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Preface

This volume contains the papers presented at the 6th International Conference
on Independent Component Analysis (ICA) and Blind Source Separation (BSS)
organized in historic Charleston, SC, USA, March 5-8, 2006.

The sixth edition of the conference has brought the latest developments in one
of the most exciting areas of statistical signal processing/unsupervised machine
learning. ICA theory has received attention from several research communities
including machine learning, neural networks, statistical signal processing and
Bayesian modeling. ICA/BSS has applications at the intersection of many sci-
ence and engineering disciplines concerned with understanding and extracting
useful information from data as diverse as neuronal activity and brain images,
bioinformatics, communications, the world wide-web, audio, video, sensor sig-
nals, or time series.

Papers were solicited in all areas of independent component analysis and blind
source separation, including the following: algorithms and architectures (e.g. sta-
tistical learning algorithms based on ICA and BSS using linear/nonlinear mix-
ture models, convolutive and noisy models, extensions of basic models,
combinatorial optimization, kernel methods, graphical models), applications
(innovative applications or fielded systems that use ICA and BSS, including
systems for acoustic signal separation, time series prediction, data mining,
multimedia processing, telecommunications), medical applications (e.g., bioinfor-
matics, neuroimaging, processing of electrocardiograms, electroencephalograms,
magnetoencephalograms, and functional magnetic resonance imaging), speech
and signal processing (e.g., computational auditory speech analysis, source sep-
aration, auditory perception, coding, recognition, synthesis, denoising, segmenta-
tion, dynamic and temporal models), theory (e.g., information theory,
estimation methods, complex methods, time/frequency representations, opti-
mization, sparse representations, asymptotic analysis, unsupervised learning,
coding), visual and sensory processing (e.g., image processing and coding, seg-
mentation, object detection and recognition, motion detection and tracking,
visual scene analysis and interpretation).

Accepted papers covered these topics well, and as a result this volume has
a simple organization based on the six sections: Algorithms and Architectures,
Applications, Medical Applications, Speech and Signal Processing, Theory, and
Visual and Sensory Processing. Within each section, papers were organized al-
phabetically by the first author’s last name. Several topics are widely represented
in the present volume such as audio source separation, bioinformatics, convolu-
tive models of ICA, denoising, estimation methods, linear/nonlinear mixture
models, optimization in ICA/BSS, time/frequency representations, sparse rep-
resentations, and statistical learning.



VI Preface

The 2006 event introduced several innovations compared to previous meet-
ings. The paper review/acceptance system relied on the Program Committee
members’ responsibility in assigning papers for review and drawing acceptance
decisions. For the first time two tutorials were included in the program about
outstanding developments in the area: “Neural theory and neural analysis using
ICA,” lectured by Tony Bell of the University of California at Berkeley, and
“Bayesian machine learning for signal processing,” lectured by Hagai T. Attias
of Golden Metallic, Inc. The conference offered Student Best Paper Awards and
travel support to participating students.

The interest in the conference was demonstrated by the large number of
author registrations and the healthy submission rate. The conference database
included 183 submissions. The review process was more selective than at the
previous conferences and many meritourious submissions could not be accepted
for the final program. In the end, the Program Committee selected 64% of the
papers for inclusion in this volume. The vast majority of papers benefited from
at least four reviews. The authors of accepted papers had the opportunity to
upgrade their manuscripts based on the peer review feedback.

The conference had a combination of high-quality tutorials, research papers,
applications papers, posters, and invited talks, which demonstrated that ICA has
become a mature conference and the main venue for researchers and practitioners
in this area.

Many people deserve credit for their hard work on behalf of the conference.
Thanks go to all paper authors in this volume. In addition we thank the members
of the Program Committee and the reviewers for their efforts in organizing the
reviews, and for reviewing and selecting the papers to be included in this volume.
We are also grateful to the organizers of the special sessions for their work in
inviting, selecting presentations, and putting together the sessions. All these
efforts have been essential in compiling a high-quality scientific program.

Special acknowledgements go to many people whose effort and dedication
contributed to the success of the conference. We thank Jose Principe for his
efforts in organizing the conference, the staff of the University of Florida for
the support with various phases of the process, Thomas Preuss for designing
and helping with the excellent web submission and conference database engine
ConfMaster, and Antonio Paiva for acting as webmaster of the conference. We
thank the members of the ICA Steering Committee for their advice and for
assigning the job to the present team.

Last but not least, the cooperation with Springer in preparation of this vol-
ume and the CD-ROM proceedings was outstanding. We hope you will find the
proceedings interesting and stimulating.

January 2006 Justinian Rosca
Deniz Erdogmus

Jose Principe

Simon Haykin
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Simple LU and QR Based Non-orthogonal
Matrix Joint Diagonalization
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Abstract. A class of simple Jacobi-type algorithms for non-orthogonal
matrix joint diagonalization based on the LU or QR factorization is in-
troduced. By appropriate parametrization of the underlying manifolds,
i.e. using triangular and orthogonal Jacobi matrices we replace a high di-
mensional minimization problem by a sequence of simple one dimensional
minimization problems. In addition, a new scale-invariant cost function
for non-orthogonal joint diagonalization is employed. These algorithms
are step-size free. Numerical simulations demonstrate the efficiency of
the methods.

1 Introduction

The problem of matrix (approximate) Joint Diagonalization (JD) has found ap-
plications in many blind signal processing algorithms, see for example [4,6]. In
one formulation it can be presented as: given a set of n X n symmetric matrices
{C;}Y, find a non-singular B such that the matrices { BC; BT}, are “as diago-
nal as possible”. We call such a B a joint diagonalizer. In general diagonalization
can happen only approximately. If B is restricted to the set of orthogonal n x n
matrices O(n), the problem is referred to as orthogonal JD. Here, we are inter-
ested in non-orthogonal JD or NOJD, i.e. where B is in the set of non-singular
n x n matrices GL(n). The reader is referred to [2,8] for further references on
this subject. We remind that in [7] the NOJD problem is formulated differently.
A natural and effective cost function for orthogonal JD is [4]:

5(0) =Y ||ecie” - diag(eC;67)|, o

i=1

where diag(X) is the diagonal part of matrix X, ||.|| ¢ is the Frobenius norm and
© €0(n). The algorithm introduced in [4], which is a part of the JADE algo-

rithm, to minimize J(©) is an iterative minimization method using orthogonal
(

Jacobi matrices. This algorithm breaks the %fl) dimensional minimization
problem to a sequence of one dimensional minimization problems and also uses
the group structure of O(n) by using multiplicative updates. Here, we extend

this idea to the NOJD problem.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 1-7, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In many cases, such as noisy ICA, the joint diagonalizer sought can not as-
sumed to be orthogonal. The NOJD problem is more challenging than orthogonal
JD. It is natural to consider the NOJD as a minimization problem. Motivating
physical problems such as ICA and BSS suggest that a good cost function J for
NOJD should be invariant under permutation /1 and under scaling by a non-
singular diagonal matrix A, i.e. J(AIIB) = J(B)'. If we extend J; to GL(n)
then clearly J;(AB) # J1(B). In fact by reducing the norm of B we can reduce
J1(B) arbitrarily. In order to still use J; we can extend J; to a smaller subgroup
of GL(n) such as SL(n) [3] or as in [3,8] we can restrict the “reduction” of J; only
to the directions that do not correspond to multiplication by diagonal matrices.
The latter results in updates of the form:

Byy1 = (I + Ag)Byg (2)

where T is the n x n identity matrix, diag(A) = 0 and Ay is found such that
J1(Bg41) is reduced at each step. This can be done, for example, from a gradient
descent step as in [3]. One consequence of the update in (2) is that if the norm of
Ay, is small enough [8] we can guarantee invertibility of By1. Also if we choose
Aj, to be a triangular matrix with diag(Ay) = 0 and if By = I then det By1 =1
for all & and hence ||Bj41l||2 > 1. The significance of the latter is that it ensures
that the cost J; is not reduced merely due to reducing the norm of By. In this
article we consider triangular Ay with only one non-zero element and we refer to
I+ Ay as a Jacobi triangular matrix. In Section 2, we describe a class of NOJD
methods using orthogonal and triangular Jacobi matrices which are based on
the LU or QR factorization of the sought diagonalizer.

Another idea in devising NOJD algorithms is to use cost functions other than
J1. In [8,2] some different cost functions are mentioned. In [1] a scale-invariant
cost function is used for NOJD which has the form:

N
Ra(B) = 3 C: — B\ ding(BC.5T) BT ®)

i=1
Note that Jo(AB) = Jo(B) for diagonal A and that Jo(©) = J1(O) for © € O(n).
Jo is the normalized version of J; in the sense that:

D) < 1(B) < nllBYEA (B) @
nlBI

A drawback of Jy is that in its calculation we need to compute the inverse of
B. In Section 3 we propose a simple algorithm for minimization of Js, too. In
Section 4 we test the developed methods numerically and provide a comparison
with one existing efficient NOJD method.

2 Use of LU and QR Factorizations in Minimization of J;

Any non-singular matrix B admits the LU factorization:
B=I1IALU (5)

! Intuitively, we do not expect that AITC;IIT A can become more diagonal than Cj.
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where IT is a permutation matrix, A is a non-singular diagonal matrix and L
and U are n x n unit lower and upper triangular matrices, respectively. By a
unit triangular matrix we mean a triangular matrix with diagonal elements of
one [5]. The factorization in (5) exactly matches the invariances in NOJD. On
the other hand the SVD factorization, for example, can not match this. Unit
lower and upper triangular matrices of dimension n, form Lie groups denoted by
L(n) and U(n), respectively. This fact simplifies the minimization process a lot.
B also admits the QR factorization:

B = ALO (6)

where © €0(n) and L € L(n). The idea is to find L and U separately in the
LU form or L and © in the QR form such that .J; is reduced at each step
and repeat this till convergence. If the initial condition is the identity matrix,
by construction, the solution’s determinant will remain unity. Furthermore, we
. n(nfl) . ) .. . .
replace each of these ——— dimensional minimization problems by a sequence
of simple one-dimensional problems by using triangular and orthogonal Jacobi
matrices.

2.1 Triangular and Orthogonal Jacobi Matrices

A lower triangular Jacobi matrix with parameter a corresponding to the position
(i,5),i > j is denoted by L;j(a). L;;(a) is an element of £(n) whose (i,5)*"
entry is a and the rest of its off-diagonal entries are zero. In a similar fashion
we define the upper triangular Jacobi matrix with parameter a corresponding
to the position (4, ), < j and denote it by U;;(a). Any element of L(n) (U(n))
can be represented as a product of lower (upper) triangular Jacobi matrices.
We replace the problem of minimization of Jy(L) with L € £(n) which is a
high dimensional problem with a sequence of simple one-dimensional quadratic
problems of finding the parameter of triangular Jacobi matrices for minimizing
J1. The following simple proposition solves the one-dimensional problem. For
brevity the proof is omitted.

Notation: (MATLAB’s indexing) For matrix A, A(k,index) where index is
a row vector denotes a row-vector whose elements are from the k' row of A
indexed by index. A(indez,) is defined similarly. Specificality we are interested
in vectors like A(l,[1:4— 1,7+ 1:n]).

Proposition 1. If a is such that:
SN Cilk, Ll =11+ 1:a)Ci(l,[1: 1= 1,01+ 1:n))T
S Gk [ U= 1,0+ 1, m]) 13

then: with k < 1, & minimizes J1(Lix(a)) and with k > 1, & minimizes J(U(a)).
If vazl |Ci(k,[1:1—1,1+1,:n])||% =0 set a =0, i.e. J1 can not be reduced
by that particular Ly, or Uy,.

d:

(7)

Similarly, if ©;(#) is the Jacobi rotation matrix corresponding to the position
(k,1) and a counter-clockwise rotation by 6, then we have that[4]:
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Proposition 2. If 0y is such that ¥ = [cos 20y,  sin 205;]7 is a unit-norm eigen
vector corresponding to the larger eigen value of the matriz GI,Gy where Gy is
an N X 2 matriz defined as Gy (i,1) = Ci(k, k) — C;(1,1) and Gy (3, 2) = 2C;(k,1)
for 1 <i < N, then 0 minimizes J1(O(0)).

Based on these two propositions we can have two algorithms LUJ1D and QRJ1D.
We juxtapose the two algorithms together:

Algorithm LUJ1D (QRJ1D)

1. set B=1. set e.
2. U-phase (Q-Phase): set U=1(@=1). for 1 <l<k<mn:
— Find a;; = argmin, J; (Ujg(a)) (6 = argming J;(0;x(6))) from Propo-
sition 1 (Proposition 2)
— C; — Uplaw)CiUg(a)” ( Ci — Ow(0i)CiOw(0)" ) and U «
Uik (1)U (O — O4(011)O)
3. L-phase (R-Phase): set L=1. for 1 <l <k <m:
— Find ay; = argmin, J1(Lg(a)) from Proposition 1
— Update C; «— Lkl(akl)CiLkl(akl)T and L « Lkl(akl)L
4. if |LU = I||p > € (|]LO —I||F > ¢€), then B «— LUB (B <« LOB) and goto
2, else end

We could use other stoping criteria such as keeping track of J; or Jy. The
LUJID (as well as QRJ1D) algorithm is iterative in the sense that we find
the L and U matrices repetitively, and it is sequential in the sense that the
problem of finding a triangular matrix minimizing J; has been replaced (or
approximated) by a finite sequence of one dimensional problems. Note that for
updating C;, the matrix multiplications can be realized by few vector scalings
and vector additions. We also mention that, as other Jacobi methods, these
methods are suitable for parallel implementation. For parallel implementation
we may combine (multiply) all the lower triangular matrices corresponding to
the same column and find the minimizing parameters of this new matrix at
one shot 2.

2.2 Row Balancing

In practice, if the rows of the large matrix C' = [C1,...Cn] are not balanced in

their norms, especially when n and N are large, the value found for a can be

inaccurate (see for example (7)). To alleviate this, after every few iterations, we

use updates C; «— DC;D and B «— DBD where D is a diagonal matrix that

approximately balances the rows of C. We choose D(k,k) = ———— where
PP Y A [ =

C(k,:) is the k" row of C. With this modification, the algorithms perform
desirably. As mentioned we could keep track of the values of a cost function
(either J; or J2) as a stopping criterion. Since Jj is not scale invariant and it
can change dramatically as a result of row balancing, Js is more preferable in
this case.

