At this step, our model performs the recovering process using the subbands
extracted from the binaural input signal and the FEI functions. The enhanced
signal is given by

ŝ(t) =
N∑
k=1

[v(k, t)FEI(k, t)] , (6)

where v(k, t) = v1(k, t) + v2(k, t).
We summarize the proposed algorithm as it is implemented in the experiments

with the following procedure:

Step 1: Repeat the following steps for k=1,2,...,N.
Step 2: Extract the kth set of subbands [v1(k, t), v2(k, t)] from the inputs

[x1(t), x2(t)].
Step 3: Let IID(k, t) = v1(k, t)− v2(k, t).
Step 4: If |IID(k, t)| ≤ φ at time instant t, then g(k, t) = 1. Otherwise,

g(k, t) = 0.
Step 5: Compute FEI(k, t) functions by removing high frequencies from g(k,t).
Step 6: Let the recovered signal s(t) = s(t) + [v1(k, t) + v2(k, t)]FEI(k, t).

3 Experimental Results and Discussions

We carried out simulations based on three speech signals, two male and one
female. Each utterance was reverberated according to three conditions: RT60 =
{0.1 s, 0.2 s, 0.3 s}. The mixtures were obtained according to (1) and adjusted
over a range of low SNR(signal-to-noise ratio) levels: -15 dB≤ SNR ≤0 dB. The
room impulse responses were simulated for a small room (5 m x 5 m x 3 m)
using the approach from [12]. Each source was placed at the same distance to
the receivers. The female source was fixed at zero degree azimuth so that it was
the target source. Each utterance was sampled at fs = 16kHz. The spectrum
was segregated into subbands with Δω = 10Hz. The directional bias in (4) and
the normalized cutoff frequency of l(t) in (5) were respectively φ = 0.0001 and
ωN = 0.05.

3.1 SNR Evaluation

Robust criteria to measure the quality of recovered signals have been subject of
much research [13]; we here, for rigour, employ both objective and subjective
measurements.

As the objective measurement, we employ the standard signal to noise ratio
(SNR), given by

SNR = 10 log10

∑
t

s2(t)∑
t

(ŝ(t)− s(t))2
, (7)

where s(t) is a clean speech signal (target source) and ŝ(t) denotes the enhanced
signal.
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Fig. 2. SNR improvements. (a) Performance over the ranges of SNR and RT60. (b)
Average gain of SNR over the RT60 range.

Figure 2.(a) showns the SNR values of the enhanced signal for the three anal-
ysed reverberation times. It is clear that our approach is quite robust to the
changes in reverberation time once the three curves are very close. We attribute
this behavior to the fact that our IID evaluation is based on an instant inten-
sity difference instead of power differences over a time window. Consequently,
our architecture is less influenced by the smearing effect of reverberation. The
average gain in SNR value for the three reverberant conditions is shown in Fig-
ure 2.(b). Observe that the system acts by gradually adjusting the interference
power level to the clean speech signal power level, which for negative SNRs
means (according to (7)) an increase in the SNR value. This is highly desirable
since fornegative SNRs the interference power is greater than the power of the
clean speech signal.

Next, since the SNR measure, despite revealing the presence of noise, is not
a criteriong of intelligibility, we employ a hearing quality test as a subjective
measurement.

3.2 Hearing Quality Test

The human auditory system is highly qualified to tackle the cocktail party prob-
lem. With this in mind, five listeners were asked to quantify the speech intel-
ligibility of our model. They were requested to consider various criteria, such
as the presence of interference sources and speech distortion. Listeners were in-
structed to quantify the intelligibility of each sentence according to: 1≤ poor <2,
2≤ understandable <3, 3≤ good <4, 4≤ excellent <5.

Figure 3 illustrates the average score of the hearing quality test before and
after the enhancement, over a range of SNR levels. The reverberation time was
RT60 = 0.3 s.

The hearing quality tests showed that the proposed model also improves the
intelligibility of the speech discourse of the target source.
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3.3 Spectral Analysis

In Figure 4 the spectral analysis of our results is presented; notice the smearing
effect caused by reverberation, indicating the spreading of energy around the
fundamental frequency of the clean signal as seen in Figure 4.(a)(b). However,
our model showed the capability to recover the fundamental frequency of the
target signal as illustrated in Figure 4.(c).
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Fig. 4. Spectral analysis. (a) Clean speech signal. (b) Mixed and reverberated input
at 0 dB and RT60 = 0.1 s. (c) Enhanced signal.

4 Conclusions

We have proposed a real-time approach for the enhancement of sound sources
at zero degree azimuth. This is achieved based on the response features of the
“Facilitated EI neurons”. This enabled us to circumvent most constraints associ-
ated with other models of this kind. The high improvement in speech quality has
been achieved under very noisy and reverberant conditions, this was quantified
through both objective and subjective performance criteria.
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Abstract. In this paper we study the properties of the Jeffrey’s in-
verse prior for blind separation of sparse sources. This very sparse prior
was previously used for Wavelet-based image denoising. In this paper we
consider separation of 3×3 and 2×3 noisy mixtures of audio signals, de-
composed on a MDCT basis. The hierarchical formulation of the inverse
prior allows for EM-based computation of MAP estimates. This proce-
dure happens to be fast when compared to a standard more complex
Markov chain Monte Carlo method using the flexible Student t prior,
with competitive results obtained.

Blind Source Separation (BSS) consists of estimating n signals (the sources) from
the sole observation of m mixtures of them (the observations). If many efficient
approaches exist for (over)determined (m ≥ n) non-noisy linear instantaneous,
in particular within the field of Independent Component Analysis, the general
linear instantaneous case, with mixtures possibly noisy and/or underdetermined
(m < n) is still a very challenging problem.

A now common approach for BSS, in particular for underdetermined mixtures,
consists of exploiting source sparsity assumptions. Sparsity means that only
“few” expansion coefficients of the sources on a given basis are significantly
different from zero and its use to handle source separation problem (possibly
underdetermined) was introduced in the seminal papers [1,2].

In [3,4] we modeled the expansion coefficients of the sources by identically
and independently distributed (i.i.d) Student t processes and a Gibbs sampler
(a standard MCMC simulation method) was proposed to sample from the pos-
terior distribution of the mixing matrix, the input noise variance, the source co-
efficients and hyperparameters of the Student t distributions. The method was
successfully applied to determined and underdetermined noisy audio mixtures,
decomposed on a MDCT basis (a local cosine basis). In this paper, we give the
source coefficients the Jeffrey’s inverse prior p(x) ∝ 1/|x|. This prior was used
for image denoising and sparse regression in [5,6]. It provides very sparse signal
estimates and, as shown in [5] in the context of denoising, is good compromise
between soft and hard thresholding. Though Jeffrey’s prior corresponds to an
improper probability density function, it admits a hierarchical formulation which
leads to proper posterior densities, and allows for efficient EM-based computa-
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tion of Maximum A Posteriori (MAP) estimates of the source coefficients, the
mixing matrix and the noise variance.

The paper is organized as follows: Section 1 introduces notations and assump-
tions. Section 2 presents the different priors used for the source coefficients, the
mixing matrix, and the input noise variance. Section 3 gives the EM updates
of each of the latter parameters. Section 4 provides separation results for de-
termined and underdetermined mixtures of audio sources. The Jeffrey’s prior is
shown to have good denoising properties, and the proposed method happens to
be fast when compared to the more complex MCMC approach using the flexi-
ble Student t prior proposed in [4], with competitive results obtained. Section 5
draws some conclusions.

1 Notations

1.1 Mixture and Aim

We consider the following standard linear instantaneous model, ∀t = 1, . . . , N :

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xm(t)]T is a vector of size m containing the observations,
s(t) = [s1(t), . . . , sn(t)]T is a vector of size n containing the sources and n(t) =
[n1(t), . . . , nm(t)]T is a vector of size m containing additive noise. Variables with-
out time index t denote whole sequences of samples, e.g, x = [x(1), . . . ,x(N)]
and x1 = [x1(1), . . . , x1(N)].

The aim of the following work is to estimate the sources s and the mixing
matrix A up to the standard BSS indeterminacies on gain and order, that is,
compute ŝ and Â such that ideally Â = ADP and ŝ = PT D−1 s, where D is
a diagonal matrix and P is a permutation matrix.

1.2 Time Domain / Transform Domain

Let x ∈ R1×N → x̃ ∈ R1×N denote a bijective linear transform, preferably
orthonormal. Denoting for k = 1, . . . , N , x̃k = [x̃1,k, . . . , x̃1,m]T and ñk, s̃k
similarly, by linearity of the t-f transform we have

x̃k = A s̃k + ñk (2)

Furthermore, the t-f transform being bijective, solving the problem defined by
Eq. (1) in the time domain is equivalent to solving Eq. (2) in the transform domain.

1.3 Some Assumptions

We make the following assumptions:

– A is full-column rank,
– The source coefficients {s̃i,k} are assumed to be sparse and mutually inde-

pendent,
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– The noise nt is assumed to be i.i.d Gaussian with covariance σ2 In. When
the transform x → x̃ is orthonormal, ñk is equivalently i.i.d Gaussian with
covariance σ2 In.

2 Priors

2.1 Source Coefficients

The source coefficients are given Jeffrey’s inverse prior:

p(s̃i,k) ∝
1
|s̃i,k|

(3)

This is a very heavy-tailed prior, symmetrical and centered at 0, and thus a
relevant model for sparsity. This prior is scale-invariant : if p(x) ∝ 1/x and if
y = a x where a is a constant, then, by applying the rule for the change of
variable in a pdf, p(y) ∝ 1/y. Thus, oppositely to Student t or Laplace priors,
the inverse prior does not require to update any scale parameter for the sources.
As noted in [5], this prior is so heavy-tailed that it is actually improper (its
integral is not finite). Improper priors are common in Bayesian inference, and
can be used as long as they lead to proper posterior distributions. In fact the
prior p(s̃i,k) ∝ 1/|s̃i,k| used with a Gaussian likelihood leads to an improper
posterior distribution for the sources. Thus, as in [5,6], we rather use the following
hierarchical formulation of the inverse prior:

p(s̃i,k|vi,k) = N (si,k|0, vi,k) with p(vi,k) ∝ 1/vi,k (4)

where N (x|μ, σ2) denotes the density of the normal distribution. With these
assumptions, elementary integration yields∫ ∞

0
p(s̃i,k|vi,k) p(vi,k) dvi,k ∝ 1/|s̃i,k| (5)

The inverse prior p(vi,k) ∝ 1/vi,k being itself a limiting case of the inverted-
Gamma distribution, the prior p(s̃i,k) ∝ 1/|s̃i,k| may be regarded as a special
case of the Student t prior which was used for source separation purposes in [4].
In the following we will denote vk = [v1,k, . . . , vn,k]T and v = [v1, . . . ,vN ].

2.2 Noise Variance

σ2 is given a inverted-Gamma conjugate prior:

p(σ2|ασ, βσ) = IG(σ2|ασ, βσ) (6)

where IG(x|α, β) = βα

Γ (α) x
−(α+1) exp(−βx ), x ∈ [0,+∞). The inverted-Gamma

distribution has a unique mode, which is found at x = β/(α + 1).
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2.3 Mixing Matrix

Let r1, . . . , rm be the n×1 vectors denoting the transposed rows of A, such that
AT = [r1 . . . rm]. We give each row ri a Gaussian conjugate prior with zero
mean:

p(rj |σ2) = N (rj |0, σ2
r In) (7)

3 EM Updates

We now describe how to find a MAP estimates of the parameters θ = {s̃,A, σ2},
using the Expectation Maximization algorithm (EM) [7]. With the variances v
treated as missing data, the EM algorithm is based on the alternate evaluation
and maximization of the following function:

Q(θ|θ′) =
∫
v

log p(θ|v, x̃) p(v|θ′, x̃) dv

=
∫
v

log p(s̃,A, σ|v, x̃) p(v|s̃′) dv

=
∫
v

log p(s̃|A, σ,v, x̃) p(v|s̃′) dv + log p(A|s̃, σ2, x̃) + log p(σ2|s̃, x̃)

(8)

One iteration of the EM algorithm is as follows:

E-step Evaluate Q(θ|θ(l))

M-step θ(l+1) = Argmax Q(θ|θ(l))

The derivation of the update steps for every parameter is mainly a matter of
finding the modes of the posterior distributions involved in Eq. (8). In the follow-
ing we skip derivations, details of the calculations of the posterior distributions
can be found in [4].

3.1 Missing Data Posterior Distribution

The E-step requires integration over the posterior distribution of the missing
data v:

p(v|s̃) =
∏
i,k

p(vi,k|s̃i,k) with p(vi,k|s̃i,k) = IG
(
vi,k|

1
2
,
s̃2
i,k

2

)
(9)

3.2 Update of s̃

The posterior distribution of s̃ is p(s̃|A, σ2,v, x̃) =
∏
k p(s̃k|A, σ2,vk, x̃k) with

p(s̃k|A, σ2,vk, x̃k) = N (s̃k|μs̃k
,Σ s̃k

) (10)
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where Σ s̃k
=
(

1
σ2 AT A + diag (vk)

−1
)−1

and μs̃k
= 1

σ2 Σ s̃k
AT x̃k. The value

of s̃k is simply updated to the mode μs̃k
of the posterior distribution, with

diag (vk)
−1 being integrated over the missing data posterior distribution:

s̃k =
(
AT A + σ2 diag

(
c

′
k

))−1
AT x̃k (11)

where

ck = [c1,k, . . . , cn,k]T and ci,k = E
{

1
vi,k
|s̃i,k
}

=
1
s̃2
i,k

(12)

3.3 Update of A

The rows of A are a posteriori mutually independent with

p(rj |s̃, σ2, x̃) = N (rj |μrj
,Σr) (13)

where Σr =
(

1
σ2

∑
k s̃k s̃Tk + 1

σ2
r
In
)−1

and μrj
= 1

σ2 Σr
∑
k x̃j,k s̃k. Row j is

updated to the mode μrj
of the posterior distribution: 1

rj =

(∑
k

s̃k s̃Tk +
σ2

σ2
r

In

)−1 ∑
k

x̃j,k s̃k (14)

3.4 Update of σ2

The posterior distribution p(σ2|s̃, x̃) is written

p(σ2|s̃, x̃) = IG(σ2|α, β) (15)

with α = (N−n)m
2 + ασ and

β =
m∑
j=1

⎛⎝(∑
k

x̃2
j,k

)
−
(∑

k

x̃j,ks̃Tk

) (∑
k

s̃ks̃Tk

)−1(∑
k

x̃j,ks̃k

)⎞⎠+βσ (16)

σ2 is updated to the mode of the distribution:

σ2 =
β

α + 1
(17)

4 Results

We present results of separation of 3 × 3 and 2 × 3 mixtures of audio sources.
Results are discussed in Section 5.
1 In practice the columns of A are normalized to 1 after each iteration to solve the

BSS indeterminacy on gain.
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4.1 Determined Mixture

We first study a mixture of n = 3 audio sources (speech, piano, guitar) with
m = 3 observations. The mixing matrix is given in Table 1. We set σ = 0.1,
which corresponds to approximatively 9.5dB noise on each observation. The sig-
nals are sampled at 8kHz with length N = 65356 (≈ 8s). We used a MDCT
basis to decompose the observations, using a sine bell and 50% overlap, yielding
a time resolution of 64ms (half the window length). The MDCT is a local cosine
transform known to provide sparse representations of audio signals [8]. Time
resolutions of 32ms and 128ms were also tried but led to slightly poorer results.
The proposed method was compared with the method in [4], which uses a Stu-
dent t prior on the sources and computes MMSE estimate of the parameters
using a Gibbs sampler. We also show the results provided by the standard ICA
algorithm JADE [9] applied to x̃, which estimates a separating matrix via joint-
diagonalization of a set of cumulant matrices, and apply the obtained matrix
to the data, without denoising of the sources estimates. In our EM algorithm
A is initialized with the JADE estimate and σ2 is initialized to 1. We used
noninformative priors σr = +∞ and ασ = βσ = 0 for A and σ2.

Table 1 shows the mixing matrices estimated by the two methods. Table 2
provides separation quality criteria for the sources estimates. The criteria used
are described in [10]. Basically, the SDR (Source to Distortion Ratio) provides an
overall separation performance criterion, the SIR (Source to Interferences Ratio)
measures the level of interferences from the other sources in each source estimate,
SNR (Source to Noise Ratio) measures the error due to the additive noise on the
sensors and the SAR (Source to Artifacts Ratio) measures the level of artifacts
in the source estimates. The higher are the ratios, the better is quality of esti-
mation. We point out that the performance criteria are invariant to a change of
basis, so that figures can be computed either on the time sequences (ŝ compared
to s) or the MDCT coefficients (ˆ̃s compared to s̃). The estimated sources can
be listened to at http://www-sigproc.eng.cam.ac.uk/∼cf269/ica06/sound
files.html, which is perhaps the best way to assess the audio quality of the
results.

Table 1. Estimates of A for the determined mixture

Original matrix Jeffrey + EM

A =

⎡⎣ 1 1 1
0.8 1.3 −0.9
1.2 −0.7 1.1

⎤⎦ Â =

⎡⎣ 1 1 1
0.8090 1.3097 −0.8922
1.1921 −0.7341 1.0593

⎤⎦
t + MCMC JADE

Â =

⎡⎢⎢⎢⎢⎣
1 1 1

0.7914 1.3063 −0.9004
±(0.0049) (±0.0049) (±0.0047)

1.1922 −0.6980 1.1079
±(0.0063) ±(0.0050) ±(0.0045)

⎤⎥⎥⎥⎥⎦ Â =

⎡⎣ 1 1 1
0.8403 1.3430 −0.9085
1.1543 −0.9408 0.8823

⎤⎦
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Table 2. Performance criteria for the determined mixture

ŝ1 ŝ2 ŝ3

SDR SIR SAR SNR SDR SIR SAR SNR SDR SIR SAR SNR
Jeffrey + EM 10.6 34.5 10.6 29.2 14.0 36.3 14.0 32.1 11.7 43.4 11.8 29.9
t + MCMC 11.8 40.3 12.5 20.4 15.1 47.0 15.9 22.9 13.1 43.4 13.9 20.7

JADE 5.4 32.7 - 5.4 7.5 17.1 - 8.1 5.9 14.9 - 6.6

4.2 Undetermined Mixture

We now consider the more difficult case consisting of discarding one observation
of the previous mixture, thus yielding an underdetermined problem. Results are
found in Tables 3 and 4. In the EM algorithm the mixing matrix was initialized
with the result of the simple clustering method described in [1] 2 which yielded
Ainit = [1 1 1; 0.6348 1.4405 − 0.9216].

Table 3. Estimates of A for the underdetermined mixture

Jeffrey + EM t + MCMC

Â =
[

1 1 1
0.7083 1.5630 −0.9109

]
Â =

⎡⎣ 1 1 1
0.7715 1.3072 −0.9089

(±0.0059) (±0.0060) (±0.0052)

⎤⎦

Table 4. Performance criteria for the underdetermined mixture

ŝ1 ŝ2 ŝ3

SDR SIR SAR SNR SDR SIR SAR SNR SDR SIR SAR SNR
Jeffrey + EM 1.0 19.5 1.1 26.6 5.9 16.2 6.4 29.8 9.6 21.0 10.0 29.9
t + MCMC 0.7 14.1 1.4 14.6 6.4 23.3 6.7 19.8 11.4 28.5 13.9 15.3

5 Conclusions

Not surprisingly the performances of both method are better in the determined
case than in the underdetermined one, notably in terms of SIRs. This is because
when A is square, s̃k given by Eq. (11) is simply the application of the weighted
pseudo-inverse of A to x̃k. Tables 2 and 4 also show that Jeffrey’s inverse prior
leads to higher SNRs than the Student t + MCMC method. This is because
the inverse prior leads to much sparser representations and actually sets many
coefficients to zero (see [5]). This was confirmed by computing sparsity indexes on
the obtained source coefficients estimates. Though the SARs obtained with both
methods are quite similar in each case, when listening to the source estimates
2 This method simply consists in projecting the observations on the sphere and run

a K-Means algorithm to identify the slope of the clusters generated by the mixing
matrix columns.
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those obtained with the Jeffrey’s + EM approach tend to suffer from stronger
musical noise. We believe this is because the residual error originating from the
additive noise on the observations masks part of the artifacts in the Student
t + MCMC estimates.

One major advantage of the Jeffrey’s + EM approach is computational cost: it
takes 9 min to achieve convergence (50 iterations) in the underdetermined case,
when it takes 6h to run the 2000 iterations necessary to obtain convergence of the
Student t + MCMC method (and the MMSE estimates were computed from the
next 500 samples). But on the other hand, as in many cases, the EM approach
happened to be very sensitive to initialization and could lead to local maxima,
while the MCMC approach scans all the posterior distribution of the parameters
and thus provides reliable estimates, independently of the initializations.

Acknowledgement. This work was supported by the European Commission
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Abstract. Conventional Independent Component Analysis (ICA) in
frequency domain inherently causes the permutation problem. To solve
the problem fundamentally, we propose a new framework for separation
of the whole spectrograms instead of the conventional binwise separation.
Under our framework, a measure of independence is calculated from the
whole spectrograms, not individual frequency bins. For the calculation,
we introduce some multivariate probability density functions (PDFs)
which take a spectrum as arguments. To seek the unmixing matrix that
makes spectrograms independent, we demonstrate a gradient-based al-
gorithm using multivariate activation functions derived from the PDFs.
Through experiments using real sound data, we have confirmed that our
framework is effective to generate permutation-free unmixed results.

Keywords: independent component analysis, frequency domain, per-
mutation problem, multivariate probability density function, multivari-
ate activation function, spherical distribution.

1 Introduction

As a method to separate convolutive mixtures, Independent Component Analysis
(ICA) in frequency domain has been often used. The frequency domain ICA has
an advantage in terms of faster convergence than time domain deconvolution,
however it also has a large problem called permutation, inconsistency of output
channels among frequency bins [1].

Recently to treat the permutation problem, two major approaches have been
done: 1) Postprocesses to correct permutation [2], and 2) Time-frequency mod-
eling [3]. Both, however, are still challenging.

As for the postprocesses, the envelope similarity method is likely to misjudge
in some bins with low power, and the direction-of-arrival estimation method is
sensitive to microphones’ configuration. Additionally, the postprocesses them-
selves expense computational power.

The other, time-frequency modeling, means to build some relations among
bins into the learning algorithm. It however doesn’t guarantee permutation-free
results, or its algorithm is limited to the case of two microphones [3].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 601–608, 2006.
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What is more desirable in the frequency domain ICA is that the ICA di-
rectly generates permutation-free spectrograms. To realize such unmixing, we
will present a new framework in Sect. 3.

2 Overview of Conventional Frequency Domain ICA

Before explaining our framework, we briefly review the conventional methods.
The unmixing process in conventional ICA is formulated as:⎡⎢⎣ Y1(ω, t)

...
Yn(ω, t)

⎤⎥⎦ =

⎡⎢⎣ w11(ω) . . . w1n(ω)
...

. . .
...

wn1(ω) . . . wnn(ω)

⎤⎥⎦
⎡⎢⎣X1(ω, t)

...
Xn(ω, t)

⎤⎥⎦ (1)

⇔ Y(ω, t) = W(ω)X(ω, t), (2)

where ω and t are the index of frequency bin and frame respectively, and Xk(ω, t)
and Yk(ω, t) are observation and unmixed signal in ωth bin of kth channel, and
wij(ω) denotes a weight from Xj(ω, t) to Yi(ω, t). To seek an unmixing matrix
W(ω), Smaragdis [1] applied the natural gradient algorithm [5], such as:

ΔW(ω) =
{

I + Et

[
ϕ(Y(ω, t))Y(ω, t)H

]}
W(ω) (I : identity matrix) (3)

W(ω) ← W(ω) + ηΔW(ω) (4)

ϕ(Y(ω, t)) =
[
ϕ(Y1(ω, t)), · · · , ϕ(Yn(ω, t))

]T (5)

ϕ(Yk(ω, t)) =
∂

∂Yk(ω, t)
log PYk(ω)(Yk(ω, t)), (6)

where PYk(ω)(Yk(ω, t)) denotes the probability density function (PDF) corre-
sponding to Yk(ω, t), and ϕ(Yk(ω, t)) is the derivative of logPYk(ω)(Yk(ω, t)),
called activation function or score function. These functions do not have to ex-
actly correspond to the distribution of Yk(ω, t).

In the above framework, however, unmixing is done just in individual bins and
thus no relations over bins are considered (Fig.1). This is a fundamental reason
why the conventional frequency domain ICA causes the permutation problem.

To reflect some relations among frequency bins, Mitianoudis and Davies [3,4]
applied a time-frequency model, such as:

ϕ(Yk(ω, t)) =
1

βk(t)
|Yk(ω, t)|
Yk(ω, t)

(7)

βk(t) = mean
ω

[ |Yk(ω, t)| ] . (8)

They proposed that this βk(t) term imposes frequency coupling between bins.
However they also reported that its effect is still limited. Hence to prevent per-
mutation inconsistencies, another framework is needed.

3 New Framework to Solve the Permutation Problem

Consider the unmixing in the whole spectrograms, like Fig.2. Such process should
directly generate unmixed results without permutation inconsistencies. In order
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to realize it, we suggest to use following two features, and will explain them in
the below subsections.

1. Formula for the whole unmixing.
2. Measure of independence in the whole spectrograms.

3.1 Formula for the Whole Unmixing

Let us construct a formula corresponding to Fig.2, unmixing over all frequency
bins. Such formula can be made through developing (1) to all bins. As a result,
we obtain a formula with a matrix of diagonal matrices:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(1, t)
...

Y1(M, t)
...

Yn(1, t)
...

Yn(M, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11(1) 0
. . .

0 w11(M)

. . .

w1n(1) 0
. . .

0 w1n(M)
...

. . .
...

wn1(1) 0
. . .

0 wn1(M)

. . .

wnn(1) 0
. . .

0 wnn(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(1, t)
...

X1(M, t)
...

Xn(1, t)
...

Xn(M, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

⇔ Y(t) = WX(t) (10)

⇔

⎡⎢⎣ Y1(t)
...

Yn(t)

⎤⎥⎦ =

⎡⎢⎣W11 . . . W1n

...
. . .

...
Wn1 . . . Wnn

⎤⎥⎦
⎡⎢⎣X1(t)

...
Xn(t)

⎤⎥⎦ , (11)

where n and M are number of microphones and frequency bins respectively
(assuming that number of outputs is same as that of microphones). Using Yk(t)
and Xk(t), a spectrum of the kth channel, we can represent (9) also as (11).
This channel-wise notation is important in introducing multivariate probability
density functions in the next subsection.

3.2 Measure of Independence from the Whole Spectrograms

Let PY (Y(t)) be the probability density function (PDF) of a vector Y(t), and
PYk

(Yk(t)) be the PDF of a vector Yk(t). Note that PYk
(Yk(t)) is also a multi-

variate PDF unlike the conventional PYk(ω)(Yk(ω, t)).
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When Y1(t), . . . , Yn(t) are mutually independent, PY (Y(t)) should be de-
composed to

∏
k PYk

(Yk(t)). It means that Kullback-Leibler divergence (KLD)
between PY (Y(t)) and

∏
k PYk

(Yk(t)) should work as a measure of independence
in the whole spectrograms. The Kullback-Leibler divergence KLD(Y) is calcu-
lated as:

KLD(Y) =
n∑

k=1

H (Yk) − H (Y) (12)

=
n∑

k=1

Et [− log PYk (Yk(t))] − log |det(W)| − H (X) , (13)

where H(Yk) is differential entropy of Yk(t), H(Y) is joint entropy of Y(t), and
Et[] means expectation over frames (Fig.3). Equation (13) is derived with both
(10) and the definition of H(Yk), indicating PY (Y(t)) is unnecessary any longer.

As preparatory experiments, we calculated the KLD from artificially per-
muted spectrograms, and found that less permuted spectrograms lead to lower
value of KLD.

3.3 Derivation of Learning Rule

The unmixing matrix W that makes Y1,. . . ,Yn independent should minimize
the KLD in (13). To seek such W, we apply the natural gradient rule [5] to (13)
then obtain the following learning rule:

ΔW = −∂ KLD(Y)
∂W

WHW =

{
I − ∂

∂W

[
n∑

k=1

H (Yk)

]
WH

}
W . (14)

In (14), however, derivation of ∂
∑

H (Yk) /∂W is difficult to express in a simple
formula. Hence instead of ΔW, we derive a rule of ΔW(ω), submatrix of ΔW
corresponding to ωth frequency bin (Fig.4). Then we obtain the learning rule:

ΔW(ω) =
{

I + Et

[
ϕω (Y(t))Y(ω, t)H

]}
W(ω) (15)

ϕω (Y(t)) =
[
ϕ1ω(Y1(t)), · · · , ϕnω(Yn(t))

]T (16)

ϕkω(Yk(t)) =
∂

∂Yk(ω, t)
log PYk(Yk(t)) . (17)
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Note that the learning rule (15) updates just non-zero elements in (9), thus it
doesn’t increase total number of parameters to be estimated. Comparing (15)
with the conventional rule (3), the difference is in arguments of the activation
function. In (15), the value of ϕkω(Yk(t)) is determined from a spectrum of
channel k, namely whole frequency bins, while the value of the conventional
activation functions is determined from only Yk(ω, t), ωth bin’s data.

3.4 Multivariate Probability Density Functions

In our framework, what is the most crucial is what multivariate PDF to use.
As a first challenge, we are employing a class of PDFs called ‘spherical distribu-
tion’ [6], which is represented as an assignment of vector’s norm into a proper
scalar function f(x), such as:

PYk (Yk(t)) = hf (‖Yk(t)‖2) (h: Normalization factor) (18)

‖Yk(t)‖2 =

(∑
ω

|Yk(ω, t)|2
)1/2

. (19)

Specifying f(x) generates various PDFs and corresponding activation func-
tions as in the following table, where m and K are proper positive constants.
Compared with the conventional activation functions, the uniquely increased
calculation is only on the norm ||Yk(t)||2.

f(x) PYk
(Yk(t)) ϕkω(Yk(t))

1
coshm(Kx)

h

coshm(K‖Yk(t)‖2)
−mK tanh(K‖Yk(t)‖2)Yk(ω, t)/‖Yk(t)‖2

exp{−K|x|} h exp {−K‖Yk(t)‖2} −KYk(ω, t)/‖Yk(t)‖2

In the research for conventional scalar PDFs, distinction between super- and
sub-gaussianity of the PDF is significant for stable and correct separation. In our
framework, however, it is open question how the distinction should be applied.

3.5 Preprocesses and Postprocesses

Before the learning, observations Xk(ω, t) are normalized to unit variance over
frames, as in the conventional binwise method. The normalization can also sup-
press permutation inconsistencies, since a frequency bin with low power (vari-
ance) has few contribution to the KLD in (13) and thus it is easily permuted.

After the learning, unmixed spectrograms Y have scaling ambiguities among
bins, thus rescaling each bin is still necessary. In our framework, rescaling can
simply be represented with the whole unmixing matrix W, although its operation
is equivalent to binwise one. For example, the rescaling based on the minimal
distortion principle [7] is represented as W ← diag

(
W−1)W.

4 Experimental Results

We demonstrate results of the separation of a set of data which were recorded
separately and mixed on a computer. Recording was done through playing each
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Table 1. Signal-to-interference ratios

Test Sources Signals SIR [db] to KLD
No. (from) src1 src2 src3 (×104)

src1: beet.wav (RF) Observations 0.04 0.11 — 13.60
1 src2: mike.wav (F) Unmixed with (20) 16.95 19.69 — 5.82

Unmixed with (21) 3.93 1.14 — 6.87
src1: beet.wav (RF) Observations -2.46 -2.12 -2.77 16.82

2 src2: mike.wav (F) Unmixed with (20) 13.46 11.24 9.20 8.13
src3: beet9.wav (L) Unmixed with (21) -2.02 0.76 4.98 8.62

wave file which is put in “ICA ’99 Synthetic Benchmarks” [8] from each loud
speaker designated in Fig.5. The format of recorded data is in 16kHz sampling
rate and 8 seconds length. As observations, two different mixtures were gen-
erated: mixture of two sources and that of three sources (see Table 1). The
observations were transformed to spectrograms of 257 bins (M = 257) and 1000
frames, using 512 point Fast Fourier Transform (Hanning window, 128 shift).

In the learning process, we employed the following two activation functions:

ϕkω(Yk(t)) = −K
Yk(ω, t)
‖Yk(t)‖2

(K =
√

M � 16.03) (20)

ϕ(Yk(ω, t)) = − Yk(ω, t)
|Yk(ω, t)| . (21)

Equation (20) is a proposed multivariate activation function, while (21) is con-
ventional scalar one. As common parameters, we used the learning rate η = 0.3
and 300 iterations. No postprocesses to correct permutation were done.

After obtaining frequency domain results {Y1, · · · ,Yn} and the correspond-
ing time-domain signals {y1, · · · ,yn}, we calculated signal-to-interference ratio
(SIR) as following steps:

1. Let xk,sj
be the contribution from the source sj to the kth microphone.

Decompose each yk to the target signal, component along with xk,sj
, and

the interference.
2. Calculate signal-to-interference ratio SIR(yk,xk,sj

) as 10 log10 ||target||2 /
||interference||2. (In step 1 and 2, we used BSS EVAL Toolbox [9].)

3. Define SIR(sj) = maxk SIR(yk,xk,sj
) as total SIR to the source sj . (Oper-

ation ‘max’ means specifying which yk corresponds to sj)

We show the results in Table 1, where Test 1 is on the mixture of two sources
and Test 2 is on three sources. In both tests, we found that any SIR with (20)
is more improved due to the permutation-free results.

Fig.6–Fig.8 are spectrograms on Test 2. Fig.6 shows the contribution from
src1 (voice) to the microphone2, as a close-up of 32 ≤ ω ≤ 128 (1k–4k[Hz])
and 0 ≤ t ≤ 188 (0–1.5[sec]). Fig.7 and Fig.8 show the corresponding unmixed
result with (20) and (21) respectively. Fig.7, with the proposed, doesn’t have
the permutation inconsistency, while Fig.8, with the conventional, has many
permutation inconsistencies.
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Fig. 6. Contribution of src2
to mic2

Fig. 7. Y2, Unmixed with
(20) (proposed)

Fig. 8. Y2, Unmixed with
(21) (conventional)

The rightmost column in Table 1 denotes values of Kullback-Leibler diver-
gence calculated with (13) and PYk

(Yk(t)) = h exp {−K‖Yk(t)‖2}, assuming
that H(X) = 0 and h = 1. It also indicates the fact that in our framework less
permuted spectrograms lead to lower value of KLD as well as more unmixed
spectrograms do.

Fig.1 and Fig.2 indicate another set of unmixed results, using rsm2 m[AB].wav
which are put in Te-won Lee’s web page [10]. Fig.2 shows the results with (20)
and no permutation inconsistencies occur, while Fig.1 shows the results with
(21) and band-like permutations occur.

5 Discussion

From the view of multivariate probabilistic density functions, the conventional
methods can be reinterpreted as follows. In (15)–(17), applying (22) leads to the
conventional binwise rule (3). Similarly, (23) leads to the rule by Mitianoudis
and Davies (7). These facts mean they correspond to each particular case.

PYk(Yk(t)) =
∏
ω

PYk(ω)(Yk(ω, t)) (22)

PYk(Yk(t)) =
h(∑

ω |Yk(ω, t)|)M (23)

Equation (22) does enforce excessive assumption that all frequency bins even
within the identical channel (spectrogram) are independent, thus it causes per-
mutation inconsistencies. Another case (23) doesn’t meet a requirement of PDF
that all summation of probability must be 1, rather it diverges.

On the other hand, our framework just enforce an assumption that all spectro-
grams are mutually independent. This should be suitable to separate observation
spectrograms to permutation-free outputs.

6 Conclusion

We presented a new framework to separate the whole spectrograms, instead
of individual frequency bins, where a measure of independence is calculated



608 A. Hiroe

from the whole spectrograms using multivariate probability density functions.
We also demonstrated the learning rule using multivariate activation functions,
and specific instances of these functions. Experimental results indicate that our
framework generates permutation-free outputs and improves SIRs.

At present, however, following issues are still open: How robust our frame-
work is to actual various observations in terms of convergence or unmixing per-
formance; What kind of activation functions are suitable in terms of stability
or permutation-free separation; How ours can be applied to algorithms except
the gradient. Of course, research of multivariate PDFs itself is also challenging,
including their super- or sub-gaussianity.

We hope that our proposal can be a new step in frequency domain ICA.
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Abstract. We apply the technique of independent component analysis
to Fourier power coefficients of speech signal frames for a blind detec-
tion of basic vectors (sources). A subset of sources corresponding to the
noisy influence of basic frequency is identified and its corresponding fea-
tures could be eliminated. The mixing coefficients for such sources are
then determined for every speech sample. We compare our features with
the Mel Frequency Cepstrum Coefficient (MFCC) features, widely used
today for phoneme-based speech recognition.

1 Introduction

It is common in automatic speech recognition systems to apply a frame-based
segmentation of the signal, i.e. to use short-time frames [1], [2] in which a win-
dowed Fourier transform is performed. Although specific features of a single
frame can be detected already in the time-domain (like LPC features), there
are widely used Mel Frequency Cepstrum Coefficients (MFCC) [2], [3] which
are computed in the ”cepstral” space (this needs a homomorphic filtering via
the Fourier space back to the time domain and a post-processing step called
“liftering”).

It was observed, that statistical cues could offer increased power to speaker
recognition systems [4], [5]. In this context the two techniques - PCA and ICA
- can be considered [6], [7]. Different authors derive the principal component
analysis (PCA) or ICA [4] of the power spectra vectors, which are also smoothed
using Mel-scale triangular filters. The authors of [5] assume that the spectra of
sounds generated by a given speaker can be synthesized using a set of speaker
specific basis functions - the unknown source in the ICA model.

In this paper we follow this idea and we expect the Fourier power coefficients
of a single frame to be mixtures of a set of basic, statistically independent vec-
tors. In section 2 the problem of speech feature detection is introduced. The
proposed approach is described in section 3 and simulation results follow in
section 4.
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2 The MFCC Features for Speech

The task of ICA is to find the waveforms si(t) of the sources, knowing only
the mixtures xj(t) and the number m of sources [6]. A well-known iterative
optimization method the stochastic gradient (or gradient descent) search [8] can
be applied in this context. Especially for the ICA problem different gradient
approaches were developed (e.g. the natural gradient descent [9]). An efficient
”batch” approach is the method ”FastICA” [7]. The batch processing allows a
preliminary ”whitening” step for the zero-mean mixture signals, which improves
the convergence speed of the ICA procedure.

2.1 Energy of Speech Samples

As illustrated in Fig. 1 and 2 the energy distribution in time of the same spoken
word significantly differs from sample to sample and from speaker to speaker.
Hence, we need a feature scheme which is rather interested in the ”waveform” or
relative (normalized) energy pattern than in the global energy distribution. In
some applications the possibility to achieve ICA demixing results with respect
to a scaling factor only is a disadvantage of the ICA approach. In case of speech
features no such drawback should appear.

Fig. 1. Energy distribution in time of some polish word ”pusc” (release): 3 (left) and
3 (right drawing) samples with their averages (bold lines) for one speaker

In order to limit the variability of energy distribution among speakers and due
to different emotional attitude of the speaker we make an energy normalization
step before feature detection. As our goal is to extract ICA-based features and to
compare them with the MFCC features only, without performing general word
recognition, we can deal with the necessary time stretching by performing an
interpolation-based resampling in the time domain in advance of the feature
detection step. In this way we assure that the current utterance and the pattern
utterance have both the same number of samples (for every word a different
number of samples is usually required).
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Fig. 2. Energy distribution in time of polish word ”pusc” (release) - the averages for
5 different speakers

2.2 The Standard MFCC Features

The Mel-cepstrum features are the result of the characteristic (homomorphic)
transformation MFCC(h) = FT−1{MFC{FT{h}}} for h = x⊗w (a convolu-
tion of x with w).

The short-term power spectrum is computed by applying the discrete Fourier
Transform (DFT) (in fact the FFT) to each windowed signal and taking directly
the magnitudes of Fourier coefficients raised to the power of two. The power
spectrum is usually represented on a log scale.

A MEL scale (empirical result) adopts the frequency bandwidths to the band-
widths recognized by the human auditory system. The set of Fourier features is
reduced by considering bandwidths, centered around some MEL scale frequen-
cies. Usually one uses a set of l triangle filters D(l, t) to compute l so called
Mel-spectral coefficients MFC(k, t) for every signal frame t.

A disadvantage of Fourier coefficients, even after consolidation by triangle
filters, is the joint correlation of neighbor frequency coefficients. Since the vo-
cal tract is smooth, energy levels in adjacent bands tend to be correlated. To
compensate this smoothing of features the inverse DFT (in fact only the cosine
transform as the transformed MFC’s are real-valued) is applied, which converts
the set of logarithm-scaled energies to a set of cepstrum coefficients (for example,
m = 12), which are largely un-correlated:

MFCC(k, t) =
M−1∑
l=0

log[MFC(l, t)] cos
[
k(2l + 1)π

2M

]
, k = 1, ..., 12. (1)

Another disadvantage of this scheme is that noisy oscillations of the human
larynx are overlayed onto the energy of basic frequency and some of its first
harmonic frequencies. To reduce it a so called liftering of the MFCC features
is finally performed [2], [3]. Let cn be the n-th MFCC. Then its liftering is as
follows:

cliftn =
[
1 +

L

2
sin
(πn
L

)]
cn, n = 1, 2, ...,K < L, (2)
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where L is related to the feature index for the basic frequency. Usually the final
number of features L is set by default to the number of triangle filters, as the
on-line computation of this parameter for every consecutive frame is not feasible:
(a) a variable number of features could appear for different frames, (b) although
the basic frequency is related to the individual speaker, it is variable even for
the same speaker, as it depends on the accentuation and emotional standing.

3 The Approach

3.1 Applying ICA for Source Separation

The Fourier coefficients obtained for given frame FC(a, t) constitute a vector
x(t) - a single (mixture) input to the ICA learning procedure (the size of this
vector is N). This vector is expected to be a particular mixture of m < N
independent sources. For every spoken word, that we can detect in the speech
sample, we get a learning set of frames: xi(t)(i = 1, ..., n; t = 1, ..., N).

The basic mixing model in ICA (without noise) is assumed. x(t) is a matrix
of n time-varying vector signals, each of size N . ai is a set of n mixing vectors
(each of size m) combined to a mixing matrix A (every ai is a single row of
matrix A). {si(t)} is a set of m sources - each one consists of N time samples.

After running the ICA method both unknown sources and unknown mixing
coefficients are determined - on base of given sequence of observations (frames)
xi(t) the vector s and weight matrix W are estimated. The sources need to be
normalized and reordered, while the weights are of no importance during learning.

3.2 Matching of Source Sets

During learning we need to establish a correspondence between existing source
set (the reference components) and the newly created source set for current
signal frame. During this comparison a proper permutation index, the scaling
and even the sign of amplitude must be adjusted [10]:

(1) The amplitudes of all components are re-scaled to the interval of < −1, 1 >.
(2) FOR all tested components yi, (i = 1, ..., n) DO:

FOR all reference components sj , (j = 1., ..., n) DO:
compute the mean square error of approximating sj by yi or by −yi:

MSE[yi, sj ] and MSE[−yi, sj ]
and select the better one, i.e. with lower value;

(3) All selected MSE-s are transformed into elements of a new created matrix
P = [ai,j ]n×n, where ai = 1√

MSE[yi,sj ]
.

(4) The error index EI(P) is computed as:

1
n

⎡⎣ n∑
i=1

n∑
j=1

aij
maxi(aij)

− n

⎤⎦+
1
n

⎡⎣ n∑
j=1

n∑
i=1

aij
maxj(aik)

− n

⎤⎦ .
The first part of above sum expresses the average error for matching a tested ICA
component with one reference component, whereas the second part is equivalent
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Fig. 3. Waveforms of the word ”zero” pro-
nounced by two speakers (male and fe-
male)
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Fig. 4. The spectrograms (selected
frames with sufficient energy only) for
above words ”zero”

to a penalty score, if a single reference component is matched with more than
one tested component.

3.3 Larynx Noise Detection

Some of the sources correspond to the noisy influence of basic oscillations of
the larynx. In MFCC scheme they are tried to be eliminated by the ”liftering”
processing. In case of our ICA scheme these ”noisy” sources are detected by their
continuously decreasing waveform, with its highest value at the index of 0. The
remaining sources are equipped with one or several local maxima at particular
frequency indices (see Fig. 3 and 5).

3.4 Feature Extraction

For every signal frame we need to determine a feature vector in the previously
established ICA space determined by the selected source set. These features
are equivalent to the unknown mixing coefficients of ICA sources that lead to
the power spectrum vector for current frame. Hence, let us assume the matrix
S, with rows representing the reference ICA sources in frequency space si(ω),
was established during the learning phase. One part of these sources forms the
feature-relevant base SF and the other part - the larynx-related part SL of matrix
S. Then we estimate the unknown mixing coefficients for current window k of
the speech signal as: aTk = xk(ω)S−1, where xk(ω) is the vector of power spectra
for the k-th window of speech. The final feature vector is a sub-vector of ak
corresponding to the subspace determined by SF.

An illustration of ICA features detected for the source set in Fig. 5 is specified
in Fig.7 and 8. We observe that the coefficients W for different words ”jeden”
and ”dwa” with the same ICA components are quite different, but for the same
word and even different speaker - these coefficients are similar.
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Fig. 5. The detected 31
basic vectors (one column
represents one vector with
32 elements) after ICA
was applied to above two
spectral images

Fig. 6. The main window of our test application:
(1) menu, (2) oscillogram, (3) spectrogram, (4) MFC,
(5) energy, (6) MFCC or ICA, (7) analysis parameters
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represents one vector of coefficients for
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Great similarities appear.
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Fig. 8. The coefficients W for different
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from the same speaker. Large differences
appear.

4 Experimental Results

Both the MFCC- and ICA-based approaches for speech frame feature detec-
tion were implemented and tested on speech signal examples, acquired with the
sampling frequency of 22 kHz. Speech samples from 18 persons (both male and
female) were available for testing (Fig. 6).

The MFCC and ICA features are quite stable for different samples of the same
word and speaker (see Fig. 9). For different speakers a larger variability appears
(Fig. 10).

Some experiments of both approaches are summarized in tables 1-2, where the
EI index values were computed while matching the tested sample components
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Fig. 9. MFCC features for speaker 1 and word
”pusc” (release) - 6 different samples

Fig. 10. MFCC features for
speakers 2-4 and word ”pusc”
(release)

Table 1. Comparison of the error index
EI(P) for components - sources - of the
same word (”zero”) but for 4 different
speakers (31 sources with 32 elements)

Reference M1 F1 M2 F2
Tested
Male 1 6.04 4.46 5.15 3.90

Female 1 6.15 4.62 5.85 5.56
Male 2 6.21 4.47 5.13 4.70

Female 2 9.03 8.47 7.45 7.92

Table 2. Comparison of the error in-
dex for components - sources - of differ-
ent words (”zero”, ”jeden”, ”dwa”) but
the same speaker (31 sources with 32 ele-
ments)

Reference ”zero” ”jeden” ”dwa”
Tested
”zero” 3.46 2.50 1.98
”jeden” 2.33 2.82 1.20
”dwa” 2.66 2.94 1.85

Table 3. The classification success rate
for the MFCC- and ICA-based feature
sets (20 classes with 26 learning and 12
verification samples for each class - dif-
ferent speakers)

Feature set MFCC ICA
Word
”zero” 66% 100%

”jeden” (one) 58% 100%
”dwa” (two) 63% 66%

”trzy” (three) 58% 100%
”cztery” (four) 58% 100%

...
”dziewiec” (nine) 83% 100%

”start” 66% 66%
”stop” 92% 83%

”lewo” (left) 66% 91%
”prawo” (right) 66% 66%

”gora” (up) 89% 100%
”do�l” (down) 75% 83%

”pusc” (release) 91% 91%
”z�lap” (catch) 91% 91%

”os” (axis) 83% 91%
”chwytak” (grab) 66% 100%

average 75.6 % 90.55%

with the proper reference components. From Table 1 it is evident, that the
components are quite independent from the speaker. From Table 2 we conclude
that ICA sources, obtained for different words of one speaker, are also similar.
Hence, ICA produces a general base for speech features.
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The last table 3 summarizes a comparison between MFCC features and ICA-
based features. A word reference (class) was represented by an average map of all
the learned feature maps for given word. We applied a simple minimum-distance
classifier for the classification of feature sets, computed in both schemas - MFCC
and ICA. A success was noted if the minimum distance was achieved for the proper
reference word and the distance between current feature map and reference map
was below half of the standard deviation of samples for given class.

5 Conclusion

We have proposed an ICA-based method for speech feature detection in a frame-
based speech recognition system. A subset of sources detected by ICA provides
base vectors of the feature space in the frequency domain, whereas the mixing
coefficients in ICA mixing model constitute the feature vectors. The experiments
show a better quality (in terms of the recognition success rate) of such features
if compared to standard MFCC features.

Acknowledgment. The work reported in this paper was supported by the
grant MNiI - 4T11A 003 25.
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Abstract. In this paper we present a method for polyphonic music
source separation from their monaural mixture, where the underlying
assumption is that the harmonic structure of a musical instrument re-
mains roughly the same even if it is played at various pitches and is
recorded in various mixing environments. We incorporate with nonneg-
ativity, shift-invariance, and sparseness to select representative spectral
basis vectors that are used to restore music sources from their monaural
mixture. Experimental results with monaural instantaneous mixture of
voice/cello and monaural convolutive mixture of saxophone/viola, are
shown to confirm the validity of our proposed method.

1 Introduction

The nonnegative matrix factorization (NMF) [1] or its extension such as non-
negative matrix deconvolution (NMD) [2] and sparse coding [3], was shown to
be useful in polyphonic music description [4, 5], in the extraction of multiple
music sound sources [2, 6], and in general sound classification [7]. Some of these
methods regard each note as a source, which might be appropriate for music
transcription and work for source separation in a very limited case.

In this paper we present a method for monaural polyphonic music separation,
the goal of which is to restore the whole melody generated by each musical in-
strument from a single channel mixture of several polyphonic musical sounds.
We assume that the harmonic structure of a musical instrument approximately
remains the same, even if it is played at different pitches and is recorded in dif-
ferent environments. Different musical instruments are assumed to have different
spectral characteristics (harmonic structure).

The main idea is to select a few representative spectral basis vectors in the
auditory spectrogram of measurement data, assuming that there are some sec-
tions in the auditory spectrogram where only a single note from a single source
appears. Rather than learning basis vectors, we select a few appropriate non-
negative basis vectors using the sparseness of spectral coefficients. These shift-
invariant nonnegative basis vectors are fixed and associated encoding variables
are learned by the overlapping NMF [8] which incorporates with the shift-
invariant representation, in order to restore music sources. The method is re-
lated to our earlier work [9] and the generalized prior subspace analysis [10].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 617–624, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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However, the key distinction lies in a way of selecting shift-invariant basis vec-
tors. Promising results with monaural instantaneous mixture of voice/cello and
convolutive mixture of saxophone/viola, are presented to confirm the validity of
our proposed method.

2 Overlapping NMF: Nonnegativity and Shift-Invariance

Nonnegative matrix factorization (NMF) is a simple but efficient factorization
method for decomposing multivariate data into a linear combination of basis
vectors with nonnegativity constraints for both basis and encoding matrix [1].

Given a nonnegative data matrix V ∈ Rm×N (where Vij ≥ 0), NMF seeks a
factorization

V ≈WH, (1)

where W ∈ Rm×n (n ≤ m) contains nonnegative basis vectors in its columns and
H ∈ Rn×N represents the nonnegative encoding variable matrix. Appropriate
objective functions and associated multiplicative updating algorithms for NMF
can be found in [1].

The overlapping NMF is an interesting extension of the original NMF, where
transform-invariant representation and a sparseness constraint are incorporated
with NMF [8]. Some of basis vectors computed by NMF could correspond to
the transformed versions of a single representative basis vector. The basic idea
of the overlapping NMF is to find transformation-invariant basis vectors such
that fewer number of basis vectors could reconstruct observed data. Given a set
of transformation matrices, T =

{
T (1),T (2), . . . ,T (K)

}
, the overlapping NMF

finds a nonnegative basis matrix W and a set of nonnegative encoding matrix{
H(k)

}
(for k = 1, . . . ,K) which minimizes

J (W ,H) =
1
2

∥∥∥∥∥V −
K∑
k=1

T (k)WH(k)

∥∥∥∥∥
2

F

, (2)

where ‖ · ‖F represents Frobenious norm. The multiplicative updating rules for
the overlapping NMF were derived in [8], which are summarized below.

Algorithm Outline: Overlapping NMF [8]

Step 1. Calculate the reconstruction: R =
∑K
k=1 T (k)WH(k).

Step 2. Update the encoding matrix by

H(k) ←H(k) �
W�

[
T (k)
]�

V

W�
[
T (k)
]�

R

, k = 1, . . . ,K, (3)

where � denotes the Hadamard product and the division is carried out in an
element-wise fashion.
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Step 3. Calculate the reconstruction R again using the encoding matrix H(k)

updated in Step 2, as in Step 1.
Step 4. Update the basis matrix by

W ←W �
∑K
k=1

[
T (k)
]�

V
[
H(k)

]�
∑K
k=1

[
T (k)
]�

R
[
H(k)

]� . (4)

3 Spectral Basis Selection: Sparseness

The goal of spectral basis selection is to choose R representative vectors V r =
[vr1 · · · vrR

] (R is the number of music sources) from V = [v1 · · · vN ] where
V is the data matrix associated with the spectrogram of mixed sound. Each
column vector vt corresponds to the power spectrum of the mixed sound at time
t = 1, . . . , N . Selected representative vectors are fixed as basis vectors that are
used to learn an associated encoding matrix set through the overlapping NMF
with sparseness constraint, in order to restore unmixed musical sound.

Our spectral basis selection method is based on the assumption that there
are some sections where only a single note from a single source appears. In
the spectrogram of mixed sound, solo sections are searched partly through the
sparseness value of vt over time. Our earlier work can be found in [9].

Fig. 1 shows the schematic diagram of the spectral basis selection method,
consisting of two parts. The first part is to select several candidate vectors V c =
[vc1 vc2 · · · vcK ] from V using a sparseness measure and a clustering-elimination
method. The second part involves determining representative basis vectors from
candidate vectors, through the overlapping NMF. More detailed description is
summarized below.

Part 1

1. Sparseness calculation. We calculate the sparseness value for input
vectors vt for t = 1, . . . , N , using the measure in [11],

ξt = sparseness(vt) =
√
m− (

∑
i |vit|)/

√∑
i v

2
it√

m− 1
, (5)

where vit is the ith element of the m-dimensional vector vt.
2. Normalization. We normalize input vectors vt for t = 1, . . . , N such that

each vector has unit Euclidean norm,

vt ←
vt
‖vt‖

. (6)

3. Alignment. We calculate the index fi = t∗ which involves the largest
sparseness value among {ξt}Nt=1, i.e,

t∗ = arg max
1≤t≤N

ξt. (7)



620 M. Kim and S. Choi

Overlapping NMF

Part 1

Part 2

Sparseness calculation;
Normalization;

Clustering−
Elimination

selection
Candidate

Final selection

Alignment
[v1 · · · vN ] ξi

[v ci1
· · · vciR

]
di

V ← V − Sci

`
K

R

´

ε[vr1 · · · vrR
]

vfi

Fig. 1. Schematic diagram of our spectral basis selection method, is shown, where
’Part 1’ involves the selection of candidate vectors and ’Part 2’ determines a few rep-
resentative spectral basis vectors from candidate vectors found in ’Part 1’

The vector vfi
associated with the index fi = t∗, is referred to as a foundation

vector that has the largest sparseness value among {vt}. Then we align each
vector vj in L remaining input vectors (initially L = N but L represents
the number of remaining vectors after the clustering-elimination procedure
in step 4) with respect to the current foundation vector vfi

such that the
Euclidean distance between vfi

and vertically shift-up or -down version of
vj , is minimized. In other words, vectors vj are vertically shifted-up or -down
such that their shifted version provides the minimal Euclidean distance from
the foundation vector vfi

.
4. Clustering-Elimination. The goal of the clustering-elimination step is to

eliminate vectors belonging to the cluster where the foundation vector is
contained, since those vectors are regarded as redundant vectors. To this
end, we first apply the k-means clustering method to dichotomize the aligned
vectors (including the foundation vector), leading to two groups Sci and S̄ci .
The cluster containing the foundation vectors, Sci , is further grouped into R
sub-clusters, producing {vci1 , . . . ,vciR

} that is a collection of mean vectors
of R sub-clusters.

5. Candidate selection. Add the mean vector of the cluster Sci to the
candidate set.

6. Repeat. Repeat steps 3-5 with data excluding vectors in Sci , i.e, V − Sci ,
until we choose a pre-specified number of candidate vectors or there is no
remaining input vector.

Part 2

This second part involves determining the final representative spectral basis
vectors {vr1 , . . . ,vrR

} from K ≥ R candidate vectors {vc1 , . . . ,vcK} (where K
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is the integral multiples of R, depending on the number of loops in the clustering-
elimination) found in the first part.

1. Overlapping NMF. Repeat the following step for all possible
(
K
R

)
combina-

tion. Construct a small set of input vectors Ṽ by random sampling and treat
them at input vectors for the overlapping NMF. Choose R candidate vectors
from {vc1 , . . . ,vcK} and fix them (denoted by W̃ ) as basis vectors. Run the
overlapping NMF with these Ṽ and W̃ to calculate the reconstruction error.

2. Final selection. Choose spectral basis vectors that give the lowest recon-
struction error.

4 Numerical Experiments

We present two simulation results for monaural instantaneous mixtures of voice
and cello and monaural convolutive mixtures of saxophone and viola. We apply
our spectral basis selection method with the overlapping NMF to these two
data sets transformed to auditory spectrograms using the NSL toolbox [12].
Experimental results are shown in Fig. 2 and 3 where figure captions describe
detailed results. Note that the mixture in Fig. 3 (c) is a convolutive mixture and

F
re

qu
en

cy
 (

H
z)

Time (ms)
100 200 300 400 500 600 700 800 900 1000

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
100 200 300 400 500 600 700 800 900 1000

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
100 200 300 400 500 600 700 800 900 1000

 250

 500

1000

2000

4000

(a) (b) (c)

F
re

qu
en

cy
 (

H
z)

 250

 500

1000

2000

4000

Basis 1 Basis 2 

F
re

qu
en

cy
 (

H
z)

Time (ms)
100 200 300 400 500 600 700 800 900 1000

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
100 200 300 400 500 600 700 800 900 1000

 250

 500

1000

2000

4000

(d) (e) (f)

Fig. 2. Auditory spectrograms of original sound of /ah/ voice and a single string of
a cello are shown in (a) and (b), respectively. Horizontal bars reflect the harmonic
structure. One can see that every note is the vertically-shifted version of each other if
their musical instrument sources are the same. Monaural mixture of voice and cello is
shown in (c) and final two representative spectral basis vectors in (d) which give the
smallest reconstruction error in the overlapping NMF are selected by our algorithm in
Fig. 1. Each of these two basis vectors is a representative one for voice and a string of
cello. Unmixed sound is shown in (e) and (f) for voice and cello, respectively.



622 M. Kim and S. Choi
F

re
qu

en
cy

 (
H

z)

Time (ms)
500 1000 1500 2000 2500 3000

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
500 1000 1500 2000 2500 3000

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
500 1000 1500 2000 2500

 250

 500

1000

2000

4000

(a) (b) (c)

F
re

qu
en

cy
 (

H
z)

 250

 500

1000

2000

4000

Basis 1 Basis 2 

F
re

qu
en

cy
 (

H
z)

Time (ms)
500 1000 1500 2000 2500

 250

 500

1000

2000

4000

F
re

qu
en

cy
 (

H
z)

Time (ms)
500 1000 1500 2000 2500

 250

 500

1000

2000

4000

(d) (e) (f)

Fig. 3. Auditory spectrograms of original sound of saxophone and viola are shown in
(a) and (b), respectively. Every note is artificially generated by changing the frequency
of a real sample sound, so that the spectral character of each instrument is constant
in all the variations of notes. We mixed these two signals by convolving them with
two impulse response signals measured in a studio environment (reverberation time is
about 150ms and the frequency response makes a peak at around 27Hz). The monaural
convolutive mixture is shown in (c) and finally selected two representative spectral
basis vectors are in (d). Unmixed sound is shown in (e) and (f) for saxophone and
viola, respectively.

we can apply our framework even in that case without any modification if the
reverberation time is not too long.

Fig. 4 shows the reusability of our obtained spectral basis vectors. The mixture
in Fig. 4 (c) is another part of the same song used in Fig. 3. In this example, we
do not have to find out the spectral basis vectors of saxophone and viola again,
but can simply reuse the previous results of Fig. 3. Note that if some input data
do not satisfy the horizontal sparseness, which means that there is no section
occupied by only one instrument, our spectral basis selection method will fail in
this case. However we can attack this problem by reusing the previously obtained
spectral basis vectors of the same source instruments. Audio demo can be found
in http://home.postech.ac.kr/∼minjekim/demo.php.

The set of transformation matrices, T , that we used, is

T =

{
T (k) ∣∣ T (k) =

k−m�−→
I , 1 ≤ k ≤ 2m− 1

}
, (8)

where I ∈ Rm×m is the identity matrix and
j�−→
I leads to the shift-up or shift-

down of row vectors of I by j, if j is positive or negative, respectively. After
shift-up or -down, empty elements are zero-padded.



Monaural Music Source Separation 623

For the case where m = 3, T (2) and T (5) (they means that k = 2 and k = 5)
are defined as

T (2) =
2−3�−→
I =

⎡⎣0 0 0
1 0 0
0 1 0

⎤⎦ , T (5) =
5−3�−→
I =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ . (9)

Multiplying a vector by these transformation matrices, leads to a set of vertically-
shifted vectors.
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Fig. 4. These figures show the reusability of spectral basis vectors. Auditory spectro-
grams of original sound of saxophone and viola are shown in (a) and (b), respectively.
Every note is generated in the same manner of Fig. 3 but the melody is totally dif-
ferent from it since this is another part of the same song. The mixing process is also
the same with the previous experiment. The monaural convolutive mixture is shown
in (c). Instead of finding out representative basis vectors, we reused the basis vectors
(d) found in previous example. Unmixed sound is shown in (e) and (f) for saxophone
and viola, respectively.

5 Discussions

We have presented a method of spectral basis selection for monaural music source
separation, where we incorporated with the harmonics, sparseness, clustering,
and the overlapping NMF. Rather than learning spectral basis vectors from
the data, our approach is to select a few representative spectral vectors among
given data and fix them as basis vectors to learn associated encoding variables
through the overlapping NMF, in order to restore unmixed sound. The success
of our approach lies in the two assumptions. The one is that the distinguished
timbre of a given musical instrument can be expressed by a transform-invariant
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time-frequency representation, even though their pitches are varying. The other
is that there is solo sections in a musical sound where the contribution of each
source instrument appears. Our experimental results showed that the proposed
methods are reasonable in both instantaneous and convolutive mixture cases.
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Abstract. We tackle the frequency-domain blind source separation
problem in a way to avoid permutation correction. By exploiting the
facts that the frequency components of a signal have some dependency
and that the mixing of sources is restricted to each frequency bin, we
apply the concept of multidimensional independent component analysis
to the problem and propose a new algorithm that separates independent
groups of dependent source components. We introduce general entropic
contrast functions for this analysis and a corresponding likelihood func-
tion with a multidimensional prior that models the dependent frequency
components. We assume circularity for the complex variables and derive
a fast algorithm by applying Newton’s method learning rule. The algo-
rithm separates mixed sources even in very challenging acoustic settings.

1 Introduction

In order to deal with the problem of separating acoustic signals, researchers have
proposed algorithms that extend to convolutive mixtures in both the time do-
main and the frequency domain to handle reverberation and time delayed mixing
of the sources. Dealing with the signals in the frequency domain has the advan-
tage of increased performance mostly due to the fact that it can better handle
longer filter lengths and that the convolution problem is reduced to a complex
instantaneous mixing problem for each frequency bin. However, a permutation
correction problem arises. Previous solutions match the permutation by direction
of arrival estimation [1], inter-frequency correlations of signal envelopes [2], or
the combination of the two [3]. Although these methods provide a good intuitive
solution, they show limited robustness.

We take a fundamentally different approach to this problem by assuming that
the source signal of interest has certain dependency in the frequency domain that
can be modeled in a multidimensional prior. Here, instead of running indepen-
dent component analysis (ICA) algorithms in each frequency bin and correcting
the permutation, we extract the originally dependent sources together as a group
using the multidimensional prior. This model is an extension of maximum like-
lihood approach to the multidimensional ICA (MICA) [4] and we will call it

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 625–632, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



626 I. Lee, T. Kim and T.-W. Lee

independent vector analysis (IVA). Although, in the analysis, there is no con-
sideration of how to separate the mixture, if any, of dependent sources, the
analysis can still be applied to the frequency domain blind source separation
(BSS) problem since mixing is restricted to each frequency bin and hence there
is no mixing between the dependent inter-frequency components. Experiments
with real recordings demonstrate the effectiveness of the new algorithm that uses
a proper multidimensional prior.

In this paper, because of the limited number of pages that is allowed, we
concentrate more on the analysis, algorithm derivation, and discussion than on
the simulation results.

2 Independent Vector Analysis

As ICA can be represented by the mutual information of the outputs y, I(y),
as its contrast function, IVA or MICA can be represented by

D
(
Pr(y)||

∏
i

Pr(yi)
)

(1)

as its contrast function where D(·||·) is the KL divergence and Pr(yi) is the
marginal distribution of yi such that each yi becomes the group of dependent
components of interest when the contrast is minimized to 0. Note that this is a
valid contrast function since the contrast is minimized to 0 if and only if yi’s are
independent of each other

(
Pr(y) =

∏
i Pr(yi)

)
.

2.1 Contrasts of IVA for White Data

For the sake of simplicity, we assume zero-mean data x and process y = Wx
to be zero-mean and white. This is a common task in ICA algorithms for in-
creasing the learning speed, and is done by prewhitening the zero-mean data x
and by constraining the rows of the unmixing matrix W to be orthonormalized
(WWH = I). The prewhitening should not be always done for IVA algorithms
since there is no guarantee that the dependent source components in each group
are uncorrelated unless known to be so in advance. However, the uncorrelat-
edness can mostly be assumed for frequency-domain components of a natural
signal, and here we restrict our analysis to the assumption that the dependent
sources are uncorrelated.

By analysis taken with care, we show that the contrasts for IVA closely re-
semble the classic entropic contrasts for ICA. The given contrast (1) can be
looked at and analyzed in information geometry, as was done for ICA (Car-
doso, Ch.4 of [5]). We define the independent vector manifold as the exponential
family distribution with a constant base measure and all possible features ex-
cept for any cross-term between any component of yi and any component of yj
(i �= j) such that the vectors yi and yj are independent of each other. We also
introduce the Gaussian manifold which is the exponential family distribution
with all first and second order features and a constant base measure. We denote
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the Gaussian manifold and independent vector manifold as G and P respec-
tively and denote Pr(yN ) as the information projection of Pr(y) onto G such
that Pr(yN ) � arg minp∈G D(Pr(y)|| p ). Note that

∏
i Pr(yi) and

∏
i Pr(yNi )

are the information projections of Pr(y) and
∏
i Pr(yi) onto P and G respec-

tively. Since we constrain y to be zero-mean and white, we will consider the
subspace of zero-mean white distributions. In this subspace, the Gaussian man-
ifold shrinks such that not only it becomes a single point because the zero-mean
whiteness constraint fixes all parameters of the first and second order features
right away, but also it gets included in the independent vector manifold (G ⊂ P)
since uncorrelatedness of a Gaussian distribution implies independence. Hence
all information projections of probability distributions to the Gaussian manifold
are the same distribution and thus Pr(yN ) =

∏
i Pr(yNi ). Now, by applying

the Pythagorean relation in information geometry and introducing negentropy
N(y) � D(Pr(y)||Pr(yN )), we acquire

N(y) = D
(
Pr(y)||

∏
i

Pr(yi)
)

+
∑
i

N(yi). (2)

Fig. 1. Information geometry: Entropic contrasts of IVA for zero-mean white data

These relations are drawn in Fig.1. Since N(y) remains constant for any in-
vertible transformation, minimizing D

(
Pr(y)||

∏
i Pr(yi)

)
is equivalent to max-

imizing
∑
iN(yi).

Furthermore, from the following equations,∑
i

N(yi) =
∑
i

(
H(yNi )︸ ︷︷ ︸
const.

−H(yi)
)

=
∑
i

Eyi

[
log
(
Pr(yi)

)]
+ const., (3)

since y is zero-mean and white, we know that Pr(yNi ) is always an independent
multivariate zero-mean Gaussian distribution such that H(yNi ) is a constant.
Thus maximizing the sum of negentropies is equivalent to minimizing the sum
of entropies.

In spite of the validity of these entropic contrasts, there are some problems
in using them directly such as the difficulty in obtaining the true distribution
Pr(yi)’s from finite data size and the heavy computational load. One way to
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tackle these problems is to exploit prior information of the source and to use
empirical distribution, such as using the (normalized) log-likelihood function,∑

i

Ê
[
log
(
P̂si

(yi)
)](

= Ê
[
log
(
P̂s(y)

)]
= Ê
[
log
(
P̂W−1s(x)

)])
, (4)

where Ê[· · · ] = 1
N

∑
n · · · , and P̂si

(·) denotes the estimated source prior. Note
that this is an equivalent form to the entropic contrast in the rightmost expres-
sion of (3) given the source prior in (4) is exact and there are large enough
number of data samples. It is known that proper target distributions, even if not
exact, are available for good separation results (See Ch.4 in [5]).

3 A Fast Learning Algorithm for Frequency-Domain BSS

In order to apply the discussed model to the frequency-domain BSS problem,
we have to clarify the management of complex-valued variables and have to find
a valid source target for the frequency-domain components.

3.1 Complex Variables: Optimization and Assumptions

In the discussion of probability distributions, contrasts, and contrast optimiza-
tion, the question of how to deal with complex-valued variables arises because
real-valued contrast functions of complex variables are not analytic. There are
standard ways to handle the problem of optimizing such functions. The first is
to write everything in terms of the real quantities using s = u+ iv and then use
the standard tools. An alternative is to follow the lines of [6], which is equivalent
to the first method described, but notationally cleaner. Basically, these meth-
ods are regarding the functions as real valued functions of real variables which
means that a complex variable is manipulated as separated two dimensional real
variables and hence, the function gets optimized according to the real variables
separately. As the relation between the separated real variables, we assume cir-
cularity in the source variables such that E[ssT ] = O. Hence for zero-mean white
y we have, as in [7], Ê[yyH ] = I, and Ê[yyT ] = O.

3.2 Source Prior: Symmetric Exponential Norm Distribution

In roughly modeling an acoustic signal in the frequency domain, whiteness, circu-
larity aussumption, and sparseness of the norm were taken into account. Here, we
introduce a symmetric exponential norm distribution (SEND), which is meant
to be a joint distribution of real-valued variables and can be regarded as an
extension of double exponential distirbution, a.k.a. Laplace distribution,

P̂si
(si) ∝

e−
√

2
F

√∑
f |sf

i |2√∑
f |s

f
i |2

2F−1 (5)
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where the superscript f corresponds to each frequency component and F denotes
the total number of f ’s. This distribution was derived such that it has spherical
contour line and the norm of the variables follows an exponential distribution.
This distribution shrinks to the Laplace Distribution if the variables are real-
valued and the dimension is 1. The variance was adjusted for the variables to
be white. Note that this distribution satisfies whiteness, sparseness, circularity,
and also variance dependency.

After replacing P̂si
(·) in the contrast Ê

[
log
(
P̂si

(yi)
)]

with (5), the contrast
becomes ∑

i

Ê
[
G
(∑
f

|yfi |2
)]

=
∑
i

Ê
[
G
(∑
f

|wfHi xf |2
)]

(6)

where G(x) =
√

2x
F +(F − 1

2 ) log x with the constraint that wfi ’s are normalized.
Note that the nonlinear function G(·) corresponds to the source prior with the
relation of

G
(∑
f

|yfi |2
)
≡ − log P̂si

(yi), (7)

and also the contrast has changed its sign to be minus likelihood. By using the
Lagrange multiplier λfi ’s, we can have the normalization constraint together in
the contrast function, which results in∑

i

[
Ê
[
G
(∑
f

|wfHi xf |2
)]
−
∑
f

λfi (w
fH
i wfi − 1)

]
. (8)

3.3 Contrast Optimization: Newton’s Method

Once the contrast function is selected, we can derive our separation algorithm by
choosing the optimization method. ICA algorithms using Newton’s method for
contrast optimization are called FastICA algorithms. They can avoid choosing
proper learning rate and have the advantage of fast convergence speed when
compared to other gradient-descent type methods. While applying Newton’s
method to our contrast function, as discussed earlier, we follow the standard way
of dealing with the optimization of real-valued functions of complex variables.
However, we avoid introducing new variables such as [Re(w); Im(w)] or [w;w∗]
such that the derivation is easier to follow.

For this, we start from the Taylor series expansion of a real-valued function
f(w), where w is complex. Using the definitions for complex derivatives and
complex gradients in [6], it can be shown that the Taylor series expansion of
f(w) up to the second order is

f(w) ≈ f(wo) +
∂f(wo)
∂wT

(w −wo) +
∂f(wo)
∂wH

(w −wo)∗

+
1
2
(w −wo)T

∂2f(wo)
∂w∂wT

(w −wo) +
1
2
(w −wo)H

∂2f(wo)
∂w∗∂wH

(w −wo)∗

+(w −wo)H
∂2f(wo)
∂w∗∂wT

(w −wo). (9)
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This can be verified by defining a vector [w;w∗] and applying the Taylor series
expansion form as in [6]. The w that optimizes the function f(w) will set the
gradient of it, ∂f(w)

∂w∗ , to zero and hence from (9),

∂f(w)
∂w∗ ≈ ∂f(wo)

∂w∗ +
∂2f(wo)
∂w∗∂wT

(w −wo) +
∂2f(wo)
∂w∗∂wH

(w −wo)∗ ≡ O. (10)

Note that this equation is equivalent to the Newton step equation (37) in [6]. Using
this, we can derive a fast algorithm with the given contrast function in (8). Letting
w ≡ wfi and setting f(wfi ) ≡ Ê

[
G
(∑

f |w
fH
i xf |2

)]
−
∑
f λ

f
i

(
wfHi wfi − 1

)
, the

derivative terms in (10) become

∂f(wfi,o)

∂wf∗i
= Ê
[
yf∗i,oG

�
(∑
f

|yfi,o|2
)
xf
]
− λfiw

f
i,o (11)

∂2f(wfi,o)

∂wf∗i ∂wfTi
=Ê
[(

G�
(∑
f

|yfi,o|2
)
+|yfi,o|2 G�

(∑
f

|yfi,o|2
))

xfxfH
]
−λfi I (12)

≈ Ê
[
G�
(∑
f

|yfi,o|2
)
+|yfi,o|2 G�

(∑
f

|yfi,o|2
)]
Ê
[
xfxfH

]
−λfi I (13)

≈
(
Ê
[
G�
(∑
f

|yfi,o|2
)
+|yfi,o|2 G�

(∑
f

|yfi,o|2
)]
−λfi
)
I, (14)

∂2f(wfi,o)

∂wf∗i ∂wfHi
= Ê
[
(yf∗i,o)

2 G�
(∑
f

|yfi,o|2
)
xfxfT

]
(15)

≈ Ê
[(
yf∗i,o
)2

G�
(∑
f

|yfi,o|2
)]

Ê
[
xfxfT

]
(16)

≈O, (17)

where yfi,o denotes wfHi,o xf and some approximations were done in (13, 16) and
(14, 17) by separation of expectations as in [7] and the previous circularity and
whiteness assumptions respectively.

By (17), the Newton step equation (10) reduces to

wfi −wfi,o = −
( ∂2f(wfi,o)

∂wf∗i ∂wfTi

)−1 ∂f(wfi,o)

∂wf∗i
, (18)

and by (14), the inverse of a matrix term in (18) becomes a constant multipli-
cation term. This shows that the fast algorithm for complex variables we are
deriving is a variant of gradient descent algorithm as it is true for FastICA algo-
rithms with real-valued variables. By substitution, our corresponding iterative
algorithm becomes as follows,

wfi =wfi,o−
Ê
[(
yf∗i,o
)
G�
(∑

f |y
f
i,o|2
)
xf
]
− λfiw

f
i,o

Ê
[
G�
(∑

f |y
f
i,o|2
)

+ |yfi,o|2 G�
(∑

f |y
f
i,o|2
)]
− λfi

, (19)
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where it can be easily evaluated that the Lagrange multiplier should be λfi =

Ê
[
|yfi,o|2 G�

(∑
f |y

f
i,o|2
)]
. Also, instead of evaluating λfi , we can remove it by

multiplying the numerator in (19) on both sides of the equation. Hence, with
the need of normalization, the learning rule becomes

wfi=Ê
[
G�
(∑
f

|yfi,o|2
)
+|yfi,o|2 G�

(∑
f

|yfi,o|2
)]

wfi,o−Ê
[
(yf∗i,o)G

�
(∑
f

|yfi,o|2
)
xf
]
.

(20)
In addition to normalization, the rows of the unmixing matrix W need to be
decorrelated. For the maximum likelihood approach, symmetric decorrelation(
W← (WWH)−

1
2 W
)

should be used instead of the deflationary decorrelation
scheme since the source prior is not SEND itself but the product of SENDs.
It should be noted that decorrelation is actually done in each frequency bin(
Wf ← (WfWfH)−

1
2 Wf

)
.

4 Experiments

Our BSS algorithm was applied to real recordings and the performance was com-
pared with the perviously mentioned permutation correction algorithms. How-
ever, because of the limit of pages in this paper, we will just show the comparison
result with Sawada’s algorithm [3] which is regarded as the most improved ver-
sion of them. Three real spoken speeches and one hip-hop music played by a fixed
speaker were recorded in a real office environment. For the separation, 2048 FFT
points and 8 seconds of speech length were used. The results are shown in Fig.2.
While Sawada’s algorithm extracted only one speech source, our algorithm was
able to separate all sources.

Fig. 2. Separation results of (a) Sawada’s algorithm (b) our algorithm

5 Discussion

We showed the effectiveness of applying MICA to the frequency-domain BSS
problem by using a valid multidimensional prior. This analysis adds an inter-
frequency source-dependency constraint to the learning of each component such
that the permutation problem is avoided, or solved robustly. Interestingly and
similarly to ICA, we had certain flexibilities in defining or modeling the source
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prior. This can be seen in [8] where a different source prior and a gradient-descent
type algorithm show good performance.

Although independent groups of sources or independent groups of features
can be separated by several algorithms [4,9], the task to separate the mixture of
dependent sources or features is still difficult. This problem is also inherent in
our proposed IVA algorithm which can be easily seen from its entropic contrasts.
While the contrast (1) is minimized to 0, the dependent sources can still remain
unseparated since the mixture between dependent sources does not change the
value of the contrast. However, a significant advantage of applying such source
constraint to the frequency-domain BSS problem can be seen from the following
mixing structure, which is a simple 2× 2, 2 frequency case;⎡⎢⎢⎣

x1
1[n]

x1
2[n]

x2
1[n]

x2
2[n]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
a11
11 a11

12 0 0
a11
21 a11

22 0 0
0 0 a22

11 a22
12

0 0 a22
21 a22

22

⎤⎥⎥⎦
⎡⎢⎢⎣
s1
1[n]
s1
2[n]
s2
1[n]
s2
2[n]

⎤⎥⎥⎦ . (21)

The 0 terms restrict the mixing and the unmixing to each frequency bin, and
thus, no mixture between components of different frequency bins can exist.
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Abstract. This paper focuses on under-determined source separation when the
mixing parameters are known. The approach is based on a sparse decomposition
of the mixture. In the proposed method, the mixture is decomposed with Match-
ing Pursuit by introducing a new class of multi-channel dictionaries, where the
atoms are given by a spatial direction and a waveform. The knowledge of the
mixing matrix is directly integrated in the decomposition. Compared to the sepa-
ration by multi-channel Matching Pursuit followed by a clustering, the new algo-
rithm introduces less artifacts whereas the level of residual interferences is about
the same. These two methods are compared to Bofill & Zibulevsky’s separation
algorithm and DUET method. We also study the effect of smoothing the decom-
positions and the importance of the quality of the estimation of the mixing matrix.

1 Introduction

The source separation problem [1] consists in retrieving unknown signals (the sources)
from the only knowledge of mixtures of these signals (the channels). Each channel
xn is the linear combination of the sources, xn(t) =

∑I
i=1 an,i.si(t), where an,i is

a constant setting the level of the source si in the mixture xn. Thus the mixture can
be written in linear algebra as x = As, where A is the mixing matrix, and the rows
of the matrices x and s are respectively the signals xn and si. In the determined (resp.
over-determined) case, where the number of observed channels is equal to (resp. greater
than) the number of sources, estimating the mixing matrix and estimating the sources
are equivalent problems. Conversely, in the under-determined case, the knowledge of
the mixing matrix or its estimate is not sufficient to recover the sources, and a model
of the sources is generally needed to estimate them [2]. Generally, it is a difficult task
to distinguish, in the performances of a given algorithm, the effect of the quality of the
matrix estimation from the effect of the mismatch to the model.

In this article, we focus on the under-determined case. Our approach uses models
based on the existence of sparse representations of the sources [3], and assumes the
perfect knowledge of the mixing matrix. We compare two separation algorithms based
on variants of Matching Pursuit (MP) [4]. The first variant consists in decomposing the
multi-channel mixture without knowing the mixing matrix, and then using the mixing
matrix to classify the coefficients of the decomposition and affecting them to the sources
to estimate [5,6]. The second variant consists in using the mixing matrix in the sparse
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decomposition step itself, and no additional classification step is needed. The perfor-
mance of these two algorithms are compared to the best linear separator (BLS) [7], to
the Bofill & Zibulevski’s algorithm (BZ) [8] and to the DUET algorithm [6].

This article is organized as follows : in section 2, we recall the general definition of
Matching Pursuit. Multi-channel MP and its various separation algorithms are described
in section 3 and we detail the experimental conditions and the results in section 4.

2 Matching Pursuit

A signal x (considered as a vector of the Hilbert space H of finite-energy signals) ad-
mits a sparse decomposition over the dictionaryD = {φk} of atoms φk – or elementary
signals φk – if it can be written as a linear combination x =

∑
k ckφk where few co-

efficients {ck} are non-negligible. In this framework, MP iteratively computes sparse
approximations of the form x =

∑M
m=1 ckm

φkm
+ RM where RM is a residual that

tends to zero as the number of iterations M tends to infinity. The principle of the algo-
rithm is to select, at each step, the atom that is the most correlated to the residual, then
to update the residual by removing the contribution of this atom.

The most current stopping criteria are based on the absolute or relative level of en-
ergy of the residual or/and on a fixed number of iterations to run. In addition, the Gabor
dictionary is classically used to sparsely decompose audio signals. It is composed of a
collection of time-frequency Gabor atoms φs,u,ξ(t) = w

(
t−u
s

)
· exp (2jπξ(t− u)) .

These atoms are defined by the choice of a window w of unit energy (Hanning, Gaus-
sian, ...), a scale factor s, a time localization u, and a frequency ξ. Such a dictionary
allows a fast computation of the inner products between the signal and the atoms by
applying some windowed-FFTs.

3 Source Separation with Matching Pursuit

Source separation techniques based on sparse approximations of multi-channel signals
on a dictionary have been proposed in the multi-channel case [3,6]. More specifically,
in the MP framework, the method proposed in [5,9] uses multi-channel MP, followed
by a clustering (note that the base idea of this method could be developed for other
multi-channel sparse decomposition algorithms, e.g. [10].) After recalling the principle
of the method based on MP plus clustering, we propose a variant where the definition
of the dictionary includes knowledge of the mixing matrix A.

3.1 Multi-channel Matching Pursuit

For the sparse decomposition of multi-channel signals, we use a dictionary D com-
posed of multi-channel atoms φ. These atoms are defined by φ = (c1φ, c2φ, . . . , cNφ),
where φ ∈ D is a mono-channel atom from a dictionary D and where the co-
efficients c1, . . . , cN satisfy

∑N
n=1 c

2
n = 1. After M iterations, multi-channel MP

leads to a decomposition of the form (x1, . . . , xN ) = x̂M + (RM1 , . . . , RMN ), with
x̂M :=

∑M
m=1(c1,km

φkm
, . . . , cN,km

φkm
). The algorithm is composed of the follow-

ing steps :
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1. Initialization : M = 1, R0
n = xn, cn,k = 0, ∀n, ∀k;

2. Computation of the inner product between each channel of the residual RM−1
n and

each atom φk of the mono-channel dictionary.
3. Selection of kM = arg maxk

∑N
n=1 |〈RM−1

n , φk〉|2
4. For each channel n, update of the residual : RMn = RM−1

n − 〈RM−1
n , φkM

〉φkM

and of the coefficients : cMn,kM
= cM−1

n,kM
+ 〈RM−1

n , φkM
〉

5. If the stopping criterion has not been reached, M ←M + 1, then go back to 2.

The multi-channel signal x̂M , approximated by multi-channel Matching Pursuit, allows
to estimate each mono-channel source signal si using the atoms of the decomposition
that are allocated to it, in the following manner : assuming the mixing matrix A is
known with unit columns ‖ai‖2 =

∑
n a

2
n,i = 1, the atom kM is attributed to the

source of index îM = arg maxi |〈ckM
,ai〉|. This corresponds to partitioning the multi-

channel coefficient space {c = (cn)1≤n≤N ∈ CN} into I subsets corresponding to the
columns ai of A (I being the number of sources). The source si is reconstructed by :

ŝi =
∑

M |̂iM=i

〈ckM
,ai〉φkM

. (1)

We call this separation algorithm MP1. Alternately, MP2 is a variant consisting in at-
tributing each atom to the N closest sources. This second selection, also used in Bofill
& Zibulevsky’s algorithm [8] in the stereophonic case (N = 2), corresponds to the
minimization of the l1 norm of the projection of the coefficients ckM

on N directions
of the mixing matrix :

ĴM = arg min
J⊂[1,I]

‖A−1
J ckM

‖1 , with AJ = [ai]i∈J (2)

3.2 Demixing Pursuit

Combining the expression of the linear instantaneous mixtures xn =
∑I
i=1 an,i · si and

that of a candidate sparse decomposition si =
∑K
k=1 ci,kφk of each source si on the

mono-channel dictionary D, we can write xn =
∑
i,k an,i ci,k φk. This is translated

in linear algebra as x = ACΦT , with ΦT the matrix which rows are the mono-
channel atoms φk, and C = {ci,k}i,k a matrix of sparse components. This decom-
position can also be written x =

∑
i,k ci,k ai φk, that is to say that x admits a sparse

decomposition on the “directional” multi-channel dictionary constituted of the atoms
ai φk = (a1,i φk, . . . , aN,i φk). One can therefore get a decomposition of this type
by applying MP on the latter dictionary. The inner products are then computed as
〈RM ,aiφk〉 = aTi RMφTk and the source si is reconstructed by :

ŝi =
∑
k

ci,kφk. (3)

This new algorithm is called demixing pursuit (DP) and its theoretical properties have
been studied in [11]. Using a directional dictionary is equivalent to applying multi-
channel MP with the constraint that the components ckM

of section 3.1 shall be
proportional to a column ai of A.
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4 Experiments

We compare the algorithms MP1, MP2 and DP described previously to three reference
algorithms. The experiments are performed on a stereophonic linear instantaneous mix-
ture of three musical sources (a cello, some drums and a piano). The sampling frequency
of the signals is 8kHz, and their length is 2.4s (19200 samples). The mixing matrix is
the following :

[
cos(π/8) cos(π/4) cos(3π/8)
sin(π/8) sin(π/4) sin(3π/8)

]
0 0.5 1

0

0.5

1

right

left
piano

drums

cello

The energy of the drums, located in the middle, is about twice weaker than the energies
of the piano and cello, which are quite similar.

We use the measures of separation performance proposed in [7], that allow to finely
analyze the origin of the distortions between the estimated source and the original one.
These measures, expressed in decibels, are based on the decomposition of an estimated
source signal into parts due to original source, interferences and algorithmic artifacts.
The relative ratios between the energies of these three parts define the Source to Dis-
tortion Ratio (SDR, global distortion), Source to Interference Ratio (SIR) and Source
to Artifacts Ratio (SAR). For these three measures, of the same nature as the classical
Signal to Noise Ratio, higher ratio mean better performances.

4.1 Reference Algorithms

The performances of MP1, MP2 and DP are compared to those of three reference al-
gorithms : the best linear separator (BLS) [7], DUET [6] and the Bofill & Zibulevski’s
algorithm (BZ) [8].

The first one only consists in the application of a matrix B to the signal. B is such that
the estimated sources ŝ = Bx minimize the distortion due to the interferences [7]. If the
sources are assumed to be mutually orthogonal, if the mixing matrix A is known, and
if we denote D the diagonal matrix of the norms of the sources, then, with Â = AD,
the matrix B is given by : B = DÂH(ÂÂH)−1.

The algorithm DUET [6] applies a short-time Fourier transform (STFT) to each
channel of the signal, then applies a mask that assumes only one source to be active for
each time-frequency “box”, and finally inverts the STFT to build the estimated source.

The Bofill & Zibulevski’s algorithm [8] relies on the same principle as DUET, the
only difference being that each time-frequency box is attributed to the two nearest
sources. This attribution is determined by an l1 norm minimization (see Eq.2.)

In all the experiments, DUET and BZ are applied with a Hanning window of 4096
samples, with an overlap of 2048 samples (50% of the size of the window). Their per-
formances strongly depend on the size of the window, and we have observed that a
greater, or more critically, smaller window size strongly decreases the performances in
the studied cases. Therefore, the results shown below employ an a posteriori optimal
window size. Note that in practice it might be hard to choose the optimal window size,
since the performances can’t be not known.
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In the experiments, the mixing matrix A is fixed a priori when using BLS, DUET
and BZ. Thus, we did not use the mixing matrix estimations described in [6,8].

4.2 Different Versions of MP Algorithms

In this experiment, we study the influence of the number of iterations, of the com-
position of the dictionary, of the exploitation of the residual, and of a smoothing post-
treatment using the DP algorithm. Two dictionaries may be used for the decomposition :

– a “small” dictionary made of Gabor atoms of length s = 4096 with an overlap of
half the length (u = ns/2, n ∈ N). This corresponds to the STFT used by the
DUET and BZ algorithms.

– a “large” dictionary made of Gabor atoms which length goes from s = 64 to 16384
(by powers of two). The overlap between two successive atoms is also 50% of the
length of an atom.

The time needed for computing the MP-based algorithms is largely higher than for
computing DUET and BZ. DUET and BZ were computed on the small dictionary in 0.2
second ; 20000 iterations of DP were computed on the small dictionary in 5 minutes and
were computed on the large dictionary in 20 minutes. Note that the computation of the
MP-based algorithms were made tractable by a fast implementation available at [13].

Figure 1 represents the SDR, SIR and SAR of the “piano” source estimated by the
different algorithms, against the number of iterations (the results are similar for the two
other sources).

Firstly, we can remark that for any number of iterations, using the large dictionary
leads to a better separation than using the small dictionary. Indeed, in the case of the
large dictionary, MP chooses the optimal window size automatically. The need to opti-
mize a priori the window size is removed, contrarily to the BZ and DUET algorithms.

In addition, we can notice that the performance improvement is monotonic when the
number of iterations increases. More precisely, artifacts, which dominate the distortion,
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Fig. 1. Distortions (dB), “piano” source estimated by DP
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are important when the sources are reconstructed with few atoms, and decrease when
more iterations are performed, thanks to the contribution of new atoms. After a suffi-
cient number of iterations, DP becomes better than DUET in terms of artifacts (SAR)
and global distortion (SDR).

Using the hypothesis that the smoothing introduced by the overlap of the windows
of the STFT in the BZ algorithm plays a role in its good performance [12], we tried to
smooth the sources estimated by DUET, BZ and MP-based algorithms. This smoothing
consists in performing several estimations of the sources from shifted versions of the
dictionary and producing the mean of these estimations. The effect is to transform the
binary time-frequency masking in a smoother masking. The amelioration brought by
the smoothing is very clear for the artifacts (SAR improved by ∼ 4dB for DP, and
∼ 1dB for DUET and BZ), but not systematic for the interferences (SIR). Note that for
clarity, only the smoothed versions of DUET and BZ are shown.

In order to compensate for the distortion due to the small number of atoms,
the residual of the decomposition RM can be separated using the linear separator
AH(AAH)−1RM , or DUET, or BZ and then added to the estimated sources. The
former linear separator assumes that all the residuals of the sources have the same en-
ergy. Asymptotically, the hypothesis is verified, the more energetic sources having their
atoms selected in the first place. In figure 1, the upper curve shows the performance
when the residual of the smoothed DP is separated by the smoothed BZ. This method is
a trade-off between the two algorithms, tuned by the number of iterations. Notably, the
artifacts are lower than with simple smoothed DP for a small number of iterations, as
the smoothed BZ produces less artifacts. The same kind of trade-off is obtained when
separating with the linear separator or the smoothed DUET.

For MP1 and MP2, changing the dictionary, adding the residual and the smoothing
produces the same type of effects than for DP.

4.3 What If the Mixing Matrix Is Imprecisely Known ?

The following experiment evaluates the capacity of the different algorithms to maintain
a good separation when the mixing matrix is no longer known, but only estimated. A
voluntary imprecision is introduced by a rotation of the true matrix. The directions of
the three sources are shifted by the same angle, which varies between −π/16 and π/16
(half the distance between two sources). The experiments are done with the “large”
dictionary. They include the separation of the residual with smoothed BZ and the
smoothing, and use 5000 iterations. Smoothing is also applied to DUET and BZ. The
performances are given on Figure 2, depending on the perturbation angle, for the piano.

Evolution of the SAR – The studied methods keep an approximately constant level of
artifacts for any angle of perturbation. BZ and DP introduce the least artifacts, followed
by MP2, MP1 and DUET that present equivalent performances. The levels of artifacts
are intrinsic to the underlying models of each method.

Evolution of the SIR – For the methods MP1 and DUET, the time-frequency atoms are
only attributed to one source. Therefore, these methods produce the least interferences
and stay robust to a perturbation of the mixing matrix. The large decrease in the level of
interferences for negative angles is due to the location of the piano: it has no neighbor
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instrument in this direction, thus most of the atoms in this direction actually belong to
the piano source. In the case of MP2, DP and BZ, allotting time-frequency atoms to
several sources introduces a larger sensibility to the perturbation on the mixing matrix.
For a well-estimated mixing matrix, MP2 produces the least interferences.

Evolution of the SDR – By definition, global distortion (SDR) is dominated by the
minimum of SAR and SIR. For a well-estimated mixing matrix, by decreasing order of
performance, the methods are scaled as : BZ, DP, MP2, MP1, DUET, and BLS. On the
other hand, when a perturbation is introduced on the mixing matrix, the methods MP1
and DUET (attribution to one direction) prove to be more robust than DP (selection of
the atoms by Matching Pursuit only on the estimated directions of the sources) and than
the methods MP2, BZ (attribution to two directions, that lead to a larger sensibility to
interferences).

5 Conclusions

We have compared several methods for under-determined source separation by sparse
decomposition, assuming that the mixing matrix is known. In the algorithms MP1 and
MP2, the mixing matrix is used a posteriori to classify and gather the atoms resulting
from the decomposition by Matching Pursuit. In the Demixing Pursuit, the knowledge
of the mixing matrix is included a priori in the definition of the dictionary. The version
of DP with the addition of the smoothing gives better performances, for global distortion
and artifacts, than the method DUET but worse than BZ. A trade-off between reference
algorithms and MP-based algorithms is obtained when the residual from Matching Pur-
suit is separated by a reference algorithm. When the mixing matrix is well estimated,
BZ, DP and MP2 give the best results. On the other hand, MP1 and DUET seem to be
more robust to an error on the estimation of the mixing matrix.

The proposed formalism allows to perform separation in the case of under-
determined convolutive mixtures, provided that the mixing filters are known. In that
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case, the atoms of the multi-channel dictionary represent on each channel what is ob-
tained at the sensor when each mono-channel atom is passed through the mixing filters.
The algorithm is then just the application of Matching Pursuit on these normalized
multi-channel atoms and the sources are reconstructed as in DP. The related experi-
ments are currently being developed.

Another perspective is to consider the joint estimation of the mixing matrix and the
sources in the linear instantaneous case, or of the filters and the sources in the convo-
lutive case. Alternately, we are investigating possible improvements of the sparse de-
composition by learning dictionaries adapted to the mixture, notably directional multi-
channel dictionaries for demixing pursuit.
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Abstract. The Hilbert transformation together with empirical mode decomposi-
tion (EMD) produces Hilbert spectrum (HS) which is a fine-resolution time-
frequency (TF) representation of any nonlinear and non-stationary signal. A 
method of audio signal separation from stereo mixtures based on the spatial lo-
cation of the sources is presented in this paper. The TF representation of the au-
dio signal is obtained by HS. The sources are localized in the space of time and 
intensity differences between two microphones’ signals. The separation is per-
formed by masking the target signal in TF domain considering that the sources 
are disjoint orthogonal. The experimental results of the proposed method show 
a noticeable improvement of separation efficiency. 

1   Introduction 

When the audio recording is performed using two microphones in an adverse acousti-
cal environment, time difference (TD) and intensity difference (ID) are introduced 
between the mixed signals. Those are termed as interaural differences and used to 
localize the audio sources in spatial domain. Such source localization method is used 
in [1], [2], [3] to separate the individual audio source from two mixtures. In [2], the 
mixtures are produced by convoluting monaural signal with measured head related 
transfer functions (HRTFs) [4], whereas two microphones are used for recording in 
[1], [3]. The use HRTF introduces TD and ID in the mixture signals. The TD is the 
main localization cue at low frequencies and ID dominates the high frequency range. 
The partition between these two ranges of frequency depends on the spacing between 
the microphones [2]. To cover the entire frequency range, the TD and ID are jointly 
used in localization. The TF masks are used to segregate the individual sources in TF 
domain. The principal assumption of the masking based separation in TF domain is 
that, the audio sources are disjoint orthogonal i.e. not more than one source is active 
at any TF point [1]. The short-time Fourier tranform (STFT) is an usual approch to 
represent the time domain signal in TF domain [1], [2], [3]. The STFT based TF 
representation includes a remarkable amount of cross-spectral energy due to the 
harmonic assumption and window overlapping. The both time and frequency 
resolution can not be extended independently. Those two limitations of STFT 
degrades the disjoint orthogonality of the audio sources and hence the separation 
efficiency by using masking method in TF domain.  
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In this paper a novel technique to separate audio sources stereo mixtures based on 
spatial localization is described. The separation efficiency can be improved by 
maximizing the resolution and minimizing the cross-spectral energy terms in TF 
space. The proposed separation method employs HS as the TF representation. HS 
does not include noticeable amount of cross-spectral energy terms. The empirical 
mode decomposition (EMD), a new technique for nonlinear and non-stationary time 
series analysis [5] and Hilbert transformation are employed together to derive HS. 
Based on the TD and ID between two mixtures, the TF spaces (HSs of two mixtures) 
are clustered in TD-ID space to localize the audio sources. The TF space of each 
source is segregated by binary masking method [3], and the time domain signals are 
recostructed by applying the inverse transformations. The HS has better TF 
resolutions as well as less cross-spectral energy than STFT and hence more suitable 
for source disjoint orthogonality consideration.  

Regarding the arrangement of this paper, the EMD and HS are illustrated in  
section 2, the source localization and separation methods are described in sections 3 
and 4 respectively. The concept of disjoint orthogonality is presented in section 5. The 
experimental results are shown in section 6 and finally some concluding remarks are 
included in section 7. 

2   The Modification of EMD and Hilbert Spectrum 

The EMD represents the mixture signal as a collection of oscillatory basis compo-
nents Cm(t) termed as intrinsic mode functions (IMFs) containing some basic proper-
ties [5, 6]. The decomposition process can also be considered as dyadic filter-bank as 
proved by analysis of white noise [6], [7]. Each IMF should satisfy two basic condi-
tions: (i) in the whole data set, the number of extrema and the number of zero crossing 
must be the same or differ at most by one, (ii) the mean value of the envelope defined 
by the local maxima and the envelope defined by the local minima is always zero. 
There exist many approaches of computing EMD [6]. The following algorithm is 
adopted here to decompose the signal s(t) into a set of IMF components. 

a) Initialize the residue r0(t)=s(t) and index of IMF m=1 
b) (i) set g0(t)=rm-1(t)  and i=1 
  (ii) Find the extrema (minima and maxima) of gi-1(t) 

     (iii) Compute upper and lower envelopes hi-1(t) and li-1(t) 
 (iv) Find mean envelope μi-1(t)=[hi-1(t)+li-1(t)]/2 
 (v)  Update gi(t)=gi-1(t)- μi-1(t) and i=i+1 
(vi) Repeat steps (ii)-(v) until gi(t) being an IMF satisfying the above mentioned 

two basic conditions. If so, the mth IMF Cm(t)=gi(t)and update residue 
rm(t)=rm-1(t)-Cm(t) 

c) Repeat step (b) with the index of IMF m=m+1 

At the end of the decomposition the signal s(t) is represented as:  

                                                  
=

+=
M

m
Mm rCts

1

)(                                               (1) 
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Fig. 1. The EMD of an audio mixture (speech and flute sound) showing first three IMFs out  
of 14 

where M is the number of IMF components and rM is the final residue. The rM mo-
notonously converges to a constant or takes a function with only one maxima and 
minima such that no more IMF can be derived. A band-limited (80Hz-4kHz) audio 
mixture signal and the decomposed IMF components are shown in Figure 1.  

The IMFs computed by the basic EMD include energy at frequencies that cannot be 
associated with the original data. This phenomenon obviously includes unwanted 
signal energy in HS and hence degrades the separation performance. To eliminate 
such unwanted signals, a band-pass filtering method is proposed to be included in the 
original EMD algorithm. This attempt ensures to run every IMF inside the given fre-
quency band. The proposed modification also increases the number of IMF compo-
nents that improves the frequency resolution of the decomposition. The analyzing 
signal s(t) is first passed through a zero phase band-pass filter (BPF). The same filter 
is included in step (vi) of the original algorithm. The procedure is as follows: first 
generate the IMF Cm(t), filter it to yield the filtered IMF )(ˆ tCm

 and compute the resi-

due )(ˆ)()(ˆ 1 tCtrtr mmm −= −
to generate )(ˆ

1 tCm+
. After completing the decomposition, the modi-

fied EMD can be represented by the same way as in Eq. (1). Experimentally it is 
found that the modified EMD generates 23 IMFs whereas, original one produces 14 
IMFs from the same signal of Fig. 1. All the subsequent operations (computing  
instantaneous frequency, constructing Hilbert spectrum) are performed on the  
modified EMD.      

2.1   Instantaneous Frequency 

Instantaneous frequency (IF) represents signal’s frequency at an instance, and is de-
fined as the rate of change of the phase angle at the instant of the “analytic” version of 
the signal. Every IMF is a real valued signal. The discrete Hilbert transform (HT) 
denoted by [.]dh  is used to compute the analytic signal for an IMF. HT provides a 

phase-shift of ±π/2 to all frequency components, whilst leaving the magnitudes un-
changed [5]. Then the analytic version of the mth IMF )(ˆ tCm

is defined as: 

                                        )()()](ˆ[)(ˆ)( tj
mmdmm

metatCjtCtz θ=+= h                           (2) 
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where am(t) and θm(t) are instantaneous amplitude and phase respectively of the mth 
IMF. The IF of mth IMF is then computed by the derivative of the phase θm(t) 

as:
dt

td
tfm

)(
~

)(
θ= , where )(

~
tmθ represents the unwrapped version of θm(t). The median 

smoothing filter is used to tackle the discontinuities of IF computed by discrete time 
derivative of the phase vector. 

2.2   Hilbert Spectrum 

Hilbert Spectrum represents the distribution of the signal energy as a function of time 
and frequency. It is also designated as Hilbert amplitude spectrum H(ω,t) or simply 
Hilbert spectrum (HS). This process first normalizes the IF vectors of all IMFs be-
tween 0 to 0.5. Each IF vector is multiplied by the scaling factor η=0.5/(IFmax-IFmin), 
where IFmax=Max(f1, f2,…,fm,….,fM) and IFmin=Min(f1, f2,…,fm,….,fM).  The bin spacing 
of the HS is 0.5/B, where B is the number of desired frequency bins selected arbitrar-
ily. Each element H(ω,t) is defined as the weighted sum of the instantaneous  
amplitudes of all the IMFs at ωth frequency bin,    

                                    
=

=
M

m
mm twtatH

1

)( )()(),( ωω                                           (3) 

where the weight factor )()( tw m
ω  takes 1 if η×fm(t) falls within ωth band, otherwise  

is 0. After computing the elements over the frequency bins, H represents the instanta-
neous signal spectrum in TF space as a 2D table. The time resolution of H is equal to 
the sampling rate and the frequency resolution can be chosen up to Nyquest limit.  
Fig. 2 represents the Hilbert spectrum of the audio signal shown in Fig. 1 using 256 
frequency bins (with sapling rate 16kHz). 

 

Fig. 2. Hilbert spectrum with 256 frequency bins. The amplitude is in dB. 

3   Source Localization 

The audio sources are localized in TD-ID space. There is a one-to-one mapping be-
tween the azimuth location and a region in TD-ID space. The TD and ID are com-
puted from the relative phase and energy differences of the TF spaces of two  
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mixtures. If HL(ω,t) and HR(ω,t)  are the Hilbert spectrum of binaural mixtures xl(t) 
and xr(t) respectively, the TD and ID can easily be computed as [1], [3]: 
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where ),(
~

tL ωφ and ),(
~

tR ωφ are the unwrapped phases corresponding to HL and HR re-

spectively. The difference between the phase terms remains within (-π,π). The inten-
sity (energy) and phase information are smoothed in TF space by average filtering 
with the time frame of length 1ms. It improves the stability of the instantaneous en-
ergy and phase response computed by the discrete derivative of the analytic signals.  

The values of TD and ID computed by Eq. (4) are quantized into discrete levels (50 
levels). Then the histogram ψ (TD, ID) is constructed by mapping each TF point into 
quantized TD-ID space. Fig. 3 shows the TD-ID space localization of three sources 
placed at 50°, 90° and 110° azimuths. The three peaks (with some degree of spread-
ing) correspond to distinct active sources. The histogram is weighted by the energy 
function in the TF space of the mixture.  

 
 

Fig. 3. TD-ID space localization of three sources 

4   Source Separation 

The individual source placed at different azimuth locations has the unique regions in 
the histogram ψ (TD, ID). Such a mapping allows to construct the TF mask corre-
sponding to each region and it is used to mask HL or HR to yield the TF representation 
of the original source. If δn and κn are the set of TD and ID respectively representing 
the rectangle of the peak region of the nth source in ψ (TD, ID), its TF mask can be 
computed as: 

             t
otherwise

tIDandtTD
tM nnn ,;
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=                    (5) 

The binary mask nullifies TF points of interfering sources. The HS of the nth source 
can be computed as: ),(),(),( )()( tHtMtH L

nn ωωω =  or ),(),(),( )()( tHtMtH R
nn ωωω = . 

During the Hilbert transform the real part of the signal remains unchanged. The time 
domain signal of nth source is reconstructed by filtering out the imaginary part from the 
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HS and summing over frequency bins as: ⋅=
ω

ωφω )],(cos[),()( )()( ttHts nn  where  

φ (ω,t) is the phase matrix of HL (or HR). The phase matrix is saved during the con-
struction of HS to be used in re-synthesis. 

5   Disjoint Orthogonality in TF Space 

If Y1(ω,t) and Y2(ω,t) are the TF representation of the signals y1(t) and y2(t) respec-
tively, the disjoint orthogonality assumption can be stated as: ttYtY ,;0),(),( 21 ωωω ∀= . 

In order to better measure of a signal at a particular time and frequency (ω, t), it is 
natural to desire that Δt and Δω be as narrow as possible. In STFT based TF represen-
tation Δt and Δω has to satisfy an uncertainty inequality 5.0≥ΔΔ ωt

which is the trade-off 

of the selection of TF resolution. The Hilbert spectrum has better time-frequency 
resolution and improved disjoint orthogonality (DO) of audio sources in TF space. 
The signal to interference ratio (SIR) is used as basis to measure the DO. The SIR for 
the nth source signal is, 
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where N is the number of audio signal considered to be disjoint orthogonal, Xn(ω,t) is 
the TF representation (using STFT  or HS) of the nth signal. The dimension of TF 
representation using STFT and HS may be different, hence the DO is defined in per-
centage computed over the entire TF space. Finally the average disjoint orthogonality 
(ADO) is the average of all SIRs of individual signal as: 

=
=

N

n
nSIR

N
ADO

1

1 .The same 

process is applied to measure ADO∈(0, 1) for STFT and HS based TF representation 
of the audio signals. Some experimental results are presented to compare STFT and 
HS as the TF representation tools of audio signals in terms of disjoint orthogonality. 

6   Experimental Results 

The separation efficiency of the proposed algorithm is evaluated by separating the 
signals from two mixtures of three audio sources: speech of two male persons (sm1 
and sm2) and speech of a female (sf1). The recording is performed in an anechoic 
room. The spacing between two microphones is 10cm placed at 1.5m distance from 
each source. The sources are placed at different azimuth locations (0o to180o). The 
sampling rate of all the recording was set to 16kHz with 16-bit amplitude resolution.       

Three binaural mixtures (m1, m2 and m3) are produced by arranging the sources at 
different azimuth locations as: m1{sm1(70o), sm2(100o), sf1(140o)}, m2{sm1(50o), 
sm2(80o), sf1(90o)}, m3{sm1(130o), sm2(90o), sf1(150o)}. The average value of short 
time energy ratio between original and separated signal is proposed as the criterion to  
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measure the separation efficiency. It is termed as OSSR (original to separated signal 
ratio) and defined as: 
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where soriginal and sseparated are the original and separated signal respectively, w is frame 
length (10 ms) and T is the data length. If the two signals are same, OSSR=0 and any 
other value is a measure of their dissimilarity. Smaller value of OSSR indicates better 
separation. Table 1 shows the average OSSR of each signal for every mixture. It is 
observed that the separation efficiency is degraded when the sources are placed 
closely. The separation accuracy is better for larger apart angle between the sources. 
The separation efficiency is compared for two types of TF representations: HS and 
STFT. Also the efficiency is compared for two types of stereo mixtures: using HRTF 
and recorded by two microphones (Mic2). It is noticed that the HS based TF represen-
tation improves the separation performance than STFT. Although, HRTF based mixing 
system has better separation efficiency, it is less applicable in real world applications.                 

The individual audio signal is projected to TF space using HS and STFT separately 
to produce some experimental results of DO. Fig. 4(a) shows the comparison between 
HS and STFT (using Hamming and Hanning window with 60% overlapping) in terms 
of ADO as a function of the number of frequency bins, whereas Fig. 4(b) presents the 
comparison as a function of window overlapping. The ADO of the audio signals of 
HS is better than that of STFT based TF representation. It is obvious to produce better 
source separation by the proposed method with HS as the TF representation. 

Table 1. Experimental results of proposed separation algorithm   

OSSR of sm1 OSSR of sm2 OSSR of sf1 Mixture TF 
Mic2 HRTF Mic2 HRTF Mic2 HRTF 

m1 HS 0.0472 0.0401 0.0532 0.0491 0.0642 0.0586 
STFT 0.0781 0.0617 0.0743 0.0687 0.0831 0.0817

m2 HS 0.0519 0.0485 0.0882 0.0803 0.0817 0.0783 
STFT 0.0827 0.0758 0.1035 0.0975 0.1106 0.1047

m3 HS 0.0817 0.0737 0.0534 0.0478 0.0784 0.0711 
STFT 0.1073 0.0902 0.0903 0.0817 0.1012 0.0983

 

  
                         (a)                                                                (b) 

Fig. 4. ADO of HS and STFT as a function of (a)frequency bins, (b) window overlapping 



648 Md.K.I. Molla, K. Hirose, and N. Minematsu 

6   Conclusions 

We have presented a method of separating mixed audio signals by localizing the 
sources in TD-ID space. It is assumed that the sources are disjoint orthogonal and the 
separation is obtained by estimating the binary masks for individual source signal in 
TF space. The use of HS as the TF representation improves the separation efficiency 
for both of the mixtures using HRTF as well as microphone pair. The specialty of HS 
is that the time resolution can be as precise as the sampling period and the frequency 
resolution depends on the choice up to Nyquist frequency. Hence it serves as the po-
tential TF representation for the consideration of disjoint orthogonality of audio 
sources. The robust localization and separation of moving sources are the main con-
cern as the future works. 
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Abstract. A new two-stage blind source separation (BSS) for convo-
lutive mixtures of speech is proposed, in which a Single-Input Multiple-
Output (SIMO)-model-based ICA and binary mask processing are
combined. SIMO-model-based ICA can separate the mixed signals, not
into monaural source signals but into SIMO-model-based signals from
independent sources as they are at the microphones. Thus, the sepa-
rated signals of SIMO-model-based ICA can maintain the spatial quali-
ties of each sound source. Owing to the attractive property, binary mask
processing can be applied to efficiently remove the residual interference
components after SIMO-model-based ICA. The experimental results us-
ing small directional microphone array reveal that the separation perfor-
mance can be considerably improved by using the proposed method in
comparison to the conventional source separation methods.

1 Introduction

Blind source separation (BSS) is the approach taken to estimate original source
signals using only the information of the mixed signals observed in each input
channel. This technique is based on unsupervised filtering, and much attention
has been paid to the BSS technique in many fields of signal processing.

In recent works of BSS based on independent component analysis (ICA), var-
ious methods have been proposed for acoustic-sound separation [1,2,3]. In this
paper, we mainly address the BSS problem under highly reverberant conditions
which often arise in many practical audio applications. The separation perfor-
mance of the conventional ICA is far from being sufficient in such a case because
too long separation filters is required but the unsupervised learning of the fil-
ter is not so easy. Therefore, one possible improvement is to partly combine
ICA with another supervised signal enhancement technique, e.g., spectral sub-
traction. However, in the conventional ICA framework, each of the separated
outputs is a monaural signal, and this leads to the drawback that many kinds of
superior multichannel techniques cannot be applied.

To solve the problem, we propose a novel two-stage BSS algorithm which
is applicable to an array of directional microphones. This approach resolves the

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 649–657, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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BSS problem into two stages: (a) a Single-Input Multiple-Output (SIMO)-model-
based ICA [4] and (b) binary mask processing [5,6] in the time-frequency domain
for the SIMO signals obtained from the preceding SIMO-model-based ICA. Here
the term “SIMO” represents the specific transmission system in which the input
is a single source signal and the outputs are its transmitted signals observed at
multiple microphones. SIMO-model-based ICA can separate the mixed signals,
not into monaural source signals but into SIMO-model-based signals from inde-
pendent sources as they are at the microphones. Thus, the separated signals of
SIMO-model-based ICA can maintain the spatial qualities of each sound source.
After the SIMO-model-based ICA, the residual components of the interference,
which are often staying in the output of SIMO-model-based ICA as well as the
conventional ICA, can be efficiently removed by the following binary mask pro-
cessing. The experimental results using small directional microphone array reveal
that the proposed method can successfully achieve the BSS for speech mixtures
even under a realistic reverberant condition.

2 Mixing Process and Conventional BSS

2.1 Mixing Process

In this study, the number of microphones is K and the number of multiple sound
sources is L, where we deal with the case of K = L. In the frequency domain,
the observed signals in which multiple source signals are mixed are given by

X(f) = A(f)S(f), (1)

where X(f) = [X1(f), · · · , XK(f)]T is the observed signal vector, and S(f) =
[S1(f), · · · , SL(f)]T is the source signal vector. Also, A(f) = [Akl(f)]kl is the
mixing matrix, where [X]ij denotes the matrix which includes the element X
in the i-th row and the j-th column. The mixing matrix A(f) is assumed to
be complex-valued because we introduce a model to deal with the arrival lags
among microphones and room reverberations.

2.2 Conventional ICA-Based BSS

In the frequency-domain ICA (FDICA), first, the short-time analysis of observed
signals is conducted by frame-by-frame discrete Fourier transform (DFT). By
plotting the spectral values in a frequency bin for each microphone input frame
by frame, we consider them as a time series. Hereafter, we designate the time
series as X(f, t) =[X1(f, t), · · · , XK(f, t)]T.

Next, we perform signal separation using the complex-valued unmixing ma-
trix, W (f) = [Wlk(f)]lk, so that the L time-series output Y (f, t)=[Y1(f, t), · · · ,
YL(f, t)]T becomes mutually independent; this procedure can be given as

Y (f, t) = W (f)X(f, t). (2)
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We perform this procedure with respect to all frequency bins. The optimal W (f)
is obtained by, for example, the following iterative updating equation [7]:

W [i+1](f) =η
[
I −
〈
Φ(Y (f, t))Y H(f, t)

〉
t

]
W [i](f) + W [i](f), (3)

where I is the identity matrix, 〈·〉t denotes the time-averaging operator, [i] means
the value of the i th step in the iterations, η is the step-size parameter, and Φ(·)
is the appropriate nonlinear function.

2.3 Conventional Binary-Mask-Based BSS

Binary mask processing [5,6] is one of the alternative approach which is aimed to
solve the BSS problem, but is not based on ICA. We estimate a binary mask by
comparing the amplitudes of the observed signals, and pick up the target sound
component which arrives at the better microphone closer to the target speech.
This procedure is performed in time-frequency regions, and is to pass the specific
regions where target speech is dominant and mask the other regions. Under the
assumption that the l-th sound source is close to the l-th microphone and L = 2,
the l-th separated signal is given by

Ŷl(f, t) = ml(f, t)Xl(f, t), (4)

where ml(f, t) is the binary mask operation which is defined as ml(f, t) = 1 if
Xl(f, t) > Xk(f, t) (k �= l); otherwise ml(f, t) = 0.

This method requires very few computational complexities, and this property
is well applicable to real-time processing. The method assumes the sparseness in
the spectral components of the sound sources, i.e., there are no overlaps in time-
frequency components of the sources. However the assumption does not hold
in an usual audio application (indeed, e.g., a mixture of speech and common
broadband stationary noise has many overlaps).

3 Proposed Two-Stage BSS Algorithm

3.1 Motivation and Strategy

In the previous research, SIMO-model-based ICA was proposed by, e.g., Takatani
et al. [4], and they showed that SIMO-model-based ICA can separate the mixed
signals into SIMO-model-based signals at the microphone points. This finding
has motivated us to combine the SIMO-model-based ICA and binary masking.
That is, the binary mask technique can be applied to the SIMO components
of each source obtained from SIMO-model-based ICA. The configuration of the
proposed method is depicted in Fig. 1(a). Binary masking which follows SIMO-
model-based ICA can remove the residual component of the interference effec-
tively without adding huge computational complexities.

It is worth mentioning that the novelty of this strategy mainly lies in the two-
stage idea of the unique combination of SIMO-mode-based ICA and the SIMO-
model-based binary mask. To illustrate the novelty of the proposed method, we
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(b) Simple combination of ICA and binary mask
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Fig. 1. Input and output relations in (a) proposed two-stage BSS and (b) simple com-
bination of conventional ICA and binary masking, where K = L = 2

compare the proposed combination with a simple two-stage combination of a
conventional monaural-output ICA and binary masking (see Fig. 1(b)).

In general, the conventional ICAs can only supply the source signals Yl(f, t) =
Bl(f)Sl(f, t) +El(f, t) (l = 1, · · · , L), where Bl(f) is an unknown arbitrary dis-
tortion filter and El(f, t) is a residual separation error which is mainly caused by
an insufficient convergence in ICA. The residual error El(f, t) should be removed
by binary masking in the next post-processing stage. However, the combination
is very problematic and cannot function well because of the existence of the
spectral overlaps in the time-frequency domain. For instance, if all sources have
nonzero spectral components (i.e., sparseness assumption does not hold) in the
specific frequency subband and these are comparable, the decision in binary
masking for Y1(f, t) and Y2(f, t) is vague and the output results in a ravaged sig-
nal. Thus the simple combination of the conventional ICA and binary masking
is not valid for solving the BSS problem.

On the other hand, our proposed combination contains the special SIMO-
model-based ICA in the first stage. The aim of the SIMO-model-based ICA is to
supply the specific SIMO signals with respect to each of sources, Akl(f)Sl(f, t),
up to the possible delay of the filters and the residual error. Needless to say,
the obtained SIMO components is well applicable to binary masking because
of the spatial properties that the separated SIMO component at the specific
microphone closer to the target sound still maintains the large gain. Thus, after
having the SIMO components, we can introduce the binary mask for the efficient
reduction of the remaining error in ICA, even when the sparseness assumption
does not hold.

To illustrate the theory with examples, we performed a preliminary experi-
ment in that the binary mask is applied to the ideal solutions of the two types
of the ICAs (SIMO-ICA and the simple conventional ICA) under a real acoustic
condition described in Sect. 4. A large distortion of 4.6 dB was observed if we
directly use binary masking after straight-pass components of each source (bi-
nary mask is applied to A11(f)S1(f, t) and A22(f)S2(f, t)); this means that the
simple combination of ICA and binary masking is likely to involve the sound
distortion. On the other hand, a small distortion of 0.1 dB was measured in
the use of binary masking after SIMO components of each source (e.g., bi-
nary mask is applied to A11(f)S1(f, t) and A21(f)S1(f, t) for picking up the
source 1).
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Fig. 2. Input and output relations in the proposed FD-SIMO-ICA, where K = L = 2

3.2 Algorithm

Time-domain SIMO-ICA [4] has recently been proposed by one of the authors
as a means of obtaining SIMO-model-based signals directly in the ICA updat-
ing. In this paper, we extend the time-domain SIMO-ICA to frequency-domain
SIMO-ICA (FD-SIMO-ICA). FD-SIMO-ICA is conducted for extracting the
SIMO-model-based signals corresponding to each of sources. The FD-SIMO-ICA
consists of (L− 1) FDICA parts and a fidelity controller, and each ICA runs in
parallel under the fidelity control of the entire separation system (see Fig. 2).
The separated signals of the l-th ICA (l = 1, · · ·L− 1) are defined by

Y (ICAl)(f , t) = [Y (ICAl)
k (f , t)]k1 = W (ICAl)(f )X(f , t), (5)

where W (ICAl)(f) = [W (ICAl)
ij (f)]ij is the separation matrix in the l-th ICA.

Regarding the fidelity controller, we calculate the following signal vector
Y (ICAL)(f, t), in which the all elements are to be mutually independent,

Y (ICAL)(f, t) = X(f, t)−
L−1∑
l=1

Y (ICAl)(f, t). (6)

Hereafter, we regard Y (ICAL)(f, t) as an output of a virtual “L-th” ICA. The
reason we use the word “virtual” here is that the L-th ICA does not have own sep-
aration filters unlike the other ICAs, and Y (ICAL)(f, t) is subject to W (ICAl)(f)
(l=1, · · · , L− 1).

If the independent sound sources are separated by (5), and simultaneously the
signals obtained by (6) are also mutually independent, then the output signals
converge on unique solutions, up to the permutation, as

Y (ICAl)(f, t) = diag
[
A(f)P T

l

]
P lS(f, t), (7)

where P l (l = 1, · · · , L) are exclusively-selected permutation matrices which
satisfy

∑L
l=1 P l = [1]ij . Regarding a proof of this, see [4] with an appropriate

modification into the frequency-domain representation. Obviously the solutions
given by (7) provide necessary and sufficient SIMO components, Akl(f)Sl(f, t),
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for each l-th source. Thus, the separated signals of SIMO-ICA can maintain the
spatial qualities of each sound source. For example in the case of L = K = 2,
one possibility is given by[

Y
(ICA1)
1 (f, t), Y

(ICA1)
2 (f, t)

]T =
[
A11(f)S1(f, t), A22(f)S2(f, t)

]T
, (8)[

Y
(ICA2)
1 (f, t), Y

(ICA2)
2 (f, t)

]T =
[
A12(f)S2(f, t), A21(f)S1(f, t)

]T
, (9)

where P 1 = I and P 2 = [1]ij − I.
In order to obtain (7), the natural gradient of Kullback-Leibler divergence of

(6) with respect to W (ICAl)(f) should be added to the existing nonholonomic
iterative learning rule [1] of the separation filter in the l-th ICA (l = 1, · · · , L−1).
The new iterative algorithm of the l-th ICA (l = 1, · · · , L− 1) is given as

W
[j+1]
(ICAl)(f)

= W
[j ]
(ICAl)(f)− α · offdiag

〈
Φ
(
Y

[j]
(ICAl)(f, t)

)
Y

[j]
(ICAl)(f, t)

H〉
t
W

[j ]
(ICAl)(f)

+ α · offdiag
〈
Φ
(
X(f, t)−

L−1∑
l=1

Y
[j]
(ICAl)(f, t)

)(
X(f, t)−

L−1∑
l=1

Y
[j]
(ICAl)(f, t)

)H〉
t(

I−
L−1∑
l=1

W
[j]
(ICAl)(f)

)
, (10)

where α is a step-size parameter, and Φ(·) is a nonlinear function as [7]:

Φ(Y (f, t)) ≡
[
tanh(|Yl(f, t)|)ej·arg(Yl(f,t))

]
l1. (11)

Also, the initial values of W (ICAl)(f) for all l should be different.
After FD-SIMO-ICA, binary masking processing is applied. For example in

the case of (8) and (9), the resultant output signal corresponding to the source
1 is obtained as follows:

Ŷ1(f, t) = m1(f, t)Y
(ICA1)
1 (f, t), (12)

where m1(f, t) is the binary mask operation which is defined as m1(f, t) = 1
if Y (ICA1)

1 (f, t) is greater than Y
(ICA2)
2 (f, t); otherwise m1(f, t) = 0. Also, the

resultant output signal corresponding to the source 2 is given by

Ŷ2(f, t) = m2(f, t)Y
(ICA1)
2 (f, t), (13)

where m2(f, t) is the binary mask operation which is defined as m2(f, t) = 1 if
Y

(ICA1)
2 (f, t) is greater than Y

(ICA2)
1 (f, t); otherwise m2(f, t) = 0. The extension

to the general case of L = K > 2 can be easily implemented in the same manner.

4 Experiments in Real Acoustic Room

4.1 Conditions for Experiments

We carried out sound-separation experiments using acoustical source signals
recorded in the real room illustrated in Fig. 3, where two sources and two di-
rectional microphones are set. The reverberation time in this room is 200 ms.



ICA and Binary-Mask-Based Blind Source Separation 655

  4.8 m 

  5
.0

 m
 

Loudspeakers
(Height: 1.0 m)

(Height: 1.0 m)  2.0 m 

 2
.0

 m
 

1.0 m θ1 θ2

  5.8 cm 

Directional
Microphones

SONY Stereo Microphone
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Fig. 4. (a) Results of NRR for speech-speech mixing, (b) CD for speech-speech mixing,
(c) NRR for speech-noise mixing, and (d) CD for speech-noise mixing

Two speech signals are assumed to arrive from different directions, θ1 and θ2,
where we prepare two kinds of source direction patterns as follows; (θ1, θ2) =
(−40◦, 30◦) or (−40◦, 10◦). We used the speech signals spoken by two male
and two female speakers, and colored stationary noise as the source samples.
The sampling frequency is 8 kHz and the length of each sample is limited to
3 s. The DFT size of W (f) is 1024. We use an initial value which is given
by null beamformers [3] whose directions of sources are (−60◦, 60◦). We com-
pare four methods as follows: (A) the conventional binary-mask-based BSS
given in Sect. 2.3, (B) the conventional ICA-based BSS given in Sect. 2.2,
where the scaling ambiguity can be properly solved by [1], (C) simple com-
bination of the conventional ICA and binary masking, and (D) the proposed
two-stage BSS.

4.2 Experimental Evaluation on Separation Performance

Noise reduction rate (NRR) [3], defined as the output signal-to-noise ratio (SNR)
in dB minus the input SNR in dB, is used as the objective indication of separation
performance. The SNRs are calculated under the assumption that the speech
signal of the undesired speaker is regarded as noise.
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Figure 4(a) shows the results of NRR for speech-speech mixing under different
speaker allocations. These scores are the averages of 12 speaker combinations.
Also, Fig. 4(c) shows the results of NRR for the mixing of speech and station-
ary noise. From the results, we can confirm that the proposed two-stage BSS
can improve the separation performance regardless the speaker directions and
the noise condition, and the proposed BSS outperforms all of the conventional
methods. On the contrary the simple combination of the conventional ICA and
binary masking shows deteriorations, and this result is well consistent with the
discussion provided in Sect. 3.1.

4.3 Experimental Evaluation on Sound Distortion

Since NRR score indicates only the degree of interference reduction, we could
not evaluate the sound quality, i.e., degree of sound distortion in the previ-
ous section. In order to assess the distortion of the separated signals, we in-
troduce a measure of Cepstral Distortion (CD) which indicates the distance
between the spectral envelope of the original source signal and the target com-
ponent in the separated output. Note that the CD cannot take into account the
degree of interference reduction unlike NRR, and thus the CD and NRR are
complementary scores. The 20th-order cepstrum based on the smoothed FFT
spectrum is used. The CD will be decreased to zero if the processing gives no
distortion.

Figure 4(b) depicts the CDs for speech-speech mixing, and Fig. 4(d) for
speech-noise mixing. As can be confirmed, the CDs of both the conventional
ICA and the proposed method are relatively small in comparison to those of the
binary masking and its simple combination with ICA. This means that (1) the
conventional binary-mask-based methods involve a heavy distortion due to the
improper time variant masking arising in the non-sparse frequency subband, (2)
but the proposed method cannot be affected by such an improperness. These
facts are promising evidences on the feasibility of the proposed combination
technique of SIMO-model-based ICA and binary masking.

5 Conclusion

We proposed a new BSS framework in which the SIMO-model-based ICA and
binary mask processing are efficiently combined. In order to evaluate its effec-
tiveness, a separation experiment was carried out under a reverberant condition.
The experimental results revealed that the proposed method outperforms the
combination of the conventional ICA and binary mask processing as well as the
simple ICA and binary mask processing.
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Abstract. In performing blind deconvolution to remove reverberation
from speech signal, most acoustic deconvolution filters need a great many
number of taps, and acoustic environments are often time-varying. There-
fore, deconvolution filter coefficients should find their desired values with
limited data, but conventional methods need lots of data to converge the
coefficients. In this paper, we use sparse priors on the acoustic decon-
volution filters to speed up the convergence and obtain better perfor-
mance. In order to derive a learning algorithm which includes priors on
the deconvolution filters, we discuss that a deconvolution algorithm can
be obtained by the joint probability density of observed signal and the
algorithm includes prior information through the posterior probability
density. Simulation results show that sparseness on the acoustic decon-
volution filters can be successfully used for adaptation of the filters by
improving convergence and performance.

1 Introduction

Blind deconvolution has become an important topic for research and develop-
ment in digital signal processing because it has high potential for broad ap-
plications in speech enhancement as well as communications. Especially, blind
deconvolution in acoustic environments is a very challenging problem because
natural acoustic signals are time-correlated and deconvolution for acoustic envi-
ronments are very complex.

For example, let us consider the teleconferencing problem, in which people
talk into a microphone located not at their mouth as in usual telephone conver-
sation, but located some distance away. The speech is reverberated and can have
interference among phonemes. In that case, the speech intelligibility is degraded.
We can model the situation as a single-input-single-output (SISO) discrete-time
linear system, in which the relationship between the input and the output signal
is given by

x(n) =
Lm−1∑
k=0

h(k)s(n− k) + v(n). (1)

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 658–665, 2006.
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The goal of blind deconvolution is to recover the input signal s(n) from the
output x(n) when the channel h(k) is unknown. Typically, the noise sequence
v(n) is modeled by a zero-mean white Gaussian noise process.

Many researchers have studied on the problem and proposed a number of blind
deconvolution algorithms [1, 2]. In most of the blind deconvolution methods, a
causal finite-impulse-response (FIR) filter as a linear deconvolutive system is
used to recover the input signal s(n). Hence, the deconvolutive model can be
formulated by

u(n) =
La−1∑
k=0

w(k)x(n − k), (2)

where w(k) is a filter coefficient of the deconvolution filter. The overall system
is shown in Fig. 1. Since the blind deconvolution methods do not have a train-
ing sequence, adaptation of w(k) usually makes use of some a priori statistical
knowledge of the recovered output signal u(n).

x(n)
h(k)s(n) w(k) u(n)

v(n)

Fig. 1. Overall system for convolution and deconvolution

Among various signals, speech is so time-correlated and non-stationary that
many algorithms do not work well to deconvolve it. In order to derive a robust
algorithm, entropy might be a good candidate [3]. By forming the cost function
as negative entropy of the output probability density function (pdf) p(u) and
minimizing the cost using its gradient with respect to coefficients of the decon-
volution filter, the learning rule can be obtained in the frequency domain as

ΔW ∝ (1/W ∗ − fft{g(u)}X∗)|W |2, (3)

where W and X are the discrete Fourier transform of the deconvolution filter
and the observed signal x(n), respectively [3]. For the nonlinear function g(u),
we can use −p′(u)/p(u).

Although some prior knowledge on the distribution of the recovered output
signal is used to adapt the deconvolution filter as we mentioned in the previous
paragraph, we do not usually have any assumption on the deconvolution filter
w(k). From a point of view, this is advantageous because the learning permits
that the filter may have any kind of types. In some application fields, however,
we can obtain some knowledge on the deconvolution filter or assume statistics
on the filter. In those cases, the filter may be estimated more exactly or easily if
we make use of the knowledge or statistics. Especially, when the deconvolution
filter is too complex or the number of observed data is too limited to adapt the
filter, prior information on the deconvolution filter can play an important role.
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Even though assumption on a form of the mixing matrix in independent com-
ponent analysis gives successful estimation of the image features [4], most of the
image feature extraction problems do not suffer from lack of data by obtaining
sufficient number of image patches. Thus, the assumption hardly affect the re-
sults as critical information. In this paper, we try to set priors on acoustic decon-
volution filters for blind deconvolution of speech signals. It is known that most
of the acoustic deconvolution filters require lots of taps. In addition, acoustic
environments are often time-varying, and deconvolution algorithm should adapt
the deconvolution filter in a short time period (i.e., with limited number of data).
Therefore, prior information on the deconvolution filter is likely to give better
estimates of the filter. The deconvolution filters actually estimate the inverse
of acoustic reverberation, and the filters require very different numbers of taps
according to the acoustic reverberation. In order to deconvolve various types
of acoustic reverberation, we need to use a sufficient number of taps for the
deconvolution filter, and a large number of taps are almost zero in most cases.
Therefore, we can impose sparse priors on the acoustic deconvolution filters, and
the plausible priors help us estimate more exact filters.

2 Another Derivation on the Blind Deconvolution
Algorithm

For simple derivation, the deconvolutive model, Eq. (2), can be represented in
the form using time-delay operator z−1 as

u(n) = W (z)x(n), (4)

where

W (z) =
La−1∑
k=0

w(k)z−k. (5)

In order to derive the blind deconvolution algorithm, Eq. (3), let us consider
the input and the output signal of the deconvolutive model over a N sample
block, defined by the following vectors:

x = [x(0), x(1), · · · , x(N − 1)]T ,
u = [u(0), u(1), · · · , u(N − 1)]T . (6)

Both the input and the output signal, x(n) and u(n) are zeros for n < 0.
Then, we can write the output signal vector u as

u =

⎡⎢⎢⎢⎣
w(0) 0 · · · 0
w(1) w(0) · · · 0

...
...

. . .
...

w(N − 1) w(N − 2) · · · w(0)

⎤⎥⎥⎥⎦x. (7)

Here, w(La+1) = w(La+2) = · · · = w(N − 1) = 0 by assuming that the length
of the channel La is much smaller than N .
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The joint probability density of the observed signal vector x can be given by

p(x|W (z)) = |w(0)N |p(u), (8)

and p(u) = pN (u(n)) for an i.i.d. signal. Therefore, the log-likelihood of Eq. (8) is

L(W (z)) = N log |w(0)|+ N log p(u(n)). (9)

By maximizing the log-likelihood with respect to w(k), the natural gradient
algorithm [5, 6] for updating w(k) is given by

Δw(k) ∝ w(k)− ϕ(u(n))rk(n), (10)

where ϕ(u(n)) denotes the score function given by −p′(u(n))/p(u(n)), and

rk(n) =
La−1∑
l=0

w(l)u(n− k + l). (11)

The algorithm has the almost same form as in [7].
As an efficient way to implement the algorithm, a frequency-domain process-

ing using the short-time Fourier transform for sample blocks can be considered.
The resulting algorithm is the same as Eq. (3).

3 Imposing Sparse Priors on the Deconvolution Filters

In order to make use of priors on the deconvolution filters during adaptation of
the filter coefficients, let us reconsider the joint probability density of the ob-
served signal vector, p(x|W (z)). In addition, we assume that the joint probability
density of the deconvolution filter p(W (z)) is known as prior information. In that
case, the logarithm of the posterior probability density can be expressed as

log p(W (z)|x) = log p(x|W (z)) + log p(W (z))− log p(x). (12)

Maximizing log p(W (z)|x) with respect to W (z) provides a learning algorithm for
adapting W (z) with priors on the deconvolution filter. Since the third term of the
right side in Eq. (12) does not depend on the deconvolution filter, it does not affect
the learning algorithm. Note that the first term is the same as the log-likelihood of
Eq. (9). Therefore, Eq. (3) can be used for updating W (z). Adding to Eq. (3), we
have to maximize the second term log p(W (z)) with respect to W (z) as

d log p(W (z))
dW (z)

=
dp(W (z))
dW (z)

p(W (z))
. (13)

As we mentioned in Section 1, a sufficient number of taps are used for the
deconvolution filter, and a large number of taps are almost zero in most cases.
Therefore, sparseness can be imposed on the acoustic deconvolution filters. As
a simple and general pdf for sparse distribution, Laplacian distribution can be
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considered. For simple formulation, we also assume that coefficients of the de-
convolution filter are i.i.d. Thus, equation for updating w(k) from the second
term in Eq. (12) is

Δw(k) ∝ d log p(W (z))
dw(k)

=
dLa log p(w(k))

dw(k)
(14)

∝ −sgn(w(k)).

In maximizing the posterior probability density, we obtained two equations for
learning the deconvolution filter. One of them is processed in the frequency do-
main whereas the other is performed in the time domain. In real implementation
even without prior information on the deconvolution filter, the inverse Fourier
transform of the filter should be computed whenever the filter is adapted in the
frequency domain. This is because one has to take the part corresponding to
length of the deconvolution filter and pad zeros to the remaining part of the
block. Therefore, we can easily apply Eq. (15) after the deconvolution filter in
the time domain is computed.

Overall procedure for updating the deconvolution filter is as follows:

– Begin
1. Transform the deconvolution filter into the frequency domain.
2. Make a sample block.
3. Transform the block into the frequency domain.
4. Update the deconvolution filter using Eq. (3).
5. Transform the deconvolution filter into the time domain.
6. Update the filter using Eq. (15) and set the outside of the deconvolution

filter to zero.
7. Go to step 1.

– End

4 Experimental Results

We have performed experiments on blind deconvolution to show the effect of
sparse priors on the deconvolution filters. Experimental results were compared
in terms of the intersymbol interference (ISI) [3, 8], which is computed by

ISI(dB) = 10 log
(∑

k |t(k)|2 −maxk |t(k)|2
maxk |t(k)|2

)
, (15)

where t(k) = w(k) ∗ h(k).
As input data to the SISO linear system of Eq. (1), some speech files from

a male speaker were selected in the TIMIT database [9]. The total signal had
about 27 second length, and the sampling rate was converted into 8kHz. It is
known that speech signal approximately follows Laplacian distribution. There-
fore, sgn(·) was used as g(·) in Eq. (3). In addition, note that speech signal is
not i.i.d. When one performs blind deconvolution with speech signal, the decon-
volution filter learns from the signal in order to remove not only reverberation
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in acoustic environments but also correlation or dependence of the speech sig-
nal. To avoid the side-effect that deconvolution algorithm removes dependence
of speech, a pre-whitening filter has been learned from speech and then used for
whitening the signal which was reverberated by a convolutive channel.

The convolutive channel to generate the output signal x(n) of the SISO linear
system of Eq. (1) was a 32 tap non-minimum phase filter as shown in Fig. 2. The
channel was a part of the impulse response measured in a normal office room.
In order to deconvolve the channel, we have employed a 512 tap filter for w(k)
with tap-centering initialization. The block size was 1024 to apply the fast Fourier
transform. As shown in the SISO linear system, the observed signal x(n) is gener-
ally corrupted by noise which may come from various noise sources. In this paper,
additive white Gaussian noise was used to corrupt the observed signal.

Fig. 3 displays the ISI for the deconvolution algorithm with sparse priors on
the deconvolution filter. In this experiment, the signal-to-noise ratio (SNR) of
the observed signal was 15dB. For comparison, the simulation on the algorithm
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Fig. 2. A 32 tap non-minimum phase convolutive channel
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without sparse priors has been performed with the same parameters, and the
result was included. Although additional computation requirement to impose
sparse priors was negligible, the deconvolution algorithm with sparse priors on
the filter showed faster convergence and better performance than that without
the priors. The result indicated that the deconvolution algorithm could not con-
verge to a desired solution without sparse priors and the priors on the filter
provided useful information to learn it.

In order to consider the effect of noise, we repeated the simulation for the
signal whose SNR was 20dB, and Fig. 4 shows the result. The difference between
the ISIs for the deconvolution algorithm with and without the priors was smaller
than that in the previous experiment. In this simulation, the observed signal
was contaminated with less noise. Even without resort to the priors, hence, the
deconvolution algorithm could easily adapt the filter by using the observed data
which contained more clear information on the convolutive channel. However,
note that convolutive channels in real-world situation are not fixed as in this
experiment but time-varying and the noise comes from very various sources
such as measurement error and distributed noise.

Strengthening sparse priors excessively by increasing the step-size of Eq. (15)
might accelerate the convergence speed in the early stage but disturb the fre-
quency domain update algorithm of Eq. (3). Therefore, the convergence speed
might slow down. In order to avoid the disturbance, we need to choose a moder-
ate step-size, and using time-decaying step-sizes can be an appropriate strategy
to give fast convergence in the beginning part and not to disturb the frequency
domain update algorithm in the ending part.

5 Conclusion

In this paper, we imposed sparse priors on acoustic deconvolution filters for blind
deconvolution to remove reverberation from speech signal. In order to include
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the sparse priors in the deconvolution algorithm, we maximized the posterior
probability density of convolved signal with respect to the filters. The resulting
algorithm needed negligible additional computation. Simulations indicated that
sparseness imposed on the filters could provide useful information to accelerate
convergence speed of the filters and provide better performance comparing with
completely blind prior information.
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Abstract. One way of separating sources from a single mixture record-
ing is by extracting spectral components and then combining them to
form estimates of the sources. The grouping process remains a difficult
problem. We propose, for instances when multiple mixture signals are
available, clustering the components based on their relative contribu-
tion to each mixture (i.e., their spatial position). We introduce novel
factorizations of magnitude spectrograms from multiple recordings and
derive update rules that extend independent subspace analysis and non-
negative matrix factorization to concurrently estimate the spectral shape,
time envelope and spatial position of each component. We show that es-
timated component positions are near the position of their corresponding
source, and that multichannel non-negative matrix factorization can dis-
tinguish three pianos by their position in the mixture.

1 Introduction

One way of separating sources from a single mixture recording is by extracting
a number of spectral components. These components are then grouped to form
the original sources. The difficulty is deciding how to group these components.
We propose, for instances when multiple mixture signals are available, grouping
components by their relative contribution to each mixture (i.e., their spatial po-
sition). A source’s spatial position is an important element of the classic problem
of blind source separation. One way to represent this information is the spatial
mixing matrix A:

x(t) = As(t) (1)

where x(t) is the M × 1 time-varying vector mixture, s(t) is the N × 1 time-
varying vector source, and A is the M ×N mixing matrix. We use independent
component analysis (ICA) to estimate A, s, or the unmixing matrix W [1]:

ŝ(t) = Wx(t) (2)

where ŝ(t) is an estimate of the original sources s(t).
The fundamental limitation of basic ICA algorithms is that they can only

separate as many sources as mixtures (i.e., N ≤ M). If N > M , the system is

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 666–673, 2006.
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underdetermined and information is lost during the mixing process that cannot
be recovered without strong assumptions during unmixing. To address this, in-
dependent subspace analysis (ISA) applies the assumption that each source is
the sum of one or more spectral components [2-4]. When a classic ICA algorithm
operates on the magnitude spectrogram of a single mixture signal, it extracts
spectral shapes and amplitude envelopes. The difficulty is then grouping these
spectral components into source streams. Even though magnitude spectrogram
data is always non-negative, ISA decomposes it into components that can be
negative. Because of this mismatch, non-negative matrix factorization (NMF) is
an alternative way to decompose a magnitude spectrogram into spectral compo-
nents [5-7]. The main difficulty of both ISA and NMF is how to group spectral
components into source streams.

Because multiple mixture signals are often available, it seems reasonable to
try to group spectral components according to their spatial positions. Recently,
FitzGerald et al. extended non-negative matrix factorization of a single mixture
to non-negative tensor factorization of multiple mixtures [8]. We present a differ-
ent matrix factorization for NMF and ISA that leverages the additional spatial
information in multiple mixtures.

2 Fundamental Technologies

We briefly review some of the fundamental technologies that we use for this
research: non-negative matrix factorization, independent subspace analysis, and
undercomplete independent component analysis.

Non-negative Matrix Factorization. Non-negative matrix factorization (NMF)
decomposes a K × T matrix, X, into the product of a K × P matrix B and a
P ×T matrix S [9]. If X is a spectrogram, K is the number of frequency bins, T
is the number of time frames, and P is the desired number of components. Each
component comprises a spectral shape in B and an amplitude envelope in S.
NMF minimizes the squared Euclidian error using the following update rules [9]:

B(i+1)
kn ← B(i)

kn

(XS(i)T)kn
(Z(i)S(i)T)kn

(3)

S(i+1)
nt ← S(i)

nt

(B(i)TX)nt
(B(i)TZ(i))nt

(4)

where Z(i) = B(i)S(i) is the current estimate of X. We extend NMF to learn
the spectral shape, amplitude envelope, and spatial position of each component.
The additional spatial information can be used to cluster notes into instrument
streams.

Independent Subspace Analysis. Casey and Westner [2] introduce independent
subspace analysis (ISA) in order to separate multiple sources from a single mix-
ture. They use ICA to extract spectral components from the magnitude spectra
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x(t) of a mixture signal, and then group components according to spectral sim-
ilarity. ICA is performed using a classic algorithm such as Bell and Sejnowski’s
information maximization algorithm that maximizes the entropy of a nonlinear
function of the estimated sources [10]. This leads to an update rule for unmixing
matrix W proportional to the following:

ΔW ∝W−T − 2yxT (5)

During an initial whitening stage, they remove less important principal compo-
nents to achieve a K : P dimensionality reduction. Alternatively, we consider
undercomplete independent component analysis for this reduction.

Undercomplete Independent Component Analysis. Undercomplete independent
component analysis performs dimensionality reduction during ICA without
throwing away information during whitening [11]. This leads to an update rule
that does not require a square unmixing matrix as in (5):

ΔW ∝ (WCWT)
−1

(WC)− 2yxT (6)

We extend ISA to additionally estimate the spatial position of each component.
Because we have K frequency bins for each of the M mixtures, we use under-
complete ICA to accomplish the KM : P dimensionality reduction.

3 Multichannel Non-negative Matrix Factorization

We extend non-negative matrix factorization to handle multiple mixtures by con-
currently estimating the spatial positions of spectral components. Our underly-
ing assumption is that sources maintain their spatial position and the components
maintain their spectral shape across channels. Therefore, a single component may
be modeled as a single spectral shape, spatial position, and amplitude envelope.

To accommodate multiple mixtures we introduce an additional M ×P matrix
Q. Each column of Q contains the spatial position of the spectral component
represented by the corresponding column in B and row in S. In order to apply a
factorization on magnitude spectra from multiple recordings, Xm (1 ≤ m ≤M),
we construct X̂ ≈ B̂Q̂S, where B̂ is the multichannel spectral mixing matrix
and Q̂ is the multichannel spatial mixing matrix. For M = 2,

X̂ =
[
X1
X2

]
≈
[
B 0
0 B

] [
Q1
Q2

]
S, (7)

where Qm is a diagonal matrix containing the m-th row of Q on the diagonal.
Figure 1 illustrates this factorization highlighting one component with K = 5,
M = 2, P = 3,and T = 7. We minimize the squared Euclidian error between X̂
and B̂Q̂S and derive the following updates:

B(i+1)
kn ← B(i)

kn

∑M
m=1 (XmS(i)TQ(i)

m

T
)kn∑M

m=1(Z
(i)
m S(i)TQ(i)

m

T
)kn

(8)
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= ×
SX̂ B̂

×
Q̂

Fig. 1. Multichannel formulation for non-negative matrix factorization

Q(i+1)
mn ← Q(i)

mn

(B(i)TXmS(i)T)nn
(B(i)TZ(i)

m S(i)T)nn
(9)

S(i+1)
nt ← S(i)

nt

∑M
m=1(Q

(i)
m

T
B(i)TXm)nt∑M

m=1(Q
(i)
m

T
B(i)TZ(i)

m )nt
(10)

where Z(i)
m = B(i)Q(i)

m S(i) is the current estimate of Xm, and subscript pairs
indicate matrix indexing.

4 Multichannel Independent Subspace Analysis

For multichannel independent subspace analysis, we introduce an M ×P matrix
U containing the spatial unmixing parameters for each component in its columns.
We factorize the unmixing system as S = ÛV̂X̂, where Û is the multichannel
spatial unmixing matrix and V̂ is the multichannel spectral unmixing matrix:

S =
[
U1 U2

] [V 0
0 V

] [
X1
X2

]
(11)

where Um is a diagonal matrix containing the m-th row of U, Û = Q̂# and
V = B#, where # is the Moore-Penrose pseudoinverse [12]. Figure 2 shows the
multichannel ISA factorization using the same dimensions as Figure 1. We derive
update rules proportional to the following:

= ×
S X̂V̂

×
Û

Fig. 2. Multichannel factorization for independent subspace analysis
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ΔUmn ∝
[
(RmCRT

m)
−1

RmCVT − 2YmXT
mVT

]
nn

(12)

ΔVnk ∝
M∑
m=1

[
UT
m(RmCRT

m)
−1

RmC− 2UmYmXT
m

]
nk

(13)

where Rm = UmV and Ym = tanh(UmVXm). In order to decrease compu-
tation we initially whiten the data in X̂ using a block diagonal “whitening”
matrix:

D̂ =
[
D 0
0 D

]
(14)

where D is the whitening matrix for the average magnitude spectra across all
channels.

5 Results

We demonstrate our multichannel extensions to NMF and ISA on mixtures of
drum and piano music sampled at 11025 Hz. We mix the tracks in the time
domain via (1). Then, we compute the magnitude spectrogram of the mixture
signals using a Hanning window of 512 samples with 50% overlap and a fast
Fourier transform of 1024 samples. We generate the mixtures panning the piano
to the right and drum to the left with the following mixing matrix (i.e., M =
N = 2):

A =
[

0.2 0.8
0.8 0.2

]
(15)

where each column of A is the spatial position of a source.
For multichannel NMF, we apply a gradient descent algorithm to the drum

and piano mixture. To initialize B and S, we apply successive updates of (3) and
(4) on the average magnitude spectrogram of the mixtures. After convergence,
we set the minimum value in B and S to a small factor to avoid clamping at
zero with the multiplicative updates. Finally, we alternately apply (8), (9), and
(10) to extract P = 7 components. Throughout the estimation, we maintain unit
norm columns of B and Q. For multichannel ISA, we apply a block whitening
matrix D̂ that reduces the dimensionality from KM to 50M before alternate
updates using (12) and (13) to extract P = 7 components.

The left and right side of Figure 3 shows the extracted components using
multichannel NMF and multichannel ISA, respectively. Figure 3(a) and 3(b)
plots the time envelope of the components. The envelopes show that components
2, 6, and 7 from NMF and components 1 and 2 from ISA represent the short
spiked attacks of the drums. The other components are from the piano. Because
the NMF components contain only non-negative values, they are generally easier
to interpret than the ISA components. For example, the piano components in
Figure 3(a) have sharp attacks and smooth decay illustrated by roughly right-
triangular onsets. This detail is less prevalent in the ISA components especially
at lower energy levels.



Estimating the Spatial Position of Spectral Components in Audio 671

The component spectra in Figure 3(c) show the harmonic content of the pi-
ano and the noisy or low-frequency content of the drums. The larger peaks in
the piano components occur at roughly linearly spaced frequencies indicating a
harmonic relationship between them. This structure is more apparent in NMF
components 3, 4, and 5. The noisy frequency content in component 2, and low-
frequency concentration in components 6 and 7 are characteristic of the drums.
This structure is difficult to see in the ISA components in Figure 3(d). Fig-
ure 3(e) and 3(f) show the component positions. These positions verify what we
can see in the temporal envelopes and frequency content of the components. The
drum components cluster on the left and the piano components cluster on the
right.

When applied to more difficult examples, multichannel ISA was less pre-
dictable and generally less informative than multichannel NMF. For example,
sources that contain highly similar spectra are difficult for ISA to handle. When
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Fig. 3. Extracted components from drums and piano using multichannel NMF (left)
and multichannel ISA (right)
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(b) NMF spectra

Fig. 4. Extracted component envelopes and spectra for multichannel NMF and three
piano sources
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Fig. 5. Extracted component positions for multichannel NMF and three piano sources

applied to magnitude spectrograms, ICA generates linearly independent spec-
tral shapes. Therefore, it is impossible for two components to represent the
same spectra. In contrast, multichannel NMF only requires the non-negativity
of source components.

We apply multichannel NMF to three pianos playing the same four notes in
different orders. Piano 1, 2 and 3, are positioned to the left, center, and right in
the stereo mixture, respectively. Figure 4 shows P = 12 extracted components.
Components 9–12 clearly represent piano 1 playing the notes in order from low
to high. Each component is roughly one note represented by a temporal spike in
Figure 4(a), one dominating frequency in Figure 4(b), and cluster together on
the left side of Figure 5. In a similar way, components 1, 2, 3, and 5 represent
piano 3, except component 3 contains two frequency peaks instead of one. The
remaining components capture parts of piano 2. However, each contain multiple
frequency concentrations and are generally less distinct. In spite of this, each
source can be distinguished by its stereo position in Figure 5.

6 Conclusion

We propose leveraging the additional spatial information in multichannel
mixtures to cluster components spatially. We introduce novel factorizations of
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magnitude spectrograms from multiple mixture signals. We derive update rules
that extend independent subspace analysis and non-negative matrix factoriza-
tion to concurrently estimate the spectral shape, temporal envelope, and spatial
position of each component. Finally, we show that estimated component posi-
tions are near the position of their corresponding source. On a mixture of three
pianos playing the same notes in different orders, multichannel NMF extracts
components that can be distinguished by their spatial positions.
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Abstract. A limitation in many source separation tasks is that the
number of source signals has to be known in advance. Further, in order
to achieve good performance, the number of sources cannot exceed the
number of sensors. In many real-world applications these limitations are
too restrictive. We propose a method for underdetermined blind source
separation of convolutive mixtures. The proposed framework is applica-
ble for separation of instantaneous as well as convolutive speech mixtures.
It is possible to iteratively extract each speech signal from the mixture by
combining blind source separation techniques with binary time-frequency
masking. In the proposed method, the number of source signals is not as-
sumed to be known in advance and the number of sources is not limited to
the number of microphones. Our approach needs only two microphones
and the separated sounds are maintained as stereo signals.

1 Introduction

Blind source separation (BSS) addresses the problem of recovering N unknown
source signals s(n) = [s1(n), . . . , sN (n)]T from M recorded mixtures x(n) =
[x1(n), . . . , xM (n)]T of the source signals. The term ‘blind’ refers to that only the
recorded mixtures are known. An important application for BSS is separation
of speech signals. The recorded mixtures are assumed to be linear superposi-
tions of the source signals. Such a linear mixture can either be instantaneous or
convolutive. The instantaneous mixture is given as

x(n) = As(n) + ν(n), (1)

where A is an M × N mixing matrix and n denotes the discrete time index.
ν(n) is additional noise. A method to retrieve the original signals up to an
arbitrary permutation and scaling is independent component analysis (ICA) [1].
In ICA, the main assumption is that the source signals are independent. By
applying ICA, an estimate y(n) of the source signals can be obtained by finding
a (pseudo)inverse W of the mixing matrix so that

y(n) = Wx(n). (2)

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 674–681, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Notice, this inversion is not exact when noise is included in the mixing model.
When noise is included as in (1), x(n) is a nonlinear function of s(n). Still, the
inverse system is assumed to be approximated by a linear system.

The convolutive mixture is given as

x(n) =
K−1∑
k=0

Aks(n− k) + ν(n) (3)

Here, the source signals are mixtures of filtered versions of the original source
signals. The filters are assumed to be causal and of finite length K. The con-
volutive mixture is more applicable for separation of speech signals because the
convolutive model takes reverberations into account. The separation of convolu-
tive mixtures can either be performed in the time or in the frequency domain.
The separation system for each discrete frequency ω is given by

Y(ω, t) = W(ω)X(ω, t), (4)

where t is the time frame index. Most methods, both instantaneous and convo-
lutive, require that the number of source signals is known in advance. Another
drawback of most of these methods is that the number of source signals is as-
sumed not to exceed the number of microphones, i.e. M ≥ N .

If N > M , even if the mixing process is known, it may not be invertible,
and the independent components cannot be recovered exactly [1]. In the case
of more sources than sensors, the underdetermined/overcomplete case, successful
separation often relies on the assumption that the source signals are sparsely dis-
tributed in the time-frequency domain [2], [3]. If the source signals do not overlap
in the time-frequency domain, high-quality reconstruction could be obtained [3].

However, there is overlap between the source signals. In this case, good separa-
tion can still be obtained by applying a binary time-frequency (T-F) mask to the
mixture [2], [3]. In computational auditory scene analysis, the technique of T-F
masking has been commonly used for years (see e.g. [4]). Here, source separation
is based on organizational cues from auditory scene analysis [5]. More recently
the technique has also become popular in blind source separation, where separa-
tion is based on non-overlapping sources in the T-F domain [6]. T-F masking is
applicable to source separation/ segregation using one microphone [4],[7],[8] or
more than one microphone [2], [3]. T-F masking is typically applied as a binary
mask. For a binary mask, each T-F unit is either weighted by one or zero. An
advantage of using a binary mask is that only a binary decision has to be made
[9]. Such a decision can be based on, e.g., clustering [2], [3], [6], or direction-of-
arrival [10]. ICA has been used in different combinations with the binary mask.
In [10], separation is performed by first removing N−M signals via masking and
afterwards applying ICA in order to separate the remaining M signals. ICA has
also been used in the other way around. In [11], it has been applied to separate
two signals by using two microphones. Based on the ICA outputs, T-F masks are
estimated and a mask is applied to each of the ICA outputs in order to improve
the signal to noise ratio (SNR).
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In this paper, we propose a method to segregate an arbitrary number of speech
signals in a reverberant environment. We extend a previously proposed method
for separation of instantaneous mixtures [12] to separation of convolutive mix-
tures. Based on the output of a square (2× 2) blind source separation algorithm
and binary T-F masks, our method segregates speech signals iteratively from
the mixtures until an estimate of each signal is obtained.

2 Blind Extraction by Combining BSS and Binary
Masking

With only two microphones, it is not possible to separate more than two signals
from each other because only one null direction can be placed for each output.
This fact does not mean that the blind source separation solution is useless in
the case of N > M . In [12] we examined what happened if an ICA algorithm
was applied to an underdetermined 2-by-N mixture. When the two outputs
were considered, we found that the ICA algorithm separates the mixtures into
subspaces, which are as independent as possible. Some of the source signals are
mainly in one output while other sources mainly are present in the other output.

A flowchart for the algorithm is given in Fig. 1. As described in the previ-
ous section, a two-input-two-output blind source separation algorithm has been
applied to the input mixtures, regardless the number of source signals that actu-
ally exist in the mixture. The two output signals are arbitrarily scaled. Different
methods have been proposed in order to solve the scaling ambiguity. Here, we
assume that all source signals have the same variance as proposed in [1] and the
outputs are therefore scaled to have the same variance.

The two re-scaled output signals, ŷ1(n) and ŷ2(n), are transformed into the
frequency domain e.g. using the Short-Time Fourier Transform STFT so that
two spectrograms are obtained:

ŷ1 → Y1(ω, t) (5)
ŷ2 → Y2(ω, t), (6)

where ω denotes the frequency and t is the time frame index. The binary masks
are then determined for each T-F unit by comparing the amplitudes of the two
spectrograms:

BM1(ω, t) = τ |Y1(ω, t)| > |Y2(ω, t)| (7)
BM2(ω, t) = τ |Y2(ω, t)| > |Y1(ω, t)|, (8)

where τ is a threshold. Next, each of the two binary masks is applied to the
original mixtures in the T-F domain, and by this non-linear processing, some
of the speech signals are removed by one of the masks while other speakers are
removed by the other mask. After the masks have been applied to the signals,
they are reconstructed in the time domain by the inverse STFT. If there is
only a single signal left in the masked output, defined by the selection criteria
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in Section 2.3, i.e. all but one speech signal have been masked, this signal is
considered extracted from the mixture and it is saved. If there are more than one
signal left in the masked outputs, the procedure is applied to the two masked
signals again and a new set of masks are created based on (7), (8) and the
previous masks. The use of the previous mask ensures that T-F units that have
been removed from the mixture are not reintroduced by the next mask. This is
done by an element-wise multiplication between the previous mask and the new
mask. This iterative procedure is followed until all masked outputs consist of
only a single speech signal. When the procedure stops, the correlation between
the segregated sources are found in order to determine whether a source signal
has been segregated more than once. If so, the source is re-estimated by merging
the two correlated masks. It is important to notice that the iteratively updated
mask always is applied to the original mixtures and not to the previously masked
signal. Hereby a deterioration of the signal due to multiple iterations is avoided.

BSS + scaling

Estimation of the two binary masks

BM 1 BM 2

Apply to original
microphone

signals

Apply to original
microphone

signals

Selection criterion

Final stereo signal Final stereo signal

Input signal buffer

Initialization

Stop Stop

Continue Continue

1x
2x

xx1ˆ xx2ˆ

11x̂ 21x̂ 12x̂ 22x̂

11x̂ 21x̂ 12x̂ 22x̂

1x 2x 1x 2x

11x̂

21x̂

12x̂

22x̂

Selection criterion

2ŷ1ŷ

Fig. 1. Flowchart showing the main steps of the proposed algorithm. From the output
of the BSS algorithm, binary masks are estimated. The binary masks are applied to the
original signals which again are processed through the BSS step. Every time the output
from one of the binary masks is detected as a single signal, the signal is stored. The
iterative procedure stops when all outputs only consist of a single signal. The flowchart
has been adopted from [12].
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2.1 Finding the Background Signals

Since some signals may have been removed by both masks, all T-F units that have
not been assigned the value ‘1’ are used to create a background mask, and the proce-
dure is applied to the mixture signal after the remaining mask is applied, to ensure
that all signals are estimated. Notice that this step has been omitted from Fig. 1.

2.2 Extension to Convolutive Mixtures

Each convolutive mixture is given by a linear superposition of filtered versions
of each of the source signals. The filters are given by the impulse responses
from each of the sources to each of the microphones. An algorithm capable of
separating convolutive mixtures is used in the BSS step. Separation still relies
on the fact that the source signals can be grouped such that one output mainly
contains one part of the source signals and the other output mainly contains
the other part of the signals. In order to avoid arbitrary filtering, only the cross
channels of the separation filters have been estimated. The direct channel is
constrained to be an impulse. Specifically, we employ the frequency domain
convolutive BSS algorithm by Parra and Spence [13]1.

2.3 Selection Criterion

In order to decide if all but one signal have been removed, we consider the
envelope statistics of the signal. By considering the envelope histogram, it can
be determined whether one or more than one signal is present in the mixture. If
only one speech signal is present, many of the amplitude values are close to zero.
If more speech signals are present, less amplitude values are close to zero. In order
to discriminate between one and more than one speech signals in the mixture, we
measure the width of the histogram as proposed in [14] as the distance between
the 90% and the 10% percentile normalized to the 50% percentile, i.e.

width =
P90 − P10

P50
. (9)

Further processing on a pair of masked signals should be avoided if there is
one or zero speech signals in the mixture. If the calculated width is smaller than
two, we assume that the masked signal consists of more than one speech signal.
We discriminate between zero and one signal by considering the energy of the
segregated signal. This selection criterion is more robust to reverberations than
the correlation-based criterion used in [12].

3 Evaluation

The algorithm described above has been implemented and evaluated with in-
stantaneous and convolutive mixtures. For the STFT, an FFT length of 2048
1 Matlab code is available from http://ida.first.gmd.de/~harmeli/download/
download convbss.html
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has been used. A Hanning window with a length of 512 samples has been applied
to the FFT signal and the frame shift is 256 samples. A high frequency resolu-
tion is found to be necessary in order to obtain good performance. The sampling
frequency of the speech signals is 10 kHz, and the duration of each signal is
5 s. The thresholds have been found from initial experiments. In the ICA step,
the separation matrix is initialized by the identity matrix, i.e. W = I. When
using a binary mask, it is not possible to reconstruct the speech signal as if it
was recorded in the absence of the interfering signals, because the signals partly
overlap. Therefore, as a computational goal for source separation, we employ the
ideal binary mask [9]. The ideal binary mask for a signal is found for each T-F
unit by comparing the energy of the desired signal to the energy of all the inter-
fering signals. Whenever the signal energy is higher, the T-F unit is assigned the
value ‘1’ and whenever the interfering signals have more energy, the T-F unit is
assigned the value ‘0’. As in [8], for each of the separated signals, the percentage
of energy loss PEL and the percentage of noise residue PNR are calculated as
well as the signal to noise ratio (SNR) using the resynthesized speech from the
ideal binary mask as the ground truth:

PEL =
∑
n e

2
1(n)∑

n I
2(n)

, PNR =
∑
n e

2
2(n)∑

nO
2(n)

, SNR = 10 log10

[ ∑
n I

2(n)∑
n(I(n)−O(n))2

]
,

where O(n) is the estimated signal, and I(n) is the recorded mixture resynthe-
sized after applying the ideal binary mask. e1(n) denotes the signal present in
I(n) but absent in O(n) and e2(n) denotes the signal present in O(n) but absent
in I(n). The input signal to noise ratio, SNRi, is found too, which is the ratio
between the desired signal and the noise in the recorded mixtures.

Convolutive mixtures consisting of four speech signals have also been sepa-
rated. The signals are uniformly distributed in the interval 0◦ ≤ θ ≤ 180◦. The
mixtures have been obtained with room impulse responses synthesized using the
image model [15]. The estimated room reverberation time is T60 ≈ 160 ms. The
distance between the microphones is 20 cm. The method has been evaluated with
and without the proposed selection criterion described in Section 2.3. When the
selection criterion was not used, it has been decided when a source signal has
been separated by listening to the signals. The separation results are shown in
Table 1 and Table 2. The average input SNR is −4.91 dB. When the selection
criterion was applied manually, the average SNR after separation is 1.91 dB

Table 1. Separation results for four convolutively mixed speech mixtures. A manual
selection criterion was used.

Signal No. PEL(%) PNR(%) SNRi (dB) SNR (dB)
1 66.78 20.41 -4.50 1.35
2 32.29 41.20 -4.50 1.24
3 52.86 19.08 -3.97 2.12
4 15.78 30.39 -6.67 2.91

Average 41.93 27.77 -4.91 1.91
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Table 2. Separation results for four convolutively mixed speech mixtures. The selection
criterion as proposed in Section 2.3 was used.

Signal No. PEL(%) PNR(%) SNRi (dB) SNR (dB)
1 39.12 46.70 -4.50 0.63
2 64.18 18.62 -4.50 1.45
3 26.88 33.73 -3.97 2.40
4 45.27 32.49 -6.67 1.69

Average 43.86 32.88 -4.91 1.54

with an average SNR gain of 6.8 dB. When selection criterion was applied as
proposed, the average SNR after separation is 1.45 dB with an average SNR gain
of 6.4 dB, which is about half a dB worse than selecting the segregated signals
manually. It is not always that all the sources are extracted from the mixture.
Therefore the selection criterion could be further improved. For separation of
instantaneous mixtures an SNR gain of 14 dB can be obtained, which is sig-
nificantly higher than that for the reverberant case. This may be explained by
several factors. Errors such as misaligned permutations are introduced from the
BSS algorithm. Also, convolutive mixtures are not as sparse in the T-F domain
as instantaneous mixtures. Further, the assumption that the same signals group
into the same groups for all frequencies may not hold. Some artifacts (musical
noise) exist in the segregated signals. Especially in the cases, where the val-
ues of PEL and PNR are high. Separation results are available for listening at
www.imm.dtu.dk/∼msp.

As mentioned earlier, several approaches have been recently proposed to sep-
arate more than two sources using two microphones by employing binary T-
F masking [2], [3], [10]. These methods use clustering of amplitude and time
differences between the microphones. In contrast, our method separates speech
mixtures by iteratively extracting individual source signals. Our results are quite
competitive although rigorous statements about comparison are difficult because
the test conditions are different.

4 Concluding Remarks

A novel method of blind source separation of underdetermined mixtures has
been described. Based on sparseness and independence, the method iteratively
extracts all the speech signals. The linear processing from BSS methods alone
cannot separate more sources than the number of recordings, but with the ad-
ditional nonlinear processing introduced by the binary mask, it is possible to
separate more sources than the number of sensors. Our method is applicable
to separation of instantaneous as well as convolutive mixtures and the output
signals are maintained as stereo signals. An important part of the method is
the detection of when a single signal exists at the output. Future work will in-
clude better selection criteria to detect a single speech signal, especially in a
reverberant environment. More systematic evaluation and comparison will also
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be given in the future. The assumption of two microphones may be relaxed and
the method may also be applicable to other signals than speech which also have
significant redundancy.
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Abstract. We propose two time-frequency (TF) blind source separa-
tion (BSS) methods suited to attenuated and delayed (AD) mixtures.
They consist in identifying the columns of the (filtered permuted) mix-
ing matrix in Constant-Time TF zones where they detect that a single
source occurs, using TIme-Frequency Ratios Of Mixtures (hence their
name AD-TIFROM-CT). We thus identify columns of scale coefficients
and time shifts. Unlike various previously reported TF-BSS approaches,
these methods set very limited constraints on the source sparsity and
overlap. They are especially suited to non-stationary sources.

1 Introduction

Blind source separation (BSS) consists in estimating a set of N unknown sources
from a set of P observations resulting from mixtures of these sources through un-
known propagation channels. Most of the approaches that have been developed
to this end are based on Independent Component Analysis [1]. More recently,
several methods based on ratios of time-frequency (TF) transforms of the ob-
served signals have been reported. Some of these methods, i.e. DUET and its
modified versions, are based on an anechoic mixing model, involving attenua-
tions and delays (AD) (this is not the general convolutive model). However, they
require the sources to have no overlap in the TF domain [2], which is quite re-
strictive. On the contrary, only slight differences in the TF representations of
the sources are requested by our Linear Instantaneous (LI) TIFROM method [3].
We here propose two novel TF-BSS methods, inspired by this LI-TIFROM ap-
proach, but suited to more general mixtures involving time shifts. We thus avoid
the restriction1 of the DUET method concerning the sparsity of the sources in
the TF domain, while addressing the same class of mixtures.

2 Problem Statement

In this paper, we assume that N unknown source signals sj(n) are transferred
through AD channels and added, thus providing a set of N mixed observed
1 Note however that DUET also applies to underdetermined mixtures, which is not,

at this stage, the case of the methods that we propose in this paper.
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signals xi(n). This reads

xi(n) =
N∑
j=1

aij sj(n− nij) i = 1 . . . N, (1)

where aij are real-valued strictly positive constant scale coefficients and nij are
integer-valued time shifts. We here handle the scale/filter indeterminacies in-
herent in the BSS problem by extending to AD mixtures an approach that we
introduced in another type of LI-BSS method, i.e. LI-TIFCORR [4]. This ap-
proach may be defined as follows. We consider an arbitrary permutation function
σ(.), applied to the indices j of the source signals, which yields the permuted
source signals sσ(j)(n). We then introduce scaled and time-shifted versions of
the latter signals, equal to their contributions in the first mixed signal, i.e.

s′j(n) = a1,σ(j) sσ(j)
(
n− n1,σ(j))

)
. (2)

The mixing equation (1) may then be rewritten as

xi(n) =
N∑
j=1

ai,σ(j) sσ(j)
(
n− ni,σ(j))

)
=

N∑
j=1

bij s
′
j (n− μij)) (3)

with
bij =

ai,σ(j)

a1,σ(j)
and μij = ni,σ(j) − n1,σ(j). (4)

The Fourier transform of Eq. (3) reads

Xi(ω) =
N∑
j=1

bij e
−jωμij S′

j(ω) i = 1 . . . N. (5)

This yields in matrix form

X(ω) = B(ω)S′(ω) (6)

where S′(ω) = [S′
1(ω) · · ·S′

N (ω)]T and

B(ω) =
[
bije

−jωμij
]

i, j = 1 . . . N. (7)

In this paper, we aim at introducing methods for estimating B(ω).

3 Proposed Basic TIFROM Method for AD Mixtures

3.1 Time-Frequency Tool and Assumptions

We recently proposed [3] a LI-BSS method based on TIme-Frequency Ratios Of
Mixtures, that we therefore called “LI-TIFROM”. Starting from this method,
we here develop extensions intended for AD mixtures. These approaches are
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called AD-TIFROM-CT, since they are shown below to only use “Constant-Time
analysis zones”. The TF transform of the signals considered in these approaches
is the Short-Time Fourier Transform (STFT) defined as:

U(n, ω) =
+∞∑

n′=−∞
u(n′)h(n′ − n)e−jωn

′
(8)

where h(n′ − n) is a shifted windowing function, centered on time n. U(n, ω) is
the contribution of the signal u(n) in the TF window corresponding to the short
time window centered on n and to the angular frequency ω.

The AD-TIFROM-CT approach uses the following definitions and assump-
tions.

Definition 1. A source is said to “occur alone” in a TF area (which is composed
of several adjacent above-defined TF windows) if only this source has a TF
transform which is not equal to zero everywhere in this TF area.

Definition 2. A source is said to be “visible” in the TF domain if there exist at
least one TF area where it occurs alone.

Assumption 1. Each source is visible in the TF domain.

Note that this is a very limited sparsity constraint !

Assumption 2. There exist no TF areas where the TF transforms of all sources
are equal to zero everywhere2.

Assumption 3. When several sources occur in a given set of adjacent TF win-
dows, they should vary so that at least one of the moduli of ratios of STFTs
of observations, |Xi(n, ω)/X1(n, ω)|, with i = 2 . . . N , does not take the same
value in all these windows . Especially, i) at least one of the sources must take
significantly different TF values in these windows and ii) the sources should not
vary proportionally.

3.2 Overall Structure of the Basic AD-TIFROM-CT Method

The AD-TIFROM-CT method aims at estimating the mixing matrix B(ω) de-
fined in Eq. (7), i.e. the parameters bim and μim, with i = 2 . . . N and m = 1 . . . N
(i = 1 yields bij = 1 and μij = 0: see Eq. (4)). The basic version of this method
is composed of a pre-processing stage and 3 main stages:

1. The pre-processing stage consists in deriving the STFTs Xi(n, ω) of the
mixed signals, according to Eq. (8).

2. The detection stage aims at finding “constant-time TF analysis zones” where
a source occurs alone, using the method introduced in Section 3.3.

2 This assumption is only made for the sake of simplicity: it may be removed in
practice, thanks to the noise contained by real recordings, as explained in [3].
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3. The identification stage aims at estimating the columns of B(ω) in the above
single-source analysis zones, using the method proposed in Section 3.4.

4. In the combination stage, we eventually derive the output signals. They may
be obtained in the frequency domain by computing Y (ω) = B−1(ω)X(ω)
where Y (ω) = [Y1(ω) · · ·YN (ω)]T is the vector of Fourier transforms of the
output signals. The time-domain versions of these signals are then obtained
by applying an inverse Fourier transform to Y (ω).

3.3 Detection of Single-Source Constant-Time TF Analysis Zones

As stated above, the BSS method that we here introduce first includes a de-
tection stage for finding single-source TF zones. The frequency-domain mixture
equations corresponding to Eq. (1) read

Xi(ω) =
N∑
j=1

aij e
−jωnij Sj(ω) i = 1 . . . N. (9)

This relationship between the observations and sources remains almost exact
when expressed in the TF domain if the time shifts nij are small enough as
compared to the temporal width of the windowing function h(.) used in the
STFT transform. We here assume that this condition is met and thus that the
STFTs of the observations can be expressed wrt. the STFTs of the sources as

Xi(n, ω) =
N∑
j=1

aij e
−j ωnij Sj(n, ω) i = 1 . . . N. (10)

Let us consider the ratio of STFTs of mixtures

αi(n, ω) =
Xi(n, ω)
X1(n, ω)

=

∑N
j=1 aij e

−j ωnij Sj(n, ω)∑N
j=1 a1j e−j ωn1j Sj(n, ω)

. (11)

If a source Sk(n, ω) occurs alone in the considered TF window (np, ωl) then

αi(np, ωl) =
aik
a1k

e−jω(nik−n1k) = bime
−jωμim (12)

with bim and μim defined by Eq. (4) and k = σ(m). Since we assumed all mix-
ing coefficients aik to be real and positive, all resulting scale coefficients bim are
also real and positive. The modulus of the parameter value αi(np, ωl) provided
in Eq. (12) is therefore equal to bim. If only source Sk(n, ω) occurs in several
frequency-adjacent windows (np, ωl), then |αi(np, ωl)| is constant over these ad-
jacent windows. On the contrary, it takes different values over these windows
for at least one index i if several sources are present, due to Assumption 3.
To exploit this phenomenon, we compute the sample variance of |αi(n, ω)| on
“constant-time analysis zones” that we define as series of M frequency windows
corresponding to adjacent ωl, applying this approach independently to each time
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index np. This set of frequency points ωl is denoted Ω hereafter and the corre-
sponding TF zone is therefore denoted (np, Ω). We respectively define the sample
mean and variance of |αi(np, ωl)| on (np, Ω) as

|αi|(np, Ω) =
1
M

M∑
l=1

|αi(np, ωl)| , (13)

var [|αi|] (np, Ω) =
1
M

M∑
l=1

∣∣∣|αi(np, ωl)| − |αi|(np, Ω)
∣∣∣2 . (14)

We first compute these parameters independently for each i, with i = 2 . . . N .
We then derive the mean over i of these variances var [|αi|] (np, Ω), i.e.

MVAR [|α|] (np, Ω) =
1

N − 1

N∑
i=2

var [|αi|] (np, Ω). (15)

Similarly, we compute the inverse ratios and their means and variances on each
considered analysis zone, i.e.

βi(n, ω) =
1

αi(n, ω)
=

X1(n, ω)
Xi(n, ω)

(16)

|βi|(np, Ω) =
1
M

M∑
l=1

|βi(np, ωl)| (17)

var [|βi|] (np, Ω) =
1
M

M∑
l=1

∣∣∣|βi(np, ωl)| − |βi|(np, Ω)
∣∣∣2 . (18)

The mean over i of these variances var [|βi|] (np, Ω) then reads

MVAR [|β|] (np, Ω) =
1

N − 1

N∑
i=2

var [|βi|] (np, Ω). (19)

This mean MVAR [|β|] (np, Ω) has lower or higher values than the above mean
MVAR [|α|] (np, Ω), depending on mixing scale coefficients. The best single-
source TF zones are those where min {MVAR [|α|] (np, Ω),MV AR [|β|] (np, Ω)}
takes the lowest values.