2 This unit triangular matrix is also known as the Gauss transformation [5].
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3 Minimization of J, for Joint Diagonalization

Now, we introduce LU and QR based algorithms using Jacobi matrices for mini-
mization of J. The inverse of a Jacobi matrix is a linear function of its elements.
For example, the inverse of L;;j(a) € £ is L;j(—a). This fact can mitigate the
effect of the presence of B~! in J,. We, again, replace the high dimensional
minimization problem with a sequence of one dimensional problems involving
parameters of Jacobi matrices in LU or QR factorizations. The difference is that
here J2(L;j(a)) is a quadric function of a and in order to minimize it we need
to employ either an iterative scheme or the known formulae to find the roots of
the cubic polynomial W Proposition 3 gives Jo(Lix(a)) and Jo (U (a))
in terms of the elements of C;’s:

Proposition 3. If k < then: Jo(Lix(a)) = aga* + aza® + aza® + a1a + ag and
if k> 1 then Jo(Uj(a)) = asa* + aza® + aza® + a1a + ag , where:

N N N
ay =4 Ci(k,k)?, a3 =8 Ci(k,k)Ci(k,1), az =2 Ci(k,k)*+2C;(k,1)?
i=1 i=1 i=1
and:
N N
ay =4 Ci(k,)Ci(k, k), ag =2 Ci(k,1)? (8)
=1 =1

As mentioned the corresponding minimization is a straight forward task. Similar
to QRJ1D and LUJ1D we can have QRJ2D and LUJ2D algorithms by replacing
steps referring to Proposition 1 with steps referring to Proposition 3. As it can be
seen from the above formula the value of a in minimization of Js(L;x(a)) depends
only on the elements of the matrices {C;}}¥, at positions (k, k) and (k,[). Note
that a for minimization of Jy(L;x(a)) depends on the elements of {C;} at other
positions too. As a result, assuming the computation cost in minimization of
J2(Lig(a)) is mainly due to calculating the coefficients, we can see that the
complexity of calculating a is of the order O(N), whereas for J; (L, (a)) it is of
the order O(Nn). However, the complexity of one iteration (including the costly
update of the C;’s) for all the methods is of the order O(Nn?3). We mention that
here also row balancing proves to be useful.

4 Numerical Experiments

We examine the performance of the developed methods by joint diagonalization
of a set of matrices that are generated as:

C; = ANAT +tN;,  A; = diag(randperm(n))

where diag(z) for a vector x denotes a diagonal matrix whose diagonal is x,
randperm(n) denotes a random permutation of the set {1,2,...,n}, N; is the
symmetric part of a matrix whose elements are i.i.d standard normal random
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variables and t measures the noise contribution. We try n = 10, N = 100 with
values for t = 0 and ¢t = 0.1. A is randomly generated. We apply QRJ1D, LUJ1D,
QRJ2D and LUJ2D methods ? with row balancing to find B. The row balancing
is performed once per each three iterations. The index:

Index(P) = Z(z_:l ma}Z:J|L k| )t Z z_: ]~ Y )

= maxy, |p;|

which measures how far P = BA is from being permuted diagonal is used to
measure the performance. Plots (1.a) and (1.b) show the result. Note that for

Performance Index(BA) vs. number of iterations with t=0 and for different methods

;
-ttt = QRJID

LUJID H
— QRJ2D
~5- LUJ2D
;:'

Il Il Il
0 5 10 15 20 25 30 35
Performance Index(BA) vs. number of iterations with t=0.1 and for different methods

T —
-©- QRJ1D
LUJ1D

—- QRJ2D

Fig. 1. (a), (b) The performance index Index(BA) for different methods with two noise
levels ¢ = 0 and ¢ = 0.1, respectively. (c) Performance index vs. number of iterations
for QRJ2D and FFDIAG with noise level t = 0.1.

t = 0 the index values are very small. Of course, ¢t = 0.1 is a more realistic case
for which the convergence is faster. For both ¢ = 0 and t = 0.1 the QRJ2D
and LUJ2D outperform the J; based methods. Yet, since in simulations this has
not been consistently observed we refrain from any comparison of the methods.
In another experiment we compare the QRJ2D method and the FFDIAG [8]
algorithm for which the available MATLAB code has been used. With ¢ = 0.1
we repeat the previous example and apply both the algorithms. Plot (1.c) shows
the index for the two methods. QRJ2D outperform FFDIAG little bit, both
in terms of speed and performance. Again, this situation may vary in different
experiments. However, we can confirm comparable performance for FFDIAG
and the developed methods.

3 Matlab code is available at http://www.isr.umd.edu/Labs/ISL/ICA2006/
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5 Conclusion

We presented simple NOJD algorithms based on the QR and LU factorizations.
Using Jacobi matrices we replaced high dimensional minimization problems with
a sequence of simple one-dimensional problems. Also a new scale invariant cost
function has been introduced and used for developing NOJD algorithms. A com-
parison with one efficient existing method shows the competence of the developed
methods. The idea of resorting to a matrix factorization and solving a sequence
of minimization sub-problems over one-parameter subgroups can be useful in
other minimization problems over matrix groups.
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Abstract. The denoising source separation framework is extended to
nonlinear separation of image mixtures. MLP networks are used to model
the nonlinear unmixing mapping. Learning is guided by a denoising func-
tion which uses prior knowledge about the sparsity of the edges in images.
The main benefit of the method is that it is simple and computationally
efficient. Separation results on a real-world image mixture proved to be
comparable to those achieved with MISEP.

1 Introduction

Nonlinear source separation refers to separation of sources from their nonlinear
mixtures (for reviews, see [1,2]). It is much harder than linear source separation
because the problem is highly ill-posed. In practice, some type of regularisa-
tion is needed. It is, for instance, possible to require that the nonlinear mixing
or unmixing mapping is smooth or belongs to a restricted class of nonlinear
functions. Alternatively, it is possible to impose restrictions on the extracted
sources. In any case, it is important to reduce the number of available degrees
of freedom.

Denoising source separation (DSS, [3]) has been introduced as a framework for
source separation algorithms, where separation is constructed around denoising
procedures. DSS algorithms can range from almost blind to highly tuned separa-
tion with detailed prior knowledge. The framework has already been successful
in several applications such as biomedical signal processing [3], CDMA signal
recovery [4] and climatology [5].

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 815, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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So far, DSS has been applied to linear separation only, but in this paper
we show that nonlinear separation is possible, too. In the DSS framework, it
is easy to use detailed prior information. This means that separation becomes
possible even if the nonlinear mappings are not carefully regularised. This is a
significant benefit because this translates to significant savings in computational
complexity, particularly in large problems with many sources and mixtures.

The rest of the paper is organised as follows. The nonlinear DSS method
is introduced in Sec. 2. In many respects the separation procedure is exactly
like linear separation except that decorrelation and scaling of the sources need
to be embedded into the denoising whereas in linear separation this can be
implemented by orthogonalising the mixing matrix.

In the rest of the paper, we demonstrate the nonlinear DSS in a real-world
nonlinear separation problem introduced by [6]. The problem is to separate two
images which have been printed on opposite sides of a paper. Due to partial
transparency of the paper, both images are visible from each side, corresponding
to two nonlinear mixtures of the source images. In the DSS framework, separation
is built around a denoising procedure which can be tailored to the problem at
hand. A suitable denoising function which utilises the sparsity of image edges is
introduced in Sec. 3 and separation results are reported in Sec. 4.

Finally, in Sec. 5, we discuss the relation of the proposed nonlinear DSS frame-
work with other nonlinear separation methods and also discuss possible future
research directions.

2 Nonlinear DSS Method

In DSS, separation consists of the following steps:

1. estimation of the current sources using current mapping,
2. denoising of the sources and
3. adaptation of the mapping to match the denoised sources.

Note that the procedure bears resemblance to the EM algorithm: the first two
steps correspond roughly to the E-step and the last step to the M-step. The main
difference is that the EM algorithm is a generative approach where the mixing
mapping is estimated. With generative models assuming uncorrelated sources,
the sources will automatically become approximately uncorrelated due to the
so-called explaining-away phenomenon. This needs to be emulated in DSS using
some type of competition mechanism (see, e.g., [7] for discussion about emulating
explaining away by lateral inhibition).

In linear separation, decorrelation and scaling can be realised by prewhitening
the data and orthogonalising and scaling the projection vectors in the last step.
In nonlinear DSS, this option is not available as there is, in general, no easy
way to make sure that the outputs of a nonlinear mapping are orthogonal and
suitably scaled. Instead, the decorrelation and scaling must be embedded in the
denoising step. Besides this, the basic principle in nonlinear DSS is exactly the
same as in linear DSS.
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Denoising

{ With Competition in
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X MLP 2
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Fig. 1. Schematic representation of the nonlinear DSS method

The method that we have used for nonlinear separation is illustrated in Fig. 1,
for the case of separation of a two-source mixture.

The principle of operation is as follows. The mixture vector X is fed into two
multilayer perceptrons (MLP1 and MLP2), which yield the current estimates of
the sources S as their outputs (step 1). The estimates are then denoised (step 2).
Finally the MLP networks are adapted to the denoised source estimates Sgen1
and Sgen2 (step 3). Provided that the denoising step is well chosen, iterating
these three steps will result in the separation of the mixed sources.

3 Denoising for Image Separation

The crucial element in DSS, with linear or nonlinear mapping, is the choice of
the denoising function. A lengthy discussion of denoising functions and their
properties can be found in [3]. In brief, removing noise helps identify the signal
subspace and removing the interference from other sources promotes separation.
In this paper, we focus on the case where there is an equal number of sources
and mixtures. Therefore, the most important thing is to reduce the interference
from other sources.

3.1 Mixing Process

The image mixtures that were studied correspond to a well known practical situ-
ation: when an image of a paper document is acquired, the back page sometimes
shows through. The paper that was used was onion skin, which leads to a strong
mixture, which is significantly nonlinear. This separation problem has first been
introduced by [6]. We show the effectiveness of the proposed DSS method using
the first, the second and the fifth mixtures from that paper. The source images,
which were printed on the onion skin paper, are shown in Fig. 3a. The acquired
images (mixtures) are shown in Fig. 3b. For more detailed description of the
data aquisition, see [6].
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3.2 Edge Denoising

Looking at the last two pair of mixtures in Fig. 3b, it is evident that despite
strong nonlinear mixtures, a human being can easily separate the images, i.e.,
can tell which features or objects belong in which image, even without knowing
the original images. What features could be used for separating, i.e., denoising,
the images?

A characteristic feature of most natural images is the sparsity of edges. When
an edge is found in the same place in both mixtures, it probably originates from
only one of the source images. Decision about which source the edge belongs to
can be based on the relative strength of the edges in the mixtures. Hence, we
suggest the following denoising scheme:

1. Represent each of the source estimates by their edges.
2. Induce a competition between the edges in different images in such a way
that stronger edges tend to eliminate weaker ones.

Note that the edge features in different natural images are usually almost inde-
pendent, which is not necessarily true for low-frequency features. Consider for
instance natural images of faces.

Edge detection in images. A crude approach for edge detection that already
leads to somewhat acceptable results, is to use simple high-pass filtering to ex-
tract the edges. Another, more advanced possibility is to use wavelet analysis.
We decided to use a wavelet family that forms a spatio-frequency representation
of an image separately with horizontal, vertical and diagonal components (H, V
and D). The representation results in a hierarchy of increasing frequencies. A
schematic illustration of the wavelet transform that was used, is depicted on the
left side of Fig. 2.

Images - P
Al H1 Vi D1 Level 1 = Competition s
g E
3 2
2 2
] Competition , |
" Levelz
Competition
- oo ||
pixel's

Fig. 2. Diagram of the wavelet-based denoising operation
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Fig. 3. a) Source images b) mixture (acquired) images ¢) separation results
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Competition between the edges. Once the edges of both source estimates
have been extracted, one should decide which edge belongs to which image.
On average, edges of the foreground image appear stronger on the foreground
mixture. Hence strong edges on the foreground images should be privileged for
the foreground source estimate. This has been achieved by using a soft winner-
take-all operation, which assigned most of the energy to the stronger component.
The competition was induced in each level of the wavelet transform, except for
the first one that represents the slowest frequencies (see the right side of Fig. 2).

Additionally, the artificial nature of the first pair of mixtures (Fig. 3c, top-
row), was taken into account. Since one of the source images contained only
vertical and the other one only horizontal edges, the horizontal (H) components
were set to zero in one of the images, prior to reconstruction, and the vertical
(V) ones in the other image.

4 Results

The multilayer perceptrons that were used had a hidden layer with five sigmoidal
units. They also had direct ”shortcut” connections between inputs and output, and
their output units were linear. With this structure they were able to implement lin-
ear operations. These perceptrons were initialised to perform an approximate lin-
ear whitening (also called sphering) of the mixture data, subject to the restriction
of being symmetrical (processing the two input components equally). Training was
performed with the adaptive step sizes speedup method [8]. Fifty training epochs
were performed, within each iteration of the global nonlinear DSS procedure. Two-
level description was used in the wavelet decomposition.

Figure 3c shows the results obtained after 10 iterations of the nonlinear DSS.
For comparison, the results obtained with the MISEP technique of nonlinear
ICA can be consulted in [6].

For an objective quality assessment, the four quality measures defined in [6]
were computed. (1 is simply the signal-to-noise ratio (SNR). @2 is also an SNR
measure, but with a correction for possible nonlinear distortions of the inten-
sity scale of the separated images. Q3 is the mutual information between each
separated component and the corresponding source. Finally, Q4 is the mutual
information between each separated component and the opposite source. For @1,
Q2 and @3, higher values are better, while for Q4 lower values are better. See [6]
for more details. Table 1 shows the results, together with the results obtained
with the MISEP method, for comparison (the latter were obtained from [6]).