3.4 Identification Stage

Thanks to expression (12) of the parameters αi(n, ω) in single-source analysis
zones, a natural idea for estimating the time shifts μim consists in taking ad-
vantage of the phase of αi(n, ω). We consider independently each time position
np associated to TF windows and for each such position, we unwrap the phase
of αi(np, ω) over all associated frequency-adjacent TF points. If we assume that
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Sk(n, ω) occurs alone in an analysis zone (np, Ω) and we consider the unwraped
phase φi(np, ωl) of αi(np, ωl) in this zone, due to Eq. (12) we have

−ωlμim = φi(np, ωl) + 2qim(np)π, (20)

where qim(np) is an unknown integer. Eq (20) shows that the curve associated to
the variations of the phase φi(np, ωl) wrt. ωl in a single-source zone (np, Ω) is a
line and that its slope, equal to −μim, does not depend on the value of qim(np).
This slope therefore allows us to identify μim, with no phase indeterminacy. Our
method for identifying the set of parameters μim associated to a column of B(ω)
therefore operates as follows. In the selected constant-time single-source analysis
zone, for each observed signal with index i, we consider the M points which have
two coordinates, resp. defined as the frequencies ωl and the corresponding values
φi(np, ωl) of the unwraped phase of the identification parameter. We determine
the least-mean square regression line associated to these points. The estimate of
the parameter μim is then set to the integer which is the closest to the opposite
of the slope of this regression line.

The overall identification stage consists in successively considering the anal-
ysis zones ordered according to increasing values of min {MVAR [|α|] (np, Ω) ,
MV AR [|β|] (np, Ω)}. For each such zone, the estimates of bim associated to a
column of B(ω) are set to the values of |αi|(np, Ω) or 1/|βi|(np, Ω), depend-
ing whether respectively the parameter MVAR [|α|] or MVAR [|β|] takes the
lowest value in this zone. A new column of bim is kept if its distance wrt.
each previously found column of bim is above a user-defined threshold ε1. If
a column of bim is identified and kept, the corresponding column of μim is si-
multaneously identified, by using regression lines in the same analysis zone as
explained above. The identification procedure ends when the number of columns
of B(ω) thus kept becomes equal to the specified number N of sources to be
separated.

4 Proposed Improved TIFROM Method for AD Mixtures

For N > 2 or when the time shifts μim are non-negligible wrt. to the length of
STFT windows in the case N = 2, the above basic method turned out to yield
false results in a significant number of experimental tests: on the one hand, we
obtained columns of scale coefficients which did not correspond to actual columns
of B(ω). On the other hand, we only achieved a coarse identification of the asso-
ciated time shifts. Both problems can be solved thanks to clustering techniques.
We now detail such an approach. In this approach, we form clusters of “points”
where each point consists of a tentative column of parameters bim. To this end,
we first compute the parameters MVAR [|α|] (np, Ω) and MVAR [|β|] (np, Ω)
for all analysis zones and we then only consider the zones which are such that

min {MVAR [|α|] (np, Ω),MV AR [|β|] (np, Ω)} ≤ ε2, (21)

where ε2 is a small positive user-defined threshold. We thus only keep single-
source zones, which correspond to the beginning of the ordered list created in
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the detection stage. We successively consider each of the first and subsequent
analysis zones in this beginning of the ordered list and we use them in a slightly
different way than in the basic identification procedure that we described above.
Here again, for each considered analysis zone, the estimates of the parameters
bim are set to the values of |αi|(np, Ω) or 1/|βi|(np, Ω), depending on which
of the parameters MVAR [|α|] and MVAR [|β|] takes the lowest value in this
zone. The estimated column associated to the first zone in the ordered list is
kept as the first point in the first cluster. Each subsequently estimated column
is then used as follows. We compute its distances wrt. all clusters created up
to this stage, where the distance wrt. a cluster is defined as the distance wrt.
the first point which was included in it. If such a distance is below a user-
defined threshold ε1, this new column is inserted as a new point in the cor-
responding cluster. Otherwise, this new column is kept as the first point of a
new cluster. This is repeated for all analysis zones which fulfill condition (21).
If the threshold ε1 is low enough, the number of clusters thus created is at least
equal to the specified number N of sources to be extracted. We then keep the
N clusters which contain the highest numbers of points. For each cluster, we
eventually derive a representative, by selecting its point which corresponds to
the lowest value of min {MVAR [|α|] (np, Ω),MV AR [|β|] (np, Ω)} and thus pre-
sumably to the best single-source zone. This yields the N columns of estimates
of bim.

We estimate the parameters μim as follows. Independently, for each of the
above N clusters of columns of bim, we first compute the parameters μim in the
same TF zones as these scale coefficients bim. We then derive the histograms of
these parameters μim, independently for each index i. We eventually keep the
peak value in each histogram as the estimate of μim.

5 Experimental Results

We now present tests performed with N = 2 sources of English speech signals
sampled at 20 kHz. These signals consist of 2.5 s of continuous speech from
different male speakers. The performance achieved in each test is measured by the
overall signal-to-interference-ratio (SIR) Improvement achieved by this system,
denoted SIRI below, and defined as the ratio of the output and input SIRs of
our BSS system. The mixing matrix is set to

A(ω) =
[

1 0.9 e−jω75

0.9 e−jω75 1

]
. (22)

The input SIR is thus equal to 0.9 dB. The number d of samples per STFT
window is varied geometrically from 1024 to 16384. The number M of windows
per analysis zone is set to 8 when d = 1024. This value of M is then increased
geometrically with d. Thus, the absolute width of the frequency bands associ-
ated to the frequency domain Ω of the analysis zones (np, Ω) takes the same value
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Table 1. Performance (SIRI in dB) for both methods vs STFT window size d.

Method STFT window size d
1024 2048 4096 8192 16384

Basic -2.8 14.8 6.2 26.8 invisible
Improved 20.2 14.8 23.9 26.8 invisible

whatever d. This value is 156.25 Hz. In each test, the temporal overlap between
STFT windows is fixed to 75%. The resulting SIRIs are given in Table 1.

The cluster-based method yields better or same results as the basic one. The
mean SIRIs are resp. equal to 11.2 and 24.3 dB with the basic and cluster-
based approaches. When d = 16384, one source is not visible in the TF plane.
Two results illustrate the usefulness of clustering techniques in our approaches:
when d = 1024, with the basic method, the Frobenius norm of the difference
between the actual and theoretical matrices of scales coefficients bim is equal to
1.3, while this norm is only equal to 5.4e-2 with the cluster-based approach. We
explain this phenomenon as follows: with the basic method, the parameters bim
were identified in analysis zones which were selected because they were at the
beginning of the ordered list created in the detection stage, but these identified
columns did not correspond to the actual (filtered permuted) mixing matrix,
so that the outputs of our BSS system did not provide well separated sources.
As only a few occurrences are obtained for each false column value, clustering
techniques solved this problem. The case when d = 4096 is interesting too:
we obtain the same matrix of scale coefficients with both methods (the above-
defined Frobenius norm is equal to 3.6e-2). The estimated values of time shifts
are equal to the theoretical ones with the cluster-based method, while we have
slight differences with the basic approach: the estimated time shifts are equal
to 74 and -76 while theoretical ones are ±75. This clearly demonstrates the
usefulness of clustering techniques.

6 Conclusion and Extensions

In this paper, we proposed two TF BSS methods for AD mixtures. They avoid the
restrictions of the DUET method, which needs the source to be (approximately)
W-disjoint orthogonal. Our methods consist in first finding the TF zones where
a source occurs alone and then, identifying in these zones the parameters of the
(filtered permuted) mixing matrix. Thanks to this principle, these approaches
apply to non-stationary sources, but also to stationary and/or dependent sources
(we could extend the discussion in [3] to AD mixtures), provided there exists at
least a tiny TF zone per source where this source occurs alone. We experimen-
tally showed the usefulness of clustering techniques in our methods. Our future
investigations will consist in a more detailed characterization of the experimental
performance of the proposed approaches. We will also aim at extending these
methods to general convolutive mixtures.
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Abstract. For blind source separation (BSS) of convolutive mixtures,
the frequency-domain approach is efficient and practical, because the
convolutive mixtures are modeled with instantaneous mixtures at each
frequency bin and simple instantaneous independent component analysis
(ICA) can be employed to separate the mixtures. However, the permu-
tation and scaling ambiguities of ICA solutions need to be aligned to
obtain proper time-domain separated signals. This paper discusses the
idea that calculating the inverses of separation matrices obtained by ICA
is very important as regards aligning these ambiguities. This paper also
shows the relationship between the ICA-based method and the time-
frequency masking method for BSS, which becomes clear by calculating
the inverses.

1 Introduction

With acoustical applications of blind source separation (BSS), such as solving
a cocktail party problem, signals are generally mixed in a convolutive manner
with reverberations. Let s1, . . . , sN be N source signals and x1, . . . , xM be M
sensor observations. Then, the convolutive mixture model is formulated as

xj(t) =
N∑
k=1

∑
l

hjk(l) sk(t− l), j=1, . . . ,M, (1)

where t represents time and hjk(l) represents the impulse response from source
k to sensor j. If we consider sounds mixed in a practical room situation, impulse
responses hjk(l) tend to have hundreds or thousands of taps even with an 8 kHz
sampling rate. This makes the convolutive BSS problem very difficult compared
with the BSS of simple instantaneous mixtures.

A practical approach for such convolutive mixtures is frequency-domain BSS
[1-10], where we apply a short-time Fourier transform (STFT) to the sensor
observations xj(t). Then, the convolutive model (1) can be approximated as an
instantaneous mixture model at each frequency:

xj(f, t) =
N∑
k=1

hjk(f)sk(f, t), j=1, . . . ,M, (2)

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 691–699, 2006.
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where f represents frequency, t is now down-sampled with the distance of the
frame shift, hjk(f) is the frequency response from source k to sensor j, and
sk(f, t) is a frequency-domain time-series signal of sk(t) obtained with an STFT.
The vector notation of (2) is

x(f, t) =
N∑
k=1

hk(f)sk(f, t), (3)

where x = [x1, . . . , xM ]T and hk = [h1k, . . . , hMk]T .
Once we assume instantaneous mixtures at each frequency, and also if the

number of sources N does not exceed the number of sensors M , we can ap-
ply standard instantaneous independent component analysis (ICA) [11] to the
mixtures x(f, t) to obtain separated frequency components:

y(f, t) = W(f)x(f, t), (4)

where y = [y1, . . . , yN ]T is the vector of separated frequency components and
W = [w1, . . . ,wN ]H is an N ×M separation matrix [1-6]. However, the ICA
solution has the permutation and scaling ambiguities. We need to align these
ambiguities to obtain proper time-domain separated signals.

Various studies have tried to solve these permutation and scaling problems
because they constitute a critical issue. Some of these studies have attempted
to solve the problems by using information obtained from (4), i.e the separation
matrix W and/or the separated signals y, or by imposing some constraints on
W. By contrast, we believe that the inverses of separation matrices W provide
useful information for solving these problems. The main topic of this paper is to
discuss the procedures for solving these problems by calculating the inverses.

There is also a frequency-domain BSS method that is based on time-frequency
(T-F) masking [7-10]. It does not employ a standard ICA to separate the mix-
tures, and can be applied even if the number of sources N exceeds the number
of sensors M . The method relies on the sparseness of source signals. It classifies
the mixtures x(f, t) based on spatial information extracted from them. As the
second topic of this paper, we show a link between the ICA-based method and
the T-F masking method. The link becomes clear once we have the decomposi-
tion (6) of mixtures by calculating the inverse of W. Based on the link, we see
that some of the techniques used in solving the permutation problem can also
be used for classifying the mixtures in the T-F masking method, and vice versa.

2 Calculating the Inverses of Separation Matrices

Figure 1 shows the flow of ICA-based frequency-domain BSS that we consider
in this paper. The inverse of separation matrix W is represented as

[a1, · · · ,aN ] = W−1, ai = [a1i, . . . , aMi]T , (5)
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which we call basis vectors obtained by ICA, because the mixture x(f, t) is
represented by their linear combination by multiplying W−1 and (4):

x(f, t) =
N∑
i=1

ai(f)yi(f, t). (6)

The basis vectors provide the key information with which to solve the permuta-
tion and scaling problems as shown in the following sections. If W is not square,
we use the Moore-Penrose pseudoinverse instead of the inverse. It is not difficult
to make W invertible by using an appropriate ICA procedure, such as whitening
followed by unitary transformation (e.g. FastICA [11]).

3 Solving the Permutation Problem

Various methods have been proposed for solving the permutation problem:

1. making the separation matrices W(f) smooth along frequencies f [1, 2],
2. maximizing the correlation of separated signal envelopes |yi| [3],
3. analyzing the directivity patterns calculated from W(f) [4],
4. manipulating basis vectors ai(f) [5, 6].

The third and fourth methods utilize the same information because W and ai
are related to each other through the inversion (5). However, the fourth method
is easier to apply when there are more than two sources [5, 6], because basis
vectors ai directly represent estimated mixing system information (6). This
section describes how to utilize this information for solving the permutation
problem.

3.1 Assumption and Basic Idea

If ICA works well, we obtain separated signals yi(f, t) that should be close to
source signals sk(f, t) up to the permutation and scaling ambiguities. If we com-
pare (3) and (6), we see that the basis vectors ai(f), which are obtained by ICA
and the subsequent inversion of W, should be close to the vectors hk(f), again,
up to the permutation and scaling ambiguities. The use of different subscripts,
i and k, indicates the permutation ambiguity.

STFT

ICA Inverse
Permutation 

& Scaling

ISTFT

Fig. 1. Flow of ICA-based frequency-domain BSS

Sensor

Source

Fig. 2. Direct-path
model
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The method presented here assumes a direct-path model (Fig. 2) for the vector
hk = [h1k, . . . , hMk]T , even though in reality signals are mixed in a multi-path
model (1). This simplified model is expressed in the frequency domain:

hjk(f) ≈ λjk · e−j 2πfτjk , (7)

where τjk and λjk ≥ 0 are the time delay and attenuation from source k to
sensor j, respectively. Since we cannot distinguish the phase (or amplitude) of
sk(f, t) and hjk(f), these two parameters can be considered to be relative (this
fact causes the scaling ambiguity). Thus, without loss of generality, we normalize
them and align the scaling ambiguity by

τjk = (djk − dJk)/c, (8)

∑M
j=1 λ

2
jk = 1, (9)

where djk is the distance from source k to sensor j (Fig. 2), and c is the propa-
gation velocity of the signal. Normalization (8) makes τJk = 0, i.e. the relative
time delay is zero at a reference sensor J .

By following the normalizations (8) and (9), the scaling ambiguity of basis
vectors ai is aligned by the operation

ai ←
ai
||ai||

e−j arg(aJi) (10)

which makes arg(aJi) = 0 and ||ai|| = 1. Now, the task as regards the permuta-
tion problem is to determine a permutation Πf that relates the subscript i and
k with i = Πf (k), and to estimate parameters τjk, λjk that make the model (7)
match the aji(f) element of a basis vector. This can be formulated so as to find
Πf , τjk and λjk that minimize the cost function:

J =
∑
f∈F

N∑
k=1

M∑
j=1

|aji(f)− λjk · e−j 2πfτjk |2, i = Πf (k), (11)

where F is the set of frequencies that we have to consider.

3.2 Clustering Frequency-Normalized Basis Vectors

If we consider the frequency range where spatial aliasing does not occur:

F = {f : −π < 2πfτjk < π, ∀j, k} (12)

we can introduce the frequency normalization technique [6] to minimize the cost
function (11). Let dmax be the maximum distance between the reference sensor
J and any other sensor. Then the relative time delay is bounded by

max
jk
|τjk| ≤ dmax/c (13)
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and therefore the frequency range F can be expressed with

F = {f : 0 < f <
c

2dmax
} . (14)

The frequency normalization technique [6] removes frequency dependence from
the elements of scale-normalized basis vectors (10):

āji(f)← |aji(f)| exp
[
j
arg[aji(f)]
4fc−1dmax

]
. (15)

The rationale of dividing the argument by 4fc−1dmax is discussed in [6]. With
this operation, the cost function (11) is converted to

J̄ =
∑
f∈F

N∑
k=1

M∑
j=1

|āji(f)− h̄jk|2, i = Πf (k) (16)

where
h̄jk = λjk · exp[−j π

2
· c · τjk
dmax

] (17)

is a frequency-normalized model. In a vector notation

J̄ =
∑
f∈F

N∑
k=1

||āi(f)− h̄k||2, i = Πf (k), (18)

where āi = [ā1i, . . . , āMi]T and h̄k = [h̄1k, . . . , h̄Mk]T . Because the model h̄k
do not depend on frequency, J̄ can be minimized efficiently by a clustering
algorithm that iterates the following two updates until convergence:

Πf ← argminΠ
N∑
k=1

||āΠ(k)(f)− h̄k||2 , for each f ∈ F , (19)

h̄k ←
∑
f∈F

āΠf (k)(f), h̄k ← h̄k/||h̄k|| , for each k = 1, . . . , N . (20)

The first update (19) optimizes the permutation Πf for each frequency f with
the current model h̄k. The second update (20) calculates the most probable
model h̄k with the current permutations. This set of updates is very similar to
that of the k-means algorithm [12].

After the algorithmhas converged, the permutation ambiguity in each frequency
bin is aligned by

ak(f)← aΠf (k)(f), yk(f, t)← yΠf (k)(f, t), k = 1, . . . , N. (21)

In addition to aligning the permutations, the method estimates the model
parameters by

τjk = − 2
π
· dmax

c
arg(h̄jk), λjk = |h̄jk| . (22)

From these parameters and sensor array geometry, we can perform source
localization, such as direction-of-arrival (DOA) estimation.
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4 Solving the Scaling Problem

The ultimate goal as regards the scaling problem is to recover each source sk(t),
i.e. multichannel blind deconvolution. However, this is very difficult with colored
source signals, such as speech. A feasible goal [13, 14] is simply to recover the
observation of each source k at a reference sensor J∑

l hJk(l) sk(t− l) . (23)

If we consider the frequency-domain counterpart of the above discussion, there
is no practical way to recover the amplitude and phase of sk(f, t) blindly, but
there is a feasible way to recover those of

hJk(f)sk(f, t) (24)

instead [3, 13]. We use this criterion for the scaling problem.
Calculating the inverse (5) and obtaining the linear combination form (6) of

x(f, t) provides an instant solution to the scaling problem. If ICA works well and
the permutation ambiguity is solved, we obtain separated signals yk(f, t) that
should be close to source signals sk(f, t), now only up to the scaling ambiguity. If
we compare (3) and (6), we see that ak(f)yk(f, t) should be close to hk(f)sk(f, t)
and therefore aJk(f)yk(f, t) should be close to hJk(f)sk(f, t). Thus the scaling
alignment can be performed simply by

yk(f, t)← aJk(f)yk(f, t) . (25)

In other words, there is no scaling ambiguity to be considered in (6) if we do not
discriminate between ai(f) and yi(f, t).

5 A Link to the Time-Frequency Masking Method

This section reveals a link between the ICA-based method and the time-
frequency (T-F) masking method. The link becomes clear by the linear com-
bination form (6) of x(f, t) obtained by the inverse (5) of the ICA separation
matrix W(f).

Let us explain the T-F masking method, in which we assume the sparseness
of source signals, i.e. at most only one source is active for each time-frequency
slot (f, t). Based on this assumption, the mixture model (3) can be simplified as

x(f, t) = hk(f)sk(f, t), k ∈ {1, . . . , N}. (26)

where k depends on each time-frequency slot (f, t). Then, the method classi-
fies the observation vectors x(f, t), ∀f, t into N clusters C1, . . . , CN so that the
k-th cluster contains observation vectors in which the k-th source is the only ac-
tive source. After the classification, time domain separated signals yk(t) are ob-
tained by applying an inverse STFT (ISTFT) to the following classified frequency
components

yk(f, t) =

{
xJ(f, t) x(f, t) ∈ Ck,

0 otherwise.
(27)
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In the classification, the spatial information expressed in x(f, t) is extracted
and used. Typically, the phase difference normalized with frequency and/or the
amplitude difference between two sensors:

arg[x2(f, t)/x1(f, t)]
2πf

and/or
∣∣∣∣x2(f, t)
x1(f, t)

∣∣∣∣ (28)

are calculated for the classification [7-9]. However, these papers presented only
cases with two sensors. Recently, we proposed a new technique for using all the
information of more than two sensors [10]. The technique used there is similar
to that presented in Sec. 3. Thus, we consider that various techniques for clas-
sifying observation vectors x(f, t) in the T-F masking method can be used to
classify basis vectors ai(f, t) for solving the permutation problem in the ICA-
based method, and vice versa.

Let us discuss this relationship in the following. If the sparseness assumption
is satisfied, the linear combination form (6) obtained by ICA is reduced to

x(f, t) = ai(f)yi(f, t), i ∈ {1, . . . , N}. (29)

where i depends on each time-frequency slot (f, t). If we compare (26) and (29),
we see that hk(f)sk(f, t) should be close to ai(f)yi(f, t) for each time-frequency
slot (f, t). Thus, the spatial information expressed in observation vectors x(f, t)
with the sparseness assumption (26) is the same as that of basis vectors ai(f, t) up
to the scaling ambiguity. Therefore, we can use the same techniques for extracting
spatial information from observation vectors x(f, t) and basis vectors ai(f, t).

The normalization formulas (10) and (15) and the clustering procedure of
(19) and (20) can be used not only for the ICA-based method but also the T-F
masking method. Of course, we need to replace ai(f) with x(f, t) and modify
(19) for a standard clustering algorithm such as the k-means algorithm [12].
Figure 3 shows the flows of both methods in accordance with this idea.

STFT ICA Permutation ISTFT

Normalize
& cluster

STFT T-F masking ISTFT

Normalize
& cluster

Basis vectors

Observation vectors

Fig. 3. Flows of ICA-based method (above) and time-frequency (T-F) masking method
(below)
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6 Experimental Results

We have performed experiments with the conditions shown in Fig. 4. We used
16 combinations of three speeches to evaluate the separation performance. The
system did not have to know the sensor geometry for solving the permutation
problem, but just the maximum distance dmax = 4 cm between the reference
sensor and any other sensor. The computational time was less than 3 seconds
for 3-second speech mixtures, meaning that real-time processing was possible.

4cm 3.2cm

4cm

0.8m

0.8m
1m

a

b

c

1m 
height

1.35m 
height

1.35m 
height

Room size: 
4.45 m × 3.55 m × 2.50 m

Reverberation time: 
130 ms

Sampling rate: 
8000 Hz

Sources: 
3-second speeches

STFT frame: 
size = 128 ms
shift = 32 ms

Fig. 4. Experimental conditions
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Fig. 5. Separation performance

Figure 5 shows the average signal-to-interference ratio (SIR) and signal-to-
distortion ratio (SDR), whose detailed definitions can be found in [10]. Basically,
the SIR indicates how well the mixtures are separated into the sources, and
the SDR indicates how close each separated signal is to the observation of the
corresponding source at the reference sensor. Since the number of sensors was
sufficient for the number of sources in this case, ICA-based method worked better
than T-F masking as shown in Fig. 5. We have also already obtained results with
another setup where the number of sensors was insufficient (N = 4,M = 3) and
the T-F masking method still worked [10].

7 Conclusion

In the ICA-based frequency-domain BSS, the permutation and scaling ambiguity
of the ICA solution should be aligned. Once we have the form (6) by calculating
the inverses of ICA separation matrices W, the scaling ambiguity does not have
to be considered. To align the permutation ambiguity, we can exploit the mixing
system information represented in basis vectors ai, as Sec. 3 presents an efficient
method. The form (6) clarifies the relationship between the ICA-based method
and the T-F masking method. The same technique as that presented in Sec. 3
can be used in the T-F masking method for clustering observations x(f, t) and
extracting the mixing system information.
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Abstract. We present a novel method for blind separation of instru-
ments in single channel polyphonic music based on a non-negative ma-
trix factor 2-D deconvolution algorithm. The method is an extention
of NMFD recently introduced by Smaragdis [1]. Using a model which
is convolutive in both time and frequency we factorize a spectrogram
representation of music into components corresponding to individual in-
struments. Based on this factorization we separate the instruments us-
ing spectrogram masking. The proposed algorithm has applications in
computational auditory scene analysis, music information retrieval, and
automatic music transcription.

1 Introduction

The separation of multiple sound sources from a single channel recording is a
difficult problem which has been extensively addressed in the literature. Many
of the proposed methods are based on matrix decompositions of a spectrogram
representation of the sound. The basic idea is to represent the sources by different
frequency signatures which vary in intensity over time.

Non-negative matrix factorization (NMF) [2, 3] has proven a very useful tool
in a variety of signal processing fields. NMF gives a sparse (or parts-based) de-
composition [3] and under certain conditions the decomposition is unique [4]
making it unnecessary to impose constraints in the form of orthogonality or in-
dependence. Efficient algorithms for computing the NMF have been introduced
by Lee and Seung [5]. NMF has a variety of applications in music signal process-
ing; recently, Helén and Virtanen [6] described a method for separating drums
from polyphonic music using NMF and Smaragdis and Brown [7] used NMF for
automatic transcription of polyphonic music.

When polyphonic music is modelled by factorizing a magnitude spectrogram
with NMF, each instrument note is modelled by an instantaneous frequency
signature which can vary over time. Smaragdis [1] introduced an extension to
NMF, namely the non-negative matrix factor deconvolution (NMFD) algorithm,
in which each instrument note is modelled by a time-frequency signature which
varies in intensity over time. Thus, the model can represent components with

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 700–707, 2006.
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temporal structure. Smaragdis showed how this can be used to separate indi-
vidual drums from a real recording of drum sounds. This approach was further
pursued by Wang and Plumbley [8] who separated mixtures of different musi-
cal instruments. Virtanen [9] presented an algorithm based on similar ideas and
evaluated its performance by separating mixtures of harmonic sounds.

In this paper, we propose a new method to factorize a log-frequency spec-
trogram using a model which can represent both temporal structure and the
pitch change which occurs when an instrument plays different notes. We de-
note this the non-negative matrix factor 2-D deconvolution (NMF2D). We use
a log-frequency spectrogram because a pitch change in a log-frequency domain
simply corresponds to a displacement on the frequency axis, whereas in a linear-
frequency domain a pitch change would also change the distance between the
harmonics. Where previous methods need one component to model each note for
each instrument, the proposed model represents each instrument compactly by
a single time-frequency profile convolved in both time and frequency by a time-
pitch weight matrix. This model impressively decreases the number of compo-
nents needed to model various instruments and effectively solves the blind single
channel source separation problem for certain classes of musical signals. In sec-
tion 2 we introduce the NMF2D model and derive the update equations for
recursively computing the factorization based on two different cost functions. In
section 3 we show how the algorithm can be used to analyze and separate poly-
phonic music and we compare the algorithm to the NMFD method of Smaragdis
[1]. This is followed by a discussion of the results.

2 Method

We start by recalling the non-negative matrix factorization (NMF) problem:
V ≈ WH, where V, W, and H are non-negative matrices. The task is find
factors W and H which approximate V as well as possible according to some
cost function. Lee and Seung [5] devise two algorithms to find W and H: For the
least squares error and the KL divergence they show that the following recursive
updates converge to a local minimum:

Least squares error : W←W • VHT

WHHT , H← H • WT V
WT WH

,

KL divergence : W←W •
V

WH
HT

1·HT , H← H •
WT V

WH

WT ·1 ,

where A • B denotes element-wise multiplication, A
B

denotes element-wise divi-
sion, and 1 is a matrix with all elements unity. These algorithms can be derived
by minimizing the cost function using gradient descent and choosing the stepsize
appropriately to yield simple multiplicative updates.

2.1 NMF2D

We extend the NMF model to be a 2-dimensional convolution of Wτ which
depends on time, τ , and Hφ which depends on pitch, φ. This forms the non-
negative matrix factor 2-D deconvolution (NMF2D) model:



702 M.N. Schmidt and M. Mørup

V ≈ Λ =
∑
τ

∑
φ

↓φ
Wτ

→τ
Hφ, (1)

where ↓ φ denotes the downward shift operator which moves each element in the
matrix φ rows down, and→ τ denotes the right shift operator which moves each
element in the matrix τ columns to the right, i.e.:

A =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ ,
↓2
A=

⎛⎝0 0 0
0 0 0
1 2 3

⎞⎠ ,
→1
A=

⎛⎝0 1 2
0 4 5
0 7 8

⎞⎠ .

We note that the NMFD model introduced by Smaragdis [1] is a special case of
the NMF2D model where φ = {0}.

The NMF2D model can be used to factorize a log-frequency magnitude spec-
trogram of polyphonic music into factors corresponding to individual instru-
ments: If the matrix V is a log-frequency spectrogram representation of a piece
of polyphonic music, the columns of Wτ correspond to the time-frequency sig-
nature of each instrument, and the rows of Hφ correspond to the time-pitch
signature of each instrument, i.e. which notes are played by the instrument at
what time. In other words, the convolution in time, τ , accounts for the temporal
structure of each instrument, and the convolution in pitch, φ, accounts for each
instrument playing different tones.

2.2 Least Squares NMF2D

We now derive a set of recursive update steps for computing Wτ and Hφ based
on gradient descent with multiplicative updates. We consider the least squares
(LS) cost function which corresponds to maximizing the likelihood of a gaussian
noise model:

CLS = ||V −Λ||2f =
∑
i

∑
j

(Vi,j −Λi,j)2. (2)

A given element in Λ, defined in equation (1), is given by:

Λi,j =
∑
τ

∑
φ

∑
d

Wτ
i−φ,dH

φ
d,j−τ . (3)

In the following we will need the derivative of a given element Λi,j with respect
to a given element Wτ

k,d:

∂Λi,j
∂Wτ

k,d

=
∂

∂Wτ
k,d

⎛⎝∑
τ

∑
φ

∑
d

Wτ
i−φ,dH

φ
d,j−τ

⎞⎠ (4)

=
∂

∂Wτ
k,d

⎛⎝∑
φ

Wτ
i−φ,dH

φ
d,j−τ

⎞⎠ (5)

=
{

Hφ
d,j−τ φ = i− k

0 otherwise.
(6)
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Differentiating CLS with respect to a given element in Wτ gives:
∂CLS
∂Wτ

k,d

=
∂

∂Wτ
k,d

∑
i

∑
j

(Vi,j −Λi,j)2 (7)

= −2
∑
i

∑
j

(Vi,j −Λi,j)
∂Λi,j
∂Wτ

k,d

(8)

= −2
∑
φ

∑
j

(Vφ+k,j −Λφ+k,j)H
φ
d,j−τ . (9)

The recursive update steps for the gradient descent are given by:

Wτ
k,d ←Wτ

k,d − η
∂CLS
∂Wτ

k,d

. (10)

Similar to the approach of Lee and Seung [5], we choose the step size η so that
the first term in (10) is canceled:

η =
Wτ
k,d

−2
∑
φ

∑
j Λφ+k,jH

φ
d,j−τ

, (11)

which gives us the following simple multiplicative updates:

Wτ
k,d ←Wτ

k,d

∑
φ

∑
j Vφ+k,jH

φ
d,j−τ∑

φ

∑
j Λφ+k,jH

φ
d,j−τ

. (12)

By noticing that transposing equation (1) interchanges the order of Wτ and Hφ

in the model, the updates for Hφ can easily be found. In matrix notation the
updates can be written as:

Wτ ←Wτ •
∑
φ

↑φ
V

→τ
Hφ

T

∑
φ

↑φ
Λ

→τ
Hφ

T
Hφ ← Hφ •

∑
τ

↓φ
Wτ

T←τ
V

∑
τ

↓φ
Wτ

T←τ
Λ

. (13)

2.3 Kullback-Leibler NMF2D

We can also find similar equations for computing the NMF2D based on the
Kullback-Leibler (KL) divergence:

CKL =
∑
i

∑
j

Vi,j log
Vi,j

Λi,j
−Vi,j + Λi,j . (14)

Minimizing the KL divergence corresponds to assuming a multinomial noise
model. By taking similar steps as in the derivation of the LS updates we find
the following recursive updates for the KL cost function:

Wτ ←Wτ •
∑
φ

↑φ(V
Λ

) →τ
Hφ

T

∑
φ 1·

→τ
Hφ

T
Hφ ← Hφ •

∑
τ

↓φ
Wτ

T ←τ(V
Λ

)
∑
τ

↓φ
Wτ

T

·1

. (15)
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3 Experimental Results

In order to demonstrate our NMF2D algorithm, we have analyzed a 4 second
piece of computer generated polyphonic music containing a trumpet and a piano.
For comparison we have also analyzed the same piece of music by the NMFD
algorithm [1]. For both algorithms we used the least squares cost function. The
score of the piece of music is shown in Fig. 1. The trumpet and the piano play
a different short melodic passage each consisting of three distinct notes. We
generated the music at a sample rate of 16 kHz and analyzed it by the short
time Fourier transform with a 2048 point Hanning windowed FFT and 50%
overlap. This gave us 63 FFT frames. We grouped the spectrogram bins into
175 logarithmically spaced frequency bins in the range of 50 Hz to 8 kHz with
24 bins per octave, which correponds to twice the resolution of the equal tem-
pered musical scale. Then, we performed the NMF2D and NMFD factorization
of the log-frequency magnitude spectrogram. The parameters of the two mod-
els were selected so that both methods were able to model the music almost
perfectly:

For the NMF2D we used two factors, d = 2, since we seek to separate
two instruments. The NMF2D method requires at least as many factors as the
number of individual instruments. We empirically chose to use seven convolutive
components in time, τ = {0, . . . , 6}, corresponding to approximatly 45 ms, which
we found to capture the temporal structure of the instruments well. The pitch
of the notes played in the music span three whole notes. Consequently, we chose
to use 12 convolutive components in pitch, i.e. φ = {0, . . . , 11}.

For the NMFD we used six factors, d = 6, corresponding to the total
number of different tones played by the two instruments. The NMFD method
requires at least as many factors as the number of distinctive instrument notes.
Similar to the experiment with NMF2D we used seven convolutive components
in time. For the experiment with NMFD we used our formulation of the NMF2D
algorithm with φ = {0}, since the NMFD is a special case of the NMF2D
algorithm.

The results of the experiments with NMFD and NMF2D are shown in Fig. 2
and Fig. 3 respectively. As we expected, the NMFD algorithm factorized each
individual note from each instrument into a separate component, whereas the
NMF2D algorithm factorized each instrument into a separate component.

We used the NMF2D factorization to reconstruct the individual instruments
separately. First, we reconstructed the spectrogram of each individual instrument

Piano

Trumpet

G
G

ˇ ˇ ˇˇ ˇ ˇ
ˇ ÃÃˇ ˇ

ČČ̌ˇ ˇ
ČČ̌ˇ

Fig. 1. Score of the piece of music used in the experiments. The music consists of
a trumpet and a piano which play different short melodic passages each consisting of
three distinct notes.
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Fig. 2. Factorization of the piece of music using NMFD. The six time-frequency plots
on the left are Wτ for each factor, i.e. the time-frequency signature of the distincts tone
played by the two instruments. The six plots on the top are the rows of H showing how the
individual instrument notes are placed in time. The factors have been manually sorted so
that the first three corresponds to the trumpet and the last three correspond to the piano.
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Fig. 3. Factorization of the piece of music using NMF2D. The two time-frequency
plots on the left are Wτ for each factor, i.e. the time-frequency signature of the two
instruments. The two time-pitch plots on the top are Hφ for each factor showing how
the two instrument notes are placed in time and pitch.
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Fig. 4. Single channel source separation using NMF2D. The plots show the log-
frequency spectrogram and the waveform of the music and the separated instruments.
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by computing equation (3) for each specific value of d. These reconstructed spec-
trograms could be used directly to reconstruct the instruments, but since the log-
frequency spectrograms are computed with a relatively low frequency resolution
we reconstructed the signals using spectrogram masking: We mapped the recon-
structed log-frequency spectrograms back into the linear-frequency spectrogram
domain and computed a spectrogram mask for each instrument which assigned
each spectrogram bin to the instrument with the highest power at that bin. We
filtered the original spectrogram based on the masks, and computed the inverse
filtered spectrogram using the original phase. The separation of the two instru-
ments in the music is shown in Fig. 4. Informal listening test indicated, that the
NMF2D algorithm was able to separate the two instruments very well.

4 Discussion

In the previous section we compared the proposed NMF2D algorithm with
NMFD. Both the NMF2D and the NMFD algorithm can be used to separate
the instruments in polyphonic music. However, since in NMFD the notes of the
individual instruments are spread over a number of factors, these must first be
grouped manually or by other means. The advantage of the NMF2D algorithm
is, that it implicitly solves the problem of grouping notes.

If the assumption holds, that all notes for an instrument is an identical
pitch shifted time-frequency signature, the NMF2D model will give better esti-
mates of these signatures, because more examples (different notes) are used to
compute each time-frequency signature. Even when this assumption does not
hold, it migth still hold in a region of notes for an instrument. Furthermore,
the NMF2D algorithm might be able to explain the spectral differences be-
tween two notes of different pitch by the 2-D convolution of the time-frequency
signature.

Both the NMFD and NMF2D models almost perfectly explained the variation
in the spectrogram. However, the number of free parameters in the two models
is quite different. If the dimensionality of the spectrogram is I × J , and nτ , nφ
denote the number of convolutive lags in time and pitch, NMFD has (nτI + J) ·
d = (7 · 175 + 63) · 6 = 7728 parameters whereas NMF2D has (nτI + nφJ) · d =
(7 · 175 + 12 · 63) · 2 = 3962 parameters. Consequently, the NMF2D was more
restricted making the NMF2D the best model from an Occam’s razor point
of view.

Admittedly, the simple computer generated piece of music analyzed in this
paper favors the NMF2D algorithm since each instrument key is almost a simple
spectral shift of the same time-frequency signature. However, when we analyze
real music signals the NMF2D also gives very good results. Demonstrations of the
algorithm for different music signals can be found at www.intelligentsound.org.

It is worth noting, that while we had problems making the NMFD algorithm
converge in some situations when using the updates given by Smaragdis [1], the
updates devised in this paper to our knowledge always converge.
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In the experiments above we used the NMF2D based on least squares. How-
ever, using the algorithm based on minimizing the KL divergence gave similar
results. It is also worth mentioning that the NMF2D analysis is computationally
inexpensive; the results in the previous section took approximatly 20 seconds to
compute on a 2 GHz Pentium 4 computer.

It is our belief that the NMF2D algorithm can be useful in a wide range of ar-
eas including computational auditory scene analysis, music information retrieval,
audio coding, automatic music transcription, and image analysis.
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Abstract. It is well known that the non-stationary noise is the most difficult to be 
removed in speech enhancement. In this paper a novel speech enhancement al-
gorithm based on the empirical mode decomposition (EMD) and then ICA is 
proposed to suppress the non-stationary noise. The noisy speech is decomposed 
into components by the EMD and ICA-based vector space, and the components 
are processed and reconstructed, respectively, by distinguishing between voiced 
speech and unvoiced speech. There are no requirements of noise whitening and 
SNR pre-calculating. Experiments show that the proposed method performs well 
suppressing of the non-stationary noise in short-wave channel for speech  
enhancement. 

1   Introduction 

In short-wave channel communication there is a great deal of interferential noise ex-
isting in the surrounding environment, transmitting media, electronic communication 
device and other speakers’ sound, etc. common in most practical situations. In general, 
the addition of noise reduces intelligibility and degrades the performance of digital 
voice processors used for applications such as speech compression and recognition. 
Therefore, the problem of removing the uncorrelated noise component from the noisy 
speech signal, i.e., speech enhancement, has received considerable attention. In speech 
communication over the short-wave channel the purpose is to elevate the objective 
quality of speech signal and the intelligibility of noisy speech in order to reduce the 
listener fatigue. There have been numerous studies on the enhancement of the noisy 
speech signal. Many different types of speech enhancement algorithms have been 
proposed and tested [1 4, 6]. Spectral subtraction is a traditional method of speech 
enhancement [6]. The major drawback of this method is the remaining musical noise. 
Additionally a drawback of speech enhancement methods is the distortion of the useful 
signal. The resolution is the compromise between signal distortion and residual noise. 
Though this problem is well known, the study results indicate that both of these cannot 
be minimized simultaneously. Minimum mean square error (MMSE) [3] estimates on 
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speech spectrum have been proposed. And Ephraimand Van Trees proposed a sig-
nal-subspace-based spectral domain algorithm, which controls the energy of residual 
noise in a certain threshold while minimizing the signal distortion. Hence the prob-
ability of noise perception can be minimized. The drawback of this method is that it 
deals only with white noise. EMD theory is the newly developed time–frequency 
analysis technology and is especially of interest in non-stationary signals such as water, 
sonar, seismic signal, etc [7-10]. 

In this paper we use EMD technique to produce an observed signal matrix from 
single short-wave channel signal. And then based on ICA the observed signal matrix 
was decomposed into signal subspace and noise subspace. Reconstruct speech signal 
using signal subspace to achieve speech enhancement. 

2   Empirical Mode Decomposition 

The empirical mode decomposition(EMD) was first introduced by Huang et al. [8]. The 

principle of this technique is to decompose adaptively a given signal )(tx into oscil-

lating components. These components are called intrinsic mode functions (IMFs) and 

are obtained from the signal x  by means of an algorithm, called sifting. It is a fully data 

driven method. 

The algorithm to create IMFs is elegant and simple. Firstly, the local extremes in the 

time series data )(tX are identified, and then all the local maxims are connected by a 

cubic spline line )(tU X , known as the upper envelope of the data set. Then, we repeat 

the procedure for the local minima to produce the lower envelope, )(tLX . 

Their mean )(1 tm is given by: 

2

)()(
)(1

tUtL
tm XX +=  (1) 

It is a running mean. We note that both envelopes should cover by construction all 
the data between them. 

Then we subtract the running mean )(1 tm , from the original data )(tX , and we get 

the first component, )(1 th , i.e.: 

)()()( 11 tmtXth −=  (2) 

To check if )(1 th  is an IMF, we demand the following conditions: (i) )(1 th  should be 

free of riding waves i.e. the. Rest component should not display under-shots or 

over-shots riding on the data and producing local extremes without zero crossing. (ii) 

To display symmetry of the upper and lower envelops with respect to zero. (iii) Ob-

viously the number of zero crossing and extremes should be the same in both functions. 
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The sifting process has to be repeated as many times as it is required to reduce the 

extracted signal to an IMF. In the subsequent sifting process steps, )(1 th  is treated as 

the data; then: 

)()()( 11111 tmthth −=  (3) 

If the function )(11 th , does not satisfy criteria (i)–(iii), then the sifting process  

continues up to k times, h1k, until some acceptable tolerance is reached: 

)()()( 1)1(11 tmthth kkk −= −  (4) 

The resulting time series is the first IMF, and then it is designated as khtC 11 )( =  the 

first IMF component from the data contains the highest oscillation frequencies found in 

the original data )(tX . 

The first IMF is subtracted from the original data, and this difference, is called a 

residue )(1 tr  by: 

)()()( 11 tCtXtr −=  (5) 

The residue )(1 tr is taken as if it was the original data and we apply to it again the sifting 

process. The process of finding more intrinsic modes )(tC j  continues until the last 

mode is found. The final residue will be a constant or a monotonic function; in this last 

case it will be the general trend of the data. 

+=
=

n

j
nj trtCtX

1
)()()(  (6) 

Thus, one achieves a decomposition of the data into n-empirical IMF modes, plus a 

residue, )(trn , which can be either the mean trend or a constant. We must point out that 

this method do not requires a mean or zero reference, and only needs the locations of 

the local extremes. 

3   Speech Enhancement Based on ICA 

3.1   Infomax Algorithm 

Informax algorithm is to maximize the network entropy. The network entropy was 
defined as the inter-information between input and output. 

)()()( XYYXY, HHI −=  (7) 
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And then  

Y

YH

W

XYI

∂
∂=

∂
∂ )(),(

 (8) 

If the relationship between the input and the output is )tanh(WXY = ,and then  

[ ] TT XWXWW )tanh(2
1

−=Δ
−

 
(9) 

To fast convergence and simply computation, the left of the equation (9) was multiplied 

by WW T . 

WWXWXWW T ]))(tanh(2[ −∝Δ  (10) 

So it can be used using natural grade method to solve the optimization problem in 

equation (9). 

3.2   De-noising Method  

Firstly using the EMD method to form the observed data )(tCi . And then using ICA 

decomposes the observed space )(tCi  into signal subspace and noise subspace. So we 

can reconstruct speech signal using signal subspace. 

4   Experiments and Analysis 

4.1   The Source of Experiment Data 

The experiment data come from two parts. The first one is standard noise database 
and speech database. It is used to test the proposed method using different noise types 
and different SNRs. The second come from real short-wave speech signal records on 
the spot. 

4.2   The Results of Experiments and Analysis 

Using the noise database NOISEX92, add different type noise to the same pure speech 
signal. The SNR is 5dB. The enhanced SNR  shown in table 1. Because the different of 
noise, the enhancement effect are different.  From the table 1, we can see the proposed 
method can effectively reduce the pink and white noise.   

The second database comes from the real records on the spot, which include many 
kinds of languages such as China, English, Japanese, Russian and so on. Each signal 
length of 8 frequency bands is 5 minutes, and the sample rate is 11025Hz. And the es-
timated SNR is 0.Two methods are used to test. The first one is the proposed method, 
and the other is the classical method spectral subtraction. 
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Table 1. The enhancement results of diffrent noise with different SNR 

Noise Pink Factory Airforce Babble White 

–5 3.1 1.7 1.3 –1.2 5.2 

0 9.2 5.4 4.5 2.5 12.7 

5 15.2 11.9 11.2 8.2 18.0 

Table 2. The tests result of real short-wave speech signal 

Frequency 
band Proposed method SS 

1 5.2 3.1 
2 8.6 6.3 
3 7.2 8.2 
4 10 9.1 
5 9.7 6.2 
6 3.2 5.3 
7 11.4 10.1 
8 5.9 6.2 

From table 2 we can see the proposed method can efficiently remove the noise. Because 
the different noise in different frequency band, the effects of enhancement are different 
also. In some band the enhancement effects of the proposed method are over performed 
the traditional method SS. And in the other frequency band the enhancement effects 
almost equal to the method SS. But it is worth to point out that not like SS the proposed 
method didn’t produce music noise.  

5   Conclusions 

In this paper, a novel method for speech enhancement was proposed. Using EMD to 
form an observed data matrix. The ICA can decompose the matrix into signal subspace 
and noise subspace. The primary experiments show that the proposed method can  
efficiently remove the non-stationary noise. It is important for the short-wave com-
munication, because it can elevate the objective quality of speech signal and the  
intelligibility of noisy speech in order to reduce the listener fatigue. 
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Abstract. Oligonucleotide Microarrays are useful tools in Genetic Research as 
they provide parallel scanning mechanisms to detect the presence of genes us-
ing test probes composed of controlled segments of gene code built by masking 
techniques. The detection of each gene depends on the multichannel differential 
expression of perfectly matched segments (PM) against mismatched ones 
(MM). This methodology, devised to robustify the detection process poses 
some interesting problems under the point of view of Genomic Signal Process-
ing, as test probe expressions are not in good agreement with the proportionality 
assumption in most of the genes explored. These cases may be influenced by 
unexpected hybridization dynamics, and are worth of being studied with a dou-
ble objective: gain insight into hybridization dynamics in microarrays, and to 
improve microarray production and processing as well. Recently Independent 
Component Analysis has been proposed to process microarrays. This promising 
technique requires the pre-processing of the microarray contents. The present 
work proposes the de-correlation of test probes based on probe structure rather 
than the classical “blind” whitening techniques currently used in ICA. Results 
confirm that this methodology may provide the correct alignment of the PM-
MM pairs maintaining the underlying information present in the probe sets.     

1   Introduction 

The development of new techniques in Genetic Expression Microarrays has experi-
enced a great push forward in the recent years. Microarray techniques have been suc-
cessfully applied to almost every aspect of biomedical research because they open the 
possibility to do massive tests on genome patterns [10], [11]. DNA microarrays make 
use of the hybridization properties of nucleic acids to monitor DNA or RNA abun-
dance on a genomic scale. Nevertheless there are several factors which render this 
methodology subject to further improvements regarding reliability: 

• The dynamics of the hybridization process underlying genomic expression is 
complex as thermodynamic factors affecting molecular interaction are pre-
sent and their influence must be taken into account. 

• The microtechniques used in producing microarrays are not 100% reliable, 
and the results are corrupted by different kinds of noise, errors and crosstalk. 

• Microarray scanning to images is prone to distortion and noise corruption. 
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• The quality of the data available in the microarrays depend on how the ex-
perts in Genetics have conceived the process of gene testing (how mRNA 
has been segmented and deployed in the tests). 

Preprocessing to detect the presence of undesired or uncontrolled effects on expres-
sion data can be afforded from a wider point of view using ICA based on Higher 
Order Statistics (HOS) using well-known algorithms [9], like FastICA. In this paper a 
whitening technique based in the de-correlation of test probes (Perfect Match from 
MisMatch probe pairs) is proposed. The paper focuses in modeling the hybridization 
process under a dynamical point of view. The next sections concentrate in the applica-
tion of classical FastICA to data from the Latin Square Database [8], followed by 
conclusions drawn from this study.  

2   Detection of Gene Expression Levels in Microarrays  

The main types of tests using gene expression microarrays are serial analysis of gene 
expression (SAGE) [1], short oligonucleotide arrays [2], and spotted cDNA arrays 
[3]. The present paper is concentrated in the second type where hundreds of thou-
sands of oligonucleotides are synthesized in situ on small glass chips by means of 
photochemical reaction and mask technology. Each gene or portion of a gene is rep-
resented by 11 to 20 test pairs of 25 oligonucleotides each. One of the samples in 
each pair is a complementary replica of the segment to be matched (Perfect Match – 
PM), where the other sample has been altered changing one of the central bases by its 
complementary, composing a mismatch (MM) probe. The difference in hybridization  
between the probes in the pairs, as well as their intensity ratios, mark specific target 
sequences. Differential estimation algorithms as MAS 4.0 and 5.0, MBEI or RMA 
[4], [5], [6] evaluate the expression signal for the probe set. In the present work a 
simple model of the hybridization process reliability is used, stating that the amounts 

of hybridized material for the perfect ( p
k,ix ) and mismatch ( m

k,ix ) probe pairs k corre-

sponding to gene i may be given as 
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),,( , yxs kiρ  being the surface density of segment k in gene i for point (x,y) and 
)|( ,,

p
kikit zsp  and )|( ,,

m
kikit zsp  the respective hybridization probabilities for segment 

k,is on the test segments p
k,iz  (for PM) and m

k,iz  (for MM), t being time. Assuming that 
hybridization thermodynamics are the same, probabilities will be proportional  
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where 0/
, >mp
kiτ  are the time constants for PM or MM pairs of segments i, k, related 

to the hybridization temperature of each segment. Probe pairs could be considered 
proportional in a strict sense if the proportionality parameter for segment k is almost 
the same independently of gene segments 

                                        j,i;k,jk,i ∀=ηη                                                   (3) 
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In general, time constants { }m,p
k,iτ  associated to a given gene i will not be equal, seg-

ments with small time constants will be saturated, while those showing large time 
constants will be unsaturated, therefore hypothesis (3) will not be fulfilled in these 
cases. Each probe set can be seen as composed by two vectors { }p

k,ix=p
ix  and 

{ }m
k,ix=m

ix  corresponding to the PM and MM probe set. Classically in microarray 
processing it should be expected that strict proportionality (3) among segments holds 
at least up to a certain degree, and in such case the expression results for the corre-
sponding gene k could be trusted. These cases are designated as reliably expressed 
probe sets. But in many cases this assumption can not be granted, as there are some 
PM-MM pairs where strict proportionality does not match that of others within the 
same test probe. These cases may be referred to as unreliably expressed probe sets. 
The question is how to measure the reliability of a probe set expression. This can be 
done (see 0) through the proportionality parameter [12] of gene i as 
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This parameter is independent of the density distribution, therefore is not affected by 
the overall gene expression. Besides, the proportionality parameter is directly related 
to the projection of the vectors of conditioned probabilities for the perfect and the 
mismatch test probes, and therefore to the hybridization dynamic constants. 

 

Fig. 1. Geometrical relations among PM and MM vectors 

The diagram in Figure 1 may help to understand the meaning of the proportionality 
parameter and the effects of bad alignment between PM and MM where c

ix  and o
ix  

are the co-linear and orthogonal components of  m
ix  with respect to p

ix  and βi is the 
angle between them. If the homogeneity hypothesis (3) holds, a high degree of co-
linearity between the PM and MM vectors would be expected, the orthogonal compo-
nent being small, otherwise one should conclude that the estimated expression levels 
are the result of underlying unknown processes. Orthogonality may be defined as 

                                           ii βγ 2cos1−=                                                   (5) 
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which ranges between 0 (co-linear vectors), and 1 (orthogonal ones). Once this model 
is established projection methods [7] could be used to pre-process microarray infor-
mation prior to component separation and classification. If the values of γi are closer 
to 1 this will mean that the two vectors are not correlated at all, and in that case inde-
pendent components can be estimated using ICA. Data alignment may help in im-
proving the reliability of estimations in probe sets with large γi. Data alignment and 
orthogonalization may be easily derived from the projection model in Figure 1. In 
fact, the co-linear and orthogonal components of the MM vector will be given by 
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3   A Case of Study 

The methodology described has been tested using a microarray (12-13-02-U133A-
Mer-Latin-Square-Expt1-R1) from the Latin Square set of experiments [8]. A single 
microarray contains information of PM-MM probe sets from 22300 gene positions. 
The information contained in the microarray was converted on a string of gene probe 
sets arranged linearly. The values of λi and γi for each probe set were evaluated by the 
application of (4) and (5). One of the objectives of the present work is to design meth-
ods to pinpoint unreliable probe sets, which will be corrected using ICA. The selec-
tion of probe sets relies on estimating the orthogonality parameter γi given in (5). The 
estimation results for the whole set of genes in the microarray are presented in  
Figure 2, together with their statistical distribution. It may be seen that most of the 
genes have values of γi not fulfilling the hypothesis of co-linearity, therefore the hy-
bridization process do not respond to condition (3). The results in Table 1 show the 
distribution of genes vs. the values for the co-linearity coefficient γi. 

Table 1. Distribution of genes by the value of γi 

Value of γi Number of genes Percent on total 
<0.05 1605 7.19 
0.05 ≤ γi <0.1 3315 14.86 

0.1 ≤ γi<0.5 16547 74.20 

≥ 0.5 833 3.73 
 

The number of unreliable gene expression tests (γi>0.1) is quite large (77.93%), thus 
implying that many probe tests may have been affected by corrupting hybridization  
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Fig. 2. Results of estimating γ
i
 for a practical case versus relative gene number in microarray. 

Top: plot from the evaluation of (5). Bottom: Histogram of γ
i.
. 

side effects. These observations allow concluding that on one side results  from reli-
able probe sets should be taken into account independently of their level of expres-
sion, as they are in good agreement with the coherence model. On the other hand, 
results from unreliably expressed probe sets should be treated to improve reliability, 
and studied to highlight the reasons for anomalous behavior in their underlying hy-
bridization dynamics. 

Unreliably expressed probe sets may be re-aligned using ICA assuming that p
ix  

and m
ix  have been previously orthogonalized using (6) and (7) and normalized into 

c
ix  and o

ix constituting the vector of observations 

                                                 [ ]To
i

c
i x,x=x                                                      (8) 

such that each observed variable could be described in terms of two independent com-
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where the coefficients of the mixing matrix are unknown and have be estimated as 
well as the independent components s using only the observed data. The statistically 
independent components 1

is  and 2
is  with non-gaussian distributions were estimated 

using FastICA [13], [14] as well as the mixing matrix A and its inverse W = A-1 
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which will be used to re-estimate the PM and MM probe sets 
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4   Results and Discussion 

The microarray under study was separated into a PM and an MM vector. Pre-
processing consisted in the application of (6) and (7) probe by probe (for the 22,300 
probe tests) to generate two new vectors of co-linear and orthogonal components. 
After normalization these were taken for the analysis using Fast-ICA independently of 
their values for γ. The results of the analysis of genes 212058_at and 212062_at are 
given in Figure 3 as an example. The first probe set (top templates corresponding to 
gene 212062_at) in which most of the probe pairs behave accordingly with (3) is 
reliably expressed and shows high co-linearity (γ = 0.0221). The second one (bottom 
templates corresponding to gene 212058_at) is an unreliably expressed probe test  
(γ = 0.259) due mainly to probes 2, 5, and 6 which present rather different proportion-
ality ratios, possibly due to perturbations in some underlying process or in too dis-
similar hybridization dynamics. The re-estimated PM and MM components, show an 
improvement of co-linearity in cases with large γ, whereas this value deteriorates in 
cases where co-linearity was large initially, as expected from the orthogonality hy-
pothesis used to process expression vectors prior to the application of ICA. Well 
aligned vectors may be seen as produced by a single underlying process, therefore 
strictly they do not need to be re-aligned, whereas mis-aligned vectors may be the 
result of several underlying independent processes and the application of ICA to these 
cases improves substantially the results. Most of the probe sets in the microarray 
(21,765 out of 23,000) were composed by 11 probe pairs. To evaluate the effects of 
ICA on the statistical distributions of co-linear and orthogonal components, the kurto-
sis of each expression probe after orthogonalization was compared against its corre-
sponding position in the respective independent component, as given in Table 2.  

For example the kurtosis of the 4th position of the co-linear component is 98.9, 
whereas the respective position in the independent component is 134, indicating that 
ICA improved the non-gaussianity of this position. This is not observed in all the 
positions as well-aligned probe sets were not removed from the data analyzed. 

Table 2. Kurtosis of co-linear, orthogonal and independent components 

i 1 2 3 4 5 6 7 8 9 10 11 
xic 122 88.9 99.7 98.9 76.9 108 96.8 79.5 67.6 69.8 74.5 
xio 45.2 43.9 53.8 65.3 87.3 59.5 66.9 113 53.4 46.3 51.6 
yic 113 95 116 134 108 106 117 99.9 94.3 90.5 96.3 
yio 60.4 47.1 81 78.1 68.8 45.7 36 82.5 40.8 33.9 37.7 
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Fig. 3. a) Four top templates: Results for a reliable probe set. b) Four bottom templates: Results 
for an unreliable probe set. Plates a) original PM-MM probes, b) co-linear and orthogonal 
components after the application of (6) and (7), c) independent components from (10), and d) 
re-estimated PM and MM from (11) and (12). 

5   Conclusions 

In this work a probabilistic model has been used to justify reliable hybridization of 
gene probe sets in microarrays based on proportionality and correlation. Correlation 
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between PM and MM samples may be used to provide information on which probe 
set results were produced from normal hybridization processes, in contrast with those 
which may be produced by corrupted hybridization. This can help in improving the 
estimation reliability of microarray data prior to their use in clustering and pattern 
recognition. The number of unreliable gene probe sets found in a particular microar-
ray may be quite large, thus meaning that many probe tests may have been affected by 
corruption processes. These probe sets may be re-aligned by detecting their independ-
ent components by ICA, and re-estimating the PM-MM pairs from the independent 
components found. The results show that re-alignment improve the reliability of 
genes affected by underlying processes related with the independent components.  
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Abstract. We consider the source separation problem for single-channel
music signals. After a brief review of existing methods, we focus on de-
composing a mixture into components made of harmonic sinusoidal par-
tials. We address this problem in the Bayesian framework by building a
probabilistic model of the mixture combining generic priors for harmonic-
ity, spectral envelope, note duration and continuity. Experiments suggest
that the derived blind decomposition method leads to better separation
results than nonnegative matrix factorization for certain mixtures.

1 Introduction

1.1 Constrained Specific Models and Unconstrained Generic
Models

Single-channel musical source separation is the problem of extracting the source
signals (sj(t))1≤j≤J underlying a music signal x(t) =

∑J
j=1 sj(t). This problem

can be addressed by building appropriate models of the sources. The source
models proposed in the literature rely on different amounts of prior information.

Some methods exploit constrained source models representing the sources in
a specific mixture with a good accuracy. For example, methods based on sparse
coding with a fixed dictionary [1] or on factorial hidden Markov models [2] typ-
ically assume that the source models can be learnt on segments of the mixture
where only one source is present. These methods provide very good separation
results, given the difficulty of the problem, but until now they rely on knowing
the instruments present in the mixture and performing a manual segmentation.
Other methods based on Computational Auditory Scene Analysis (CASA) with
instrument templates [3] or on hybrid source models [4] rely on instrument-
specific timbre properties learnt on a database of isolated notes. These methods
also perform satisfyingly, but they cannot be applied when some of the instru-
ments present in the mixture are not part of the learning database.

By contrast, other methods rely on unconstrained generic source models ap-
plicable to a large range of mixtures. For example, Nonnegative Matrix Factor-
ization (NMF) decomposes the mixture short-term magnitude spectrum into a
sum of components modeled by a fixed magnitude spectrum and a time-varying

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 722–730, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Single-Channel Mixture Decomposition Using Bayesian Harmonic Models 723

gain, assuming no constraints about the spectra and the gains except positiv-
ity [5]. Source separation can then be achieved by clustering the components
into sources, provided each component belongs to a single source. Good results
based on automatic clustering have been reported for the separation of vocals [6]
or drums [7] from real mixtures. Other studies using a manual clustering have
shown that NMF can be used to separate real mixtures of non-percussive instru-
ments [8]. However the NMF source model is not adapted to certain types of
mixtures, such as those involving notes with time-varying fundamental frequency,
instruments with similar spectral envelope or instruments playing synchronously.

1.2 Harmonicity as a Precise Generic Model

In this paper, we assume that each musical note is a near-periodic signal con-
taining harmonic sinusoidal partials. Harmonicity means that at each instant
the frequencies of the partials are multiples of a single fundamental frequency.
This assumption is true for sustained instruments such as bowed strings and
winds and approximately true for many other instruments. It is false for drums,
human voice and other noisy or transient sounds. Harmonicity can thus be seen
as a precise generic model: it gives more information about the sources than the
NMF model while being valid for a large range of mixtures. In the following, we
call harmonic component a set of harmonic partials having common onset and
offset times and we address the problem of Harmonic Component Extraction
(HCE), that is the decomposition of a mixture into such components. We do not
discuss the difficult issue of clustering the estimated components into sources.

Most existing HCE methods consist in performing a polyphonic pitch track-
ing, that is transcribing the fundamental frequencies of the notes present in the
mixture, and then estimating the amplitudes and phases of their harmonics.
Methods exploiting harmonicity only [9] are insufficient for source separation.
Indeed harmonicity does not provide enough information to segregate partials
from different sources overlapping at the same frequency. Other methods have
used complementary assumptions of spectral continuity [10,11] and temporal
continuity [12,10] to this aim. Since polyphonic pitch tracking is a difficult prob-
lem for which no current algorithm provides a perfect solution, the separation
performance of these methods was mostly evaluated based on prior knowledge
of the fundamental frequencies and few quantitative results were reported.

In the following, we recast the problem of estimating harmonic components in
the Bayesian framework. We model the mixture signal as a sum of harmonic com-
ponents whose parameters are governed by probabilistic priors and we estimate
the number of components and their parameters using a Maximum A Posteriori
(MAP) criterion. This can be seen as a coherent approach where polyphonic
pitch tracking and estimation of the amplitudes and phases of the partials are
performed using the same model. The proposed model is inspired by Bayesian
harmonic models introduced previously in the literature for polyphonic pitch
transcription [13] but it includes several modifications. Most importantly, we
design a perceptually motivated residual prior and we learn the parameters of
other priors on a database of isolated notes rather than setting them manually
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to arbitrary values. When this learning database is large, the resulting model is
generic. We have also used this model recently for object coding purposes [14].

The rest of the paper is structured as follows. Section 2 presents the generative
model of the mixture and the associated inference algorithm. Section 3 compares
the performance of the proposed method with NMF on a few test mixtures.
Finally Section 4 discusses some future research directions.

2 Bayesian Inference of Harmonic Components

2.1 Signal Model

The proposed model is expressed in the time domain. Let xn(t) be the n-th
frame of the mixture signal x(t) defined by xn(t) = w(t)x(nS + t) where w(t) is
a Hanning window of length W and S is the stepsize. We develop xn(t) as

xn(t) =
∑
c∈Cn

scn(t) + en(t), (1)

where (scn(t))c∈Cn
are the harmonic components present in this frame and en(t) is

the residual. We define each harmonic component, which generally spans several
time frames, by

scn(t) = w(t)
Mc∑
m=1

acmn cos(2πmfcnt + φcmn), (2)

where fcn is its fundamental frequency and (acmn,φcmn) are the time-varying
amplitude and phase of its m-th partial in the n-th frame.

2.2 Frequency, Amplitude and Spectral Envelope Priors

We associate each component with a latent fundamental frequency Fc belonging
to the MIDI scale, which is the discrete 1/12 octave scale used for western musical
scores. We constrain the number of partials Mc of the c-th component to

Mc = min((Fmax/Fc),Mmax), (3)

where Fmax is the Nyquist frequency and Mmax is set to 60. On each time frame,
we model the fundamental frequency by a log-Gaussian prior

P (log fcn) = N (log fcn; logFc, σf ), (4)

where N (·;μ, σ) is the univariate Gaussian density of mean μ and standard
deviation σ. In order to help estimate the amplitudes of the partials when partials
from several notes overlap at the same frequency, we describe the amplitudes as
the product of a fixed normalized spectral envelope (μaFcm

)1≤m≤Mc
, a latent

log-Gaussian amplitude factor rcn and a log-Gaussian residual, that is

P (log acmn|rcn) = N (log acmn; log(rcnμaFcm), σaFc
), (5)

P (log rcn) = N (log rcn;μrFc
, σrFc

). (6)
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Finally we assume that the phases of the partials are uniformly distributed

P (φcmn) = 1/(2π). (7)

2.3 Duration and Continuity Priors

Perceptually annoying discontinuities may appear in the extracted source signals
when the model parameters are estimated on each time frame separately. Thus
we add duration and continuity priors on the parameters. We associate each
point on the MIDI scale with a binary activity state in each frame determining
whether a harmonic component with the corresponding latent frequency Fc is
being played or not in that frame, with the constraint that different instruments
cannot play notes with the same latent frequency at the same time. We assume
that the sequences of activity states for different points on the MIDI scale are
independent, and we model each sequence by a two-state Markov prior. We also
set temporal continuity priors on the frequencies and amplitudes of the partials

P (log fcn|fc,n−1) = N (log fcn; log fc,n−1, σ
f ′

), (8)

P (log acmn|acm,n−1) = N (log acmn; log acm,n−1, σ
a′
Fcm), (9)

P (log rcn|rc,n−1) = N (log rcn; log rc,n−1, σ
r′
Fc

). (10)

The global prior on amplitudes and frequencies is then defined up to a multi-
plicative constant by multiplying these priors with the local priors defined above.

2.4 Perceptually Motivated Residual Prior

The role of the prior on the residual is to ensure that the largest possible number
of notes present in the mixture are extracted using a given number of compo-
nents. The standard Gaussian prior measures the distortion between the mixture
signal and the model according to the energy of the residual. This often results in
several components being used to represent high-energy notes, while low energy
parts of the mixture such as low energy notes, onsets and reverberation are not
transcribed despite their perceptual significance. We design instead a weighted
Gaussian prior inspired from the distortion measures proposed in [15,16] which
give a larger weight to perceptually significant low energy parts.

The proposed prior models the first stages of auditory processing. The in-
coming sound first passes through the outer and the middle ear and is split by
the cochlea into several frequency subbands called auditory bands. The energy
in each auditory band is then transformed nonlinearly into a loudness value
taking into account masking phenomena. More precisely, we measure the power
of the residual in the b-th auditory band by Ẽnb =

∑W/2
f=0 vbfgf |Enf |2, where

(Enf )0≤f≤W−1 are the Fourier transform coefficients of en(t), (vbf )0≤f≤W/2 are
coefficients modeling the frequency spread of that band and (gf )0≤f≤W/2 is the
frequency response of the outer and middle ear. We measure similarly the power
of the mixture signal in that band by X̃nb =

∑W/2
f=0 vbfgf |Xnf |2. Then we define
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the distortion due to the residual on the n-th frame by Ln =
∑B
b=1 ẼnbX̃

−0.75
nb .

It can be shown that this distortion is approximately equal to the perceived
loudness of the residual on that frame [16]. We derive the residual prior from the
distortion by P (en) ∝ exp(−Ln/(2σe 2)). This prior can also be expressed as

P (Enf ) = N (Enf ; 0, σeγ
−1/2
nf ) (11)

where

γnf =
B∑
b=1

vbfgf

⎛⎝W/2∑
f=0

vbfgf |Xnf |2
⎞⎠−0.75

. (12)

2.5 Approximate Inference of Harmonic Components

The signal model and the parameter priors define together a probabilistic gen-
erative model of the mixture signal that is used to infer the MAP values of
the activity states and the frequency, amplitude and phase parameters repre-
senting a given mixture. Due to the complexity of the model, exact inference
is intractable. We therefore use a three-step approximate inference procedure
instead. First we estimate the MAP activity states and the corresponding MAP
parameters on each time frame separately, then we refine the estimation of the
states by adding the duration priors, and finally we refine the estimation of the
parameters by keeping the states fixed and adding the continuity priors. More
details about these steps are given in [14]. Each harmonic component is then
directly synthesized from the corresponding parameters.

3 Evaluation

3.1 Training, Performance Measure and Optimal Clustering

We evaluate the proposed HCE method on test mixtures sampled at 22.05 kHz.
Hyper-parameters of the generative model are set to the same values for all test
mixtures: σf , (μaFcm

), (σaFc
), (μrFc

), (σrFc
), σf

′
, (σa

′
Fcm

) and (σr
′
Fc

) are learnt on
part of the RWC1 Musical Instrument Database whereas σe and the Markov
transition probabilities are set manually. The frame parameters are set to W =
1024 (46 ms) and S = 512 (23 ms) and discrete fundamental frequencies span
the range between MIDI 36 (65 Hz) and MIDI 100 (2640 Hz).

For comparison purposes, we also evaluate NMF on the same test mixtures.
We write the NMF generative model as |Xnf | =

∑C
c=1 pcfqcn + Enf , where

(pcf )0≤f≤W/2 and (qcn)0≤n≤N−1 are the fixed spectrum and time-varying am-
plitude of the c-th nonnegative component respectively. We assume that these
quantities are positive and that the residual Enf follows the weighted Gaussian
prior above. The total number of spectra C is fixed manually and the spectra
and time-varying amplitudes are estimated using multiplicative update rules.
1 http://staff.aist.go.jp/m.goto/RWC-MDB/
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Source signals including several spectra are then synthesized by inverse Fourier
transform and overlap-add using the phase spectrum of the mixture signal. This
algorithm is similar to the weighted NMF algorithm introduced in [16], except
the definition of the time-frequency weights (γnf ) is modified by taking into
account overlap between auditory bands.

For evaluation purposes, we partition components produced by HCE or NMF
into source clusters based on prior knowledge of the true sources. We define
the optimal clusters as those which maximize the overall source separation per-
formance and we compute them using a beam search procedure. This “oracle”
clustering is not feasible in realistic situations, however it allows the measure-
ment of the best source separation quality potentially achievable.

The source separation performance is measured locally for each estimated
source j around each time frame n using a local phase-blind Signal-to-Distortion
Ratio (SDR) in decibels (dB) defined by

SDRjn = 10 log10

( ∑W ′−1
l=0 w′(l)2|Sj,n+l,f |2∑W ′−1

l=0 w′(l)2(|Ŝj,n+l,f | − |Sj,n+l,f |)2

)
, (13)

where w′(l) is a Hanning window of length W ′ = 12 frames and (Ŝjnf ) and
(Sjnf ) are the short-term Fourier transforms of the j-th estimated source and
the j-th true source respectively. The overall performance is measured by a global
SDR defined as the median of local SDRs for all sources and all time frames.
We believe that this performance measure accounts better for subjective effects
than the standard time-domain SDR. Indeed the ear is approximately phase-
blind and the error perceived at a given time depends only on the power of the
target signal at that time, not on its total energy. However the actual subjective
performance is better assessed by listening to the estimated source signals.

3.2 Results

We consider two sets of test mixtures: ten mixtures of two sources using real
sources from the SQAM database2, and ten MIDI-synthesized mixtures from
the RWC Classical Music and Music Genre Databases containing two to five
sources. We set the number of nonnegative components of NMF to be the same
as the number of harmonic components estimated by HCE. This allows a rather
fair comparison of the two methods, since in a blind context the difficulty of com-
ponent clustering would depend on the number of components. We also separate
MIDI-synthesized mixtures by HCE using knowledge of the note activity states.
All the mixture signals and some of the estimated source signals are available
for listening on http://www.elec.qmul.ac.uk/people/emmanuelv/ICA06/.

Table 1 shows that the global SDR achieved by HCE is on average 3 dB higher
than NMF on mixtures of real sources and 6 dB higher on MIDI-synthesized mix-
tures. Informal listening tests suggest that the estimation errors made by the two

2 http://www.ebu.ch/en/technical/publications/tech3000 series/tech3253/
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Table 1. Comparison of the separation performance achieved by HCE and NMF

Separation method Global SDR on various mixtures of real sources (dB)
HCE 12.9 13.3 13.8 10.9 19.3 17.3 14.6 15.2 14.7 11.9
NMF 10.3 11.6 12.6 7.2 14.0 11.8 10.9 11.9 13.0 10.4

Separation method Global SDR on various MIDI-synthesized mixtures (dB)
HCE with true score 14.5 29.3 10.8 13.0 10.4 3.0 12.3 9.4 17.7 8.8
HCE 15.4 29.3 7.2 11.9 10.7 5.5 11.5 3.2 17.0 5.1
NMF 6.9 7.4 5.7 7.0 1.4 3.5 3.4 2.6 14.5 3.3

methods are very different. As expected, NMF often fails to separate synchro-
nized notes in MIDI-synthesized mixtures because these notes have the same
temporal evolution. This results in strong interference or in continuous artifacts.
More surprisingly, NMF also produces artifacts on mixtures of real sources which
are not synchronized. By contrast, HCE generally produces fewer artifacts, but
some interference appears locally due to simultaneous or successive notes with
the same frequency being fused into a single component, or to harmonic partials
from different sources being transcribed as part of the same component.

The knowledge of the note activity states does not substantially improve
the performance of HCE for seven out of ten MIDI-synthesized mixtures3. It
is interesting to note that the number of notes estimated by HCE on MIDI-
synthesized mixtures is on average 2.5 times larger than the actual number of
notes being played. Most of the spurious notes have short duration and are due to
the system trying to represent non-harmonic parts of the signal using harmonic
components, which does not seem to affect the separation performance.

Other experiments suggested that the performance of NMF decreases when
more components are allowed and does not change significantly when initializing
the NMF basis spectra by the spectra of the harmonic components estimated by
HCE. Thus the limited performance of NMF on the test mixtures seems to be
the effect of the model itself rather than algorithmic issues.

4 Conclusion

In this paper, we address the blind source separation problem for single-channel
musical mixtures where the notes are near-periodic signals containing harmonic
sinusoidal partials. The proposed method, which exploits harmonicity and other
generic source priors, performs better than NMF on various test mixtures. This
suggests that the NMF model is not sufficiently constrained to ensure that typical
audio source properties hold for the separated sources and that more precise
generic source models can help separation without needing specific information
about a particular mixture.
3 For some mixtures the estimated note activity states lead to a better SDR than

the true states because the perceptual weights used for decomposition are not taken
into account for evaluation. In practice, the subjective performance of HCE using
the true note activity states is always larger or equal to that of blind HCE.
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The main limitation of HCE is that it cannot deal with mixtures containing
voice or drum instruments. This limitation could be addressed using a three-
component generative model including probabilistic models for wideband noise
components and transient components, in the spirit of the CASA system pro-
posed in [12]. The proposed model could also be improved by adding slightly
inharmonic components to represent instruments such as piano or guitar or by
performing automatic adaptation of the probabilistic priors to the mixture to
increase their precision and help reduce separation errors.
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Abstract. When exploiting independent component analysis (ICA) to
perform blind source separation (BSS), it is assumed that sources are
mutually independent. However, in practice, the latent sources are usu-
ally dependent to some extent. Fortunately, if the sources are the same
type of natural signals, they may be mutually independent in some fre-
quency band, and dependent in other band. It is possible to make them
mutually independent by temporal-filtering. In this paper we investigate
ways to find the optimal filter for enhancing source independence in two
scenarios. If none of the sources is known, we propose to adaptively esti-
mate the filter and the de-mixing matrix simultaneously by minimizing
the mutual information between outputs. Consequently the learned fil-
ter makes the filtered sources as independent as possible and the learned
de-mixing matrix successfully separates the mixtures. If some source sig-
nals are available, we can estimate the filter more reliably by making the
filtered sources as independent as possible. After that, with temporal-
filtering as preprocessing, we can successfully perform BSS using ICA.
Experiments on separating speech signals and images are presented.

1 Introduction

Independent Component Analysis (ICA) aims at extracting independent com-
ponents given only observed data that are assumed to be mixtures of some
independent sources [7]. Nowadays ICA is a popular method for blind source
separation (BSS), since in many situations the hidden factors underlying the
observations are statistically independent, so that they can be revealed by ICA.

However, in some real-world situations the independence property of sources
may not hold, especially in biomedical signal processing and image processing,
and therefore the standard ICA can not give the expected results. Some ex-
tended data models have been developed to relax the independence assumption
in the standard ICA model, such as multidimensional ICA, independent subspace
analysis, topographic ICA, and tree-dependent component analysis.
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In this paper we consider the case in which the sources are dependent, but
their sub-components in some frequency bands are mutually independent, as
described by the subband decomposition ICA (SDICA) model [5,8,9]. Natural
signals of the same type, such as speeches and images, may follow this model. In
order to exploit ICA to successfully separate mixtures of such sources, we need to
apply a filter to extract the source independent sub-components, or to enhance
the source independence. Once the filtered sources are mutually independent, the
mixing matrix in the data generation procedure can be estimated by applying
ICA to the filtered observations. We should mention that in [3], temporal filtering
is exploited for sparsification of images.

Traditionally the filter for enhancing source independence is determined ei-
ther by some a priori information [4,5], or by exploiting some additional assump-
tions [6,8]. For example, the innovation processes of the hidden source signals,
which are defined as errors of the best predictions for sources and usually obtained
by temporal filtering sources, are believed to be more independent from each other
in general [6]. The assumption that at least two groups of sub-components are sta-
tistically independent is incorporated in [8], so that the source independent sub-
components and the true mixing matrix can be identified. These assumptions may
be helpful in practice, but they do not always hold.

Recently, we have investigated the feasibility of estimating this filter and the
mixing matrix in an adaptive manner and given an adaptive method for this task,
namely band-selective ICA (BS-ICA) [9]. In BS-ICA, the filter and de-mixing
matrix are learned simultaneously by minimizing mutual information between
outputs, but their estimation interferes with each other, and may cause difficulty
in estimation and some local optima. Therefore, here we consider estimating the
optimal filter when some source signals, which are of the same type as those
to be separated, are available. This can be considered as a type of semi-blind
source separation: the filter for enhancing source independence is estimated from
a small number of the sources signals which are known in advance; after applying
this learned filter to the observations, the standard ICA is used to perform BSS.
This is inspired by the fact that the source dependent sub-components usually
concentrate on the same frequency band for natural signals of the same type.
Consequently the temporal filter which removes dependence between the known
sources also enhances independence amongst all sources of this type. Also, in
this paper we report the experimental results on noisy speech separation, as well
as separating images of human faces, to illustrate the behavior of our methods.

2 SDICA Model

The SDICA model assumes that the source signals can be dependent, however
only some of their narrow-band sub-components are independent [5]. Without
loss of generality, we can merge all independent sub-components and all depen-
dent ones, respectively. Consequently we can represent the sources as

si(t) = si,I(t) + si,D(t) (1)
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where si,I(t) denotes the independent sub-component and si,D(t) denotes the de-
pendent sub-component. More precisely, the source independent sub-components
are assumed to be spatially independent stochastic sequences [9], i.e. they are
mutually independent not only for the same time index, but also for different
time indices. Note that si,I(t) and si,D(t) have different frequency bands.

The observations are still generated from the sources si in the same way as
in the basic ICA model:

x = As (2)

where s = [s1, s2, ..., sn]T and the observed data x = [x1, x2, ..., xn]T .
As the components of s are not mutually independent, the linear transforma-

tion in equation 2 could not be determined by traditional ICA. In order to sepa-
rate SDICA mixtures, we first need to apply a filter h(t) to filter out the source
dependent sub-components, i.e. h(t)∗si(t) are mutually independent. The filtered
observations are then z(t) = h(t) ∗ x(t) = A[h(t) ∗ s(t)]. z(t) = [z1(t), ..., zn(t)]T

can then be considered as mixtures of independent sources. By applying linear
ICA algorithms to z(t):

y(t) = Wz(t) = WA[h(t) ∗ x(t)] (3)

we can obtain the de-mixing matrix W, which is associated with the mixing
matrix A.

3 To Adaptively Estimate the Temporal Filter

3.1 When Only Observations Are Known

Now let us consider how to estimate the optimal filter which makes the filtered
sources as independent as possible. We first try to separate sources described in
equation 1 in a totally blind manner, i.e. given only the observations xi(t), the
filter attenuating source dependent sub-components and the de-mixing matrix
A are estimated from data simultaneously [9].

The separability of the SDICA model has been investigated [9]. It was shown
that under weak conditions, the outputs of the SDICA separation system, given
in equation 3, are spatially independent stochastic sequences if and only if
h(t) filters out the dependent sub-components si,D(t) and WA is a generalized
permutation matrix. However, it is difficult to enforce that yi(t) are spatially
independent stochastic sequences. Furthermore, it was given that under cer-
tain additional conditions, yi(t) are instantaneously independent if and only if
h(t) filters out the dependent sub-components si,D(t) and WA is a general-
ized permutation matrix. As a consequence, we can estimate the filter h(t) and
the separation matrix W in the SDICA separation system by making yi(t) as
independent as possible, as BS-ICA does [9].

In BS-ICA h(t) and W are learned by minimizing I(y), the mutual informa-
tion amongst yi(t). Let the filter for enhancing source independence be a causal
finite impulse response (FIR) filter, h(t) = [h0, h1, ..., hL]. The gradient of I(y)
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with respect to hp is

∂I(y)
∂hp

=
n∑
i=1

∂H(yi)
∂hp

− ∂H(y)
∂hp

= −Et
{

ψTy (t) ·W · x(t− p)
}

+ Et

{
ϕTy (t) ·W · x(t− p)

}
= Et

{
βTy (t) ·W · x(t− p)

}
(4)

where ψy(y) = [ψy1(y1), ..., ψyn
(yn)]T is called the marginal score function

(MSF) [2], with ψyi
(u), the score function of the random variable yi, defined

as ψyi
(u) = (log pyi

(u))′ =
p′

yi
(u)

pyi
(u) . ϕy(y) = [ϕ1(y), ..., ϕn(y)]T is called the

joint score function (JSF), and its i-th element is ϕi(y) = ∂ log py(y)
∂yi

=
∂

∂yi
py(y)

py(y) .
βy(y) = ϕy(y)−ψy(y) is defined as the score function difference (SFD) [2].

W just aims at minimizing the mutual information amongst outputs given
zi(t) = h(t) ∗ xi(t) as inputs, so its learning rule is the same as in the basic
ICA model. Here we adopt the natural gradient algorithm [1]:  W ∝ (I +
E{ψy(y)yT })W.

3.2 When Some Sources Are Known

In the above method, the estimation of h(t) and W interferes with each other
and may cause some local optima, as illustrated by the first experiment in [9].
Therefore, we further consider the case in which we can obtain some source
signals of the same type as those to be separated. These known sources can
actually be used to determine the filter fast and reliably. The learned filter in this
way is believed to be capable of enhancing statistical independence between all
sources of this type. For example, in order to separate speeches of many channels
in a noisy environment (which may produce source dependent sub-components),
we can record two individual speeches in this environment and learn the filter
by making the filtered version of these two speeches as independent as possible.
In separating images, such as images of human faces [6], the filter which makes
two filtered source images as independent as possible is believed to enhance
independence between all such images.

Suppose there are some available sources, denoted by sK = [sK1 (t), ..., sKk (t)]T .
When sK′

i (t) = h(t) ∗ sKi (t) are independent from each other, the filter h(t)
filters out the dependent sub-components sKi,D(t). The filter h(t) can then be
estimated by making sK′

i (t) as independent as possible. Mathematically, this
can be achieved by minimizing I(sK′

1 , ..., sK′
k ). Let sK′ = [sK′

1 (t), ..., sK′
k (t)]T .

The gradient of I(sK′
1 , ..., sK′

k ) with respect to the coefficients of h(t) is

∂I(sK′
1 , ..., sK′

k )
∂hp

=
k∑
i=1

∂H(sK′
i )

∂hp
− ∂H(sK′

1 , ..., sK′
k )

∂hp

= Et

{
βTsK′(t) · sK(t− p)

}
(5)
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h(t) can then be adjusted with the gradient-based method. After estimating
h(t), We can apply h(t) to the observations to obtain z(t) = h(t) ∗ x(t) =
A[h(t) ∗ s(t)]. The mixing matrix A can be recovered by applying linear ICA
to z(t).

3.3 For High-Dimensional Data: Pairwise Score Function Difference

Due to the curse of dimensionality, it is difficult to estimate SFD in high-
dimensional spaces. Fortunately, under certain conditions, we can then achieve
mutual independence by minimizing the sum of the pairwise mutual informa-
tion [9]. Consequently, the SFD in equations 4 and 5 is replaced by the pairwise
score function difference (PSFD) γy(t) = [γ1(t), ..., γn(t)]T , whose components
are defined as γi =

∑n
j=1,j �=i βyi

(yi, yj).

4 Experiments

Two experiments are given for illustrative purpose. The first is devoted to sepa-
rating images of human faces [6]. The second is to separate noisy speech signals.
We use the Amari performance index Perr to assess the quality of the de-mixing
matrix W for separating observations generated by the mixing matrix A [1]:
Perr = 1

n(n−1)

∑n
i=1

{(∑n
j=1

|pij |
maxk |pik| − 1

)
+
(∑n

j=1
|pji|

maxk |pki| − 1
)}

where
pij = [WA]ij . The smaller Perr is, the better W is.

4.1 Separating Images of Human Faces

The face images, represented as 1-dimensional signals, are apparently dependent,
so it is very hard to separate them with the ICA technique [6]. Here the four
original images of human faces are the same as in [6], as shown in Figure 1 (a).

They are mixed with a random chosen non-singular matrix. Four methods
for separating these images were tested. The first is to directly apply linear ICA
algorithms to the mixtures. We chose FastICA with the tanh nonlinearity and in
the symmetric estimation mode and the natural gradient method with the score
function estimated from data. The second is to apply ICA algorithms to the
innovation processes of the mixtures [6]. We used a 10-th order auto-regressive
model to estimate the innovation processes from the observations. The third
is to assume there are two source images known and to learn h(t) from them
according to equation 5. After that h(t) is applied to all mixtures and linear ICA
is performed on the filtered mixtures. The last one is to apply BS-ICA to the
observed mixtures. In the last two methods, the filter length is 11.

The performance index obtained is summarized in Table 1, from which we
can see the result by directly applying ICA to the mixtures (column 2) is poor,
and the last three methods can all recover the sources successfully. In particular,
BS-ICA (the last column) gives almost the perfect result, and the filter h(t)
learned from two sources which are assumed known makes the filtered version
of all sources approximately independent, as seen from the good performance in
columns 4 ∼ 9. This verifies the success of the two methods we proposed. For
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Table 1. The Amari performance index Perr of separating images of human faces by
four different methods . Numbers in parenthesis in columns 4 ∼ 9 are the sequential
numbers of the sources which are assumed to be known

Method
ICA on ICA on Sources assumed known:

BS-ICA
mixtures Innovations (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

FastICA 0.592 0.132 0.108 0.095 0.114 0.105 0.099 0.116
0.043

Natural gradient 0.289 0.061 0.043 0.056 0.047 0.048 0.054 0.051

(a)

(b)

Fig. 1. Separating mixtures of images of human faces. (a) Original images. Since the
recovered images produced by our methods are almost the same as the original one,
they are not plotted for saving space.(b) The outputs of BS-ICA, which are a filtered
version of the source independent sub-components of the images

illustration, we plot the outputs of BS-ICA, which provide a filtered version of
the source independent sub-components; see Figure 1 (b). We can see that the
recovered source independent sub-components highlight the special features of
each image. Consequently they are almost independent from each other.

The learned h(t), as well as its frequency response magnitude, was given
in [9] (due to space limitation, it is not plotted here). It is interesting that
h(t) attenuates both the low frequency part and the high frequency part of
the sources, which is different from the filter hAR(t) for producing innovation
processes of the mixtures.

4.2 Separating Speech Signals

In this experiment we recorded six speeches in a normal office room as the original
source signals, as shown in Figure 2 (left). The sample rate is 22050 Hz, and to
reduce the number of samples, we resample the signals with the ratio 1/10. These
speeches are given by the same speaker reading an essay in Chinese. There is a
little fan on the table, which may cause the source dependent sub-components.
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Fig. 2. Separating noisy speech signals. Left: original speeches. Right: outputs of BS-
ICA. We can see that the noise effect caused by the fan has been greatly attenuated

Table 2. The Amari performance index Perr of separating noisy speeches by the four
different methods

Method
ICA on ICA on With two sources known:

BS-ICA
mixtures Innovations (1,2) (1,4) (2,5) (3,4) (4,5) (5,6)

FastICA 0.124 0.021 0.025 0.026 0.043 0.024 0.030 0.021
0.036

Natural gradient 0.142 0.012 0.013 0.013 0.023 0.012 0.020 0.011

We mixed the speeches with a randomly chosen non-singular matrix. The per-
formance index obtained by the four different methods mentioned above is given
in Table 2. In the method exploiting innovation processes we used the 22-th or-
der auto-regressive model to estimate the innovation processes. The filter length
in the two methods we proposed is 23. The table shows that all the methods
except for directly applying ICA to observed mixtures (column 2) successfully
recover the mixing matrix with good performance. The good performance of ex-
ploiting innovation processes is because the source dependent sub-components
concentrate on a very narrow frequency band such that they are greatly atten-
uated by the filter producing innovation processes. In addition, we found that
the innovation processes are much more non-Gaussian than the original sources,
which also improves the separation performance. However, the filter producing
innovation processes, which is actually used to whiten the observations, gives no
knowledge about the frequency band of the source independent sub-components.

The outputs of BS-ICA, as an estimate of the source independent sub-
components, are shown in Figure 2 (right). From Figure 2 we can see that the
noise caused by the fan, as the source dependent sub-components, has been
attenuated significantly by h(t). To reduce the random effect, we repeated this
experiment for 20 runs, and in each run the mixing matrix was chosen randomly.
We found that in this experiment BS-ICA may converge to a local optimum if
W is initialized as the identity matrix. However, with W initialized by the re-
sult of FastICA, BS-ICA always converges to the desired target. Therefore, it is
recommended to initialize W in BS-ICA with the result of linear ICA.
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5 Conclusion

Source independence is a precondition when applying independent component
analysis for blind source separation. However, usually natural signals are not
completely independent. They may be independent in some frequency band and
dependent in other band. In this paper we considered methods to enhance source
independence by using temporal-filtering. When only the observations are avail-
able, band-selective ICA can be adopted to adaptively estimate the separation
matrix as well as the temporal filter. If we could find some source signals of the
same type as those to be separated, the filter can be learned more reliably by
making the filtered version of these sources as independent as possible. After
applying this filter to observations, we can use ICA to do source separation. Ex-
perimental results on separating images of human faces as well as noisy speeches
have shown the validity and good behavior of the proposed methods.
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Abstract. Different from the traditional ICA that recovers all the source signals 
simultaneously, the ICA with reference (ICA-R) extracts only some desired 
source signals from the mixtures of source signals by incorporating some a pri-
ori information into the separation process. This paper applies ICA-R to ex-
tracting a target speech signal from its noisy linear mixtures by constructing a 
proper reference signal with the empirical mode decomposition (EMD). Spe-
cifically, EMD is used to obtain an approximate envelope of the power spec-
trum of the desired speech, which is quite different from the power spectra of 
the environmental noises. The results of computer simulations and performance 
analyses demonstrate the efficiency of the proposed method. 

1   Introduction 

Independent Component Analysis (ICA) aims to recover a set of unknown mutually 
independent source signals from their observed linear mixtures without knowing the 
mixing coefficients [1]. It has been applied to communications, biomedical engineer-
ing, etc. [2]-[4]. The problem of speech separation has also received attention from 
researchers investigating ICA [5]-[7]. A recent variation, constrained ICA, also re-
ferred to as the ICA with reference (ICA-R) [8], [9], was proposed to allow a priori 
information about the desired source signals to be provided in the separation process. 
This differs from most approaches to ICA where the algorithms recover simultane-
ously all the source signals; the ICA-R extracts only the desired source signal which 
is the closest one, in some sense, to a properly constructed reference signal based on 
prior knowledge. Clearly the reference signal is important for ICA-R to extract the 
desired signal, but it does not need to be exactly the same as the desired source signal.  

To have a proper and general reference signal for ICA-R to extract a target speech 
signal from its noisy linear mixtures, the power spectrum of the speech signal can be 
utilized to provide the prior information of the speech signal. The reason is that the 
speech power spectrum contains the common characteristics of the speech signals, 
and it is usually different from those of its environmental noises. For example, the 
power spectrum of the speech signal is not continuous, and its main power is regularly 
distributed within several given frequency bins. In practice, an approximate envelope 
of the speech power spectrum can be used as a reference signal. 
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Empirical mode decomposition (EMD) is a general nonlinear and non-stationary 
signal processing method. It decomposes a signal into a finite and often small number 
of intrinsic mode functions (IMFs), and can be used as a filter by reconstructing the 
original signal with partial IMFs. In this paper, EMD is used as a low-pass filter to 
obtain the envelope of the speech power spectrum. Compared with the conventional 
low-pass filtering, EMD is able to track the brief and sharp edges of the speech power 
spectrum, which is very important for accurate extraction of the desired speech signal. 
The main advantage of the proposed method is that the speech signal is significantly 
enhanced by including prior information, i.e. the knowledge of the speech power spec-
tra, into the ICA separation process, which would greatly facilitate many applications 
such as automatic speech recognition and speaker identification. 

2   ICA with Reference 

Suppose that there exist M independent source signals T
M tstst )](,),([)( 1 K=s  and N 

observed mixtures of the source signals )(tx = T
N txtx )](,),([ 1 K (usually it is as-

sumed that MN ≥ ). The linear ICA assumes that these mixtures are linear, instanta-
neous, and noiseless, i.e,  

)()( tt Asx =  (1) 

where A is a MN ×  mixing matrix that contains the mixing coefficients. The goal of 
the classical ICA is to find a NM ×  demixing matrix W  such that M output signals 

)()()()( tttt PDsWAsWxy === . (2) 

where MM ×∈ RP is a permutation matrix and MM ×∈ RD is a diagonal scaling matrix. 
Instead of separating all M number of independent sources from N mixed signals, 

ICA-R extracts L (L< M) number of desired sources from N mixed signals by incorpo-
rating some a priori information into the ICA learning algorithm as reference signals. 
These reference signals, denoted by T

L trtrtr )](,),([)( 1 K= , carry some information 
of the desired sources but not identical to the corresponding desired signals [8], [9]. In 
the following, we briefly describe the one-unit ICA-R. It finds one weight vector w , 
i.e., one row of the demixing matrix W , so that the output signal )()( tty T xw=  re-
covers one desired source )(* ts  by using )(tr  as the reference signal [8], [9]. For 
simplicity, the time index t is omitted in the equations below.  

The flexible and reliable approximation of the negentropy )(yJ  introduced by Hy-
värinen in [10] is defined as the contrast function of one-unit ICA-R [8], [9]: 

2)}]({)}({[)( vGEyGEyJ −≈ ρ  (3) 

where ρ  is a positive constant, v  is a Gaussian variable having zero mean and unit 

variance, )(⋅G  can be any non-quadratic function. 

The closeness between the ICA-R output y  and the reference signal r  is measured 
by ),( ryε , which has a minimal value when *y s= PD . A threshold ξ  is used to dis-
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tinguish the desired source *s  from other source signals such that 
( ) ( , ) 0Tg rε ξ= − ≤w w x  is satisfied only when *y s= PD  among all source signals. 

Treating )(wg  as feasible constraint to the contrast function in (3), the problem of one-
unit ICA-R can be modeled in the framework of constrained independent component 
analysis [9] as follows: 

.01}{)(,0)(subject to

)}]({)}({[)(maximize
2

2

=−=≤
−≈

yEhg

vGEyGEyJ

ww

ρ
 (4) 

where )(wh is the equality constraint used to ensure the contrast function )(yJ and the 

weight vector w are bounded. In [9], a Newton-like learning algorithm is derived by 
finding the maximum of an augmented Lagrangian function corresponding to (4):  

1
1 / ( )

kk k kLη δ−
+ ′= − XX ww w R w  (5) 

where k is the iteration index, η  is the learning rate, XXR  is the covariance matrix of 

the input mixtures x ,  

{ ( )} 0.5 { ( )}
k y y kL E G y E gρ μ′ ′ ′= −w x x w  (6) 

2 2( ) { ( )} 0.5 { ( )}k ky y
E G y E gδ ρ μ′′ ′′= −w w  (7) 

where )(yGy
′  and )(2 yG

y
′′ are the first and the second derivatives of )(yG  with respect 

to y , and )( kyg w′ and )(2 ky
g w′′  are those of )( kg w . μ  and λ  are the Lagrange 

multipliers learned by the gradient-ascent method: 

)},(,0max{1 kkk g wγμμ +=+  (8) 

 ).(1 kkk h wγλλ +=+  (9) 

where γ  is the scalar penalty parameter. 

3   Empirical Mode Decomposition (EMD) 

EMD is a general nonlinear, non-stationary signal processing method. It has been 
applied to many fields such as ocean waves [11] and biomedical engineering [12]. 
The major advantage of EMD is that the basis functions are derived directly from the 
signal itself. Hence the analysis is adaptive, in contrast to Fourier analysis, where the 
basis functions are linear combinations of fixed sinusoids.  

The principle of EMD is to decompose a signal into a sum of oscillatory functions, 
namely intrinsic mode functions (IMFs). An IMF is defined as any function: (1) hav-
ing the same numbers of extrema and zero-crossings or differ at most by one; and (2) 
symmetric with respect to local zero mean. With these two requirements, the mean-
ingfully instantaneous frequency of an IMF can be well defined. Specifically, the first 
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condition is similar to the narrow-band requirement, whereas the second condition 
modifies a global requirement to a local one by using the local mean of the envelopes 
defined by the local maxima and the local minima, and is necessary to ensure that the 
instantaneous frequency will not have unwanted fluctuations as induced by asymmet-
ric waveforms. To make use of EMD, the signal must have at least two extrema – one 
maximum and one minimum to be successfully decomposed into IMFs [12].  

Given these two definitive requirements of an IMF, the sifting process for extract-
ing IMFs from a given signal ( ), 1, ,z t t T= K  is described as follows:  

(1) Extract the local minima and maxima of ( )z t .
 

(2) Interpolate the local maxima and the local minima with cubic spline to form 
upper envelope up ( )z t  and lower envelope low ( )z t  of ( )z t .  

(3) Calculate the point-by-point mean from upper and lower envelopes, 

up( ) ( ( ) ( )) / 2lowm t z t z t= + . 

(4) Extract the detail, ( ) ( ) ( )d t z t m t= − . Check the properties of ( )d t :  

(5) If ( )d t  do not meets the above-defined two conditions, replace ( )z t  with 

( )d t . Repeat the procedure from Step 1 to 5 until it satisfies some stopping 

criterion.  
(6) If ( )d t  meets the above-defined two conditions, an IMF is derived and replace 

( )z t  with the residual ( ) ( ) ( )r t z t d t= − ; Repeat the above procedure until 

( )r t  has at least two extrema, else the decomposition is finished. 

At the end of this process, the signal ( )z t can be expressed as follows:  

1

( ) ( ) ( )
N

j N
j

z t c t r t
=

= +  (10) 

where N is the number of IMFs, ( )Nr t  denotes the final residue which can be inter-

preted as the DC component of the signal, and ( )jc t  are nearly orthogonal to each 

other, and all have nearly zero means. Due to this iterative procedure, none of the 
sifted IMFs is derived in closed analytical form [12].  

As a result, the signal is decomposed into N IMFs, each with distinct time scale. 
More specifically, the first IMF has the smallest time scale which corresponds to the 
fastest time variation of the signal. As the decomposition process proceeds, the time 
scale increases, and hence, the mean frequency of the mode decreases. Therefore, 
EMD can be used as a filter by reconstructing the original signal with partial IMFs. 

4   EMD-Based Reference Signal 

A proper and available reference signal is the most important thing for ICA-R to ex-
tract a speech signal from its noisy linear mixtures. As mentioned above, the speech 
power spectrum is largely different from those of its environmental noises in that 
speech power is regularly distributed within several given frequency bins. Therefore, 
the approximate envelope of the power spectrum of the desired speech can be used as 
a reference signal, and can be well obtained by EMD. As an example, Fig. 1 (b) 



 Speech Enhancement Using ICA with EMD-Based Reference 743 

shows the power spectrum of a speech signal in Fig. 1(a). Its ten IMF components C1, 
C2… C10 obtained by EMD are shown in Fig.2. We can find that the time scale of C1, 
C2, … , C10 increases gradually, i.e., their mean frequency decreases gradually. Thus, 
by summing IMFs with lower frequency, a rough envelope of the speech power spec-
trum can be formed. The synthesized signals obtained by summing partial IMFs from 
C4 to C10, C3 to C10, and C2 to C10, are shown in Fig. 3(a)-(c), respectively. It is easy to 

 

             
 

Time (samples)                                                                   Frequency (Hz) 

Fig. 1. A speech signal and its power spectrum. (a) The waveform of a speech signal. (b) The 
corresponding power spectrum of (a). 

              

              

              

              

              

Fig. 2. Ten IMF components C1, C2, … , C10 of speech power spectrum in Fig.1(b) obtained 
by EMD method  

 

 

 

Frequency (Hz) 

Fig. 3. Several synthesized signals of partial IMFs (solid line) compared with the power spec-
trum of the speech signal (dash line in each sub-figure). (a) Synthesized signal obtained by 
summing IMFs from C4 to C10. (b) Synthesized signal obtained by summing IMFs from C3 to 
C10. (c) Synthesized signal obtained by summing IMFs from C2 to C10.  
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find that the synthesized signals in Fig. 3(b) and Fig. 3(c) can efficiently approximate 
the original power spectrum in Fig. 1(b). For the proposed method, EMD-based refer-
ence signal needs not to be accurate power spectrum. Therefore, smaller number of 
IMFs such as C3 to C10 in Fig. 3(b) are enough for constructing the reference signal. 

5   Experimental Results  

To illustrate the efficiency of the proposed method, extensive simulations are carried 
out. One experiment is to enhance a desired speech signal shown in Fig. 1(a). Three 
interrupted noises are noise bursts, random noise, and telephone trill, respectively, as 
shown in Fig. 4(a)-(c).  The four noisy mixtures of the speech signal and three noises 
obtained by a random mixing matrix are shown in Fig. 4(d)-(g). 

In the ICA-R algorithm, we use )cosh(log)( yyG = , which is a good general-purpose 

function [10]. The closeness between the ICA-R output signal y  and the corresponding 

reference signal r  is defined as the mean square error in frequency domain 
2( , ) {( ) }Y r E Y rε = - , where Y is the power spectrum of y , r is obtained by adding the 

larger time-scale IMFs from C3 to C10, as shown in Fig. 3(b). The threshold ξ is critical 

to the convergence of the algorithm of ICA-R. It may be initialized with a small value to 
avoid the algorithm going to a local optimum, and then is gradually increased to  
converge at the global maximum [9]. By performing ICA-R with the EMD-based refer-
ence signal (see Fig. 3(b)) on the four noisy speech mixtures in Fig. 4(d)-(g), the desired 
speech signal is extracted, as shown in Fig. 4(h).  Comparing Fig. 4(h) and Fig. 1(a), we 
can see that the extracted speech signal by ICA-R is of good quality. 

To quantitatively assess the performance of the proposed method, individual per-
formance index (IPI) is defined as follows [9]: 

1

( ) 1, 1,...,
max

M
j

j k k

p
IPI k M

p=
= − =  (11) 

 

             

                       

            

            
 

Time (samples) 

Fig. 4. Speech enhancement experiment with ICA-R. (a) Noise bursts. (b) Random noise.        
(c) Telephone trill. (d)-(g) Four noisy mixtures of the speech signal and three noises in (a)-(c). 
(h) Extracted speech signal by ICA-R. 

4000 8000 12000 160000 4000 8000 12000 16000 0

(b) 

(d) 

(f) 

(h) 

(a) 

(c) 

(e) 

(g) 



 Speech Enhancement Using ICA with EMD-Based Reference 745 

where jp denotes the j element of the global vector TP = w A . The value of IPI is 

within the range of [0, 1], e.g., IPI=0 if w  is perfectly estimated. The accuracy of the 
recovered signal *y  compared to the desired source signal *s  is measured by the 

signal to noise ratio (SNR) in dB: 

2

10(dB) 10log ( )SNR
mse

σ=  (12) 

where 2σ  is the variance (power) of the desired speech signal, mse  denotes the mean 
square error between the desired speech signal and the recovered one, that is, mse  is 
the noise power. 

The IPI, mse, and SNR (dB) are then computed on the enhanced speech signal in 
Fig. 4(h) by the ICA-R algorithm, which are 0.099, 0.0044, and 23.57, respectively. 
These results show that the desired weight vector w is well estimated by ICA-R, the 
noise power is very small, and the target speech is enhanced with very high SNR in-
dex. Therefore, ICA-R is capable of extracting the desired speech signal from the 
noisy mixtures with very high quality by using the reference signal; an approximate 
envelope of the speech power spectrum can be used as the reference signal; and the 
reference signal can be properly constructed with EMD method. 

6   Conclusion 

This paper presents an application of ICA-R to extracting a speech signal from its noisy 
linear mixtures while the reference signal is properly constructed by EMD. The EMD-
based reference signal is obtained by adding the larger time-scale IMFs to approximate 
the envelope of the power spectrum of the desired speech signal, which is quite different 
from the power spectra of the environmental noises. The results of the computer simula-
tions and the performance analyses show that the proposed method is effective. 
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Abstract. Renyi’s entropy can be used as a cost function for blind source
separation (BSS). Previous works have emphasized the advantage of set-
ting Renyi’s exponent to a value different from one in the context of BSS.
In this paper, we focus on zero-order Renyi’s entropy minimization for the
blind extraction of bounded sources (BEBS). We point out the advantage
of choosing the extended zero-order Renyi’s entropy as a cost function in
the context of BEBS, when the sources have non-convex supports.

1 Introduction

Shannon’s entropy is a powerful quantity in information theory and signal process-
ing; it can be used e.g. in blind source separation (BSS) applications. Shannon’s
entropy can be seen as a particular case of Renyi’s entropy, defined as [1]:

hr[fX ] =
{ 1

1−r log
{∫

frX(x)dx
}

for r ∈ {[0, 1) ∪ (1,∞)}
−E {log fX(x)} for r = 1

. (1)

The above integrals are evaluated on the support Ω(X) of the probability distri-
bution (pdf) fX . The first-order Renyi’s entropy h1[fX ] corresponds to Shannon’s
entropy; function hr[fX ] is continuous in r.

Previous works have already emphasized that advantages can be taken by
considering the general form of Renyi’s entropy rather than Shannon’s in the
BSS context [2]. For instance, it is interesting to set r = 2 in specific cases.
Using kernel density estimates leads to a simple estimator for h2[.].

This paper points out that in particular situations, e.g. when dealing with the
blind extraction of bounded sources (BEBS) application, zero-Renyi’s entropy
(Renyi’s entropy with r = 0) should be preferred to other Renyi’s entropies.

Renyi’s entropy with r = 0 is a very specific case; it simply reduces to the log-
arithm of the support volume of Ω(X): h0[fX ] = log Vol[Ω(X)] [3]. In the BEBS
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context, it can be shown that the global minimum of the output zero-Renyi’s
entropy is reached when the output is proportional to the source with the lowest
support measure [4], under the whiteness constraint. The other sources can then
be iteratively extracted, minimizing the output zero-Renyi’s entropy in direc-
tions orthogonal to the previously extracted signals. A similar conclusion has
been independently drawn in [5], where it is also shown that the output support
convex hull volume has a local minimum when the output is proportional to
one of the sources. The main advantage in considering zero-Renyi’s entropy is
that, under mild conditions, this cost function is free of local minima. Hence
gradient-based methods yield the optimal solution of the BEBS problem. When
the sources have strongly multimodal pdfs, this property is not shared by the
most popular information-theoretic cost functions, like e.g. mutual information,
maximum-likelihood and Shannon’s marginal entropy (see [6,7,8,9]).

This contribution aims at analyzing the condition for which the “spurious
minima-free” property of zero-Renyi’s entropy h0[fX ] holds in the context of
BEBS. First, it is shown that the output zero-Renyi’s entropy has no spurious
minimum in the BEBS application when the volume of the non-convex part of
the sources support is zero. Second, it is shown that the support Ω[.] should
be replaced by its convex hull Ω[.] in Renyi’s entropy definition (1), in order to
avoid spurious minima when the source supports have non-convex parts having a
strictly positive volume measure. These two last claims are based on the Brunn-
Minkowski inequality.

The following of the paper is organized as follows. The impact of choosing the
support pdf or its convex hull when computing Renyi’s entropy is first analyzed
in Section 2. Section 3 recalls the Brunn-Minkowski inequality. The latter is used
to discuss the existence of spurious zero-Renyi’s entropy minima depending of
the convexity of the source supports in Section 4. The theoretical results are
illustrated on a simple example in Section 5.

2 Support, Convex Hull and Renyi’s Entropy

The density fX of a one-dimensional bounded random variable (r.v.) X satisfies
fX(x) = 0 for all x > sup(X) and x < inf(X). The support of the density is
defined as the set where the r.v. lives [10]: Ω(X) � {x : fX(x) > 0}. Another
viewpoint is e.g. to consider that the r.v. lives for x such that 0 < FX(x) < 1,
where FX is the cumulative distribution of X. Therefore, an extended definition
of the support could be : Ω(X) � {x ∈ [inf{x : fX(x) > 0}, sup{x : fX(x) >
0}]}. Then, Ω(X) can be seen as the closed bounded convex hull of Ω(X), and
obviously: Ω(X) ⊆ Ω(X).

Let us abuse notation by writing hr,Ω(X)[fX ] for hr[fX ]. Consider the slightly
modified Renyi’s entropy (called in the following extended Renyi’s entropy), de-
fined as hr,Ω(X)[fX ]: frX is now integrated on the set Ω(X) rather than on the
support Ω(X) in eq. (1). For r �= 0, one gets hr,Ω(X)[fX ] = hr,Ω(X)[fX ], because
0r = 0 for r �= 0 and 0 log 0 = 0 by convention [10]. Conversely, h0,Ω(X)[fX ] >
h0,Ω(X)[fX ] if Vol[Ω(X) \Ω(X)] > 0 (the support contains ‘holes’ with non-zero
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volume measure). Indeed, consider the Lebesgue measure μ[.], which is the stan-
dard way of assigning a volume to subsets of the Euclidean space. Let us assume
that Ω(X) can be written as the union of I disjoint intervals Ωi(X) of strictly
positive volume. Using the properties of Lebesgue measure, zero-Renyi’s entropy
becomes : h0,Ω(X)[fX ] = log

∑I
i=1 μ[Ωi(X)]. This quantity is strictly lower than

h0,Ω(X)[fX ] = logμ[Ω(X)] if μ[Ω(X) \Ω(X)] > 0. In summary, we have:

{
hr,Ω(X)[fX ] = hr,Ω(X)[fX ] for r �= 0.
limr→0 hr,Ω(X)[fX ] = h0,Ω(X)[fX ] ≤ h0,Ω(X)[fX ] . (2)

The r = 0 case is thus very specific when considering Renyi’s entropies; for
other values of r, hr,Ω(X)[fX ] = hr,Ω(X)[fX ]. The r = 0 value is also the only
one for which hr,Ω(X)[fX ] can be not continuous in r. The impact of choos-
ing h0,Ω(X)[fX ] rather than h0,Ω(X)[fX ] as BEBS cost function is analyzed in
Section 4. The study is based on Brunn-Minkowski’s inequality [11], which is
introduced below.

3 Brunn-Minkowski Revisited

The following theorem presents the original Brunn-Minkowski inequality [11].

Theorem 1 (Brunn-Minkowski Inequality). If X and Y are two compact
convex sets with nonempty interiors (i.e. mesurable) in Rn, then for any s, t > 0:

Vol1/n[sX + tY] ≥ sVol1/n[X ] + tVol1/n[Y] . (3)

The operator Vol[.] stands for volume. The operator “+” means that X + Y =
{x + y : x ∈ X , y ∈ Y}. The equality holds when X and Y are equal up to
translation and dilatation (i.e. when they are homothetic).

As explained in the previous section, we use the Lebesgue measure μ[.] as the
volume Vol[.] operator. Obviously, one has μ[Ω(X)] ≥ μ[Ω(X)] ≥ 0.

Inequality (3) has been extended in [10,12] to non-convex bodies; in this case
however, to the authors knowledge, the strict equality and strict inequality cases
were not discussed in the literature. Therefore, the following lemma, which is an
extension of the Brunn-Minkowski theorem in the n = 1 case, states sufficient
conditions so that the strict equality holds (the proof is relegated to the appendix).

Lemma 1. Suppose that Ω(X) = ∪Ii=1Ωi(X) with μ[Ωi(X)] > 0 and Ω(Y ) =
∪Jj=1Ωj(Y ) with μ[Ωj(Y )] > 0, with Ω(X) ⊂ R, Ω(Y ) ⊂ R. Then:

μ[Ω(X + Y )] ≥ μ[Ω(X)] + μ[Ω(Y )] ,

with equality if and only if μ[Ω(X) \Ω(X)] = μ[Ω(Y ) \Ω(Y )] = 0.
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4 Zero-Renyi’s vs Extended Zero-Renyi’s Entropy for
BEBS

Consider the linear instantaneous BEBS application, and let S1, S2, · · · , SK be
the independent source signals. If we focus on the extraction of a single output
Z, we can write Z =

∑K
i=1 c(i)Si, where c is the vector of the transfer weights

between Z and the Si. The vector c is the row of the transfer matrix C associated
to the output Z. The latter matrix is obtained by left-multiplying the unknown
mixing matrix by the unmixing matrix that has to be estimated. The unmixing
matrix row associated to c can be blindly found by minimizing h0,Ω(Z)[fZ ], under
a fixed-norm constraint to avoid that var(Z) diverges (see [4,5]).

The following subsections discuss the impact of minimizing zero-Renyi’s en-
tropy h0,Ω(Z)[fZ ] or its extended definition h0,Ω(Z)[fZ ] for the BEBS application.

4.1 Convex Supports

If the sources have convex supports Ω(Si) (Theorem 1), or if μ[Ω(Si)\Ω(Si)] = 0
(Lemma 1) for all 1 ≤ i ≤ K, then both approaches are identical: μ[Ω(Z)] =
μ[Ω(Z)]. Brunn-Minkowski equality holds, and the following relation comes:
μ[Ω(Z)] =

∑K
i=1 |c(i)|.μ[Ω(Si)]. It is known that in the K = 2 case, we can

freely parametrize c by a single angle: c can be written as [sin θ, cos θ], where
θ is the transfer angle. This parametrization of c forces the vector to have a
unit Euclidean norm. In this case μ[Ω(Z)] = μ[Ω(Z)] is concave w.r.t. θ in each
quadrant [5]. Since log f is concave if f is concave, log μ[Ω(Z)] = logμ[Ω(Z)] is
also concave. In other words, the minima of μ[Ω(Z)] w.r.t. θ can only occur at
θ ∈ {kπ/2|k ∈ Z}: all the minima of h0,Ω(Z)[fZ ] are non-mixing (corresponding
to non-spurious solutions of the BEBS problem). This last result holds for higher
dimensions, i.e. for K ≥ 2 (see [5] for more details).

4.2 Non-convex Supports

In the non-convex situation, Brunn-Minkowski equality holds for the set Ω(.)
(by Theorem 1):

μ[Ω(Z)] =
K∑
i=1

|c(i)|.μ[Ω(Si)] . (4)

It can be shown that all the minima of the above quantity w.r.t. vector c are
relevant; as in the convex-support case, they all correspond to non-spurious
solutions of the BEBS problem [5]. By contrast, the strict Brunn-Minkowski
inequality holds when a source has a support Ω(Si) such that μ[Ω(Si)\Ω(Si)] >
0. Lemma 1 gives μ[Ω(Z)] >

∑K
i=1 |c(i)|.μ[Ω(Si)]. In this case, there is no more

guarantee that μ[Ω(Z)] does not have mixing minima when a source has a non-
convex support. The next section will presents simulation results showing on a
simple example that spurious minima of μ[Ω(Z)] may exist.

As a conclusion, the best integration domain for evaluating Renyi’s entropy
for the blind separation of bounded sources seems to be Ω(Z), the convex hull
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of the output support Ω(Z). Remark that contrarily to hr,Ω(Z)[fZ ], hr,Ω(Z)[fZ ]
is not rigourously speaking a Renyi’s entropy. Nevertheless, while h0,Ω(Z)[fZ ] is
the log of the volume of Ω(Z), extended zero-Renyi’s entropy h0,Ω(Z)[fZ ] is the
log of the volume of Ω(Z)’s convex hull.

In the BEBS application, the output volume must be estimated directly from
Z, since neither c, nor the μ[Ω(Si)] are known. Therefore evaluating zero-Renyi’s
entropy requires the estimation of μ[Ω(Z)] and computing extended zero-Renyi’s

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

)]([log][)(,0 Zfh ZZ Ω=Ω μ

][][ )(,)(, ZZrZZr fhfh ΩΩ =

][][ )(,)(, ZZrZZr fhfh ΩΩ =

����������	�	�
���������

����������	�	�
����

(a) ξ = 8, ν = 1: the source supports Ω(Si) are non-convex

0 π/4 π/2 3π/4 π/2 5π/4 3π/2 7π/4 2π

][][ )(,)(, ZZrZZr fhfh ΩΩ =
����������	�	�
���������

(b) ξ = 0.5, ν = 1: the source supports Ω(Si) are convex

Fig. 1. Extended zero-Renyi (–), Shannon (- -), and r-Renyi entropies with r �={0, 1} (..)
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entropy requires the estimation of μ[Ω(Z)]. In [5], the support of Ω(Z) is ap-
proximated by max(Ẑ) − min(Ẑ) (Ẑ is the set of observations of Z), which is
also a good approximation of μ[Ω(Z)] (i.e. of exp{h0,Ω(Z)[fZ ]}) when the source
supports are convex.

5 Example

Let pS1 and pS2 be two densities of independent random variables Si = Ui +Di
where U1 and U2 are independent uniform variables taking non-zero values in
[−ν, ν] (ν > 0) and D1, D2 are independent discrete random variables taking
values [α, 1 − α] at {−ξ, ξ} (ξ > 0). Suppose further that ξ > ν. Then, both
sources Si have the same density pS :

pS(s) =

⎧⎪⎨⎪⎩
α
2ν for x ∈ [−ξ − ν,−ξ + ν]
1−α
2ν for x ∈ [ξ − ν, ξ + ν]

0 elsewhere.

(5)

It results that Ω(Si) = {x ∈ [−ξ − ν,−ξ + ν] ∪ [ξ − ν, ξ + ν]} and Ω(Si) =
{x ∈ [−ξ − ν, ξ + ν]}, which implies μ[Ω(Si)] = 4ν and μ[Ω(Si)] = 2ξ + 2ν. By
Lemma 1, we have μ[Ω(S1 + S2)] = μ[Ω(S1)] + μ[Ω(S2)] and μ[Ω(S1 + S2)] >
μ[Ω(S1)] + μ[Ω(S2)].

Let us note Z = cos θS1 + sin θS2. Equation (4) guarantees that μ[Ω(Z)] is
concave with respect to θ. By contrast, according to Section 4.2, there is no
guarantee that μ[Ω(Z)] has no minima for θ /∈ {kπ/2|k ∈ Z}.

Figure 1 illustrates the effect of the source support convexity on hr[fZ ] w.r.t.
θ for various values of r in the above example. Note that the omitted scales of
vertical axes are common to all curves. We can observe that hr[fZ ] has spurious
minima regardless of r; there exist local minima of the zero-entropy criterion for
which Z is not proportional to one of the sources. By contrast, when considering
the extended zero-Renyi’s entropy hr,Ω(Z)[fZ ], no spurious minimum exists: all
the hr,Ω(Z)[fZ ] local minima correspond to Z = ±Si. Note that in Figure 1 (a),
hr1 [fZ ] < hr2 [fZ ] if r1 > r2. This result can be theoretically proven by Hölder’s
inequality: Renyi’s entropy hr[f ] is decreasing in r, and strictly decreasing unless
f is a uniform density [13].

6 Conclusion and Perspectives

This paper focusses on zero-Renyi’s entropy for blind extraction of bounded
sources. Theoretical results show that if the sources have convex supports, both
zero-Renyi and extended zero-Renyi’s entropies are free of spurious minima.

However, this is no more true when the source support contains “holes” of
positive volume. In this case, simulation results seem to indicate that the order
of Renyi’s entropy (i.e. parameter r) has no influence on the existence of local
spurious minima, see Figure 1 (a). Nevertheless, when considering the extended
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zero-Renyi’s entropy, Brunn-Minkowski inequality shows that this cost function
is free of spurious minima, when the support is correctly estimated.

Finally, new perspectives for Renyi entropy-based BSS/BEBS algorithms arise
from the results presented in this paper. Despite the “no spurious minima” prop-
erty of the extended zero-Renyi’s entropy which is not shared by Shannon’s one,
both the output support volume and Shannon’s entropy BEBS can be used in
deflation algorithms for source separation. Indeed, it is known that the Entropy
Power inequality shows that Shannon’s entropy can be used in deflation pro-
cedures for BSS. On the other hand, this paper shows that Brunn-Minkowski
inequality justifies the use of zero-Renyi’s entropy for the sequential extraction
of bounded sources. Conversely, to the authors knowledge, there is no proof to
date justifying the use of Renyi’s entropy for r �= 0 and r �= 1 in deflation
BSS/BEBS algorithms. It is thus intriguing to remark that the two aforemen-
tioned information-theoretic inequalities are closely related [12]. By contrast,
the sum of output Renyi’s entropies can be seen as a cost function for symmet-
ric BSS (all sources are extracted simultaneously), as explained in [2]. As it is
known that values of r different from 0 and 1 are also interesting in specific BSS
applications, future work should then study deflation methods based on general
Renyi’s entropy definition (of order r ∈ R+).
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Appendix. Proof of Lemma 1

Suppose that μ[Ω(X)] = μ[Ω(X)] > 0 and μ[Ω(Y )] = μ[Ω(Y )] > 0. This means
that μ[Ω(X)\Ω(X)] = μ[Ω(Y )\Ω(Y )] = 0. Therefore, the sets Ω(X) and Ω(Y )
can be expressed as {

Ω(X) = [inf X, supX] \ ∪I′
i=1{xi}

Ω(Y ) = [inf Y, supY ] \ ∪J ′
j=1{yj}

(6)

where xi, yi are isolated points. Then,

μ[Ω(X + Y )] = μ[Ω(X + Y )]
= (supX + supY )− (inf X + inf Y )
= μ[Ω(X)] + μ[Ω(Y )] ,

which yields the first result of the Lemma.
To prove the second claim, suppose that X� = ∪I−1

i=1 [Xm
i , XM

i ] \ ∪I′
i′=1{xi′},

Y � = ∪J−1
j=1 [Y mj , YMj ] \ ∪J ′

j′=1{yj′} and X = X� ∪ [Xm
I , XM

I ] \ ∪I�

i�=1{xi�}, Y =
Y � ∪ [Y mJ , YMJ ] \ ∪J�

j�=1{yj�} where Xm
i < XM

i < Xm
i+1, Y

m
i < YMi < Y mi+1 and

Xm
I = XM

I−1 + ε, ε > 0. Then, if we note ΔX � XM
I −Xm

I and ΔY � YMJ −Y mJ ,
we have:

μ[Ω(X+Y )] ≥ μ[Ω(X�+Y )]+
{

(YMJ +XM
I )−max(XM

I−1 +YMJ , Y mJ +Xm
I )
}

,

where the term into brackets is a lower bound of the sub-volume of Ω(X + Y )
due to the interval [Xm

I , XM
I ]; it can be rewritten as min{ΔX + ε,ΔX + ΔY }.

Finally, having the Brunn-Minkowski inequality in mind, one gets:

μ[Ω(X + Y )] ≥ μ[Ω(X� + Y )] + min{ΔX + ε,ΔX + ΔY }
≥ μ[Ω(X)]−ΔX + μ[Ω(Y )] + min{ΔX + ε,ΔX + ΔY }
> μ[Ω(X)] + μ[Ω(Y )] .



On the Identifiability Testing in Blind Source
Separation Using Resampling Technique

Abdeldjalil Aı̈ssa-El-Bey, Karim Abed-Meraim, and Yves Grenier

ENST, TSI department, 46 rue Barrault 75634, Paris Cedex 13, France
{elbey, abed, grenier}@tsi.enst.fr

Abstract. This paper focuses on the second order identifiability prob-
lem of blind source separation and its testing. We present first necessary
and sufficient conditions for the identifiability and partial identifiability
using a finite set of correlation matrices. These conditions depend on the
autocorrelation fonction of the unknown sources. However, it is shown
here that they can be tested directly from the observation through the
decorrelator output. This issue is of prime importance to decide whether
the sources have been well separated or else if further treatments are
needed. We then propose an identifiability testing based on resampling
(jackknife) technique, that is validated by simulation results.

1 Introduction

Blind source separation (BSS) of instantaneous mixtures has attracted so far a
lot of attention due to its many potential applications [1] and its mathematical
tractability that lead to several nice and simple BSS solutions [1, 2, 5, 13]. The
underlaying model is given by:

x(t) = y(t) + w(t) = As(t) + w(t)

where s(t) = [s1(t), · · · , sm(t)]T is the m × 1 complex source vector, w(t) =
[w1(t), · · · , wn(t)]T is the n×1 complex noise vector, A is the n×m full column
rank mixing matrix (i.e., n ≥ m), and the superscript T denotes the transpose
operator. The source signal vector s(t), is assumed to be a multivariate stationary
complex stochastic process.

In this paper we consider only the second order BSS methods and hence the
component processes si(t), 1 ≤ i ≤ m are assumed to be temporally coherent
and mutually uncorrelated, with zero mean and second order moments:

S(τ) def= E (s(t + τ)s�(t)) = diag[ρ1(τ), · · · , ρm(τ)]

where ρi(τ)
def= E(si(t + τ)s∗i (t)), the expectation operator is E, and the su-

perscripts ∗ and % denote the conjugate of a complex number and the complex
conjugate transpose of a vector, respectively. The additive noise w(t) is mod-
eled as a white stationary zero-mean complex random process. In that case, the
source separation is achieved by decorrelating the signals at different time lags.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 755–764, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This is made possible under certain identifiability conditions that have been
developed in [3] and recalled briefly in this paper.

Although the previous conditions are expressed in terms of the autocorrelation
coefficient of the unknown source signals, we propose here a solution to test them
directly out of the received data using the jackknife (resampling) technique.

2 Second Order Identifiability

In [4], Tong et al. have shown that the sources are blindly separable based on (the
whole set) of second order statistics only if they have different spectral density
functions. In practice we achieve the BSS using only a finite set of correlation
matrices. Therefore, the preview identifiability result was generalized to that case
in [5, 3] leading to the necessary and sufficient identifiability conditions given by
the following theorem:

Theorem 1. Let τ1 < τ2 < · · · < τK be K ≥ 1 time lags, and define ρi =
[ρi(τ1), ρi(τ2), · · · , ρi(τK)] and ρ̃i = [�(ρi),((ρi)] where �(x) and ((x) denote
the real part and imaginary part of x, respectively. Taking advantage of the in-
determination, we assume without loss of generality that the sources are scaled
such that ‖ρi‖ = ‖ρ̃i‖ = 1, for all i 1. Then, BSS can be achieved using
the output correlation matrices at time lags τ1, τ2, · · · , τK if and only if for all
1 ≤ i �= j ≤ m:

ρ̃i and ρ̃j are (pairwise) linearly independent (1)

Interestingly, we can see from condition (1) that BSS can be achieved from only
one correlation matrix Rx(k) def= E(x(t + k)x�(t)) provided that the vectors
[�(ρi(k)),((ρi(k)] and [�(ρj(k)),((ρj(k)] are pairwise linearly independent for
all i �= j.

Note also that, from (1), BSS can be achieved if at most one temporally white
source signal exists. In contrast, recall that when using higher order statistics,
BSS can only be achieved if at most one Gaussian source signal exists.

Under the condition of Theorem 1, the BSS can be achieved by decorrelation
according to the following result:

Theorem 2. Let τ1, τ2, · · · , τK be K time lags and z(t) = [z1(t), · · · , zm(t)]T

be an m× 1 vector given by z(t) = Bx(t). Define rij(k) def= E(zi(t + k)z∗j (t)). If
the identifiability condition holds, then B is a separating matrix (i.e. By(t) =
PΛs(t) for a given permutation matrix P and a non-singular diagonal matrix
Λ) if and only if

rij(k) = 0 and
τK∑
k=τ1

|rii(k)| > 0 (2)

for all 1 ≤ i �= j ≤ m and k = τ1, τ2, · · · , τK .
1 We implicitly assume here that ρi �= 0, otherwise the source signal could not be

detected (and a fortiori could not be estimated) from the considered set of correlation
matrices. This hypothesis will be held in the sequel.
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Note that, if one of the time lags is zero, the result of Theorem 2 holds only
under the noiseless assumption. In that case, we can replace the condition∑τK

k=τ1 |rii(k)| > 0 by rii(0) > 0, for i = 1, · · · ,m. On the other hand, if all
the time lags are non-zero and if the noise is temporally white (but can be spa-
tially colored with unknown spatial covariance matrix) then the above result
holds without the noiseless assumption.

Based on Theorem 2, we can define different objective (contrast) functions
for signal decorrelation. In [6], the following criterion2 was used

G(z) =
τK∑
k=τ1

log |diag(Rz(k))| − log |Rz(k)| (3)

where diag(A) is the diagonal matrix obtained by zeroing the off diagonal entries
of A. Another criterion used in [7] is

G(z) =
τK∑
k=τ1

∑
1≤i<j≤m

|rij(k)|2 +
m∑
i=1

|
τK∑
k=τ1

|rii(k)| − 1|2 (4)

Equations (3) and (4) are non-negative functions which are zero if and only if
Rz(k) = E(z(n+ k)z�(n)) are diagonal for k = τ1, · · · , τK or equivalently if (2)
is met.

3 Partial Identifiability

It is generally believed that when the identifiability conditions are not met, the
BSS cannot be achieved. This is only half of the truth as it is possible to partially
separate the sources in the sense that we can extract those which satisfy the
identifiability conditions. More precisely, the sources can be separated in blocks
each of them containing a mixture of sources that are not separable using the
considered set of statistics. For example, consider a mixture of 3 sources such
that ρ̃1 = ρ̃2 while ρ̃1 and ρ̃3 are linearly independent. In that case, source s3
can be extracted while sources s1 and s2 cannot. In other words, by decorrelating
the observed signal at the considered time lags, one obtain 3 signals one of them
being s3 (up to a scalar constant) and the two others are linear mixtures of s1
and s2.

This result can be mathematically formulated as follows: assume there are d
distinct groups of sources each of them containing di source signals with same
(up to a sign) correlation vector ρ̃i, i = 1, · · · , d (clearly, m = d1 + · · · + dd).
The correlation vectors ρ̃1, · · · , ρ̃d are pairwise linearly independent. We write
s(t) = [sT1 (t), · · · , sTd (t)]T where each sub-vector si(t) contains the di source
signals with correlation vector ρ̃i.

2 In that paper, only the case where τ1 = 0 was considered.
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Theorem 3. Let z(t) = Bx(t) be an m × 1 random vector satisfying equation
(2) for all 1 ≤ i �= j ≤ m and k = τ1, · · · , τK . Then, there exists a permutation
matrix P such that z(t) def= Pz(t) = [zT1 (t), · · · , zTd (t)]T where zi(t) = Uisi(t),
Ui being a di× di non-singular matrix. Moreover, sources belonging to the same
group, i.e., having same (up to a sign) correlation vector ρ̃i can not be separated
using only the correlation matrices Rx(k), k = τ1, · · · , τK .

This result (see [3])shows that when some of the sources have same (up to a
sign) correlation vectors then the best that can be done is to separate them per
blocks and this can be achieved by decorrelation. However, this result would be
useless if we cannot check the linear dependency of the correlation vectors ρ̃i and
partition the signals per groups (as shown above) according to their correlation
vectors. This leads us to the important problem of testing the identifiability
condition that is discussed next.

4 Testing of Identifiability Condition

4.1 Theoretical Result

The necessary and sufficient identifiability condition (1) depends on the correlation
coefficients of the source signals. The latter being unknown, it is therefore impos-
sible to a priori check whether the sources are ‘separable’ or not from a given set of
output correlation matrices. However, it is possible to check a posteriori whether
the sources have been ‘separated’ or not. We have the following result [3]:

Theorem 4. Let τ1 < τ2 < · · · < τK be K distinct time lags and z(t) = Bx(t).
Assume that B is a matrix such that z(t) satisfies3 equation (2) for all 1 ≤ i �=
j ≤ m and k = τ1, · · · , τK . Then there exists a permutation matrix P such that
for k = τ1, · · · , τK .

E(z(t + k)z�(t)) = PTS(k)P

In other words the entries of z(t) def= Pz(t) have the same correlation coefficients
as those of s(t) at time lags τ1, · · · , τK , i.e. E(zi(t + k)z∗i (t)) = ρi(k) for k =
τ1, · · · , τK and i = 1, · · · ,m.

From Theorem 4, the existence of condition (1) can be checked by using the
approximate correlation coefficients rii(k) def= E(zi(t + k)z�i (t)). It is important
to point out that even if equation (2) holds, it does not mean that the source
signals have been separated. Three situations may happen:

1. For all pairs (i, j), ρ̃i and ρ̃j (computed from z(t)) are pairwise linearly
independent. Then we are sure that the sources have been separated and
that z(t) = s(t) up to the inherent indeterminacies of the BSS problem.
In fact, the testing of the identifiability condition is equivalent to pairwise

3 Because of the inherent indetermination of the BSS problem, we assume without loss
of generality that the exact and estimated sources are similarly scaled, i.e., ‖ρ̃i‖ = 1.
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testing the angles between ρ̃i and ρ̃j for all 1 ≤ i �= j ≤ m. The larger the
angle between ρ̃i and ρ̃j , the better the quality of source separation (see
performance analysis in [5]).

2. For all pairs (i, j), ρ̃i and ρ̃j are linearly dependent. Thus the sources haven’t
been separated and z(t) is still a linear combination of s(t).

3. A few pairs (i, j) out of all pairs satisfy ρ̃i and ρ̃j linearly dependent. There-
fore the sources have been separated in blocks.

Now, having only one signal realization at hand, we propose to use a resampling
technique to evaluate the statistics needed for the testing.

4.2 Testing Using Resampling Techniques

Note that in practice the source correlation coefficients are calculated from noisy
finite sample data. Due to the joint effects of noise and finite sample size, it is
impossible to obtain the exact source correlation coefficients to test the identi-
fiability condition. The identifiability condition should be tested using a certain
threshold α, i.e., decide that ρ̃i and ρ̃j are linearly independent if ||ρ̃iρ̃Tj |−1| > α.

To find α we use the fact that the estimation error of ρ̃iρ̃
T
j is asymptotically

gaussian4 and hence one can build the confidence interval of such a variable
according to its variance. This algorithm can be summarized as follows:

1. Estimate a demixing matrix B and z(t) def= Bx(t) using an existing second
order decorrelation algorithm (e.g. SOBI [5]).

2. For each component zi(t), estimate the corresponding normalized vector ρ̃i.
3. Calculate the scalar product R̂(i, j) = |ρ̃iρ̃Tj | for each pair (i, j).
4. Estimate σ̂(i,j) the standard deviation of R̂(i, j) using resampling technique

(see Section 5).
5. Choose α(i,j) according to the confidence interval. e.g. to have a confidence

interval equal to 99.7% we choose α(i,j) = 3σ̂(i,j), and compare |R̂(i, j)− 1|
to α(i,j) to test whether sources i and j have been separated or not.

5 Resampling Techniques: The Jackknife

In many signal processing applications one is interested in forming estimates
of a certain number of unknown parameters of a random process, using a set
of sample values. Further, one is interested in finding the sampling distribution
of the estimators, so that the respective means, variances, and cumulants can
be calculated, or in making some kind of probability statements with respect to
the unknown true values of the parameters.

The bootstrap [8] was introduced by Efron [9] as an approach to calculate
confidence intervals for parameters in circumstances where standard methods
cannot be applied. The bootstrap has subsequently been used to solve many
other problems that would be too complicated for traditional statistical analysis.
4 More precisely, one can prove that the estimation error

√
Tδ(ρ̃iρ̃

T
j ) is asymptotically,

i.e. for large sample size T , gaussian with zero mean and finite variance.
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In simple words, the bootstrap does with a computer what the experimenter
would do in practice, i.e. if it were possible: he or she would repeat the experi-
ment. With the bootstrap, the observations are randomly reassigned, and the es-
timates recomputed. These assignments and recomputations are done hundreds
or thousands of times and treated as repeated experiments.

The jackknife [10] is another resampling technique for estimating the stan-
dard deviation. As an alternative to the bootstrap, the jackknife method can be
thought of as drawing n samples of size n − 1 each without replacement from
the original sample of size n [10].

Suppose we are given the sample X = {X1, X2, . . . , Xn} and an estimate, ϑ̂,
from X . The jackknife method is based on the sample delete-one observation at
a time,

X (i) = {X1, X2, . . . , Xi−1, Xi+1, . . . , Xn}
for i = 1, 2, . . . , n, called the jackknife sample. This ith jackknife sample consists
of the data set with the ith observation removed. For each ith jackknife sample,
we calculate the ith jackknife estimate, ϑ̂(i) of ϑ, i = 1, 2, . . . , n. The jackknife
estimate of the standard deviation of ϑ̂ is defined by

σ̂ =

√√√√√n− 1
n

n∑
i=1

⎛⎝ϑ̂(i) − 1
n

n∑
j=1

ϑ̂(j)

⎞⎠2

The jackknife is computationally less expensive if n is less than the number of
replicates used by the bootstrap for standard deviation estimation because it re-
quires computation of ϑ̂ only for the n jackknife data sets. For example, if L = 25
resamples are necessary for standard deviation estimation with the bootstrap,
and the sample size is n = 10, then clearly the jackknife would be computation-
ally less expensive than the bootstrap. In order to test the separability of the
estimated signals, we have used a jackknife method to estimate the variance of
the scalar product quantities R(i, j) for i, j = 1, 2, . . . ,m. This is done according
to the following steps:

1. From each signal zi = [zi(0), . . . , zi(T − 1)]T , generate T vectors such as
z(j)
i = [zi(0), . . . , zi(j − 1), zi(j + 1), . . . , zi(T − 1)]T and j = 0, 1, . . . , T − 1.

2. For each vector z(j)
i , estimate the corresponding vector ρ̃

(j)
i .

3. Estimate R̂ such as its (i, j)th entry is

R̂(i, j) =
1
T

T−1∑
k=0

〈ρ̃(k)
i , ρ̃

(k)
j 〉

‖ρ̃(k)
i ‖‖ρ̃

(k)
j ‖

where 〈·, ·〉 denotes the scalar product and ‖ · ‖ is the euclidian norm.
4. Estimate the standard deviation of R̂(i, j) by

σ̂(i,j) =

√√√√T − 1
T

T−1∑
k=0

(
〈ρ̃(k)
i , ρ̃

(k)
j 〉

‖ρ̃(k)
i ‖‖ρ̃

(k)
j ‖

− 1
T

T−1∑
l=0

〈ρ̃(l)
i , ρ̃

(l)
j 〉

‖ρ̃(l)
i ‖‖ρ̃

(l)
j ‖

)2
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6 Discussion

Some useful comments are provided here to get more insight onto the considered
testing method and its potential applications and extensions.

– The asymptotic performance analysis of SOBI derived in [5], shows that
the separation performance of two sources si and sj depends on the angle
between their respective correlation vectors ρ̃i and ρ̃j . Hence, measuring this
angle gives a hint on the interference rejection level of the two considered
sources.
As a consequence, one can use the measure of this angle not only to test
the separability of the two sources but also to guarantee a target (minimum)
separation quality. Choosing the threshold α(i,j) accordingly is an important
issue currently under investigation.

– The testing method can be incorporated into a two stage separation proce-
dure where the first stage consists in a second order decorrelation method
(e.g. SOBI). The second stage would be an HOS-based separation method
applied only when the testing indicates a failure of separation at the first
step.

– In many practical situations, one might be interested by only one or few
source signals. This is the case for example in the interference mitigation
problem in [11] or in the power plants monitoring applications [12]. In this
situation, the partial identifiability result is of high interest as it proves that
the desired source signal can still be extracted even if a complete source
separation cannot be achieved.

– We believe that similar testing procedure can be used for HOS-based BSS
methods, at least for those like JADE [13], that are based on 4th order
decorrelation. This would be the focus of future research work.

7 Simulation Results

We present in this section some simulation results to illustrate the performance
of our testing method. In the simulated environment we consider uniform linear
array with n = 2 sensors receiving the signals from m = 2 unit-power first order
autoregressive sources (with coefficients a1 = 0.95ej0.5 and a2 = 0.5ej0.7) in the
presence of stationary complex temporally white noise. The considered sources
are separable according to the identifiability result, i.e. their respective correla-
tion vectors ρ̃1 and ρ̃2 are linearly independent. The time lags (delays) implicitly
involved are τ0, · · · , τ9 (i.e., K = 10). The signal to noise ratio (SNR) is defined
as SNR = −10 log10 σ

2
n, where σ2

n is the noise variance. We use SOBI algorithm
[5] to obtain the decorrelated sources. The statistics in the curves are evaluated
over 2000 Monte-Carlo runs. We present first in figure 1(a) a simulation example
where we compare the rate of success of the testing procedure (success means
that we decide the 2 sources have been separated) to detect the sources separa-
bility for different sample sizes versus the SNR in dB. The confidence interval
is fixed to β = 99.7%. One can observe from this figure that the performance of
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Fig. 1. (a) Rate of success versus SNR for 2 autoregressive sources and 2 sensors
and β = 99.7%: comparison of the performance of our testing algorithm for different
sample sizes T ; (b) Rate of success versus sample size T for 2 autoregressive sources
and 2 sensors and SNR=25dB: comparison of the performance of our algorithm for
different confidence interval β

the testing procedure degrades significantly for a small sample size due to the
increased estimation errors and the fact that we use the asymptotic normality of
considered statistics. In figure 1(b), we present a simulation example where we
compare the rate of success according to the sample size for different confidence
intervals. The SNR is set to 25dB. Clearly, the lower the confidence interval is,
the higher is the rate of success of the testing procedure. Also, as observed in
figure 1, the rate of success increases rapidly when increasing the sample size. In
figure 2(a), we present a simulation example where we plot the rate of success
versus the confidence interval β for different sample sizes and for SNR=25dB.
This plot shows somehow the evolution of the rate of success w.r.t. the ’false
alarm rate’ and confirms the results of the two previous figures.
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Fig. 2. (a)Rate of false alarm versus confidence interval β for 2 autoregressive sources
and 2 sensors and SNR=25dB: comparison of the performance of our algorithm for
different sample size T ; (b)Rate of success versus spectral shift δθ for 2 autoregressive
sources and 5 sensors and SNR=25dB; (c)Average values of the |R(i, j)| and thresholds
1−α(i,j) versus SNR for 3 sources and 3 sensors : 2 sources are complex white gaussian
processes and the third one is an autoregressive signal
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The simulation example presented in figure 2(b) assumes two source signals
with parameters a1 = 0.5ej0.5 and a2 = 0.5ej(0.5+δθ), where δθ represents the
spectral overlap of the two sources. The number of sensors is n = 5, the sample
size is T = 1000 and the SNR=30dB. Figure 2(b) shows the rate of success versus
the spectral shift δθ. As we can see, small values of δθ lead to high rates of ’non-
separability’ decision by our testing procedure. Indeed, when δθ is close to zero
the two vectors ρ̃1 and ρ̃2 are close to ’linear dependency’. That means that
the separation quality of the two sources is poor in that case which explains the
observed testing results. In the last figure, we assume there exist three sources.
The first two sources are complex white gaussian processes (hence ρ̃1 = ρ̃2)
and the third one is an autoregressive signal with coefficient a3 = 0.95ej0.5. The
plots in figure 2(c) compares the average values of scalar products for ρ̃i and
ρ̃j (i, j = 1, 2, 3) with their corresponding threshold values 1− α(i,j) versus the
SNR. The sample size is fixed to T = 500 and the number of sensors is n = 3.
This example illustrates the situation where two of the sources (here sources 1
and 2) cannot be separated (this is confirmed by the testing result) while the
third one is extracted correctly (the plots show clearly that R(1, 3) < 1− α(1,3)
and R(2, 3) < 1− α(2,3)).

8 Conclusion

This paper introduces a new method for testing the second order identifiability
condition of the blind source separation problem. In simple words, this testing
allows us to ’blindly’ check, out of the observation, whether the unknown sources
have been correctly separated or not. To evaluate the statistics needed for the
testing procedure we used the jackknife (resampling) technique. The simulation
results illustrate and assess the effectiveness of this testing procedure at least for
moderate and large sample sizes.
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Abstract. Blind source separation has found applications in various ar-
eas including biomedical signal processing and genomic signal processing.
Often, blind source separation is performed via independent component
analysis (ICA) under the assumption of mutual independence among
source signals. However, in bio-signal and genomic signal processing, the
assumption of independence is often untrue, and the performance of the
ICA approach is not so good. Much effort has been devoted to searching
alternative approaches to blind source separation without the indepen-
dence assumption. In this paper we present a sparse component analysis
method, which exploits the sparseness of the source signals and makes
the separated signals as sparse as possible according to a properly de-
fined sparsity function, to reliably extract source signals from their mix-
tures. Some related theoretical and practical issues are investigated, with
support and validation by simulation results.

1 Introduction

Information is always hidden in measurements. Very often the details of the
system that hides the wanted information are not fully available to us. Instead,
only the nature of the system and/or the hidden information is partially known.
One of the major tasks of signal processing is to extract such hidden informa-
tion from the measurements only. This task is challenging but when the sys-
tem that hides the information is a linear mixing system, the problem can be
modeled as a blind source separation problem [1]. Blind source separation has
many applications in various areas including, for example, acoustics, imaging,
communication, and biomedical engineering. It has been well established in the
past decade that if the sources are non-Gaussian and statistically independent
of each other, the Darmois-Skitovich Theorem [2] ensures that the independent
component analysis (ICA) [3], which makes the separated signals as independent
of each other as possible, is a solution to the blind source separation problem.
However, in most biological and genomic environments, the assumption of inde-
pendence cannot be reasonably satisfied [4,5]. Alternatively, if the sources are

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 765–772, 2006.
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statistically uncorrelated over a set of time lags, it is proven that making the sep-
arated signals as uncorrelated (over a certain set of time lags) with each other as
possible solves the problem [6], and various methods have been developed [7,8].
Such approaches are based on second order statistics and may have promising
applications in biomedical signal processing [9,10]. However, both the assump-
tion of independence and the assumption of uncorrelatedness are very strong
assumptions that are not easy to be satisfied for naturally occurred signals such
as biological signals and genomic signals. Therefore alternative approaches with
weaker assumptions are highly desirable. In this direction, some methods have
been developed to make use of the non-negativity of the mixing matrix and/or
the signals [11,12,13], or to make use of the the sparsity of the signals [14,15].
An alternative way to utilize the sparsity of the source signals has been devel-
oped by the authors of this paper and has been successfully applied to EPR
spectra decomposition [16,17]. Our approach is to make the separated signals
as sparse as possible, and it has been proven that such approach can give the
correct solution of source separation if the sources are reasonably sparse [17].
In this paper we introduce our sparse component analysis (SCA) approach and
investigate some related theoretical and practical issues.

2 Blind Source Separation

The blind source separation problem is to extract a number of M unknown
source signals from a number of N known linear mixtures and at the same time
estimate the unknown mixing matrix, using the following model:

x(k) Δ=

⎡⎢⎢⎢⎣
x1(k)
x2(k)

...
xN (k)

⎤⎥⎥⎥⎦ = As(k) Δ=

⎡⎢⎢⎢⎣
a11 a12 · · · a1M
a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
s1(k)
s2(k)

...
sM (k)

⎤⎥⎥⎥⎦ , (1)

where the unknown N by M matrix A is called the mixing matrix, x(k) the
mixtures and s(k) the unknown sources, k = 1, · · · ,K, and K is the length of
the signals. Our task is to find a separating matrix B so that ŝ(k) is an estimate
of the source vector s(k), with preserved waveforms but possibly undetermined
scales and orders. In the following section we introduce a sparse component
analysis (SCA) approach to this problem.

3 A Sparse Component Analysis Approach

3.1 Sparsity Measure of Sparse Signals

A sparse signal has some peaks and relatively flat area in between the peaks.
Typical measures to quantify the degree of sparseness of a signal are L0 norm and
L1 norm, but L0 norm is sensitive to noise and L1 norm is not scale invariant.
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In [17] we define the sparsity function of a signal s as the ratio of its second
order statistic to its absolute first order statistic, specifically as

S(s) =

√
1/K
∑K
k=1 s

2(k)
1/K
∑K
k=1 |s(k)|

=
√
K

√∑K
k=1 s

2(k)∑K
k=1 |s(k)|

=
√
K
‖s‖2
‖s‖1

, (2)

where ||s||2 and ||s||1 represent L2 norm and L1 norm of s respectively. It can
be shown that S(s) is scale invariant and is bounded between 1 (when the signal
is flat) and

√
K (when the signal contains one only pulse) [17]. The sparsity will

not change much with the length of the signal if it is stationary and long enough
to provide a stable statistic.

3.2 Blind Source Separation by Sparse Component Analysis

Theorem 1. Let Ω = {k|s1(k) = 0, s2(k) �= 0} be the support where s2(k) is
not overlapping with s1(k) . Then, J(t) = S(s1 + ts2) has a local maximum
at t = 0 if |eρ| < ||s1||2√

K
S(s1)

∑
k∈Ω |s2(k)|, where eρ =

∑K
k=1 s1(k)s2(k) −

S(s1)
∑K
k=1 s

′
1(k)s2(k) and s′1(k) = ‖s1‖2√

K
sgn(s1(k)).

Proof. The theorem has been proven in [17], here we summarize the proof for

completeness. J0(t) = 1
K J2(t) =

∑K
k=1 [s1(k)+ts2(k)]2

[∑K
k=1 |s1(k)+ts2(k)|]2

= ‖s1+ts2‖2
2

‖s1+ts2‖2
1

will have the

same maxima as J(t), thus in the following we analyze the property of J0(t).

Let g(t) =
1
2
‖s1 + ts2‖31

∂J0

∂t

=
1
2
‖s1 + ts2‖1

∂

∂t
‖s1 + ts2‖22 −

1
2
‖s1 + ts2‖22
‖s1 + ts2‖1

∂

∂t
‖s1 + ts2‖21

= ‖s1 + ts2‖1 [
∑K

k=1
s1(k)s2(k)+t

∑K

k=1
s2
1(k)]

−‖s1 + ts2‖22
∑K

k=1
sgn (s1(k) + ts2(k))s2(k)

If |eρ| < ||s1||2√
K

S(s1)
∑
k∈Ω |s2(k)|, that is ‖s1‖22

∑
k∈Ω |s2(k)| > |eρ| ‖s1‖1 , since

g(t→ 0)→ ‖s1‖1 [
∑K

k=1
s1(k)s2(k)− S(s1)

∑K

k=1
s′1(k)s2(k)]

−‖s1‖22
∑

k∈Ω sgn(ts2(k))s2(k)

= eρ ‖s1‖1 − ‖s1‖22
∑

k∈Ω sgn(ts2(k))s2(k),

g(t→ 0−)→ eρ ‖s1‖1 + ‖s1‖22
∑

k∈Ω |s2(k)| > 0,

g(t→ 0+)→ eρ ‖s1‖1 − ‖s1‖22
∑

k∈Ω |s2(k)| < 0.

Therefore J(t) has a local maximum at t = 0.
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For a system with two inputs (M = 2) and two outputs (N = 2), we can
extract the sources as

z(k) = x1(k) + cx2(k). (3)

Due to the model Eq. (1) the above can be represented by the sources as

z(k) = α(s1(k) + t2s2(k)) = β(s2(k) + t1s1(k)). (4)

Then Theorem 1 says that under the condition in the theorem a linear com-
bination of the mixtures that is locally most sparse, according to the sparsity
measure defined by Eq. (2), will be an estimation of one of the source signals.
This estimation makes the separated signals as (locally) sparse as possible, so
we will refer to it as sparse component analysis (SCA).

The following procedure summarizes the SCA approach to blind source sep-
aration for a 2× 2 system:

(1) Find c1 and c2 where J(c) = S(x1(k) + cx2(k)) achieves its local maxima;
(2) Estimate the source signals as ŝm(k) = x1(k) + cmx2(k), m = 1, 2.

4 Theoretical and Practical Issues

4.1 On the Condition of SCA Approach to Blind Source Separation

It is obvious that if the two sources s1(k) and s2(k) are uncorrelated and Ω �= φ,
with s1(k)s2(k) = 0 for any k as a special case, then the condition of Theorem 1
is satisfied. To investigate the general case where the sources are correlated, we
need the following lemma.

Lemma 1. Let s1(k) and s2(k) be two random time series with zero means,
s′(k) =

√
m2(s)sgn(s(k)), m2(s) = E{s2(k)}, m1(s) = E{|s(k)|}, S(s) =√

m2(s)
m1(s)

be the sparsity of s(k), and ρ(s1, s2) = E{s1(k)s2(k)}/
√
m2(s1)m2(s2)

be the correlation coefficient between s1(k) and s2(k). Relate s1(k) and s2(k)
with linear regression

s2(k)√
m2(s2)

=
s1(k)√
m2(s1)

ρ(s1, s2) + z(k)
√

1− ρ2(s1, s2), (5)

where z(k) is the normalized regression residue uncorrelated to s1(k), with zero
mean and unit standard deviation. then

lim
K→∞

e′ρ = S(s1)
√

1− ρ2(s1, s2)E{sgn(s1(k))z(k)}, (6)

where e′ρ ≡
eρ/K√

m2(s1)m2(s2)
is the normalized version of eρ defined in Theorem 1.
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Proof. It is obvious that m2(s′1) = m2(s1), then

ρ(s′1, s2) = E{s′1(k)s2(k)}/
√
m2(s1)m2(s2)

= ρ(s1, s2)E{s′1(k)s1(k)}/m2(s1) +
√

1− ρ2(s1, s2)E{s′1(k)z(k)}/
√
m2(s1)

= ρ(s1, s2)E{sgn(s1(k))s1(k)}/
√
m2(s1) +

√
1− ρ2(s1, s2)E{sgn(s1(k))z(k)}

= ρ(s1, s2)m1(s1)/
√
m2(s1) +

√
1− ρ2(s1, s2)E{sgn(s1(k))z(k)}

= ρ(s1, s2)/S(s1) +
√

1− ρ2(s1, s2)E{sgn(s1(k))z(k)}. (7)

Therefore, e′ρ =
1
K

∑K
k=1 s1(k)s2(k)√
m2(s1)m2(s2)

−S(s1)
1
K

∑K
k=1 s

′
1(k)s2(k))√

m2(s1)m2(s2)
, lim
K→∞

e′ρ = ρ(s1, s2)−

S(s1)ρ(s′1, s2) = S(s1)
√

1− ρ2(s1, s2)E{sgn(s1(k))z(k)}.

The condition in Theorem 1 can be rewritten as∣∣e′ρ∣∣ < S(s1)
∑
k∈Ω |s2(k)|

K
√
m2(s2)

=
S(s1)
S(s2)

∑
k∈Ω |s2(k)|∑K
k=1 |s2(k)|

. (8)

If both s1(k) and s2(k) are Gaussian, z(k) is also Gaussian and independent of
s1(k), then E{sgn(s1(k))z(k)} = 0, and limK→∞ e′ρ = 0 due to Lemma 1, there-
fore the condition Eq.(8) could be easily satisfied if the signals are long enough.
In practical situations, e′ρ might not be zero since we have only a finite number
of data points, and the sources may not be Gaussian. If the sources are Gaus-
sian, e′ρ should be a small number when K is not too small. In other situations,
simulation results in Section 5 show that

∣∣e′ρ∣∣ is close to 0. Consequently, the
condition Eq.(8) can be satisfied if there is enough portion of the source s1(k)
with large values not overlapping with the other source s2(k).

4.2 On Systems with More Than Two Sources

For a system with more than two sources, assuming N ≥ M , the same idea of
sparse component analysis can also apply. To extract a source signal, let

z(k) =
∑N

n=1
cnxn(k). (9)

According to Eq.(1), z(k) can be represented by the original sources as

z(k) = αm(sm(k) + t
∑

i�=m βisi(k)). (10)

Therefore, to extract the source signal sm(k), the combination of all other source
signal can be regarded as a virtual source s̃(k) =

∑
i�=m βisi(k), then the result

on systems with two sources can be applied. That is, the local maxima of S(c) =
S(
∑N
n=1 cnxn(k)) will give the estimates of the source signals. However, one

potential problem is that in the worst case the virtual signal s̃(k) might be far
less sparse, thus making the condition Eq.(8) more difficult to be satisfied.
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4.3 Comparison with Other Sparse Methods

There has been quite a lot development in source separation methods utiliz-
ing the sparseness of the source signals, as reviewed in [14]. Most of them are
geometrical methods that estimate the mixing matrix A through locating the
clustered lines in the scatter plot of the mixtures, and then estimate the source
signals through L1 norm minimization constrained by the model Eq.(1) with A
fixed. A special interest is on systems with less number of mixtures than sources
(N < M). However, these approaches normally require the source signals to be
significantly sparse, since as demonstrated in [16] the lines in the scatter plot
are not so obvious if the source signals are not very sparse, which is common
in practice. Nevertheless, this two-stage approach can deal with the situation in
which the sources are overlapped to some degree, as shown in [18].

Our approach is different from all the existed ones in that we achieve source
separation by directly making the separated signals as sparse as possible, where
the sparseness is measured by a sparsity function whose reciprocal is a normalized
L1 norm. The normalization makes this sparsity measure scale invariant, which
is of crucial importance for our SCA approach to source separation.

4.4 Signal Sparsification

Since it has been demonstrated that most ICA algorithms work better for sparser
sources and if the sources are significantly sparse there may be solutions for
systems with less number of mixtures than sources, it is desirable to sparsify the
signals by some kinds of sparsification transforms, such as wavelet transform,
that give a sparse representation of the original signals [14,18,19]. In this paper
we have demonstrated that if the source signals are reasonably sparse then we
can extract source signals from their linear mixtures even if the source signals
are not independent of each other. Therefore, signal sparsification is also very
important for our SCA approach to source separation, since the more sparse the
source signals, the easier the condition Eq.(8) can be satisfied.

5 Simulation Results

In Section 4.1 the condition on the source signals to validate the SCA approach to
blind source separation has been discussed. For correlated non-Gaussian sources,
the condition depends on the parameter e′ρ defined in Theorem 1 and Lemma 1.
Here we investigate e′ρ for sources with a variety of statistical distributions and
it’s variation over the whole range of correlation coefficients between the two
sources. A number of six cases are studied: (1) both with normal distribution,
(2) both with exponential distribution, (3) both with uniform distribution, (4)
both with lognormal distribution, (5) s1(k) normal while s2(k) exponential, and
(6) s1(k) exponential while s2(k) normal. Results are shown in Figure 1, in which
1000 Monte Carlo simulations for each case have been performed to generate the
plots. It can be seen that for all cases e′ρ is always relatively small even when
the two sources are highly correlated.
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Fig. 1. Simulation results for e′
ρ Fig. 2. Separate EPR spectra by SCA

The SCA approach has been successfully applied to EPR spectra decompo-
sition, and the results on both simulated and real data can be found in [17].
Here we show a result for a simulation with noisy signals. Pure EPR spectra of
two free radicals hydroxyl and superoxide are used as sources for the simulation,
and noises are added to the linear mixtures to a level of SNR=20dB. The SCA
separation results are shown in Figure 2. Bold lines are the original sources,
overlayed with the corresponding estimates. Our SCA approach performs very
well for this case although the correlation coefficient between these two sources
is as high as 0.3454.

6 Conclusions

If the source signals are independently non-Gaussian then the ICA approach
which makes the separated signals as independent as possible will give a solu-
tion for the blind source separation problem. If the source signals (not necessar-
ily non-Gaussian) are uncorrelated over a set of time lags then an uncorrelated
component analysis (UCA) approach which makes the separated signals as un-
correlated as possible will also solve the source separation problem [6]. In this
paper, we have shown that if the source signals (not necessarily uncorrelated)
are reasonably sparse then a sparse component analysis (SCA) approach that
makes the separated signals as sparse as possible can serve as a solution. Some
related theoretical and practical issues have been investigated, with support from
computer simulations.
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Abstract. The problem of nonlinear signal separation and under-
determined signal separation has received increasing attention in the 
research of blind signal separation. Few of them can solve the situation 
where nonlinear and underdetermined characteristics exist 
simultaneously. In this paper, a new learning algorithm based on 
Bayesian statistics is proposed to solve the problem of the blind 
separation of nonlinear and underdetermined mixtures. This paper 
addresses the Blind Signal Separation (BSS) of post-nonlinearly mixed 
signals where the number of observations is less than the number of 
sources. Formal derivation shows that the source signals, mixing matrix 
and nonlinear functions can be estimated through an iterative technique 
based on alternate optimization. Simulations have been carried out to 
demonstrate the effectiveness of the proposed algorithm in separating 
signals under nonlinear and underdetermined conditions. 

1   Introduction 

Independent Component Analysis (ICA) has received increasing attention in recent 
years. The classical mixture model is represented as 

= +Y MX  (1) 

where Y , X   are mixtures, sources and noises respectively. The mixing matrix M  
is assumed to be a square M M×  matrix. Many solutions have been proposed to 
recover the source signals [1, 2, 3]. But, none of these methods can handle the case 
where the mixture is nonlinear and underdetermined. 

ICA with underdetermined mixture is one of the issues addressed in ICA where the 
dimension of the mixing matrix M  is N M×  where N M< . There are a number of 
methodologies proposed to estimate the sources and reviewed in [4, 5, 6]. To address 
underdetermined BSS, a Maximum a Posteriori (MAP) probability approach can be 
applied, which is expressed as follows 

( )ˆ ˆ arg max ( ) arg max ( , ) ( )P P P= ∝
X,M X,M

X,M X,M Y X M Y M Y  (2) 

Maximizing the joint probability of X  and M  in (2) can be complicated. In this 
paper, we propose to use an iterative optimization approach to maximize the joint 
probability as follows: 
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ˆ arg max ( )P=
X

X X M,Y  (3) 

ˆ arg max ( ) arg max ( | , ) ( ) ( )P P P P d= =
M M

M M Y Y M X M X X  (4) 

The main contribution of this paper is to address the issue of post-nonlinear and 
underdetermined mixtures in BSS and propose an algorithm that resolves both issues. 
The structure of this paper is organized as follows: the post-nonlinear underdetermined 
mixing model is firstly proposed in section 2; Section 3 and 4 presents the estimation of 
the mixing matrix and source signals; Section 5 presents an effective method to 
minimize the nonlinearity mismatch. Section 6 presents simulation results and analysis 
to verify the effectiveness of the proposed algorithm. 

2   Post-nonlinear Underdetermined Model and Generalized 
Gaussian Distribution (GGD) Model 

The post-nonlinear underdetermined mixing model is composed of a linear mixing 
matrix M  with dimension N M×  where N M<  and a layer of nonlinear distortion 
function { } 1

N

n n
f

=
[7]. The model can be expressed as 

( )F= +Y MX  (5) 

A generative approach is adopted in the estimation of source signals. Following 
(3), the expression below is derived: 

( ) ( , ) ( ) ln ( , ) ln ( )P P P P P∝ ∝ +X Y,M Y X M X | M Y X M X  (6) 

To incorporate the prior knowledge of ( )P X , we utilize the GGD model [8] which is 
defined as follows: 

( / )( ; , )
2 (1/ )

Pu
p

g u p e
p

λλ
λ

−=
Γ

        
super-gaussian, 0<p<2

(.) gaussian,       p=2
sub-gaussian, p>2

g =  (7) 

where (.)Γ  is the standard gamma function, λ  is the 
standard deviation, p  controls the shape of distribution and therefore the kurtosis of 
the signal. 

3   Estimation of Mixing Matrix 

The marginal likelihood ( )P M Y  is expressed as follows 

( ) ( , | )

( | , ) ( ) ( )

ln ( ) ln ( | , ) ( )

P P d

P P P d

P P P d

=
∝
∝ +

M Y M X Y X

Y M X M X X

M Y M X X X

 (8) 

As equation (8) is computationally intractable due to the underdetermined mixture, 
we obtain an approximation by using the Gaussian integral as follows:  

( )( )( ) 1/
/ 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | , ) ( ) (2 ) ( | , ) ( )det ln ( | , ) ( )kP P d P P P Pπ

−

≈ −ΛY M X X X Y M X X Y M X X

 

(9) 



 Post-nonlinear Underdetermined ICA by Bayesian Statistics 775 

 

where Λ  represents the Hessian function around the estimated X̂ . Details of the 
estimation of X̂  is laid out in section 4. 

So it is possible to build a cost function when substituting (9) into (8) and the cost 
function is shown as follows 

1ˆ ˆ ˆarg max ln ( ) ln ( ) ln ( | , ) ln det ( )
2

P P P H= + + −
M

M M X Y M X X  (10) 

where ( )( )ˆ ˆ ˆ( ) ln ( ) ( | , )H P P= −ΛX X Y M X  is the Hessian matrix. Due to the limitation of 

space, we only introduce the derivation of 
ˆln det ( )H∂

∂
X

M
 in the following part 

From (10), we know that 

( )( )ˆ ˆ ˆ( ) ln ( ) ( | , )
ˆ ˆln ( | , ) ln ( )

H P P

P P ξ θ
= −Λ
= −Λ − Λ = +

X X Y M X

Y M X X
 (11) 

where ˆln ( | , )Pξ = −Λ Y M X  and ˆln ( )Pθ = −Λ X . 

Based on the chain rule, 

1 1

ˆ ˆ ˆln det ( ) 1 det ( ) ( )
ˆ ˆdet ( ) ( )

M M
kl

l k ijkl

H H h

mH h= =

∂ ∂ ∂=
∂ ∂∂

X X X
M X X

 (12) 

and the following identity [9] 

1
ˆdet ( ) ˆ ˆ(det ( )) ( )

ˆ( )
lk

kl

H
H h

h
−

∂ =
∂

X
X X

X
 (13) 

substitute (13) into (12), this leads to 

1 1 1

1 1 1 1 1 1

ˆ ˆln det ( ) ( )ˆ ˆ ˆ( ) ( ) ( )
M M M M M M

kl kl kl
lk lk lk

l k l k l kij ij ij

H h
h h h

m m m

ξ θ
− − −

= = = = = =

∂ ∂ ∂ ∂= = +
∂ ∂ ∂ ∂

X X
X X X

M
 (14) 

Theorem 1: 
ˆln det ( )H∂

∂
X

M
 can be calculated as follows 

[ ]1 1
1 1

ˆln det ( ) ˆ2
T

T T
N N

H η η η η− −
∂ ′ ′= +

∂
X

W X
M

L  (15) 

where 
1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) 3 ( ) ( )
M M M M

n n n nm m n nm m n nm m n nm m
m m m m

y f m x f m x f m x f m xη
= = = =

= − −′ ′′′ ′ ′′  and 

2

1 1 1

ˆ ˆ ˆ( ) ( ) ( )
M M M

n n n nm m n nm m n nm m
m m m

y f m x f m x f m xη
= = =

= − −′ ′  

The final expression for the learning rule of M  can be expressed as: 

[ ]2
1 1

1 1

ˆln ( ) 1ˆ ˆ
ˆ 2

Tp
T T T

p N N

P
Iλ η η η η− − −

∂ ′ ′Δ = − + − = +
∂

M

M

X
M M M W X X L N

X
o L  (16) 
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where we define 2 ˆln ( ) ˆL
ˆ

p
T T

p

P
Iλ − ∂= − +

∂
M

M

X
M M W X

X
o  as the linear component 

and [ ]1 1
1 1

1 ˆ
2

T
T

N Nη η η η− −′ ′= −N XL  as the nonlinear component. Since the nonlinear 

mixing processing is unknown, a mismatch in the nonlinear function will occur. In the 
following sections, we present a learning algorithm to estimate the source signals and 
introduce a systematic method to minimize this nonlinear mismatch. 

4   Estimation of Source Signal 

The GGD model can be incorporated into (6) to form the cost function of the 
proposed generative network: 

( )ˆ arg max J=
X

X X  (17) 

where 

( ) 2

2
1

1 1
( ) x

x

M
p

mp
mx

J F x
ελ λ =

= − − −X Y MX  (18) 

The derivative of the cost function with respect to X  simply becomes 

( )( )2

2

2
( ) ( ( ))( ( )) x

x

pxT
mp

x

p
J diag F F diag x

ελ λ
−′∇ = − −X X M MX Y MX X  (19) 

It can be easily inferred that the optimal solution of X  satisfies the condition 
( ) 0J∇ =X X . The adaptation of X  can be expressed as the gradient-based learning 

algorithm: 
( 1) ( ) ( )t t Jμ+ = + ∇X XX X X  (20) 

where μX  is the learning rate of the source estimation. 

5   Minimization of Nonlinear Mismatch 

Due to lack of knowledge about the nonlinear function, the initial estimation of 
nonlinear function in (16) may not match the true function. In this case, a self-adaptive 
algorithm is necessary to approximate the nonlinear function as similar as possible to 
the true nonlinear function. It has been demonstrated in the Universal Approximation 
Theorem [10] that for every continuous function (.)nf , there always exists a Multilayer 

Perceptron [11]which can uniformly approximate (.)nf  in the form of 

( ) ( ) ( ) ( )1 2 1 2( , , , ) tanh( )δ = +U A A A A U  (21) 

As long as the nonlinear functions (.)nf  are wrongly specified, the estimation of X  

and M  will consequently degrade. Since the function (.)nf  is a one-to-one mapping, 

the MLP indeed performs non-mixing nonlinear mapping. Thus, this allows us to 
formulate a least square error criterion to minimize the mismatch between the true 
observed signal and the estimated observed signal as follows: 
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( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

2

1 2 1 2

1, ,
2

1 2

, ,

{ , , } arg min tanh( )

arg min tanh( )
n n n

n n n

M

n n n n n n nm m n
m

T T
n n n n n

y m x

y u
β

β

β β

β
=

= − +

= − +
A A

A A

A A A A

A A
 (22) 

The parameters in (22) can be estimated from the following: 

( ) ( ) ( )( ) ( )1 1 2 2ˆ 2 tanh( ) tanh( )T T
n n n n n n n n ny u uβ β= − − + +A A A A  (23) 

( )
( ) ( ) ( )( ) ( )( )

2
1 1 2 22

ˆ
2 tanh( ) diag sech ( )ˆ 1

n T T T T n
n n n n n n n n n

n

uy u uβ β
β

= − − + +A A A A A  (24) 

Once the coefficients of Multilayer Perceptron converge, the new estimated 
nonlinear function is substituted into (16) and (19) to obtain refined estimates of X̂  
and M̂ . 

6   Results and Discussion 

In this section, two different experiments are carried out to evaluate the algorithm’s 
effectiveness in BSS of nonlinear underdetermined signals and compare the 
performance of the proposed algorithm against the FOCUSS algorithm [10]. As a 
basis for comparison, a performance index is adopted to assess the results. It can  
be as: 

1

1
2 1

M

i

i
M

ρ
=

= −      [ ]
2 2

ˆ ˆ( [ ]) ( [ ])

ˆ ˆ[ ] [ ]

i i i i
i

i i i i

E x E x x E x

E x E x E x E x
ρ

∗− −
=

− −
 (25) 

where iρ  is the normalized cross-correlation, ‘ ∗ ’ and ‘ ⋅ ’ denote the complex 

conjugate and absolute operation respectively. 
For all experiments presented in this paper, the initial value of M  is selected 

randomly and the initial value of X̂  is obtained from the following relationship 
ˆ +X = M Y  (26) 

where +M  is the pseudoinverse of mixing matrix M . The signals are perturbed with 
Gaussian noise at the sensors distributed and is used to perturb the sensors. 

6.1 Performance Improvement Compared with Linear Algorithm 

In this experiment, three audio waves correspond to the source signals shown in Fig.1 
(top). The source signals are transformed into two mixtures through (5) and depicted in 
Fig.1 (middle). The mixing matrix is randomly generated from a Gaussian distribution. 
The actual post-nonlinear process is set to tanh(.)  and the estimated nonlinear process is 
assumed to be identical to the true nonlinear distortion function. Fig.1 (bottom) shows 
the recovered source signals by the proposed algorithm under SNR=20dB. Fig.1 (top) 
and Fig.1 (bottom) clearly demonstrates the close resemblance between the original 
source signals and the recovered sources signals. 
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Fig. 1. Nonlinear underdetermined mixing using three speech signals. Three source signals 
(top); two mixtures (middle); three estimated source signals (bottom). 
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Fig. 2. Performance index comparison under SNR=20dB (top); Performance index comparison 
as a function of SNR (bottom) 

To demonstrate the incompetence of a linear BSS algorithm approach and the 
significance in the proposed algorithm of post-nonlinear underdetermined mixtures, we 
compare the effectiveness of the proposed algorithm with the well-known FOCUSS 
algorithm [10]. Fig.2. (top) depicts the performance index under fixed SNR=20dB. It is 
seen that both of the performance index converges to a small fixed value after 500 
iterations. However, performance of the proposed algorithm surpasses FOCUSS 
algorithm by over 100% under SNR=20dB. In the case of varying degrees of noise, 
when SNR<5dB the presence of noise dominates and affects the performance of both 
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algorithms. However, a significant improvement in the performance of the proposed 
algorithm is observed as SNR increases and the rate in accuracy exceeds the FOCUSS 
algorithm. 

6.2 Nonlinear Mismatch 

In reality, the problem of nonlinear mismatch is inevitable in the signal separation 
process. Any mismatch in the nonlinear function will lead to a decrease in 
performance. A self-adaptive Multilayer Perceptron is employed to test the 
performance of the proposed algorithm in approximating the true nonlinear function. 

The accuracy of the proposed algorithm in estimating the following three different 
nonlinear functions are measured independently 

[ ]1/ 3 5
1 1 1 2 3( ) , , tanh( )

T
F u u u u u= + +U , where 

1

( )
M

i im m
m

u m x
=

=  

Fig.3 shows the true and estimated nonlinear function for each of the three 
functions. Results show that, in each channel, the estimated Multilayer Perceptron 
converges very close to the true nonlinear function. Although minor nonlinear 
mismatch still exists in some cases, this mismatch is negligible compared to the case 
when the hypothetical nonlinear function are selected arbitrarily. 

-2 -1 0 1 2
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2
-40

-30

-20

-10

0

10

20

30

40

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5
u+u1/3 
estimated u+u1/3

tanh(u)
estimated tanh(u)

u+u5
estimated u+u5

 

Fig. 3. Comparison between the true nonlinear function and the estimated nonlinear function by 
Multilayer Perceptron 

7   Conclusion and Future Work 

The main contribution of this paper is to present a novel algorithm which successfully 
recovers the source signals from a set of blind nonlinear underdetermined mixtures. 
The algorithm is derived from a Bayesian framework and addresses simultaneously 
the problem of nonlinearity and underdetermined mixtures in BSS. Simulation results 
demonstrate the efficacy of the proposed algorithm in separating blind nonlinear 
underdetermined mixtures. However, a few challenges still remains to be solved. One 
of them is the high computational complexity incurred by iterative process of the 
parameter update. An effective solution is to remove the parameters that become 
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trivial after a few iterations. Another challenge lies in finding a general model for all 
kinds of distributions as the GGD model can only model unimodal distributions. A 
possible alternative would be the Gaussian Mixture Model (GMM) which can 
asymptotically accommodate any continuous distributions. 
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Relationships Between the FastICA Algorithm
and the Rayleigh Quotient Iteration
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Abstract. The FastICA algorithm is a popular procedure for indepen-
dent component analysis and blind source separation. Recently, several
of its convergence properties have been elucidated, including its average
convergence performance and its finite-sample behavior. In this paper,
we examine the kurtosis-based algorithm version for two-source mix-
tures with equal-kurtosis sources, proving that the single-unit FastICA
algorithm has dynamical behavior that is identical to the Newton-based
Rayleigh Quotient Iteration for finding an eigenvector of a symmetric
matrix. We also derive a bound on the average inter-channel interference
indicating that the initial convergence rate of FastICA is linear with a
rate of (1/3). A simulation indicates its convergence performance.

1 Introduction

The FastICA algorithm of Hyvarinen and Oja [1] is a popular procedure for inde-
pendent component analysis (ICA) and blind source separation. The technique
is simple to set up, converges quickly, and provides good separation behavior in
a variety of contexts. Moreover, when a fourth-moment or kurtosis-based con-
trast function is used within the algorithm, convergence is globally cubic about
a separating solution for the linear ICA model with non-Gaussian sources [2].
The technique has become popular for a number of problems in signal analysis.

Various studies of the convergence and identification behavior of the FastICA
have been made, including stationary point analyses in the two-source and m-
source mixing cases [3,4], its average convergence performance [4,5,6], and its
finite-sample behavior at convergence [7]. In this paper, we add to this knowledge
about the convergence of the FastICA algorithm by studying the algorithm for
mixtures of two sources with equal kurtoses, with the goal of providing additional
theoretical insight into the algorithm’s behavior. In this situation, we prove that

– the single-unit FastICA algorithm has dynamical behavior that is mathe-
matically-identical to the Newton-based Rayleigh Quotient Iteration for find-
ing a minimum eigenvalue of a symmetric matrix, and

– convergence of the average inter-channel interference is bounded above by a
function that converges linearly with rate (1/3) or 4.77dB per iteration.
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Thus, our results support previous observations made in the ICA literature which
indicated linear (exponential) convergence of FastICA with a kurtosis contrast
[6], and it connects the algorithm with a well-known eigenvector search proce-
dure. A simulation verifies the derived performance bound.

2 Kurtosis-Based FastICA for Two-Source Mixtures

We briefly introduce the FastICA algorithm for two-source mixtures so that no-
tation can be defined; complete descriptions of the algorithm are in [1,2]. Let
s(k) = [s1(k) s2(k)]T , where s1(k) and s2(k) are zero-mean, unit variance, non-
Gaussian, and statistically-independent at time k, such that their normalized
kurtoses are κi = E{s4

i (k)} − 3, i ∈ {1, 2}. Let x(k) = As(k) contain a linear
mixture of these sources, The single-unit FastICA procedure first determines a
whitening transformation P such that v(k) = Px(k) contains unit-power uncor-
related signals. A weight vector wt = [w1,t w2,t]T is then adjusted such that

yt(k) = wTt v(k) (1)

is an estimate of one extracted source. The adjustment procedure is

w̃t = E{y3
t (k)v(k)} − E{y2

t (k)}wt, wt+1 =
w̃t√
w̃Tt w̃t

(2)

if a kurtosis-based cost function is used. An extension allows one to use other
cost functions [2]. Sampled data averages are used to compute all expectations.