In the first pair, nonlinear DSS performed better than MISEP. This is prob-
ably due to the specific denoising operation that was used, which is very well
suited to this pair of sources. In the second image pair, nonlinear DSS and
MISEP performed approximately equally on the right-hand image, and MISEP
performed better on the left-hand image. In the third pair, nonlinear DSS per-
formed globally better. This pair of sources is not independent (see [6]), and
therefore nonlinear DSS is probably more suited to handle it than MISEP, which
is an independence based method.
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Table 1. Quality measures. For each pair (Nonlinear DSS and MISEP, for the same
source), the best result is shown in bold. For @1, Q2 and Q3 higher results are better,
while for Q4 lower results are better.

Nonlinear DSS MISEP
Image pair Quality measure source 1 source 2 source 1 source 2

2.23 1.62 2.19 1.29
0.74 0.56 0.56 0.49

Q1 (dB) 14.6  14.1 138 131
1 Q> (dB) 15.3  14.7 147 142
Qs (bit) 2.57 2.50 245  2.39
Qu (bit) 029 027 0.23 0.26
Q: (dB) 6.4 136 9.3  13.9
2 Q> (dB) 95 151 11.0  15.0
Q3 (bit) 162 193 1.83 1.95
Qa (bit) 044 0.39 0.24 040
Q1 (dB) 135 9.2 14.2 64
3 Q2 (dB) 155 9.9 153 7.8
(bit)
(bit)

5 Discussion

In this paper, we reported the first results about nonlinear separation with DSS.
As the results show, separation was relatively successful but still far from perfect.
For instance, from the extracted image pair in the middle of Fig. 3c, it is evident
that the contrast on the image on the left depends on the intensity of the image
on the right (lighter on the right implies better contrast on the left). Furthermore,
we had to resort to early stopping in the separation of the mixtures of natural
images. Such problems could be avoided by improving the denoising function,
for example by introducing a local normalisation of image contrast, or by using
more prior information about the mixing process to restrict the parametric form
of the unmixing mapping.

Of the existing nonlinear separation techniques, MISEP is similar to the one
proposed here in that it, too, estimates a separating MLP network. The main
advantage over MISEP is that the learning procedure is simpler and computa-
tionally more efficient. In MISEP, the Jacobian matrix of the nonlinear mapping
needs to be computed for every sample, inverted and then propagated back
through the MLP network. For two-dimensional case this is not of importance
and MISEP was actually faster in these simulations. However, it means that
MISEP cannot be extended to problems with a large number of sources.

Slow-feature analysis (SFA, [9]) resembles nonlinear DSS in its use of denoising
for guiding separation. In SFA, the denoising is implemented by low-pass filtering
(see [3] for details) and therefore assumes that the sources have slowly changing
temporal or spatial structure. In DSS, the denoising can be more general and
tuned to the problem at hand, such as the presented edge-based denoising for
separating images. Interestingly, SFA has been shown to be applicable to very
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large problems when the set of nonlinearities is fixed and only a linear mapping
is learned [9]. It should therefore be possible to apply nonlinear DSS in very
large problems using a similar restricted mapping.

6 Conclusion

We have presented a nonlinear separation method based on the denoising source
separation framework. The method uses a competition-based denoising stage
which performs a partial separation of the sources, the partially separated com-
ponents being used to iteratively re-train a set of nonlinear separators. The
method was applied to real-life nonlinear mixtures of images, and proved to be
competitive with ICA-based nonlinear separation.
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Abstract. The case of sources that generate multidimensional signals, filling a
subspace of dimensionality K, is considered. Different coordinate axes of the
subspace (“subspace channels”) correspond to different signal portions generated
by each source, e.g., data from different spectral bands or different modalities
may be assigned to different subspace channels. The mixing system that gener-
ates observed signals from the underlying sources is modeled as superimposing
within each subspace channel the contributions of the different sources. This mix-
ing system is constrained as it allows no mixing of data that occurs in different
subspace channels. An algorithm based on second order statistics is given which
leads to a solution in closed form for the separating system. Correlations across
different subspace channels are utilized by the algorithm, whereas properties such
as higher-order statistics or spectral characteristics within subspace channels are
not considered. A permutation problem of aligning different sources’ subspace
channels is solved based on ordering of eigenvalues derived from the separating
system. Effectiveness of the algorithm is demonstrated by application to multidi-
mensional temporally i.i.d. Gaussian signals.

1 Introduction

The notion of multi-dimensional or subspace ICA has been developed in [3] and [6] to
account for the fact that not all sources may reasonably be modeled as one-dimensional
processes with mutual independence. Rather, some sources may generate signals that
fill a multi-dimensional subspace that resists decomposition into one-dimensional mu-
tually independent sources. This can occur both in situations where underlying sources
are unknown and rather a plausible model of the observed data is sought for, and in sit-
uations where analytical reasons dictate a multi-dimensional character of the sources,
such as separation of spectral domain speech, which has originally motivated this work.

The present work suggests a second-order approach to the separation of multidimen-
sional sources and considers a constrained version of the general linear mixing system.

2 Multidimensional Sources and Constrained Mixing

The multidimensional signal generated by source ¢ (i = 1, ..., N) is denoted by s{ (t).
The source is regarded as stationary and ergodic with respect to parameter ¢, t =

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 16-23, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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t1,...,tr, i.e., expectation values can be estimated as sample means w.r.t. t. E.g., ¢
may denote time or spatial position in an image, provided stationarity may be assumed
w.r.t. these variables. Without loss of generality, we limit our treatment to zero mean
sources.

Index f spans the subspace of dimensionality K that is filled by the source, with
f =1,..., K denoting the “subspace channels” (or “channels”) of the source. Source
statistics w.r.t. individual channels f # f’ may differ, hence, expectations cannot be
computed as sample averages across f. Subspace channels, e.g., may correspond to dif-
ferent frequency bands for which data of an audio source or multispectral image data
has been collected. More generally, subspace channels may also correspond to differ-
ent modalities of recorded data, e.g., audio and video data may be stored in different
channels. Another example would be data with non-constant mixing, e.g., image data
with position-dependent mixing parameters; here, different subspace channels could
correspond to different spatial positions.

As they are generated by the same source, data in different subspace channels f # f/
of a single source may in general covary,

E{s{(t) (s{’(t))*} £ 0. (1)

Data from different sources ¢ # j must be uncorrelated since the sources are assumed
to be independent systems. If correlations are computed from source components at two
subspace channels, the result is zero for all pairs of channels (f, f’),

E{s{(t) (] (1)} =0 Vi VS @)

Mixing of sources is assumed to be separable in the sense that the mixing system
only mixes data from corresponding subspace channels of different sources, but does
not mix data “across” different channels. Gathering data from the f-th subspace channel

of all N sources into a single vector s/ (t) = [s7(t),.. ., s% (#)]7, mixing is written as
N

l(t)=>alsl(t) =  xI(t)=ATs () 3)
j=1

This model is compatible with the mixing scenarios in the examples mentioned above.
E.g., multimodal data may plausibly be explained by superposition of basis-patterns
within each modality. A-priori, intermingling of data from different subspace channels
may be regarded as a less significant process and may be ruled out completely in some
applications (e.g., frequency-domain separation of convolutive audio mixtures) on the
grounds of known physics.

From knowledge of the mixed signals x7 (t), only, it is aimed to find an estimate Af
of the mixing matrix so that unmixed signals

u/(t) = [AT]7 1%/ (1) 4)

can be obtained which resemble the source signals.
The simplest approach to solve system (3) would be to perform ICA or second-order
source separation separately for each subspace channel f. For two reasons this approach
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might not be optimal. First, by neglecting information present in the across-channel cor-
relations (Eq.s 1, 2), the obtained separation quality may not be optimal, e.g., because
the data in individual channels might be lacking sufficient higher-order or spectral cues.
In the evaluation (Sec. 4), we demonstrate that across-channel correlations make it pos-
sible to separate data that have no spectral, higher-order or non-stationarity cues.

Second, care has to be taken to reconstruct coherent subspaces, each pertaining to
one source process. When treating Eq. 3 as IV individual source separation problems,
the permutation invariance inherent to blind source separation algorithm applies indi-
vidually to each one, so that gathering the subspace channels for each source process
is a non-trivial issue. A similar problem is frequently encountered in frequency-domain
approaches to convolutive blind source separation. It is shown that across-channel cor-
relations as in Eq.s 1, 2 can be exploited to this end.

3 Solution Based on Correlations Across Subspace Channels

. . . /
Defining the sources’ cross-covariance matrix R{ " computed from channels f and f
as

RIS = B {s/ () (" ()"} )

equations (2) and (1) can be restated such that Rg I s diagonal for all (f '),
R =uB {sl(0) ] 1)} ©®)

where 6;; is the Kronecker symbol.
Since the mixed signals are not independent, their covariance matrix Rgf /,

RIS = B {x/(t) " (1)}, )
is not diagonal. It can be expressed in terms of the sources’ covariance matrix as
’ ! ’ H
R/ = A/ RS/ (Af ) . )

If the mixing system was identical in both subspace channels, A/ = A/ ', then an
eigenvalue equation could be derived in exactly the same manner as presented by [7].
However, since in general Af # A/, the analog derivation is not possible.
It is observed that by forming the products
Q' =R RTRLY ©

S

Q' =R RIV)TIRSY (10)

xr

the algebraic relation between the sources’ Q7" and the mixed signals” Q//" involves
matrix A, but not A,

Q' =[AN QM AN (11)
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Hence, [Af]~! diagonalizes Q/7" for all f’.
An eigenvalue equation for Af can be derived from (11) by forming the product

Qi QI (12)
yielding
ATAIT = QL7 Q1T A, (13)
where ) )
A = Q[T (14)

is diagonal and contains the eigenvalues of Q17" [Q1/]~!.
Similarly, A" is obtained from the Eigenvalue equation

AP AT =QI' QI AT (15)

3.1 Conditions for Identifiability

Equation (13) has a unique solution if all eigenvalues on the diagonal of A/f " are dif-
ferent. Similarly, for (15) it must hold that the diagonal elements of Af / are different.
Since R/f" is diagonal and R}/ = [Rf f]¥| we obtain
AT = AT = (16)
RV RV RITVRIT
Hence, together with (6) it follows that for A/ and Af " to be identifiable it must be
fulfilled that Vi # j

B0 O EE0 6 w07

2 2 2 9 - (17)
S ye{sL o} B0y e(S 0]}

E{

3.2 Solving the Permutation Problem

Since the eigenvectors corresponding to the solution of (13) are unambiguous only upto
their order and a scale factor, the mixing matrix A/ cannot be determined uniquely.
Rather, any matrix A/ which can be expressed as

Al = AfDI P/, (18)

where D/ is a diagonal matrix and P/ a permutation matrix, represents a solution
of (13). Hence, it is only possible to determine A/ upto an unknown rescaling and
permutation of its columns by D7 and P/, respectively. This corresponds to the well-
known invariances inherent to all blind source separation algorithms.

For one-dimensional source signals this is usually not a problem. With multidimen-
sional sources, the components belonging to a single source are reconstructed with
disparate (unknown) order and scale in different subspace channels f # f’ if the corre-
sponding channel-specific permutation and diagonal matrices differ, i.e.,
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p/+p/" DI £Df. (19)

Thus, a coherent picture of each source’s activity cannot be obtained.

No solution is given for the invariance with respect to varied scaling in different
channels. Instead, each row of the estimated unmixing matrix [Af |71 is rescaled to
have unit norm.

The solution to the permutation problem is based on the observation that transforma-
tion (18) results in rearranged eigenvalues AT

AT = [PI)T AT P, (20)

That is, the column permutation of A7 results in a corresponding permutation of the
eigenvalues’ order on the diagonal of A// "

Denote by A7 and A/’ the estimates of the true mixing matrices A/ and Af ', re-
spectively. Without loss of generality, we assume

A=A Af' = AP, Q21

so that the estimates A//" and A"/ of the true eigenvalue matrices AT and AS'S s
respectively, are

A AfF (22)
AT —PTAS TP (23)

Since, according to (16) we have A= ATS /, it follows
A = PTAI'P = PTAI'P. (24)

Therefore, the permutation matrix P can be directly read from the relative ordering
of the eigenvalues on the diagonals of A7f" and AT/, Permutations are corrected by
replacing A7 by A/ PT whose columns are ordered in accordance with Af.

3.3 More Than Two Subspace Channels

Separation. If channels f = 1,..., K, K > 2, are to be used for separation, the
mixing matrix A7 is obtained as the matrix which simultaneously solves the K diago-
nalization equations

Q' = [AS]TI QL AN (25)
Q2 =AM QL2 [AS]TH

QK — [A1]1 QI (AT,

The solution can be obtained by using numerical techniques for simultaneous diagonal-
ization [4].
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Identifiability. Equations (25) have a unique solution (up to rescaling and permutation)
if, analogous to Eq. (17), for each f = 1,..., K there exists at least one subspace
channel f’ for which it is fulfilled that Vi # j

‘E{s{(t) (sg"(t))*}]2 \B{s(t) (s (1))}

2 2 2 2 (26)
S| {0 B o] e o))

E{

Permutations. The permutations must be sorted for each pair of subspace channels
(f, f') by using the method outlined in section 3.2.

4 Evaluation

A synthetic data set of Gaussian i.i.d. noise in two channels is separated. Since the data
in each subspace channel is purely Gaussian, these data cannot be separated by looking
at a single channel only.

The data consisted of four sources si(t),...,s!(t), each containing a two-
dimensional subspace with channels, f = 1,2, and time-points ¢ = 1,...,10000.
Within each subspace channel of each source, the data was chosen to be i.i.d. noise
with Gaussian distribution. To enable separation by the proposed algorithm, correlations
were introduced between the data in different channels of each source by composing the
signals as the sum

s{(t) =€/ (&) + G(t) 27)

of channel-dependent and channel-independent Gaussian random variables flf (t) and
¢i(t), respectively.

Since the data within each subspace channel contained neither cues related to higher-
order statistics, nor cues related to auto-correlation information or non-stationarity, it is
inseparable for any algorithm looking at isolated channels. Only integrating information
across different channels makes separation feasible.