For analysis, consider the behavior of FastICA in the combined coefficient
vector ct = ATPTwt, in which case y(k) = cT s(k). Furthermore, for two-source
mixtures, we introduce an intrinsic parametrization for ct = [c1,t c2,t]T given by

ct = [cos(θt) sin(θt)]T . (3)

Then, letting the number of data measurements tend to infinity, an equivalent
expression for FastICA in this case is [4]

c1,t+1 =
κ1c

3
1,t√

κ2
1c

6
1,t + κ2

2c
6
2,t

, c2,t+1 =
κ2c

3
2,t√

κ2
1c

6
1,t + κ2

2c
6
2,t

, (4)

which can be represented even more compactly using (3) as

tan(θt+1) =
κ2

κ1
tan3(θt). (5)

When |c2,t| ≤ |c1,t|, the ratio c2,t/c1,t = tan(θt) is related to the inter-channel
interference (ICI) at time t as

ICIt =
c22,t
c21,t

= tan2(θt), (6)
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which represents a useful performance factor for the algorithm. In this paper,
we shall assume equal kurtosis sources, such that κ2/κ1 = 1. Equal-magnitude
kurtosis sources could be handled with additional notational changes. We shall
also restrict our study to the case |c2,t| ≤ |c1,t| or |θt| ≤ π/4, as all other
convergence regions follow from the four-fold symmetry of the parameter space.

3 The Kurtosis Contrast, Newton’s Method, and the
Rayleigh Quotient Iteration

The single-unit kurtosis-based FastICA algorithm can be derived as an approx-
imate Newton’s method for minimizing the cost [1,2]

J (w)) = −
∣∣∣E{y4(k)} − 3

(
E{y2(k)}

)2∣∣∣ (7)

under a unit power constraint on y(k) given by E{y2(k)} = wTw = cT c = 1. In
the two-source case, this constraint is exactly maintained by (3). We can express
the kurtosis contrast for a two source mixture with equal-kurtosis sources in the
vicinity of θ = 0 as

J (c) = −|κ|
[
c41 + c42

]
or J (θ) = −|κ|

[
cos4(θ) + sin4(θ)

]
. (8)

Our pursuit of knowledge about the FastICA procedure can move in either a
constructive or an analytical fashion, and we choose the former approach first.
Ignoring our ability to represent iterative algorithms using measured data, what
are some good approaches that could be used to minimie J (θ) with respect
to θ? Clearly, Newton’s method is of interest given the convexity and evenness
of J (θ) at θ = {0, π/2, π, 3π/2}, as Newton-based methods converge cubically
under such conditions. The one-dimensional gradient and Hessian of J (θ) are

∂J (θ)
∂θ

= |κ| sin(4θ) and
∂2J (θ)
∂θ2 = 4|κ| cos(4θ), (9)

such that Newton’s method for adapting θ is

θt+1 = θt −
1
4

tan(4θt). (10)

Near θt = 0, the algorithm is indeed cubically-convergent, as

θt+1 = −16
3
θ3
t +O(θ5

t ). (11)

Eqn. (10) has appeared before in the analysis of the Rayleigh quotient iter-
ation (RQI) for finding the eigenvector of a symmetric matrix [8], in which the
cost function in the transformed eigenvector ct and eigenvalues {λ1, λ2} is

J (c) = λ1c
2
1 + λ2c

2
2 or J (φ) = λ1 cos2(φ) + λ2 sin2(φ), (12)

Newton’s method for minimizing J (φ) is
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φt+1 = φt −
1
2

tan(2φt) ≈ −4
3
φ3
t +O(φ5

t ), (13)

which is identical in form to (10) for θt = 2φt. That the two costs in (8) and (12)
would produce the same Newton iteration is remarkable, but our interest here
is in realizable algorithms, such as FastICA for blind source separation. The fol-
lowing theorem, proven in the Appendix, illuminates an important relationship
between FastICA and the RQI.

Theorem 1. In the two-source equal-kurtosis case as the number of measure-
ments tends to infinity, the FastICA algorithm for minimizing (8) in the intrinsic
parametrization variable θt is

θt+1 = −θt + arctan
(

1
2

tan(2θt)
)

= θ3
t +O(θ5

t ), (14)

which is identical in form to the Rayleigh Quotient Iteration for minimizing (12)
in the intrinsic parametrization variable φt, as given by

φt+1 = φt − arctan
(

1
2

tan(2φt)
)

= −φ3
t −O(φ5

t ), (15)

where θt = (−1)tφt. Moreover, both the RQI and FastICA are approximate step-
and-project Newton algorithms in ct employing the tangent form of the Newton
update within the intrinsic parameter space θt or φt.

The above theorem states that in the two-source case, the weight vector wt for
the FastICA algorithm evolves identically to that for the RQI applied to a sym-
metric matrix Γdiag{λ1, λ2}Γ T when Γ = PA is orthonormal, except for the
sign changes associated with the alternating update directions in the RQI. We
have verified this fact numerically to the machine precision limits of MATLAB
by running each algorithm its respective task for the same Γ separation and
eigenvector matrix, respectively. That the FastICA procedure shares the same
evolutionary behavior of RQI is informative, as RQI is a well-known and well-
studied procedure in the numerical linear algebra community [8,9]. The RQI is
considered one of the best procedures for its task due to its local cubic con-
vergence. This link means that convergence results for RQI can potentially be
applied to the FastICA algorithm, and vice versa.

To better see the geometrical relationships of the various algorithms, Figure 1
illustrates a single iteration of each algorithm in both two-dimensional c-space as
well as one-dimensional angular space. Point O corresponds to the point on the
unit circle at angle θt of the FastICA algorithm. Point P is the negative of this
angle at −θt, which we will set equal to φt for comparison with the RQI. Vector
OD is the the component of the Newton update direction for minimizing the
kurtosis-based cost in (8) in the tangent space at point O or angle θt. Vector PE
is the component of the Newton update direction for minimizing the Rayleigh
quotient cost in (12) in the tangent space at angle φt. Point A is reached by the
update in (10), in which the arclength OA is equal to the linear distance OD.
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Fig. 1. Geometry of the FastICA algorithm and the Rayleigh Quotient Iteration - see
text for label descriptions

Point B is reached by the update in (13), in which the arclength PB is equal
to the linear distance PE. Point C is the result of both FastICA and RQI in
their respective problems, which is obtained by projecting the point E to the
unit circle. In all cases, the angle magnitude is reduced in proportion to the
cube of the original angle θt or φt for small angles: Point A is at an angle of
approximately − 16

3 θ3
t , Point B is at an angle of approximately 4

3θ
3
t = − 4

3φ
3
t , and

point C is at an angle of approximately θ3
t .

In practice, the kurtoses of the two sources are not equal; even so, the locally-
cubic convergence of the FastICA algorithm is maintained. From (5),

θt+1 = arctan
(
κ2

κ1
tan3(θt)

)
=

κ2

κ1
θ3
t +O(θ5

t ). (16)

Convergence of θt to zero remains cubic. The κ2/κ1 factor in (16) does not
significantly alter the algorithm’s local convergence behavior. In fact, if κ2/κ1 <
0, the update’s oscillatory behavior about θ = 0 is identical to that in the RQI.

4 A Bound on the Average ICI for FastICA

The FastICA algorithm appears to converge quickly in many contexts. In [6],
the average behavior of the inter-channel interference (ICI) for kurtosis-based
FastICA on general m-dimensional mixtures was observed in simulations to be
exponential with rate (1/3). Recent analytical work has verified this convergence
property under a range of initial conditions on w0 [5,6]. The goal of this section
is to use the simplicity of the two-source FastICA algorithm analysis to verify
this property under general initial conditions for w0.
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When κ1 = κ2, we can use (5) to write the evolutionary equation for FastICA
in a remarkably simple form for the ICI at time t:

ICIt = ICI3
t−1 = (ICI0)3

t

. (17)

This scalar evolutionary equation for the ICI is cubically-convergent globally so
long as the saddle point ICI0 = 1 occurs with zero finite probability. Conver-
gence depends on ICI0, which for our analysis is assumed to have an unknown
scalar p.d.f. p0(u) over the range 0 ≤ u ≤ 1.

The average ICI, denoted as E{ICIt}, is the ensemble average of the ICI
values at iteration t that one would obtain by running FastICA on the same
data set with different initial conditions as characterized by the p.d.f of ICI0.
Here, infinite data has been assumed. The following bound characterizes the
value of E{ICIt} for weak assumptions on the p.d.f. of the initial ICI, the proof
of which is in the Appendix.

Theorem 2. Let ICI0 be arbitrarily-distributed on [0, ICImax] with distribu-
tion p0(u), where 0 < ICImax ≤ 1, subject to the additional condition that the
probability density of ICI0 has no point masses, or equivalently, the cumula-
tive distribution function of ICI0 is continuous over the interval [0, 1]. Define
K = max0≤u≤ICImax

up0(u). Then, an upper bound on the average ICI of the
FastICA algorithm at iteration t for a linear mixture and infinite data in the
two-source case is

E{ICIt} ≤
(

1
3

)t
(ICImax)

3t

K. (18)

Theorem 2 states that for reasonable distribution assumptions on the initial ICI,
the average ICI at time t is bounded by a function consisting of the product of
a linear-converging term and a cubically-converging term. Cubic convergence is
what the deterministic analysis in [1] describes for kurtosis-based FastICA, and it
is ultimately attained under stochastic initial conditions of the separation system
vector if the initial distribution of the inter-channel interference is bounded away
from unity. It may take a number of iterations, however, before this cubically-
converging term dominates the expression. During the initial convergence period,
the bound is linear with rate (1/3), as observed in simulations in [4]. Moreover, if
the uncertainty about the mixing system prevents one from bounding ICI0 away
from unity – a likely situation – then the bound predicts only linear convergence.

Finite data records prevent one from attaining limt→∞ E{ICIt} = 0 in prac-
tice. Experience show that linear convergence of FastICA with rate (1/3) is typi-
cally observed from the multiple-unit kurtosis-based FastICA algorithm applied
to finite-length data sets. The performance “floor” due to finite measurements
prevents one from observing the eventual cubic convergence of the FastICA pro-
cedure. The above bound indicates why linear convergence behavior is observed.

To verify the above behavior, the following simulations were carried out. The
FastICA procedure was applied to 10000 different realizations of N = 1000 snap-
shots of mixtures of Unif-[−

√
3,
√

3]-distributed sources. The initial coefficient
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Fig. 2. Convergence of E{ICIt} from simulations and from predictions

vector w0 for each realization was randomly and uniformly-selected from an ar-
bitrary point on the unit circle satisfying ICI0 < ICImax = 0.999. Ensemble
averages were then used to compute E{ICIt} for comparison with the average
behavior as predicted by the bound in (17), where K ≈ 1/π [5]. As a check, the
random values of ICI0 were used to compute an estimate E{ÎCIt} of E{ICIt}
using ensemble averages of (17), which assumes infinite data (N →∞).

Figure 2 shows the evolutions of the various measures of inter-channel inter-
ference, in which the bound in (18) is seen to accurately predict both E{ICIt}
and E{ÎCIt} for small t. Eqn. (18) closely follows the average behavior of (17)
for larger t, but the measured E{ICIt} continues to converge linearly with rate
(1/3) until performance limits due to prewhitening and finite-sample effects are
reached. In essence, the FastICA algorithm does not achieve cubic convergence
on average despite having cubic convergence in a deterministic setting.

5 Conclusions

In this paper, we illustrate an important connection between the popular Fas-
tICA algorithm for independent component analysis and the Rayleigh Quotient
Iteration in numerical linear algebra. We also derive a bound on the evolution
of the average inter-channel interference for the FastICA algorithm for equal-
kurtosis two-source mixtures which predicts linear convergence of the algorithm
initially. Simulations show that the average ICI in FastICA typically converges
linearly despite having cubic convergence in a deterministic setting.
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Appendix

Proof of Theorem 1. From (5), we can write the update of the single-unit FastICA
procedure applied to mixtures of two equal-kurtosis sources in the variable θt as

θt+1 = arctan
(
tan3(θt)

)
. (19)

Consider an expression for tan3(θ) of the form

tan3(θ) = tan(α− θ). (20)

Applying the tan difference formula, we obtain the relationship

tan3(θ) =
tan(α)− tan(θ)

1 + tan(α) tan(θ)
, (21)

or tan(α)(1− tan2(θ)) = tan(θ). (22)

Assume first that θ �= π/4, in which case

tan(α) =
tan(θ)

1− tan2(θ)
=

1
2

tan(2θ). (23)
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Now, considering the case that θ = π/4 and the solution for tan(α) in (23) , the
left-hand-side of (22) can be evaluated using L’Hopital’s Rule as

lim
θ→π/4

1
2

tan(2θ)(1− tan2(θ)) = lim
θ→π/4

1
2

sin2(2θ)[tan3(θ) + tan(θ)] = 1.(24)

Thus, we have α = arctan(0.5 tan(2θ)) for all θ, such that

tan3(θ) = tan
(

arctan
(

1
2

tan(2θ)
)
− θ

)
. (25)

Setting θ = θt and taking the arc-tangent of both sides of (25), the result follows.

Proof of Theorem 2. Let p0(u) denote the p.d.f. of ICI0. Then, we have

E{ICIt} =
∫ ICImax

0
u3t

p0(u)du =
∫ ICImax

0
u3t−1 · up0(u)du. (26)

Using the Holder inequality, we have

E{ICIt} ≤
(∫ ICImax

0
ur(3

t−1)

) 1
r
(∫ ICImax

0
usps0(u)du

) 1
s

(27)

≤
(

1
r(3t − 1) + 1

) 1
r

(ICImax)
3t−1+ 1

r

(∫ ICImax

0
usps0(u)du

) 1
s

,(28)

where 1/r + 1/s = 1. Letting s→∞ and r → 1, we have the inequality in (18).
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Abstract. The FastICA algorithm is a popular procedure for indepen-
dent component analysis and blind source separation. In this paper, we
analyze the average convergence behavior of the single-unit FastICA al-
gorithm with kurtosis contrast for general m-source noiseless mixtures.
We prove that this algorithm causes the average inter-channel interfer-
ence (ICI) to converge exponentially with a rate of (1/3) or -4.77dB at
each iteration, independent of the source mixture kurtoses. Explicit ex-
pressions for the average ICI for the three- and four-source mixture cases
are also derived, along with an exact expression for the average ICI in a
particular situation. Simulations verify the accuracy of the analysis.

1 Introduction

The FastICA algorithm is a popular procedure for independent component anal-
ysis and blind source separation. The technique is simple to implement and con-
verges quickly when applied to mixtures of independent non-Gaussian sources.
The algorithm’s convergence speed is locally-quadratic, and it is cubic when a
kurtosis-based cost is employed [1, 2]. This cubic convergence behavior can be
described using the analytical expressions for the evolution of the combined sys-
tem coefficient vector ct = [c1,t · · · cm,t]T for infinite data measurements, as
given by

ci,t+1 =
κic

3
i,t√∑m

j=1 κ
2
jc

6
j,t

, (1)

where κi is the ith source kurtosis. The vector ct corresponds to the weight vector
wt of the single-unit FastICA algorithm in a transformed coordinate system
where the independent components are explicitly included.

The FastICA algorithm’s convergence behavior depends on the initial point
of the algorithm, represented by w0 or c0. As this point is usually chosen fully
at random in lack of any prior knowledge of the mixtures, an interesting ques-
tion arises: What is the average convergence behavior of the algorithm across
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a distribution of initial points? Consider the performance metric known as the
inter-channel interference (ICI) defined for the m-source case as

ICI
(m)
t =

∑m
i=1 c

2
i,t −max1≤i≤m c2i,t

max1≤i≤m c2i,t
. (2)

Recently, an interesting observation about the FastICA algorithm with kurtosis
contrast was made [3]: For a random initial w0 or c0, convergence of the average
ICI appears to follow the “(1/3)rd Rule” given by

E{ICI
(m)
t } =

(
1
3

)
E{ICI

(m)
t−1}, (3)

over almost the entire convergence period. Additional work has shown that this
convergence behavior can be proven for the single-unit FastICA algorithm ap-
plied to simple two-source mixtures [4, 5], but it is not clear if such behavior
extends to the general m-source mixture case.

In this paper, we prove that the FastICA algorithm with kurtosis contrast in-
deed obeys the “(1/3)rd Rule” for general m-source mixtures over a large portion
of the convergence period. Our analysis employs a norm-constrained Gaussian
prior for the initial separation system vector. Moreover, explicit expressions for
the average ICI in the three- and four-source mixture cases are provided, and
simulations are used to verify the analytical performance predictions.

2 Average Behavior of the FastICA Algorithm for a
Three-Source Mixture

Before presenting the general m-source performance analysis, we introduce the
analytical tools used in our derivations for a three-source separation task. The
unconstrained (e.g. non-normalized) combined system vector at iteration t is

ct = [κ
q
2
1 x

p
2 κ

q
2
2 y

p
2 κ

q
2
3 z

p
2 ]T , (4)

where p = 2(3t) and q = 3t − 1. Employing this choice within (2) results in the
general ICI expression derived in [1]. At time t = 0, we have c0 = [x y z]T ,
where x, y, and z are random variables with some assumed probability density
function (p.d.f.). A reasonable joint p.d.f. choice for {x, y, z}would give a uniform
prior for the direction of c0. We can induce such a p.d.f by letting x, y, and z

be zero mean, uncorrelated, and jointly Gaussian. We can then express ICI
(3)
t

using ratios of powers of x, y, and z without normalization, and the resulting
expectations can be evaluated without trigonometric functions.

The portion of the average ICI at iteration t in which the first kurtosis com-
ponent is being extracted, such that the first element of (4) is the largest, is

E{ICI
(3)
1,t }=

8
(2π)3/2

∫ ∞

0

e−
x2
2

xp
dx

[∫ ax
0

((y
a

)p
+
(z
b

)p)
e−

y2

2 dy

]∫ bx
0
e−

z2
2 dz.(5)
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where a =
(
κ1

κ2

) q
p

and b =
(
κ1

κ3

) q
p

. (6)

The integral in brackets on the right-hand side of (5) can be approximated as∫ ax
0

((y
a

)p
+
(z
b

)p)
e−

y2

2 dy≈
[
e−

a2x2
2

∫ ax
0

(y
a

)p
dy

]
+
(z
b

)p ∫ ax
0

e−
y2

2 dy(7)

=
[
ae−

a2x2
2

xp+1

p + 1

]
+
(z
b

)p ∫ ax
0

e−
y2

2 dy. (8)

Substituting (8) into (5), we obtain

E{ICI
(3)
1,t }

=
8

(2π)3/2(p + 1)

[∫ ∞

0
axe−

x2(1+a2)
2

∫ bx
0
e−

z2
2 dzdx +

∫ ∞

0
bxe−

x2(1+b2)
2

∫ ax
0
e−

y2
2 dydx

]
.(9)

We can evaluate the integrals within brackets on the right-hand-side of (9) as∫ ∞

0
xe−

x2(1+a2)
2

[∫ bx
0

e−
z2
2 dz

]
dx =

b

1 + a2

√
π

2(1 + a2 + b2)
(10)

Therefore, E{ICI
(3)
1,t } =

2
π(p + 1)

1√
1 + a2 + b2

[
b

a−1 + a
+

a

b−1 + b

]
.(11)

Now, as t increases, we have

lim
t→∞

q

p
=

1
2
, lim

t→∞ a =
√

κ1

κ2
, lim

t→∞ b =
√

κ1

κ3
, and 2(3t). 1. (12)

Substituting these results into (11), we obtain

E{ICI
(3)
1,t } =

1
π

(
1
3

)t 1√
κ1κ2 + κ1κ3 + κ2κ3

[
κ1κ2

κ1 + κ2
+

κ1κ3

κ1 + κ3

]
. (13)

Invoking symmetry for the terms E{ICI
(3)
2,t } and E{ICI

(3)
3,t }, we find an approx-

imate expression for the average ICI to be

E{ICI
(3)
t } =

3∑
n=1

E{ICI
(3)
n,t} = g3(κ1, κ2, κ3)

(
1
3

)t
, (14)

g3(κ1, κ2, κ3) =
2
π

1√
κ1κ2 + κ1κ3 + κ2κ3

[
κ1κ2

κ1 + κ2
+

κ1κ3

κ1 + κ3
+

κ2κ3

κ2 + κ3

]
.(15)

Eqn. (14) states that the average ICI for arbitrary three-source mixtures
asymptotically obeys the “(1/3)rd Rule” in (3). Numerical evaluations of this ex-
pression show that it is extremely accurate in predicting the average ICI during
the algorithm’s convergence period. Moreover, across all source kurtosis com-
binations, the maximum value of E{ICI

(3)
t } occurs when κ1 = κ2 = κ3, for

which

E{ICI
(3)
t } =

√
3
π

(
1
3

)t
. (16)
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3 Average Behavior of the FastICA Algorithm for
General m-Source Mixtures

Eqn. (14) provides evidence that the kurtosis-based FastICA algorithm has ex-
ponential convergence with a rate that is independent of the source distributions.
Can this result be extended to m-source mixtures? And how accurate is the ap-
proximation used in (8)? The following theorem addresses these issues, the proof
of which is outlined in the Appendix.

Theorem 1. Assume that a single-unit FastICA algorithm with kurtosis con-
trast is applied to an m-source noiseless mixture with infinite data, and that
the initial combined system coefficient vector c0 is uniformly-distributed on the
m-dimensional unit hypersphere. Then, the average ICI at iteration t is

E{ICI
(m)
t } = gm(κ1, · · · , κm)

(
1
3

)t
+ R(t, κ1, · · · , κm), (17)

where the m-dimensional function gm(·) does not depend on t and R(t, ·) de-
creases to zero faster than (1/3)t as t→∞.

The above theorem indicates that the “(1/3)rd Rule” holds in general for the
single-unit FastICA procedure with kurtosis contrast. The convergence rate of
the algorithm does not depend on the source kurtoses, which only affect the
overall magnitude of the average ICI during the convergence period. This result
explains why the FastICA algorithm can be called “fast” – the average conver-
gence speed for the ICI is linear with a constant rate in all source scenarios.

The methodology used to derive the above theorem can in theory be used
to find an asymptotic expression for the average ICI in (17) by determining an
explicit expression for gm(κ1, · · · , κm) for any m. For m = 2, see [4], or set κ3 = 0
in (14). For m = 4, one can show that

g4(κ1, κ2, κ3, κ4) =
4
π2 (h1234 + h1243 + h1324 + h1342 + h1423 + h1432

+h2314 + h2341 + h2413 + h2431 + h3412 + h3421) (18)

hijkl =
√
κiκj√

κi+
√
κj

⎡⎣
√
κ−1
k√

κ−1
i + κ−1

j + κ−1
k

arctan

⎛⎝
√
κ−1
l√

κ−1
i + κ−1

j + κ−1
k

⎞⎠⎤⎦ ,(19)

which reduces to (14) when κ4 = 0. When κ1 = κ2 = κ3 = κ4, we have

E{ICI
(4)
t } =

4
π
√

3

(
1
3

)t
, (20)

which is 4/3 times larger than the maximum ICI in the three-source case with
κ1 = κ2 = κ3 and 4/

√
3 = 2.31 times larger than the maximum ICI in the two

source case with κ1 = κ2. For m > 4, the integrals become difficult to evaluate.
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4 An Exact Expression for the Average ICI for m-Source
Mixtures in a Particular Situation

Given our reliance on a uniform distribution for the direction of c0, one might
wonder whether the “(1/3)rd Rule” for FastICA requires this assumption. The
following analysis suggests that this behavior likely holds in other contexts.

Suppose the elements of c0 = [c1,0 · · · cm,0]T are uniformly-distributed on
the interval [0, 1]. Of course, c0 is normally of unit length, but as scaling doesn’t
matter, we choose a scaled version of c0 instead. Assuming ci,t ≥ 0 does not
change the value of ICI

(m)
t , either. When projected onto the unit hypersphere,

this distribution tends to concentrate probability in the [±1 ±1 · · · ±1]T direc-
tions of m-dimensional space, making convergence somewhat more challenging
for the algorithm. Moreover, we shall assume that κi = κj for all i and j. Under
this situation, the value of E{ICI

(m)
t } is easy to compute.

Theorem 2. For the situation above, the average ICI at iteration t is exactly

E{ICI
(m)
t } =

m− 1
2(3t) + 1

. (21)

Proof: The proof relies on the facts that (a) ordering of the coefficients within the
update relations does not matter in the convergence analysis, and (b) the order
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Fig. 1. Evolutions of the average ICI as determined by various methods, m = 3



Average Convergence Behavior of the FastICA Algorithm 795

statistics of i.i.d. Unif-[0, 1]-distributed random variables are jointly uniform over
the integration volume [6]. Hence, the average ICI is given by

E{ICI
(m)
t } = m!

∫ 1

0

∫ c1
0

∫ c2

0
· · ·
∫ cm−1

0

m∑
j=2

c
2(3t)
j

c
2(3t)
1

dcm dcm−1 . . . dc1 (22)

which easily integrates to (21). Simulations corroborate this exact result.
Theorem 2 is not meant as a replacement for the more-general result in The-

orem 1. Rather, it shows that the average exponential convergence behavior of
the kurtosis-based FastICA algorithm holds for at least one other distribution
of c0 than a uniform angular distribution. It has been our experience that (3)
predicts the average behavior of the original single-unit FastICA algorithm with
kurtosis contrast quite well, and to date, all theoretical results concerning the
convergence performance of this algorithm reflect (3) in one form or another.

5 Simulations

To verify our theoretical results, simulations in MATLAB were carried out. Three
and four-source mixtures have been generated, in which the sources are zero-
mean unit-variance binary (|κ| = 2), uniform (|κ| = 6/5), and/or Laplacian
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Eqn. (20) [ i.e., the "(1/3)rd Rule" for m=4 and identical κ

i
]

Fig. 2. Evolutions of the average ICI as determined by various methods, m = 4
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(|κ| = 3) distributed. MATLAB’s randn function was used to generate M =
20000 different initial coefficient vectors c0 for the numerical simulations. N =
5000 snapshots were used to evaluate the FastICA algorithm on sampled data.

Figure 1 shows plots of the averaged value of ICI
(3)
t as predicted by simu-

lations of the analytical convergence expressions of the FastICA algorithm, as
determined by the FastICA algorithm on sampled data, and calculated from (14)
for a three-source separation task with binary, uniform, and Laplacian sources.
All of the curves agree quite well up to iteration k = 5. For k > 5, our simulation
method for estimating E{ICI

(3)
t } using non-uniform sampling of the unit sphere

via the randn function is not accurate enough to verify (14). The scaling factor
g3(2, 6/5, 3) = 131

√
3/(140π) is correct for the “(1/3)rd Rule” in this case.

Figure 2 shows plots of the averaged value of ICI
(4)
t as predicted by ana-

lytical simulations, actual performance, and the prediction in (20) of FastICA
convergence behavior for m = 4 binary sources. The scaling factor of 4/(

√
3π)

is correct for the “(1/3)rd Rule” in the four-equal-kurtosis-source case.

6 Conclusions

In this paper, we analyze the average convergence behavior of the single-unit
FastICA algorithm with kurtosis contrast on m-source mixtures, showing that
its behavior is exponential with rate (1/3). Accurate expressions for m = 3 and
m = 4-source mixtures are provided, and simulations verify the analyses.
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Appendix: Proof of Theorem 1

Consider a single-unit m-source FastICA algorithm with cubic nonlinearity. The
combined system coefficient vector at iteration t is ct = [κ

q
2
1 x

p
2
1 · · · κ

q
2
mx

p
2
m]T ,



Average Convergence Behavior of the FastICA Algorithm 797

where p = 2(3t) and q = 3t− 1. Consider the portion of the ICI at iteration t in
which the first kurtosis component is being extracted, as given by

E{ICI
(m)
1,t } =

2m

(2π)m/2

m∑
i=2

∫ ∞

0
dx1

∫ a2x1

0
dx2 · · ·

∫ amx1

0
dxm

(xi

ai
)p

xp1
exp(−

∑m
i=1 x

2
i

2
).(23)

where

ai =
(
κ1

κi

) q
p

, i ∈ {2, 3, . . . ,m}. (24)

Using the transformation x̃i = xi/x1 for i ∈ {2, . . . ,m}, (23) becomes

E{ICI
(m)
1,t } =

2m

(2π)m/2

m∑
i=2

∫ a2
0

dx̃2 · · ·

∫ am

0
dx̃m

∫ ∞

0

(
x̃i
ai

)p
xm−1

1 exp

(
−x2

1

2
(1 +

m∑
i=2

x̃2
i )

)
dx1.(25)

The most inside integral in (25) can be calculated as

∫ ∞

0
xm−1

1 exp

(
−x2

1

2
(1 +

m∑
i=2

x2
i )

)
dx1 =

⎧⎨⎩
(m−2)!!

√
π√

2(1+ m
i=2 x

2
i )m/2 m is odd

[ 12 (m−2)]!2(m−2)/2

(1+ m
i=2 x

2
i )m/2 m is even

where (m−2)!! = 1 ·3 ·5 ·7 · · · (m−2). When k →∞, (xi

ai
)p → 0 over the interval

0 ≤ xi < ai, and ai →
√
κ1
κi
≡ b1i. We can then approximate the integral

∫ ai

0

(
xi
ai

)p 1
(1 +

∑m
j=2 x

2
j)m/2

dxi ≈ 1
(1+b21i+

m
j=2,j �=i x

2
j)m/2

b1i

p . (26)

Noting that p = 2(3t), we have

E{ICI
(m)
1,t }

≈

⎧⎨⎩
1

2(3)t
2m

(2π)m/2

∑m
i=2

∫ b12
0 dx2 · · ·

∫ b1m

0 dxm
(m−2)!!

√
π√

2(1+b21i+
m
j=2,j �=i x

2
j)m/2 m is odd

1
2(3)t

2m

(2π)m/2

∑m
i=2

∫ b12
0 dx2 · · ·

∫ b1m

0 dxm
[ 12 (m−2)]!2(m−2)/2

(1+b21i+
m
j=2,j �=i x

2
j)m/2 m is even

Similarly, by invoking symmetry, we get

E{ICI
(m)
n,t }

≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2(3)t
2m

(2π)m/2

∑m
i=1,i�=n

∫ bn1

0 dx1 · · ·
∫ bnm

0 dxm
(m−2)!!

√
π√

2(1+(bni)2+ m
j=1,j �=n,j �=i x

2
j)m/2

m is odd
1

2(3)t
2m

(2π)m/2

∑m
i=1,i�=n

∫ bn1

0 dx1 · · ·
∫ bnm

0 dxm
[ 12 (m−2)]!2(m−2)/2

(1+(bni)2+ m
j=1,j �=n,j �=i x

2
j)m/2

m is even
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for n ∈ {2, . . . ,m} and

bni =
√

κn
κi

. (27)

Finally, the average ICI is E{ICI
(m)
t } =

∑m
n=1 E{ICI

(m)
n,t }, which results in (17)

with

g(κ1, · · · , κm)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2m−1

(2π)m/2

∑m
n=1
∑m
i=1,i�=n

∫ bn1

0 dx1 · · ·
∫ bnm

0 dxm
(m−2)!!

√
π√

2(1+(bni)2+ m
j=1,j �=n,j �=i x

2
j)m/2

m is odd
2m−1

(2π)m/2

∑m
n=1
∑m
i=1,i�=n

∫ bn1

0 dx1 · · ·
∫ bnm

0 dxm
[ 12 (m−2)]!2(m−2)/2

(1+(bni)2+ m
j=1,j �=n,j �=i x

2
j)m/2

m is even

Additional calculations show that the error introduced in (17) by (26) is

|R(t, κ1, · · · , κm)| ≤ c(m)
(

1
3

)t m∑
n=1

[
(m− 1)

m∏
i=2

bni

(
1−

m∏
i=2

b
− 2

p

ni

)

+
m∑
i=2

(
(1− 1

√
p
)p+1b

1− 2
p

ni +
bni
p
|1− p

p + 1
b
− 4

p

ni |
) m∏
i=2

b
1− 2

p

ni

]
(28)

Since 1−
∏m
i=2 b

− 2
p

ni → 0 and (1− 1√
p )
p+1 → 0 as t→∞, it is easy to see that

lim
t→∞

R(t, κ1, · · · , κm)( 1
3

)t = 0. (29)
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Abstract. In this paper, we present an approach to generate a class of
multivariate probability models, which are referred to as scale mixture
of Gaussians models. They are constructed as normal variance mixture
models, in which the covariance matrix involves a stochastic scale factor
with a given prior distribution. We limit the presentation here to the
multivariate K (MK) model, which results if we apply a Γ distribution
for the scale factor. We then discuss how the parameter of the model can
be estimated in an iterative procedure, and include a 2-D case study,
where we compare the ability of the MK model to represent real data to
corresponding abilities of the multivariate Laplace and the multivariate
NIG models.

1 Introduction

In many real world data sets involving multivariate observations, the data have
an empirical distribution which is highly peaked at zero (or the mean vector),
and which asymptotically falls off more slowly than the Gaussian distribution
as the distance from zero increases. We denote these distributions sparse dis-
tributions. Sparse distributions are appropriate for representing the statistics of
speech and image data, especially when observed in a transform domain like the
wavelet or DFT domain [1]. For example, the overcomplete wavelet transform
coefficients of images are found to have sparse distributions, a property that
has been extensively exploited in coding and denoising [2, 3]. Several authors
have studied the statistics of DFT-transformed speech signals, and found the
coefficients to have sparse, heavy-tailed distributions [4, 5]. Sparse distributions
are also frequently encountered in various machine learning areas, like e.g. blind
source separation and independent component analysis (ICA) [6].

Multivariate observations, which are mutually correlated and have higher-
order dependencies, have frequently been represented using mixture of Gaus-
sians models. These are convenient in many respects, they have a closed form
probability density function (pdf), and the parameters can easily be obtained
using the EM algorithm. Recently, yet an other class of mixture models, the
so-called scale mixture of Gaussians models, have emerged as a powerful set of
distributions for modeling statistical dependencies in multivariate data [1]. The

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 799–806, 2006.
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multivariate Normal Inverse Gaussian distribution (NIG) [7], is an example of
this kind of models. The 1-D NIG pdf has been applied to model economical time
series, and it has also been successfully applied in some engineering problems
[8]. The model parameters of this model is also estimated using an EM- type of
algorithm.

In this paper, we present a general approach to formulate multivariate dis-
tributions with probability density functions given in closed form. We use the
multivariate K model, which is a multivariate scale mixture of Gaussians model
with a Γ distributed scale factor, as a case study. Note that the multivariate
Laplace (ML) [9] and the multivariate NIG (MNIG) [10] are other examples, cre-
ated using respectively the exponential and the Inverse Gaussian distributions as
priors for the scale factor. We show how we can estimate the model parameters
from data, and test the ability of the MK, the ML and the MNIG to represent
the DFT-coefficients of a speech signal in a log-likelihood cross-validation test.

2 A General Scheme for Generating Scale Mixture of
Gaussians Models

In [11] it was shown that if the probability density function (pdf) of some random
variable Y , pY (y), is symmetric about zero, and the derivatives of pY (y) satisfy(

− d

dy

)k
pY (y) ≥ 0 for y > 0, (1)

then there exist independent variables X and Z, with X being a standard normal
variable, such that

Y =
√
ZX. (2)

The variable Z is allowed to take on only positive values. A random variable Y ,
which can be expressed as in (2), is referred to as a normal variance mixture
model, or a scale mixture of Gaussians. Of course, if the mean of Y should be
non-zero, (2) may be modified by adding a scalar μ corresponding to the actual
mean value. Now, let pZ(z) be the probability density function (pdf) of Z. Then,
the marginal pdf of Y is obtained by averaging over Z, as in (3) below:

pY (y) =
∫ ∞

0

1√
2πz

exp(− (y − μ)2

2z
) pZ(z) dz. (3)

The multidimensional extension of the generative model described above, is stra-
ight forward. Let X be a d-dimensional, zero mean Gaussian variable with covari-
ance matrix equal to the identity matrix. Let furthermore, Γ ∈ Rd×d be a positive
definite matrix with determinant det Γ = 1, and let Z be a scalar random vari-
able with pdf pZ(z), which can attain only positive values. We now generate a new
variable Y as a multivariate scale mixture of Gaussians according to

Y = μ +
√
ZΓ

1
2 X, (4)
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where μ is the mean vector. The matrix Γ defines the internal covariance struc-
ture of the variables of Y . For this reason we will refer to this matrix as the
covariance structure matrix. To obtain the marginal pdf of Y , we have to per-
form an integration similar to the one in (3) over the prior distribution pZ(z).
The integral which must be computed is accordingly given as

pY (y) =
∫ ∞

0
pY |Z(y|Z = z)pZ(z) dz

=
∫ ∞

0

1

(2π z)
d
2

exp[− 1
2z

(y − μ)tΓ−1(y − μ)]pZ(z) dz. (5)

In the following, we define

q(y) = (y − μ)tΓ−1(y − μ), (6)

and show that choosing the Γ distribution for pZ(z) leads to the multivariate K
model, which is a sparse multivariate models with pdfs given in closed form.

2.1 The Multivariate K Distribution

The K distribution, which was first introduced in the middle of the 1970’s, is
a model which has been extensively applied to model the envelope statistics
of various signals, e.g. ultrasound echoes [12] and microwave radar backscat-
ter [13, 14]. This pdf model can be derived from a 2-D version of the model
in (4), with μ = 0, and a Γ distributed variance Z. Using the Γ distribution for
Z, i.e.

pZ(z;α, λ) =
λα+1 zα

Γ (α + 1)
exp(−λz), (7)

one finds that the general d-dimensional pdf for y is given as

pY (y) =
2

(2π)
d
2

λα+1

Γ (α + 1)

(√
q(y)
2λ

)α+1− d
2

Kα+1−d
2
(
√

2λq(y), (8)

where Km(x) denotes the modified Bessel function of the second kind and or-
der m, evaluated at x. We note that this multivariate scale mixture of Gaus-
sians model is given in terms of the parameter set {α, λ,μ,Γ }. α is a scalar
shape parameter, and λ is a scalar scale parameter. μ is a d-dimensional lo-
cation vector, and Γ is a positive definite matrix, determining the covariance
structure of the model. We will use the notation Y ∼ MK{α, λ,μ,Γ } to de-
note that Y is multidimensional K distributed with parameters α, λ, μ,
and Γ .

The moment generating function of the multivariate K distribution is given by

MY (ω) = E{eω
tY } =

λα+1 eμ
tω

(λ− ωtΓω
2 )α+1

. (9)
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It is also easy to find that
E{Y } = μY = μ (10)

E{(Y − μ)(Y − μ)t} = ΣY =
α + 1
λ

Γ . (11)

Now, let V = AY +b be an arbitrary linear transformation of a multivariate K
variable Y with parameters {α, λ,μ,Γ }, where A is a d× d real valued matrix.
The transformed variable V can then be shown to be another multivariate K
distributed random vector, with parameters {α̃, λ̃, μ̃, Γ̃}, where

α̃ = α (12)

λ̃ = λ |detA| 1d (13)
μ̃ = Aμ + b (14)

Γ̃ = AΓAt|detA|− 2
d . (15)

2.2 Some Properties of the Multivariate K Model

We observe that for the model presented above pY (y) is dependent on y through
q(y). If Γ is diagonal, two components Yi and Yj of Y will be uncorrelated, but
they are not statistically independent. However, the joint distribution condi-
tioned on Z will factorize, hence Yi|Z and Yj |Z are independent.

Let us for the moment assume that μ = 0, and let ||y||Γ −1 =
√

ytΓ−1y

denote the weighted Γ−1-norm of y. Noting that the Bessel function behaves as

Kd(x) ∼
√

π

2x
exp(−x), when |x| → ∞,

we find that

pY (y) ∼ F exp(−
√

2
λ
||y||Γ −1) for large ||y||Γ −1 , (16)

where F is an algebraic expression. Hence, the model presented above have an
asymptotic behavior, which is a combination of an algebraic and an exponential
term. It is more heavy-tailed than the Normal distribution.

3 Parameter Estimation

The model we have used to generate the multivariate K distribution involves the
latent variable Z, which means that the parameters of the pdfs may be estimated
using an iterative procedure. At the outset we note that the corresponding a
posteriori probability density function, pZ|Y (z|y), is a so-called Generalized
Inverse Gaussian (GIG) distribution. This model has a pdf given as

pZ(z; θ, δ, γ) = (
γ

δ
)θ

1
2Kθ(δγ)

zθ−1 exp(−1
2
(
δ2

z
+ γ2z)), (17)
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and its kth-order moments are

μ
(k)
Z = E{Zk} =

(
δ

γ

)k
Kθ+k(δγ)
Kθ(δγ)

. (18)

Equation (10) suggests that μ can be estimated as the first order moment of
the sample set Y = {y1,y2, · · · ,yN}, i.e., μ̂ = 1

N

∑N
i=1 yi , whereas according to

(11), Γ can be estimated as the sample covariance matrix divided by an estimate
of η = α+1

λ . Let

R̂ =
1
N

N∑
i=1

(yi − μ̂)(yi − μ̂)t (19)

denote the sample covariance matrix. Using the fact that detΓ = 1, an estimate
of η = α+1

λ would be given as

η̂ = det R̂
1
d (20)

and accordingly, an estimate of Γ is

Γ̂ =
1
η̂
R̂ . (21)

The a posteriori pdf associated with the MK model can be shown to be a
GIG{α − d

2 + 1, q(y),
√

2λ}. Hence, using (18) it follows that, for a given ob-
servation yi, we get

ξi = E{ 1
Z
|yi} =

√
2λ

q(yi)

Kα− d
2
(
√

2λq(yi))

Kα− d
2 +1(
√

2λq(yi))
. (22)

When Z is Γ distributed with a pdf as in (7), its k-order moments are

E{Zk} =
Γ (α + 1 + k)
Γ (α + 1)λk

. (23)

Given N observations, we define

ξ̄ =
1
N

N∑
i=1

ξi. (24)

Regarding ξ̄ as estimates for E{ 1
Z }, estimates for α and λ may be obtained as

α̂ =
1

η̂ ξ̄ − 1
, (25)

λ̂ = α̂ ξ̄. (26)
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3.1 Iterative Procedure

(i): Set l = 0. Select some initial estimates for the parameters of the prior
distribution. We suggest to use α0 = 1 and λ0 = 1.

(ii): Estimate μ̂ = 1
N

∑
i=1 yi, and R̂ = 1

N

∑N
i=1(yi − μ̂)(yi − μ̂)t . Get η̂ =

1

detR̂
1
d
, and Γ = R̂

η̂ .

(iii): Calculate ξi using (22) and ξ̄ using (24).
(iv): Set l = l + 1. Get new estimates αl and λl using (25) and (26).
(v): Repeat (iii) and (iv) until convergence.

4 Log-Likelihood Ratio Tests

In this section we apply the multivariate K distribution to model DFT coef-
ficients of a speech signal. The signal is sampled at 8 kHz, and the 128-point
DFT coefficients are calculated using a Hanning analysis. In order to be able to
visualize the proposed model, we will here only discuss the 2-D model referring
to the real and imaginary components of a single complex DFT component, i.e
fk = (real(Fk), imag(Fk)), where Fk is the kth component.

We include a cross-validation log-likelihood test, in which we compare the
goodness of fit of the MK model to the multivariate Laplace (ML) model [9],
which assumes an exponential distributed scale factor, and the multivariate NIG
(MNIG) model [10], which assumes an Inverse Gaussian model for this factor.
The pdf of the ML model is given as

pY (y) =
1

(2π)
d
2

2
λ

K d
2−1(
√

2
λq(y))(√

λ
2 q(y)

) d
2−1

, (27)

and the pdf of the MNIG model is

pY (y) = 2 δeδγ
(

γ

2π
√
δ2 + q(y)

) d+1
2

K d+1
2

(γ
√
δ2 + q(y)). (28)

In the case of the MNIG model, we assume that the bias parameter β = 0. The
parameters of the ML and MNIG models are estimated in procedures similar
to the one described above for the MK model. In addition to these models, a
traditional mixture of Gaussians model consisting of 5 mixtures, is also included
in the test. The latter pdf is given as

pF (f) =
M∑
m=1

πmN (μm,Σm), (29)

where N (μm,Σm) is a 2-D Gaussian pdf, with mean μm and Σm. The pa-
rameters of this model is estimated from data using the EM-algorithm. Fig. 1
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Fig. 1. An example of the 2-D pdfs fitted to the real and imaginary components of a
DFT coefficient of a speech signal. Upper left: Parzen estimate. Upper right: Multivari-
ate K. Lower left: Multivariate Laplace. Lower right: Multivariate NIG.

Table 1. Results of log-likelihood comparisons

Model ML MK MNIG Mix. of Gaussians (5)
no.ofwins 47 0 0 16

shows in the upper left corner a 2-D Parzen estimate of the pdf of frequency
component k = 17, and in the other panels the estimated pdfs corresponding
to the multivariate scale mixture of Gaussian models. We observe that the ML
and MK models have pdfs which are quite similar, and peaky at origin. The
similarity is because the estimated α for the MK model is small. The shape of
the multivariate NIG seems to fit the shape of the Parzen estimate better in this
example. Table 1 displays the results of 10-fold cross-validation log-likelihood
tests for 63 frequency components. We note that the ML model has the highest
log-likelihood value in most of the cases. The mixture of Gaussians model wins
16 times, whereas the MK and MNIG have no wins. Hence, in the log-likelihood
sense, these tests, which by no means are very extensive, indicate that the ML
model is the best model for this data set.

5 Conclusion

In this paper, we have described an approach for generating multivariate prob-
ability models, which can represent data which are sparsely distributed, and
where the various components are mutually dependent. The multivariate pdf is
constructed as a scale mixture of Gaussians model, using a specific prior distri-
bution for the scale factor. We have calculated closed form expression for the case
that the prior pdf is the Γ distribution. Similar models using the exponential



806 T. Eltoft, T. Kim, and T.-W. Lee

and the Inverse Gaussian distributions for the scale factor have been presented
elsewhere. Although the expressions for the pdfs may seem complicated, it has
been shown that the parameters of the models can be efficiently estimated from
data. Hence, we consider these models useful in problems requiring a sparse, mul-
tivariate model, like e.g. in speech processing, image and signal enhancement,
independent component analysis and blind source separation.
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Abstract. We present a new deflation procedure for blind signal sep-
aration based on sparsity. It allows, under mild sparsity assumptions,
to separate mixtures which could not be separated by ICA methods. We
present a new algorithm for sparse deflations and apply it for sparse blind
signal separation of mixtures of signals with bounded support. Relations
to signals from High Performance Liquid Chromatography in chemistry
are discussed and computer simulation examples are presented.

1 Introduction

The goal of the Blind Signal Separation (BSS) is to recover underlying source
signals of some given set of observations obtained by an unknown linear mixture
of the sources:

X = AS. (1)

Here S (n×N -dimensional matrix) is called the source matrix, X the mixtures
and A (m × n-matrix) the mixing matrix. We speak of complete, overcomplete
or undercomplete BSS if m = n, m < n or m > n respectively.

BSS has potential applications in many different fields such as medical and
biological data analysis, communications, audio and image processing, etc. In
order to decompose the data set, different assumptions on the sources have to
be made. The most common assumption nowadays is statistical independence of
the sources, which leads to the field of Independent Component Analysis (ICA),
see for instance [1], [10] and references therein. ICA is very successful in the
linear complete case, when as many signals as underlying sources are observed,
and the mixing matrix is non-singular.

One of the first ideas using sparsity in inverse problems, and in particular in
BSS, is to apply l1-norm minimization (basis pursuit method) (see [6], [5]), but
its applicability is limited. Another idea is to preprocess the data and to use
sparsity properties of the signals in different domains: time-frequency, wavelet
domain, etc. Some of these ideas are applied in recent papers on sparse BSS:
[2, 3], [7–9], [15].

Recently, it is shown in [12] that using a new approach based on sparsity
alone (Sparse Component Analysis, SCA), we can still detect both mixing ma-
trix and sources uniquely (except for trivial indeterminacies) even when the

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 807–814, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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mixing matrix is singular [11], if the sources are sufficiently sparse. Algorithms
for reconstructing the mixing matrix and the sources are proposed and algebraic
identifiability conditions on the source matrix are presented.

N. Delfosse N. and P. Loubaton [4] were first to use a deflation technique
to BSS using independent sources. In this paper we develop another deflation
procedure useful even if two columns of the mixed matrix can be estimated only
in each step of the procedure. This is possible under mild sparsity assumptions
on the sources (see Fig. 1, first row, for an idea of these assumptions) and doesn’t
need pre-whitening.

2 Motivation

A motivation of the present paper is the processing of the data matrices that
are generated by a High Performance Liquid Chromatography (HPLC) appara-
tus when coupled to a Diode Array Detector (DAD). HPLC is widely used by
pharmaceutical companies to identify and quantify the components of complex
mixtures of chemical compounds, often isomeric and diastereoisomeric mixtures
(compounds with one and same molecular weight, but different structure in 3D).

Each compound is characterized by the retention time of its concentration at
the outlet of the chromatographic system (or concentration profile) and by its
ultra-violet (UV) spectrum. UV spectra usually display bump-shaped pickes, as
shown in Fig 1. Therefore HPLC-DAD data are stored as a X(m × N) matrix
where the m rows represent m spectra measured at different times, and where
each spectrum is made of UV absorbances measured for N different wavelengths.
Considering m components with a mixture, A the m × n matrix of compound
concentration profiles and S the n×N matrix of compound UV spectra,

X = AS + E, (2)

where E is the detector noise. If there were never overlapping of concentration
profiles, compound identification would always be easy. However, the resolution
power of chromatography is often not ideal and the analysis of X matrices is
necessary to obtain reliable information on mixtures in these difficult cases,
especially when neither reference concentration profiles nor reference UV spectra
are available.

3 New Deflation Procedure

We present a new deflation procedure for sparse blind signal separation, which
allows to recover underlying signals from their linear mixture only under mild
sparsity assumptions.

Consider the following sparse properties of the source matrix S.
(i) there exist at least two indices i1 and i2, and two sets of indices J1 ⊂

{1, ..., N}, J2 ⊂ {1, ..., N} such that

S(i, j) = 0 and S(ik, j) �= 0 whenever k ∈ {1, 2}, i �= ik and j ∈ Jk, (3)

(i.e.sik is uniquely present |Jk| times);
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(ii) The set S =
{
± sj

‖sj‖ : j ∈ {1, ..., N} \ {Jk ∪ J2}, sj �= 0
}

has less than mini∈{1,2} |Ji| equal elements1.

Theorem 1. Assume that the assumptions (i) and (ii) above are satisfied and
the columns with indices i1 and i2 of the mixing matrix A are different and
non-zero. Then they are identifiable up to scaling and sign.

Proof.(Sketch) Normalize the nonzero columns of X and cluster them in clusters
according to the rule: x and y belong to one and the same cluster if and only if
either x = y or x = −y2. By the assumptions (i) and (ii), the first two clusters
with maximal number of elements will represent the columns i1, i2 (normalized)
of the matrix A up to sign.

The sparsity assumption under which we can perform BSS is:
(H) The mixing matrix A is square, non-singular and any submatrix obtained

after removing any k rows of S (k = 1, ..., n−2) satisfies assumptions (i) and (ii).
Note that assumption H could be satisfied for dependent sources (see Fig. 1

first row) – this is the main advantage of our method. The method doesn’t need
pre-whitening (in fact pre-whitening cannot be performed in the case of dependent
sources).

Below we describe the new deflation procedure under assumption H.
Without loss of generality we can assume that the first column a1 of A is

identified and that a11 �= 0 (otherwise we can change the notations so that this
assumption to be satisfied). Consider the following matrix:

W =

⎛⎜⎜⎝
1 0 0 ... 0
−a21 a11 0 ... 0
. . . ... .

−an1 0 0 ... a11

⎞⎟⎟⎠ .

Putting B = WA we find

B =

⎛⎜⎜⎝
a11 a12 ... a1n
0 b22 ... b2n
. . ... .
0 bn2 ... bnn

⎞⎟⎟⎠ ,

where bij = a11aij − ai1a1j , i, j ≥ 2. If we define a new data matrix Y as

Y = WX = WAS, we have Y =
(

x1
X1

)
, where

X1 = B1S1, (4)
1 See Fig. 1 (first row) for some idea of the conditions (i) and (ii): i1 = 1 (left bump),

i2 = 3 (right bump), J1 = {100, ..., 200}, J2 = {380, ..., 480}. In practice, it is enough
these conditions to be satisfied approximately, i.e. up to some threshold ε > 0 (not
stated here).

2 If and only if either ‖x − y‖ < ε or ‖x + y‖ < ε up to some ε > 0 (in the Matlab
code below).



810 P. Georgiev, D. Nuzillard, and A. Ralescu

S1 is a submatrix of the source matrix S which does not contain the first row
of S and B1 is the submatrix of B which does not contain the first row and the
first column of B. So, (4) represents our deflation procedure: it does not contain
the first source. Assuming that conditions (i) and (ii) are satisfied for S1 and X1
(by assumption H), we can identify a column of B1, deflate the corresponding
source, and so on. In the k-th step we obtain a system

Xk = BkSk, (5)

with dimension (n − k) × (n − k) of the mixing matrix Bk. When k became
equal to n − 2, we can identify the matrix Bn−2 (with dimension (2 × 2)). By
inverting Bn−2, we can recover two sources. In each step of the construction we
can identify two columns (by Theorem 1), which allows us in the end to identify
all the sources.

The algorithm in fact is recursive, which acts on the nodes of a tree repre-
senting the current mixing system Y = BS̃. From each node there are only two
branches starting, and they correspond to the two columns of B, which can be
identified thanks to condition (A). Therefore, each branch will correspond to
the mixing model in which the corresponding row of S̃ is deflated.

We present a Matlab program of a simple iterative algorithm, which works
perfectly for the case m = n ≤ 4 (if m = n < 4, the results contain repeating
sources).
function S=sd(X,eps)

% S is an output matrix, whose rows are some of the estimated sources (maximum 4)

% X is the input matrix, whose rows are mixtures of unknown sources

% A below is a matrix with two columns, which are estimates of two columns of

% the current mixing matrix

S=[]; [n,N]=size(X); X0=X; for k=1:2; Y=X0;

for i=1:n-1;

X=Y;

[m,N]=size(X);

A=two_rows_identification(X,eps);

A1=A(1,k)*eye(m-1);

A2=[-A(2:m,k),A1];

W=[eye(1,m);A2];

Z=W*X;

Y=Z(2:m,:);

end

S2=inv(A)*X;

S=[S;S2];

end

The function two rows identification is a Matlab code made according to
the proof of Theorem 1 with some eps describing the accuracy of the clustering
step (see footnote 4).

4 Computer Simulation Examples

Example 1. Consider a typical case of HPLC. Simulated source signals are
shown in Fig.1, first row. Their mixtures with a randomly generated matrix
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Fig. 1. Example 1: first row – simulated source signals; second row – mixed signals
(resembling HPLC picture); third row – reconstructed source signals by our algorithm
(sparse deflations); forth row – result obtained by JADE; fifth row – result obtained
by Fast ICA; sixth row – result obtained by SOBI
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(3 × 3) are shown in Fig. 1, second row – resembling a typical picture from
real chromatograms. Applying our algorithm (with eps = 10−5), we reconstruct
perfectly the original sources (reconstructed sources are shown in Fig. 1, third
row). In the next rows of Fig. 1 the results obtained by applying the algorithms
JADE, Fast ICA and SOBI are shown – we see that they cannot separate the
presented mixture. This is due to the fact that the simulated sources are not
independent.

Example 2. Consider a picture to which we have added the same Gaussian
noise matrix with two different multipliers to produce two mixed (noisy) images
(shown in Fig. 2). Our algorithm succeeded to remove the noise, due to wavelet
preprocessing with dwt2, whose diagonal coefficients (shown in Fig. 3) allow
to extract one column of the mixing matrix (corresponding to the noise), and
subsequently to remove the noise from the picture of interest.

Example 3. Consider now four independent Gaussian signals, which are shown
in Fig. 4, first four rows. The sources are generated by the random generator in
Matlab, and after that we erased a little each source in order to satisfy assump-
tion (H). The mixed signals with a randomly generated matrix (4×4) are shown

Fig. 2. Example 2: noised picture (with two unknown proportions of unknown Gaussian
noise) and denoised picture
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Fig. 3. Example 2: Diagonal wavelet coefficients of dwt2 of the picture and of the noise.
The sparse form of those of the picture allow to recover one column of the mixing matrix
(corresponding to the noise) and to isolate the picture of interest, applying one step of
our algorithm (see (4)).
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Fig. 4. Example 3: first four rows – slightly sparsified Gaussian signals; the next four
rows – their mixture with a random matrix; the last four rows – the reconstructed
signals using our algorithm for sparse deflations

in Fig. 4, the middle four rows. Reconstructed sources by our algorithm (shown
in Fig. 4, last four rows) are perfect copies (up to permutation and scaling) of
the original sources.

5 Conclusion

We presented a new deflation procedure for the BSS problem under mild spar-
sity assumptions. This procedure allows to solve BSS problems for sources which
could be dependent or Gaussian, as well to denoise pictures after wavelet pre-
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processing. The main motivation is from High Performance Liquid Chromatog-
raphy (HPLC) in chemistry and we hope that our method could be applied for
separation of other sources too (for instance, several delays of a given bump).
We presented three computer simulation examples, one of which is a typical
HPLC case, the second one is a new denoising procedure, and the third one is
constructed by Gaussian sources after small sparsification. The ICA methods
cannot separate the mixtures in the first and third examples.
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Abstract. This paper introduces and investigates a gradient flow of
the log likelihood function restricted on the isospectral submanifold and
proves that the flow globally converges to diagonal matrices for almost
all positive definite initial matrices. This result shows that the log likeli-
hood function does not have any spurious stable fixed point and ensures
the global convergence of ICA algorithms based on the log likelihood
function.

1 Introduction

The log likelihood function

φ(A) = log det diag(A)− log detA

has been derived based on the maximum likelihood estimation of a covariance ma-
trix and used as a cost function in developing algorithms for ICA and joint diag-
onalization (see Flury[4] and Pham[8]). Comparing to other diagonality criteria,
the log likelihood function is based on the orthodox theory of statistical inference
and has a favorable property of “scale invariance”. The purpose of this paper is to
show that the log likelihood function does not have any spurious stable fixed point
and ensure the global convergence of ICA algorithms based on the log likelihood
function. To this end, we introduce a gradient flow of the log likelihood function
restricted on the isospectral submanifold (defined in Section 3) and prove that
the gradient flow globally converges to diagonal matrices for almost all positive
definite initial matrices.

The rest of the paper is organized as follows. Section 2 derives the log likeli-
hood function for reader’s convenience. Section 3 surveys two previous examples
of isospectral flows. Section 4 derives the log likelihood flow and proves its global
convergence to diagonal matrices. Section 5 contains concluding remarks.

2 Log Likelihood Function

Suppose that we have ν independent samples X1, . . . , Xν from an n-dimensional
normal distribution N(μ,Σ) and denote the sample mean and the (unbiased)
sample covariance by X̄ and S respectively,

X̄ =
1
ν

ν∑
i=1

Xi, S =
1

ν − 1

ν∑
i=1

(Xi − X̄)(Xi − X̄)T ,
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where Xi’s are column vectors and XT denotes the transpose of X , then X̄ and
S are distributed according to a normal distribution and a Wishart distribution
respectively,

X̄ ∼ N(μ,Σ/ν), (ν − 1)S ∼Wν−1(Σ).

We consider the estimation of Σ from S by the maximum likelihood method.
The probability density function of the n-dimensional Wishart distribution

Wν(Σ) with the degree of freedom ν and the variance Σ is

fν(X ;Σ) =
1
cν

(detX)(ν−n−1)/2

(detΣ)ν/2
exp(−1

2
tr(Σ−1X)),

cν = 2nν/2πn(n−1)/4
n∏
i=1

Γ (
ν − i + 1

2
)

where detA and trA denote the determinant and the trace of a matrix A and
Γ (x) is the gamma function. Because (ν − 1)S ∼Wν−1(Σ), we have

fν−1( (ν − 1)S ; Σ ) =
1

cν−1

(det((ν − 1)S))(ν−n−2)/2

(detΣ)(ν−1)/2 exp(−1
2
tr(Σ−1(ν − 1)S))

which gives the log likelihood function as

l(Σ) = log fν−1( (ν − 1)S ; Σ ) = −ν − 1
2

(log detΣ + tr(Σ−1S)) + const.

The maximization of the log likelihood function results in the minimization of
the following function where ν > 1,

l̃(Σ) = log detΣ + tr(Σ−1S).

Here we consider the eigendecomposition Σ = UΛUT where U is an orthogonal
matrix and Λ = diag(λ1, . . . , λn) is a real diagonal matrix with diagonal elements
λ1, . . . , λn. Using tr(AB) = tr(BA), we have

l̃(UΛUT ) = log detΛ + tr(Λ−1UTSU) =
n∑
i=1

(logλi +
(UTSU)ii

λi
) (1)

where (UTSU)ii denotes the (i, i)-th element of UTSU . The differentiation of
the right-hand side with respect to λi shows that l̃(UΛUT ) takes its minimum
when λi = (UTSU)ii holds, that is, for any fixed U , Λ which minimizes l̃(UΛUT )
is given by Λ = diag(UTSU), where diag(A) denotes a diagonal matrix obtained
by replacing all the non-diagonal elements of A by zeros. Substituting this in (1)
reduces the problem to a minimization with respect to U ,

l̃(Udiag(UTSU)UT ) = log det diag(UTSU) + tr(diag(UTSU)−1UTSU).

The second term of the right-hand side can be omitted because it is constant.
We subtract a constant log det(UTSU) instead and define a cost function

ϕ(U) = log det diag(UTSU)− log det(UTSU) (2)
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so that we can easily see that it takes its minimum when UTSU is diagonal and
the minimum value is zero, which is guaranteed by the Hadamard inequality

det diag(A) ≥ detA (the equality holds⇔ A is diagonal).

Substituting A = UTSU in (2) yields the log likelihood function

φ(A) = log det diag(A)− log detA.

3 Isospectral Gradient Flows

Isospectral flows are flows defined on the isospectral submanifold

Ω(Λ, SO(n)) = {UΛUT |U ∈ SO(n)}, Λ = diag(λ1, λ2, . . . , λn) (3)

where Λ is a real diagonal matrix and SO(n) is a matrix Lie group of n × n
real orthogonal matrices. Note that Ω(Λ, SO(n)) lies in the set of n × n real
symmetric matrices. Consider a real-valued function φ(A) defined on the set of
n× n real matrices and suppose that

dφ

dA
=

⎛⎜⎜⎝
∂ φ(A)
∂a11

· · · ∂ φ(A)
∂a1n

...
. . .

...
∂ φ(A)
∂an1

· · · ∂ φ(A)
∂ann

⎞⎟⎟⎠
is symmetric for an arbitrary symmetric matrix A, then it is known that the
gradient flow of the function φ(A) restricted on the isospectral submanifold (3)
is given by

dA

dt
= −[A, [A,

dφ

dA
]], (4)

where [A,B] = AB −BA is a commutator product and

[A,
dφ

dA
] = 0 (5)

holds at the fixed points of the flow[2][5]. Brockett[1] introduced an isospectral
gradient flow

dA

dt
= [A, [A,N ]] (6)

where N is a constant real diagonal matrix with distinct diagonal elements,
which is derived by substituting

φ(A) = −tr(NA) = −
∑
i

niaii, N = diag(n1, n2, . . . , nn)

in (4). Brockett[1] proved that the isospectral gradient flow (6) converges to
a diagonal matrix for almost all real symmetric initial matrices. All the fixed
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points of the flow are diagonal matrices among which one is stable and all the
others unstable. Chu and Driessel[3] introduced an isospectral gradient flow

dA

dt
= [A, [A, diag(A)]] (7)

which is derived by substituting

φ(A) =
1
2
off(A) =

1
2

∑
i�=j

aij
2

in (4). Chu and Driessel[3] proved that the isospectral gradient flow (7) converges
to a diagonal matrix for almost all real symmetric initial matrices. All the diag-
onal matrices are the stable fixed points of the flow. The flow has non-diagonal
fixed points as well but they are proven to be unstable.

4 Log Likelihood Flow

This section derives and investigates the isospectral gradient flow of the log
likelihood function

φ(A) = log det diag(A)− log detA. (8)

Because the second term of (8) is invariant on the isospectral submanifold, the
isospectral gradient flow of φ(A) is equivalent to one of φ̃(A) = log det diag(A)
for which we have

d φ̃

dA
= diag(A)−1 = diag(1/a11, 1/a22, . . . , 1/ann).

By substituting this in (4), we obtain the log likelihood flow

dA

dt
= −[A, [A, diag(A)−1]]. (9)

The rest of the section proves that the log likelihood flow (9) globally con-
verges to a diagonal matrix for almost all positive definite initial matrix. The
log likelihood flow (9) evolves on the isospectral submanifold

Ω(Λ, SO(n)) = {UΛUT |U ∈ SO(n)}, Λ = diag(λ1, λ2, . . . , λn)

where Λ is a real diagonal matrix and λ1, λ2, . . . , λn > 0 holds for the case where
the initial matrix is positive definite. In this case, all the diagonal elements of a
matrix A ∈ Ω(Λ, SO(n)) are always positive because the i-th diagonal element
of A is calculated as follows,

aii =
n∑
j=1

λiuij
2 > 0.

Therefore it is guaranteed that the diagonal elements of diag(A)−1 never diverge
if the initial matrix of (9) is positive definite.
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Theorem 1. The log likelihood flow (9) converges to a diagonal matrix for al-
most all positive definite real symmetric initial matrices.

Proof. First of all, we note that the isospectral submanifold Ω(Λ, SO(n)) is
compact because U �→ UΛUT is a continuous map from SO(n) to Ω(Λ, SO(n))
and SO(n) is compact. Because the log likelihood flow is a gradient flow defined
on a compact set, it always converges to one of its critical points. From (5), the
critical points of (9) satisfy the following condition,

[A, diag(A)−1] = 0.

Because the (i, j)-th element of [A, diag(A)−1] is calculated as aij(1/ajj−1/aii),
the condition is equivalent to the following,

for any index pair (i, j), aij = 0 or aii = ajj holds.

Therefore a critical point of the log likelihood flow (9) is i) a diagonal matrix
or ii) a non-diagonal matrix with non-zero non-diagonal element aij �= 0 for
which aii = ajj > 0 holds. To complete the proof, it is enough to show that the
former is stable and the latter is unstable as proven in the following Lemma 1
and Lemma 2 respectively. ��

Lemma 1. The diagonal critical points of the log likelihood flow (9) are stable.

Proof. We show that the Hessian of the log likelihood function is positive definite
at the diagonal critical points. Let Eij denote an n × n matrix whose (i, j)-th
element is one and all the other elements are zeros. Suppose that Xij is a skew
symmetric matrix defined as

Xij = Eji − Eij (i < j),

then a plane rotation is expressed in an exponential of Xij ,

eθXij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cos θ − sin θ
. . .

sin θ cos θ
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We introduce a parameterized orthogonal matrix

U(θ) = eθ12X12 · eθ13X13 · · · eθ1nX1n

·eθ23X23 · · · eθ2nX2n

· · ·
·eθn−1,nXn−1,n
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and a local coordinate system on SO(n) around the identity matrix

θ = (θ12, θ13, . . . , θ1n, θ23, . . . , θ2n, . . . , θn−1,n)

in which θ = 0 corresponds to the identity matrix. We have

∂

∂θij
U(θ)

∣∣∣∣
θ=0

= Xij .

To parameterize the isospectral submanifold around a diagonal point Λ =
diag(λ1, λ2, . . . , λn), we put

A(θ) = U(θ)TΛU(θ).

The first and second order derivatives of A(θ) at Λ are calculated as

∂

∂θij
A(θ)

∣∣∣∣
θ=0

= [Λ,Xij ] = −(λi − λj)(Eij + Eji), (10)

∂

∂θij

∂

∂θkl
A(θ)

∣∣∣∣
θ=0

= [[Λ,Xij ], Xkl] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2(λi − λj)(Eii − Ejj) (i = k, j = l)
(λi − λj)(Ejl + Elj) (i = k, j �= l)
−(λi − λj)(Eik + Eki) (i �= k, j = l)
(λi − λj)(Eil + Eli) (k = j, i < l)

0 (otherwise)

,

(11)
and then the derivatives of diagonal elements of A(θ) are calculated as

∂app(θ)
∂θij

∣∣∣∣
θ=0

= 0 ,

∂2app(θ)
∂θij∂θkl

∣∣∣∣
θ=0

=

⎧⎨⎩
−2(λi − λj) (i = k, j = l, p = i)
2(λi − λj) (i = k, j = l, p = j)
0 (otherwise)

.

Note that the order of Xij and Xkl appeared in (11) is the same as the or-
der appeared in the definition of U(θ) and does not depend on the order of
differentiation.

The Hessian of the log likelihood function (with the invariant second term
dropped)

φ̃(A) = log det diag(A) =
n∑
p=1

log app

at a diagonal point Λ is calculated as follows,

∂

∂θij

∂

∂θkl
φ̃(A(θ))

∣∣∣∣
θ=0

=
n∑
p=1

∂

∂θij

∂

∂θkl
log app(θ)

∣∣∣∣
θ=0

=
n∑
p=1

app
∂2app

∂θij∂θkl
− ∂app

∂θij

∂app
∂θkl

app2

∣∣∣∣
θ=0
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=

⎧⎪⎪⎨⎪⎪⎩
−2(λi − λj)

λi
+

2(λi − λj)
λj

= 2
(λi − λj)2

λiλj
(i = k, j = l)

0 (otherwise)

.

The Hessian at a diagonal point Λ is already diagonalized. Because all the diag-
onal elements of Λ = diag(λ1, λ2, . . . , λn) are positive where the initial matrix
of the log likelihood flow is positive definite, we see that the Hessian of the log
likelihood function at a diagonal point is positive definite and therefore the di-
agonal critical points of the log likelihood flow (9) are stable. ��
Lemma 2. The non-diagonal critical points of the log likelihood flow (9) are
unstable.

Proof. A non-diagonal critical point A0 of the log likelihood flow (9) has at least
one non-zero non-diagonal element aij �= 0 for which aii = ajj > 0 holds. We
parameterize the isospectral submanifold around the non-diagonal critical point
A0 as

A(θ) = U(θ)TA0U(θ),

and show that the second order derivative of φ̃(A(θ)) along the direction of θij
is negative.

The first and second order derivatives of A(θ) at A0 are given as

∂

∂θij
A(θ)

∣∣∣∣
θ=0

= [A0, Xij ],

∂2

∂θij
2A(θ)

∣∣∣∣
θ=0

= [[A0, Xij ], Xij ]

and then the derivatives of diagonal elements of A(θ) are calculated as

∂app(θ)
∂θij

∣∣∣∣
θ=0

=

⎧⎨⎩
aij + aji = 2aij (p = i)
−(aij + aji) = −2aij (p = j)
0 (otherwise)

,

∂2app(θ)
∂θij

2

∣∣∣∣
θ=0

=

⎧⎨⎩−2(aii − ajj) = 0 (p = i)
2(aii − ajj) = 0 (p = j)
0 (otherwise)

where aij = aji and aii = ajj are assumed. Therefore the second order derivative
of φ̃(A(θ)) along the direction of θij is calculated as

∂2

∂θij
2 φ̃(A(θ))

∣∣∣∣
θ=0

=
n∑
p=1

∂2

∂θij
2 log app(θ)

∣∣∣∣
θ=0

=
n∑
p=1

app
∂2app

∂θij
2 −
(
∂app
∂θij

)2

app2

∣∣∣∣
θ=0

=
−(2aij)2

aii2
+
−(−2aij)2

ajj2
= −8(

aij
aii

)2 < 0

where aij �= 0 and aii = ajj > 0 hold. This completes the proof. ��
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5 Concluding Remarks

We have shown that the log likelihood flow (9) globally converges to diagonal
matrices if the initial matrix is positive definite excepting the case where the
initial matrix is one of the unstable fixed points. This is equivalent to that the
log likelihood function φ(A) does not have any spurious stable fixed point on
the isospectral submanifold Ω(Λ, SO(n)) as well as the function ϕ(U) (the log
likelihood’s dependency on the unitary diagonalizer U of the estimation of the co-
variance Σ) does not have any spurious stable fixed point on SO(n). This ensures
the global convergence of the gradient-based ICA algorithms which optimizes the
log likelihood function and gives basis for developing and understanding the ICA
algorithms which optimizes with the method including the conjugate gradient
method and the Newton method under unitary constraints (see Manton[7]).
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Abstract. Feature selection and dimensionality reduction is important for high 
dimensional signal processing and pattern recognition problems. Feature selec-
tion can be achieved by filter approach, in which certain criteria must be opti-
mized. By using mutual information (MI) between feature vectors and class la-
bels as the criterion, we proposed an ICA-MI framework for feature selection. 
In this paper, we will compare the linear ICA and local linear ICA for the accu-
racy of MI estimation, and study the bias-variance trade-off on feature projec-
tions and ranking. 

1   Introduction 

Recent trends in multi-sensor signal processing coupled with multidimensional statis-
tical feature extraction techniques for pattern recognition leads to extremely high 
dimensional classification problems, EEG-based pattern recognition problems being 
one such scenario. Dimensionality reduction and feature selection, therefore, becomes 
crucial for accurate and robust classifier design. Techniques based on mutual informa-
tion maximization between features and class labels has attracted increasing attention, 
because this approach can find out the most relevant features, therefore (i) reduces the 
computational load in real-time system; (ii) can eliminate irrelevant or noisy features, 
hence increases the robustness of the system; (iii) is a filter approach, which is inde-
pendent of the design of classifier, and is more flexible.  

The MI based method for feature selection is motivated by lower and upper bounds 
in information theory [1,2]. The average probability of error has been shown to be 
related to MI between the feature vectors and the class labels. Fano’s and Hellman & 
Raviv’s bounds demonstrate that probability of error is bounded from below and 
above by quantities that depend on the Shannon MI between these variables. Specifi-
cally, Hellman & Raviv showed that the upper bound on Bayes error is given by 
(HS(C)-IS(Y,C))/2, where HS(C) is the Shannon entropy of the a priori probabilities of 
the classes and IS(Y,C) is the Shannon MI between the continuous-valued feature 
vector and the discrete-valued class label. Maximizing this MI reduces the upper 
bound as well as Fano’s lower bound, therefore, forces the probability of error  
to decrease. 
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Estimating MI requires the knowledge of the joint pdf of the data in the feature 
space. This is an especially data consuming estimation problem, and if possible must 
be avoided. Utilizing individual mutual information of the features with the class 
labels will surely lead to suboptimal selections, since features are generally mutually 
dependent and information redundancies cannot be captured with such an approach. 
Several MI-based methods have been developed for feature selection in the past years 
[3-8]. Unfortunately, all of these methods failed to solve the particularly difficult high 
dimensional situation – partly because of the curse of dimensionality that is particu-
larly severe for MI estimation. 

In practice, MI must be estimated non-parametrically from the training samples. 
Although this is a challenging problem for multiple continuous-valued random vari-
ables, in classification, the discrete-valued class labels simplify the problem to esti-
mating joint entropy of continuous random vectors. Further simplification is possible 
if the components of the random vectors are independent or made independent – then 
the joint entropy becomes the sum of marginal entropies, which are easier to estimate. 
Thus, the joint mutual information of a feature vector with the class labels is equal to 
the sum of marginal mutual information of each individual feature with the class la-
bels, provided that the features are independent. In previous work, we exploited this 
fact and proposed a framework using ICA transformation and sample-spacing estima-
tor to estimate the mutual information between features and class labels [9]. This 
framework is superior because it is open to diverse algorithms, i.e. each component, 
including ICA transformation and entropy estimator can be replaced by any qualified 
algorithm/alternative. Applying linear ICA to an arbitrary feature vector has the draw-
back that in nonlinear classification problems, the linear ICA model possibly fails, 
thus estimated MI values are inaccurate. For such situations, nonlinear ICA methods 
become necessary, and we focus particularly on local linear ICA for this purpose. 

In this paper, we will investigate the use of linear and local linear ICA for mutual 
information estimation. We will compute the estimation bias arising from the possi-
bility that linear ICA might not achieve perfect independence, and study the bias-
variance trade-off on feature projections and ranking. 

2   Problem Formulation and Asymptotic Analysis 

Consider a group of nonlinearly distributed, n-dimensional feature vectors: 
x=[x1,x2,...,xn]

T. Dimensionality reduction on such a feature vector has to be done to 
improve the generalization capability of the following classifier without compromis-
ing accuracy. The information inequalities mentioned above indicate that the subspace 
projection should be carried out in a manner that maintains as much mutual informa-
tion with the class labels as possible. The subspace projection can be achieved by 
linear/nonlinear projections, as well as feature selection (the latter is a special case of 
linear projections with binary matrix entries – 0 or 1). 

Projection approach: The goal is to determine linear or nonlinear projections that 
jointly maximize their mutual information with the class labels. Specifically, if 
y=g(x), then we must determine g(.) such that IS(Y;C) is maximal. If g is a solution to 
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the nonlinear ICA problem given mixture x, then the best m-dimensional nonlinear 
projection for this NICA solution is the subset y1,…,ym such that IS(Y1;C)>IS(Y2;C)>… 
>IS(Yn;C). Since there are infinitely many solutions to the NICA problem, additional 
constraints on the form of g must be imposed. These constraints are typically imposed 
as model order limitations for parametric nonlinear projections (such as a neural net-
work) or simply as the utilization of a linear projection. For further discussions, we 
will focus on feature selection for simplicity. 

Feature selection: Given a high dimensional feature vector x, our goal is to find the 
best m dimensional subset of features (in terms of maximum MI with C). This is a 
combinatorial search problem, and often m is not defined a priori. An alternative 
strategy is to rank the features and pick the top m features from this ranking. Given 
previously ranked d-1 features x(1),…, x(d-1) the dth feature is the one that maximizes 
the joint MI: IS(x(1),…, x(d-1),x(?);C). The joint mutual information takes into account 
any redundancies in the new feature with the previously ranked d-1 features. This 
ranking procedure requires the repeated evaluation of d-dimensional MI values. The 
following procedure is utilized for this purpose. 

We first apply a suitable clustering algorithm to segment the data into p partitions: 
x(1), x(2), …, x(p). We assume that within each partition x(i), the data is d dimensional, 
and distributed in accordance with the linear ICA model. We apply the linear ICA 
transformation on each partition C+1 times to get feature vectors: y(i|c) and y(i) for each 
partition, where c denotes class labels and y(i|c) are the independent components of 
data in cluster i from class c only, y(i) are the independent components of data in clus-
ter i regardless of class labels. As a result of the linear ICA transformation, we have: 
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where i = 1,…,p, and Wi and Wi|c are the corresponding ICA separation matrices. If 
linear ICA works perfectly, then the joint entropy of y(i|c) and y(i) reduces to the sum of 
marginal entropies. However, this is not guaranteed, therefore, the residual mutual 
information will remain as an estimation bias. In practice, we have an imperfect ICA 
solution and 
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Mutual information satisfies the following additivity property for any partition (qi 
denoting the probability mass of the corresponding partition): 
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The mutual information within each partition can be expressed as a linear combina-
tion of entropy values as follows: 
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where pic denotes the probability mass of class c in partition i. Substituting (2) in (4) 
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The last parenthesis in (5) shows the estimation bias one makes when estimating the 
MI within each partition if it is assumed that the local linear ICA solution in that par-
tition achieved perfect separation. Over all partitions, the total estimation bias (esti-
mated MI minus the actual MI) is averaged as follows: 
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i c
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Note that asymptotically as the number of partitions approach infinity, one could 
utilize a grid partitioning structure within which the probability distributions would 
be uniform, thus local linear ICA would achieve perfect separation within each 
infinitesimal hypercube. However, in practice, one cannot utilize infinitely many 
partitions given a finite number of samples. Note that the analysis above also holds 
for the case where linear ICA is employed directly on the whole dataset without  
any partitions. 

3   Empirical Study 

We have employed the feature ranking method described above to benchmark data-
sets. Partitions are identified via K-means clustering, local linear ICA solutions are 
determined using joint diagonalization of second and fourth order cumulants [10], and 
marginal entropies are estimated using sample spacing estimators [11]. 

3.1   Experiments on a Synthetic Dataset 

This dataset consists of four dimensional feature vectors: xi (i=1,…,4), where x1 and 
x2 are nonlinearly related (Fig. 1 - left), x3 and x4 are independent from the first two 
features and are Gaussian distributed with different mean and variance (Fig. 1 - right). 
There are two classes in this dataset (represented as blue/red or different grayscale 
levels in print). These two classes are separable in the x1 and x2 plane, but overlapping 
in the x3 and x4 plane. It is clear that this dataset can be well classified only using x1 
and x2, while x3 and x4 provides redundant and insufficient information for perfect 
classification. From Fig. 1 we can see that x2 has less overlap compared with x1, while 
x3 has less overlap than x4. So ideally, the feature ranking in descending order of  
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Fig. 1. Four-dimensional Synthetic dataset and corresponding cluster centers. Left: distribution 
of x1 and x2; Right: distribution of x3 and x4. 

importance in terms of classification rate should be x2, x1, x3, x4. In our experiments, 
we choose the sample size as 1000 used 20 partitions. The ‘+’ in Fig.1  represents  the 
partition centers. We also apply linear ICA without any partitioning. The linear ICA 
approach finds the ranking to be x2, x1, x4, x3, while the local linear ICA approach with 
20 partitions finds the expected correct ranking. 

3.2   Experiments on the Iris Dataset 

In this experiment, we applied linear and local linear ICA (with 2 partitions) ap-
proaches to the ranking of the features for the Iris dataset from the UCI database [12]. 
Due to the small sample size, 10 Monte Carlo rankings with randomly selected train-
ing (used for ranking) and test sets are utilized, each consisting of 50% of the avail-
able samples. For each ranked subset, a Gaussian Mixture Model (GMM) based 
Bayesian classifier is employed. The frequency of rankings and classification accu-
racy are shown in Table 1. and Fig. 2. Since both methods agree on the fourth  feature 
as the top one, pairwise scatter plots of this feature with the remaining features are 
shown in Fig. 3 for visual comparison. Feature 3 seems to yield a more compact class 
distribution, while features 1 and 4 seem to have less overlapping samples. Still, it is 
difficult to judge and we rely on the GMM performances on the testing set for the 
final comparison. The classification accuracy in Fig. 2. shows that local linear ICA 
yields better performance than linear ICA in Iris data. 

Table 1. Feature ranking frequencies on the Iris dataset 

Methods Ranking indices 
Linear ICA   4     3     2     1   (10) 

Local linear ICA 4     1     2     3   (5) 
4     2     3     1   (3) 
4     2     1     3   (2) 
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Fig. 2. Classification accuracy for Iris data by linear ICA-MI and Local linear ICA-MI methods. 
The classification accuracy is the average over 10 Monte Carlo simulations. 
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Fig. 3. Combinational distribution of 2 feature vectors of Iris dataset. Left: distribution of x4 
and x2; Middle: distribution of x4 and x3; Right: distribution of x4 and x1. 

3.3   Experiments on the Wisconsin Breast Cancer Dataset 

The two methods are applied to this benchmark dataset, which has higher dimension-
ality than the previous two case studies. Local linear ICA approach  uses  2  partitions 

Table 2. Feature Ranking results on Wisconsin Breast Cancer dataset for different ICA-MI 
methods in 10 Monte Carlo simulations. The frequency of different ranking of 10 Monte Carlo 
simulations are shown inside the bracket. 

Methods Ranking indices 
Linear ICA 3     2     9     4     5     6     7     8     1   (9) 

3     2     9     4     5     8     7     6     1   (1) 
 

Local linear ICA 3     1     2     4     5     6     7     8     9   (4) 
3     4     6     8     7     1     9     2     5   (3) 
3     1     4     5     9     6     8     2     7   (3) 
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Fig. 4. Classification accuracy for Wisconsin Breast Cancer data by different ICA-MI methods. 
The classification accuracy is the average over 10 Monte Carlo simulations. 

and the Monte Carlo ranking approach is employed as before. The ranking and classi-
fication accuracy are shown in Table 2. and Fig. 4. Local linear ICA also exhibit  
better performance than linear ICA. Consider the number of data samples and the 
dimensions, if we partition data into more segments, the performance degrades due to 
the lack of data for reliable linear ICA transformation within each partition.  

4   Conclusions 

Feature projections and feature selection are important preprocessing procedures in 
contemporary pattern recognition problems with extremely high dimensional feature 
vectors. Mutual information maximization provides a suitable filter methodology with 
proven optimality properties regarding the minimization of bounds for the probability 
of error one would attain when features selected based on this criteria are utilized. 

In this paper, we analyzed the finite sample bias of a local linear ICA based mutual 
information estimation scheme that can be conveniently used for ranking features for 
subset selection. Experimental evaluation of the proposed method using 1 and more 
partitions in localization have revealed that as expected, more accurate results are 
obtained when large sample sets are available for MI evaluation. The sample size 
must increase appropriately with increasing data dimensionality; otherwise, the esti-
mates are prone to breaking down at higher dimensional estimations, yielding unreli-
able rankings after a few dimensions. In very high dimensional and small data size 
situations, simply assuming a single partition and employing linear ICA rather than 
local linear ICA might lead to more robust ranking and selection results, though will 
be based on more biased MI estimates. The bias-variance trade-off will be the deter-
mining factor in the choice of the number of partitions for local linear ICA. 
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Abstract. One (of) important application of sparse component analysis
(SCA) is in underdetermined blind source separation (BSS). Within a
probability framework, this paper focuses on recoverability problem of
underdetermined BSS based on a two-stage SCA approach. We consider
a general case in which both sources and mixing matrix are randomly
drawn. First, we present a recoverability probability estimate under the
condition that the nonzero entry number of a source column vector is
fixed. Next, we define the sparsity degree of a signal, and establish the
relationship between the sparsity degree of sources and recoverability
probability. Finally, we explain how to use the relationship to guarantee
the performance of BSS. Several simulation results have demonstrated
the validity of the probability estimation approach.

1 Introduction

Sparse component analysis (SCA) of signals has received a great deal of attention
in recent years (e.g., [1]-[5], etc). An important application of the sparse represen-
tation is in underdetermined blind source separation (BSS), where the number of
sources is greater than the number of observations. Until now, Independent Com-
ponent Analysis (ICA) approach has been commonly used to solve BSS problems.
However, ICA approach generally can not recover all sources in the underde-
termined case [6]. Based on sparsity of sources, a two-stage clustering-then-l1-
optimization approach was proposed for underdetermined BSS in [3] etc. In this
approach, the mixing matrix and the sources were estimated separately. Recently,
in [7], we analyzed the two-stage SCA approach and its application in BSS.

First, we present the model and explain the two-stage SCA approach. Gener-
ally, instantaneous linear mixtures of sources can be modeled by,

X = AS, (1)

� Corresponding author.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 831–837, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where the unknown mixing matrix A ∈ Rn×m (n < m), the matrix S =
[s(1), · · · , s(K)] ∈ Rm×K contains m unknown sources, and the only observ-
able X = [x(1), · · · ,x(K)] ∈ Rn×K is a data matrix containing n mixtures of
the sources.

In the two-stage SCA approach, the mixing matrix A is first estimated, and
the source matrix S is then estimated by solving the following set of K opti-
mization problems (j = 1, · · · ,K),

min
m∑
i=1

|si(j)|, s. t. As(j) = x(j). (2)

In [3, 7] etc., clustering-type algorithms are used to estimate the mixing matrix
A. Besides, a new algorithm for estimating the mixing matrix can been found in
[8]. When the mixing matrix is correctly (or sufficiently precisely) estimated, we
need to discuss the recoverability problem, which can be rephrased as a question.
How is it possible for the 1-norm solution of (2) to be equal to the true source
vector? By our previous studies [7, 8], we found that the higher the sparsity of
sources, the higher probability of recoverability. Especially in [8], we obtained a
recoverability probability estimate under the condition that the mixing matrix is
estimated. In [9], we considered a more general case where both of the sources and
mixing matrix are randomly drawn. Under the condition that the nonzero entry
number of the source vector is fixed, we presented a recoverability probability
estimate.

Another important problem may naturally arise: when sources are not suffi-
ciently sparse, how to guarantee a satisfying performance of BSS? We will discuss
this problem in this paper through first defining sparsity degree of sources and
then establishing a relationship between the sparsity degree of sources and re-
coverability probability.

2 Estimation of Recoverability Probability

In this section, we mainly discuss the recoverability probability estimation. For
simplification, discussion in the following sections will be based on the following
optimization problem, which can be seen a representative of those in (2):

(P1) min
m∑
i=1
|si|, s. t. As = x∗,

where x∗ = As∗, s∗ ∈ Rm is a true source vector. Hereafter, the solution of (P1)
is denoted as s1.

When all entries of A ∈ Rn×m are drawn from a distribution (e.g., a uniform
distribution valued in [−1, 1]), the recoverability probability then depends on
the sensor number n, the source number m, and the nonzero entry number l of
s∗. Hence we denote the recoverability probability as

P (n,m, l) = P (s1 = s∗/||s∗||0 = l). (3)
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Before estimating the probability in (3), we need the following assumption.

Assumption 1: All nonzero entries of the source vector s∗ take either positive
or negative sign with equal probability.

Define a set of sign vector with l nonzero entries, Tl = {t = [t1, · · · , tm]T |tk ∈
{−1, 0, 1},

∑
|tk| = l}. Note that there are 2lClm vectors in Tl. The following

lemma is a simplified version of (23) in [8].

Lemma 1. For a given basis matrix A, suppose that there are ql sign column
vectors in Tl that can be recovered by solving (P ′

1). Then we have

P (s0 = s(1); ||s(0)||0 = l,A) =
ql

2lClm
, (4)

where l = 1, 2, · · · , n.

From Lemma 1, we can see that the recoverability probability in (4) depends
only on the sign patterns of of source vectors. The theoretical analysis can be
seen in several existing references e.g. [8].

The probability P (n,m, l) can be expressed by the following integral,

P (n,m, l) =
∫

||A||∞≤1

P (s∗ = s1/||s∗||0 = l,A)P (A)dA. (5)

Furthermore, we can have the following approximation of the integral in (5),

P (n,m, l) ≈ 1
k0

k0∑
q=1

P (s∗ = s1/||s∗||0 = l,Aq), (6)

where A1, · · · ,Ak0 are k0 random samples of A, k0 is a small positive integer
(5 in our simulation examples). The probability P (s∗ = s1/||s∗||0 = l,Aq) are
calculated according to (4). The theoretical analysis of (6) is presented in [9] and
omitted here.

From (6), we can see that P (n,m, l) can be estimated by taking a small
number of random samples of mixing matrices A. It is based on the conclusion
proved in [9] that the recoverability probability P (s0 = s(1); ||s(0)||0 = l,A) is
close to be a constant for most of mixing matrix A especially when m is large.

3 Sparsity Degree and Recoverability

In this section, we first define a sparsity degree of a signal, then establish the
relationship between sparsity degree and recoverability.

Definition 1: For a signal sequence s= (s1, s2, · · ·), suppose that the probability
P (sk = 0) is invariant w.r.t. k. Then the probability P (sk = 0) is called its
sparsity degree.
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Suppose that the sparsity degrees of sources are α. Thus for any source vector
s∗ ∈ Rm, we have

P (s∗k = 0) = α, P (s∗k �= 0) = 1− α, k = 1, · · · ,m. (7)

It follows from (7) that the probability that s∗ has exact j nonzero entries is
Cjm(1 − α)jα(m−j). Thus, we have,

P (s∗ = s1/α) =
m∑
j=0

P (s∗ = s1/||s∗||0 = j)P (||s∗||0 = j)

=
m∑
j=0

Cjm(1− α)jα(m−j)P (n,m, j), (8)

where the probability estimatesP (n,m, j) (j = 0, · · · ,m) can be calculated by (6).
(8) reflects the relationship between recoverability probability and sparsity

degree of sources. In real world applications, to guarantee a good performance of
BSS, we can first set a recoverability probability constraint p0 (e.g., 0.95). Using
(8), we can determine a corresponding sparsity degree constraint by searching an
α in {0.01, 0.02, · · · , 1} such that P (s∗ = s1/α) is just larger than p0. Hereafter,
this sparsity degree constraint of sources is denoted as αs(n,m, p0), which is
related to sensor number n and source number m. Furthermore, we can estimate
the corresponding sparsity degree constraint of mixtures, which is denoted as
αx(n,m, p0). For the m sources, suppose that events {si(j) = 0}, i = 1, · · · ,m
are independent. Considering the linear mixture model (1), we have

αx(n,m, p0) = (αs(n,m,0 ))m. (9)

Under the recoverability probability constraint of 0.95, Table 1 shows the
sparsity degrees constraints αx(n,m, 0.95) for mixtures for n = 6, · · · , 14, and
m = n + 1, · · · , 15.

Finally, we can apply the results shown in Table 1 in BSS. When an n ×m
dimensional mixing matrix is estimated, we apply a wavelet packets transforma-
tion (WPT) to all mixtures such that their average sparsity degree is larger than

Table 1. Sparsity degree constraints αx(n, m, 0.95) for mixtures corresponding to re-
coverability probability constraint of 0.95

n \ m 7 8 9 10 11 12 13 14 15
6 0.15 0.20 0.32 0.35 0.40 0.42 0.39 0.49 0.54
7 0.07 0.17 0.20 0.25 0.28 0.34 0.36 0.40
8 0.04 0.07 0.13 0.16 0.22 0.27 0.29
9 0.02 0.04 0.07 0.12 0.17 0.21
10 0.01 0.02 0.06 0.07 0.09
11 0.004 0.01 0.03 0.05
12 0.002 0.01 0.02
13 0.0005 0.003
14 0.0002
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αx(n,m, p0) in the time frequency domain. This can be achieved by choosing a
suitable level number of WPT (see Example 2). By this way, we can make sure
the recoverability probability constrain satisfied.

4 Simulation Examples

In this section, two simulation examples are presented to illustrate our approach
and results.

Example 1. In this example, we demonstrate the validity of probability esti-
mates in (6) and (8) using simulations. Here every mixing matrix A ∈ R7×9 is
taken according to the uniform distribution in [−1, 1]. For each l (l = 1, · · · , 9),
we first estimate the probabilities P (7, 9, l) by solving 3000 linear program-
ming problems, each of which is formed by a pair of random mixing matrix
and source vector. Note that each source vector has exactly l nonzero entries
drawn from a uniform distribution in [−0.5, 0.5] with their indices also taken
randomly. Suppose that nl source vectors can be recovered, we obtain the ra-
tio p̄l = nl

3000 that reflects the true probability P (7, 9, l) on recoverability. All
p̄l, l = 1, · · · , 9, are depicted by “o” and the dashed curve in the first subplot
of Fig. 1.

Next, we estimate P (7, 9, l) (l = 1, · · · , 9) using (4) and (6), where k0 in (6) is
taken as 5. These 9 probability estimates are depicted by “∗” and the solid curve
in the first subplot of Fig. 1. The two curves in this subplot match each other
very well, which demonstrates the validity of recoverability probability estimate
of P (n,m, l) in (6).
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Fig. 1. Curves of estimated probabilities and true probabilities in Example 1. The left
and right subplots demonstrate validity of the probability estimates in (6) and (8),
respectively.
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In the following, we confirm the probability estimate (8) by simulation.
For αk = (j − 1) ∗ 0.1, (k = 1, · · · , 11), we first calculate the probabilities

P (s∗ = s1/αk) according to (8), where n = 7,m = 9. Note that P (n,m, j)
(j = 0, · · · , 9) have been obtained previously. Next, for each k (k = 1, · · · , 11),
we solve 3000 linear programming problems, each of which is formed by a pair of
random 7×9 dimensional mixing matrix and source vector. Note that all source
vectors are drawn from the distribution in (7). Suppose that mk source vectors
are recovered, hence we obtain the ratio P̃ (s1 = s∗/αk) = mk

3000 , which reflects
the true probability P (s1 = s∗) under the sparsity degrees αk.

In the second subplot of Fig. 1, P (s∗ = s1/αk) are depicted by “ ∗ ” and
the solid curve, while P̃ (s∗ = s1/αk) are depicted by “o” and the dashed curve.
These two curves fit very well, virtually overlapping. Thus, the relationship be-
tween sparsity degree of sources and recoverability probability shown in (8) is
demonstrated by simulations.

Example 2. In this example, we explain how to use the sparsity degree con-
straints shown in Table 1 to guarantee a satisfying performance of BSS. Gen-
erally, real world sources are not sufficiently sparse, we can not directly solve
the linear programming to separate sources. For producing sparsificaiton, we
apply a WPT (Daubechies WPT here) to all mixtures. BSS is then performed
in the time-frequency domain. Using estimated time-frequency coefficients and
a inverse WPT, we can reconstruct sources in the time domain.

We now consider 8 speech sources, and their 6 mixtures. We apply a WPT
with k levels to each speech source, and each speech mixture. The sparsity degree
of all WPT coefficients is then estimated. Note that if the absolute value of a time
frequency coefficient of a speech source (mixture) is less than 0.02M (0.004M),
where M is the maximum of the absolute values of all time frequency coefficients,
then this coefficient is taken as zero. Table 2 shows average sparsity degrees of
the 8 speech sources, and the 6 speech mixtures in the time frequency domain
under 10 WPTs with level number from 1 to 10.

As an example, we now consider a blind source separation problem with 8
unknown speech sources and 6 unknown mixtures. From Table 1, the sparsity
degree of mixtures should be larger than 0.2 such that recoverability probability
is larger than 0.95. From Table 2, we find that 7 level WPT can produce sufficient
sparsity.

In practical blind source separation, it is impossible to directly estimate the
sparsity degree of sources in the analyzed domain. However, it the sparsity de-
gree of mixtures can be estimated, hence the sparsity degree of sources can be
indirectly estimated using (9).

Table 2. Average sparsity degrees of 8 speech sources and their 6 mixtures in the time
frequency domain (the first row refers to the level numbers of WPT)

1 2 3 4 5 6 7 8 9 10
Speech source 0.55 0.64 0.71 0.74 0.75 0.78 0.82 0.83 0.83 0.84
mixture 0.09 0.13 0.18 0.18 0.19 0.20 0.22 0.24 0.27 0.32



Analysis of Source Sparsity and Recoverability 837

5 Concluding Remarks

In this paper, the recoverability problem was discussed when a two-stage SCA
approach was used for BSS. For general case of random mixing matrix and
sources, we presented the estimate of recoverability probability which depends
on the numbers of sensors, sources and nonzero entries of each source column
vector. Next, we defined the sparsity degree of a signal sequence, and established
a relationship between sparsity degrees of sources and recoverability probability.
To guarantee the performance of BSS, we need to apply a WPT to all mixtures
for producing sparsification. Based on the results in this paper, we can first set a
recoverability probability constraint (e.g., 0.95), and determine a corresponding
sparsity degree constraint of mixtures such that the probability constraint is
satisfied. Next, we choose a level number of WPT according to the sparsity
degree constraint and perform BSS in the time frequency domain. Finally, the
sources in the time domain can be reconstructed by corresponding inverse WPT.

References

1. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Com-
putation 12 (2000) 337–365

2. Donoho, D.L., Elad, M.: Maximal sparsity representation via l1 minimization. the
Proc. Nat. Aca. Sci. 100 (2003) 2197–2202

3. Zibulevsky, M., Pearlmutter, B.A.: Blind Source Separation by Sparse Decomposi-
tion. Neural Computations 13 (2001) 863–882

4. Lee, T.W., Lewicki, M.S., Girolami, M., Sejnowski, T.J.: Blind source separation
of more sources than mixtures using overcomplete representations. IEEE Signal
Processing Letter 6 (1999) 87–90

5. Girolami, M.: A variational method for learning sparse and overcomplete represen-
tations. Neural Computation 13 (2001) 2517–1532

6. Li, Y., Wang, J.: Sequential blind extraction of linearly mixed sources. IEEE Trans.
On Signal Processing 50 (2002) 997–1007

7. Li, Y.Q., Cichocki A., Amari, S.: Analysis of Sparse representation and blind source
separation. Neural Computation 16 (2004) 1193–1234

8. Li, Y.Q., Cichocki, A., Amari, S., Ho, D.W.C., Xie, S.L.: Underdetermined blind
source separation based on sparse representation. accepted by IEEE Trans. on Signal
Processing

9. Li, Y.Q., Amari, S., Cichocki, A., Guan, C.T.: Probability Estimation for Recover-
ability Analysis of Blind Source Separation Based on Sparse Representation. sub-
mitted to IEEE Trans. on Information Theory (revised).



Analysis of Feasible Solutions of the ICA
Problem Under the One-Bit-Matching Condition

Jinwen Ma1,3, Zhe Chen2, and Shun-ichi Amari1

1 Laboratory of Mathematical Neuroscience
2 Laboratory of Advanced Brain Signal Processing,

RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
3 Department of Information Science, School of Mathematical Sciences and LMAM,

Peking University, Beijing 100871, P.R. China
{jwma, zhechen, amari}@brain.riken.jp

Abstract. The one-bit-matching conjecture for independent component
analysis (ICA) has been widely believed in the ICA community. The-
oretically, it has been proved that under certain regular assumptions,
the global maximum of a simplified objective function derived from the
maximum likelihood or minimum mutual information criterion under the
one-bit-matching condition corresponds to a feasible solution of the ICA
problem, and also that all the local maxima of the objective function cor-
respond to the feasible solutions of the ICA problem in the two-source
square mixing setting. This paper further studies the one-bit-matching
conjecture along this direction, and we prove that under the one-bit-
matching condition there always exist many local maxima of the ob-
jective function that correspond to the stable feasible solutions of the
ICA problem in the general case; moreover, in ceratin cases there also
exist some local minima of the objective function that correspond to
the stable feasible solutions of the ICA problem with mixed super- and
sub-Gaussian sources.

1 Introduction

Independent component analysis (ICA) is a powerful tool for blind signal pro-
cessing and has remained as an intense research subject in the literature. One
of important application of ICA is used for blind source separation where the
source signals are assumed to be independent and non-Gaussian. In particular,
consider a conventional ICA problem which assumes an instantaneous linear
mixing model: x = As, where A ∈ Rm×n denotes the mixing matrix; s ∈ Rn

and x ∈ Rm correspond to the n-dimensional source vector and m-dimensional
mixture vector, respectively. The goal of ICA is to seek a demixing matrix,
W ∈ Rn×m, applied to the mixture vector x:

y = Wx = W(As) = (WA)s (1)

where y ∈ Rn corresponds to the unmixed signal vector. When the sources in s
are statistically independent, it is hoped that the recovered y is also componen-
twise independent, that is,

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 838–845, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Analysis of Feasible Solutions of the ICA problem 839

q(y) =
n∏
i=1

q(yi), (2)

where q(·) denotes the probability density function. Generally and unless stated
otherwise, it is assumed in the paper that m = n and the square mixing matrix
A is invertible.

The study on the ICA problem can be traced back to Tong, Inouye & Liu [1]
who showed that y recovers the sources s up to scaling and permutation ambi-
guity when yi (i = 1, . . . , n) become componentwise independent and at most
one of them is Gaussian. Later on, Comon [2] further formalized the problem
under the name ICA. Since then, the ICA problem has been widely studied from
different perspectives by many researchers (e.g., [3]-[7]). In particular, one of
essential goal to exploit the independence in parallel is to minimize the following
objective function, or the so-called “minimum mutual information (MMI)”:

D(W) = −H(y)−
n∑
i=1

∫
pW(yi;W) log pi(yi)dyi, (3)

where H(y) = −
∫
p(y) log p(y)dy represents the entropy of y, pi(yi) denotes the

predetermined model probability density function (pdf) that is implemented to
approximate the marginal pdf of y, and pW(yi;W) denotes the joint probability
distribution on y = Wx. In the literature, how to choose the model pdf’s is an
important issue for the ICA problem. It is known that, with each model pdf pi(yi)
predefined, this MMI method works only in the cases where the components of
y are either all super-Gaussians [4] or all sub-Gaussians [5].

For the cases where sources contain both super-Gaussian and sub-Gaussian
signals in an unknown manner, it was suggested that each model pdf pi(yi)
should be flexibly adjustable and be learned together with demixing matrix W.
In fact, the learning of pi(yi) can be done by adapting the parameters in a finite
mixture of sigmoid functions that learns the cumulative distribution function
(cdf) of each source [8], or by learning a mixture of parametric pdf’s [9]. On
the other hand, it has also been found that a rough estimate of each source pdf
or cdf may be sufficient for source separation. These observations motivated the
proposal of the so-called one-bit-matching conjecture [10], which can be basically
stated as “all the sources can be separated as long as there is a one-to-one same-
sign-correspondence between the kurtosis signs of all source pdf’s and the kurtosis
signs of all model pdf’s”.

The one-bit-matching conjecture was widely believed in the ICA community
since there have been many experimental studies supporting this claim (e.g.,
[11]-[14]). Moreover, some new ICA algorithms were already established in light
of this conjecture. However, a complete understanding of the one-bit-matching
conjecture requires a theoretical proof for it. In the literature, a mathematical
proof [15] was given for the case involving only two sub-Gaussian sources, but
the result cannot be extended to a model either with more than two sources, or
with mixed sub- and super-Gaussian sources. Recently, Liu, Chiu and Xu [16]
have proved that under the assumption of zero skewness for the model pdf’s, the
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one-bit-matching condition guarantees a feasible solution of the ICA problem
by globally maximizing the simplified objective function (to be defined later
in Section 2) derived from Eq.(3). However, this result is rather restrictive in
that it is generally difficult to obtain a feasible solution of the ICA problem by
searching the global maximum of the objective function. As a matter of fact, it
is more significant to study the local separation property of the ICA problem
under the one-bit-matching condition that the sources can be separated by locally
maximizing that objective function in the same setting. Along this direction,
Ma, Liu & Xu [17] already proved that all the local maxima of the formulated
objective function correspond to the feasible solutions of the ICA problem in the
two-source mixing setting.

In this paper, we further investigate the formulated objective function in the
general case. Specifically, we prove that there always exist many local maxima of
the objective function that correspond to the stable feasible solutions of the ICA
problem (i.e., the stable solutions of a local searching algorithm on the objective
function) in the general case under the one-bit-matching condition. Moreover,
in ceratin situation under the one-bit-matching condition, there also exist some
local minima of the objective function that correspond to the stable feasible
solutions of the ICA problem with mixed super- and sub-Gaussian sources. That
is, the successful separation can be obtained via locally minimizing the objective
function under the one-bit-matching condition in such a case with mixed super-
and sub-Gaussian sources.

The rest of the paper is structured as follows. We first formulate the objective
function and introduce a leema in section 2. Section 3 presents the main results
of two theorems. We conclude briefly in section 4.

2 The Objective Function and a Lemma

For discussion simplicity, we assume that the source, mixed, and recovered signals
are all whitened and thus W and A are both orthonormal. When the skewness
and kurtosis statistics are considered and when the non-Gaussian sources have
nonzero kurtosis statistics, under the zero skewness assumption for all the model
pdf’s, the objective function derived from Eq.(3) can be simplified as follows [16]:

J(R) =
n∑
i=1

n∑
j=1

r4
ijν

s
j k
m
i , (4)

where R = (rij)n×n = WA is an orthonormal matrix to be estimated (the reason
that we optimize R instead of W is for convenience of analysis); νsj denotes the
kurtosis of the source sj , and kmi is a constant with the same algebraic sign as
the kurtosis νmi of the model pdf.

For the purpose of clarity, we define a matrix K by

K = (kij)n×n, kij = νsj k
m
i . (5)
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By that we may rewrite (4) as

J(R) =
n∑
i=1

n∑
j=1

r4
ijν

s
j k
m
i =

n∑
i=1

n∑
j=1

r4
ijkij . (6)

Under the one-bit-matching condition, with the help of certain permutation we
can always obtain km1 ≥ · · · ≥ kmp > 0 > kmp+1 ≥ · · · ≥ kmn and νs1 ≥ · · · ≥ νsp >
0 > νsp+1 ≥ · · · ≥ νsn, which will be considered as the one-bit-matching condition
in this paper.

It has been proved in [16] that the global maximization of Eq.(6) under the
one-bit-matching condition can only be approachable by setting R as an identity
matrix up to certain permutation and sign indeterminacy. That is, the global
maximization of Eq.(6) will recover the original sources up to sign and per-
mutation indeterminacies if the one-bit-matching condition is satisfied. In the
two-source mixing case, i.e., n = 2, it has been further proved in [17] that the
local maxima of J(R) are also only reachable by the permutation matrices up to
sign indeterminacy under the one-bit-matching condition. In the following, we
will prove that there exist many local maxima of J(R) that correspond to the
stable feasible solutions of the ICA problem. Moreover, in certain cases where
both super- and sub-Gaussian sources coexist, some minima of J(R) also cor-
respond to the stable feasible solutions of ICA problem. Before doing so, we
introduce one lemma as follows.

Lemma 1. Suppose that F (x) (x ∈ Rm) is a twice differentiable scalar function
under the following constraints:

Ci(x) = 0, i = 1, 2, · · · , k. (7)

Construct a Lagrange function with a Lagrange multiplier set λ = {λ1, λ2, · · · ,
λk}, i.e., L(x,λ) = F (x)+

∑k
i=1 λiCi(x), and assume that (x∗,λ∗) is a solution

of the system of the equalities that all the derivatives of L(x,λ) with respect to
the variables of x and the Lagrange multipliers λi are equal to zeros. It is also
assumed that these ∇Ci(x∗) are linearly independent. If for any nonzero vector
q �= 0 under the constraints qT∇xCi(x∗) = 0 for i = 1, 2, · · · , k, we have

qT∇2
xL(x∗,λ∗)q < 0 (or > 0), (8)

then x∗ is a local maximum (or local minimum) of F (x) under the constraints.

Lemma 1 is a well-known mathematical result in optimization theory; its proof
can be found in [18].

3 The Main Results

With the above background, we are ready to investigate the local maximization
of objective function J(R) defined in (6), where R is a permutation matrix up
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to sign indeterminacy (namely, as a special orthonormal matrix). We consider
the general optimization problem of maximizing J(R) with a fixed matrix K
and RRT = I.

In order to solve this constrained optimization problem, we introduce a set
of Lagrange multipliers λ = {λij : i ≤ j} and construct the Lagrange objective
function:

L(R,λ) =
n∑
i=1

n∑
j=1

r4
ijkij +

n∑
i=1

n∑
j=i

λij

( n∑
l=1

rlirlj − δij

)
, (9)

where δij denotes the Kronecker function. By derivation, we have

∂L(R, λ)
∂rij

= 4kijr
3
ij +

j−1∑
l=1

rilλlj + 2λjjrij +
n∑

l=j+1

rilλjl; (10)

∂L(R, λ)
∂λij

=
n∑

l=1

rlirlj − δij . (11)

Given λ, we define a new matrix U = (uij)n×n as

uij =

⎧⎨⎩
λij , if i < j;
λji, if i > j;
2λii if j = i.

(12)

In light of (10) and (12), we have

∂L(R,λ)
∂rij

= 4kijr3
ij +

n∑
l=1

rilulj . (13)

Note that U is symmetric in that UT = U. Setting the derivatives of (10) and
(11) to zeros yields

− 4(kijr3
ij)n×n = RU. (14)

For clarity, we further define a new matrix B by

B = (kijr3
ij)n×n.

By virtue of the symmetry of U, we have

RTB = BTR, or B = RBTR, (15)

which is essentially the condition for matrix R to be a critical point of the ob-
jective function (6) under the orthonormality constraint; in fact, it is equivalent
to the condition that the gradient of J(R) on the Stiefel manifold is zero [19].

Moreover, it can be easily shown that all the permutation matrices up to sign
indeterminacy satisfy Eq.(15). That is, these permutation matrices will be the
local maxima, minima, and saddle points of the objective function J(R). In the
following, we will study the circumstances when a permutation matrix (up to
sign indeterminacy) corresponds to a local maximum, local minimum, or saddle
point of J(R). The main results are summarized into two theorems.
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Theorem 1. If R∗ is a permutation matrix up to sign indeterminacy and kij >
0 at all the positions where |r∗ij | = 1, it corresponds to a local maximum of the
objective function J(R).

Proof: For convenience, we vectorize the n× n matrix R into an n2 × 1 vector

vec[R] = [r11, r21, · · · , rn1, r12, r22, · · · , rn2, · · · , r1n, r2n, · · · , rnn]T ∈ Rn
2
.

Correspondingly, we may also construct a nonzero n2 × 1 vector q

q = [q11, q21, · · · , qn1, q12, q22, · · · , qn2, · · · , q1n, q2n, · · · , qnn]T ∈ Rn
2
.

Taking the derivative of Eq.(13) yields

∂2L(R,λ)
∂rij∂ri′j′

= δ(i,j),(i′,j′)[12kijr2
ij + ujj ], (16)

where δ(i,j),(i′,j′) denotes the Kronecker function such that it equals to 1 if
(i′, j′) = (i, j) (namely, i = i′ and j = j′) and zero otherwise. It follows from
Eq.(14) that

U = −4RTB. (17)

When R = R∗ is a permutation matrix up to sign indeterminacy, U∗ (associated
with λ∗) will be a diagonal matrix. By the condition that kij > 0 at every
|r∗ij | = 1, it follows that u∗

jj = −4kij < 0 for each j. Moreover, it can be
readily verified that all ∇RCij(R∗) are linearly independent, where we define
Cij(R) =

∑n
l=1 rlirlj − δij for i ≤ j.

In light of Eq.(16), we infer that ∇2
RL(R∗,λ∗) is a diagonal matrix. Fur-

thermore, its diagonal elements are negative except those ones corresponding to
|r∗ij | = 1. However, the qij associated with |r∗ij | = 1 will be constrained to zeros
under the condition qT∇RCjj(R∗) = 0 for any nonzero vector q. Thus, with all
the constraints qT∇RCij(R∗) = 0, we always have qT∇2

RL(R∗,λ∗)q < 0 for
any nonzero vector q. It then follows from Lemma 1 that R∗ is a local maximum
of J(R). Thus far the proof is completed. �
Remark 1. According to the one-bit-matching condition, the matrix K =
(kij)n×n can be divided into the following four blocks:

K =
(

K11 K12
K21 K22

)
,

where K11 and K22 are, respectively, the upper left p × p submatrix and the
lower right (n− p)× (n− p) submatrix of R, with all their elements being posi-
tive; while R12 and R21 are, respectively, the upper right p× (n− p) submatrix
and the lower left (n − p) × p submatrix of R, with all their elements being
negative. Thus for a permutation matrix, if its nonzero elements are all in the
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submatrices K11 and K22, their corresponding kij are all positive. Therefore,
these permutation matrices (up to sign indeterminacy) are all local maxima of
J(R). Clearly, there are p!(n − p)! such permutation matrices. For 0 ≤ p ≤
n, the number of these permutation matrices is fairly large. Therefore, there
always exists many local maxima of J(R) that correspond to the stable feasible
solutions of the ICA problem. In other words, the ICA problem has many stable
feasible solutions under the one-bit-matching condition via locally maximizing
the objective function J(R).

In the similar context, we can prove the following theorem.

Theorem 2. If R∗ is a permutation matrix up to sign indeterminacy and kij < 0
at all the positions where |r∗ij | = 1, it corresponds to a localminimumof the objective
function J(R).

Remark 2. According to Theorem 2 and under the one-bit-matching con-
dition, if the nonzero elements of a permutation matrix are all in the sub-
matrices K12 and K21, it is a local minimum of J(R). That is, it is possi-
ble that the local minimum of the objective function can be a feasible solu-
tion of the ICA problem, which actually explains why a local gradient-descent
search of the objective function can also lead to a feasible solution of the ICA
problem in certain scenarios. However, this kind of permutation matrix can
only exist in the special case where n = 2p (i.e., half super-Gaussian and half
sub-Gaussian).

Moreover, since the condition (8) is also necessary for a local optimum solution
(maximum or minimum) of the constrained function we can conclude that if
the numbers of positive and negative kij at the positions where |r∗ij | = 1 are
both greater than 1, R∗ will be a saddle point of the objective function J(R).
Clearly, such a permutation matrix generally exists and also corresponds to
a feasible solution of the ICA problem with mixed super- and sub-Gaussian
sources; however, this solution is always unstable.

To sum up the above results, we have established that under the one-bit-
matching condition, there always exist many stable feasible solutions of the ICA
problem via locally maximizing the objective function (6); in the meanwhile,
there may exist some unstable feasible solutions of the ICA problem; in addition,
there may exist local minima of J(R) that correspond to the stable feasible
solutions in the cases of mixed super- and sub-Gaussian sources.

4 Conclusion

In this paper, we have analyzed the feasible solutions of the ICA problem un-
der the one-bit-matching condition. By mathematical analysis, we have proved
that there always exist many stable feasible solutions of the ICA problem under
the one-bit-matching condition. In the meanwhile, under the one-bit-matching
condition, there may exist some unstable feasible solutions of the ICA prob-
lem; moreover, there may exist local minima of J(R) corresponding to the sta-
ble feasible solutions of the ICA problem with mixed super- and sub-Gaussian
sources.
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Abstract. Principal Component Analysis (PCA) is a very well known
statistical tool. Kernel PCA is a nonlinear extension to PCA based
on the kernel paradigm. In this paper we characterize the projections
found by Kernel PCA from a information theoretic perspective. We
prove that Kernel PCA provides optimum entropy projections in the
input space when the Gaussian kernel is used for the mapping and a sam-
ple estimate of Renyi’s entropy based on the Parzen window method is
employed. The information theoretic interpretation motivates the choice
and specifices the kernel used for the transformation to feature space.

Keywords: Kernel PCA, information-theoretic learning, entropy
projections.

1 Introduction

Many real world problems deal with a very high number of signals not all equally
important for the application. Therefore, a simplification of the problem is often
desirable, and sometimes imperative. The goal is to obtain a smaller number of
projections that describes the data and minimize the loss of information in the
projection. A very well known statistical tool for data projection is Principal
Component Analysis (PCA) [1]. PCA searches for the projections of maximum
variance. If the process that generated the data is Gaussian this projection is
optimum. This is because Gaussian processes are totally described by their mean
and variance. The same is not true, however, for other data distributions.

PCA can be formulated in terms of inner (or dot) products. Following a recent
trend, a kernel-based extension named Kernel PCA was proposed by Schölkopf
et al. [2, 3]. In fact, it has been pointed out that any algorithm that can be formu-
lated using only dot products can be immediately kernelized, yielding an easily
trackable nonlinear formulation. Kernel PCA performs PCA in feature space.
It has been verified, that by selecting the kernel appropriately, it is possible to
find a projection in the input space that is more descriptive of the data, even
� This work was supported in part by Fundação para a Ciência e a Tecnologia (FCT)

grant SFRH/BD/18217/2004 and NSF grant ECS-0300340.
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if the data is described by a non-Gaussian distribution. Recently, Williams [4]
pointed out that Kernel PCA algorithm can be interpreted as a form of multi-
dimensional scaling provided that the kernel function κ(x,y) is isotropic, i.e. it
depends only on ‖ x− y ‖. This connection provides a metric multidimensional
scaling algorithm to solve Kernel PCA instead of a eigendecomposition of the
Gram matrix. Bengio et al. [5] pointed out the link between Kernel PCA and
spectral embedding. The direct relation resides in a more general learning prob-
lem: learning the principal eigenfunctions of operators defined from a kernel and
the unknown data-generating density function.

In this paper we take an information-theoretic perspective to Kernel PCA.
We show a direct connection between Kernel PCA and maximization of en-
tropy, and prove mathematically why this happens. As Bach and Jordan [6]
pointed out, this insight is also highly valuable to ICA, since ICA can be viewed
as a generalization of PCA, one that depends on high order moments. Although
a relation between Kernel PCA and ICA is not made here, the demonstration
we make inherently connects both concepts.

2 Kernel PCA

Let xi, i = 1, . . . ,M be a set of M sample vectors in a N -dimensional (input)
space, and Φ(·) : RN −→ F be the mapping to the feature space. Kernel PCA
is simply PCA applied in feature space. Hence, the goal of Kernel PCA is to
find variance maximizing projections of the vectors Φ(xi). If the vectors Φ(xi),
i = 1, . . . ,M have zero mean Kernel PCA can be stated as the following
optimization problem: we wish to maximize the cost function

J(w) = E
{
(wTΦ(x))2

}
. (1)

Because the above equation depends on the norm of the projection vector, the
Lagrange multiplier method is used to force the vectors to unit norm. Thus, the
following cost function is maximized instead

J(w) = E
{
(wTΦ(x))2

}
− λ(wTw − 1)

= wTE
{
Φ(x)Φ(x)T

}
w − λ(wTw − 1). (2)

Notice that C = E
{
Φ(x)Φ(x)T

}
is the covariance matrix of the vectors in the

feature space. The solution of (2) is found by solving

Cw = λw. (3)

As for PCA, the solutions to this equation are well known to be the eigenvectors
and eigenvalues of the covariance matrix, although in this situation computed in
feature space. Solving this problem directly in feature space is very complicated.
Fortunately, this equation can be restated in terms of dot products, for which a
solution can be easily found, as we shown next.
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As all solutions w of (3) for which λ ≥ 0 lie in the span of the transformed
vectors we can write,

w =
M∑
i=1

αiΦ(xi). (4)

Also, the covariance matrix of the transformed vectors can be estimated from
the vectors as

C =
1
M

M∑
i=1

Φ(xi)Φ(xi)T . (5)

Returning to the problem of the eigendecomposition of the covariance matrix of
the feature vectors, we have that (3) is equivalent to

〈Φ(xk),Cw〉 = λ 〈Φ(xk),w〉 , for all k = 1, . . . ,M. (6)

Then, substituting (4) and (5) yields

1
M

M∑
i=1

ΦT (xk)Φ(xi)
M∑
j=1

αjΦT (xi)Φ(xj) = λ

M∑
j=1

αjΦT (xk)Φ(xj),

for all k = 1, . . . ,M. (7)

Defining the Gram matrix K, as Kij = κ(xi,xj) = 〈Φ(xi),Φ(xj)〉, i, j =
1, . . . ,M , we can rewrite (7) in matrix form as

K2α = MλKα. (8)

where α = [α1, . . . , αM ]T . This equation has solutions found by the eigendecom-
position of K but, most important of all, is that tells us that the eigenvectors
of the Gram Matrix are the coefficients the decomposition of the eigenvectors of
C. Consequently, the projection of a feature vector is

〈Φ(x),wj〉 =
M∑
i=1

αji 〈Φ(x),Φ(xi)〉 , (9)

where wj denotes the j-th positive eigenvector of C.

3 Information Theoretic Concepts

In this section we briefly introduce some of the information theoretic core
concepts needed to later establish its connection to Kernel PCA.

The key information measure in information theoretic applications is Rényi’s
quadratic entropy [7], defined for the pdf, f(x), of a random variable X as

H(x) = − log
∫ ∞

−∞
f2(x)dx = − logE {f(x)} . (10)
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The argument of the logarithm,

V (x) =
∫ ∞

−∞
f2(x)dx = E {f(x)} , (11)

is what it is called the information potential (IP), so named due to a similarity
with the potential energy field in physics [8]. Notice that the information poten-
tial depends directly on the pdf of X, which is normally unknown. Luckily, we
can circumvent the explicit estimation of the pdf because entropy is a “moment”
of the pdf. In fact, using the Parzen window method [9], written as

f̂(x) =
1
N

N∑
i=1

κσ/
√

2(x,xi), (12)

where κσ/√2(x,xi) is the estimation kernel, commonly taken as a Gaussian,with
bandwidth σ/

√
2, although other kernels may be used [9]. This kernel must be a

valid pdf, i.e. be positive and integrate to one. Then, substituting this estimator
in the IP we do not need to explicitly compute the integral because the integral of
a product of Gaussians is a Gaussian (with twice the variance), yielding directly

V̂ (x) =
1
N2

N∑
i=1

N∑
j=1

κσ(xi,xj). (13)

Although the information potential as given by the previous equation is an ap-
proximation, this is only to the extent of the error in the pdf estimation. In other
words, if f̂(x) from (12) equals the true pdf then the estimator given by (13)
also has no error.

For any Mercer kernel, one can employ Mercer’s theorem,

κσ(xi,xj) = 〈Φ(xi),Φ(xj)〉 , (14)

to rewrite the information potential of (13) as [10]

V̂ (x) =
1
N2

N∑
i=1

N∑
j=1

〈Φ(xi),Φ(xj)〉 =

〈
1
N

N∑
i=1

Φ(xi),
1
N

N∑
j=1

Φ(xj)

〉
=‖ μΦ ‖2,

(15)
where μΦ is the mean of the vectors in feature space. That is, the information
potential is the squared norm of the mean vector of the data in kernel space. This
equation shows exactly the duality existing between the information potential
and second order statistics computed in feature space on the transformed data.

Finally, we remark that extremization (maximization or minimization) of
H(x) can be alternatively achieved by extremizing the information potential
in the opposite direction, because of the minus signs in (10) and the fact that
the logarithm is a monotonic function. Hence, if we wish to maximize the entropy
we can simply minimize the information potential. Conversely, maximizing the
information potential yields minimum entropy.
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4 Characterization of Kernel PCA Projections in Input
Space

In section 2 explained the fundamentals of Kernel PCA. The most important
point was to explicitly formulate Kernel PCA as a tool for finding projections
of maximum variance in feature space, as (2) states. On the other hand, (15)
shows that a relationship between second order statistics in the feature space
and quadratic Renyi’s entropy in the input space exists.

Let us analyze in detail what is the meaning of the variance of the feature
vectors. The variance of the feature vectors is

var(Φ(x)) = E
{
Φ(x)TΦ(x)

}
− E {Φ(x)}T E {Φ(x)} . (16)

Expressing the inner product as a kernel operation and using identity (15),

var(Φ(x)) = E {κ(x,x)} − V (x). (17)

The quantity E {κ(x,x)} is the information potential at the origin, V (0). This
is a constant value representing the zero entropy situation, for which the maxi-
mum value of the information potential is achieved. From (17), maximizing the
variance of the feature vectors corresponds therefore to the minimization of the
information potential, V (x), in the input space.

The fact that Kernel PCA finds projections that minimize the information
potential in input space, together with the remarks made in section 3 on the
relationship between the information potential and entropy prove the statement
that kernel principal components are maximum entropy projections. Since en-
tropy is associated with information [11], maximum entropy projections are the
directions more informative to explore for machine learning algorithms. Further-
more, notice that at no point in our proof of this connection an assumption of a
specific kernel was made, other than it has to be able to accurately provide an
estimation to the input sample vectors pdf.

5 Example

In this section we illustrate what was just proved in the previous section. We
will use a small example, in which the goal is to obtain the maximum informa-
tive projection of a mixture of two Gaussian distributions. The overall pdf is
specified by

p(x) =
1
2

(N(x, μ1,Σ1) + N(x, μ2,Σ2)) , (18)

where N(x, μ,Σ) is a Gaussian distribution with mean μ and covariance matrix
Σ. In this case,

μ1 =
[
−1
−1

]
, Σ1 =

[
1 0
0 0.1

]
, μ2 =

[
1
1

]
, Σ2 =

[
0.1 0
0 1

]
.
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For reference, we show the contours of constant projection (constant eigen-
value) of standard PCA in Fig. 1(a). Recall that the projection is made along a
line orthogonal to the contours. The contours for Kernel PCA using a Gaus-
sian kernel are a little more difficult to construct, since Kernel PCA has as
many principal directions as the size of the Gram matrix. In exploratory data
analysis, what matters are the directions in the input space, and it is not clear
how they are related. In this case we decided to plot in Fig. 1(b)-(c) the direc-
tion corresponding to the maximum eigenvalue in kernel space, using a kernel
size (variance) σ2 = 1 and σ2 = 10, respectively. Note how the contours bend
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Fig. 1. Contours of constant projection and the pdf for the example of Sec. 5. From
(a) to (d), the contours are for standard PCA, Kernel PCA with σ2 = 1, Kernel
PCA with σ2 = 10, and MLP output.
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themselves and wrap around the distribution to make the projection as uniform
as possible. Also, when the kernel size is increased (Fig. 1(c)) the contours tend
to those of standard PCA (Fig. 1(a)).

With our information theoretic interpretation there is another alternative to cre-
ate the maximum entropy direction that uses always the input space dimension.
In fact, we can train with backpropagation a MLP with architecture 2-4-1 (2 in-
puts, 4 hidden PEs and 1 output PE) and instead of using the conventional MSE
criterion, substitute it for the maximum entropy cost [8]. The MLP was trained for
200 epochs to minimize the information potential of the outputs, as evaluated by
(13), with a kernel size of 0.2. The nonlinearity used at the PEs is the hyperbolic
tangent function. The contours of the surface generated by the neural network are
shown in Fig. 1(d). The contours are obviously different from the ones for Kernel
PCA since the basis functions are different and the method uses gradient descent
learning, but is remarkable how they bend so that a projection to a line orthogonal
to these contours would have maximum entropy. Although in this example we are
only interested in the first projection, the neural network framework can also be
used to obtain as many projections as needed up to the dimensionality of the space
by using concepts of orthogonalizing the outputs [12].

6 Conclusions

Kernel PCA was proposed as an nonlinear extension of PCA. Despite this sim-
ple motivation, in this paper we prove that the principal components determined
by Kernel PCA provides optimum entropy mappings when the Gaussian ker-
nel is used both for the mapping and in Parzen window pdf estimation method.
The use of the Gaussian kernel is not restrictive since the same result holds for
any Mercer theorem, although the connection between the pdf estimation and
IP becomes more difficult to express. This motivates the choice for the kernel
and, considering the implicit pdf estimation, how to select its parameters.

The main contribution of this work is the understanding of the underlying
properties of the projections found by Kernel PCA in feature space. This
insight becomes especially important if we intend to use Kernel PCA as a data
exploratory tool. Notice how the projections of Kernel PCA and maximum
entropy achieve fundamentally the same result, although they are different due
to the differences in the basis functions used (Gaussians in kernel methods, ridge
functions in the MLP). This is a very interesting result given that Kernel PCA
has an analytical solution, while the MLP requires adaptation. Yet, the Kernel
PCA looses the intuition of the meaning of PCA in the input space. Indeed,
Schölkopf et al. [2] mention about the possibility of finding more eigenvectors
than the dimension of the input space which is clearly misleading in data analysis.
The maximum entropy projection brings the insight that effectively Kernel
PCA is projecting the data in informative directions using local bases. Therefore,
Kernel PCA will require many such projections to cover the full data space.
However, it is still not clear how to distinguish a minor component from a major
component since the bases are local.
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Abstract. We propose an extension of the mixture of factor (or independent
component) analyzers model to include strongly super-gaussian mixture source
densities. This allows greater economy in representation of densities with (multi-
ple) peaked modes or heavy tails than using several Gaussians to represent these
features. We derive an EM algorithm to find the maximum likelihood estimate of
the model, and show that it converges globally to a local optimum of the actual
non-gaussian mixture model without needing any approximations. This extends
considerably the class of source densities that can be used in exact estimation,
and shows that in a sense super-gaussian densities are as natural as Gaussian
densities. We also derive an adaptive Generalized Gaussian algorithm that learns
the shape parameters of Generalized Gaussian mixture components. Experiments
verify the validity of the algorithm.

1 Introduction

We propose an extension of the mixture of factor [2], or independent component [6]
analyzers model that enlarges the flexibility of the source density mixture model while
maintaining mixtures of strongly super-gaussian densities. Mixture model source den-
sities allow one to model skewed and multi-modal densities, and optimization of these
models is subject to convergence to local optima, the mixture model is a generalization
of the unimodal model and may be built up by starting with uni- or bi-modal source
models, then adding components and monitoring the change in likelihood [8,3,6].

Variational Gaussian mixture models, proposed in [8,2,6,5], are ultimately mixtures
of Student’s t distributions after the random variance is integrated out [19,3]. In [12] a
mixture generalization of the Infomax algorithm is proposed in which a mixture model
is employed over sets basis vectors but not for the source component density models.
The means are updated by gradient descent or by a heuristic approximate EM update.
In [16] a variance mixture of Laplacians model is employed over the source densities,
in which the Laplacian components in each mixture have the same mean, but differing
variances. An EM algorithm is derived by exploiting the closed form solution of the
M-step for the variance parameters. In [17] a mixture of Logistic source density model
is estimated by gradient descent.

The property of strongly super-gaussian densities that we use, namely log-convexity
in x2, has been exploited previously by Jaakkola [10,11] in graphical models, and Giro-
lami [9] for ICA using the Laplacian density. The model we propose extends the work

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 854–861, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in [9] in applying more generally to the (large) class of strongly super-gaussian densi-
ties, as well as mixtures of these densities. We also take the approach of [3] in allowing
the scale of the sources vary (actually a necessity in the mixture case) and fixing the
scale of the de-mixing filters to unity by an appropriate transformation at each iteration
in order to avoid the scale ambiguity inherent in factor analysis models.

The proposed model generalizes all of these algorithms, including Gaussian, Lapla-
cian, Logistic, as well as Generalized Gaussian, Student’s t, and any mixture combi-
nation of these densities. The key to the algorithm is the definition of an appropriate
class of densities, and showing that the “complete log likelihood” that arises in the EM
algorithm can be guaranteed to increase as a result of an appropriate parameter update,
which thus guarantees increase in the true likelihood. It is thus a “Generalized EM”
(GEM) algorithm [7]. For a given number of mixture components, the EM algorithm
estimates the location (mode) and scale parameters of the mixture component.

Using the natural gradient [1] to update the un-mixing matrices (the inverses of
the basis matrices), we can further guarantee (in principle) increase of the likelihood.
Furthermore, it is possible, for densities that are parameterized besides the location
and scale parameters such that all densities in a range of the additional parameter are
strongly super-gaussian, e.g.Generalized Gaussian shape parameters less than 2, to up-
date these parameters according to the gradient of the complete log likelihood, remain-
ing within the GEM framework and guaranteeing increase in the data likelihood under
the model. The un-mixing matrices and any other shape parameters will require a step
size to be specified in advance, but the mixture component locations and scales will be
updated in closed form. In the Gaussian case, the algorithm reduces to the classical EM
algorithm for Gaussian mixtures.

The practical situation in which we shall be interested is the analysis of EEG/MEG,
the characteristics of which are a large number of channels and data points, and mildly
skewed, occasionally multi-modal source densities. The large number of channels con-
strains the algorithm to be scalable. This along with the large number of data points sug-
gests the natural gradient maximum likelihood approach, which is scalable and asymp-
totically efficient. The large amount of data also dictates that we limit computational
and storage overhead to only what is necessary or actually beneficial, rather than doing
Bayesian MAP estimation of all parameters as in the variational Bayes algorithms [3,6].
Also for computational reasons we consider only noiseless mixtures of complete bases
so that inverses exist.

In §2 we define strongly super-gaussian densities and mixtures of these densities. In
§3-5 we derive the EM algorithm for density estimation. In §6 we introduce an adaptive
generalized Gaussian algorithm. §7 contains experimental verification of the theory.

2 Strongly Super-Gaussian Mixtures

Definition 1. A symmetric probability density p(x) is strongly super-gaussian if g(x)
≡ − log p(

√
x) is concave on (0,∞), and strongly sub-gaussian if g(x) is convex.

An equivalent definition is given in [4], where the authors define p(x) = exp(−f(x))
to be super-gaussian (sub-gaussian) if f ′(x)/x is increasing (decreasing) on (0,∞).
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This condition is equivalent to f(x) = g(x2) with g concave, i.e. g′ decreasing, where
g′(x2) = f ′(x)/x.

In [15] we have discussed these densities in some detail, and derived relationships
between them and the hyperprior representation used in the evidence framework [13]
and the Variational Bayes framework [2]. Here we limit consideration to strongly super-
gaussian mixture densities. If p(s) is strongly super-gaussian, we have f(s) ≡ g(s2),
with g concave on (0,∞). This implies that, ∀t,

f(t)− f(s) = g(t2)− g(s2) ≤ g′(s2)(t2 − s2) =
1
2
f ′(s)
s

(
t2 − s2) (1)

Examples of densities satisfying this criterion include: (i) Generalized Gaussian ∝
exp(−|x|β), 0 < β ≤ 2, (ii) Logistic ∝ 1/ cosh2(x/2), (iii) Student’s t ∝ (1 +
x2/ν)−(ν+1)/2, ν > 0, and (iv) symmetric α-stable densities (having characteristic
function exp(−|ω|α), 0 < α ≤ 2). The property of being strongly sub- or super-
gaussian is independent of scale.

Mixture densities have the form,

p(s) =
m∑
j=1

αj pj

(
s− μj
σj

)
,
∑
j

αj = 1 , σj > 0

The probability density of the jith mixture component of the ith source is denoted
piji(siji), with mode μiji , and scale σiji .

3 The EM Algorithm

We follow the framework of [18,14] in deriving the EM algorithm, which was originally
derived rigorously in [7]. The log likelihood of the data decomposes as follows,

log p(x; θ) =
∫
q(z|x; θ′) log

p(z,x; θ)
q(z|x; θ′)

dz + D
(
q(z|x; θ′)

∣∣∣∣ p(z|x; θ)
)

≡ −F (q; θ) + D(q||pθ)

where q is an arbitrary density and D is the Kullback-Leibler divergence. The term
F (q; θ) is commonly called the variational free energy [18,14]. This representation is
useful if F (q; θ) can easily be minimized with respect to θ. Since the KL divergence is
non-negative, we have,

− log p(x; θ) = min
q

F (q; θ)

where equality is obtained if and only if q(z|x; θ′) = p(z|x; θ). The EM algorithm at
the lth iteration, given ql and θl, performs coordinate descent in q and θ,

θl+1 = min
θ

F
(
ql; θ
)
, ql+1 = p

(
z|x; θl+1)

This algorithm is guaranteed to increase the likelihood since,

− log p(x; θl) = F (ql; θl) ≥ F (ql; θl+1) ≥ F (ql+1; θl+1) = − log p(x; θl+1)
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Note however, that it is not necessary to actually minimize F to guarantee that the like-
lihood increases. It is enough simply to guarantee that F (ql; θl) ≥ F (ql; θl+1), i.e. to
guarantee that F decreases as a result of updating θ. This leads to the Generalized EM
(GEM) algorithm [7], and is the approach we follow here. We maintain the global con-
vergence (to a local optimum) property of the EM algorithm however by guaranteeing
a decrease in F by an efficient closed form update for the source density parameters.

4 ICA with Strongly Super-Gaussian Mixture Sources

Let the data xk, k = 1, . . . , N be given, and consider the model,

xk = Ask

where A ∈ Rn×n is non-singular, and the sources are independent mixtures of inde-
pendent strongly super-gaussian random variables siji , ji = 1, . . . ,mi, where we allow
the number of source mixture components mi to differ for different sources.

The source mixture model is equivalent to a scenario in which for each source si, a
mixture component ji is drawn from the discrete probability distribution P [ji = j] =
αij , 1 ≤ j ≤ mi, then si is drawn from the mixture component density piji . We define
jik to be the index chosen for the ith source in the kth sample.

We wish to estimate the parameters W = A−1 and the parameters of the source
mixtures, so we have,

θ = {wi, αiji , μiji , σiji} , i = 1, . . . , n , ji = 1, . . . ,mi

where wi is the ith column of WT . We define X = [x1 · · ·xN ].
To use the EM algorithm, we define the random variables zijik as follows,

zijik =

{
1, jik = ji

0, otherwise

Let Z = {zijik}. Then we have,

p(X; θ) =
∑
Z

N∏
k=1

|detW|
n∏
i=1

mi∏
ji=1

α
zijik

iji

[
1

σiji
piji

(
wTi xk − μiji

σiji

)]zijik

For the variational free energy, F , we have,

F (q; θ) =
N∑
k=1

n∑
i=1

mi∑
ji=1

ẑijik

[
− logαiji − log σiji + fiji

(
wTi xk − μiji

σiji

)]
−N log |detW| (2)

where q is the discrete distribution defining the expectation ẑijik = E[zijik|xk], and
where we define fiji = − log piji .
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Let us define,

ylijik ≡
wli
T
xk − μliji
σliji

(3)

The ẑlijik = P [zijik = 1|xk; θl] are determined as in the usual Gaussian EM algorithm,

ẑlijik =
p(xk|zijik = 1; θl)P [zijik = 1; θl]∑mi

j′
i=1 p(xk|zij′

ik
= 1; θl)P [zij′

ik
= 1; θl]

=
piji(y

l
ijik

)αliji/σ
l
iji∑mi

j′
i=1 pij′

i
(ylij′

ik
)αlij′

i
/σlij′

i

(4)

as are the optimal αiji ,

αl+1
iji

=

∑N
k=1 ẑ

l
ijik∑mi

j′
i=1
∑N
k=1 ẑ

l
ij′

ik

=
1
N

N∑
k=1

ẑlijik

Now, since the piji are strongly super-gaussian, we can use the inequality (1) to
replace fiji(yijik) in (2) by

(
f ′
iji

(ylijik)/2y
l
ijik

)(
y2
ijik
− yl 2ijik

)
. Defining,

ξlijik ≡
f ′
iji

(ylijik)

ylijik
(5)

we replace F by,

F̃ (q; θ) =
N∑
k=1

n∑
i=1

mi∑
ji=1

ẑijik

[
− logαiji − log σiji +

ξlijik
2

(
wTi xk − μiji

σiji

)2]
−N log |detW|

Minimizing F̃ with respect to μiji and σiji guarantees, using the inequality (1), that,

F (q; θl+1)− F (q; θl) ≤ F̃ (q; θl+1)− F̃ (q; θl) ≤ 0

and thus that F (q; θ) is decreased as required by the EM algorithm.
As in the Gaussian case, the optimal value of μiji does not depend on σiji , and we

can optimize with respect to μiji , then optimize with respect to σiji given μiji , and
guarantee an overall increase in the likelihood. The updates, using the definitions (3),
(4) and (5), are found to be,

μl+1
ij =

∑N
k=1 ẑ

l
ijkξ

l
ijkw

l
i
T
xk∑N

k=1 ẑ
l
ijkξ

l
ijk

, σl+1
ij =

(∑N
k=1 ẑ

l
ijkξ

l
ijk(w

l
i
T
xk − μl+1

ij )2∑N
k=1 ẑ

l
ijk

)1/2
(6)

We adapt W according to the natural gradient of F (equivalently of F̃ ). Defining the
vector ulk such that, [

ulk
]
i
≡

mi∑
ji=1

ẑlijikf
′
iji(y

l
ijik)/σ

l
iji (7)

we have,

ΔW =

(
1
N

N∑
k=1

ulkx
T
kWl T − I

)
Wl (8)
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5 Full ICA Mixture Model with Super-Gaussian Mixture Sources

We now consider the case where the data are generated by a mixture of mixing matrices,

p(xk; θ) =
M∑
h=1

γhp(xk; θh) ,
M∑
h=1

γh = 1, γh > 0

where now we have,

θ = {γh,whi, αhij , μhij , σhij} , h = 1, . . . ,M, i = 1, . . . , n, j = 1, . . . ,mhi

The EM algorithm for the full mixture model is derived similarly to the case of source
mixtures. Due to space constraints the details are omitted.

6 Adaptive Generalized Gaussian Mixture Model

We can obtain further flexibility in the source model by adapting mixtures of a parame-
terized family of strongly super-gaussian densities. In this section we consider the case
of Generalized Gaussian mixtures,

p(siji ;μiji , σiji , βiji) =
1

2σijiΓ
(
1 + 1

βiji

) exp

(
−
∣∣∣∣siji − μiji

σiji

∣∣∣∣βiji

)

The parameters βiji are adapted by scaled gradient descent. The gradient of F with
respect to βiji is,

dF

dβiji
=

N∑
k=1

ẑijik

[
|yijik|βiji log |yijik| −

1
β 2
iji

Ψ

(
1 +

1
βiji

)]

We have found that scaling this by β2
iji

/(
Ψ(1 + 1

βiji
)
∑N
k=1 ẑijik

)
, which is positive,

leads to faster convergence. The update is then,

Δβiji =
β2
iji

∑N
k=1 ẑijik |yijik|βiji log |yijik|

Ψ
(
1 + 1

βiji

)∑N
k=1 ẑijik

− 1

7 Experiments

We verified the convergence of the algorithm with toy data generated from Generalized
Gaussian mixtures with randomly generated parameters. Below we show an example
of a super-gaussian mixture that was learned by the adaptive Generalized Gaussian
mixture algorithm, including the shape parameter update, on a real EEG separation
problem. Five mixture components per were used per source. The shape parameters
were initialized to 1.5, the location and scale parameters were randomly initialized.
The data was sphered and the unmixing matrix initialized to identity.
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Abstract. We present a new approach for signal separation from an
undetermined instantaneous mixture of two BPSK (Binary Phase Shift
Keying) signals in AWGN (Additive White Gaussian Noise) channel. The
method uses frequency diversity of the mixture (frequency shift between
carriers) and the fact that signals of interest are binary variables. We
compare separation results of our method to a theoretical BER (Bit
Error Rate) of unmixed signals, which reveal algorithm’s performance
for different communications scenarios.

1 Introduction

The problem of blind source separation (BSS) has been intensively studied in
the literature and many effective solutions have been proposed in the case of
instantaneous mixtures (memoryless channel) [1-4] and convolutive mixtures
(channel effects can be considered as a linear filter) [5-9]. Most of the pro-
posed algorithms deal with an undercomplete case (the number of sensors is
equal or greater to the number of sources). For more sources than mixtures
[10-14], the BSS problem is said to be overcomplete (undetermined) and is
ill-posed.

In general, separation of overcomplete mixtures is still a real challenge for
the scientific community. Even though the methods of identifying instantaneous
mixing coefficients for n sources have been developed [15], they need at least
2 sensors. The same assumptions limit the method of separating undetermined
mixtures proposed in [16] (two or more sensors).

In this contribution, the case of one sensor and two sources (undetermined
problem) is addressed. The mixture is considered to be an instantaneous (mem-
oryless channel) and the sources to be linearly modulated digital signals. Such
a scenario can be found in a cellular phone reception, satellite transmissions, as
well as in military communications (eg. signal interception, jamming or counter-
measure). We present a new blind separation algorithm adopted to deal with
BPSK signals, closely distributed in a frequency domain, as well as a method of
identifying mixing coefficients. Experimental results reveal the performance of
the proposed method.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 862–867, 2006.
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2 Signal Model

Let us consider a linear, instantaneous mixture x(t) of two BPSK-type signals

x(t) = a1s1(t)ei(ω1t+ϕ1) + a2s2(t)ei(ω2t+ϕ2) (1)

where ak are unknown mixing coefficients, ωk are carrier frequencies, ϕk are
equivalent phases (sum of carrier and mixing coefficients phases), and sk(t) are
equiprobable, i.i.d. random sequences during symbol period Tk

1:

sk(t) ∈ {+1,−1}, for t ∈ [l, (l + 1)Tk] (2)

We assume that source signals sk(t) are independent of each other and car-
rier frequencies ωk are distinct and can be estimated [17, 18]. We consider sce-
nario with small (compared to baud rates) frequency shifts, that any separation
method based on signal filtering [19, 20] can’t be applied. In a particular case
where both signals are at the same frequency, the separation can be achieved
using algorithm proposed in [21].

3 Theoretical Development

The basic idea of our algorithm consists of using frequency diversity of the mix-
ture and the fact that signals of interest are binary variables. Assuming that
carrier frequencies ωk are already known, the mixing coefficients can be esti-
mated using auxiliary signals defined as

Zk(t) = x(t)e−iωkt = aksk(t)eiϕk + alsl(t)ei((ωl−ωk)t+ϕl) (3)

for k, l ∈ {1, 2}, k �= l, and mean values of its squares

E{Z2
k(t)} = a2

kE{s2
k(t)}ei2ϕk + a2

l E{s2
l (t)}E

{
ei2((ωl−ωk)t+ϕl)

}
+ 2akalE{sk(t)sl(t)}E

{
ei((ωl−ωk)t+ϕk+ϕl)

} (4)

Using the fact that source signals are independent, and assuming that obser-
vation time is big enough, one has

E{sk(t)sl(t)} = 0, and E
{

ei2((ωl−ωk)t+ϕl)
}

= 0 (5)

thus equation (4) becomes

E{Z2
k(t)} = a2

kE{s2
k(t)}ei2ϕk (6)

For considered BPSK-type signals E
{
s2
k(t)
}

= 1, the mixing coefficients can
be estimated as

âk =
√
|E {Z2

k(t)}|, and ϕ̂k = 1
2 arg

[
E
{
Z2
k(t)
}]

(7)

1 The case of general, linear digital modulations (sk(t) ∈ C), as well as convolutive
mixtures (channel effects taken into considerations) are our current topics of interest.
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One should pay attention to the sign ambiguity which occurs when equivalent
phases |ϕk| are bigger than π, i.e.

arg
[
ei2(ϕk+mπ)

]
= arg

[
ei2ϕk

]
, sk(t)ei(ωkt+ϕk+mπ) = (−1)msk(t)ei(ωkt+ϕk)

for m ∈ Z, thus the opposite sign signals can be observed (i.e. ŝk = −sk). This
ambiguity can be eliminated only during the modulation stage, e.g. applying
differential modulation as DPSK (Differential Phase Shift Keying) instead of
absolute BPSK type.

Once we estimated mixing parameters, the separation problem can be simpli-
fied to the solution of a linear system of equations. Let α = (ω1−ω2)t+ ϕ̂1− ϕ̂2,
then one can find auxiliary signals Xk(t) as

Xk(t) = x(t)e−i(ωkt+ϕ̂k) = aksk(t) + alsl(t)e−iα (8)

and the estimators of the original signals sk(t) by

ŝ1(t) = 1
â1

[
X1(t)− â2s2(t)e−iα

]
, ŝ2(t) = 1

â2

[
X2(t)− â1s1(t)eiα

]
(9)

For BPSK-type signals (sk(t) = ±1), previous equations become

ŝ1(t) = 1
â1

[
X1(t)± â2e−iα

]
, ŝ2(t) = 1

â2

[
X2(t)± â1eiα

]
(10)

To eliminate the sign ambiguity, we propose a ”solution selector” based on the
minimization of the following instantaneous objective function

Q(t, ε1, ε2) =
∣∣∣x(t)− â1ŝ1(t, ε1)ei(ω1t+ϕ̂1) − â2ŝ2(t, ε2)ei(ω2t+ϕ̂2)

∣∣∣2 (11)

where
ŝk(t, εk) = �

{
1
âk

[
Xk(t) + εkâlei((ωl−ωk)t+ϕ̂l−ϕ̂k)

]}
(12)

and (ε1, ε2) ∈ {(+1,+1), (+1,−1), (−1,+1), (−1,−1)}.

4 Experimental Results

To corroborate the effectiveness of the proposed algorithm in various commu-
nications scenarios, extensive simulations were conducted on linear mixtures of
two BPSK signals in AWGN channel. As a measure of performance, we have
chosen the mean value of BERs calculated for each of the separated signals

BER =
Ne1 + Ne2

2N
(13)

versus Signal to Noise Ratio (SNR) calculated as

SNR = 10 log
[
Ps1 + Ps2

Pn

]
(14)
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where Ne1 and Ne2 are numbers of erroneous symbols in the demodulated (sep-
arated) signals, N is a total number of symbols used in each trial (N ≈ 107), Ps1
and Ps2 are powers of the source signals, and Pn is a power of the additive gaus-
sian noise calculated in the sampling frequency band [−Fs/2,+Fs/2] (Fs = 8
kHz). The initial phases (ϕk) were randomly chosen from the range [−π/2, π/2]
and the SNR was varying from 0 dB to 30 dB with a 2 dB step.

In all experiments, we have compared BERs of the separated signals with
mean value of BERs (solid bold line) calculated for each original BPSK signal
(assuming that all parameters needed for demodulation are known).

In the first experiment, we have verified the shape of BER curves for dif-
ferent ratios between amplitudes η = min

[
a1
a2
, a2a1

]
. This ratio was fixed to be

η ∈ {0.1, 0.4, 0.7, 1}. For each trial, signals were composed of 256 symbols, 5
samples per symbol, 40000 different realisations, and difference between carrier
frequencies |f1 − f2| was fixed to be 20 Hz at sampling frequency of 8 kHz.
Corresponding results are presented in the figure 1, for known as well as esti-
mated coefficients (a1, a2, ϕ1, ϕ2). BERs for separated signals are the lines with
markers, and the solid bold lines without markers correspond to the theoretical
BERs for only one BPSK signal. One should pay attention to the following facts:
the best results are obtained when η ∈ {0.4, 0.7}, the method used to estimate
mixing coefficients plays an important role especially for small ratios between
amplitudes (η ≈ 0.1), the worst results are obtained for a1 = a2.
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Fig. 1. BER versus SNR for different values of η

Other simulations were conducted to verify the behavior of the algorithm for
different number of samples per symbol Nsamp ∈ {5, 10, 15, 20} (or equivalently
Baud Rates for fixed Fs). Simulation results are shown in the figure 2 for η = 0.5
and |f1−f2| = 20 Hz. It is evident that regardless of method used to estimate the
mixing coefficients, increasing Nsamp for the same total number of transmitted
symbols, improves the performance of the algorithm (which is also true for any
demodulation-detection system working on only one signal [22]).

The influence of the frequency shifts (|f1 − f2| changing from 20 to 200 Hz), as
well as the total number of emitted symbols (Nsymb changing from 256 to 2048)
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Fig. 2. BER versus SNR for different values of Nsamp

on the performance of our algorithm has been also verified. Corresponding results
reveal that our algorithm is invariant to signals’ placement in the frequency domain
(assuming that carrier frequencies are distinct and can be estimated), and to the
number of available symbols (even when mixing coefficients have to be estimated).

5 Conclusion

Our new algorithm is targeted signal separation of undetermined instantaneous
mixtures of two BPSK signals, closely distributed in a frequency domain. Using
only one observation, we show a new solution for separation as well as for esti-
mation of mixing coefficients. Experimental results reveal the robustness of our
method to the number of samples per symbol (Baud Rates), total number of
available symbols (possibility of working with small packets in ”quasi real-time”
applications), as well as to the shift between the carrier frequencies (even for
overlapping bands). The separation algorithm is very robust to the ratio be-
tween amplitudes (excepted a1 = a2) and to the method used to estimate the
mixing coefficients (excepted η < 0.1 or η = 1). All simulations have shown that
experimental BERs are sufficiently close to the theoretical ones, which makes
the proposed method of great interest in practice.

Methods of improving estimators of the mixing coefficients, as well as the
possibility of using presented ideas to separate convolutive mixtures are cur-
rently investigated. Further researches will be conducted to generalise described
methods for the mixtures of other types of linear modulations.
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Abstract. We introduce a general criterion for blindly extracting a subset of
sources in instantaneous mixtures. We derive the corresponding estimation equa-
tions and generalize them based on arbitrary nonlinear separating functions. A
quasi-Newton algorithm for minimizing the criterion is presented, which reduces
to the FastICA algorithm in the case when only one source is extracted. The asymp-
totic distribution of the estimator is obtained and a simulation example is provided.

1 Introduction

Blind source separation (BSS) has attracted much attention recently, as it has many use-
ful applications. The simplest and most widely used BSS model assumes that the ob-
servations are linear mixtures of independent sources with the same number of sources
as the number of mixtures: X = AS where X and S represent the observation and the
source vectors, both of a same dimension K, and A is an invertible matrix. The aim
is to extract the sources from their mixtures, without relying on any specific knowl-
edge about them and quite a few good algorithms have been proposed for this task. In
many applications (biomedical for ex.) however, the number K of mixtures can be very
large and therefore one may be interested in extracting only a small number of (inter-
esting) sources. In such case, many sources would be nearly Gaussian and since BSS
algorithms rely on the non Gausianity, these sources would not be reliably extracted. In
fact, in BSS problem with very large number of mixtures, one routinely discards most
of the extracted sources and only retain some of them.

To extract only a small number of sources, one may of course proceed sequentially by
extracting them one by one, using, for example, the (one-unit) FastICA algorithm [1].
However, such procedure entails a loss of performance as the accuracy of an extracted
source is affected by the inaccuracy of the previously extracted ones, since the former
is constrained to be uncorrelated with the later. Further, as it will be shown later, even
for the first extracted source, the performance on the FastICA (with the optimal choice
of the nonlinearity) is still less than extracting all sources simultaneously (through an
optimal algorithm) and then retaining only one (adequately chosen) source. However,
there is no loss of performance if one extracts simultaneously only m < K sources,
provided that the remaining K −m are Gaussian.

In this paper we shall develop a class of algorithms for extracting only m < K
sources. For m = 1, this class contains the one-unit FastICA algorithm, and for m = K,
it contains the quasi-maximum likelihood algorithm in [2] and the mutual information
based algorithm in [3].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 868–875, 2006.
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In the sequel, we shall assume, for simplicity, that the sources have zero means. If
they are not, one just centers them, which amounts to centering the observed vector X.

2 Estimation Method

For the full extraction of sources, that is for the case m = K, the mutual information
approach leads to the criterion [3]:

K∑
i=1

H(Yi)− log detB (1)

(to be minimized with respect to B) where Yi are the components of Y = BX and
H(Y ) denotes the Shannon differential entropy of the random variable Y : H(Y ) =
−E[log pY (Y )], pY denoting the density of Y and E denoting the expectation oper-
ator [4]. This criterion can be written up to an additive constant as

∑K
i=1 H(Yi) −

(1/2) log det(BCBT ) where C = E(XXT ) denotes the covariance matrix of X. The
nice thing is that it involves only the statistical properties of the variables Y1, ..., YK , as
BCBT represents the covariance matrix of the vector Y. Thus one can easily extend
it to the case where only m < K sources are sought. More precisely, we will consider
the criterion

C(B) =
m∑
i=1

H(Yi)−
1
2

log det(BCBT ), (2)

in which B is a m×K matrix and Y1, . . . , Ym are the components of Y = BX.
It has been shown in [5] that in the case where m = K, one can generalize the

criterion (1) by replacing H(Yi) by logQ(Yi) where is Q is a class II superadditive
functional. Recall that [6] a functional Q of the distribution of a random variable Y , is
said to be of class II if it is scale equi-variant1, in the sense that Q(aY ) = |a|Q(Y ) for
any real number a, and it said to be superadditive if;

Q2(Y + Z) ≥ Q2(Y ) + Q2(Z) (3)

for any pair of independent random variables Y,Z. It is proved in [5] that this general-
ized criterion is still a contrast, in the sense that it can attain its minimum if and only
if each of the Y1, . . . , YK is proportional to a different source. We can show that this
result carries to the case m < K, but the proof is omitted due to lack of space. Thus,
in (2), one may take H = logQ where Q is a class II superadditive functional. Note
that the exponential of the entropy functional has this property [6].

The superadditivity condition is quite strong because (3) must be satisfied for any
pair of independent random variables Y,Z, but actually it is enough that this holds for
random variables which are linear mixtures of sources. Thus (2) may still be a valid
criterion if H is only a class II functional. In fact, for such functional, the point B for

1 The definition of class II in [6] also requires that Q be translation invariant, but since we are
working with zero-mean random variables, we drop this requirement.
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which the components of Y are proportional to distinct sources, is still a stationary
point of the criterion. Indeed, the gradient of the criterion (2) can be seen to be

E[ψY(Y)XT ]− (BCBT )−1BC (4)

where ψY(Y) is the vector with components ψY1(Y1), . . . ψYm
(Ym) and ψY denotes

the “coordinate free” derivative of the functional H , defined by the condition

lim
ε→0

[H(Y + εZ)−H(Y )]/ε = E[ψY (Y )Z] (5)

for any random variable Z. (For H the entropy functional, this is the score function [3].)
Setting the gradient (4) to zero yields the estimation equation (for the stationary point
of the criterion), which can be seen to be equivalent to

E[ψY(Y)ST ]− [E(YYT )]−1E(YST ) = 0, (6)

since X = AS. Note that if Yi is proportional to a source Sπi
,

E[ψYi
(Yi)Sj ] =

{
E[ψYi

(Yi)Yi]E(YiSπi
)/E(Y 2

i ), j = πi
0, j �= πi

Thus, provided that E[ψYi
(Yi)Yi] = 1, equation (6) is satisfied as soon as Y1, . . . , Ym

are proportional to distinct sources. On the other hand, since Q is of class II, H(Y +
εY ) = H(Y ) + log(1 + ε), which by (5) yields immediately E[ψY (Y )Y ] = 1.

A simple example of class II functional is Q(Y ) = exp{E[G(Y/σY )]}σY , where G
is some fixed function and σY = [E(Y 2)]1/2. This functional yields, in the case m = 1,
the same criterion as in the FastICA algorithm. Indeed, in the case m = 1 and with
H = E[G(Y/σY )] + log σY , (2) becomes

C(b) = E[G(Y/σY )], Y = bX,

where we have used the symbol b in place of B to emphasize that it is a row vector.
The corresponding function ψY is then given by

ψY (y) = g(y/σY )/σY + {1− E[g(Y/σY )Y/σY ]}y/σ2
Y (7)

where g is the derivative of G.
In practice the (theoretical) criterion C would be replaced by the empirical criterion

Ĉ, defined as in (2) but with H replaced by an estimate Ĥ and C replaced by the sample
covariance matrix Ĉ of X. The gradient of Ĉ is still given by (4) but with C replaced
by Ĉ and ψY replaced by

ψ̂Yi
[Yi(t)] = n∂Ĥ(Yi)/∂Yi(t), t = 1, . . . , n, (8)

Y(t) = BX(t) and X(1), . . . , X(n) being the observed sample [3]. In the case H(Y )=
E[G(Y/σY )] + log σY , its estimator Ĥ is naturally defined by the same expression but
with E replaced by the sample average operator Ê and σ2

Y replaced by σ̂2
Y = Ê(Y 2).

The function ψ̂Y is again given by (7) but with E replaced by Ê and σY replaced by σ̂Y .
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The above argument shows that one can even start with the system of estimating
equations obtained by equating (4) to zero, with ψYi

being arbitrary functions (depend-
ing on the distribution of Yi) subjected to the only condition that E[ψYi

(Yi)Yi] = 1.
In practice, one would replace ψYi

by some estimate ψ̂Yi
, E by Ê and C by Ĉ, which

results in the empirical estimating equation

Ê[ψ̂Y(Y)XT ]− (BĈBT )−1BC = 0, Y = BX. (9)

We only require ψ̂Yi
to satisfy Ê[ψ̂Yi

(Yi)Yi] = 1, which holds automatically if it is
given by (8) and Ĥ is scale equi-variant, in the sense that Ĥ(αY ) = Ĥ(Y ) + log |α|.

3 The Quasi Newton Algorithm

In this section, we develop the quasi-Newton algorithm for solving (9). In the Newton
algorithm, one replaces B in the right hand side of (9) by B + δB and linearizes the
result with respect to δB. Here B denotes a current estimate and the new estimate is
obtained by adding to it the solution δB of the linearized equations. In the quasi Newton
algorithm, the system matrix of the linearized equations is further approximated.

Instead of working with δB, it is much more convenient to work with its coefficients
in a basis which contains the rows of B as its basis vectors. Thus we shall complete
B to a square matrix B̄ by adding K −m rows, which are chosen to be orthogonal to
the rows of B and among themselves, in the sense of the metric Ĉ. More precisely, the
matrix B̄ satisfies

B̄ĈB̄T =
[
BĈBT 0

0 I

]
. (10)

Let Eij , i = 1, . . . ,m, j = 1, . . . ,K, be the element of the matrix δBB̄−1, then δY =
δBX has components δYi =

∑K
j=1 EijYj , where Yj denote the components of B̄X (or

of Y if j ≤ m). Thus, Ê[ψ̂Yi+δYi
(Yi + δYi)XT ] is linearized as

Ê[ψ̂Yi
(Yi)XT ] +

K∑
j=1

Ê{[ψ̂′
Yi

(Yi)Yj + ˙̂
ψYi;Yj

(Yi)]XT }Eij

where ψ′
Yi

is the derivative of ψ̂Yi
and ˙̂

ψYi;Yj
is the derivative of ψYi+hYj

with respect
to h at h = 0.

We shall replace the last term in the above expression by an appropriate approx-
imation. To this end, we shall assume that B is close to the solution so that the ex-
tracted sources Y1, . . . , Ym are nearly proportional to Sπ1 , . . . , Sπm

for some distinct
set of indexes π1, . . . , πm in {1, . . . ,K}. Since the Ym+1, . . . , YK , by construction,
have zero sample correlation with Y1, . . . , Ym, they would be nearly uncorrelated with
Sπ1 , . . . , Sπm

and hence must be nearly linear combinations of the sources other than
Sπ1 , . . . , Sπm

. Thus we may treat the Y1, . . . , Ym as independent among themselves
and (Ym+1, . . . , YK) as independent of (Y1, . . . , Ym). Further, we shall approximate Ê
by the expectation operator E and vice versa and regard ψ̂Yi

as a fixed (non random)
function. With such approximation
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K∑
j=1

Ê{[ψ̂′
Yi

(Yi)Yj + ˙̂
ψYi;Yj

(Yi)]Yk}Eij ≈
{

Ê[ψ̂′
Yi

(Yi)]Ê(Y 2
k )Eik k �= i

Ê[ψ̂′
Yi

(Yi)Y 2
i + ˙̂

ψYi;Yj
(Yi)Yi]Eii k = i

But Ê[(Yi + hYi)ψ̂Yi+hYi
(Yi + hYi) = 1, hence by taking the derivative with respect

to h and letting h = 0, one gets Ê[ψ̂′
Yi

(Yi)Y 2
i + ˙̂

ψYi;Yj
(Yi)Yi] = −1. Therefore, the

linearization of Ê[ψ̂Y+δY(Y + δY)XT ] is approximately Ê[ψY(Y)XT ] + ΔB̄−1T

where Δ is a m×K matrix with general element

Δij =
{

Ê[ψ̂′
Yi

(Yi)]Ê(Y 2
j )Eij , j �= i

−Eii, j = i
(11)

On the other hand, the linearization of [(B + δB)Ĉ(B + δB)T ]−1(B + δB)Ĉ with
respect to δB is

(BĈBT )−1BĈ +

(BĈBT )−1δBĈ− (BĈBT )−1(δBĈBT + BĈδBT )(BĈBT )−1BĈ (12)

Multiplying the above expression by B̄T and using (10) yields

[I 0] + (BĈBT )−1[0 Ec]− [ET 0]

where E and Ec are the matrices formed by the first m columns and by the last K −m
columns of B−1δB, respectively. Note that the off diagonal elements of BCBT nearly
vanish since the Y1, . . . , Ym are nearly independent, hence one may replaces BCBT

by diag(BCBT ), where diag denotes the operator with builds a diagonal matrix from
the diagonal elements of its argument.

Finally, Ê[ψ̂Y+δY(Y + δY)XT ]− [(B + δB)Ĉ(B + δB)T ]−1(B + δB)Ĉ can be
approximately linearized as

E[ψ̂Y(Y)XT ] + {Δ− [I 0] +
[
ET 0

]
− diag(BĈBT )−1[0 Ec]}B̄−1T

Equating this expression to zero yields, after a multiplication by B̄T ,

Ê[ψY(Y)(B̄X)T ]− [I 0] + Δ + [ET 0]− diag(BĈBT )−1[0 Ec] = 0.

This equation can be written explicitly as, noting that their i, i elements already yield
the identity 0 = 0 and that the diagonal elements of BĈBT equal Ê(Y 2

1 ), . . . , Ê(Y 2
m)

and Ê(Y 2
m+1) = · · · = Ê(Y 2

K) = 1,

E[ψ̂Yi
(Yi)Yj ] + Ê[ψ̂′

Yi
(Yi)]Ê(Y 2

j )Eij + Eji = 0, 1 ≤ i �= j ≤ m (13)

Ê[ψ̂Yi
(Yi)Yj ] + {Ê[ψ̂′

Yi
(Yi)]− 1/Ê(Y 2

i )}Eij = 0, 1 ≤ i ≤ m, m < j ≤ K. (14)

These equations can be solved explicitly for Eij and then the new value of B is given
by B + EB + EcBc where Bc is the matrix formed by the last K −m rows of B̄.

It should be noted that the matrix Bc is not unique as one can pre-multiply it by any
orthogonal matrix of size K −m without affecting (10). Thus the matrix Ec is also not
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unique. However, the product EcBc is. Indeed, by (14), Ec = −D−1
Y Ê[ψ̂Y (Y)(BcX)T ]

where DY is the diagonal matrix with diagonal elements Ê[ψ̂′
Yi

(Yi)]−1/Ê(Y 2
i ). Hence

EcBc = −D−1
Y Ê[ψ̂Y (Y)XT ]Bc TBc. But by (10),

Ĉ−1 = B̄T
[

(BĈBT )−1 0
0 I

]
B̄ = BT (BĈBT )−1B + Bc TBc.

yielding Bc TBc = Ĉ−1−BT (BCBT )−1B. Therefore, one can rewrite the algorithm
in a form independent of the choice of Bc as

B← B + EB + D−1
Y {Ê[ψ̂Y(Y)YT ](BĈBT )−1B− Ê[ψ̂Y (Y)XT ]Ĉ−1},

E being the m×m matrix with zero diagonal and off diagonal elements solution of (13).

Note: In the case where m = 1 and the extracted source is normalized to have unit
sample variance, the algorithm becomes:

b← b +
b− Ê[ψ̂Y (Y)XT ]Ĉ−1

Ê[ψ̂′
Y (Y )]− 1

=
Ê[ψ̂′

Y (Y )]b− E[ψ̂Y (Y )XT ]Ĉ−1

Ê[ψ̂′
Y (Y )]− 1

.

The new b is not normalized (but is nearly so), therefore one has to renormalize it and
thus the denominator in the last right side is irrelevant. In the case where ψY is given
by (7) with σY replaced by σ̂Y = [Ê(Y 2)]1/2 = 1, the numerator takes the same form
but with ψ̂Y replaced by g. One is thus led to the fixed point FastICA algorithm [1].

4 Asymptotic Distribution of the Estimator

Consider the asymptotic distribution of the estimator B̂, solution of the estimating equa-
tions (9). We shall assume that this estimator converge (as the sample size n goes to
infinity) to an unmixing solution, that is a matrix B, with rows proportional to distinct
rows of A−1. Let δ̂B = B̂ − B, we may repeat the same calculations as in previous
section. However, we now complete B to B̄ in a slightly different way: the last K −m
rows of B̄ are chosen so that (10) holds with the true covariance matrix C in place of
Ĉ. By the same argument as in previous section,

Ê[ψ̂Y+δY(Y + δY)XT ] ≈ Ê[ψ̂Y(Y)XT ] + ΔB̄−1

where Δ is defined as before by (11). We shall made further approximation by replacing
ψ̂Y in the above right hand side by ψY and Ê and ψ̂′

Yi
in (11) by E and ψ′

Yi
. On the

other hand, [B + δB)Ĉ(B + δB)T ]−1(B + δB)Ĉ may be linearized with respect to
δB as (12) as before. But since δB is small and Ĉ converges to C, one can replace, in
the last two term in (12), Ĉ by C. Then by the same argument as in previous section
and noting that B̄ satisfies (10) with C in place of Ĉ, the resulting expression can be
written as

{[I (BĈBT )−1BĈBc T ] + (BCBT )−1[0 Ec]− [ET 0]}B̄T −1
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Note that BCBT = diag(BCBT ) since the Yi are uncorrelated. Further, since
BĈBc T → 0, one may replace (BĈBT )−1BĈBc T by [diag(BCBT )]−1BĈBc T ,
which is the matrix with general element Ê(YiYm+j)/E(Y 2

i ). Then by the same ar-
gument as before, the elements Eij of δBB̄−1 can be seen to be approximatively the
solution of

Ê[ψYi
(Yi)Yj ] + E[ψ′

Yi
(Yi)]σ2

Yj
Eij + Eji = 0, 1 ≤ i �= j ≤ m

Ê{[ψYi
(Yi)− σ−2

Yi
Yi]Yj}+ {E[ψ′

Yi
(Yi)]− σ−2

Yi
]Eij = 0, 1 ≤ i ≤ m, m < j ≤ K.

where σ2
Yi

= E(Y 2
i ). The solution is[

Eij
Eji

]
= −

[
E[ψ′

Yi
(Yi)]σ2

Yj
1

1 E[ψ′
Yj

(Yj)]σ2
Yi

]−1 [
Ê[ψYi

(Yi)Yj
Ê|ψYi

(Yi)Yj ]

]
, 1 ≤ i < j ≤ m,

Eij = −
Ê{[ψYi

(Yi)− σ−2
Yi

Yi]Yj}
E[ψ′

Yi
(Yi)]− σ−2

Yi

, 1 ≤ i ≤ m,m < j ≤ K.

One then can show, using the Central Limit Theorem, that the vectors [Eij Eji]T , 1 ≤
i < j ≤ m and the random variables Eij , 1 ≤ i ≤ m,m < j ≤ K are asymptotically
independently normally distributed, with covariance matrices

1
n

[
σYi/σYj 0

0 σYj /σYi

] [
λ−1

i 1
1 λ−1

j

]−1 [
ρ−2

i 1
1 ρ−2

j

] [
λ−1

i 1
1 λ−1

j

]−1 [
σYi/σYj 0

0 σYj /σYi

]
and variances (σ2

Yi
/n)(ρ−2

i − 1)/(λ−1
i − 1)2, where n is the sample size and

ρi =
1

σYi

√
E[ψ2

i (Yi)]
= corr{Yi, ψi(Yi)}, λi =

1
σ2
Yi

E[ψ′
i(Yi)]

.

One can prove that the asymptotic variance is smallest when ψYi
is the score

function of Yi, in this case λi = ρi and the asymptotic variance of Eij equals
(σ2
Yi
/σ2
Yi

)ρ−2
j /(ρ−2

i ρ−2
j − 1) if 1 ≤ j ≤ m and σ2

Yi
/(ρ−2

i − 1) if m < j ≤ K.
Thus, assuming that the extracted sources are normalized to have unit variance, there
is a loss of accuracy with respect to the case where all sources are extracted, since
1/(ρ−2

i − 1) > ρ−2
j /(ρ−2

i ρ−2
j − 1) for ρ2

j < 1. But the loss could be negligible if the
ρj ,m < j ≤ K are close to 1, that is if the non extracted sources are nearly Gaussian.
This would not be the case if only one source is extracted since it is unlikely that all the
remaining sources are nearly Gaussian.

5 An Example of Simulation

In a simulation experiment, we have generated 10 source signals of length n = 1000:
the first is a sinusoid, the second is a sequence of uniform random variables, the third
is a sequence of bilateral exponential variables and the remaining are sequences of
Gaussian variables. All sources have zero mean and unit variance.

As it can be shown, our algorithm is “transformation invariant” in the sense that its
behavior when applying to a mixtures with mixing matrix A and starting with a matrix
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B is the same as when applying to unmixed sources and starting with the global matrix
G = BA. Thus we shall apply our algorithm to the unmixed sources with a starting
matrix G with elements randomly generated as independent standard normal variates.
The following table shows the initial value of G and the final value produced by the
algorithm after convergence.

Table 1. Initial and final matrices G

Initial matrix G
1 2 3 4 5 6 7 8 9 10

1 0.7007 0.7669 1.0257 -0.6238 0.9284 1.0447 0.0076 -0.0686 1.5620 0.4070
2 -0.8775 0.4997 1.0876 0.1395 -0.0442 -0.6111 -0.2117 1.8387 -0.9778 -0.6222
3 0.6501 -1.4355 0.1399 0.3051 -0.8784 2.3058 0.0912 -1.1623 1.0585 1.0601

Final matrix G
1 2 3 4 5 6 7 8 9 10

1 -0.0376 0.1344 3.7040 0.0184 0.0814 0.0712 -0.0597 0.1758 -0.1045 -0.0260
2 8.4342 0.0354 0.1003 -0.0941 -0.0667 -0.0337 0.1271 -0.1267 0.0704 -0.1243
3 0.0524 -6.4488 0.0060 -0.1386 -0.0276 0.1422 0.0513 0.0122 0.0581 0.1500

One can see from the above table that the algorithm have correctly extracted the
first three sources (but in the order third, first, second). However, we have observed
that depending on the starting value, the algorithm may extract only two non Gaussian
source and the other is a mixture of the Gaussian sources. The problem is that the
algorithm may be stuck with a local minimum of the criterion; and it may be shown
that any point B for which the random variable Y1, . . . , Ym are independent and at
most one of them can be Gaussian, is a local minimum point of the criterion (2). Thus
the algorithm may not produce the most interesting sources but only some sources and
possibly a mixture of Gaussian sources in the case where there are several Gaussian
sources. We currently investigate ways to avoid this problem.
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Abstract. This paper introduces new contrast functions for blind sepa-
ration of sources with different time-frequency signatures. Two contrast
functions based on the Kullback-Leibler and Jensen-Rényi divergences in
the time-frequency (T-F) plane are introduced. Two iterative algorithms
are proposed for the proposed contrasts optimization and source sepa-
ration. One algorithm consists of spatial whitening and gradient-Jacobi
maximization, combining Givens rotations and stochastic gradient. The
second algorithm uses a quasi-Newton technique.

1 Introduction

Blind source separation (BSS) methods exploit the knowledge that the sources
typically satisfy certain statistical or deterministic properties. In principle, BSS
methods can be categorized into the following five classes:

– HOS-approaches: Higher-order statistics (HOS)-based methods assume that
the sources are statistically independent. This is always enforced using the
fourth order moments or cumulants of the mixtures. This class fails if more
than one source is Gaussian.

– SOS-approaches: Second-order statistics (SOS)-based methods use some
temporal structures less restrictive than the statistical independence. SOS
approaches deal with uncorrelated sources and fails when sources have close
power spectral shapes and when source are i.i.d.1

– NS-SOS-approaches: This class exploits the nonstationarity (NS) and SOS
when sources have time-varying variances.

– FLOS-approaches: Recently introduced for separation of impulsive sources.
For this king of signals, sources have heavy-tailed probability density func-
tions (pdf), and fractional low order statistics (FLOS) can be used [12,14].

1 Abbreviation of independent and identically distributed.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 876–884, 2006.
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– STF-approaches: Space-time-frequency methodes refers to methods which
exploit various diversity of signals, typically, time, frequency, and time-
frequency structure [3,4,10,15]. This is the class of diversity we analyse and
we use in this contribution.

In this paper we expand on the last class and build on the nonstationarity prop-
erties in the time-frequency domain. Specifically, we propose a class of contrast
functions for BSS in the time-frequency plane using information theoretic di-
vergence measures. Two different schemes are proposed. In the first scheme, we
minimize the T-F mutual information between the marginal TFD signal ener-
gies and the cross-TFD energies (joint TFD) as a useful extension of the Fas-
tICA mutual information based algorithm in the time domain [9]. In the second
scheme, we maximize the divergence measures between the TFD energy support
of the observation components as a natural extension to the minimum support
contrasts proposed in the time domain [13]. To achieve BSS, we optimize the
proposed cost functions using a two stage whitening-gradient algorithm and an
iterative Quasi-Newton technique.

2 Problem Formulation

Consider m nonstationay signals for which n ≥ m noisy linear combinations are
observed,

x(t) = As(t) + w(t) (1)

where s(t) = [s1(t), · · · , sm(t)]T is the m× 1 complex sources vector, w(t) is the
n×1 complex noise vector and A is a n×m full rank mixing matrix. The source
signals si(t), i = 1, · · · ,m are assumed to be nonstationary, complex stochastic
processes with different time-frequency signatures. The additive noise w(t) is
modelled as a stationary zero-mean complex random process. The goal of BSS
is to find a m × n separating matrix B such that the output vector z(t) =
Bx(t) is an estimate of the source signals. There are two inherent ambiguities
in the underlying problem. First, the original labeling of the sources cannot be
ascertained, and second, exchanging a fixed scalar factor between a source signal
and the corresponding column of A does not affect the observations. Accordingly,
B is commonly determined up to a permutation and scaling multiplication of
its columns. That is, B is referred to as a separating matrix if z(t) = Bx(t) =
PΛs(t), where P is a permutation matrix and Λ a non-singular diagonal matrix.
Similarly, blind identification of A amounts to the determination of a matrix
equal to A up to a permutation matrix and a non-singular diagonal matrix.