The correlations within each source and the independence of the different sources
are reflected by the covariance matrices R{ f /,

1.99 0.00 0.00 0.00 1.00 0.00 0.00 0.00
11 | 0.000.890.000.00 Lo | 0.000.640.00 0.00
R =1 0.00 0.000.20 0.00 R =1 0.00 0.00 0.16 0.00 (28)
0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04
1.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00
21 | 0.000.640.00 0.00 22 | 0.000.890.00 0.00
R =1 0.00 0.00 0.16 0.00 R =1 0.00 0.00 0.20 0.00 (29)
0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04

Since the different sources are independent, the off-diagonal terms of all covariance
matrices are zero. The diagonals of R!? and R?'! are non-zero due to the correlations
across channels within each source subspace.
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The eigenvalues of equation (16) are computed as
diag A2 = (AV?, ... Ay?) = (0.25, 0.51, 0.64, 1.00). (30)

Since all eigenvalues are different, the condition for identifiability (17) is fulfilled.

The 4 x 4 mixing matrices A and A? were chosen at random. Covariance matrices
of the mixed signals were processed by the proposed algorithm using the eigenvalue
method, yielding the combined mixing-unmixing system [Af]~* Af

—-3.11 -0.03 0.01 —0.02 0.00 0.00 0.00 —1.50

Alj—1 a1 0.00 0.01 —2.43 —0.02 ~2—1,2_| 1.69 0.01 —0.03 —0.02
(AT A= —-0.01 2.39 0.04 —0.01 (A7) A= —-0.011.49 0.02 0.02
0.00 0.00 0.00 2.23 0.00 0.00 —1.43 —0.01

Since each row of the combined system contains only one significant non-zero ele-
ment, the algorithm has successfully separated the signals. The increase in signal-to-
interference ratio from before to after separation amounts to 37.8 dB.

Sources’ components are reconstructed in a different order in the two frequency
channels, as can be seen from the different positions of the non-zero elements of
(A='A)(1) and (A1 A)(2). Therefore, the method for sorting permutations described
in section 3.2 must be employed. To this end, the estimated eigenvalue matrices A(l, 2)

and f&(2, 1) obtained from solving the eigenvalue problems (13) and (15), respect-
ively, are

0.25 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00 A 0.00 0.25 0.00 0.00
0.00 0.00 0.51 0.00 A1) = 0.00 0.00 0.51 0.00 |~ D

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.64

A(1,2) =

By permuting the eigenvalues on the diagonals of A(1,2) and A(2, 1) to occur in the

same order in both matrices, and by performing the same permutations for the rows
of A=1(1) and A~1(2), respectively, it is ensured that the sources’ components are
reconstructed in the same order in both frequencies.

5 Discussion

We have proposed a solution to the BSS problem when sources generate subspaces
with second-order dependencies within each source subspace. Under the assumption of
a constrained mixing system, that can be separated into one linear instantaneous mixing
system per subspace channel, an eigenvalue/joint diagonalization based approach has
been developed for source identification and correct assignment of subspace dimensions
across different sources.

Under additional assumptions, existing second-order separation methods are recov-
ered as special cases of our method. If different subspace channels are derived from
underlying one-dimensional sources by temporal shifting, approaches like SOBI [2],

Molgedey-Schuster [7] and TDSEP [8] are recovered. In this case, the signal s{ (t)

would be constructed from a one-dimensional signal s;(t) as s{ (t) = si(t + 77), for

time-shifts 71, ..., 7, and constant mixing matrices A/ = A would be assumed.
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In the two-input-two-output (TITO) case with a whitening preprocessing step, the
separation equations of our algorithm boil down to the TITO identification of FIR chan-
nels proposed by [S5] (while the permutation alignment step of both algorithms remains
different).

It is straight-forward to combine the techniques outlined here with standard second-
order separation techniques that can employ spectral cues or non-stationarity of vari-
ance within each source subspace channel. Such a combination approach yields a large
number of equations for simultaneous diagonalization that are expected to lead to de-
cent signal separation.

The developed method may be useful in two applications. For the separation of data
with multiple spectral bands, e.g., spectrogram sound data or spectral image data, cor-
relations across different frequency-channels constitute a criterion for source separation
that can be used on its own, or in addition to existing methods of decorrelation with re-
spect to time- or spatial shifts. By using this additional source of information, it should
be possible to improve on the performance of source separation algorithms in a similar
way as, e.g., decorrelation with multiple time-delays can improve over decorrelation
with only a single time-delay.

Concerning separation of time-varying mixtures, present approaches average over
short time segments to estimate the averaged unmixing system. The presented method
may improve the quality of separation since it allows to estimate the unmixing system
for time ¢ taking into account data from time ¢ 4+ 7 even though the unmixing system
at both times is different, and without necessarily averaging over the entire temporal
range t...t + T.
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Abstract. We develop a super-fast kernel density estimation algorithm
(FastKDE) and based on this a fast kernel independent component anal-
ysis algorithm (KDICA). FastKDE calculates the kernel density estima-
tor exactly and its computation only requires sorting n numbers plus
roughly 2n evaluations of the exponential function, where n is the sam-
ple size. KDICA converges as quickly as parametric ICA algorithms such
as FastICA. By comparing with state-of-the-art ICA algorithms, simula-
tion studies show that KDICA is promising for practical usages due to its
computational efficiency as well as statistical efficiency. Some statistical
properties of KDICA are analyzed.

Keywords: independent component analysis, kernel density estimation,
nonparametric methods.

1 Introduction

Independent component analysis (ICA) has been a powerful tool for blind source
separation in many applications such as image and acoustic signal processing, brain
imaging analysis (Hyvarinen, Karhunen and Oja 2001). Suppose that an observ-
able signal, say X, can be modeled as an unknown linear mixture of m mutually
independent hidden sources (S1, - -+, Sp,). Denote S = (S1,--+,Sm)7, so

X = AS (1)

for some matrix A. Assume that {X(¢) : 1 <¢ < n} are n i.i.d. observations of
X, where t is the time index. That is, at time ¢ the hidden sources produce signals
S(t) = (S1(t), -, Sm(t))T that are observed as X(t) = AS(t). The problem is
to recover {S(t) : 1 <t < T} without knowing either A or the distributions of
S. In order to solve this problem, it is necessary that dim(X) > m. Without loss
of generality, we may assume that the dimension of X is the same as S and that
A is an m x m nonsingular matrix. It is well-known that W = A~! (called the
unmixing matrix) is identifiable up to permutation and scale transformations of
the rows of A if S has at most one Gaussian component (Comon, 1994). The
order and scale can be controlled such that W is unique. The ICA problem
becomes to estimate W.

Classical ICA algorithms such as FastICA fit parametric models for the
hidden sources and thus are limited to particular families of hidden sources

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 24-31, 2006.
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(Cardoso 1998). It has been realized that the unknown distributions of hidden
sources can be estimated by nonparametric methods, which can be applied to a
wide range of distribution families. For example, Hastie and Tibshirani (2002)
proposed penalized maximal likelihood based on log-spline density estimation.
Miller and Fisher (2003) proposed the RADICAL algorithm based on the neigh-
borhood density estimator. Vlassis & Motomura (2001), Boscolo et al. (2004) and
recently Shwartz et al. (2005) used kernel density estimation to deal with the
unknown source distributions. These nonparametric algorithms are in general
more accurate and more robust but on the other side are computationally much
heavier than classical parametric ICA algorithms such as FastICA. The compu-
tational bottleneck is the nonparametric density estimators!. There exists other
nonparametric ICA algorithms such as KCCA, KGV (Bach & Jordan 2002),
CFICA (Eriksson & Koivunen 2003), PCFICA (Chen & Bickel 2005) and kernel
mutual information (Gretten et al 2005), which do not deal with the source den-
sity functions directly. Among different nonparametric density estimators, the
kernel density estimator (KDE) is most popular. But naive implementation re-
quires O(n?) complexity, where n is the sample size. In the statistical literature,
the binning and clustering techniques have been used to reduce the complexity,
see Silverman (1986). For example, Pham (2004) applied the binning technique
in the ICA literature. Fast Gauss transform (Greengard & Strain 1991) and
the dual-tree algorithm by Gray & Moore (2003) are alternative fast algorithms
for KDE. All these KDE algorithms are based on different approximation tech-
niques and are faster than O(n?). But these techniques require careful choices
of certain tuning parameters in order to balance computational speed-up and
approximation errors, and occasionally are as slow as O(n?) in order to achieve
good performance.

In this paper, we develop a super-fast kernel density estimation algorithm
(FastICA) and based on this a fast kernel ICA algorithm (KDICA). The remain-
ing of the paper is structured as follows. In Section 2, the FastKDE algorithm is
developed. In Section 3, the KDICA algorithm is described. In Section 4, some
simulation studies are used to show both computational and statistical efficiency
of KDICA. In Section 4, some statistical properties of KDICA are analyzed. Sec-
tion 5 concludes the paper. From now on, vectors and matrices are in bold and
capital. W}, denotes the kth row vector of W.

2 The FastKDE Algorithm

Let {z; : 1 <i < n} C R be from a density function p(-). The kernel density
estimator of p(+) is defined by

b= SR, 2)
i=1

! The neighborhood density estimator used by RADICAL only requires n logn com-
plexity, but it does not produce a continuous objective function w.r.t. W.
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where K(-) is a kernel density function and h is the bin width, usually h =
O(n~'/?). Popular choices of K (-) are symmetric density functions such as Gaus-
sian kernel, Laplacian kernel, Uniform, Epanechnikov, etc. We need to evaluate
p(x) for x € {z; :i=1,---,n}. Direct evaluation requires O(n?) complexity, and
alternative algorithms based on approximation are available with complexity less
than O(n?), but are not fast enough for ICA.

It is known that the choice of K is not crucial for KDE. Here we use the
Laplacian kernel and develop a simple fast algorithm. The Laplacian kernel is
K(z) = le7l®l, 2 € R. Although K () is not differentiable at z = 0, p(z) ~
[ p(z +th)K (t)dt is differentiable wherever p(x) is.

First the sample points {x;} are sorted. Sorting n numbers can be performed
very quickly, for example the quick sort algorithm has complexity in the worst
case O(nlogn) and the bucket sort algorithm requires linear time only. Without
loss of generality, let 1 < --- < z,. It is not hard to show that for k=1,--- n,

i i X k xZ;
o) =y {exp<$;>i;+lexp<—j’> re(=0 3 e())

Then FastKDE can now be described as follows.

Algorithm. FastKDE (given h and z; < --- < z,)

1. Initialize s; = e®1/" and s,, = 0, then calculate for i = 2,---,n,

Tn—i+2 )

2
s; =s,;_1 +exp( f:) and Sp_ij+1 = Sp—it2 + exp(— A

2. For:=1,---,n, compute

X T;

B = 0 (sien(= ) o)

The exponential values {(exp(z;/h),exp(—z;/h)) : 1 < i < n} only need to be
computed once and saved for both Step 1 and Step 2. Then Step 1 and Step 2
require about 3n summations in total. Thus the total complexity of FastKDE is
about 2n exponential evaluations. The bin width h is chosen for simplicity by the
reference method which minimizes [(p(z) — p(x))%dz and gives h = O(n~'/?)
(Silverman 1986). We recommend to use

h=0.66n""° (3)

where ¢ is the sample standard deviation of {x;}.

3 The KDICA Algorithms

In this section we develop the KDICA algorithm, for which the FastKDE al-
gorithm as the key technology is implemented. We use the maximum profile
likelihood and later establish its relationship with criteria derived from informa-
tion theory in Section 5.
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3.1 Maximum Profile Likelihood

Suppose each Sy has a density function 7(-), for & = 1,---,m. Then the
density function of X can be expressed as px (x) = |det(W)|],L, ri(Wix),
where W;, is the kth row of W. The classical maximum likelihood estimator
(MLE) maximizes the likelihood of observations of X with respect to all the
parameters (W, ry, .-+, r,,). However, since (rq,---,7,,) are unknown functions,
model (1) is called semiparametric (Bickel et al. 1993) and direct implemen-
tation of MLE does not work by using finite samples. In this scenario, maxi-
mum profile likelihood (MPLE) can serve as an alternative of MLE (see Murphy
and van der Vaart 2000). If W is known, then 74 is identical to the density
function of W3 X. Thus r; can be estimated by the kernel density estimator
fw, (z) = (nh)™ 300 K((WiX(t) — z)/h), where for the KDICA algorithm
the Laplacian kernel is used for K. The profile likelihood, say [,, is to modify
the likelihood function by replacing ry by 7w, , that is,

W) = - S03 logiw, (WX (1) + log | det (W), (1)

t=1 k=1

Since 1,(W) is just a function of W, the maximum profile likelihood estimator
(MPLE) is defined by

W = argmax l,(W). (5)

Obviously the computational bottleneck of MPLE is to evaluate {7,
(WeX(t)) :t=1,---,n}{ . By using the FastKDE algorithm developed above,
the complexity of MPLE is reduced to O(mn).

3.2 Algorithm

This subsection describes the KDICA algorithm which implements the estimator
(5). Since prewhitening can reduce computational complexity while keeps statisti-
cal consistency (Chen & Bickel 2005), we use this technique to preprocess the data.
That is, let X (t) = ﬁ’;l/ZX(t) fort =1,---,n, where Xx is the sample variance-
covariance matrix of X (t). By assuming unitary variances for S, X canbe separated
by a rotation matrix. Then we seek for a rotation matrix O, such that

o= in F(0), 6
g min F(O) (6)
where F(O) = —> 7", }L S logro, (OrX(t)), and Fo,(s) = nlh S

K((OxX(t) — s)/h) is the Laplacian kernel density estimator for O3 X. O(m)
is the set of m x m rotation matrices. Since O, X has unitary variance, by (3),
h=0.6n"1/5.

The optimization of (6) can be done efficiently by using the gradient algorithm
on the Stiefel manifold (Edelman, Arias & Smith 1999). We refer to Bach &
Jordan (2002) for how to implement it. The KDICA algorithm then has three
steps as follows. Note that the KDICA does not need any tuning parameters.
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Algorithm. KDICA (h,, = 0.6n~1/%)

1. Prewhiten : X(t) = ﬁ’;l/ZX(t) for t = 1,---,n, where Yx is the sample
variance-covariance matrix of {X(¢) : 1 <t < n}.