3 Measuring Time-Frequency Information

3.1 Time-Frequency Distributions

The discrete-time form of the Cohen’s class of time-frequency distributions
(TFD), for signal x(t), is given by [5]
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Dxx(t, f) =
∞∑

l=−∞

∞∑
m=−∞

φ(m, l)x(t + m + l)x∗(t + m− l)e−j4πfl (2)

where t and f represent the time index and the frequency index, respectively.
The kernel φ(m, l) characterizes the TFD and is a function of both the time and
lag variables. The cross-TFD of two signals x1(t) and x2(t) is defined by

Dx1x2(t, f) =
∞∑

l=−∞

∞∑
m=−∞

φ(m, l)x1(t + m + l)x∗
2(t + m− l)e−j4πfl (3)

The main obstacle in considering the information theoretic in the T-F plane
is that the TFDs are not always positive. If positive TFDs are desired, then
the kernel must be signal-dependent [5]. Alternatively, one can use the Copulas
theory-based non iterative method for constructing positive TFDs, as recently
proposed in [7]. Therefore, in this paper we consider only positive TFDs (e.g.
spectrograms). In addition, in order to ensure that the TFD behaves like a pdf,
we need to normalize the TFD by their energy, ED =

∫ ∫
D(t, f)dtdf .

3.2 Information-Theoretic on the Time-Frequency Plane

Recently, there has been an interest in applying information theoretic mea-
sures to the time-frequency plane in order to quantify signal information [6,1].
Using energy density instead of probability density function, divergence mea-
sures for the probability distributions has been adapted to the TFD as
follows [1]:

1. Time-frequency Kullback-Leibler divergence : This standard distance measure
belongs to the class of Csiszar’s φ-divergence with φ(t) = − log(t). It can be
employed in the time-frequency plane to quantify complexity between two
TFD D1 and D2, as

K(D1, D2) =
∫ ∫

D1(t, f) log
D1(t, f)
D2(t, f)

dtdf (4)

2. Time-frequency Jensen-Rényi divergence: For two positive TFDs D1 and D2,
Jensen-Rényi divergence can be defined as

Jα(D1, D2) = Hα

(√
D1D2

)
− Hα(D1) + Hα(D2)

2
(5)

where Hα is the αth T-F Rényi entropy defined as

Hα(D) =
1

1− α
log2

∫ ∫ (
D(t, f)∫ ∫
D(t, f)dtdf

)α
dtdf (6)

where α > 0, α �= 1. Hα converges to the Shannon entropy as α→ 1.
3. Time-frequency divergence properties: Some of the most desirable properties

of the time-frequency divergences are given in the following proposition [1].
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Proposition 1.

– The divergence measures are always positive :

0 ≤ K(D1, D2),Jα(D1, D2) ≤ ∞

– The lower bound is reached if and only if D1 = D2.
– The upper bound is reached if and only if Supp(D1) ∩ Supp(D2) = ∅.

To separate nonstationary mixtures, the last property will be exploited to pro-
vide the mixed signals with nearly2 disjoint supports in the TF plane through
divergence measure maximizations.

4 TFD Information Based Contrast Functions

It is shown in [4] that the necessary condition to achieve BSS in the T-F domain
is given in the following proposition.

Proposition 2. Let (t1, f1), · · · , (tK , fK) are time-frequency points correspond-
ing to auto-terms, i.e. energy concentration in the time-frequency plan and di =
[Dsisi

(t1, f1), · · · , Dsisi(tk,fk)] for i = 1, · · · ,m. Then, BSS can be achieved if
and only if di and dj are linearly independent for i �= j.

4.1 Minimum T-F Mutual Information Contrast Function

If we replace the marginal pdfs, used in the time domain, by the TFD signal
energy Dx(t, f) and Dy(t, f), and the joint density function by the joint energy
distribution defined by the cross-spectrograms of the two signals, i.e.,

D(x,y)(t, f) def= STFTx(t, f)STFT ∗
y (t, f) (7)

where STFTx(t, f) =
∫
h(τ − t)x(τ)e−j2πfτdτ with h(t) being the data window.

Since the time marginal of D(x,y)(t, f) leads to the cross energy of x(t) and y(t),
i.e.
∫
D(x,y)(t, f)df = x(t)y∗(t), it can be viewed as a joint energy distribution

of the two signals. Then, T-F mutual information between x(t) and y(t) can be
defined as

I(Dx, Dy) def= K(|D(x,y)|, DxDy) =
∫ ∫

|D(x,y)(t, f)| log
|D(x,y)(t, f)|

Dx(t, f)Dy(t, f)
dtdf (8)

We replaced D(x,y)(t, f) by its absolute value because it can be complex-valued.
When the two signals x(t) and y(t) are separated in the T-F plane, we have
|D(x,y)(t, f)| = 0, ∀ t, f , which implies that the T-F mutual information between
x(t) and y(t) is equal to zero. This is analogous to the case where independent

2 We relax the well known assumption that sources must be of disjoint T-F supports
and we need just that sources are with linearly independent T-F signature vectors.
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random variables have zero mutual information. It allows us to introduce a mu-
tual information BSS framework in the T-F domain. In this paper, we define the
following T-F mutual information contrast function C1 as,

C1(z) =
∑

1≤i
=j≤m

I(Dzi , Dzj )

=
∑

1≤i
=j≤m

K∑
k=1

∣∣D(zi,zj)(tk, fk)
∣∣ log

∣∣D(zi,zj)(tk, fk)
∣∣

Dzi(tk, fk)Dzj (tk, fk)

=
∑

1≤i
=j≤m

K∑
k=1

∣∣D(zi,zj)(tk, fk)
∣∣ [log

∣∣D(zi,zj)(tk, fk)
∣∣− 2 log Dzi(tk, fk)

]
(9)

Equation (9) implies that minimizing the T-F mutual information corresponds
to minimizing the cross-terms and maximizing the auto-terms between data
components, which should be achieved for proper source estimation. A separating
matrix B can be computed as

B = arg min C1(z) (10)

4.2 Maximum T-F Divergence Contrast Function

Considering the source probability density function, we have discussed the min-
imum support contrast function for source separation in [13]. In this section, we
extend this idea to the time-frequency domain using the above time-frequency
support properties. From property 1, for two signals x(t) and y(t), the divergence
between Dx and Dy assumes a maximum value when the two signals are well-
separated in the time-frequency plane, or equivalently when their TFD support
are disjoint. This leads to the well known minimum support criterion for source
extraction in the time domain (e.g., see [13] and references therein). Thus, we
propose to maximize the divergence between the mixture components to achieve
source separation.

Using the Jensen-Rényi divergence, we can define a second contrast function
as

C2(z) =
∑

1≤i�=j≤m
Jα(Dzi

, Dzj
)

=
1

1− α

∑
1≤i�=j≤m

log2

⎛⎜⎝ ∑K
k=1

√
Dzi

(tk, fk)Dzj
(tk, fk)

α√∑K
k=1 D

α
zi

(tk, fk)
√∑K

k=1 D
α
zj

(tk, fk)

⎞⎟⎠ (11)

The maximization of the above criterion leads to signals with energy almost
disjoint in the T-F plane. Since the log is a monotonous function, contrast C2
can be further simplified as

C2(z) =
∑

1≤i�=j≤m

⎛⎜⎝ ∑K
k=1

√
Dzi

(tk, fk)Dzj
(tk, fk)

α√∑K
k=1 D

α
zi

(tk, fk)
√∑K

k=1 D
α
zj

(tk, fk)

⎞⎟⎠ (12)
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Then, a separating matrix B can be computed as

B = arg max C2(z) if α < 1 and B = arg min C2(z) if α > 1 (13)

4.3 Jacobi-Gradient Algorithm

To derive a nice and fast algorithm, we have proposed in [11] to combine the
Jacobi-like decomposition of Givens rotations and the Gradient algorithm us-
ing a numerical computation for achieving the BSS in two stages. Firstly, the
observations are pre-processed (whitening) such that the sensor vector is trans-
formed to a white vector and at the same time the dimensionality is reduced
from n to m, and then an m×m orthogonal matrix is determined as a product
of Givens rotations. The so called Jacobi-Gradient algorithm can be summarized
as follows:

Step 0. Whitening (e.g., see [9,12]).
Step 1. Initialize Givens angles randomly.
Step 2. Compute, the considered sources T-F distributions used in the
contrast function: Dzi

(tk, fk) and D(zi,zj)(tk, fk) for i, j = 1, · · · ,m and
k = 1, · · · ,K.
Step 3. Calculate the gradient of the cost function with respect to the Givens
angles. The gradient is ∂C(B)

∂Θ .
Step 4. Update the Givens angles using gradient ascent

Θ(k + 1) = Θ(k)− η
∂C(B)
∂Θ

Step 5. Go back to step 3 and continue until convergence.

4.4 Iterative Quasi Newton Algorithm

Similar to [4], a block technique can be implemented for the contrasts optimiza-
tion using the received samples and consists of searching solutions of equations
(10) and (13) iteratively in the form

B(p+1) = (I + ε(p))B(p) (14)

and thus
z(p+1)(t) = (I + ε(p))z(p)(t) (15)

At the pth step, a matrix ε(p) is computed from a local linearization of the
criterion. It is an approximate Newton technique with the benifit that ε(p) can
simply computed, without need to Hessian inversion, under that B(p) is close to
a separating matrix.

Thus, applying the two proposed algorithms to both contrast functions C1
and C2, we will have four new different algorithms.
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5 Simulation Results

5.1 First Experiment: Separation of Two Crossing Linear FM
Signals

In this experiment, we consider a linear mixture of two linear frequency mod-
ulated nonstationary signals (chirp) with random Gaussian amplitudes. The
model consists of two noisy mixture observations (n = m = 2) with number
of samples K = 1024 and SNR = 10 dB. The plots of the spectrograms TFD of
the two mixtures and the separated signals are shown in Fig. 1 using the first
Jacobi-gradient algorithm and the T-F mutual information contrast C1. It is
clear that the proposed procedure works well for noisy random Gaussian sources
with overlapping TFD signatures. This specific example is chosen to test the al-
gorithm when the mixed signals overlap in the time-frequency domain and when
more than one source is Gaussian.

Fig. 1. Example of T-F mutual information separation

5.2 Second Experiment: Performance Comparison with FastICA

We characterize the performance of each algorithm in terms of signal rejection
level. When C def= BA, the i-th estimated source is ŝi(t) = zi(t) =

∑m
j=1 Cijsj(t)

which contains the j-th source signal at level |Cij |2/|Cii|2. In this case, the
averaged rejection level is given by Iperf = 1

m

∑m
i=1 Ii = 1

m

∑m
i=1
∑
j �=i

|Cij |2
|Cii|2 .

Here, the same default settings of the first experiment are used. We evaluate the
performance of the proposed maximum T-F divergence contrast C2 and compare
it with that of the time domain algorithm FastICA [9]. Fig. 2 presents the mean
rejection level (Iperf ) versus the signal to noise ratio (SNR) of each algorithm. It
is evident from this figure that in this case the proposed T-F mutual information
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Fig. 2. Mean rejection level versus SNR. T = 1000

algorithm outperforms the classic FastICA. This is can be explain by the fact
that the FastICA assumptions are not fitted in this example because we have
more than one Gaussian source in the mixture. We note also that the proposed
method can separate non independents sources contrary to the ICA methods
which fails in that case.

6 Discussion and Conclusion

In this contribution, new contrast functions for BSS has been introduced that
are based on the minimization of the T-F mutual information and maximization
of the T-F Jensen-Rényi divergence measure. Two efficient implementation using
a Jacobi-gradient algorithm and a block quasi-Newton algorithm are proposed
for the contrast optimization. Unlike to the existing BSS methods, the proposed
method allows the separation of Gaussian sources with identical spectral shape,
provided that the sources have different time frequency signatures. Contrary to
several existing time-frequency -based BSS methods, our approach don’t suffer
from the problem of overlapped source components. More studies and analysis
need to be done like on the effect of the time-frequency kernel and the choice of
the time-frequency points.
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Abstract. Blind source separation aims at recovering the original source
signals given only observations of their mixtures. Some common ap-
proaches to the source separation problem include second or higher order
statistics based methods, and independent component analysis. Most of
these methods are developed in the time domain, and thus inherently
assume the stationarity of the underlying signals. Since most real life
signals of interest are non–stationary, there have been efforts to perform
source separation in the time–frequency domain. In this paper, we pro-
pose a new approach for source separation on the time–frequency plane
using an information–theoretic cost function. Jensen–Rényi divergence,
as adapted to time–frequency distributions, is introduced as an effective
cost function to extract sources that are disjoint on the time–frequency
plane. The sources are extracted through a series of Givens rotations and
the optimal rotation angle is found using the steepest descent algorithm.
The proposed method is applied to several example signals to illustrate
its effectiveness and the performance is quantified through simulations.

1 Introduction

Blind source separation (BSS) is an important and fundamental problem in sig-
nal processing with a broad range of applications. A number of BSS algorithms
have been proposed based on the instantaneous mixture model, in which the
observed signals are linear combinations of the source signals and no time delays
are involved in the mixtures. Among these methods, the most common ones are
second order statistics based methods [1], and information–theoretic approaches
which utilize cost functions such as mutual information or divergence measures,
e.g. independent component analysis (ICA) [2,3]. These methods in general as-
sume a certain structure for the underlying source signals. For example, higher–
order statistics based methods assume non–Gaussian and i.i.d. source signals,
whereas ICA assumes the independence of the source signals.

Most real life signals are non–stationary, and thus do not obey the under-
lying assumption of stationarity that is embedded in the current methods. For
this reason, recently various methods have been introduced to exploit the non–
stationarity of the source signals to solve the separation problem. Researchers
have resorted to the powerful tool of time–frequency signal representations. For

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 885–892, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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non–stationary signals, a blind separation approach using a spatial time-frequen-
cy distribution is proposed in [4]. The separation is achieved by joint diagonal-
ization of the auto–terms in the spatial time-frequency distributions.

In this paper, we introduce a new approach to the source separation problem
combining time–frequency representations with information–theoretic measures.
An information–theoretic criterion, Jensen–Rényi divergence as adapted to the
time–frequency distributions, is used as the objective function to separate the
sources. The underlying sources are assumed to be disjoint on the time–frequency
plane and it is shown that this new cost function achieves its maximum when
the signals are disjoint. With the assumption that the source signals are disjoint
on the time–frequency plane, signal separation is performed through a rotation
transformation using a steepest descent algorithm.

2 Background on Time-Frequency Distributions and
Information Measures

A time-frequency distribution (TFD), X(t, ω), from Cohen’s class can be ex-
pressed as 1 [5]:

X(t, ω) =
∫ ∫ ∫

φ(θ, τ)s(u +
τ

2
)s∗(u − τ

2
)ej(θu−θt−ωτ)du dθ dτ, (1)

where φ(θ, τ) is the kernel function and s is the signal. Some of the most desired
properties of TFDs are the energy preservation and the marginals. They are
satisfied when φ(θ, 0) = φ(0, τ) = 1 ∀τ, θ and are given as follows:∫ ∫

X(t, ω) dt dω =
∫
|s(t)|2 dt =

∫
|S(ω)|2 dω,∫

X(t, ω) dω = |s(t)|2 ,

∫
X(t, ω) dt = |S(ω)|2. (2)

The formulas given above evoke an analogy between a TFD and the probability
density function (pdf) of a two–dimensional random variable. This analogy has
inspired the adaptation of information–theoretic measures such as entropy to the
time–frequency plane. Although entropy measures have proven to be useful in
quantifying the complexity of individual signals, they cannot be used directly to
quantify the difference between signals. For this reason, well–known divergence
measures from information theory have been adapted to the time–frequency
plane [6]. One such distance measure is the Jensen–Rényi divergence based on
the Jensen difference. For time–frequency distributions, Jensen–Rényi divergence
can be defined as:

Gα12(X1, X2) = Hα(
√
X1X2)−

Hα(X1) + Hα(X2)
2

, (3)

1 All integrals are from −∞ to ∞ unless otherwise stated.
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where Hα represents Rényi entropy defined on the time–frequency plane as:

Hα(X) =
1

1− α
log2

∫ ∫ ⎛⎜⎜⎝ X(t, ω)∫ ∫
X(u, v)du dv

⎞⎟⎟⎠
α

dt dω (α > 0). (4)

3 Problem Formulation and Method

3.1 Problem Statement in the Time–Frequency Domain

In this paper, we consider the problem of determining the source signals when
the number of observed mixtures is equal to or greater than the number of the
source signals. Assume that the M mixtures, {s1(t), s2(t), · · · , sM (t)}, of the N
non-stationary complex source signals are given (M ≥ N). Each mixture, si(t),
is first transformed to the time-frequency plane as:

Xi(n, ω;ψ) =
∑
m

∑
l

ψ(n− l,m)si
(
l +

m

2

)
s∗i
(
l − m

2

)
e−jωm. (5)

The time-frequency distribution corresponding to each mixture is vectorized
and a matrix of time–frequency distributions is formed:

X =

⎡⎢⎢⎢⎣
X1
X2
...

XM

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X1(1) · · · X1(Q)
X2(1) · · · X2(Q)

...
XM (1) · · · XM (Q)

⎤⎥⎥⎥⎦ , (6)

where Xi is a vector of length Q = K × L points, K and L are the number
of time and frequency points, respectively. The signals to be separated on the
time–frequency plane are defined as:

Y =

⎡⎢⎢⎢⎣
Y1
Y2
...

YN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Y1(1) · · · Y1(Q)
Y2(1) · · · Y2(Q)

...
YN (1) · · · YN (Q)

⎤⎥⎥⎥⎦ . (7)

In order to make the following discussions simpler, we concentrate on the case
where M = N . The discussions can be generalized for M > N as illustrated
through an example in Sect. 4.

The sources Y are extracted by applying a rotation transform R(θ) in N–di-
mensions:

Y = R(θ)X. (8)

Rotation matrix is used for extracting the sources since any unitary trans-
form can be written in terms of rotation matrices and it provides a convenient
parametrization of the problem. The rotation angle θ is adapted to maximize
the following cost function:
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Gα �
N−1∑
i=1

N∑
j=i+1

[
Hα(
√

YiYj)−
Hα(Yi) + Hα(Yj)

2

]
. (9)

Maximizing this cost function will ensure that the extracted components do
not overlap with each other on the time–frequency plane.

3.2 Cost Function and Rotation

The Jensen–Rényi divergence between two time–frequency distributions is de-
fined as:

Gαij = Hα(
√

YiYj)−
Hα(Yi) + Hα(Yj)

2
. (10)

This expression can be further simplified as:

Gαij =
1

1− α
log

⎡⎢⎢⎣
∑Q
k=1

(√
Yi(k)Yj(k)

)α
√(∑Q

k=1 Y
α
i (k)

)(∑Q
k=1 Y

α
j (k)

)
⎤⎥⎥⎦ , (11)

which represents the ratio of the energy of the overlap between the two TFDs
to the product of the energy of the individual TFDs. Let

Jαij =

∑Q
k=1

(√
Yi(k)Yj(k)

)α
√(∑Q

k=1 Y
α
i (k)

)(∑Q
k=1 Y

α
j (k)

) , (12)

and

Jα =
N−1∑
i=1

N∑
j=i+1

Jαij . (13)

Since log is a monotonous function, maximizing Gα is equivalent to minimizing
Jα for α > 1, or maximizing Jα for α < 1. This means that we can equivalently
use Jα as our cost function. In this paper, we will consider orders of α > 1. The
results are similar for α < 1. One special case of α > 1 is the quadratic one when
α = 2. When α = 2, the cost function Jα simplifies to:

J2 =
N−1∑
i=1

N∑
j=i+1

⎡⎢⎢⎣ ∑Q
k=1Yi(k)Yj(k)√(∑Q

k=1 Y
2
i (k)
)(∑Q

k=1 Y
2
j (k)
)
⎤⎥⎥⎦ . (14)

In this paper, we will use α = 2 since the Rényi entropy will be well–defined for
this order even when the distributions are non-positive.

In N–dimensional space, the simplest rotation is in the two–dimensional plane.
If a rotation is through an angle θab in the a − b plane, then the rotation ma-
trix Rab(θab) equals the N × N identity matrix IN except that the elements
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IN (a, a), IN (a, b), IN (b, a), and IN (b, b) are replaced by cos(θab), sin(θab),− sin(θab),
and cos(θab), respectively, where IN (a, b) is the element of IN located at the
ath row and bth column. From [7], we know that any N–dimensional rotation
matrix can be written as the product of N(N − 1)/2 two–dimensional–plane
N–dimensional rotation matrices,which is:

R(θ) = R12(θ12) · · ·Rab(θab) · · ·R(N−1)N (θ(N−1)N ), (15)

where θ = [θ12, · · · , θab, · · · , θ(N−1)N ]T , and a < b.

3.3 Proposed Algorithm

The goal of the proposed algorithm is to determine the optimal rotation trans-
form such that the total pairwise divergence measure is maximized to achieve
signal separation. We use the gradient adaptation algorithm also known as the
steepest descent to update the rotation angles.

The overall update equation for stochastic gradient descent is:

θ(n + 1) = θ(n)− μ
∂J2

∂θ
, (16)

where μ is the step size parameter. The gradient of the cost function J2 with
respect to the rotation angle θab is derived as:

∂J2

∂θab
=
N−1∑
i=1

N∑
j=i+1

∂J2
ij

∂θab
, (17)

where

∂J2
ij

∂θab

=

∑Q
k=1

(
∂Ri
∂θab

X(k)Yj(k) + Yi(k)
∂Rj
∂θab

X(k)
)

√(∑Q
k=1 Y

2
i (k)

) (∑Q
k=1 Y

2
j (k)

) −
∑Q

k=1 Yi(k)Yj(k)(√(∑Q
k=1 Y

2
i (k)

) (∑Q
k=1 Y

2
j (k)

))3 ×

⎡⎣⎛⎝ Q∑
k=1

Yi(k)
∂Ri

∂θab

X(k)

⎞⎠ ⎛⎝ Q∑
k=1

Y
2

j (k)

⎞⎠ +

⎛⎝ Q∑
k=1

Y
2

i (k)

⎞⎠ ⎛⎝ Q∑
k=1

Yj(k)
∂Rj

∂θab

X(k)

⎞⎠⎤⎦ ,
(18)

where Ri is the ith row of R(θ), and X(k) is the kth column of X.

4 Experimental Results and Analysis

In order to evaluate the effectiveness of the proposed method, we consider the
following source separation examples. The sources are assumed to be approxi-
mately disjoint on the time–frequency plane.

Example 1: Separation of two gabor logon signals and performance comparison
with FastICA
In this example, the set of observed signals are linear combinations of two gabor
logons.The first gabor logon is centered at the time sample point 50 andnormalized
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frequency of 0.7, and the second gabor logon is centered at the time sample point
150 and normalized frequency of−0.7. Jensen–Rényi divergence with order α = 2
is used as the cost function to ensure that the divergence is well–defined. In this
example, we assume two mixtures of these two source signals. Each combination is
transformed to the time–frequency domain using a binomial kernel [5] withK = 50
time samples andL = 64 frequency samples.EachTFD is vectorized to formaTFD
observation matrix of size 2× 3200. Fig. 1 (A) shows clearly that these two gabor
logon signals can be separated from their mixtures through an optimal rotation
under the divergence criterion.

In order to evaluate the performance of the proposed approach, we compare
the MSE of the proposed algorithm with FastICA in the time–frequency domain
by adding white Gaussian noise over a SNR range of 2–18 dB. We use 100
Monte Carlo simulations for each noise level. It is evident from Fig. 1 (B) that
the proposed method has smaller MSE compared to FastICA. The difference
in performance is due to the fact that the given sources are not necessarily
independent and thus do not fit the assumptions underlying ICA.
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Fig. 1. Source separation and performance comparison

Example 2: Separation of two crossing chirp signals

In this example, we consider the separation of two signals overlapping in the
time–frequency domain. A mixture of two linear chirp signals is used for source
separation. One of the chirp signals has an initial normalized frequency of -0.8
and its instantaneous frequency increases to a normalized frequency of 0.8. The
other one has an initial normalized frequency of 0.8 and its instantaneous fre-
quency decreases to a normalized frequency of -0.8. Obviously, these two chirp
signals overlap with each other in both the time and frequency domains. Typ-
ical time domain or frequency domain separation methods can not be used to
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Fig. 2. The mixture and the separation of two crossing chirp signals: (i) the mixture,
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perfectly recover them. Fig. 2 shows that using the proposed approach, we can
successfully separate these two chirp signals from their mixtures.

Example 3: Number of mixtures greater than the number of sources

In this example, we consider a more general situation where the number of
mixtures is larger than the number of sources. For M mixtures and N sources
(M > N), we construct a new N ×M rotation matrix as follows:

RNM (θ) = INMRM (θ), (19)

where RM (θ) is an M ×M rotation matrix given by (15), and INM is an N ×M
matrix with elements equal to 1 if i = j, 0 otherwise, where i, j represent the
row and column indices, respectively. The source signals are one of the two gabor
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Fig. 3. Separating a chirp and a gabor logon from their three mixtures: (i) the mixture,
(ii) the extracted gabor logon, (iii) the extracted chirp
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logons in Example 1 and a chirp signal with an initial normalized frequency of
-0.2 and a final normalized frequency of 0.2. We use the proposed approach with
the new rotation matrix to extract these two signals from their three mixtures.
It is indicated in Fig. 3 that the source signals can still be effectively extracted
when the number of mixtures is greater than the number of sources.

5 Conclusions

In this paper, a new approach is presented for the separation of non–stationary
signals on the time–frequency plane using an information-theoretic cost func-
tion. The proposed algorithm performs an N–dimensional rotation to separate
the source signals. Using Jensen– Rényi divergence as the cost function, a steep-
est descent algorithm is implemented to update the rotation angles. The results
illustrate that maximizing the divergence on the time–frequency plane can sep-
arate sources that are disjoint in the time–frequency domain.

Future work includes investigation of the effect of order α in the Jensen–Rényi
divergence on the performance of the source separation algorithm, and extending
the algorithm to a more challenging case, i.e., the number of mixtures is smaller
than the number of sources. Another area of future work is using signal synthesis
methods to transform the extracted sources from the time–frequency domain to
the time domain.
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Abstract. The FastICA algorithm can be considered as a selfmap on
a manifold. It turns out that FastICA is a scalar shifted version of an
algorithm recently proposed. We put these algorithms into a dynami-
cal system framework. The local convergence properties are investigated
subject to an ideal ICA model. The analysis is very similar to the well-
known case in numerical linear algebra when studying power iterations
versus Rayleigh quotient iteration.

1 Introduction

Blind Source Separation (BSS) is a challenging problem in Statistical Signal
Processing. The applications of BSS arise in numerous disciplines, such as im-
age processing, bioinformatics, noise cancellation, dimensionality reduction, and
so on. Since the influential paper [1] the problem can now be solved success-
fully by Independent Component Analysis (ICA). Recently, several efficient ICA
algorithms have been developed by researchers from various communities. The
FastICA algorithm is a prominent ICA algorithm proposed by the Finnish school,
see [2]. In this paper, we investigate the local convergence property of FastICA
from a dynamical systems point of view.

We consider the standard noiseless linear instantaneous ICA model, M = A·S,
where S ∈ Rm×n represents n samples of m sources with m $ n. The in-
vertible matrix A ∈ Rm×m is a mixing matrix and M ∈ Rm×n are the ob-
served mixtures. The source signals S are assumed to be unknown, having zero
mean with unit variance, being statistically independent, and at most one being
Gaussian.

After a pre-whitening process, the whitened demixing model can be formu-
lated as Z = X� ·W , where W = V ·M ∈ Rm×n is the whitened observation,
the invertible matrix V ∈ Rm×m is the whitening matrix, the orthogonal matrix
X ∈ Rm×m is a new parameterisation of the problem as the demixing matrix in
the whitened model, and Z ∈ Rm×n is the recovered signal. Let denote x ∈ Sm−1

one of the columns of X = [x1, x2, . . . , xm] and w ∈ Rm one of the columns of
W , respectively.
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The FastICA algorithm was proposed to find the extrema of a generic contrast
function of one-unit ICA approach [2]

f : Sm−1 → R,

x �→ E[G(x�w)],
(1)

where G : R→ R is an at least twice differentiable even function. It approximates
some statistical properties over the sampled data. Under certain weak assump-
tions, the original sources signals can be recovered via computing extrema of f .
The FastICA algorithm can be formulated as a self map

ψ : Sm−1 → Sm−1,

x �→ E[G′(x�w)w]− E[G′′(x�w)]x
‖E[G′(x�w)w]− E[G′′(x�w)]x‖

(2)

where G′, G′′ are the first and second derivatives of G. This algorithm enjoys
an heuristical interpretation as an approximated Newton method, see [2,3]. We
will study the local convergence properties of the algorithm from a dynamical
systems point of view using calculus on manifolds.

The whole analysis in this paper is subject to the ideal model. In Section 2,
we characterise the critical points of a generic ICA contrast function. The local
quadratic convergence of the FastICA algorithm is reexamined from a dynamical
systems point of view in Section 3. Our conclusion follows in Section 4.

Note that in this paper all computations are performed using coordinate func-
tions of the vector space Rm which is the embedding space of the unit sphere
Sm−1.

2 Critical Point Analysis

As claimed by Hyvärinen et al. [2], the true independent sources can be recon-
structed among the extrema of the function f defined in (1). In this section, we
characterise the critical points of the function f .

For our analysis it is useful to find the right coordinate system to simplify
calculations. Without loss of generality, we might assume A = Im, i.e. W = S.

By the chain rule the first derivative of f can be computed as

D f(x) ◦ ξ = ξ� · E[G′(x�s) s], (3)

where ξ ∈ TxS
m−1 is an arbitrary tangent element. Recall that the tangent space

of the unit sphere at point x ∈ Sm−1 is defined as

TxS
m−1 := {ξ ∈ Rm|x�ξ = 0}. (4)

Critical points of f are therefore characterised as solutions of

ξ� · E[G′(x�s) s] = 0 (5)
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for all ξ ∈ TxS
m−1. Due to the geometry of Sm−1, equation (5) is equivalent to

saying, that
E[G′(x�s) s] = γ x, (6)

with γ a real parameter.
Let X be an orthogonal matrix, such that xi is the i-th column of X. By left

multiplication of Equ. (6) by X�, we get

E[G′(x�
i s)X

�s] = γ ei, (7)

where ei is i-th standard basis vector in Rm. We therefore have proven

Lemma 2.1. Let X = [x1, x2, . . . , xm] be an orthogonal matrix with column
xi ∈ Sm−1, i.e. ‖xi‖ = 1 for all i = 1, . . . ,m. An xi ∈ Sm−1 is a critical point
of the function f defined by (1) if and only if

E[G′(x�
i s)X

�s] = γ ei (8)

holds. ��

Obviously, the critical point set structure of f highly depends on the properties
of the cost function G. In other words, the quality of the separation via an
optimisation approach depends on the nature of G.

We rewrite the critical point condition (7) in an equivalent way as

E

[
G′(x�

i s)
x�
i s

· x�
j s · s�xi

]
= γδij

⇐⇒

x�
j · E

[
G′(x�

i s)
x�
i s

· s s�
]
· xi = γδij .

(9)

It is wellknown that

E

[
G′(x�

i s)
x�
i s

· s s�
]

can be made positive definite by requiring the function G to be even and convex.
Under the above assumptions it is easily seen that perfect separations are

attained at the standard basis vectors {e1, e2, . . . , em}. Trivially, the standard
basis vectors fulfil the critical point condition in Lemma 2.1.

We will now show that the second derivative of f at a critical point corre-
sponding to a perfect recovery, i.e., evaluated at a standard basis vector, is either
positive or negative definite.

Consider the smooth extension of f to Rm, i.e.

f̂ : Rm → R,

x �→ E[G(x�w)]
(10)
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where f̂
∣∣∣
Sm−1

= f . The Hessian at a critical point ei can be computed from the
following quadratic form on Rm × Rm

Qei
(h, h) :=

d2

d ε2 f̂(x + εh)
∣∣∣∣
ε=0,x=ei

= h� ·
(
E[G′′(e�i s) s s

�]− E[G′(e�i s) e
�
i s] Im

)
· h.

(11)

By polarisation of the quadratic form Qei
(h, h) and projecting the corresponding

linear map Qei
(h) evaluated at h ∈ Rm to the tangent space Tei

Sm−1 we get an
explicit discription of the Hessian of f at ei.

Lemma 2.2. By abuse of notation let si denote the i-th entry of a column s of
the matrix S. Then the Hessian operator at a critical point ei acts on tangent
vectors simply by scalar multiplication, the scalar being equal to

E[G′′(si)]− E[G′(si) si].

Proof. This is a straightforward calculation. ��

3 FastICA as a Dynamical System on Sm−1 and
Projective Space

In a suitable coordinate system, i.e., W = S, we consider FastICA as the map

ψ : Sm−1 → Sm−1,

x �→ E[G′(x�s)s]− E[G′′(x�s)]x
‖E[G′(x�s)s]− E[G′′(x�s)]x‖ .

(12)

To analyse this mapping in full generality seems to be hopeless. Neverthe-
less, for certain classes of functions which have been used in signal processing
applications it can be shown that it is at least locally well defined and smooth.

In this paper we will assume that at a critical point ei of the function f the
denominator in (12) does not vanish. Then there exists a neighborhood of ei in
Sm−1 where this holds as well.

We will now compute the derivative of the algorithmic mapping at such a point
ei. As it is well known the iterative mapping ψ considered as a dynamical system
on the sphere might cause alternating signs in the systems coefficient vector. It
is therefore convenient to take a different point of view as has been done in the
literature so far. It is easily seen that the cost function f maps two antipodes
on the sphere into one and the same point in R provided the smooth contrast
function G is even. Consequently, f defines a smooth function on projective
space. Moreover, we can consider the algorithmic map ψ as a selfmapping on
projective space as well.

The span of any standard basis vector is a fixed point of the iteration map as
seen by the following Lemma.
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Lemma 3.1. Consider ψ as a selfmapping on projective space. Then span(ei)
is a fixed point of the mapping ψ.

Proof. We have to check if ei solves the equation

x = ± E[G′(x�s)s]− E[G′′(x�s)]x
‖E[G′(x�s)s]− E[G′′(x�s)]x‖ . (13)

According to the critical point condition (6) the numerator in (13), evaluated
at x = ei, is equal to a multiple of ei. The result follows. ��

The next theorem characterises the local behavior of the mapping ψ considered
as a selfmap of projective space around such a fixed point span(ei).

Theorem 3.1. The derivative of ψ evaluated at span(ei) is equal to zero.

Proof. Note that locally Sm−1 and projective space are diffeomorphic. To prove
the theorem we therefore can consider ψ as a selfmapping of the sphere. We have
to study the linear map

Dψ(x) : TxSm−1 → Tψ(x)S
m−1 (14)

at ei, i.e. the linear map Dψ(ei) assigns to an arbitrary tangent element ξ ∈
Tei

Sm−1 the value Dψ(ei)ξ. Let denote the numerator of ψ(x) by

F : Sm−1 → Rm,

F (x) := E[G′(x�s)s]− E[G′′(x�s)]x.
(15)

One computes

Dψ(ei)ξ =
d
d ε

ψ(x + εξ)
∣∣∣∣
ε=0,x=ei

=
1

‖F (ei)‖

(
id− F (ei)

‖F (ei)‖
F (ei)�

‖F (ei)‖

)
︸ ︷︷ ︸

=:P (ei)

DF (ei)ξ.
(16)

Note that P (ei) is an orthogonal projection operator. Moreover, by the critical
point condition,

(i) P (ei) projects onto the complement of the span of ei and
(ii) DF (ei)ξ is equal to a scalar multiple of ei.

The result follows. �

Corollary 3.1. FastICA considered as the map ψ is locally quadratically con-
vergent to a fixed point x∗.
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Proof. Using xk+1 = ψ(xk) and the fixed point condition ψ(x∗) = x∗, the result
follows by the Taylor-type argument

‖ψ(xk)− x∗‖ ≤ sup
y∈N (x∗)

‖D2 ψ(y)‖ · ‖xk − x∗‖2

with N (x∗) being the closure of a sufficiently small open neighborhood of x∗, as
the first derivative of ψ at x∗ vanishes. ��

It is worthwhile to notice that the above analysis is similar to the analysis re-
cently proposed in connection with the Rayleigh Quotient Iteration (RQI), see
[4] for details. The analogy between FastICA and RQI goes even a bit further.
We will now give FastICA an interpretation of a shifted version of a simpler
algorithm recently proposed, see [5]. Moreover, we will show that the scalar shift
strategy which is used in FastICA is in some sense a very clever way to ensure
local quadratic convergence.

As an aside note that in numerical linear algebra it is wellknown that power
iterations to compute an eigenvector of a real symmetric matrix can be signifi-
cantly accelerated by incorporating scalar shift techniques. These ideas lead to
the concept of RQI. Eventually, this fact is one of the reasons why the cele-
brated QR-algorithm is one of the most efficient algorithms in numerical linear
algebra.

More recently in [5] to some extent certain fixed point algorithms for ICA were
analysed. Our observation is that the algorithm which appears as equation (3) in
[5] is a non-shifted version of FastICA, i.e., one might study the zero-shift-map

φ : Sm−1 → Sm−1,

x �→ E[G′(x�s)s]
‖E[G′(x�s)s]‖ ,

(17)

from a dynamical systems point of view, as well. Or more generally, one might
study

η : Sm−1 → Sm−1,

x �→ E[G′(x�s)s]− ρ(x)x
‖E[G′(x�s)s]− ρ(x)x‖ ,

(18)

where ρ : Sm−1 → R is a scalar valued map, the shift-map.
Assume that we have specified the shift-map such that ei is a fixed point

of η. We might study the local convergence properties of η in the spirit of our
treatment above.

Denote the numerator in (18) by

H : Sm−1 → Rm,

H(x) := E[G′(x�s)s]− ρ(x)x.
(19)
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The derivative is as DH(x) : TxSm−1 → Rm. Therefore, one computes

DH(ei)ξ =
d
d ε

η(x + εξ)
∣∣∣∣
ε=0,x=ei

=
1

‖H(ei)‖

(
id− H(ei)

‖H(ei)‖
H(ei)�

‖H(ei)‖

)
︸ ︷︷ ︸

=:P (ei)

DH(ei)ξ.
(20)

Again it is easily seen that the orthogonal projection operator P (ei) in (20)
projects on the orthogonal complement of the span of ei in Rm, i.e. into the
tangent space Tei

Sm−1. Consequently,

D η(ei) = 0 ⇐⇒ DH(ei)ξ = λei, λ ∈ R. (21)

Now by the chain rule

DH(ei)ξ = D E[G′(e�i s)s]ξ − (D ρ(ei)ξ)ei − ρ(ei)ξ. (22)

Because (D ρ(ei)ξ)ei is already a multiple of ei it remains to specify under which
conditions on the scalar shift ρ the following holds true

D E[G′(e�i s)s]ξ − ρ(ei)ξ = λei. (23)

From the computations above, see Lemma 2.2, we already know that

D E[G′(e�i s)s]ξ = E[G′′(si)]ξ. (24)

Finally, the only possibility to ensure that D η(ei) vanishes happens if

ρ(ei) = E[G′′(si)]. (25)

4 Conclusion and Outlook

To conclude we might state the following.
In a framework where we assume smoothness conditions on even contrast

functions and the scalar shift strategy, the only scalar shift strategies which en-
sure local quadratical convergence are those which respect (25). This happens for
instance in FastICA. One might ask the question how to modify the scalar shift
strategy in FastICA to ensure third or even higher order local convergence prop-
erties. One necessary requirement is that such a modified shift strategy has to be
equal to the one used in FastICA when evaluated at the standard basis vectors.

Another completely different approach to accelerate convergence is to use
nonscalar shifts. For work in this direction we refer to [6,7] and a forthcoming
journal paper.
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Abstract. Independent component analysis (ICA) has been extensively
studied since it was originated in the field of signal processing. However,
almost all the researches have focused on estimation and paid little at-
tention to testing. In this paper, we discuss testing significance of mixing
and demixing coefficients in ICA. We propose test statistics to examine
significance of these coefficients statistically. A simulation experiment im-
plies the good performance of our testing procedure. A real example in
psychometrics, which is a new application area of ICA, is also presented.

1 Introduction

Independent component analysis (ICA) [1] is a multivariate analysis technique
that aims at recovering linearly mixed unobserved multidimensional independent
signals from the mixed observable variables. Let x be an m-dimensional observed
vector. The ICA model for x is written as

x = As, (1)

where A is called a mixing matrix and s is an n-dimensional vector of inde-
pendent components with zero mean and unit variance. Typically, the number
of observed variables m is assumed to equal that of latent variables n, that is,
m = n, which we assume in the following. The main goal of ICA is to estimate
the mixing matrix A or the demixing matrix BT = A−1. (Some authors use
B = A−1 without the transpose [1].)

The ICA has been extensively studied since identification conditions for the
model were provided in [2]. However, almost all the researches have focused on
estimation [3,4,5], e.g., consistency, stability, robustness and asymptotic variance
[6,7,8], and have not paid very much attention to testing. In this paper, we discuss
testing of significance of mixing and demixing coefficients aij and bij . Such a test
of significance is an important process in psychometrics for example [9].

The paper is structured as follows. First, in Section 2, we briefly review asymp-
totic variance of ICA and provide asymptotic covariance matrices of mixing and
demixing coefficients estimated by ICA based on non-gaussianity maximization
with constraints of orthogonality, e.g., FastICA [5]. In Section 3, we derive test

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 901–908, 2006.
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statistics to evaluate the magnitude of significance of these coefficients using the
asymptotic variances. We also consider multiple comparison procedures since we
usually test significance of more than one coefficient. In Sections 4 and 5, we
conduct a simulation study and provide a real data example to study how the
test statistics work empirically. We conclude the paper in Section 6.

2 Asymptotic Variance of ICA

Several authors studied asymptotic variance of ICA [7,8,10,11], where the theory
of estimating functions [12] was often used. Let us consider a semiparametric
model p(x|θ), where θ is a r-dimensional parameter vector of interest. Note that
the density function p(x|θ) is unknown. Let us denote by θ0 the true parameter
vector of interest. A r-dimensional vector-valued function f(x,θ) is called an
estimating function when it satisfies the following conditions for any p(x|θ0):

E[f(x,θ0)] = 0 (2)

|det Q| �= 0, where Q = E

[
∂

∂θT
f(x,θ)

∣∣∣∣
θ=θ0

]
(3)

E[‖f(x,θ0)‖2] < ∞, (4)

where the expectation E is taken over x with respect to p(x|θ0).
Let x(1), · · · ,x(N) be a random sample from p(x|θ0). Then an estimator θ̂

is obtained by solving the estimating equation:

N∑
i=1

f(x(i),θ) = 0. (5)

Under some regularity conditions including identification conditions for θ, the
estimator θ̂ is consistent when N goes to infinity and asymptotically distributes
according to the gaussian distribution N(θ0,G), and

G =
1
N

Q−1E[f(x,θ0)fT (x,θ0)]Q−T . (6)

In [7], an estimating function for (quasi-) maximum likelihood estimation was
derived. In [13], an estimating function for JADE [4] was provided, and an esti-
mating function for ICA based on non-gaussianity maximization with orthogo-
nality (uncorrelatedness) constraints including FastICA [5] was also introduced.

In this paper, we restrict ourselves to testing mixing and demixing coefficients
estimated by FastICA. In FastICA, we first center the data to make its mean zero
and whiten the data by computing a matrix V such that the covariance matrix
of z = Vx is the identity matrix. After that, we find an orthogonal matrix W
so that components of WTz = WTVx have maximum non-gaussianity. Then
we obtain estimates of A and B by A = V−1W and B = VTW.

Let us consider the following function:

F(x,W) = yyT − I + ygT (y)− g(y)yT , (7)
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where y = BTx = WTVx = WTz and g(u) is the nonlinearity. The estimating
function for FastICA is obtained as f = vec(F) taking θ = vec(W) [13], where
vec(·) denotes the vectorization operator which creates a column vector from a
matrix by stacking its columns.

According to the estimating function theory, we obtain the asymptotic covari-
ance matrix of vec(W) by (6) (see the Appendix for the complete formula). Here
we assume that the variance in the estimate of V is negligible with respect to
the variance in W, which is validated empirically in the simulation below. Then
we obtain the asymptotic covariance matrix of vec(A) and vec(B) as follows:

acov{vec(A)} = acov{vec(V−1W)}
= (I⊗V−1)acov{vec(W)}(I⊗V−1)T (8)

acov{vec(B)} = acov{vec(VTW)}
= (I⊗VT )acov{vec(W)}(I⊗VT )T , (9)

where ⊗ denotes the Kronecker product. Given an m × n matrix T and p × q
matrix U, the Kronecker product of T and U is the following mp× nq matrix

T⊗U :=

⎡⎢⎣ t11U · · · t1nU
...

. . .
...

tm1U · · · tmnU

⎤⎥⎦ . (10)

Matlab codes to compute acov{vec(A)} and acov{vec(B)} are available online
at the webpage: http://chobi.sigmath.es.osaka-u.ac.jp/̃ shimizu/acov/

3 Testing Significance of Mixing and Demixing
Coefficients

3.1 Wald Statistics

In this paper, we would like to test if mixing or demixing coefficients are zero or
not. Such tests are related to the fundamental question typically posed in empir-
ical sciences: Does the independent component sj have a statistically significant
effect on the observed variable xi? Here, the null and alternative hypotheses H0
and H1 are as follows:

H0 : aij = 0 versus H1 : aij �= 0 (11)
or

H0 : bij = 0 versus H1 : bij �= 0. (12)

One can use the following Wald statistics

â2
ij

avar(âij)
or

b̂2ij

avar(b̂ij)
(13)
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to test significance of aij and bij , where avar(âij) and avar(b̂ij) denote the
asymptotic variances of âij and b̂ij computed by (8) and (9). The Wald statis-
tics can be used to test the null hypothesis H0. Under H0, the Wald statistic
asymptotically approximates to a chi-square variate with one degree of freedom
[9]. Then we can obtain the probability of having a value of the Wald statis-
tic larger than or equal to the empirical one computed from data. We reject
H0 if the probability is smaller than a significance level, and otherwise we ac-
cept H0. Acceptance of H0 implies that the assumption aij = 0 (or bij = 0)
fits data. Rejection of H0 suggests that the assumption is in error so that H1
holds [9].

3.2 Multiple Comparison

Usually, mixing and demixing matrices have more than one element. In many
cases, we need to perform more than one testing simultaneously to find out
if all or all of a set of the coefficients are significantly large in an absolute
value sense. Although a given significance level may be appropriate for each
individual testing, it is not for the set of all the testing. We are bound to have
a lot of spurious significance if we just repeat testing without any corrections.
Suppose we repeat testing 1,000 times at significance level 5%. Assume all the
null hypotheses are true. Nevertheless, we can always expect that approx. 50 null
models are rejected. However, we should not reject the null models. We have to
control the probability of having at least one spurious false positive. In such
a case, we should employ multiple comparison procedures. A simple and basic
method is the Bonferroni correction, where we simply divide a significance level
by the number of testing to obtain the significance level for individual testing.
See [14] for details. We employ the Bonferroni correction in the simulation and
real data analysis below.

4 Simulation

We conducted simulations in an attempt to confirm the theoretical results above.
We employed FastICA, where the hyperbolic tangent function was taken as the
nonlinearity and the symmetric orthogonalization was applied.

The simulation consisted of 10,000 replications. We employed the following
mixing matrix that was lower triangular:

A =

⎡⎣ 1 0 0
0.5 1 0
0.65 0.7 1

⎤⎦ , (14)

and then the demixing matrix BT = A−1 was

BT =

⎡⎣ 1 0 0
−0.5 1 0
−0.3 −0.7 1

⎤⎦ . (15)
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In each replication, we generated independent sources and created observed
signals following the ICA model (1). First, we created three independent compo-
nents si with the sample size N = 300, 500, 1000 where their components were
independently distributed according to the Laplace distribution. The indepen-
dent components were normalized to have zero means and unit variances.

The FastICA was then applied to the data, and estimates of mixing and
demixing coefficients aij and bij were obtained. Then we computed Wald statis-
tics for these coefficients and tested the null hypotheses of the coefficients being
zero as described above. The significance level was set at 5%. We computed how
many null hypotheses on the coefficients in these matrices were rejected to know
if the chi-square approximation worked for finite sample sizes. We also counted
the numbers of cases where at least one of null hypotheses on the coefficients
with zero values (here, elements in strictly upper triangular parts of A and BT )
was rejected to know if the Bonferroni correction was effective.

The results are shown in Tables 1 and 2. First in Table 1, we shall examine
the empirical significance levels (number of rejections) for a12, a13 and a23, and
b12, b13 and b23 that had zero values. Overall, we would say that the numbers
of rejections of the null models were very close to the theoretically expected
number 500. Second, Table 1 allows us to examine the statistical power of the
test for the other coefficients that had non-zero values. The power of 0.99 (9,900
rejections) was achieved for all the conditions other than when testing b31 with
N = 300. Thus, Table 1 showed that the Wald statistics were well approximated
by the chi-square distribution, and the power of test was quite good.

Next in Table 2, we examine the numbers of cases where at least one of
null hypotheses on the coefficients with zero values to study the performance
of the Bonferroni correction for multiple comparison discussed in Section 3.2.
Overall, we would say that the numbers of rejections with the Bonferroni cor-
rection were rather close to the theoretically expected number 500 for all the
conditions, though the null models were rejected a bit less often than the theo-
retically expected number 500 when testing bij . On the other hand, the numbers

Table 1. Numbers of rejected null hypotheses with significance level 5% (10,000
replications)

a11 a21 a31 a22 a32 a33 a12 a13 a23

N =
300 9,999 9,914 9,931 9,995 9,946 9,984 467 499 478
500 10,000 9,997 9,995 10,000 9,997 10,000 506 473 475

1,000 10,000 10,000 9,996 10,000 10,000 10,000 488 468 477

b11 b21 b31 b22 b32 b33 b12 b13 b23

N =
300 9,994 9,903 9,159 9,990 9,962 9,999 406 452 422
500 10,000 9,994 9,893 10,000 9,998 10,000 442 454 464

1,000 10,000 10,000 9,999 10,000 10,000 10,000 428 456 507
Note: N is sample size in estimation.
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Table 2. Numbers of cases where at least one of null hypotheses on coefficients with
zero values was rejected (10,000 replications)

Testing aij Testing bij

N= 300 500 1,000 N= 300 500 1,000
Bonferroni correction 497 471 447 383 408 411
No corrections 1,307 1,344 1,326 1,139 1,222 1,249
Note: N is sample size in estimation.

of rejections with no Bonferroni correction were much larger than the theoret-
ically expected number for all the conditions. Thus, Table 2 showed that the
Bonferroni correction was effective and should be applied to real data analyses.

5 Example with Real Data

Questionnaire data about criminal psychology were analyzed as an example.
The survey was conducted with university students in Japan [15]. The sample
size was 222. Observed variables were standardized to have zero mean and unit
variance. The labels of the variables x1 and x2 are “x1: Sum of scores of items
that ask subjective evaluation on frequency of your criminal opportunities when
you went to high school” and “x2: Sum of scores of items that ask subjective
evaluation on frequency of your criminal behavior when you went to high school”.
A Kolmogorov-Smirnov test showed that all variables could not be assumed to
come from the gaussian distribution (significance level 1%). Thus, ICA should
be applicable to this kind of non-gaussian data.

We employed FastICA with the nonlinearity g(u) = tanh(u) and the symmet-
ric orthogonalization. We set the significance level at 5% and used the Bonferroni
method for multiple comparison. The estimated A by FastICA was[

0.93 0.36
0.77 0.64

]
, (16)

where a11, a21 and a22 were significant, and a12 was not significant. See Table 3
for the Wald statistics. Thus, the matrix A could be seen to be lower triangular.

The fact that A is lower triangular allows us to interpret the results in terms
of a causal ordering of the variables [16]. The result implied the causal order,
x1 → x2, that is, criminal opportunities at high schools→ criminal behaviors at
high schools. The link between the lower triangularity of A and the causal order
can be seen as follows. For the lower triangular mixing matrix, x1 is essentially

Table 3. Estimates, Wald statistics and p values

a11 a21 a12 a22

Estimates 0.93 0.77 0.36 0.64
Wald statistics 48.70 17.57 1.69 9.24

p values 0.00 0.00 0.19 0.00



Testing Significance of Mixing and Demixing Coefficients in ICA 907

equal to s1, up to a multiplicative constant, a11. On the other hand, x2 is a
function of s1 and s2, a21s1 + a22s2. Thus, x2 is a function of x1 and a new
independent variable, s2, that is, (a21/a11)x1 + a22s2. This indicates that x1
may cause x2, but x2 cannot cause x1. See [16] for details.

In fact, the order x1 → x2 was reasonable to the criminal psychology the-
ory. According to a criminal psychology theory [17], the frequency of criminal
opportunities (x1) is a typical environmental cause of the frequency of crimi-
nal behaviors (x2) [15]. Therefore, the possible causal order from background
knowledge was x1 → x2. Thus, the causal order founded by our method would
be reasonable to the background knowledge.

6 Conclusion

In this paper, we proposed Wald statistics to test significance of mixing and
demixing coefficients in ICA. We conducted a small simulation experiment, which
implied that our testing procedure worked well even for finite sample sizes, al-
though more simulation studies are needed to study to what extent the result
can be generalized. We also provided a real data example in psychometrics that
would be a promising new area that ICA applies.
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Appendix. A Complete Formula of acov{vec(W)}
The formula of acov{vec(W)} for FastICA is written as

acov{vec(W)} =
1
N

Q−1E[vec{F(x,W)}vec{F(x,W)}T ]Q−T . (17)

Denote by Fpq the (p, q)-element of F and by Fq the q-th column of F, respec-
tively. We shall provide E(FpqFrs) to compute E{vec(F)vec(F)T }. Denote by
i, j, k, l four different subscripts. Then we have

E(FiiFii) = E(s4
i ) + 1, E(FiiFjj) = 2, E(FkiFij) = −E{g(sk)}E{g(sj)}

E(FkiFli) = E{g(sk)}E{g(sl)}, E(FkiFkj) = E{g(si)}E{g(sj)}
E(FiiFli) = −E(s3

i )E{g(sl)}, E(FkiFii) = −E(s3
i )E{g(sk)}

E(FiiFij) = E(s3
i )E{g(sj)}, E(FjiFjj) = E(s3

j )E{g(si)}
E(FiiFlj) = 0, E(FkiFjj) = 0, E(FkiFlj) = 0
E(FjiFij) = 1 + 2E{sig(si)}E{sjg(sj)} − E{g(si)2} − E{g(sj)2}
E(FjiFlj) = 1 + E{sig(si)}+ E{sjg(sj)}

+E{sig(si)}E{sjg(sj)} − E{g(si)}E{g(sl)}
E(FkiFki) = 1 + 2E{sig(si)} − 2E{skg(sk)}+ E{g(si)2}

+E{g(sk)2} − 2E{sig(si)}E{skg(sk)}.

We also give E
{
(∂Fi)/(∂wT

j )
}

to compute Q = E
[
{∂vec(F)}/{∂vec(W)T }

]
:

E

[
∂Fi
∂wT

i

]
=
{

2wT
i (i−th row)

[1− E{skg(sk)}+ E{g′(si)}] wT
k (k−th row, k �= i)

E

[
∂Fi
∂wT

j

]
=
{

[1− E{g′(sj)}+ E{sig(si)]wT
i (j−th row, j �= i)

0T (k−th row, k �= j) .
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Abstract. We treat the problem of searching for hidden multi-dimensio-
nal independent auto-regressive processes. First, we transform the
problem to Independent Subspace Analysis (ISA). Our main contribution
concerns ISA. We show that under certain conditions, ISA is equivalent to
a combinatorial optimization problem. For the solution of this optimiza-
tion we apply the cross-entropy method. Numerical simulations indicate
that the cross-entropy method can provide considerable improvements
over other state-of-the-art methods.

1 Introduction

Search for independent components is in the focus of research interest. There
are important applications in this field, such as blind source separation, blind
source deconvolution, feature extraction and denoising. Thus, a variety of par-
ticular methods have been developed over the years. For a recent review
on these approaches and for further applications, see [1] and the references
therein.

Originally, Independent Component Analysis (ICA) is 1-dimensional in the
sense that all sources are assumed to be independent real valued stochastic vari-
ables. The typical example of ICA is the so called cocktail-party problem, where
there are n sound sources and n microphones and the task is to separate the origi-
nal sources from the observed mixed signals. However, applications where not all,
but only certain groups of the sources are independent may have high relevance
in practice. In this case, independent sources can be multi-dimensional. For ex-
ample, consider the following generalization of the cocktail-party problem. There
could be independent groups of people talking about independent topics, or more
than one group of musicians may be playing at a party. This is the Indepen-
dent Subspace Analysis (ISA) extension of ICA, also called Multi-dimensional
Independent Component Analysis [2]. An important application is, e.g., the pro-
cessing of EEG-fMRI data [3]. However, the motivation of our work stems from
the fact that most practical problems, alike to the analysis of EEG-fMRI sig-
nals, exhibit considerable temporal correlations. In such cases, one may take

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 909–916, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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advantage of Independent Process Analysis (IPA) [4], a generalization of ISA for
auto-regressive (AR) processes, similar to the AR generalization of the original
ICA problem [5].

Efforts have been made to develop ISA algorithms [2, 3, 6, 7, 8, 9, 10]. Theo-
retical problems are mostly connected to entropy and mutual information esti-
mations. Entropy estimation by Edgeworth expansion [3] has been extended to
more than 2 dimensions and has been used for clustering and mutual informa-
tion testing [11]. Other recent approaches search for independent subspaces via
kernel methods [7], joint block diagonalization [10], k-nearest neighbor [8], and
geodesic spanning trees [9].

Here, we shall explore a particular approach that tries to solve the ISA prob-
lem by ICA transformation and then searches for an optimal permutation of
the ICA components. We shall investigate sufficient conditions that justify this
algorithm. Different methods for solving the IPA and the related ISA problems
will be compared. The paper is constructed as follows: Section 2 formulates the
problem domain and suggests a novel approach for solving the related ISA task.
Section 3 contains computer studies. Conclusions are also drawn here.

2 The IPA Model

We shall treat the generative model of mixed independent AR processes. Assume
that we have M hidden and independent AR processes and that only the mixture
of these M components is available for observation:

sm(t + 1) = Fmsm(t) + em(t), m = 1, . . . ,M (1)
z(t) = As(t), (2)

where s(t) :=
[
s1(t); . . . ; sM (t)

]
is the vector concatenated form of the compo-

nents sm, sm(t),em(t) ∈ IRd, em(t) is i.i.d. in t, ei(t) is independent from ej(t),
if i �= j, and Fm ∈ IRd×d. The total dimension of the components is D := d ·M ,
s(t),z(t) ∈ IRD and A ∈ IRD×D is the so called mixing matrix that, according to
our assumptions, is invertible. It is easy to see that the invertibility of A and the
reduction step using innovations (see later in Section 2.1) allow, without any loss
of generality, to restrict (i) to whitened noise process e(t) :=

[
e1(t); . . . ;eM (t)

]
,

and (ii) to orthogonal matrix A. That is,

E[e(t)] = 0, E
[
e(t)e(t)T

]
= ID, ∀t (3)

ID = AAT , (4)

where ID is the D-dimensional identity matrix, superscript T denotes transpo-
sition and E[·] is the expectation value operator. The goal of the IPA problem is
to estimate the original source s(t) and the unknown mixing matrix A (or its in-
verse W , which is called the separation matrix) by using observations z(t) only.
If ∀Fm = 0 then the task reduces to the ISA task. The ICA task is recovered if
both ∀Fm = 0 and d = 1.
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2.1 Uncertainties of the IPA Model

The identification of the IPA model, alike to the identification of the ICA and
ISA models, is ambiguous. First, we shall reduce the IPA task to the ISA task
[5, 12, 4] by means of innovations. The innovation of a stochastic process u(t) is
the error of the optimal quadratic estimation of the process using its past, i.e.,

ũ(t) := u(t)− E[u(t)|u(t− 1),u(t− 2), . . .]. (5)

It is easy to see that for an AR process, the innovation is identical to the noise
that drives the process. Therefore, constructing a block-diagonal matrix F from
matrices Fm, the IPA model assumes the following form

s(t + 1) = Fs(t) + e(t), (6)
z(t) = AFA−1z(t− 1) + Ae(t− 1), (7)
z̃(t) = Ae(t− 1) = As̃(t). (8)

Thus, applying ISA to innovation z̃(t) of the observation, mixing matrix A and
thus e(t) as well as s(t) can be determined.

Concerning the ISA task, if we assume that both the components and
the observation are white, that is, E[s] = 0, E

[
ssT
]

= ID and E[z] = 0,
E
[
zzT
]

= ID, the ambiguity of the problem is lessened: apart from permuta-
tions, the components are determined up to orthogonal transformations within
the subspaces. It also follows from the whitening assumption that mixing matrix
A (and thus matrix W = A−1) are orthogonal, because:

ID = E
[
zzT
]

= AE
[
ssT
]
AT = AIDAT = AAT . (9)

Identification ambiguities of the ISA task are detailed in [13].

2.2 Reduction of ISA to ICA and Permutation Search

Here, we shall reduce the original IPA task further. The ISA task can be seen
as the minimization of mutual information between the components. That is,
we should minimize cost function J(W ) :=

∑M
m=1 H(ym) in the space of D×D

orthogonal matrices, where y = Wz, y =
[
y1; . . . ;yM

]
, ym (m = 1, . . . ,M) are

the estimated components and H is Shannon’s (multi-dimensional) differential
entropy (see, e.g., [4]). Now, we present our main result:

Theorem (Separation theorem for ISA). Let us suppose, that all the
u = [u1; . . . ;ud] = sm components of source s in the ISA task satisfy

H

(
d∑
i=1

wiui

)
≥

d∑
i=1

w2
iH (ui) ,∀w :

d∑
i=1

w2
i = 1. (10)

Now, processing observation z by ICA, and assuming that the ICA separation
matrix W ICA is unique up to permutation and sign of the components, then
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W ICA is also the separation matrix of the ISA task up to permutation and sign
of the components. In other words, the W separation matrix of the ISA task
assumes the following form W = PW ICA, where P

(
∈ IRD×D) is a permutation

matrix to be determined.

The proof of the theorem can be found in a technical report [14] because of
lack of space. Sources that satisfy the conditions of the theorem are also provided
in [14], where we show that elliptically symmetric sources, among others, satisfy
the condition of the theorem.

In sum, the IPA model can be estimated by applying the following steps:
1. observe z(t) and estimate the AR model,
2. whiten the innovation of the AR process and perform ICA on it,
3. solve the combinatorial problem: search for the permutation of the ICA

sources that minimizes the cost function J .

Thus, after estimating the AR model and performing ICA on its estimated in-
novation process, IPA needs only two steps: (i) estimation of multi-dimensional
entropies, and (ii) optimization of the cost function J in SD, the permutations
of length D.

A recent work [4] provides an algorithm to solve the IPA task. To our best
knowledge, this is the only algorithm for this task at present. This algorithm
applies Jacobi rotations for any pairs of the elements received after ICA prepro-
cessing. We shall call it the ICA-Jacobi method and compare it with our novel
algorithm that we refer to as the ICA-TSP method for reasons to be explained
later. For entropy estimation, we shall apply the method suggested in [4], which
is the following:

2.3 Multi-dimensional Entropy Estimation by the k-Nearest
Neighbor Method

Shannon’s entropy can be estimated by taking the limit of Rényi’s entropy, which
has efficient estimations. Let f denote the probability density of d-dimensional
stochastic variable u. Rényi’s α-entropy of variable u (1 �= α > 0) is defined as:

Hα(u) :=
1

1− α
log
∫

IRd

fα(v)dv α→1−−−→ H(u). (11)

Assume that we have i.i.d. samples of T elements from the distribution of u:
u(1), . . . ,u(T ). For each sample u(t) let us choose the k samples, which are the
closest to u(t) in Euclidean norm (‖·‖). Let this set be denoted by Nk,t. Let
us choose α := d−γ

d , and thus α→ 1 corresponds to γ → 0. Then, under mild
conditions, the Beadword-Halton-Hammersley theorem holds [15, 16]:

Ĥ (k, γ) :=
1

1− α
log

⎛⎝ 1
Tα

T∑
t=1

∑
v∈Nk,t

‖v − u(t)‖γ
⎞⎠ T→∞−−−−→ Hα(u) + c, (12)

where c is an irrelevant constant. This entropy estimation is asymptotically unbi-
ased and strongly consistent [15]. In the numerical studies, we shall use γ = 0.01
and k = 3 alike to [4].
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2.4 Cross-Entropy Method for Combinatorial Optimization

The CE method has been found efficient for combinatorial optimization problems
[17]. The CE technique operates as a two step procedure: First, the problem is
converted to a stochastic problem and then the following two-phases are iterated
(for detailed description, see [17]):

1. Generate x1, . . . ,xN ∈ X samples from a distribution family parameterized
by a θ parameter and choose the elite of the samples. The elite is the best
ρ% of the samples according to the cost function J .

2. Modify the sample generation procedure (θ) according to the elite samples.
In practice, smoothing, i.e., θnew = β · θproposed + (1− β) · θold is utilized in
the update of θ.

This technique will be applied in our search for permutation matrix P . Our
method is similar to the CE solution suggested for the Travelling Salesman
Problem (TSP) (see [17]) and we call it ICA-TSP method. In the TSP problem,
a permutation of cities is searched for. The objective is to minimize the cost of the
travel. We are also searching for a permutation, but now travel cost is replaced by
J(W ). Thus, in our case, X = SD and x is an element of this permutation group.
Further, CE cost J equals to J(P xW ICA), where P x denotes the permutation
matrix associated to x. Thus, optimization concerns permutations in X. In the
present work, θ contains transition probabilities i → j (1 ≤ i, j ≤ D), called
node transition parametrization in the literature [17].

The above iteration is stopped if there is no change in the cost (in the last L
steps), or the change in parameter θ is negligibly small (smaller then ε).

3 Numerical Studies

3.1 Databases

Computer simulations are presented here. We defined four different databases.
They were whitened and were used to drive the AR processes of Eq. (1). Then
the AR processes were mixed. Given the mixture, an AR process was identified
and its innovation was computed. The innovation was analyzed by ISA. We note
that this reduction step using innovations based on AR estimation (‘AR-trick’)
can also work for non-AR processes, as it was demonstrated in [4].

Three of the four computational tasks are shown in Fig. 1. In these test
examples (i) dimensions D and d were varied (D = 12, 18, 20, d = 2, 3, 4),
(ii) sample number T was incremented by 100 between 300 and 1500. For
all tests, we averaged the results of 10 computer runs. In the fourth task
M(= 5) pieces of d(= 4)-dimensional components were used and the innova-
tion for each d-dimensional process was created as follows: coordinates ui(t)
(i = 1, . . . , k), were uniform random variables on the set {0,. . . ,k-1}, whereas
uk+1 was set to mod(u1 + . . . + uk, k). In this construction, every k-element sub-
set of {u1, . . . , uk+1} is made of independent variables. This database is called
the all-k-independent problem [9]. In our simulations d = k + 1 was set to 4.
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Numerical values of the CE parameters were chosen as ρ = 0.05 β = 0.4,
L = 7, ε = 0.005. The quality of the algorithms was measured by the generalized
Amari-distance.

Generalized Amari-Distance. The optimal estimation of the IPA model pro-
vides matrix B := WA, a permutation matrix made of d× d sized blocks. Let
us decompose matrix B ∈ IRD×D into d×d blocks: B =

[
Bij
]
i,j=1,...,M . Let bi,j

denote the sum of the absolute values of the elements of matrix Bi,j ∈ IRd×d.
Then the normalized version of the generalized Amari-distance (see also [9, 10])
is defined as:

r(B) :=
1

2M(M − 1)
·

⎛⎝ M∑
i=1

(∑M
j=1 b

ij

maxj bij
− 1

)
+

M∑
j=1

(∑M
i=1 b

ij

maxi bij
− 1

)⎞⎠ (13)

For matrix B we have that 0 ≤ r(B) ≤ 1, and r(B) = 0 if, and only if B is a
block-permutation matrix with d× d sized blocks.

...

Fig. 1. 3 test databases: densities of em. Each object represents a probability density.
Left: numbers: 10 × 2 = 20-dimensional problem, uniform distribution on the images
of numbers. Middle: 3D-geom: 6 × 3 = 18-dimensional problem, uniform distribution
on 3-dimensional geometric objects. Right: smiley : 6 basic facial expressions [18], non-
uniform distribution defined in 2 dimensions, 6 × 2 = 12-dimensional problem.

3.2 Results and Discussion

The precision of the procedures is shown in Fig. 2 as a function of the sample
number. In the ICA-Jacobi method we applied exhaustive search for all Jacobi
pairs with 50 angles between [0, π/2] several times until convergence. Still, the
ICA-TSP is superior in all of the studied examples. Quantitative results are
shown in Table 1. The innovations estimated by the ICA-TSP method on facial
expressions are illustrated in Fig. 3.

We observed that the greedy ICA-Jacobi method seems to be similar or some-
times inferior to the global ICA-TSP, in spite of the much smaller search space
available for the latter. We established rigorous conditions when the ICA-TSP
is sufficient to find a global minimum, which justifies our finding. In the reduced
search space of permutations, the global CE method was very efficient.

We make two notes: (1) Simulations indicate that conditions of the ‘Separation
Theorem’ may be too restrictive. (2) For the IPA problem, the subspaces (the
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Fig. 2. Mean±standard deviation of generalized Amari-distances as a function of sam-
ple number (upper row). Gray: ICA-Jacobi, black: ICA-TSP. In the lower row, black:
precision of relative estimation, dashed: average over the different sample numbers.
Columns from left to right correspond to databases ‘numbers’, ‘3D-geom’, ‘smiley’,
‘all-3-independent’, respectively.

Table 1. Column 1: test databases. Columns 2 and 3: average Amari-errors (in
100 · r%± standard deviation) for 1500 samples on the different databases. Column 4:
precision of the ICA-TSP relative to that of ICA-Jacobi in sample domain 300 − 1500.

Database ICA-Jacobi ICA-TSP Improvement (min - mean - max)
numbers 3.06% (±0.22) 2.40% (±0.11) 1.03 - 1.30 - 1.54
3D-geom 1.99% (±0.17) 1.69% (±0.10) 1.09 - 1.20 - 1.50
smiley 5.26% (±2.76) 3.44% (±0.36) 1.16 - 1.43 - 1.92

all-3-independent 30.05% (±17.90) 4.31% (±5.61) 1.96 - 5.18 - 11.12

Fig. 3. Illustration of the ICA-TSP algorithm on the ‘smiley’ database. Upper row:
density function of the sources (using 106 data points). Middle row: 1,500 samples
of the observed mixed signals (z(t)). The ICA-TSP algorithm works on these data.
Lower row: Estimated separated sources (recovered up to permutation and orthogonal
transformation).
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optimal permutation of the ICA components) may be found by transforming
the observations with the learned ICA matrix followed by an AR estimation
that serves to identify the predictive matrices of Eq. (1), which – under certain
conditions – allows one to list the components of the connected subspaces [19].
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Abstract. Dimension reduction provides an important tool for preprocessing
large scale data sets. A possible model for dimension reduction is realized by
projecting onto the non-Gaussian part of a given multivariate recording. We prove
that the subspaces of such a projection are unique given that the Gaussian sub-
space is of maximal dimension. This result therefore guarantees that projection
algorithms uniquely recover the underlying lower dimensional data signals.

An important open problem in signal processing is the task of efficient dimension reduc-
tion, i.e. the search for meaningful signals within a higher dimensional data set. Classi-
cal techniques such as principal component analysis hereby define ‘meaningful’ using
second-order statistics (maximal variance), which may often be inadequate for signal
detection, e.g. in the presence of strong noise. This contrasts to higher order models
including projection pursuit [1, 2] or non-Gaussian subspace analysis (NGSA) [3, 4].
While the former extracts a single non-Gaussian independent component from the data
set, the latter tries to detect a whole non-Gaussian subspace within the data, and no
assumption of independence within the subspace is made.

The goal of linear dimension reduction can be defined as the search of a projection
W ∈ Mat(n×d) of a d-dimensional random vector X with n < d and WX bearing still as
much information of X as possible. Of course this last term has to be specified in detail
in terms of some distance or source model. This problem describes a special case of the
larger field of model selection [1], an important tool for preprocessing and dimension
reduction, used in a wide range of applications.

In the following we will use the notations Gl(n) and O(n) to denote the group of
invertible and orthogonal n × n-matrices respectively. Upper-case symbols are used for
both matrices and random vectors, lower case ones for scalars and vectors. Matlab-
notation is employed for selecting columns and rows of matrices, so for example A(2 :
n, : ) denotes the matrix consisting of the last (n − 1)-columns of A ∈ Mat(n × n).
Random variables and vectors are defined on the probability space Ω, and the notation
X ∈ L2(Ω,R) means that the random variable X is square-integrable. Finally, we are
only treating the real case here, although extensions to complex-valued random vectors
along the lines of [5] are possible.

Instead of relying on second-order statistics only, higher-order statistics are used
in NGSA in order to determine ‘interesting’ directions [ 4,3 ]. The goal is to find a
projection with maximal non-Gaussianity, removing the Gaussian part of X. In other
words, the goal is to find a projection WN ∈ Mat(n × d) such that there exists WG ∈
Mat((d − n) × d) with WNX and WGX being independent, and WGX being Gaussian.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 917–925, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An intuitive notion of how to choose the reduced dimension n is to require that WGX is
maximally Gaussian, and hence WNX non-Gaussian.

The dimension reduction problem itself can of course also be formulated within a
generative model, which leads to the following linear mixing model

X = ANSN + AGSG (1)

such that the n-dimensional random vector SN and the (d−n)-dimensional vector SG are
independent, and SG Gaussian. Then (AN ,AG)−1 = (W�

N ,W
�
G)�. This model includes

the general noisy ICA model X = ANSN + G, where G is Gaussian and SN is also
assumed to be mutually independent; the dimension reduction then means projection
onto the signal subspace, which might be deteriorated by the noise G along the subspace
— the components of G orthogonal to the subspace will be removed. However (1) is
more general in the sense that it does not assume mutual independence of SN , only
independence of SN and SG.

The paper is organized as follows: In the next section, we first discuss obvious in-
determinacies of NGSA and possible regularizations. We then present our main result,
theorem 1, and give an explicit proof in a special case. The general proof is divided
up into a series of lemmas, the proofs of which are omitted due to lack of space. In
section 2, some simulations are performed to validate the uniqueness result. A practical
algorithm for performing NGSA essentially using the idea of separated characteristic
functions from the proof is presented in the co-paper [6].

1 Uniqueness of NGSA-Based Dimension Reduction

This contribution aims at providing conditions such that the decomposition (1) is
unique. More precisely, we will show under which conditions the non-Gaussian as well
as the Gaussian subspace is unique.

1.1 Indeterminacies

Clearly, the matrices AN and AG in the decomposition (1) cannot be unique — mul-
tiplication from the right using any invertible matrix leaves the model invariant: X =
ANSN + AGSG = (ANBN)(B−1

N SN) + (AGBG)(B−1
G SG) with BN ∈ Gl(n),BG ∈ Gl(d − n),

because B−1
N SN and B−1

G SG are again independent, and B−1
G SG Gaussian.

An additional indeterminacy comes into play due to the fact that we do not want to
fix the reduced dimension in advance. Given a realization of the model (1) with n < d,
let BG := Cov(SG)1/2 ∈ Gl(d−n). Then B−1

G SG is decorrelated i.e. mutually independent
(because of Gaussianity). By replacing AG by AGBG, we may therefore assume that SG

is independent. If a := AG(: , 1) denotes the first column of AG, then X = ANSN +AGSG

can be rewritten as

X = (AN , a)

(
SN

SG(1)

)
+ AG(: , 2:d − n)SG(2 :d − n) (2)

and (SN , SG(1)) and SG(2 :d−n) are independent, with the second vector being Gaussian.
In other words, without putting an additional condition of maximality onto the Gaussian
part, different model realizations can be generated by simply moving random variables
to the non-Gaussian part.
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1.2 Uniqueness Theorem

Definition 1. X = AS with A ∈ Gl(d), S = (SN , SG) and SN ∈ L2(Ω,Rn) is called an
n-decomposition of X if SN and SG are stochastically independent and SG is Gaussian.
In this case, X is said to be n-decomposable.

Hence an n-decomposition of X corresponds to the NGSA problem. If as before A =
(AN ,AG), then the n-dimensional subvectorspace im(AN) ⊂ Rd is called the non-
Gaussian subspace, and im(AG) the Gaussian subspace of the decomposition; here
im(A) denotes the image of the linear map A.

Definition 2. X is denoted to be minimally n-decomposable if X is not (n − 1)-decom-
posable. Then dime(X) := n is called the essential dimension of X.

For example, the essential dimension dime(X) is zero if and only if X is Gaussian,
whereas the essential dimension of a d-dimensional mutually independent Laplacian is
d. The following theorem is the main theoretical contribution of this work. It essentially
connects uniqueness of the dimension reduction model with minimality, and gives a
simple characterization for it.

Theorem 1 (Uniqueness of NGSA). Let n < d. Given an n-decomposition ANSN +

AGSG of the random vector X ∈ L2(Ω,Rd), the following is equivalent:

(i) The decomposition is minimal i.e. n = dime(X).
(ii) There exists no basis M ∈ Gl(n) such that (MSN)(1) is Gaussian and independent

of (MSN)(2 : n).
(iii) The subspaces of the decomposition are unique i.e. another n-decomposition has

the same non-Gaussian and Gaussian subspaces.

As seen in section 1.1, condition (i) is also a necessary condition for uniqueness. To-
gether with the model assumption of existing covariance, the theorem shows that it is
also sufficient.

Condition (ii) means that there exists no Gaussian independent component in the
non-Gaussian part of the decomposition. The theorem proves that this is equivalent to
the decomposition being minimal. Note that in (ii), it is not enough to require only
that there exists no Gaussian component i.e. v ∈ Rn such that v�SN is Gaussian. A
simple counterexample is given by a two-dimensional random vector S with density
c exp(−s2

1 − (s2
1 + s2)2) with c being a normalizing constant. Then indeed S(1) = S 1 is

Gaussian because
∫
R

c exp(−s2
1 − (s2

1 + s2)2)ds2 = c′ exp(−s2
1), but clearly no m ∈ R2

can be chosen such that S(1) and m�S are independent. And indeed, this dependent
Gaussian S(1) within S should not be removed by dimension reduction as it may contain
interesting information, not being independent of the other components.

Corollary 1. The subspaces of a dime(X)-decomposition are unique.

This follows from theorem 1(i)⇒(iii) in the case of dime(X) < d, and holds trivially if
dime(X) = d. Also note that existence of a minimal decomposition always holds.
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1.3 Proof of Theorem 1

First note that the theorem holds trivially for n = 0, because in this case X is Gaussian.
So in the following let 0 < n < d. Not (ii)⇒ not (i) follows similarly to equation (2),
because if we had a basis in which one component of SN is Gaussian and independent
of the rest, then we could simply move it to the Gaussian part and reduce the order of
the decomposition; hence (i)⇒ (ii) holds.

Also (iii)⇒ (i) can be easily shown: assume that the decomposition is not minimal,
then we may choose an (n − 1)-decomposition X = A′NS′N + A′GS′G, without loss of
generality S′G ∈ L2(Ω,Rd−n+1) being independent (see section 1.1). The two (because
n < d) columns (a′G)1 and (a′G)2 of A′G are linearly independent, and similar to equation
(2), we get two n-decompositions of X with non-Gaussian coordinates (A′N , (a

′
G)1) and

(A′N , (a
′
G)2) respectively. But the two vectors (a′G)i do not lie in the image of A′N and are

linearly independent, so we have constructed two n-decompositions of X with different
non-Gaussian subspaces, which contradicts (iii).

The main part of the proof now consists of showing (ii) ⇒ (iii). Assume that (ii)
holds for all n-decompositions of X. Given two such n-decompositions, then

ANSN + AGSG = A′NS′N + A′GS′G.

By applying (A′N ,A
′
G)−1, we may therefore without loss of generality assume that

ANSN + AGSG = (S′N , S
′
G), or in other words that (XN ,XG) is also an n-decomposition

of X. Our assumption is that (ii) holds for both S and X.
We introduce some notation by dividing A ∈ Gl(d) into

A =
ANN ANG

AGN AGG

with ANN ∈ Mat(n × n); similarly S := (SN , SG). Altogether we are dealing with the
simple linear model X = AS, where both X and S consist of an independent Gaussian
and n-dimensional non-Gaussian part. We have to show that these parts span the same
subspaces respectively, which is equivalent to showing that ANG = AGN = 0.

Two-Dimensional Positive Density Case. For illustrative purpose we will first prove
uniqueness for a two-dimensional random vector X with positive density pX ∈
C2(R2,R), where C2(.) denotes the algebra of twice continuously differentiable func-
tions. By assumption n = 1. Note that in this simple case, we could have just used the
common ICA uniqueness results as well [7, 8].

X is assumed to have independent Gaussian and non-Gaussian part, so its density
factorizes into pX(x) = pN(xN)pG(xG) for x ∈ R2. Let B := A−1. The density of S = BX
is given by pS(s) = | det B|−1 pX(B−1s) = cpN(aNN sN + aNG sG)pG(aGN sN + aGG sG)
for s ∈ R2, c � 0 fixed. pX was assumed to be positive, then so is pS. S has also
independent Gaussian and non-Gaussian components, so

(
∂2/(∂sN∂sG)

)
ln pS(s) = 0

for all s ∈ R2, hence aNNaNGh′′N(aNN sN + aNG sG) + aGNaGGh′′G(aGN sN + aGG sG) = 0,
where hi := ln pi ∈ C2(R2,R). But pG is Gaussian, so h′′G ≡ c′ � 0 is constant. By
setting x := As, we therefore get

aNNaNGh′′N(xN) + aGN aGGc′ = 0 (3)

for all xN ∈ R, because A is invertible.



Uniqueness of Non-Gaussian Subspace Analysis 921

Now aNN � 0, otherwise XN = aNGS G which contradicts (ii) for X. If also aNG � 0,
then by equation (3), h′′N is constant and therefore S N Gaussian, which again contradicts
(ii), now for S. Hence aNG = 0. By (3), aGNaGG = 0, and again aGG � 0, otherwise
XG = aGNS N contradicting (ii) for S. Hence also aGN = 0 as was to show.

General Proof. In order to give an idea of the main proof without getting lost in de-
tails, we have divided it up into a sequence of lemmas; these will not be proven due
to lack of space. The characteristic function of the random vector X is defined by
X̂(x) := E(exp ix�X), and since X is assumed to have existing covariance, X̂ is twice
continuously differentiable. Moreover by definition ÂS(x) = Ŝ(A�x), and the charac-
teristic function of an independent random vector factorizes into the component char-
acteristic functions. So instead of using pX as in the 2-dimensional example, we use X̂,
having similar properties except for the fact that the range is now complex and that the
differentiability condition can be considerably relaxed.

We will need the following lemma, which has essentially been shown in [9]; here ∇ f
denotes the gradient of f and H f its Hessian.

Lemma 1. Let X ∈ L2(Ω,Rm) be a random vector. Then X is Gaussian with covariance
2C if and only if it satisfies X̂HX̂ − ∇X̂(∇X̂)� + CX̂2 ≡ 0.

Note that we may assume that the covariance of S (and hence also of X) is positive
definite — otherwise, while still keeping the model, we can simply remove the subspace
of deterministic components (i.e. components of variance 0), which have to be mapped
onto each other by A. Hence we may even assume Cov(SG) = I, after whitening as
described in section 1.1. This uses the fact that the basis within the Gaussian subspace
is not unique. The same holds also for the non-Gaussian subspace, so we may choose
any BN ∈ Gl(n) and BG ∈ O(d − n) to get

X =
(

ANNBN

AGN BN

)
(B−1

N SN) +

(
ANGBG

AGGBG

)
(B�GSG). (4)

Here only orthogonal matrices BG are allowed in order for B�GSG to stay decorrelated,
with SG being decorrelated.

The next lemma uses the dimension reduction model for X and S to derive an explicit
differential equation for ŜN . The Gaussian part ŜG in the following lemma vanishes after
application of lemma 1.

Lemma 2. For any basis BN ∈ Gl(n), the non-Gaussian source characteristic function
ŜN ∈ C2(Rn,C) fulfills

ANNBN

(
ŜNHŜN

− ∇ŜN(∇ŜN)�
)

B�NA�GN + 2ANGA�GGŜ2
N ≡ 0. (5)

Lemma 3. Let (ANN ,ANG) ∈ Mat(n × (n + (d − n))) be an arbitrary full rank matrix.
If rank ANN < n, then we may choose coordinates BN ∈ Gl(n), BG ∈ O(d − n) and
M ∈ Gl(n) such that for arbitrary matrices ∗ ∈ Mat((n − 1) × (n − 1)), ∗′ ∈ Mat
((n − 1) × (d − n − 1)):

MANN BN =
0 0
0 ∗ and MANGBG =

1 0
0 ∗′
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The basis choice from lemma 3 together with assumption (ii) can be used to prove
the following fact:

Lemma 4. The non-Gaussian transformation is invertible i.e. ANN ∈ Gl(n).

The next lemma can be seen as modification of lemma 1, and indeed it can be shown
similarly.

Lemma 5. If ŜN fulfills
(
ŜNHŜN

− ∇ŜN(∇ŜN)�
)

e1 + Ŝ2
Nc ≡ 0 for some constant vector

c ∈ Rn, then the source component SN(1) is Gaussian and independent of (SN)(2 : n).

Here more generally ei ∈ Rn denotes the i-th unit vector. Putting these lemmas together,
we can finally prove theorem 1: According to lemma 4, ANN is invertible, so multiplying
equation (5) from lemma 2 by B−1

N A−1
NN from the left yields(

ŜNHŜN
− ∇ŜN(∇ŜN)�

)
B�N A�GN + CŜ2

N ≡ 0 (6)

for any BN ∈ Gl(n) and some fixed, real matrix C ∈ Mat(n × (d − n)).
We claim that AGN = 0. If not, then there exists v ∈ Rd−n with ‖A�GN v‖ = 1. Choose

BN from (4) such that B−1
N SN is decorrelated. This is invariant under left-multiplication

by an orthogonal matrix, so we may moreover assume that B�NA�GN v = e1. Multiplying
equation (6) in turn by v from the right therefore shows that the vector function(

ŜNHŜN
− ∇ŜN(∇ŜN)�

)
e1 + cŜ2

N ≡ 0 (7)

is zero; here c := Cv ∈ R. This means that ŜN fulfills the condition of lemma 5, which
implies that SN(1) is Gaussian and independent of the rest. But this contradicts (ii) for
S, hence AGN = 0. Plugging this result into equation (5), evaluation at sN = 0 shows
that ANGA�GG = 0. Since AGN = 0 and A ∈ Gl(d), necessarily AGG ∈ Gl(d − n), so
ANG = 0 as was to prove.

2 Simulations

In this section, we will provide experimental validation of the uniqueness result of
corollary 1. In order to stay unbiased and not test a single algorithm, we have to uni-
formly search the parameter space for possibly equivalent model representations. The
model assumptions (1) will not be perfectly fulfilled, so we introduce a measure of
model deviation based on 4-th order cumulants in the following.

Let the non-Gaussian dimension n and the total dimension d be fixed. Given a ran-
dom vector X = (XN ,XG), we can without loss of generality assume that Cov(X) = I.
Any possible model deviation consists of (i) a deviation from the independence of XN

and XG and (ii) a deviation from the Gaussianity of XG. In the case of non-vanishing
kurtoses, the former can be approximated for example by

δI(X) :=
1

n(d − n)d2

n∑
i=1

d∑
j=n+1

d∑
k=1

d∑
l=1

cum2(Xi, X j, Xk, Xl),
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where the fourth-order cumulant tensor is defined as cum(Xi, X j, Xk, Xl) := E(XiX jXkXl)
− E(XiX j)E(XkXl) − E(XiXk)E(X jXl) − E(XiXl)E(X jXK). The deviation (ii) from Gaus-
sianity of XG can simply be measured by kurtosis, which in the case of white X means

δG(X) :=
1

d − n

d∑
j=n+1

∣∣∣E(X4
i ) − 3

∣∣∣ .
Altogether, we can therefore define a total model deviation as the weighted sum of the
above indices; the weight in the following was chosen experimentally to approximately
yield even contributions of the two measures:

δ(X) = 10n(d − n)δI(X) + δG(X)

For numerical tests, we generate two different non-Gaussian source data sets, see
figure 1(d) and also [4], figure 1. The first source set (I) is an n-dimensional depen-
dent sub-Gaussian random vector given by an isotropic uniform density within the unit
disc, and source set (II) a 2-dimensional dependent super- and sub-Gaussian, given by
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Fig. 1. (a-c): total model deviation δ(AS) of the transformed sources versus crosserror E(A) of the
mixing matrix for 104 Monte-Carlo runs. The circle ◦ indicates the actual source model deviation
(non-zero due to finite sample sizes). (d): 2-dimensional dependent sub-Gaussian source (II).
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p(s1, s2) ∝ exp(−|s1|)1[c(s1),c(s1)+1], where c(s1) = 0 if |s1| ≤ ln 2 and c(s1) = −1 other-
wise. Normalization was chosen to guarantee Cov(S N) = I in advance.

In order to test for model violations, we have to find two representations X = AS and
X = A′S′ of the same mixtures. After multiplication by A−1 we may as before assume
that a single representation X = AS is given with X and S both fulfilling the dimension
reduction model (1), and we have to show that ANG = AGN = 0 if the decomposition
is minimal (corollary 1). The latter can be tested numerically by using the so-called
normalized crosserror E(A) := 1/(2n(d − n))

(
‖ANG‖2F + ‖AGN‖2F

)
, where ‖.‖F is some

matrix norm, in our case the Frobenius norm.
In order to reduce the d2-dimensional search space, after whitening we may as-

sume that A ∈ O(d), so only d(d − 1)/2 dimensions have to be searched. O(d) can
be uniformly sampled for example by choosing B with Gaussian i.i.d. coefficients and
orthogonalizing A := (BB�)−1/2B. We perform 104 Monte-Carlo runs with random
A ∈ O(d). Sources have been generated with T = 104 samples, n-dimensional non-
Gaussian part (a) and (b) from above, and (d − n)-dimensional i.i.d. Gaussians. We
measure model deviation δ(AS) and compare it with the deviation E(A) from block-
diagonality.