2. Optimize O = argmaxpco(m) F'(O) using the gradient algorithm.

3. Output W = 04@;1/2.

4 Simulation Studies

We compare KDICA with several well-known ICA algorithms such as the gen-
eralized FastICA (Hyvarinen 1999), JADE (Cardoso 1999) and KGV (Bach and
Jordan 2002). Some recent algorithms such as NPICA (Boscolo et al 2004) and
EFFICA (Chen 2004) are also included for comparison. FastICA is used to
initialize KGV, NPICA, EFFICA and KDICA. We used m = 4 and m = 8
sources with different sample sizes 1000 and 4000. The 8 sources were gener-
ated from: M (0,1), exp(1), t(3), lognorm(1,1), t(5), logistic(0,1), Weibull(3,1),
and exp(10)+A(0,1). When m = 4, the first four distributions were used for
hidden sources. Each experiment was replicated 100 times and the boxplots
of Amari errors were reported. Figure 1 shows that KDICA is comparable to
EFFICA which has been proven to be asymptotically efficient under mild con-
ditions, and like other nonparametric algorithms, KDICA performs much better
than FastICA and JADE. The right panel of Figure 1 reports the average run-
ning time of all algorithms. The plot shows that KDICA is more than 20 times
faster than NPICA which uses the FFT based KDE algorithm and 50 times
faster than KGV. KDICA is about 10 times slower than but comparable to
FastICA and JADE. The KDICA algorithm exhibits very good simulation per-
formance. But due to space limitation, we are not allowed to report further simul-
ation studies.

We next apply the KDICA algorithm for blind separation of mixtures of im-
ages. Two natural images and a Gaussian noise image are given in the first row
of Figure 2, each of size 80 x 70 pixels (black/white). First, each pixel matrix
is reshaped into a column and each column is normalized by its sample stan-
dard deviation. Second, a random 3 x 3 matrix W € (2 is inverted to obtain
three columns {X(¢) € R3 : 1 <t < 5600} and each column is reshaped into a
matrix of size 80 x 70. This gives three contaminated images, as shown in the
second row of Figure 2. Third, {X(¢)} is separated into three vectors by using
KDICA, and each vector is reshaped into an image with 80 x 70 pixels. Three
random restarting points were used in KDICA. It is surprising that human eyes
can hardly tell the difference between natural images and separated images. This
type of experiments have also been done by several different researchers in the
ICA literature (e.g. Yang and Amari 1997).

We ran this experiment 10 times with random W by using KDICA and several
other ICA algorithms. The average running times for the generalized FastICA,
JADE, and KDICA are 0.05, 0.03 and 1.82 seconds separately. Other nonpara-
metric algorithms such as NPICA and KGV take more than one minute.
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Fig. 1. Left panel: Comparison of KDICA and other ICA algorithms in terms of the
Amari errors, where the numbers below the x-labels are the average running time
(seconds/per experiment) of the corresponding algorithms. Right panel: Comparison
of running time of different ICA algorithms.

Fig. 2. Face identification by KDICA, where the three original, mixed and separated
images are given in the three rows separately

5 Statistical Consistency and Efficiency of KDICA

In this Section, we study the statistical properties of the estimator (5). Obviously
as n T oo, fw, — rw,, the density function of W3 X. Thus for n = oo, the
profile likelihood is equal to I,(W) = E Y  logrw, (WipX) + log|det(W)].
Let pw(-) be the joint density function of (W1X,- .-, W;,,X), then pw(Wx) =

x (x)/| det(W)|. Thus the mutual information of (W1X,---, W;,,X) is equal to
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PwW (WX)
HZL:1 Wy, (ka)

Notice that Flogpx(X) does not depend on the parameter W. The above equa-
tion implies that the profile likelihood criteria is equivalent to the mutual infor-
mation criteria which has been popularly used in the ICA literature. Thus we
would expect the statistical performance of KDICA to be similar to or better
than other nonparametric ICA algorithms. General connection between likeli-
hood inference and information theory criteria has been studied by Lee, Giro-
lami, Bell & Sejnowski (2000). We obtain statistical consistency of the KDICA
algorithm as summarized in Theorem 1, whose technical conditions and proof
are omitted here due to space limitation but refer to Chen (2004).

I(W) = Elog = Flogpx(X) — 1,(W).

Theorem 1. Suppose that W is identifiable and the density functions of the hidden
sources are continuous and satisfy mild smoothness conditions. If h,, = O(n*1/5).
Then the estimator W given by (5) is consistent, that is, ||[W — Wp|| = op(1),
where W p is the true unmixing matrix.

6 Concluding Remarks

In this paper, we have presented the FastKDE and KDICA algorithms. Due to
its computational and statistical efficiency, KDICA makes nonparametric ICA
applicable for large size problems of blind source separation. We conjecture that
FastKDE will make it convenient to deal with nonlinear independent component
analysis (Jutten et. al, 2004) in a truly nonparametric manner.
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Factorization: Family of New Algorithms
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Abstract. In this paper we discus a wide class of loss (cost) functions
for non-negative matrix factorization (NMF) and derive several novel
algorithms with improved efficiency and robustness to noise and out-
liers. We review several approaches which allow us to obtain generalized
forms of multiplicative NMF algorithms and unify some existing algo-
rithms. We give also the flexible and relaxed form of the NMF algorithms
to increase convergence speed and impose some desired constraints such
as sparsity and smoothness of components. Moreover, the effects of vari-
ous regularization terms and constraints are clearly shown. The scope of
these results is vast since the proposed generalized divergence functions
include quite large number of useful loss functions such as the squared
Euclidean distance,Kulback-Leibler divergence, Itakura-Saito, Hellinger,
Pearson’s chi-square, and Neyman’s chi-square distances, etc. We have
applied successfully the developed algorithms to blind (or semi blind)
source separation (BSS) where sources can be generally statistically de-
pendent, however they satisfy some other conditions or additional con-
straints such as nonnegativity, sparsity and/or smoothness.

1 Introduction and Problem Formulation

The non-negative matrix factorization (NMF approach is promising in many
applications from engineering to neuroscience since it is designed to capture al-
ternative structures inherent in the data and, possibly to provide more biological
insight [1,2, 3,4, 5, 6]. Lee and Seung introduced NMF in its modern formulation
as a method to decompose patterns or images [3,7].

In this paper we impose nonnegativity constraints and other penalties such
as sparseness and/or smoothness. The NMF decomposes the data matrix Y =
[y(1),y(2),...,y(N)] € R™*N asa product of two matrices A € R™*" and X =
[z(1),z(2),...,z(N)] € R™¥ having only non-negative elements. Although
some decompositions or matrix factorizations provide an exact reconstruction
of the data (i.e., Y = AX), we shall consider here decompositions which are
approximative in nature, i.e.,

* On leave from Warsaw University of Technology, Poland.
** On leave from Institute of Telecommunications, Teleinformatics and Acoustics, Wro-
claw University of Technology, Poland.
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Y=AX+V, A>0, X>0 (1)

or equivalently y(k) = Axz(k) + v(k), ¥ = 1,2,...,N or in a scalar form
as yi(k) = Y0 aijxj(k) +vi(k), i = 1,...,m, where V. & R™N rep-
resents noise or error matrix, y(k) = [y1(k),...,ym(k)]T is a vector of the
observed signals (typically nonnegative) at the discrete time instants k while
x(k) = [z1(k),...,z,(k)]T is a vector of components or source signals at the
same time instant [8]. Our objective is to estimate the mixing (basis) matrix
A and sources X subject to nonnegativity constraints on all entries. Usually,
in BSS applications it is assumed that N >> m > n and n is known or can
be relatively easily estimated using SVD or PCA. Throughout this paper, we
use the following notations: x;(k) = xjk, yi(k) = yix and z;; = [AX];; means
ik-element of the matrix (AX), the ij-th element of the matrix A is denoted
by Qg -

The basic approach to NMF is alternating minimization or alternating pro-
jection: the specified loss function is alternately minimized with respect to two
sets of parameters {z;,} and {a;;}, each time optimizing one set of arguments
while keeping the other one fixed [2, 3, 8].

The most popular adaptive multiplicative algorithms for NMF are based on
two loss functions: 1. square Euclidean distance expressed by the Frobenius norm:

m N

1 1
Dp(A,X) = Y = AX|z =, > > lyie — [AX] i
i=1 k=1
s. t. A5 > 07 3'}](]43) = Tjk > 0 Vi,j, k‘, (2)

which is optimal for a Gaussian distributed noise). Based on of this cost function
Lee and Seung proposed the following multiplicative algorithm:

Y x7),; [AT Y] i,

Q5 < Qi , Tjk Ty .
T AX XT) TR AT A X

3)
which is an extension of the well known ISRA (Image Space Reconstruction
Algorithm) algorithm [9]. Alternative mostly used loss function that intrinsically
ensures non-negativity constraints and it is related to the Poisson likelihood is
a functional based on the Kullback-Leibler divergence [3,5]:

DrrVIAX) = ¥ (stow -+ [AXTu v (@
ik ‘

m
s. t. Tk > 0, Qi > 0, ||aj||1 = Zaij =1.
i=1

Using the alternating minimization approach, Lee and Seung derived the follow-
ing multiplicative learning rules:

Civoy Gu/lAXw) o Vi vk /A X] )

m ) y Qg N
D q=10qj > p=1 Tjp

, ()

Tjk < Tk



34 A. Cichocki, R. Zdunek, and S.-i. Amari

which are extensions (by alternating minimization) of the well known EMML or
Richardson-Lucy algorithm (RLA) [9].

It should be noted that he most existing NMF algorithms perform blind source
separation rather very poorly due to the non-uniqueness of solution and/or the
lack of additional constraints which should be satisfied. The main objective of this
contribution is to propose flexible and improved NMF algorithms that general-
ize or combine several different criteria in order to extract physically meaningful
sources, especially for biomedical signal applications such as EEG and MEG.

2 Generalized Divergences for NMF

There are three large classes of generalized divergences which can be potentially
useful for developing new flexible algorithms for NMF: the Bregman divergences,
Amari’s alpha divergence [1] and the Csiszar’s p-divergences [10]. In this con-
tribution we limit our discussion to the Csiszar’s divergences and as the special
case the alpha divergence. The Csiszar’s p-divergence s defined as

De(ally) = Y- el ') (6)
k=1

where y, > 0,2, > 0 and ¢ : [0,00) — (—00,00) is a function which is convex
on (0,00) and continuous at zero. Depending on the application, we can impose
different restrictions on ¢. In order to use the Csiszéar’s divergence as a distance
measure, we assume that ¢(1) = 0 and that it is strictly convex at 1.

Several basic examples include (u;x = yix/zik):

1. If o(u) = (vu—1)%, then Do_g = i (WY — Vzy)? -Hellinger distance;
2. If p(u) = (u — 1), then Do_p = Dok Wik — 2ik)?/ zi1. -Pearson’s distance;

3. For p(u) = u(u’~t —1)/(8% — B) + (1 — u)/3 we have a family of Amari’s
alpha divergences:

(8) _ C(yar/z)P =1z — yar o '
DY (AXHY)f%:ylk 561 Tt g zik = [AX ik, (7)

where f = (1 + a)/2 [1] (see also Ali-Sllvey, Liese & Vajda, Cressie-Read dis-
parity, Eguchi beta divergence,Kompass) [11,12]. It is interesting to note that
in the special cases for § = 2,0.5, —1, we obtain Pearson’s, Hellinger and Ney-
man’s chi-square distances, respectively (while for the cases 3 = 1 and 8 = 0
the divergences have to be defined as limiting cases as § — 1 and § — 0, re-
spectively). When these limits are evaluated one gets for 5 — 1 the generalized
Kullback-Leibler divergence (called I-divergence) defined by equations (4) and
for B — 0 the dual generalized KL divergence:

[AX

Dr(AX||Y) =) ([AXL'/« log Ui

o ax) + yik) (8)
ik
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As an illustrative example, let us derive a new multiplicative learning rule for
the loss function (8). By applying multiplicative exponentiated gradient (EG)
descent updates:

8DKL ~ 8DKL
Tjp — Tjpexp | —n; o ), @y agexp| =7 7, (9)

we obtain new simple multiplicative learning rules for NMF

m N5 Qij
Yi Yi
Tjk — Tjk €XP <Z n;a4; log( [A)é > = Tk H ( A)é k> ,  (10)
l

i=1
al Yik Yik Gl

Ajj < Gj; €Xp Zﬁjxjk log( (AX]ix = ajj H ( AX] k) , (11)
k=1 Ji

The nonnegative learning rates n;,7; can take different forms. Typically, in order
to guarantee stability of the algorithm we assume that 7; = w (31", aij)”

M = w(zgzl z;,) 1, where w € (0,2) is an over-relaxation parameter. The
above algorithm can be considered as an alternating minimization/projection
extension of the well known SMART (Simultaneous Multiplicative Algebraic
Reconstruction Technique) [9].

Similarly, for 5 # 0 we have developed the following new algorithm (the proof
is omitted due to the lack of space)

m 1/5 N 1/5
Tjk < Tjk (Z Qi (y,-k/[A X}z’k)B) y Qi < Gy (Z (yik/[AX]ik)ﬁ xjk)

i=1 k=1

with normalization of columns of A in each iteration to unit length: a;; «
ai;/ Zp ap;j. The algorithm can be written in a compact matrix form using some
MATLAB notations:

X X.» (AT (Y +¢)./ (AX + 5)).ﬂ) /8 (12)

A A% (((Y +e).) (AX + g)).ﬁXT) B A Adiag{l./sum(A,1)},

where in practice a small constant ¢ = 109 is introduced in order to ensure
non-negativity constraints and avoid possible division by zero.

3 Modified Multiplicative NMF Algorithms with
Regularization, Sparsity and/or Smoothing

Although the standard NMF (without any auxiliary constraints) provides sparse-
ness of its components, we can achieve some control of this sparsity by imposing
additional constraints in addition to non-negativity constraints. In fact, we can
incorporate smoothness or sparsity constraints in several ways. As an illustrative
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example, let us consider a modified alpha divergence with regularization terms
(which is an extension of the generalized divergence proposed recently by Raul
Kompass [12]):

B—1 B—1
_ Y — [AX];, 5-1[AX]ik — Yik
Dio(Y||AX) = 2}; <yk sy THAXE 3 )
+ax fx(X) +aafa(A), (13)

where regularization parameters and terms fa(A) and fx(X) are introduced
to enforce a certain application-dependent characteristic of solutions such as
smoothness or sparsity. For example, in order to achieve sparse representation
we usually choose fx(z;) = z; with constraints z; > 0.

It is interesting to note that such defined divergence for ax = a4 = 0 and
(3 = 2 simplifies to the Frobenius norm (2); for 5 — 0 it tends to Itakura -Saito
distance, and for § — 1 reduces to the Kullback-Leibler divergence (4).

Applying the standard gradient descent to (13) we have

Tik < ik — Nk (Z ayy ([AX15 - ya/AXT ) - axwx<X>> (14)

N
Qij < Qij = T (Z ( [AX]5 ! - yik/[AXﬁk_B) Tjk — aAz/JA(A)> , (15)

k=1
where the functions 14 (A) and ¥x (X)) are defined as
dfa(A) dfx(X)

8&,']' 8l‘jk

Pa(A) = » x(X) = (16)

Similar to the Lee and Seung approach, by choosing suitable learning rates:

Tk A5
y i = N _ ) (17)
Dy ai [AX]B ' Zk:l[AXhﬁk lxjk

we obtain multiplicative update rules:

[0 i (yin/[AX]57) — axwx<X)]e
Zz la’U [AX]

[y Wi/ [AX]57) wjn — aavra(A)).
S [AX]T w

where the additional nonlinear operator is introduced in practice defined as
[x]c = max{e, 2} with a small € in order to avoid zero and negative values.

Another simple approach which can be used for control of sparsification of es-
timated variables is to apply nonlinear projections via suitable nonlinear mono-
tonic functions which increase or decrease the sparseness. In this paper we have
applied a very simple nonlinear transformation x;; « (xjk)Hasx , Vk, where
asx is a small coefficient typically, from 0.001 to 0.005 and it is positive if we
want to increase sparseness of an estimated component and negative if we want
to decrease the sparseness (see Table 1 for practical implementations).

Nik =

Cﬂjk — l'jk ) (18)

; (19)

Ajj < Q45
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Table 1. New Multiplicative NMF algorithms with regularization and/or sparsity con-
straints

Minimization of loss function Iterative Learning Algorithm
subject to a;; > 0 and x;x > 0 Relaxation parameter w € (0, 2)
) w/B 1+asx
Alpha divergence, 8 # 0,08 # 1 Tk — | Tjk (E:’il aij ( Yik )B>
- [A X ]zk

B8 _1—p8 w/B 14agsa
YirZie . — Byie + (B8 = Dz o N Yik  \B
Z;{ G } “” (“” <E’“:l (A xT) ) )
aij < aij/ 32, Gpjs

Pearson and Hellinger distances

(yix — [AX]ix)? _
3 e XL, 3=

2

> (v [AX i — \/yik) ; (B=0.5)

ik m wy\ l+agx
Kulback-Leibler divergence Tjk — < <Z Qij A ylk ) >

N wy\ l4+aga
> (yirlog [Ay;} — — i+ [AX]ir) ( (Zﬂfgk Miﬁ) )
ik ¢

B=1) ai; — ai; /(Y ap;)

was 1+asx
ij
K-L divergence (dual) Tjk — (m]k H ([Ay)? > )

g A
Z(AX]zklg[ X] +ym7[AX]m) ’”(7<a”H( Yik > )

[AX],
(B=0) aij —ai; /(D ap;), iy =w (O ww) "
p k

[[A" Yk — ax ¢ (X)]_

Euclidean distance Tjk < Tjk [ATA X +¢
(Y X7 — a9 4(A)],
1Y — [AX]|[} + ax fx(X) +aafa(A)  ai < ay AX X7, +¢

[ ai (yin/[AX]5 ) — axyx (X))
Dty Qi [AX]“C_I +e

[AX]5; =N e (e /[AXEH)
Z(?Jzkylk—Jr Qij (aij =~y =1
BB - 1) STk [AX] +e
-1 [AX ik — Yik
+AXT;, T) taxfx(X)  ay—ay/> ap), BEI,?2]

Kompass generalized divergence Tjk < Tjk
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4 Simulation Results

All the NMF algorithms discussed in this paper (see Table 1) have been exten-
sively tested for many difficult benchmarks for sparse signals and images with
various statistical distributions. The simulation results confirmed that the de-
veloped algorithms are stable, efficient and provide consistent results for a wide
set of parameters. Due to the limit of space we give here only one illustrative
example: Nine nonnegative sparse signals (some of them are statistically depen-
dent) shown in Fig.1 (a) have been mixed by randomly generated nonnegative
matrix A € R'®*9. To the mixture we added an uniform distributed noise with
SNR=20 dB. The mixed signals are shown in Fig.1 (b). Using the known stan-
dard NMF algorithm (5) we failed to estimate the original sources (see Fig.1 (c)).
However, for the new algorithms we reconstructed successfully all the sources.
Fig. 1 (d) illustrates the results obtained by using algorithm (12) with 5 = 2
and the nonlinear projection with asx = asa = 0.002 (see also Table 1). Similar

“WAA EE /4 T M

100 200 300 400 500 600 700 800 800 1000 ) 100 200 300 400 500 600 700 800 800 1000
()

. MAJ\AMMAW WAMM]

O o su a0 om0 ’ 160 0 30 400 500 aﬁu 700 200 900 1000
Fig. 1. Example 1: (a) The original 9 source signals, (b) observed 18 mixed signals, (c)
Estimated sources using standard Lee-Seung algorithm (5) (d) Estimated source signals
using the new algorithm (12) for 8 = 2 with nonlinear projection asx = asa = 0.002
with SIR=32dB, 20dB, 19dB, 18dB, 23dB, 25dB, 27dB, 26dB, 19dB, for individual
sources respectively
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or even slightly better performance we achieved by applying the other proposed
algorithms with regularization/projection (Table 1).

5 Conclusions and Discussion

In this paper we discuss loss functions which allow to derive us a very large class
of flexible, robust and efficient NMF adaptive algorithms. The optimal choice
of 3 depends on the distribution of data and a priori knowledge about noise. If
such knowledge is not available, we may run NMF algorithms for various sets of
parameters to find an optimal solution. For some tasks and distributions there
are particular divergence measures that are uniquely suited. On the other hand,
if the approximating model fits the true distribution well, then it does not matter
which divergence measure is used, since all of them will give similar results. The
discussed loss functions are jointly convex. This property is stronger than the
individual convexity in {y;x} and {z;}. However, it very difficult to prove the
global convergence of the derived NMF algorithms. Our simulation experiments
indicate that for m >> n, typically m > 5n and N = 103 ~ 10%, we usually
avoid stucking in poor local minima. We found by extensive simulations that reg-
ularization/projections techniques play a key role in improving the performance
of blind source separation by using the NMF approach.
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Abstract. In this paper we show that the underdetermined ICA prob-
lem can be solved using a set of spatial covariance matrices, in case the
sources have sufficiently different temporal autocovariance functions. The
result is based on a link with the decomposition of higher-order tensors
in rank-one terms. We discuss two algorithms and present theoretical
bounds on the number of sources that can be allowed.

1 Introduction

Let us use the following notation for the basic Independent Component Analysis
(ICA) model:
Xt = Ast + 1y, (1)

in which the observation vector x; € C”, the noise vector n; € C” and the source
vector s; € CP are zero-mean. The mixing matrix A € C/*%E. The goal is to
exploit the assumed mutual statistical independence of the source components
to estimate the mixing matrix and/or the source signals from the observations.
The literature on ICA addresses for the most part the so-called overdetermined
case, where J > R. Here, we consider the underdetermined or overcomplete case,
where J < R.

A large class of algorithms for underdetermined ICA starts from the assump-
tion that the sources are (quite) sparse [2,12, 15, 22]. In this case, the scatter plot
typically shows high signal values in the directions of the mixing vectors. These
extrema may be localized by maximization of some clustering measure [2,12].
Some of these techniques are based on an exhaustive search in the mixing vector
space, and are therefore very expensive when there are more than two observa-
tion channels. In a preprocessing step a linear transform may be applied such
that the new representation of the data is sparser (e.g. short-time Fourier trans-
form in the case of audio signals) [2].
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There are two aspects to ICA: estimation of the mixing matrix and separa-
tion of the sources. In the overdetermined case, sources are usually separated
by multiplying the observations with the pseudo-inverse of the mixing matrix
estimate. This is no longer possible in the case of underdetermined mixtures:
for each sample x;, the corresponding source sample s; that satisfies x; = As;
is only known to belong to an affine variety of dimension J — R — hence the
term “underdetermined”. One could estimate the sources and the mixing matrix
simultaneously by exploiting prior knowledge on the sources [15,22]. An other
approach is to estimate the mixing matrix first, and then estimate the sources.
In this paper we will show that the estimation of the mixing matrix is actually
an overdetermined subproblem, even in the case of underdetermined mixtures.
If the source densities are known, then s; may subsequently be estimated by
maximizing the log posterior likelihood [15]. In the case of Laplacian probability
densities, modelling sparse sources, this can be formulated in terms of a linear
programming problem [2, 15]. In the case of finite alphabet signals in telecommu-
nication, one may perform an exhaustive search over all possible combinations.
In this paper we will focus on the estimation of the mixing matrix.

This paper presents new contributions to the class of algebraic algorithms
for underdetermined ICA. In [6, 7, 8] algorithms are derived for the case of two
mixtures and three sources. An arbitrary number of mixing vectors can be esti-
mated from two observation channels by sampling derivatives of sufficiently high
order of the second characteristic function [19]. Algebraic underdetermined ICA
is based on the decomposition of a higher-order tensor in a sum of rank-1 terms.
Some links with the literature on homogeneous polynomials are discussed in [5].

In this paper we assume that the sources are individually correlated in time.
The spatial covariance matrices of the observations then satisfy [1]:

Ci=E{xx{ . }=A D A"

Cx =E{xx{ . } =A Dg- A" (2)

in which Dy = E{stsﬁm} is diagonal, k = 1,..., K. For simplicity, we have
dropped the noise terms; they can be considered as a perturbation of (2).

Let us stack the matrices Cy, ..., Ck in Eq. (2) in a tensor C € C/*/*K,
Define a matrix D € CX*E by (D), = (D), k= 1,...,K, r =1,...,R.
Then we have

R
Cijk = Y _ Air @, iy, ®3)
r=1
which we write as
R
C=) a,cajod, (4)
r=1

in which o denotes the tensor outer product and in which {a,} and {d,} are
the columns of A and D, respectively. Eq. (4) is a decomposition of tensor C in
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a sum of R rank-1 terms. In the literature, this is called a “Canonical Decom-
position” (CANDECOMP) [4] or a “Parallel Factors Model” (PARAFAC) [13].
The minimal number of rank-1 tensors in which a higher-order tensor can be
decomposed, is called its rank. Note that each rank-1 term in (4) consists of the
contribution of one distinct source to C. Hence, in terms of this tensor, “source
separation” amounts to the computation of decomposition (4), provided it is
unique. In contrast to the matrix case, PARAFAC can be unique (up to some
trivial indeterminacies) even when (i) the rank-1 terms are not mutually orthog-
onal and (ii) the rank is greater than the smallest tensor dimension. This allows
for the determination of the mixing matrix (up to a scaling and permutation of
its columns) in the overcomplete case.

Uniqueness issues are discussed in Section 2. Section 3 and 4 present algo-
rithms for the computation of decomposition (4). Section 3 deals with the case
where R > K. More powerful results are obtained for the case where R < K in
Section 4. Section 5 shows the results of some simulations. The presentation is
in terms of complex signals. Whenever the results cannot be directly applied to
real data, this will be explicitly mentioned.

This paper is a short version of [11]. The foundations of Section 4 were laid
in [3]. Some mathematical aspects are developed in more detail in [10].

2 PARAFAC Uniqueness

PARAFAC can only be unique up to permutation of the rank-1 terms and scaling
and counterscaling of the factors of the rank-1 terms. We call the decomposition
in (4) essentially unique if any other matrix pair A’ and D’ that satisfies (4), is
related to A and D via

A=A"P. O D=D P Q, (5)

with €7, Q2 diagonal matrices, satisfying 2; - Q27 - Q92 = I, and P a permutation
matrix.

A first uniqueness result requires the notion of Kruskal-rank or k-rank k(A)
of a matrix A [14]. It is defined as the maximal number %k such that any set of
k columns of A is linearly independent. From [14, 18] we have then immediately
that decomposition (4) is essentially unique when

2k(A) + k(D) > 2(R+1). (6)

For a second uniqueness condition we assume that the number of sources R
does not exceed the number of covariance matrices K. We call decomposition
(4) generic when the (noiseless) entries of A and D can be considered drawn
from continuous probability densities. It turns out that in the complex case the
generic decomposition is essentially unique when 2R(R—1) < J2(J—1)2 [10, 11].
For real-valued tensors, we have uniqueness if R < R4z, given by [18]:

J 2345 6 78
Ripae 246101520 26
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3 Casel: R> K

Generically, a matrix is full rank and full k-rank. Hence, in practice, k(A) =
min(J, R) = J and k(D) = min(K,R) = K if R > K. Eq. (6) then guarantees
identifiability if 2J + K > 2R + 2, i.e., when the number of sources R < J — 1+
K/2.