The results for varying parameters are given in figure 1(a-c). In all three cases we
observe that the smaller the model deviation, the smaller also the crosserror. This gives
an asymptotic confirmation of corollary 1, indicating that by random sampling no non-
uniqueness realizations have been found.

3 Conclusion

By minimality of the decomposition (1), we gave a necessary condition for the
uniqueness of non-Gaussian subspace analysis. Together with the assumption of ex-
isting covariance, this was already sufficient to guarantee model uniqueness. Our result
allows NGSA algorithms to find the unknown, unique signal space within a noisy high-
dimensional data set [6]. In practice, instantaneous mixing models are seldom found,
so applications to more realistic situations, for instance to convolutive mixtures, are
currently being studied.
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Abstract. A novel learning algorithm for blind source separation of post-
nonlinear convolutive mixtures with non-stationary sources is proposed in this 
paper. The proposed mixture model characterizes both convolutive mixture and 
post-nonlinear distortions of the sources. A novel iterative technique based on 
Maximum Likelihood (ML) approach is developed where the Expectation-
Maximization (EM) algorithm is generalized to estimate the parameters in the 
proposed model. The post-nonlinear distortion is estimated by using a set of 
polynomials. The sufficient statistics associated with the source signals are 
estimated in the E-step while in the M-step, the parameters are optimized by 
using these statistics. In general, the nonlinear maximization in the M-step is 
difficult to be formulated in a closed form. However, the use of polynomial as 
the nonlinearity estimator facilitates the M-step tractable and can be solved via 
linear equations. 

1   Introduction 

The study of blind deconvolution so far has concentrated solely on the linear mixture 
[1], [2] and the existing methods only perform well when the mixture is assumed to 
be linear. Where nonlinear distortion in the mixture is considered, all of the previous 
works focused only on instantaneous mixing of signals [3]. To the best of the author’s 
knowledge, the problem of post-nonlinear convolutive mixture of non-stationary 
sources has not been previously addressed. However in practical applications such as 
speech processing, source signals are inherently deconvolved in a real acoustic 
environment where signals are corrupted by noise and interferences. Furthermore, 
studies show that carbon-button microphones present evidence of a 
"phantomformant" which occurs when simple static nonlinearities were applied to 
speech signals. The non-uniform flux of the permanent magnet and the nonlinear 
response of the suspensions in the loudspeaker also contribute to the nonlinear 
distortions in speech signals. Therefore, an accurate representation of the mixed 
signals must be developed to account for the existence of the nonlinearity. The 
observed signal tx at time t of the noisy post-nonlinear convolutive mixture can be 

expressed as follows: 

                                              
0

L

t l t l t
l

−
=

= +x g M s n                                            (1) 
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where vector ts  is the unknown non-stationary source signals, (.)g  is the nonlinear 

function and lM  is the delayed mixing matrix. The additive noise tn  is assumed to be 

Gaussian. As in typical BSS problems, the aim is to estimate ts , (.)g , lM  and tn  with 

only information on tx  available. Existing algorithms e.g. [1, 2] do not cater for both 

the convolutive and non-stationary properties in the mixture and hence perform poorly 
in solving the problem described in equation (1). 

This paper presents a pioneering contribution to the noisy post-nonlinear 
convolutive mixing problem where we propose for the fir`st time an innovative 
solution to the problem. A state space model representing the post-nonlinear 
convolutive mixtures of non-stationary signals and a general EM framework is 

formulated for estimating ts , (.)g , lM  and tn . The generalized EM algorithm is 

derived from a set of polynomials to estimate the nonlinear distortion whose 
coefficients are updated as part of the mixing parameters. In the proposed algorithm, 
the sufficient statistics associated with the source signals are inferred in the E-step and 
the model parameters are updated in the M-step. 

2   The Model 

The state space model representing the post-nonlinear convolutive mixture of non-
stationary signals is constructed by two parts. First, autoregressive (AR) process is 
adopted to represent the temporal correlation of the non-stationary sources. The Kth 
order AR(K) process for source i can be modeled as 

, , ,1 , 1 , ,2 , 2 , , , ,i t i t i t i t i t i t K i t K i ts h s h s h s v− − −= + + + +L   (2) 

The source signal vector at time t is formed by stacking each source signal [4, 5] and 
can be expressed as 

T T T T
1, 2, ,[ ]t t t I ts

=s s s sL  

The vector for individual source is now formed by stacking the last K signals, which 
can be expressed as 

T
, , , 1 , 1[ ]i t i t i t i t Ks s s− − +=s L  

Second, the convolutive mixture and nonlinearity distortion are introduced into the 
model. To represent the convolutive mixture, the instantaneous observation matrix is 
extended to the full matrix of filters, which can be expressed as follows: 

11 1

1

I s

I I Io o s

=

m m

M

m m

L

M O M

L

, ,1 ,2 ,ij ij ij ij Lm m m=m L  

where mij,l represents the lth delayed path between the sensor i and source j (L=K). 

Hence, the proposed post-nonlinear convolutive model is now expressed as 
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                                               1t t t t−= +s H s v  

                                               ( )t t t= +x g Ms n                                                            (3) 

The matrix tH is the evolution matrix. W  and R  are the covariance matrices of the 
zero mean Gaussian noise vectors v  and n  , respectively. The prior probability 
distribution over initial states of the source signals 1s  is assumed to be Gaussian with 

meanμ and covariance . To satisfy the independence between the source signals, 
the associated parameters in (3) need to be defined in the following form: 

        1, 2, ,[ ]t t t I ts
diag=H H H HL , ,

,
i t

i t =
h

H
I 0

, , , ,1 , ,2 , ,[ ]i t i t i t i t Kh h h=h L  

   1 2[ ]Is
diag=W W W WL , 1 2

1 2

1
( )

0
i

i j j
w j j

otherwise

= =
=W                          (4) 

μ and are defined in the similar way. As mentioned in [6], blind deconvolution of 

non-stationary signals can be achieved by segmenting them with windows in which 
the source signals can be assumed to be stationary. Hence, the post-nonlinear 
convolutive model is now expressed as: 

                                                   1
n n n n
t t t t−= +s H s v  

                                            ( ) , 1,2, ,n n n
t t t n N= + =x g Ms n K                                  (5) 

Hence, a total number of N segments are observed. In the next section, the learning 
rules of the generalized EM algorithm is derived at a point where the nonlinearity is 
linearized by using second order Taylor Series, the Kalman recursion is then used to 
infer the relevant statistics in the E-step while the post-nonlinear distortion is 
estimated by a set of polynomials in the M-step. 

3   Learning Rules 

To derive the generalized EM algorithm for proposed model (5), the likelihood 
function is introduced as 

( ) log ( | ) log ( , | )L p p dλ λ λ= =x x s s  

where λ denotes all the parameters in the proposed model (5). Based on Jensen’s 
inequality  

                         ˆ ( )
( ) log ( | ) log ( , | ) log ( , | )

ˆ ( )

p
L p p d p d

p
λ λ λ λ= = = s

x x s s x s s
s

 

                       1 2
( , | )

ˆ ˆ ˆ ˆ( ) log ( , ) ( ) ( , )
ˆ ( )

p
p d p p p

p

λ ϕ λ ϕ λ≥ = − =x s
s s

s
F                         (6) 

where 1 ˆ ˆ( , ) ( ) log ( , | )p p p dϕ λ λ≡ s x s s  and 2 ˆ ˆ ˆ( ) ( ) log ( )p p p dϕ ≡ s s s . 

It is well known that in the E-step the maximization of ˆ( , )pλF  with respect to ˆ ( )p s is 

achieved when ˆ( )p s  is chosen to be exactly the conditional distribution of s with the 
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parameters obtained in the previous iteration [ ]ˆ ( ) ( | , )qp p λ=s s x  at which point the 

bound becomes an equality. Then in the M-step, 1 ˆ( , )pϕ λ is maximized with respect 

to λ . Each iteration is guaranteed not decrease ˆ( , )pλF . 

3.1   E-Step 

The relevant statistics of the posterior distribution of the source signals 
[ ]

1:( | , )q
tp τ λs x  needs to be inferred and represented with the parameters obtained 

in the previous iteration in order to update the parameters in the proposed model. For 
the linear convolutive mixture model, this is achieved by using the Kalman smoother. 
The algorithm of Kalman smoother consists of two parts: a forward recursion named 
Kalman filter which uses the observation from 1x to tx and a backward recursion 

which uses the observation from τx to 1t+x  whereτ be the length of the observed 

signals. However, for the model defined by equation (5) the conditional densities are 
in general non-Gaussian and can lead to an intractable solution. To solve this 
problem, the Extended Kalman Smoother (EKS) is used in the E-step. The theory of 
the EKS is that the basic Kalman Smoother is applied at a linearized point of the 
nonlinear system. At this point, the nonlinearity is linearized by second order Taylor 

Series at the mean of the current filtered (not smoothed) state | 1ˆn
t t−s . Hence, after the 

linearization process, the derivative matrix of the vector-valued function g, at point 

| 1ˆn
t t−s  is defined as 

                                                   
ˆ ˆ

| 1 | 1
n n nn tt t t tt

=− −

∂≡
∂s s s

g
D

s
                      (7) 

and the model (5) can be expressed as 

                                                 1
n n n n
t t t t−= +s H s v  

                                                | 1 | 1ˆ
| 1

ˆ ˆ( ) ( )n n n n n
t t t n t t t t

t t
− −

−
= + − +

s
x g Ms D s s n                      (8) 

Therefore, given the output the conditional distribution of the hidden states in the 
linearized model (8) at every instant in time is Gaussian. Hence, the basic Kalman 
Smoother can be applied on the model (8) to infer the associated statistics of the 
conditional distribution.  

The inferred first order statistics is the source conditional mean ˆn
ts  for segment n , 

which is expressed as ˆn n
t t=s s where . denotes for the integral over the source 

posterior [ ]
1:( | , )q

tp τ λs x . The inferred second order statistics of the hidden source 

signals are the autocorrelation matrix of source i  for segment n  denoted as ,
n
ii ttC  

without time delay and , ( 1)
n
ii t t−C  with time delay and expressed as follows: 
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TT
, , , ,1, ,2, , ,( )n n n n n n

ii tt i t i t ii tt ii tt ii L tt≡ ≡C s s c c cL                         (9a) 

TT
, ( 1) , , 1 ,1, ( 1) ,2, ( 1) , , ( 1)( )n n n n n n

ii t t i t i t ii t t ii t t ii L t t− − − − −≡ ≡C s s c c cL            (9b) 

Here, the first element in ,1,
n
ii ttc  is defined as ,1,

n
ii ttc and the autocorrelation matrix 

for n
ts is defined as n

ttC . Because the source signals are statistical independent, for 

different source i and j  T
, , ,ˆ ˆ( )n n n

ij tt i t j t=C s s .The model parameters are then estimated to 

maximize the likelihood in (6) in the following M-step with the relevant statistics 
represented in the form of model parameters obtained from the M-step of the previous 
iteration.   

3.2   M-Step 

In the M-step, 1( )ϕ λ  in (6) is maximized with respect to all the model parameters by 

using the relevant statistics obtained from the E-step. Represented in the form of 
model parameters, 1( )ϕ λ can be expressed as:  

1
1 2

1 1 1 1

ˆ( , ) log det ( 1) log log det
I I IN s s s

n n
i i

n i i i

p wϕ λ τ τ
= = = =

= − + − + +R

T 1 21
,1 ,1 , , , 1

2 1 1

( ) ( ) ( ) ( ( ) )
Is

n n n n n n n n
i i i i i i t i t i tnwt i ti

s
τ τ

−
−

= = =
− − + − +s μ s μ h s

T 1
| 1 | 1 | 1 | 1ˆ ˆ

| 1 | 1
ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( ))n n n n n n n n

t t t n t t t t t t n t t t
t t t t

−
− − − −

− −
− − − − − −

s s
x g Ms D s s R x g Ms D s s           (10) 

For segment-wise parameters, the update equations are exactly the same as the ones 
for linear convolutive mixture as in [5], and the new estimator for segment n  of 
source i  is given by the following closed form equations: 

                                                ,1ˆn n
i i=μ s , T

,11 ( )n n n n
i ii i i= −C μ μ  

          
1

, ,1, ( 1) ,( 1)( 1)
n n n
i t ii t t ii t t

−
− − −=h c C ,

( )T1
,1, , ,1, ( 1)1

2

( )n n n n
i ii tt i t ii t t

t

w c
τ

τ −−
=

= − h c
            (11) 

Then , , ,n n n n
tμ H W can be reconstructed following the definitions in Section 2. 

However, the update equations for M  and R  which include the statistics from all 
observed segments are different from the ones for linear deconvolution and more 
complex. Because the new estimator for M cannot be expressed in a closed form, the 
update equation for M is derived from the gradient ascent algorithm and its elements 

ijm  is estimated from the following equation 

1
, 1 , ,

ˆ( , )
|ij t ij t ij ij t

ij

pϕ λε+ =
∂= +

∂ m mm m
m                                          (12a) 
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T T T 11
1 , | 1 2 , | 1 3 , , | 1 3

1 1 1 13

ˆ( , )
ˆ ˆ ˆ ˆ( ) ( ) ( )

I IN o s
n n n n n n n

i j t t i j t t i j t j t t h ih hk
ij n t h k

p
J g J g J g g r

τϕ λ −
− − −

= = = =

∂ ′ ′′ ′ ′= − + + − +
∂

s s s s m
m

( )T T T
, , , | 1 , | 1 , , | 1 , | 13 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )n n n n n n n
k j tt k t j t t k t t j t k t t j t t ig− − − − ′− − +C s s s s s s      (12b) 

1 1 1
1 , | 11 1 2 2 2 2 2

1 1 11 2 2

ˆ ˆ( )
I I Io o o

n n n n
k t ik k ik iq q q t t t

k k q

J x r g r r g− − −
−

= = =
′= − + + −m s s

 

1 1 1
2 , | 1 | 12 2 1 1

1 1 1 1 12 1

ˆ ˆ ˆ ˆ( ) ( )
I I I I Io o s o s

n n n n n n
p t p i i t t t q q i i t t t ip p

p q q p k

J x r g r r g− − −
− −

= = = = =
′= − − + − +m s s m s s  

( )T T T T
, , , | 1 , | 1 , , | 1 , | 1ˆ ˆ ˆ ˆ ˆ ˆ{ ( ) ( ) ( ) }n n n n n n n

ik pq qk tt q t k t t q t t k t q t t k t ttr − − − −− − +m m C s s s s s s  

1 1
3 ,1 1 5 5

1 11 5

I Io o
n n

p t p i q q i
p q

J x r g r− −

= =
= − +                                          (12c) 

Where 1i i iIs
m m=m L , ε  is the learning rate, 1

ijr− is the ijth element of the inverse 

matrix of R , ig  represents ( ), | 1ˆn
i ij j t tg −m s , and ig ′  is the first order derivative with 

respect to the argument , | 1ˆn
ij j t t−m s . The covariance matrix R  can be estimated 

from the following: 

T T T T T T T T1
| 1 | 1ˆ ˆ

| 1 | 11 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
N

n n n n n n n n n
t t t t t t t n t t t t nN

t t t tn t

τ

τ − −
− −= =

= − − − − + + −
s s

R x x x g x s s D g x gg g s s D  

                   T T
| 1 | 1ˆ ˆ

| 1 | 1
ˆ ˆ ˆ ˆ( )( ) ( )n n n n n

n t t t t n t t t
t t t t

− −
− −

− − + −
s s

D s s x D s s g  

                   ( )T T T T
| 1 | 1 | 1 | 1ˆ | 1 | 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )n n n n n n n
n tt t t t t t t t t t t n
t t t t

− − − −
− −

+ − − +
s s

D C s s s s s s D )                      (13) 

where g  represents | 1ˆ( )n
t t−g Ms .  

   To estimate the nonlinearity g , a self-adaptive algorithm is required. Only the 

statistics obtained from the E-step is available for the algorithm. The scalar 
function (.)g of g is approximated by a set of polynomials [7, 8] defined below: 

                                    
| 1 , | 1

0

ˆ ˆ( ) ( )
Z

n n z n
i i t t i z i t t i i

z

g a− −
=

= =m s m s a q                                 (14) 

where ,i za  are the coefficients of the polynomials and ,0 ,i i i Za a=a L , z  represents 

the order of expansion and
T

| 1 | 1ˆ ˆ1 ( )n n Z
i i t t i t t− −=q m s m sL . The polynomial 

coefficient ,i za  can be updated as one of the model parameters by 

maximizing 1 ˆ( , )pϕ λ . The update equation for ,i za is obtained by gradient ascent 

algorithm with learning rate β , which can be expressed as 
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                                1
, , 1 , , , , ,

,

ˆ( , )
|i z t i z t a ai z i z t

i z

p
a a

a

ϕ λβ+ =
∂= +

∂
                                (15) 
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,

1 1 1 1
, | 1 | 1, 2 3 3 31 1 2 2 3
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| 1, 21 1 2 2

11 2

ˆ ˆ ˆ( ) ( ) ( ) , 0

ˆ( )

i z

I I IN Zo o o
n n n z n n

k k z k k tt t t tk t ik k ik ik
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=
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∂
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                                                                                                                                   (16) 

Thus, with all model parameters estimated in the M-step the EM algorithm alternates 
between the E-step and M-step until if converges. 

4   Results 

The proposed algorithm is evaluated based on its performance in the separation of a 
post-nonlinear convolutive mixture of two independent speech signals with additional 
Gaussian noise with different signal-to-noise ratio (SNR). Both the Kth order of the 
AR process and L are set to 3. The full convolutive mixture matrix M is randomly 
selected and described by the following matrix:  

                           
0.9 0.1 0.3 0.1 0 0.7

0.8 0 0.2 1 0.26 0.1
=M                                   (17) 

The post-nonlinear distortions are selected as 1 1 1( ) tanh( )g γ γ=  and 3
2 2 2 2( )g γ γ γ= + . 

The function 1 1( )g γ  is bounded while 2 2( )g γ  unbounded and this selection is taken 

merely to study the performance of the proposed algorithm under two different forms 
of nonlinearity. The observation signals are segmented into segments of time 
length 90τ = . All model parameters are estimated by the proposed algorithm for each 
segment of each test signals with different SNR. To compare the performance of the 
signal separation between the proposed algorithm and the Olsson-Hansen algorithm 
[5] for linear convolutive mixtures, the signal to interference ratio (SIR) is adopted as 
a performance measure and defined as follows: 

                                                 1 1 2 2

1 2 21

P P
SIR

P P

+=
+

                                               (18) 

where ijP  is the power of the signal which is contributed the ith estimated source 

signal to the jth original source signal where the normalized cross-autocorrelation is 
used. For our evaluation, a high SIR value is desirable. The superiority of the 
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proposed algorithm over the Olsson-Hansen algorithm is demonstrated by the 
significant improvements shown in the Table 1. The results proves the importance of 
incorporating a nonlinear model in the algorithm in cases where the observed signals 
have been nonlinearly distorted. The proposed algorithm is also robust under high 
level of noise in the separation of post-nonlinearly mixed signals. 

Table 1. Performance comparisons 

                      SNR 
 
SIR (dB) 

10dB 20dB 30dB 

Olsson-Hansen algorithm [5] 6.3 8.2 9.1 

Proposed algorithm 10.2 12.6 13.5 

5   Conclusions 

In this paper, a novel Maximum Likelihood approach based on EM algorithm for 
post- nonlinear convolutive model of non-stationary signals has been proposed. The 
state space represented model extends the linear instantaneous mixture model to the 
post-nonlinear convolutive mixture. To update the model parameters, the EM 
algorithm is generalized where the Extended Kalman Smoother is adopted to infer the 
hidden source signals and a set of polynomial is utilized to estimate the post-nonlinear 
distortion. Experimental results show for given nonlinear data set, the proposed 
algorithm performs significantly better than the linear algorithm by over 50%.  
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Abstract. Presented here is the problem of recovering a dynamic image super-
imposed on a static background. Such a problem is ill-posed and may arise e.g.
in imaging through semireflective media, in separation of an illumination image
from a reflectance image, in imaging with diffraction phenomena, etc. In this
work we study regularization of this problem in spirit of Total Variation and gen-
eral sparsifying transformations.

1 Introduction

In this paper, we consider a problem of recovering images of two objects superimposed
on each other, where one of the objects is static (background) and the other one is
dynamic. Such problem can arise in imaging through semireflective media, in separation
of an illumination image from a reflectance image, in imaging with varying diffraction
phenomena, etc. An example of semireflective layers separation is shown in Figure 1.

CAMERA

OBJECT B 

SEMIREFLECTIVE 
GLASS

OBJECT A 

Fig. 1. Scheme of an optical setup involving a semireflector
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In such a setup, the camera observes a superposition of two layers: the real layer is the
object (dog), seen through the glass. The virtual layer (girl) is formed by light reflected
from the glass.

We assume that one of the objects is dynamic and that several time frames of the
observed scene are available. Using this information, it is possible to recover both com-
ponents by solving an underdetermined linear system. Since the problem is ill-posed,
an appropriate regularization must be used.

Weiss [1] suggested a solution to this problem based on the observation that filtered
version of an image is usually sparse, when the filter is a differentiation operator. How-
ever the suggested solution uses reconstruction in the domain of filtered images, which
may suffer from noise amplification. Also explicit use of inverese filters restricts use of
other (nonlinear) priors.

In our work we study more general regularizations of this problem, in spirit of Total
Variation and general sparsifying transformations.

2 Regularized Separation of Layers

Let us be given a time sequence of T observations of the form

y(k) = x(0) + x(k) + ξ(k), k = 1, ..., T, (1)

where x(0) is a M ×N image of the static (background) object, x(k) are images of the
dynamic object at different times, and ξ(k) is additive noise, which possibly contami-
nates the observations. An example of such a sequence is given in Figures 3–4. We will
henceforth refer to the T + 1 images x(k), k = 0, ..., T as to sources. The problem of
recovering T +1 unknown images from only T observed images is ill-posed. However,
plausible separation results might be obtained if the solution is restricted to some class
of images, to which the sources are believed a priori to belong. For simplicity of pre-
sentation, we assume that both the static and the dynamic sources obey the same prior
(which is in general not necessary).

Assuming that the prior can be expressed via convex penalty function ϕ (x), the
separation problem can be formulated as finding such x(k)’s that obey (1) up to some
allowed discrepancy due to noise and slight deviations from the linear model, and min-
imize

∑
k ϕ
(
x(k)
)
. This leads to the following constrained convex minimization prob-

lem:

min
x(0),...,x(T)

T∑
k=0

ϕ
(
x(k)
)

s.t.
∥∥∥x(0) + x(k) − y(k)

∥∥∥2
2
≤ β (2)

x(k) ≥ 0,

where β is usually chosen proportionally to the noise variance and the second constraint
guarantees non-negativity of the estimated images. The latter can be reformulated as
unconstrained minimization of the convex function
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f
(
x(0), ..., x(T )

)
=

T∑
k=0

ϕ
(
x(k)
)

+ λ1

T∑
k=1

∥∥∥x(0) + x(k) − y(k)
∥∥∥2

2
+ λ2

∑
i,j,k

ψ
(
x

(k)
ij

)
, (3)

where ψ(t) is a penalty on negativity and λ1, λ2 are parameters.

2.1 Generalized Total Variation Regularization

A powerful prior, suitable for wide classes of natural images is obtained when ϕ (x) is
chosen to be the total variation (TV) norm of the image x

‖x‖TV =
∑
i,j

‖∇xij‖2 =
∑
i,j

√
(∂x ∗ x)2ij + (∂y ∗ x)2ij , (4)

where ∂x and ∂y are discrete derivative kernels in the x- and y-axis directions. TV
has been successfully used for regularization in inverse problems, blind deconvolution,
denoising, etc [2–5]. A more general form of the prior is the generalized total variation
(GTV) [6], given by a general bivariate function of the form

ϕ(x) =
∑
i,j

h
(
(a ∗ x)ij , (b ∗ x)ij

)
, (5)

where a, b are some convolution kernels and e.g. h(u, v) =
√
u2 + v2 + ε2. In the latter

case, the TV norm is a particular case obtained when a = ∂x and b = ∂y .

2.2 Gradient and Hessian of f
(
x(0), ..., x(T )

)
Assuming the GTV prior (5), the gradient of f

(
x(0), ..., x(T )

)
from (3) is given by

∂f

∂x
(m)
ij

=
∑
k,l

(
hu

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−j + hv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−j

)
+2λ1

(
x

(0)
ij + x

(m)
ij − y

(m)
ij

)
+ λ2ψ

′
(
x

(m)
ij

)
(6)

for m > 0 and

∂f

∂x
(0)
ij

=
∑
k,l

(
hu

(
u

(0)
kl , v

(0)
kl

)
ak−i,l−j + hv

(
u

(0)
kl , v

(0)
kl

)
bk−i,l−j

)

+2λ1

T∑
k=1

(
x

(0)
ij + x

(k)
ij − y

(k)
ij

)
+ λ2ψ

′
(
x

(0)
ij

)
(7)

for m = 0, where u(k) = a ∗ x(k) and v(k) = b ∗ x(k). The first term accounting for
the prior can be evaluated efficiently using FFT-based convolution. Since the kernels a
and b are usually significantly smaller compared to the source images x(k), the use of
the overlap-and-add (OLA) method is especially advantageous.
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The Hessian of f
(
x(0), ..., x(T )

)
is given by

∂2f

∂x
(m)
ij ∂x

(m′)
i′j′

=
∑
k,l

(
huu

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−jak−i′,l−j′

+hvv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−jbk−i′,l−j′

+huv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−jak−i′,l−j′

+huv

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−jbk−i′,l−j′

)
δmm′

+2λ1γmm′δii′δjj′ + λ2ψ
′′
(
x

(m)
ij

)
δmm′δii′δjj′ , (8)

where δmm′ is the Kroenecker delta and γmm′ = 1 form = m′ orm = 0 orm′ = 0 and
0 otherwise. In the following, for notation convenience we will denote the gradient by
∇x(0),...,x(T)f(x(0), ..., x(T )) and the Hessian by∇2

x(0),...,x(T)f(x(0), ..., x(T )). Parsing
the T +1 images to MN column vector, we can represent the gradient as a (T +1)NM
vector and the Hessian as a (T + 1)NM × (T + 1)NM matrix.

The Hessian has a (T + 1) × (T + 1) block structure with MN × MN blocks.
The first term in (8) yields a band-diagonal structure of the diagonal blocks, where the
number of the diagonals and the number of bands depend on the sizes of the kernels a
and b. The second and the third terms account for a constant principal diagonal in the
diagonal blocks of the Hessian, whereas the second term also accounts for a constant
diagonal in the first row and column blocks. Typical Hessian structure is depicted in
Figure 2. The sparse structure of the Hessian is very helpful for solving efficiently the
Newton system, while carrying the optimization.

2.3 Sparsity-Based Priors

Another powerful class of priors on images is related to their sparse representation using
some system of basis functions, or overcomplete ”dictionaries”, based on wavelets,
curvelets, contourlets, etc. This paradigm is already used in image denoising and in
solution of some inverse problems. Assume that the original images can be represented
as

x(k) =
∑
l

c
(k)
l φl

or in operator form

x(k) = Φc(k)

where the coefficients c(k)l are sparse. The following regularized problem can be con-
sidered:

min
c

T∑
k=0

‖c(k)‖1 + λ1

T∑
k=1

∥∥∥Φc(0) + Φc(k) − y(k)
∥∥∥2

2
+ λ2

∑
i,j,k

ψ
(
(Φc(k))ij

)
,



938 A.M. Bronstein, M.M. Bronstein, and M. Zibulevsky
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Fig. 2. Example of the Hessian sparse structure in a problem with 3 frames of size 5 × 5 and
a = ∂x, b = ∂y. Black shows non-zero elements.

2.4 Minimization of f
(
x(0), ..., x(T )

)
Since the function f

(
x(0), ..., x(T )

)
is convex with respect to x(0), ..., x(T ), it can be

minimized using standard convex optimization technique [7]. In our case, second-order
Newton-type methods appear especially appealing. Let us denote by X the (T +1)NM
vector of variables x(0), ..., x(T ) in column-stack representation. In the basic Newton
method, the minimization of f (X) is carried out by iteratively updating X in the fol-
lowing manner

X [k + 1] = X [k] + α[k]d[k] (9)

where k denotes the iteration index, α(k) is the step size and d(k) is the Newton direc-
tion, give by the solution of the Newton system:

∇2f(X [k])d[k] = −∇f(X [k]). (10)

The Newton system, in turn, can be solved iteratively to some preset degree of accu-
racy, e.g. using the conjugate gradients method [7], which does not require an explicit
Hessian computation, but rather computation of Hessian-vector products. Such compu-
tations are very efficient due to the sparse structure of the Hessian. This version of the
Newton algorithm with approximate solution of the Newton system is often referred to
as inexact or truncated Newton [8] method.

Since the function is convex, global convergence is guaranteed with any initializa-
tion. Yet, selecting an initialization which is sufficiently close to the solution, e.g. using
the mixture images to initialize x(0), ..., x(T ), faster convergence can be achieved.
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3 Computational Results

In this work we present computational experiments with TV prior, leaving sparsity-
based priors for future study. The proposed method was tested on synthetic data created
by superposition of a static image of a female face and three frames showing a running
dog (Figure 3). The observed result is a sequence of 3 frames (Figure 4).

x(0) (background) x(1) x(2) x(3)

Fig. 3. Source sequence. First column: static background image, second through fourth columns:
three frames of the dog sequence.

y(1) y(2) y(3)

Fig. 4. Observed mixtures sequence

x̃(0) (background) x̃(1) x̃(2) x̃(3)

Fig. 5. Unmixed sequence

The separation was carried out using the TV norm with smoothing parameter ε =
10−3 and the non-negativity penalty, with λ1 = 10−1, λ2 = 10−1. The mixture images
y(1), ..., y(3) were used as the initialization for x(1), ..., x(3), and the image y(1) was
used as the initialization for x(0). Optimization was carried out using the truncated
Newton algorithm. The reconstructed images are shown in Figure 5.
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Our algorithm provides a plausible separation of the background and the dynamic
scene. Slight residuals of the dynamic scene are visible in the reconstructed image.
These artifacts appear in regions where there is little or no motion in the dynamic scene,
and thus the separation problem is ill-posed. The use of the TV prior results in a slight
degradation of the texture details in the reconstructed dynamic scene.

4 Discussion

We presented an efficient solution of the ill-posed problem arising in separation of
semireflective dynamic image from static background using TV prior. Further research
should explore other types of priors, e.g. on coefficients of some decomposition (e.g.
wavelet-type) of the images. Application to other optical problems should be considered
as well. A potentially interesting application is separation of illumination and reflection
components in pictures with multiple exposures [9].
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Abstract. Permutation ambiguity of the classical ICA may cause prob-
lems in feature extraction for pattern classification. To solve that, we
include a selective prior for de-mixing coefficients into the classical ICA.
Since the prior is constructed upon the classification information from
the training data, we refer to the proposed ICA model with a selective
prior as a supervised ICA. We formulate the learning rule for the super-
vised ICA by taking a form of the natural gradient approach, and then
investigate the performance of the supervised ICA in facial expression
recognition from the aspects of both the correct rate of recognition and
the robustness to the number of independent components.

1 Introduction

In facial expression recognition, some facts suggest that ICA might be more effec-
tive than PCA in feature extraction. Facial expression consists of those features
standing for minor, non-rigid, local variations of faces, which are usually less sig-
nificant in PCA bases than those for lighting, head pose, and personal difference.[1]
Further, the phase spectrum, related to higher-order statistics, contains more
structural information in images that drives human perception than the power
spectrum. [2] The importance of higher-order statistics in natural images to the
response properties of cortical cells has been explored in Refs. [3] [4] [5], and the
extraction of higher-order statistics by means of ICA was discussed in Ref.[6]. ICA
has been applied to the face recognition in Ref.[2] and to the facial expression anal-
ysis in Ref.[7], where the efficiency of ICA was verified.

In the classical ICA, the derived independent components are fully exchange-
able in order, i.e., permutation ambiguity, where the original order provides no
information on the significance of components in discrimination. A feature selec-
tion is necessary to be performed along with the feature extraction. The selection
can be applied before, after or during ICA. In Ref.[2], Best Individual Feature
(BIF) selection was adopted where features were chosen according to some de-
fined criteria individually. Methods by means of Sequential Forward Selection
(SFS) and Sequential Floating Forward Selection (SFFS) were also proposed.
[8] Since the selection is performed after ICA, the features are limited to be
chosen from the set of the obtained independent components. To create a can-
didate set with enough representative features in discrimination, a large number
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c© Springer-Verlag Berlin Heidelberg 2006



942 F. Chen and K. Kotani

of independent components should be learned, which may be computationally
expensive. It is meaningful to search for a way to affect the selection of features
before or during ICA. GEMC [9] makes a selection before ICA by heuristically
replacing PCA with a discriminant analysis as the pre-processing to ICA, which
still lacks a mathematical explanation. ICA in a local facial residue space is also
proposed for face recognition, which can be regarded as using the pre-specified
residue space to limit the selection of independent components before applying
ICA. [10]

In the present paper, we consider an approach to implement the feature selec-
tion during the learning of independent components. A constraint ICA has been
proposed for the analysis of EEG signals, where all components should be sparse
and close to a supplied reference signal by including a correlation term. [11] In
our case, we try to design a method to let those components with higher degree
of class separation emerge easier than others. The classical ICA in Ref.[12] was
shown to be derivable under the scheme of Maximum Log-Likelihood (MLL)
estimation. [13] Instead of using the uniform prior for de-mixing coefficients in
MLL, we take the Maximum a Posteriori (MAP) estimation. A prior defined on
the degree of class separation is introduced on the de-mixing coefficients, which
in turn increases the probability of the corresponding independent component
to be significant in classification.

In Section 2, we will formulate the supervised ICA and give the algorithm for
facial expression recognition. In Section 3, numerical experiments are made and
the performance of our proposed algorithm is investigated by making comparison
with the classical ICA. We also discuss on the influence of the introduced selective
prior. Finally, we summarize the present paper and explain our future work.

2 Supervised Independent Component Analysis

We first formulate the supervised ICA. Let Y = [y(ki)|k ∈ {1, · · · ,K}, i ∈
{1, · · · , Nk}] be the matrix of N observed samples from K classes with Nk
samples in the k-th class and satisfy N =

∑K
k=1 Nk. The i-th sample of class k,

y(ki) = [y(ki)
1 , · · · , y(ki)

D ]T , is a D-dimensional vector. Provided Y as the train-
ing data set, the classical ICA assumes that these samples are generated from
Q statistically independent sources. S = [s(ki)|k ∈ {1, · · · ,K}, i ∈ {1, · · · , Nk}]
represents the signals generated by those sources, where s(ki) = [s(ki)

1 , · · · , s(ki)
Q ]T

corresponds to y(ki). Those signals from different sources are linearly mixed, i.e.,
Y = V S, where the D-row Q-column matrix V is for the mixing coefficients.
The purpose of ICA is to search for the coefficients V that makes the sources
as statistically independent as possible. If we let W = V −1 be the inverse (or
pseudo-inverse) of V , W is the de-mixing matrix and satisfies S = WY . For any
sample y, the extracted feature in ICA will be s = Wy. Note that we consider
the noiseless case of ICA in the present paper.

The learning rule proposed by Bell and Sejnowski[12] could also be derived
by maximizing the log-likelihood criterion, i.e., VICA = arg maxV logP (Y |V ).[13]
Motivated by the reasons described in the introduction, we search for a way to
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make a selection of features during ICA so that those independent components
with higher degree of class separation are easier to emerge than others, which is
achieved by introducing a prior distribution for the coefficients. We derive the
learning rule of V by maximizing the following criterion,

VsICA = arg max
V

logP (V |Y ) = arg max
V

[logP (Y |V ) + logP (V )]. (1)

As in the classical ICA, logP (Y |V ) is derived as [12]

logP (Y |V ) = log
∫

P (Y |V, S)P (S)dS

= log
∫ ∏

d

∏
k

∏
i

δ{y(ki)
d −

∑
q

(Vdqs(ki)
q )}

∏
k

∏
i

∏
q

Pq{s(ki)
q }dS

= −N log |V |+
∑
k

∑
i

∑
q

logPq{
∑
d

[V −1]qdy
(ki)
d } (2)

with δ{x} being the Dirac delta function. Without special explanations, k varies
from 1 to K while i varies from 1 to Nk for the suffixes of summation here and
hereafter. We define the prior as follows:

P (V ) = P (W ) =
∏
q

Pw(wq), Pw(w) =
1
Zw

exp{λw[Mbc(Y )−Mwc(Y )]wT },(3)

where wq = [wq1, · · · , wqD],W = [wT1 , · · · , wTQ]T . Zw is the partition function
while Mbc(Y ) and Mwc(Y ) are the between-class scatter matrix and within-class
scatter matrix, defined by Eq.(4).

Mbc(Y ) =
1
N

∑
k

Nk||y(k) − y||2, Mwc(Y ) =
1
N

∑
k

∑
i

||y(ki) − y(k)||2. (4)

We define Ms(Y ) = Mbc(Y )−Mwc(Y ) for short. y(k) represents the mean vector
for samples in class k and y is the mean value for all samples. λ is a hyper-
parameter introduced to control the influence of the prior. For λ > 0, an in-
dependent component whose de-mixing coefficients are of larger degree of class
separation will have a higher prior probability. We maximize the MAP criterion

logP (V |Y ) = logP (W |Y )

= N log |W |+
∑
k

∑
i

∑
q

logPq{
∑
d

wqdy
(ki)
d }+ λ

∑
q

wqMs(Y )wTq + Const(5)

under the constraints of ||wq|| = 1 for all q ∈ {1, · · · , Q}, by differentiating the
criterion with respect to wqd according to the following rule, i.e.,

∂

∂wqd
log |W | = [W−1]dq = Vdq. (6)
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The differential reads

∂ logP (Y,W )
∂wqd

= NVdq +
∑
k

∑
i

P
′
q(
∑
d

wqdy
(ki)
d )

Pq(
∑
d

wqdy
(ki)
d )

y
(ki)
d + 2λ

∑
l

wql[Ms(Y )]ld. (7)

We take Pq(x) ∝ 1/ cosh(x) and rewrite these differential equations for all wqd
into a compact form as one matrix differential which is defined as component-
wise differentiation, i.e.,

∂ logP (Y,W )
∂W

= N{V T − 1
N

tanh[S]Y T +
2λ
N

WMs(Y )}, (8)

where tanh[S] means the calculation of tanh over all elements in matrix S. Due
to the existence of inverse matrix V which is computationally expensive in the
iterative learning, we adopt the natural gradient approach, proposed by Amari
[14], to derive the learning rule:

ΔW=η

{
∂ logP (Y,W )

∂W

}
WTW=Nη{I − 1

N
tanh[S]ST+

2λ
N

WMs(Y )WT }W,(9)

where η is the learning rate. Comparing with the classical ICA, our supervised
ICA holds a prior term for de-mixing coefficients.

When applied to facial expression recognition, the supervised ICA is per-
formed on the PCA coefficients instead of directly on the image data X, i.e.,
Y = WPCAX. WPCA is the matrix of PCA eigenvectors. Since all eigen-vectors
that correspond to nonzero eigen-values in PCA are adopted, there is no infor-
mation lost during this preprocessing. The updating rule is finally derived as
follows:

W (t+1) = W (t) + Nη{I − 1
N

tanh[S(t)][S(t)]T +
2λ

N
W (t)Ms(Y )[W (t)]T }W (t). (10)

The algorithm for the supervised ICA is summarized in Table 1 and the fi-
nal bases for extracting features are computed as WF = WWPCA. Instead of
using a Lagrange multiplier, we simply implement the constraint ||wq|| = 1 in
Step (b) of Table 1. Exactly, the scale of wq should not affect the sparseness
of derived components in the classical ICA, i.e., scale ambiguity. As a fix-point
learning algorithm, the behavior of convergence is still not fully predictable. The
introduction of Step (b) requires a different learning rate and a different con-
vergence threshold. Therefore, it is difficult to make a precise analysis on the
influence of Step (b). From numerical experiments, whose data are not given
in the present paper, we have found no significant differences in the recogni-
tion rate caused by applying Step (b) to the classical ICA. For the supervised
ICA, the constraint ||wq|| = 1 is required to stabilize the influence of the prior
term, which also helps improve the convergence behavior of the algorithm. Let
X̂ = [xn|n ∈ {1, · · · , N̂}] be the matrix by putting all testing images into dif-
ferent columns and N̂ be the number of samples in the testing set. We define
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Table 1. The learning algorithm of the supervised ICA

a) Initialize W and calculate Mbc(Y ) − Mwc(Y );
b) Normalize W by rows so that ||wq|| = 1;
c) Calculate S from S = WY ;
d) Calculate ΔW ;
e) Update W by W ← W + ΔW ;
f) Calculate log P (Y, W ). If the difference between two iter-

ations is less than a threshold, exit. If not, repeat (b) to (f).

Z = {zn ∈ {1, · · · ,K}|n ∈ {1, · · · , N̂}} as the true classified labels for observed
data, and define a recognition rate as

rc =
1

N̂

N̂∑
n=1

δ(zn, z∗n), (11)

where δ(x, y) is the Kronecker delta. z∗n is the estimated label value which is
estimated according to the following criterion

z∗n = arg min
k

||sn −Wy(k)||2 (12)

and sn = WFxn. A block diagram for the whole process is given in Fig. 1.

Fig. 1. A block diagram for the processing flows in both the learning phase and the
running phase of facial expression recognition. All input image data will be normalized
in face position and histogram-equalized as pre-processings.

3 Experiments and Discussions

In the following numerical experiments, we will focus on the comparison be-
tween the supervised ICA and the classical ICA under same conditions to in-
vestigate the effect by introducing the prior term and by changing the hyper-
parameter λ. We use the Japanese Female Facial Expression (JAFFE) Database
[15], which includes 213 images in total. These images are aligned in face posi-
tion and histogram-equalized. Some samples are given in Fig. 2. We pick up 76
images to form the training set, where at least one image from each character is
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Normal Happiness Anger Fear Disgust Sadness Surprise

Fig. 2. Some samples in our numerical experiments from the JAFFE database

(a) (b)

Fig. 3. Recognition rate rc is plotted as a function of the number of independent
components NIC under different λ for (a) the training set of samples and (b) the
testing set. The supervised ICA (sICA) outperforms the classical ICA, especially for
a median NIC.

(a) (b)

Fig. 4. Recognition rate rc is plotted as a function of λ at different NIC for (a) the
training set of samples and (b) the testing set. The learning rate η is set to be 0.00001
for all the cases. A properly selected λ helps improve the performance.

included. The obtained bases are tested both on the training set and a testing
set consisting of the remaining 137 images. All images are resized to 32 × 40
pixels. Thus the dimension of xn is 1280 and the dimension of PCA-projected
data Y is D = 75.

We first plot the recognition rate rc as a function of the number of independent
components (NIC), which is equal to Q in Section 2, for the training set and
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Fig. 5. Degree of class separation ds(w) is plotted for the case of NIC = 35. Each
vertical bar stands for one independent component. Starting from the same initial
values denoted by the rectangles, the final values of ds(w) for both the cases
λ = 0.0 and λ = 0.4 are given by the triangles and the stars, respectively.

(a) (b)

Fig. 6. Recognition rate rc is plotted as a function of NF, which is the number of
features we select, for sICA with BIF, sICA without BIF, the classical ICA with BIF
and PCA with BIF. (a) Result for the training set. (b) Result for the testing set. We
can find that since the supervised ICA provides a better set of candidate features,
the supervised ICA with BIF selection has the best performance.

the testing set under different λ values in Fig. 3 (a) and (b), respectively. The
learning rate η is set to be 0.00001 for all cases. We find that higher recognition
rates have been achieved by including the selective prior for almost all NIC
values, which suggest that a better set of candidate features can be found by
the supervised ICA. In Fig. 4 (a) and (b), we further investigate the transition
of recognition rate as a function of λ at different NIC. From both the cases of
training set and testing set, the recognition rates first ascend with the increase
of λ and then descend when λ gets too large and causes a heavy bias on the
sparseness of the obtained independent components. A tradeoff between the
sparseness and the discrimination degree should be taken to achieve the best
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results. We define the degree of class separation ds(w) = wMs(Y )wT , plotted in
Fig. 5 for the case of NIC = 35. Each vertical bar represents one independent
component. Starting from the same initial values denoted by the rectangles,
the final values of ds(w) for both the cases λ = 0.0 and λ = 0.4 are given by
the triangles and the stars, respectively. For all components, the ratio of class
separation increases with a large λ, which proves the effect of the prior term. As
a result, those components with higher degree of class separation improve the
recognition rate. For training, sICA is several times slower than ICA. The speed
is same in the testing phase.

Although several methods of feature selection after the learning of ICA were
proposed in Ref.[8], they are also applicable to our approach. The supervised
ICA intends to search for a candidate set of features with higher degree of class
separation than the classical ICA, by selecting features from which even better
recognition rate can be achieved. In Fig. 6(a) and (b), we make a comparison be-
tween four methods, i.e., the supervised ICA with Best Individual Feature(BIF)
selection, the supervised ICA without BIF, the classical ICA with BIF, and PCA
with BIF. In the BIF selection of the present paper, all features are sorted in
descendant order of their degree of class separation ds(w), and then the first NF
features are selected for classification. We note that the supervised ICA with BIF
gives the best performance, which verifies the capacity of the supervised ICA in
learning a better candidate set of features. We also find that the supervised ICA
without BIF still outperforms the classical ICA with BIF, which confirms the
robustness of the supervised ICA in recognition rate by learning those indepen-
dent components with higher degree of class separation from samples when a
median NIC is used. Although BIF improves the robustness of the performance
over the whole range of NF, the best recognition rate does not change much
only by means of BIF selection for the same learning algorithm, as depicted in
Figs. 6 (a) and (b). This result suggests that learning a candidate set of features
with higher degree of class separation might be more important than performing
a post selection, which is the point where the supervised ICA outperforms the
classical ICA.

4 Conclusion and Future Work

In the present paper, we have proposed a supervised ICA for facial expression
recognition by performing the feature selection along with the learning of ICA. A
selective prior has been introduced to the classical ICA and the MAP estimation
is applied to derive the learning rule. We made numerical experiments to inves-
tigate the influence of new prior term and make comparison with the classical
ICA. Our method shows better performance than the classical ICA, especially
in increasing the recognition rate under a median number of independent com-
ponents. There are still some problems left for us to study, such as the decision
of optimal λ and the design of a better learning algorithm for faster and more
robust convergence. Investigation on various priors is also a part of our future
work.
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Abstract. Here we present a procedure for finding an eight times over-
complete ICA description of image data using the symmetries defined
by the rigid motions of a square. The procedure for estimating the ba-
sis requires only a small change to any classic ICA procedure and the
data representation in this overcomplete description is unique. Coding
and decoding in this description are essentially as easy as in classic ICA
methods. We also show that this description is genuinely more sparse
than a non-overcomplete ICA method.

1 Introduction

Independent component analysis (ICA) has been used successfully in analyzing
image data, especially due to its efficient coding properties, and its links to
cortical simple cell receptive fields [1,12]. In ICA the observed data is expressed as
a linear transformation of latent variables that are nongaussian and independent.
We can express the model as

x = As =
∑
i

aisi, (1)

where x = (x1, x2, . . . , xm) is the vector of observed random variables, s =
(s1, s2, . . . , sn) is the vector of latent variables called the independent compo-
nents or source signals, and A is an unknown constant matrix, called the mixing
matrix. The columns of A are often called features or basis vectors. A matrix
that separates the original signals (or their estimates) from x is called a sepa-
rating matrix W, and its rows are the separation vectors wi. Exact conditions
for the identifiability of the model were given in [4], and several methods for
estimation of the classic ICA model have been proposed in the literature, see [7]
for a review.

Classical methods for ICA use complete bases, i.e. n = m, but with image
data an overcomplete description would be more appropriate. For example, by
starting almost any iterative ICA algorithm from different starting points, one
will obtain different bases, whose components are similar, but not identical (even
after indeterminacies relating to sign, permutation and scaling are taken into
account). From a different perspective, there is little reason to assume that a
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specific Gabor-type feature would be present in a basis, and not some spatial
scaling, translation, and rotation of it.

However, an overcomplete ICA description of a data set is generally hard to
estimate. The source signals are no longer recoverable, and there are thus several
possible source signals for a given basis and data set [7]. Therefore appropriate
additional criteria have to be used to obtain a unique description. For example,
one can demand maximal sparseness of the sources [9], which (if the criterion
for sparsity is chosen conveniently) may also approximately maximize the inde-
pendence of the sources. Such maximally sparse descriptions can also be used to
find minimal codes for the data. Nevertheless, finding such a maximally sparse
overcomplete description often requires estimating the basis and source signals
alternately at each iteration, which is quite demanding computationally. It has
been argued that finding sparse codes is easier than sparse coding [11], and there
are methods for finding overcomplete bases without estimating the sources, see
e.g. [6]. However, a maximally sparse description in the (already estimated) over-
complete basis still has to be found when coding (i.e. finding the sources of) a
data vector.

With image data, there are many symmetries that could basically be used to
construct (or find) an overcomplete basis. One could, for example, build a basis
by taking a (mother) feature and rotating, scaling, and translating it to form a
basis, cf. [10]. However, the problem of finding the maximally sparse description
in such a basis remains. Classic (n=m) ICA methods have the advantage that the
features are orthogonal (in the whitened space) and finding the sources requires
only matrix multiplication.

One could build an overcomplete basis from any classic ICA basis by using
the rigid motions of a square, i.e. rotations in 90 degree increments along with
their mirror images, all of which correspond to pixel-wise permutations of the
basis/separation vectors (alternatively they can be understood as permutations
of the data vectors). One can then choose for each data vector the permutation
of basis/separation vectors that gives the sparsest sources. These eight pixel per-
mutations are the only ones where the geometry of an image patch / basis vector
is unaffected. In fact, due to the approximate rotational and mirror symmetries
in images, all the permuted bases should be equally good on average. This kind
of a description can be seen as an eight times overcomplete ICA method with
constraints on which features can be active at the same time. Although an un-
constrained description should be sparser, it should be noted that to indicate
which features are used requires three bits per data vector (about 0.02 bits per
pixel (bpp) for 12 by 12 windows) in this description, whereas indicating the
active features for a general 8 times overcomplete basis requires 8 bits per pixel
(or more than 4.2 bpp for 12 by 12 windows if a critically sampled (complete)
basis is always used). Of course, the selection of the active features is also diffi-
cult in the unconstrained case, whereas in this constrained case we can test all
eight possibilities.

However, this kind of a construction would include overcompleteness only as
an afterthought, and wouldn’t be optimal. Here we present a procedure where
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the rigid motions of a square are used even in estimating the basis. Although we
use a complete basis for each data vector, the increase in sparsity for a minimal
increase in coding cost implies that the components could be used in methods
where only the most active features are retained for each data vector, in order
to achieve efficient coding, cf. [2], or noise removal, cf. [5]. We will compare our
method to normal ICA, and to the case when the data vectors are permuted,
but not the basis.

2 Procedure

Our procedure in this paper uses FastICA, although most any ICA algorithm
could be used. Starting from a random point, we (step 1) iterate FastICA with
the hyperbolic tangent nonlinearity for one or more steps, increasing the sparse-
ness of the source estimates by adjusting the basis (and separation) vectors. After
this, we (step 2) estimate for each data sample which pixel permutation (rigid
motion of the associated array) results in the maximally sparse description, and
the vector is then permuted accordingly. In case of ties, the permutation can be
chosen arbitrarily. To maximize sparsity, we chose to minimize (for each t):∑

i

|yi(t)| =
∑
i

|wix(t)|. (2)

Note that the minimization was performed for each t by calculating this value
for all permutations, and picking the minimizing one. Steps 1 and 2 are repeated
until no data vector changes its preferred permutation and FastICA has con-
verged. Note that coding a data vector in this adjusted description requires only
permuting the data vector by the permutation that minimizes Equation (2), and
multiplying by the separating matrix.

As a technical side note, the sparsity of each sample is maximized, or in
our case Equation (2) is minimized, always in a rotated version of the original
whitened space. Otherwise, the basis will increasingly start to favor a certain ori-
entation, and instead of increasing sparsity, minimizing Equation (2) divides the
energy between the permutations in a less than optimal way. Therefore, the sep-
arating matrix was in all cases constrained so that it gave unit covariance sources
for the original data. This was achieved using Theorem 1 in the Appendix, where
in our case C1 = C (covariance of the original data), and additionally we know
that WTC2W = I (C2 is the covariance of the permuted data), so Equation (4)
gives the optimal separation matrix

B′ = (WCWT )
1
2 (CWT )+, (3)

where + denotes a pseudoinverse (in this case CWT (WC2WT )−1) and W is the
separating matrix given by FastICA for the permuted data. The proof presented
in the Appendix expands upon the proof presented in [8].
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3 Results

As data, we used 80000 12 by 12 windows sampled from natural images. The
original images can be found at: http://www.cis.hut.fi/inki/images/. These
windows (arrays) were stacked as one dimensional vectors with 144 elements.
The mean values were removed from each vector. The permutations were done by
transforming each data vector back to a two-dimensional matrix, which was then
rotated and transposed the appropriate number of times, and finally transformed
back to a vector.

In Figure 1, we have the bases associated with our experiment. As one can
see, the difference between the ordinary ICA basis and the basis in our adjusted
description is not visually large, but it is significant when the statistics of the
associated components are compared.

In Table 1, we have the average and maximal normalized kurtosis of the
separated components for a normal ICA description of the data, as well as for our
adjusted description. As is readily apparent, our adjusted description produces
components that are much more kurtotic, whether one compares average or
maximal kurtosis. For comparison, we also calculated what the kurtosis of the
new basis is when the data isn’t permuted pixel-wise, and found that in such
a case, the kurtosis is on average marginally lower than in the standard ICA
description, as could be expected. Furthermore, we calculated the kurtosis of
the components, when the basis was fixed to be the original ICA basis, but each
data sample was permuted according to procedure mentioned earlier. Although
the components had considerably higher kurtosis in this case (compared to the
original ICA description), the description was significantly less sparse than the
completely (‘doubly’) adjusted one.

We have also tabulated in Table 1 another measure of average sparsity, i.e.
the mean of −E{|yi|} over all i. Note that this is related to the sparsity measure
in Equation (2). Again we see that our ‘doubly’ adjusted description produces
the sparsest components. Note also that if the components had Laplacian dis-
tributions, this value would be proportional to the negative of average marginal
entropy. As the distribution is somewhat close to Laplacian, this can be seen to
give a rough estimate of (the negative of) entropy. The ordering of the sparsities
of the descriptions are the same in this comparison. Note that the values for
the ‘doubly’ adjusted description are very similar (only marginally lower), if the
search for the basis is started from a normal ICA solution, cf. Figure 1.

Table 1. Sparsities of the different descriptions used in this article. Boldface is used
for the best (largest) values.

Normal basis, Normal basis, Adjusted basis, Adjusted basis,
normal data Adjusted data adjusted data normal data

Average kurtosis 5.79 7.12 7.94 5.63
Maximal kurtosis 7.56 11.47 14.83 8.80
Average sparsity -0.6464 -0.6268 -0.6235 -0.6501
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Fig. 1. Basis features. Top: Standard ICA. Middle: Our method, using the basis on
top as a starting point (for comparison). Bottom: Our method, random starting point.
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In Figure 2 we have the plotted the kurtosis of the components for each of the
choices in Table 1. As one can see, the ordering that was apparent from Table
1 is maintained throughout all percentiles, and our description where both the
data and the basis are adjusted is the best wrt. sparseness.
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Fig. 2. Kurtosis of the components for different descriptions. Components arranged
by ascending normalized kurtosis. Dashed line: Standard ICA (FastICA). Solid line:
Our adjusted description. Dash-dotted: Standard ICA basis with adjusted data. Dotted
line: Adjusted basis with nonadjusted data. Note that the average kurtosis in a random
direction in the original data is about 2.3.

4 Conclusions

We presented here a simple method for finding an eight times overcomplete ICA
description of image data. The method was based on maximizing the sparsity of
a basis while also finding for each data vector the rigid motion (of the associated
array) that maximizes sparsity. The description is in many ways as easy to find
as a complete ICA description and, as only a single complete basis is active
for any data vector, finding codes for new image patches in this description is
easy. We showed that this description is genuinely sparser than a complete ICA
description. This increase in sparseness should be contrasted with the minimal
three bit increase in data vector coding cost over classical ICA (0.02 bits per
pixel for 12 by 12 image windows).
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Appendix

Theorem 1
Assume that we wish to find a matrix B, such that for a symmetric and positive
definite C1, BC1BT = I and the expected squared error between the separated
components Bx and Wx is minimized for data with E{xxT } = C2 positive
definite. (That is, B whitens data with covariance C1, and the error is minimized
for data with covariance C2, when E{x} = 0.) Then the optimal choice for B is

B′ = (WC2C−1
1 C2WT )−

1
2 WC2C−1

1 . (4)

Here the inverse square root of a (symmetric) matrix has all the same eigenvec-
tors and an inverse square root has been taken of the eigenvalues.

Proof. It is easy to show that for this choice B′C1B′T = I, and any possible solution
can be written as B = B2B′, where B2 is orthogonal. The error, R, equals:

R = E{‖Wx − Bx‖2} = trE{(Wx − Bx)(Wx − Bx)T }
= trWC2WT − trWC2BT − trBC2WT + trBC2BT

= trWC2WT − 2trBC2WT + trBC
1
2
1 (C

− 1
2

1 C2C
− 1

2
1 )C

1
2
1 BT
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The first and third terms (traces) do not depend on B. Note that the term BC
1
2
1 inside

the third trace is an orthogonal matrix, and the trace of a matrix does not change in a
similarity transformation. When B = B2B′, we obtain for the term inside the middle
trace:

BC2WT = B2(WC2C−1
1 C2WT )− 1

2 WC2C−1
1 C2WT

= B2(WC2C−1
1 C2WT )

1
2

Here the term on the last line is B2 multiplied by a symmetric and positive definite
matrix (we assume W has full rank), and therefore we can write:

trBC2WT = trB2EDET = trET B2ED = trQD =
∑

i

qiidi

where E contains the eigenvectors of the symmetric matrix, and diagonal matrix D
the associated eigenvalues. Q = ET B2E is orthogonal, so −1 ≤ qii ≤ 1. As all the
eigenvalues di are greater than zero, the maximum is achieved when qii = 1 ∀i, i.e.
when Q = I ⇔ B2 = I. Thus B′ minimizes R. �

Note that this result implies that the optimal whitening matrix (i.e. when C1 = C2 = C
and W = I) is B′ = C− 1

2 , which is often used in ICA methods. Also, the optimal
orthogonalization of W for pre-whitened data (C1 = C2 = I) is B = (WWT )− 1

2 W,
which is the symmetric orthogonalization [3] used in FastICA.

This proof can be used even if some eigenvalues of C1 and C2 are zero, and the
associated eigenvectors span the same space. (In such a case W and B are not square.)
For instance when the mean value has been removed from each image patch, there is
one zero eigenvalue, n = m − 1. If V is an m by n matrix of eigenvectors spanning
the nonzero space, we can transform the problem to new variables by writing Wnew =
WV, Bnew = BV, xnew = VT x, Cnew

1 = VT C1V, Cnew
2 = VT C2V, and the proof

is the same with these new variables. Equally, one can use pseudoinverses.
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Abstract. It has been well known that edge filters in the visual system
can be generated by the InfoMax principle. In this paper, the “InfoMin”
principle is proposed, which asserts that the information through some
neighboring signals on a two-dimensional mapping must be minimized.
It is shown that the standard Comon’s ICA can be derived from the
combination of the InfoMax principle for the whole signals and the In-
foMin one for each signal under a linear model with sufficiently large
noise. It is also shown that the InfoMin principle for the signals within
neighboring areas can generate a topographic mapping in the same way
as in topographic ICA.

1 Introduction

Independent component analysis (ICA) is a recently-developed method in the
fields of signal processing and artificial neural networks, and has been shown
to be quite useful for the blind separation problem [1–4]. The linear ICA is
formalized as follows. Let s and A are M -dimensional source signals and an
N×M mixing matrix, respectively. Then, an N -dimensional vector x of observed
signals is defined as

x = As. (1)

The purpose of ICA is to find out A when only the observed (mixed) signals
are given. In other words, ICA blindly extracts the source signals from observed
signals as follows:

y = Wx, (2)

where W is an M × N separating matrix and y is the estimate of the source
signals. This is a typical ill-conditioned problem, but ICA can solve it by as-
suming that the source signals are generated according to independent and non-
Gaussian probability distributions. In general, the ICA algorithms find out W
by maximizing a criterion (called the contrast function) such as the higher-order
statistics (e.g. the kurtosis) of every component of y.

It has been well known that ICA is closely related to information theory. Espe-
cially, it has been shown that the maximization of the entropy of signals (so-called
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“InfoMax”) is equivalent to some ICA algorithms under nonlinear models [5, 3].
But, it is not available in linear models. Besides, the choice of the nonlinearity is
not straightforward [6]. In this paper, we propose a new information-theoretic ap-
proach for ICA using the “InfoMin” principle, which asserts that the information
through some neighboring signals on a two-dimensional mapping must be mini-
mized. The InfoMin principle was proposed originally as a unifying framework for
forming topographic mappings [7, 8]. We show that the standard Comon’s ICA
can be derived from the InfoMin and InfoMax principles under a linear model
with sufficiently large noise, where the effects of the fifth and higher-order cu-
mulants become negligible. In addition, it is shown that the InfoMin principle
can form a topographic mapping in the same way as in topographic ICA [9].

This paper is organized as follows. In Section 2, the InfoMin principle is pro-
posed. First, it is introduced intuitively from a study about the information pro-
cessing in the brain in Section 2.1. Secondly, an information transfer model and
the mathematical closed form of the entropy are given formally in Section 2.2. In
Section 2.3, it is shown that the InfoMax principle for the whole signals is equiv-
alent to a whitening of them and the InfoMin principle for each signal gives the
standard Comon’s ICA. In Section 3, under this model, a numerical experiment
shows that the InfoMin principle for some large neighboring signals can generate
a topographic mapping. Lastly, this paper is concluded in Section 4.

2 The InfoMin Principle

2.1 Basic Idea of the InfoMin Principle

In the information processing of the brain, it seems to be natural that the in-
formation (the entropy) of the whole neurons must be maximized. This is the
InfoMax principle. On the other hand, with respect to an information processing
unit (a neuron or a group of neighboring neurons), it seems to be desirable that
the information to be processed is as small as possible. In other words, “the
information through some neighboring neurons must be minimized,” where the
information is given as the entropy and each neuron corresponds to a signal.
This assertion is called the “InfoMin” principle. The crucial assumption in this
idea is that signals through neurons are always given with a mapping of neurons,
which is a two-dimensional array where each component corresponds to a signal.
Therefore, the neighboring relation of signals can be defined on the array.

2.2 Information Transfer Model

Here, the information transfer model and the mathematical closed form of the
entropy are given formally.

The output signal z is given by

z = y + n, (3)
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where y = Wx as in Eq. (2) and n is a noise vector. Then, the entropy of z,
Hz, is given as

Hz = −
∫

dzPz (z) logPz (z) (4)

where Pz (z) is the probability distribution function (pdf) of z.
If n is given according to an N -dimensional non-correlated Gaussian distri-

bution where the variances of signals are an identical and sufficiently large value
Δ2, the closed form of Hz can be derived as follows. First, by introducing z̄ = 1

Δz
and Pz̄ = ΔNPz (z̄), Eq. (4) is rewritten as

Hz = γ1Hz̄ + γ2, (5)

where γ1 and γ2 are constants (γ1 > 0), and Hz̄ = −
∫
Pz̄ (z̄) logPz̄dz̄ (Pz̄ is the

pdf of z̄). Next, the Edgeworth expansion of Pz̄ with respect to 1
Δ is given as

Pz̄ (z̄)

= G (z̄)

(
1 +

∑
i,j κ

ij
y hij

2Δ2 +

∑
i,j,k κ

ijk
y hijk

6Δ3 +

∑
i,j,k,l κ

ijkl
y hijkl

24Δ4

)

+ G (z̄)

∑
i,j,k,l κ

ij
y κ

kl
y hijkl

8Δ4 + O

(
1
Δ5

)
, (6)

where G is a Gaussian distribution whose covariance matrix is the N×N identity
one. i, j, k, and l denote the indexes of signals. κijy , κijky , and κijkly are the second,
third, and forth cumulants of y, respectively. hij , hijk, and hijkl are the tensorial
Hermite polynomials with G (see [10]). Then, by using the next equation for a
small variable ε:

(1 + ε) log (1 + ε) = ε +
ε2

2
− ε3

6
+

ε4

12
+ O
(
ε5) , (7)

the following closed mathematical form of Hz̄ is obtained:

Hz̄ = − 1
2 · 22Δ4

∑
i,j,k,l

κijy κ
kl
y

∫
hijhklGdz̄

− 1
2 · 62Δ6

∑
i,j,k,l,m,n

κijky κlmny

∫
hijkhlmnGdz̄

+
1

6 · 23Δ6

∑
i,j,k,l,m,n

κijy κ
kl
y κ

mn
y

∫
hijhklhmnGdz̄

− 1
2 · 242Δ8

∑
i,j,k,l,m,n,o,p

κijkly κmnopy

∫
hijklhmnopGdz̄

− 1
2 · 82Δ8

∑
i,j,k,l,m,n,o,p

κijy κ
kl
y κ

mn
y κopy

∫
hijklhmnopGdz̄

− 2
2 · 24 · 8Δ8

∑
i,j,k,l,m,n,o,p

κijkly κmny κopy

∫
hijklhmnhopGdz̄
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+
3

6 · 22 · 24Δ8

∑
i,j,k,l,m,n,o,p

κijkly κmny κopy

∫
hijklhmnhopGdz̄

+
3

6 · 22 · 8Δ8

∑
i,j,k,l,m,n,o,p

κijy κ
kl
y κ

mn
y κopy

∫
hijklhmnhopGdz̄

+
3

6 · 2 · 62Δ8

∑
i,j,k,l,m,n,o,p

κijky κlmny κopy

∫
hijkhlmnhopGdz̄

− 1
12 · 24Δ8

∑
i,j,k,l,m,n,o,p

κijy κ
kl
y κ

mn
y κopy

∫
hijhklhmnhopGdz̄

+ O

(
1
Δ9

)
, (8)

where several terms vanish by the property of the Hermite polynomials. This
equation is transformed further as follows:

Hz̄ = − 1
4Δ4

∑
i,j

(
κijy
)2

− 1
12Δ6

∑
i,j,k

(
κijky
)2

+
1

48Δ6

∑
i,j,k,l,m,n

κijy κ
kl
y κ

mn
y

∫
hijhklhmnGdz̄

− 1
48Δ8

∑
i,j,k,l

(
κijkly

)2
+

3
16Δ8

∑
i,j,k,l

(
κijy
)2 (

κkly
)2

+
1

144Δ8

∑
i,j,k,l,m,n,o,p

κijky κlmny κopy

∫
hijkhlmnhopGdz̄

− 1
192Δ8

∑
i,j,k,l,m,n,o,p

κijy κ
kl
y κ

mn
y κopy

∫
hijhklhmnhopGdz̄

+ O

(
1
Δ9

)
. (9)

Notice that the derivation of Eq. (9) requires no additional assumptions except
that the noise is given according to a Gaussian distribution with sufficiently
large variances. Eq. (9) shows that such large noise extinguishes the effects of
the higher-order cumulants. For example, the third cumulants with the coefficient
of O

( 1
Δ6

)
are negligible if the effects of the second cumulants with O

( 1
Δ4

)
are

dominant. Conversely, higher-order cumulants are dominant only if all the lower-
order ones are negligible.

2.3 Relation to ICA

First, it is shown that a whitening process is derived from the InfoMax principle
for the whole signals. Under the above information transfer model, the InfoMax
principle for the whole signals is equivalent to the maximization of Eq. (9) w.r.t
W . The first dominant term of Eq. (9) (named H2nd) is given as
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H2nd = −α2nd
∑
i,j

(
κijy
)2

+ β2nd, (10)

where α2nd (> 0) and β2nd are constants. Now, one usual constraint is given,
which requires that the variance of every signal κiiy is a constant, e.g. 1. Then,
the maximization of H2nd is equivalent to a whitening where every κijy (i �= j)
is 0. Because the third cumulants become dominant after this maximization of
H2nd, the second dominant term of Eq. (9) (named H3rd) is given as

H3rd = −α3rd
∑
i,j,k

(
κijky
)2

+ β3rd. (11)

Similarly, the third dominant term of Eq. (9) including the fourth cumulants
H4th is given as

H4th = −α4th

⎛⎝∑
i,j,k,l

(
κijkly

)2 − 12
∑
i,j,k

(
κijky
)2⎞⎠+ β4th, (12)

where α3rd (> 0), α4th (> 0), β3rd, and β4th are constants.
If W is a square matrix (M = N), it is shown easily that H3rd and H4th

are constants under the whitened condition. If M < N , the signals with high
skewness κiii need to be removed so that H3rd is maximized. H4th is still a
constant under any M×M orthogonal transformation. The case of M > N is not
treated in this paper. In other words, the InfoMax principle for the whole signals
requires that y is whitened and M −N signals with high skewness are removed.
There is no additional requirements if the terms in O

( 1
Δ9

)
are negligible.

Next, in order to formalize the InfoMin principle for neighboring signals on a
given array, a set of the indexes of neighboring signals is used. This set is called
a neighboring filter. For example, a 4×4 neighboring filter on a two-dimensional
array of signals corresponds to a set of 16 indexes of signals which are included
in the area of 4× 4 components in the array. Then, in this context, the InfoMin
principle is the minimization of Eq. (9) in the neighboring filters. If the third
cumulants are dominant, H3rd is modified into

H
neigh
3rd = −α3rd

∑
σ∈Σ

∑
i,j,k∈σ

(
κijky
)2

+ β3rd, (13)

where Σ is the set of all neighboring filters. The InfoMin principle asserts that

H
neigh
3rd needs to be minimized. If the skewnesses are negligible (this assump-

tion is used in quite many ICA algorithms), the InfoMin principle requires the
minimization of

H
neigh
4th = −α4th

∑
σ∈Σ

∑
i,j,k,l∈σ

(
κijkly

)2
+ β4th. (14)
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In the case that each neighboring filter is a minimal set including just one signal,

H
neigh
4th is given as

H
neigh
4th = −α4th

∑
i

(
κiiiiy
)2

+ β4th. (15)

The minimization of Eq. (15) under the whitened condition is completely equiv-
alent to the standard Comon’s ICA in [2].

3 Formation of Topographic Mappings

Here, it is shown that the InfoMin principle can generate a topographic mapping
from natural scenes. 30000 samples of natural scenes of 12×12 pixels were given
as x (N = 144).

First, in order to satisfy the InfoMax principle in Section 2.3, x was whitened

by PCA. Second, H
neigh
4th in Eq. (14) was minimized in order to satisfy the

InfoMin principle. Here, it was assumed that the third cumulants were negligible.
144 signals were placed on a 12× 12 array. A group of 4× 4 signals on the array
is employed as a neighboring filter σ, and Σ is comprised of all possible σ over
the array. In addition, because it was shown experimentally that κiiii and κiijj

a. InfoMin b. topographic ICA

Fig. 1. Formation of a topographic mapping by the InfoMin principle: Here, natural
scenes of 12 × 12 pixels were used as x. They visualize the mixing matrix A (a): A
topographic mapping was found by minimizing H

topo
4th in Eq. (16) with 4×4 neighboring

filters. (b): Topographic ICA in [9] was applied for finding a 10 × 10 topographic ICA
mapping from 100 PCA-whitened components of x (with g(u) = tanh(u), a 3 × 3
neighborhood ones matrix).
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were dominant in H
neigh
4th , the computational costs are reduced by employing

the following approximation H
topo
4th instead of Hneigh

4th :

H
topo
4th = −α4th

∑
σ∈Σ

⎛⎝∑
i∈σ

(
κiiiiy
)2

+ 3
∑
i∈σ

∑
j∈σ,j �=i

(
κiijjy

)2⎞⎠+ β4th. (16)

Then, Htopo
4th was minimized by a stochastic gradient algorithm using

∂H
topo
4th

∂wij
= −α4th

∑
σ∈Σ,σ�i

⎛⎝8κiiiiy y3
i xj + 24

∑
k∈σ,k �=i

κiikky yiy
2
kxj

⎞⎠ , (17)

where wij , xj , and yi are components of W , x, and y, respectively. κiiiiy and
κiijjy were calculated every 30000 updates. 500×30000 updates by Eq. (17) were
applied for finding the optimal W under the condition that W is orthogonal.

The result of the minimization of Htopo
4th is shown in Fig. 1-(a). It shows that

the InfoMin principle could form a topographic mapping where edge detectors
with similar orientation preferences are nearer. For comparison, the mapping
by topographic ICA [9] is also shown in Fig. 1-(b). Topographic ICA generated
distinct but short edge filters. On the other hand, the edge filters in Fig 1-(a)
are rougher but longer. Because the generation of long edge filters is difficult for
a simple nonlinear InfoMax approach [11], this result suggests the validity of the
InfoMin principle. In addition, it is important that the proposed algorithm is
based on only a simple linear model with sufficiently large noise and two general
principles (InfoMax and InfoMin). On the other hand, topographic ICA is based
on a complex two-layer model with nonlinearity and it requires many specific
assumptions and approximations. It suggests that the InfoMin principle can
give a simple and general framework for topographic mappings. Lastly, though
Linsker’s algorithm [12] could form an ordered map by the InfoMax principle,
but it utilized only the second cumulants and formed just a quite simple map
from artificial input signals.

4 Conclusion

In this paper, we proposed the “InfoMin” principle, gave its general closed forms
by the Edgeworth expansion, and showed that it could generate a topographic
mapping of whitened signals. The proposed method is quite simple. Because it is
essentially based on the maximization and minimization of Eq. (9), it is available
in any models generating y. So, we are planning to apply the method to many
models, for example, over-complete models (M > N), nonlinear models, and
multilayer models.

Lastly, we are now focusing on the fact that it has been known that edge de-
tectors are not formed at the maximum of cumulants. Some different nonlinearity
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is needed, e.g. tanh. So, the choice of nonlinearity is quite important in previ-
ous models. On the other hand, the InfoMin principle could form edge detectors
by utilizing the forth cumulants. It suggests that the InfoMin principle gives a
general framework for the visual processing system in the brain irrespective of
nonlinearity, and we are planning to closely investigate the InfoMin principle
from this perspective.
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Abstract. A novel approach to single frame multichannel blind image
deconvolution is formulated recently as non-negative matrix factoriza-
tion (NMF) problem with sparseness constraint imposed on the unknown
mixing vector. Unlike most of the blind image deconvolution algorithms,
the NMF approach requires no a priori knowledge about the blurring
kernel and original image. The experimental performance evaluation of
the NMF algorithm is presented with the degraded image by the out-of-
focus blur. The NMF algorithm is compared to the state-of-the-art single
frame blind image deconvolution algorithm: blind Richardson-Lucy al-
gorithm and single frame multichannel independent component analysis
based algorithm. It has been demonstrated that NMF approach outper-
forms mentioned blind image deconvolution methods.

1 Introduction

The goal of image deconvolution is to reconstruct the original image from an
observation degraded by spatially invariant blurring process and noise. Neglect-
ing the noise term the process is modeled as a convolution of a blurring kernel
h(s, t) with an original source image f(x, y) as:

g(x, y) =
K∑

s=−K

K∑
t=−K

h(s, t)f(x + s, y + t) (1)

where K denotes the size of the blurring kernel. If the blurring kernel is known,
many so-called non-blind algorithms are available to reconstruct original image
f(x, y) [1]. However it is not always possible to measure or obtain information
about blurring kernel, which is why blind deconvolution (BD) algorithms are im-
portant. Comprehensive comparison of BD algorithms is given in [1]. They can be
divided into those that estimate the blurring kernel h(s, t) first and then restore
original image by some of the non-blind methods [1], and those that estimate the
original image f(x, y) and blurring kernel simultaneously. In order to estimate
the blurring kernel, a support size has to be given or estimated. Also, quite often
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a priori knowledge about the nature of the blurring process is assumed to be
available in order to use appropriate parametric model of the blurring process
[2]. It is not always possible to know the characteristic of the blurring process.
Methods that estimate blurring kernel and original image simultaneously use
either statistical or deterministic prior on the original image, the blurring kernel
and the noise [2]. This leads to a computationally expensive maximum likeli-
hood estimation usually implemented by expectation maximization algorithm.
In addition to that, exact distributions of the original image required by maxi-
mum likelihood algorithm are usually unknown. One of the most representative
algorithms from this class is the blind Richardson-Lucy (R-L) algorithm. It has
been originally derived for non-blind deconvolution of astronomical images in [3]
and [4]. Later on, it was formulated in [5] for BD and then modified by iterative
restoration algorithm in [6]. This version of blind R-L algorithm is implemented
in MATLAB command ’deconvblind ’. It will be used in the section 3 for the
comparison purpose during experimental performance evaluation of the NMF
based blind image deconvolution method [7].

In order to overcome difficulties associated with ’standard’ BD algorithms
an approach was proposed in [8] based on quasi maximum likelihood with an
approximate of the probability density function. It however assumed that origi-
nal image has sparse or super-Gaussian distribution. This is generally not true
because image distributions are mostly sub-Gaussian. To overcome that diffi-
culty it was proposed in [8] to apply sparsifying transform to blurred image.
However, design of such a transform requires knowledge of at least the typical
class of images to which original image belongs. In such a case, training data
can be used to design sparsifying transform. Multivariate data analysis meth-
ods such as independent component analysis (ICA) [9] might be used to solve
BD problem as a blind source separation (BSS) problem. The unknown blurring
process is absorbed into what is known as a mixing matrix. The advantage of
the ICA approach would be that no a priori knowledge about the origin and size
of the support of the blurring kernel is required. However, multi-channel image
required by ICA is not always available. Even if it is, it would require the blur-
ring kernel to be non-stationary, which is true for blur caused by atmospheric
turbulence, but it is not true for out-of-focus blur for example. Therefore, an ap-
proach to single frame multi-channel blind deconvolution that requires minimum
of a priori information about blurring process and original image would be of
great interest.

Single frame multi-channel representation was proposed in [10]. It was based
on a bank of 2−D Gabor filters [11] used due to their ability to realize multi-
channel filtering. ICA algorithms have been applied in [10] to multichannel image
in order to extract the source image and two spatial derivatives along x and y
directions. There is however critical condition that source image and their spa-
tial derivatives must be statistically independent. In general this is not true as
already observed in [11]. Consequently, quality of the image restoration by pro-
posed single frame multi-channel approach depends on how well each particular
image satisfies statistical independence assumption. Therefore, an extension of
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the ICA approach formulated in [10] is given in [7] where it has been shown
that single frame multichannel BD can be formulated as NMF problem with
sparseness constraint imposed on the unknown mixing vector. Consequently, no
a priori knowledge about either the origin or the size of the blurring process is
required. Because NMF is deterministic approach no a priori information about
the statistical nature of the source image is required as well. The rest of the pa-
per is organized as follows. We briefly introduce in section 2 blind R-L algorithm
[5][6], ICA approach to single frame multichannel BD [10] and NMF approach
to single frame multichannel BD with sparseness constraint [7]. Comparative
experimental performance evaluation is given in section 3 for images degraded
by out-of-focus blurring process. Conclusion is presented in section 4.

2 Basic Overview of the Compared Blind Image
Deconvolution Algorithms

Before proceeding to description of non-bind and blind image deconvolution
algorithms, we shall rewrite image observation model given in Eq.1 in the lexi-
cographical notation:

g = Hf (2)

where g, fεZMN0+ , HεRMNxMN
0+ assuming image dimensionality of MxN pixels.

Observed image vector g and original image vector f are obtained by the row
stacking procedure. The matrix H is block-circulant matrix, [13], and it absorbs
into itself the blurring kernel h(s, t) assuming at least size of it, K, to be known.

2.1 Blind Richardson-Lucy Algorithm

The blind R-L method [5] [6] follows from the non-blind version of the R-L
method [3] [4] which itself follows from Bayesian paradigm approach to statisti-
cal inference which dictates that inference about true image f should be based
on conditional probability P (f/g) given by the Bayes rule. The prior knowl-
edge about image degradation process is incorporated in conditional probability
P (g/f) and prior probability P (f). In low light level imaging such as in as-
tronomy, microscopy and the night vision imaging, the appropriate choice for
P (g/f) is Poisson distribution [14]. In the high-brightness conditions the Pois-
son prior should be replaced by the Gaussian one. The R-L algorithm follows
when non-informative prior is chosen for P (f) i.e. P (f) ≺ const. The algorithm
is obtained through the maximization of the log-likelihood function:

f̂ = argmax(logP (g/f)) (3)

The EM algorithm is employed to solve problem in Eq.3 yielding numerically
efficient multiplicative iterative algorithm known as blind R-L algorithm [5]:

Ĥ
(k)
i+1 = [(f (k−1))T (gØ(Ĥ(k)

i f (k−1)))]Ĥ(k)
i (4)



Non-negative Matrix Factorization Approach to Blind Image Deconvolution 969

f̂
(k+1)
i+1 = [(f (k))T

⊗
(HT (gØ(Hf̂

(k)
i f (k−1)))]Ø(ĤT 1) (5)

where index i is used to denote internal iteration of the blind R-L algorithm and
k denotes main iteration index and 1 denotes a column vector with all entries
equal to 1. In Eq.4, symbol ′Ø′ denotes component-wise division, and in Eq.5
symbol ′⊗′ denotes component-wise multiplication.

Multiplicative update rules in Eq.4 and Eq.5, ensure positivity of both blurring
kernel and reconstructed image automatically. Problem with blind R-L algorithm
is that support size K of the blurring kernel must be known or estimated by some
method. This knowledge is not always available a priori. This is especially true
for non-stationary degradation process such as atmospheric turbulence where
the strength of the turbulence, measured by the parameter called scintillation
index, will strongly influence the size of the blur.

2.2 ICA Approach to Single Frame Multichannel BD (SFMICA)

Single frame multi-channel representation was proposed in [10]. It was based on
a bank of 2-D Gabor filters [11] used due to their ability to realize multi-channel
filtering and decomposing an input image into sparse images containing intensity
variation over narrow range of frequency and orientation. Multichannel version
of degraded image is shown to be [10]:

G =

⎛⎜⎜⎝
gT

gT1
...
gTL

⎞⎟⎟⎠ ∼=
⎛⎜⎜⎝

a01 a02 a03
a11 a12 a13
... ... ...
aL1 aL2 aL3

⎞⎟⎟⎠
⎛⎝fT

fTx
fTy

⎞⎠ = AF (6)

where images gl, l = 1, .., L, are produced by Gabor filters, f represents source
image and fx and fy represent spatial derivatives along x and y directions re-
spectively.

The used Gabor filters had the following real and imaginary respectively:

R(x, y) = G(x, y) ∗ cos(π
σ
ϕ(x, y))

I(x, y) = G(x, y) ∗ sin(
π

σ
ϕ(x, y))

where

G(x, y) = exp

(
−x2 + y2

2σ2

)
(7)

ϕ(x, y) = x.cos(
π

4
k) + y.sin(

π

4
k) with k = 0, 1, 2, 3. (8)

The parameter k regulates one of the four spatial orientations. The parameter
σ =

√
2n with n = 1, 2 regulates one of the two spatial frequencies. Consequently,

in SFMICA and later on SFMNMF BD algorithms 16 Gabor filters ( 8 for real
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and 8 for imaginary part with 4 spatial orientations and 2 spatial frequencies )
were used to obtain multichannel version of the observed image.

The unknown elements alm of the mixing matrix absorb the blurring kernel
assuming no a priori information about it including its size. The ICA algorithm
has been applied in [10] to image model Eq.6 in order to extract the source image
f . There is however critical condition for the source image that must hold in order
to ICA algorithm to work. Image f and its spatial derivatives fx and fy must
be statistically independent. This is in general not true as already observed in
[12]. Consequently, quality of the restored image by proposed single frame multi-
channel approach depends on how well each particular image satisfies statistical
independence assumption.

2.3 NMF Approach to Single Frame Multichannel BD (SFMNMF)

It was further shown in [7] that single frame multichannel blind deconvolution
can be represented as:

G =

⎛⎜⎜⎝
gT

gT1
...
gTL

⎞⎟⎟⎠ ∼=
⎛⎜⎜⎝

ã01
ã11
...
ãL1

⎞⎟⎟⎠(fT ) = ãfT (9)

where images gl, l = 1, ..., L, were again produced by Gabor filters. Coefficients of
the unknown blurring kernel were absorbed into coefficients ãlm of the unknown
mixing vector ã. Image model Eq.9 suggests the existence of only one source
image f in the linear image observation model. Spatially oriented Gabor filters
produce images with sparse (super-Gaussian) distributions. If the source image
f is sub-Gaussian, which is the case for natural images, an unknown mixing
vector must be sparse. Because ã and f are non-negative, this enabled in [7]
to formulate blind deconvolution problem as an NMF problem with sparseness
constraint imposed on the mixing vector [15]:

(̂̃a, f̂) = argmin ‖ G− ̂̃af̂T ‖2
subject to sparseness(ã) = Sa

(10)

where ’hat’ denotes estimate and the measure of sparseness Sa is number between
0 and 1, with 1 meaning that all components of vector ã are small and 0 meaning
the opposite [15].

A sparseness constraint Sa must be defined for NMF algorithm. In order to
obtain truly unsupervised image restoration algorithm, Sa is estimated from
the multichannel image G as a ratio between number of sparse images Ls and
overall number of images L + 1. To estimate Ls, kurtosis of each image in G is
estimated. Image gl is considered to be sparse if κ(gl) > δ. In our experiments
we set δ = 0.2.

The SFMNMF algorithm is defined without using any a priori information
about the blurring process or original image. Because this is a deterministic
approach, no assumption about statistical nature of either blur or source image
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is required. Only sparseness constraint must be imposed on the unknown mixing
vector ã. First coefficient in ã can initially be approximated by 1, because it
represents original blurring process. The rest of the coefficients can initially be
set to 0 because they correspond to sparse images. Therefore initial value of the
unknown mixing vector is set to ã(0) = [1 0 0 ... 0]T .

The SFNMF approach to BD does not have to perform source separation
due to the fact that multichannel version G of the observed image g can be
approximated by the product of the unknown mixing vector and source image
f as shown by Eq.9. Because there is only source image present in the observed
image model, there is no need for source separation. This is the main difference
with respect to the approach proposed in [10] and by Eq.6. However, it is still
not clear at the moment how to apply NMF approach to BD when source image
f is sparse. Because the multichannel image G is sparse and original image f
is also sparse, it is not obvious in this case whether sparseness constraint must
be imposed on the source image f only or it should be imposed on both source
image f and unknown mixing vector.

3 Experimental Results

Fig.1 left shows blurred image obtained by digital camera in manually de-focused
mode. Fig.1 right shows image reconstructed by SFNMF algorithm. Image recon-
structed by SFMICA algorithm is shown in Fig.2 left, where FastICA algorithm
with tanh nonlinearity was used. Fig.2 right shows image restored by the blind R-
L algorithm after 5 iterations with the circular blurring kernel and radius ofR = 3
pixels. Because the blurred image, Fig.1, was not highly de-focused blind R-L al-
gorithm with kernel size of R = 3 pixels produced good result but still inferior to
this produced by SFMNMF algorithm shown in Fig. 1 right. Because the size of
the blurring kernel must be known a priori for R-L algorithm, the algorithm had
to be run several times with the various values for the radius R and then the value

Fig. 1. (left) Image degraded by out-of-focus blur obtained by digital camera in man-
ually de-focused mode; (right) Image reconstructed by SFMNMF algorithm
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Fig. 2. (left) Image reconstructed by SFMICA algorithm; (right) Image reconstructed
by blind Richardson-Lucy algorithm after 5 iterations with the circular blurring kernel
with radius of R = 3

that corresponded to the best quality of the restored image was chosen. This was
very time consuming process. In addition to that, it is known that either underes-
timate or overestimate of the size of the blurring kernel leads to severe distortions
of the images reconstructed by blind R-L algorithm and other blind algorithms
of the similar type [1]. There are no such problem with the SFMNMF algorithm.
Image restored by the SFMICA algorithm has poor quality due to the fact that
assumption about statistical independence between source image f and its spatial
derivatives fx and fy does not hold. The SFMNMF algorithm eliminates all these
problems due to the fact that no a priori knowledge about the size of the blurring
kernel or statistical nature of the source image is required.

4 Conclusion

An experimental comparative performance evaluation between novel single frame
multichannel blind deconvolution algorithm based on non-negative matrix fac-
torization with sparseness constraint (SFMNMF) and other representative blind
image deconvolution algorithms was presented. Image deconvolution methods
were compared on image degraded by out-of-focus blur. It has been demonstrated
that novel blind image deconvolution algorithm outperforms other methods. We
suggest that this result is due to the characteristic of the SFMNMF algorithm
which does not require any a priori information about the blurring kernel and
original image.
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Póczos, Barnabás 909
Pérez-Iglesias, Héctor J. 577
Paiva, António R.C. 846
Palmer, Jason A. 854
Park, Hyung-Min 658
Parry, R. Mitchell 666
Pedersen, Michael Syskind 392, 674
Pedzisz, Maciej 862
Pesonen, Erkki 470
Pham, Dinh-Tuan Antoine 335, 868
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Särelä, Jaakko 8
Saruwatari, Hiroshi 649
Sawada, Hiroshi 691
Sazo, Santiago 414
Schechner, Yoav Y. 246
Schmidt, Mikkel N. 700

Schmitz, G. 254
Sekihara, Kensuke 189
Servière, Christine 319
Shan, Zeyong 885
Shen, Hao 893
Shen, Li-Ran 708
Shikano, Kiyohiro 649
Shimizu, Shohei 115, 901
Shi, Xinling 519
Shwartz, Sarit 246
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