The standard way to compute PARAFAC, is by means of an “Alternating
Least Squares” (ALS) algorithm [13]. The aim is to minimize the (squared)
Frobenius norm of the difference between C and its estimated decomposition in
rank-1 terms by means of an iteration in which each step consists of fixing a
subset of unknown parameters to their current estimates, and optimizing w.r.t.
the remaining unknowns, followed by fixing an other subset of parameters, and
optimizing w.r.t. the complimentary set, etc. (Like for matrices, the squared
Frobenius norm of a tensor is the sum of the squared moduli of its entries.)
More specifically, one optimizes the cost function

R
fUV.D) =€~ uroviodP. (7)

r=1

Due to the multi-linearity of the model, estimation of one of the arguments,
given the other two, is a classical linear least squares problem. One alternates
between updates of U, V and D. After updating U and V, their columns are
rescaled to unit length, to avoid under- and overflow. Although during the iter-
ation the symmetry of the problem is broken, one supposes that eventually U
and V both converge to A. If some difference remains, then the mixing vector
a, can be estimated as the dominant left singular vector of the matrix [u, v.],
r=1,...,R. The rank of C is estimated by trial-and-error. In [16] an exact line
search is proposed to enhance the convergence of the ALS algorithm.

4 Case2: R<K

In this case, one can still work as in the previous section. However, more pow-
erful results can be derived. We assume that the second uniqueness condition in
Section 2 is satisfied. This implies in particular that R < J2.

We stack the entries of tensor C in a (J? x K) matrix C as follows:

(C)(ifl)J+j,k = Cijk; (&S [17 J]v.] € [17 J]7k € [LK]
Eq. (4) can be written in a matrix format as:
C=(A0A")-DT, (8)

in which ® denotes the Khatri-Rao or column-wise Kronecker product, i.e., A®
A* =[a;®a],...,ar®a}]. If R < min(J?, K), then A®A* and S are generically
full rank [10]. This implies that the number of sources R is simply equal to the
rank of C. Instead of determining it by trial-and-error, as in the previous section,
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it can be estimated as the number of significant singular values of C. Let the
“economy size” Singular Value Decomposition (SVD) of C be given by:

C=U-% .V, (9)

in which U € C7**E and V € CEXE are column-wise orthonormal matrices and
in which 3 € Rf*® is positive diagonal. We deduce from (8) and (9) that there
exists an a priori unknown matrix F € C®*F that satisfies:

A®A*=U-%.F. (10)

If we would know F', then the mixing matrix A would immediately follow. Stack
the entries of the columns m, of A ® A* in (J x J) matrices M, as follows:
(M,)i; = (my)-1)s45, &, = 1,...,J. Then M, is theoretically a rank-one
matrix: M, = a,a’’. This means that a, can, up to an irrelevant scaling factor,
be determined as the left singular vector associated with the largest singular
value of M., 7 =1,..., R.

We will now explain how the matrix F in (10) can be found. Let E, be a
(J x J) matrix in which the rth column of matrix UX is stacked as above. We
have

R
E, =Y (arafl) (F ) (11)
k=1
This means that the matrices E, consist of linear combinations of the rank-one
matrices akaf and that the linear combinations are the entries of the nonsingular
matrix F~1. It would be helpful to have a tool that allows us to determine

whether a matrix is rank-one or not. Such a tool is offered by the following
theorem [3, 10].

Theorem 1. Consider the mapping ®: (X,Y) € C/*/ x C/*/ —— (X, Y) =
P c CIXIXIXT defined by:

Dijkl = TijYkl + YijThi — TilYkj — YilTkj

for all index values. Given X € C7*/ ¢(X,X) = 0 if and only if the rank of X
18 at most one.

From the matrix U in the SVD (9) we construct the set of R? tensors {P,s =
@ (Er, Es)}rseq1,r)- It can now be proved [3,10,11] that generically there exist
exactly R linearly independent symmetric matrices B, € C®*® that satisfy:

R
Z Ptu(Br)tu =0. (12)
t,u=1

Moreover, these matrices can all be diagonalized by F":

B, =F A, -FT

Br=F-Ag - FT (13)
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in which Ay,..., Ag are diagonal. Eqgs. (12) and (13) provide the means to find
F. Eq. (12) is just a linear set of equations, from which the matrices B, may
be computed. Note that, in the absence of noise, F already follows from the
Eigenvalue Decomposition (EVD)

B, -B,'=F-(A;-A;Y-F7L

In practice, it is more reliable to take all matrices in (13) into account. The
set can be simultaneously diagonalized by means of the algorithms presented in
[9, 13,20, 21].

5 Simulations

We conduct a Monte-Carlo experiment consisting of 100 runs. In each run, signal
values are drawn from a standardized complex Gaussian distribution and subse-
quently passed through a filter of which the coefficients are rows of a (16 x 16)
Hadamard matrix. (More specifically, rows 1, 2, 4, 7, 8 and 13 are considered.)
The resulting sources are mixed by means of a matrix of which the entries are
also drawn from a standardized complex Gaussian distribution and additive
Gaussian noise is added.

In the first experiment, we assume J = 4 observation channels and R = 5
sources. Covariance matrices are computed for 7 = 0,...,3. This problem is
quite difficult since two of the (4 x 4) submatrices of D have a condition number
of about 30, which indicates some lack of “diversity” for these submatrices. The
number of samples T' = 10000. The mixing matrix is computed by means of the
ALS algorithm described in Section 3. In Fig. 1 we plot the mean relative error
E{||A — A||/||A||}, in which the norm is the Frobenius-norm. (The columns of
A are normalized to unit length and A represents the optimally ordered and
scaled estimate.)

In the second experiment, we compute 12 covariance matrices (7 =0, ..., 11).
This makes the problem better conditioned. We consider R = 5 or 6 sources.

5 10 15 20 25

SNR (dB)

Fig. 1. Relative error in the first experiment (K = 4)
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error (dB)

40

20 25

SNR (dB)

Fig. 2. Relative error in the second experiment (K = 12)

The number of samples 7' = 5000. The mixing matrix is computed by means
of the algorithm described in Section 4, where we used the algorithm derived in
[20] for the simultaneous diagonalization. The mean relative error is shown in
Fig. 2. Note that the mixing matrix is estimated with an accuracy of two digits.

To have a reference, we also computed the solution by means of the AC-DC
algorithm proposed in [21]. In neither experiment, AC-DC yielded a reliable
estimate of the mixing matrix.

6 Conclusion

In this paper we exploited differences in autocovariance to solve the underde-
termined ICA problem. The joint decomposition of a set of spatial covariance
matrices was interpreted as the decomposition in rank-one terms of the third-
order tensor in which these matrices can be stacked. We distinguished between
two cases, depending on whether the number of covariance matrices K exceeds
the number of sources R or not. For both cases, we presented theoretical bounds
on the number of sources that can be allowed and discussed algebraic algorithms.
We explained that, in the case K > R, the noise-free solution can be obtained by
means of an EVD. The same approach can be used for nonstationary sources, by
considering spatial covariance matrices at different time instances, sets of spatial
time-frequency distributions, etc.

References

1. A. Belouchrani, et al., “A Blind Source Separation Technique using Second Order
Statistics,” IEFEFE Trans. Signal Processing, Vol. 45, No. 2, Feb. 1997, pp. 434-444.

2. P. Bofill, M. Zibulevsky, “Underdetermined Blind Source Separation Using Sparse
Representations,” Signal Process., Vol. 81, 2001, pp. 2353—-2362.

3. J.-F. Cardoso, “Super-symmetric Decomposition of the Fourth-Order Cumulant
Tensor. Blind Identification of More Sources than Sensors,” Proc. ICASSP-91,
Toronto, Canada, 1991, pp. 3109-3112.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Second-Order Blind Identification of Underdetermined Mixtures 47

J. Carroll, J. Chang, “Analysis of Individual Differences in Multidimensional Scal-
ing via an N-way Generalization of “Eckart-Young” Decomposition, Psychome-
trika, Vol. 9, 1970, pp. 267-283.

. P. Comon, B. Mourrain, “Decomposition of Quantics in Sums of Powers of Linear

Forms,” Signal Process., Vol. 53, No. 2, Sept. 1996, pp. 93-107.

. P. Comon, “Blind Identification and Source Separation in 2 x 3 Under-Determined

Mixtures,” IEEE Trans. Signal Processing, Vol. 52, No. 1, Jan. 2004, pp. 11-22.

. L. De Lathauwer, P. Comon, B. De Moor, “ICA Algorithms for 3 Sources and 2

Sensors,” Proc. Sixzth Sig. Proc. Workshop on Higher Order Statistics, Caesarea,
Israel, June 14-16, 1999, pp. 116-120.

. L. De Lathauwer, B. De Moor, J. Vandewalle, “An Algebraic ICA Algorithm for

3 Sources and 2 Sensors,” Proc. Xth Furopean Signal Processing Conference (EU-
SIPCO 2000), Tampere, Finland, Sept. 5-8, 2000.

. L. De Lathauwer, B. De Moor, J. Vandewalle, “Computation of the Canonical De-

composition by Means of Simultaneous Generalized Schur Decomposition”, STAM
J. Matriz Anal. Appl., Vol. 26, 2004, pp. 295-327.

L. De Lathauwer, “A Link between the Canonical Decomposition in Multilinear
Algebra and Simultaneous Matrix Diagonalization,” submitted.

L. De Lathauwer, J. Castaing, “Independent Component Analysis Based on Simul-
taneous Matrix Diagonalization: the Underdetermined Case,” in preparation.

D. Erdogmus, L. Vielva, J.C. Principe, “Nonparametric Estimation and Tracking of
the Mixing Matrix for Underdetermined Blind Source Separation”, Proc. ICA’01,
San Diego, CA, Dec. 2001, pp. 189-194.

R. Harshman, “Foundations of the PARAFAC Procedure: Model and Conditions
for an “Explanatory” Multi-mode Factor Analysis, UCLA Working Papers in Pho-
netics, Vol. 16, 1970, pp. 1-84.

J.B. Kruskal, “Three-Way Arrays: Rank and Uniqueness of Trilinear Decomposi-
tions, with Application to Arithmetic Complexity and Statistics”, Linear Algebra
and its Applications, No. 18, 1977, pp. 95-138.

M. Lewicki, T.J. Sejnowski, “Learning Overcomplete Representations”, Neural
Computation, Vol. 12, 2000, pp. 337-365.

M. Rajih, P. Comon, “Enhanced Line Search: A Novel Method to Accelerate
Parafac,” Proc. Eusipco’05, Antalya, Turkey, Sept. 4-8, 2005.

A. Stegeman, J.M.F. ten Berge, L. De Lathauwer, “Sufficient Conditions for
Uniqueness in Candecomp/Parafac and Indscal with Random Component Matri-
ces,” Psychometrika, to appear.

A. Stegeman, N.D. Sidiropoulos, “On Kruskal’s Uniqueness Condition for the Can-
decomp/Parafac Decomposition,” Tech. Report, Heijmans Inst., Univ. Groningen,
submitted.

A. Taleb, “An Algorithm for the Blind Identification of N Independent Signals
with 2 Sensors,” Proc. 16th Int. Symp. on Signal Processing and Its Applications
(ISSPA’01), Kuala-Lumpur, Malaysia, Aug. 13-16, 2001, pp. 5-8.

A.-J. van der Veen, A. Paulraj, “An Analytical Constant Modulus Algorithm”,
IEEE Trans. Signal Processing, Vol. 44, 1996, pp. 1136-1155.

A. Yeredor, “Non-orthogonal Joint Diagonalization in the Least-Squares Sense with
Application in Blind Source Separation,” IEEE Trans. Signal Processing, Vol. 50,
2002, pp. 1545-1553.

M. Zibulevsky, B.A. Pearlmutter, “Blind Source Separation by Sparse Decompo-
sition in a Signal Dictionary,” in: S.J. Robert, R.M.Everson (Eds.), Independent
Component Analysis: Principles and Practice, Cambridge University Press, Cam-
bridge, 2000.



Differential Fast Fixed-Point BSS for
Underdetermined Linear Instantaneous Mixtures

Yannick Deville, Johanna Chappuis, Shahram Hosseini, and Johan Thomas

Laboratoire d’Astrophysique de Toulouse-Tarbes,
Observatoire Midi-Pyrénées - Université Paul Sabatier,
14 Av. Edouard Belin, 31400 Toulouse, France
{ydeville, shosseini, jthomas}@ast.obs-mip.fr,
johanna.chappuis@airbus.com

Abstract. This paper concerns underdetermined linear instantaneous
blind source separation (BSS), i.e. the case when the number P of ob-
served mixed signals is lower than the number N of sources. We pro-
pose a partial BSS method, which separates P supposedly non-stationary
sources of interest one from the others (while keeping residual compo-
nents for the other N — P, supposedly stationary, "noise” sources). This
method is based on the general differential BSS concept that we in-
troduced before. Unlike our previous basic application of that concept,
this improved method consists of a differential extension of the FastICA
method (which does not apply to underdetermined mixtures), thus keep-
ing the attractive features of the latter algorithm. Our approach is there-
fore based on a differential sphering, followed by the optimization of the
differential kurtosis that we introduce in this paper. Experimental tests
show that this differential method is much more robust to noise than
standard FastICA.

1 Introduction

Blind source separation (BSS) methods [9] aim at restoring a set of N unknown
source signals s;j(n) from a set of P observed signals z;(n). The latter signals
are linear instantaneous mixtures of the source signals in the basic case, i.e.

x(n) = As(n) (1)

where s(n) = [s1(n)...sn(n)]T and z(n) = [z1(n)...zp(n)]T are the source and
observation vectors, and A is a constant mixing matrix. We here assume that the
signals and mixing matrix are real-valued and that the sources are centered and
statistically independent. Moreover, we consider the underdetermined case, i.e.
P < N, and we require that P > 2. Some analyses and statistical BSS methods
have been reported for this difficult case (see e.g. [2],[3],[4],[7],[10]). However, they
set major restrictions on the source properties (discrete sources are especially
considered) and/or on the mixing conditions. Other reported approaches use
in several ways the assumed sparsity of the sources (see e.g. [1] and references
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therein). In [6], we introduced a general differential BSS concept for processing
underdetermined mixtures. In its standard version, we consider the situation
when (at most) P of the N mixed sources are non-stationary while the other
N — P sources (at least) are stationary. The P non-stationary sources are the
signals of interest in this approach, while the N — P stationary sources are
considered as "noise sources”. Our differential BSS concept then achieves the
"partial BSS” of the P sources of interest, i.e. it yields output signals which
each contain contributions from only one of these P sources, still superimposed
with some residual components from the noise sources (this is described in [6]).

Although we first defined this differential BSS concept in a quite general
framework in [6], we then only applied it to a simple but restrictive BSS method,
which is especially limited to P = 2 mixtures and based on slow-convergence al-
gorithms. We here introduce a much more powerful BSS criterion and associated
algorithms, based on differential BSS. This method is obtained by extending
to underdetermined mixtures the kurtotic separation criterion [5] and the as-
sociated, fast converging, fixed-point, FastICA algorithm [8], thus keeping the
attractive features of the latter algorithm.

2 Proposed Differential BSS Method

2.1 A New BSS Criterion Based on Differential Kurtosis

The standard FastICA method [8], which is only applicable to the case when
P = N (or P > N), extracts a source by means of a two-stage procedure. The
first stage consists in transferring the observation vector xz(n) through a real
PxP matrix M, which yields the vector

In the standard FastICA method, M is selected so as to sphere the observations,
i.e. so as to spatially whiten and normalize them. The second stage of that
standard method then consists in deriving an output signal y;(n) as a linear
instantaneous combination of the signals contained by z(n), i.e

yi(n) = w’z(n) 3)

where w is a vector, which is constrained so that || w ||= 1. This vector w is
selected so as to optimize the (non-normalized) kurtosis of y;(n), defined as its
zero-lag 4th-order cumulant

Kyz: (’I’L) = cum(yi (’I’L), yi(”)v Yi (n)7 Yi (n>) (4>

Now consider the underdetermined case, i.e. P < N. We again derive an output
signal y;(n) according to (2) and (3). We aim at defining how to select M and
w, in order to achieve the above-defined partial BSS of the P sources of interest.
To this end, we apply the general differential BSS concept that we described
in [6] to the specific kurtotic criterion used in the standard FastICA method.
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We therefore consider two times n; and ny. We then introduce the differential
(non-normalized) kurtosis that we associate to (4) for these times. We define
this parameter as

DEy,(n1,n2) = Ky, (n2) — Ky, (n1). ()

Let us show that, whereas the standard parameter K, (n) depends on all sources,
its differential version DK, (n1,n2) only depends on the non-stationary sources.
Eq. (1), (2) and (3) yield

yi(n) = v's(n) (6)

where the vector
v=(MA)Tw (7)

includes the effects of the mixing and separating stages. Denoting vy, with ¢ =
1... N, the entries of v, (6) implies that the output signal y;(n) may be expressed
with respect to all sources as

yi(n) = Z VgSq(n). (8)

Using cumulant properties and the assumed independence of all sources, one
derives easily

N
Ky (n) = vKs,(n) 9)

where K (n) is the kurtosis of source sq(n), again defined according to (4). The
standard output kurtosis (9) therefore actually depends on the kurtoses of all
sources. The corresponding differential output kurtosis, defined in (5), may then

be expressed as
N

DKy, (ni,n2) = Zv;lDqu(nl,nz) (10)

q=1

where we define the differential kurtosis DK, (n1,n2) of source s,(n) in the same
way as in (5). Let us now take into account the assumption that P sources are
non-stationary, while the other sources are stationary. We denote by Z the set
containing the P unknown indices of the non-stationary sources. The standard
kurtosis K, (n) of any source s,(n) with ¢ ¢ 7 then takes the same values for
n =ny and n = ng, so that DK (n1,n2) =0 L. Eq. (10) then reduces to

DKy, (n1,n2) = > vyDE, (n1,ny). (11)
qeT

! Note that the ”complete” stationarity of the sources sq(n) with ¢ ¢ 7 is sufficient
for, but not required by, our method: we only need their differential kurtoses (and
their differential powers below) to be zero for the considered times.
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This shows explicitly that this differential parameter only depends on the non-
stationary sources. Moreover, for given sources and times n; and ns, it may be
seen as a function f(.) of the set of variables {v,, ¢ € I}, i.e DK, (n1,n2) is
equal to

flog, €)= vjay (12)

q€T

where the parameters oy are here equal to the differential kurtoses DK, (n1,n2)
of the non-stationary sources. The type of function defined in (12) has been
widely studied in the framework of standard kurtotic BSS methods, i.e. methods
for the case when P = N, because the standard kurtosis used as a BSS criterion
in that case may also be expressed according to (12) 2. The following result
has been established (see [9] p. 173 for the basic 2-source configuration and [5]
for a general proof). Assume that all parameters o, with ¢ € Z are non-zero,
i.e. that all non-stationary sources have non-zero differential kurtoses for the
considered times n; and ny. Consider the variations of the function in (12) on
the P- dimensional unit sphere, i.e. for {vy, ¢ € Z} such that

dovr=1. (13)

q€T

The results obtained in [5],[9] imply in our case that the maxima of the absolute
value of f(vq, ¢ € Z) on the unit sphere are all the points such that only one of
the variables v,, with ¢ € Z, is non zero. Eq. (8) shows that the output signal
yi(n) then contains a contribution from only one non-stationary source (and
contributions from all stationary sources). We thus reach the target partial BSS
for one of the non-stationary sources.

The last aspect of our method that must be defined is how to select the matrix
M and to constrain the vector w (which is the parameter controlled in practice,
unlike v) so that the variables {vy, ¢ € Z} meet condition (13). To this end, we
define the differential correlation matrix of z(n) as

DRZ(TLl, ng) = RZ(TLQ) — Rz(nl) (14)

where R,(n) = E{z(n)z(n)T} is its standard correlation matrix. The differential
correlation matrix DR4(n1,nz) of the sources is defined in the same way. It is
diagonal, since the sources are assumed to be uncorrelated and centered, and its
non-zero entries are the differential powers of the non-stationary sources, i.e.

DP, (1, m2) = B{s3(na)} — E{s3(m)}. (15)

The BSS scale indeterminacy makes it possible to rescale these differential powers
up to positive factors. Therefore, provided the diagonal elements of DRg(n1,n2)

2 In standard approaches, the summation for ¢ € 7 in (12) is performed over all P = N
sources and the parameters o, are equal to the standard kurtoses K, (n) of all these
sources. However, this has no influence on the discussion below, which is based on
the general properties of the type of functions defined by (12).
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corresponding to the P sources of interest are strictly positive for the considered
times n1 and ng, they may be assumed to be equal to 1 without loss of generality.
We then select the matrix M so that

DRZ(TLl,ng) =1 (16)

and we control w so as to meet || w ||= 1. This method is the differential extension
of the sphering stage of the FastICA approach. As shown in Appendix A, these
conditions on M and w guarantee that the constraint (13) is satisfied.

2.2 Summary of Proposed Method

The practical method which results from the above analysis operates as follows:

Step 1 Select two non-overlapping bounded time intervals (which correspond

to m1 and ng in the above theoretical analysis) such that all non-stationary?
sources have non-zero differential kurtoses and positive differential powers (15).
These intervals may be derived by only resorting to the observed signals, x;(n),
e.g. as explained in [6].

Step 2 Compute an estimate ﬁm(nl, ng) of the differential correlation ma-

trix of the observations, defined in the same way as in (14). Then perform the
eigendecomposition of that matrix. This yields a matrix {2 whose columns are
the unit-norm eigenvectors of DR, (n1,n2) and a diagonal matrix A which con-
tains the eigenvalues of l/)ﬁx(nl, ny). Then derive the matrix M = A~1/207T,
This matrix performs a ”differential sphering” of the observations, i.e. it yields
a vector z(n) defined by (2) which meets (16).

Step 3 Create an output signal y;(n) defined by (3), where w is a vector which

satisfies || w ||= 1 and which is adapted so as to maximize the absolute value
of the differential kurtosis of y;(n), defined by (5). Various algorithms may be
used to achieve this optimization, especially by developing differential versions
of algorithms which were previously proposed for the case when P = N. The
most classical approach is based on gradient ascent [9]. We here preferably de-
rive an improved method from the standard fixed-point FastICA algorithm [8],
which yields several advantages with respect to the gradient-based approach,
i.e. fast convergence and no tunable parameters. Our differential fast fixed-
point algorithm then consists in iteratively performing the following couple of
operations:

3 ”non-stationary” here means ”long-term non-stationary”. More precisely, all sources
should be stationary inside each of the two time intervals considered here, so that
their statistics may be estimated for each of these intervals, by time averaging. This
corresponds to ”short-term stationarity”. The above-mentioned ”sources of interest”
(resp. "noise sources”) then consist of source signals whose statistics are requested
to vary (resp. not to vary) from one of the considered time intervals to the other one,
i.e. sources which are ”long-term non-stationary” (resp. ”long-term stationary”).
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1) Differential update of w
w = [E{z(w"2)*} — 3w] e [E{z(w"2)*} — ?)w]n1 (17)
= [E{z(sz)d}]n2 — [E{z(sz)d}]n1 (18)

where the expressions [E{z(sz)S}]n are resp. estimated over the two consid-
ered time intervals. '
2) Normalization of w, to meet condition || w ||=1, i.e

w = w/[[wl]. (19)

Step 4 The non-stationary source signal extracted as y;(n) in Step 3 is then
used to subtract its contributions from all observed signals. The resulting signals
are then processed by using again the above complete procedure, thus extracting
another source, and so on until all non-stationary sources have been extracted.
This corresponds to a deflation procedure, as in the standard FastICA method
[8], except that a differential version of this procedure is required here again.
This differential deflation operates in the same way as the standard deflation,
except that the statistical parameters are replaced by their differential versions,
as in (17). Here again, a parallel (differential) approach [8] could be considered
instead of deflation.

3 Experimental Results

We now illustrate the performance of the proposed method for a configuration
involving 2 linear instantaneous mixtures of 3 artificial sources. Each of the 2 non-
stationary sources si(n) and s2(n) consists of two 5000-sample time windows.
Both sources have a Laplacian distribution p(x) = 1/2exp(—|z|) in the first
window and a uniform distribution over [—0.5,0.5] in the second window. The
"noise” source s3(n) has the same distribution over all 10000 samples.

The overall relationship between the original sources and the outputs of our
BSS system reads y(n) = Cs(n), where C = [c;;] is here a 2x3 matrix. If s;(n)
and so(n) appear without permutation in y(n), c12 and ¢ correspond to the
undesired residual components of sa(n) and s1(n) resp. in y1(n) and ya2(n) and
should ideally be equal to zero. The ”error” associated to the partial BSS of
s1(n) and s2(n) may then be measured by the parameter (E{ciy} + E{c3;}),
where the expectations E{.} are estimated over a set of 100 tests hereafter.
Equivalently, the quality of this partial BSS may be measured by the inverse of
the above error criterion, i.e

1
Q= 2 2"

E{ctr} + E{c3,}
We investigated the evolution of this criterion with respect to the input Signal
to Noise Ratio (SNR) associated to the observed mixed signals, defined as

(20)

SNR;, = \/SNR}n . SNR?, (21)

where the input SNR associated to each mixed signal z;(n) reads
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The input SNR was varied in our tests by changing the magnitude of the noise
source sg(n). Fig. 1 shows the performance of the proposed differential BSS
method and of the standard FastICA algorithm. This proves the effectiveness of
our differential approach, since its quality criterion @ remains almost unchanged
down to quite low input SNRs, i.e less than 5 dB, whereas the performance of
standard FastICA already starts to degrade around 30 dB input SNR?.

SNR:, = i€ {1,2}. (22)

4 Conclusion

In this paper, we considered underdermined BSS. By using our differential BSS
concept, we proposed a partial BSS method which has the same general struc-
ture as the kurtotic methods (especially FastICA) which have been developed
for the case when P = N: it consists of a first stage which uses the second-order
statistics of the signals, followed by a second stage which takes advantage of their
fourth-order statistics. However, these stages are here based on new statistical
parameters, that we introduce as the differential versions of the standard param-
eters. The proposed BSS method thus basically consists of a differential sphering,
followed by the optimization of the differential kurtosis of an output signal. This
optimization may especially be performed by using our differential version of the
fast fixed-point algorithm which has been introduced in the standard FastICA
approach, thus keeping the advantages of the latter algorithm. This has been

4 For very high input SNRs (which is not the target situation for our approach !)
standard FastICA performs slightly better than its differential counterpart. This
probably occurs because the differential statistical parameters involved in the latter
approach are estimated with a slightly lower accuracy than their standard version,
partly because each expectation in the differential parameters is only estimated over
one half of the available signal realization.
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confirmed by our experimental tests, which show that our method is much more
robust to noise than standard FastICA. Our future investigations will especially
aim at extending our differential BSS method to convolutive mixtures.
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A Proof of Condition (13)

We first introduce the matrix H, defined as the diagonal matrix with entries
equal to 1 for indices g € Z and 0 otherwise. We then define the vector

= Hv (23)

which is such that

1611* =" v} (24)

q€T

Besides, Eq. (23) and (7) yield

1812 = w? (MA)H (M A) w. (25)

Moreover, Eq. (1) and (2) yield

DR.(ny,n3) = (MA)DR(n1,n2)(MA)T. (26)
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In addition, the properties of DR4(n1,n2) provided in Section 2.1 mean that
DR,(ny,n2) = H. Eq. (26) and (25) then yield

19]]> = w" DR.(n1, na)w. (27)

Therefore, (27) and (24) show that, if M is selected so that (16) is met and w is
controlled so as to meet || w ||= 1, then the requested condition (13) is met.
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Abstract. For complex-valued multidimensional signals, conventional
decorrelation methods do not completely specify the covariance struc-
ture of the whitened measurements. In recent work [1,2], the concept
of strong-uncorrelation and its importance for complex-valued indepen-
dent component analysis has been identified. Few algorithms for esti-
mating the strong-uncorrelating transform currently exist. This paper
presents two novel algorithms for estimating and computing the strong
uncorrelating transform. The first algorithm uses estimated covariance
and pseudo-covariance matrices, and the second algorithm estimates the
strong uncorrelating transform directly from measurements. An analy-
sis shows that the only stable stationary point of both algorithms pro-
duces the strong uncorrelating transform when the circularity coefficients
of the sources are distinct and positive. Simulations show the efficacy of
the approach in a source clustering task for wireless communications.

1 Introduction

In most treatments of blind source separation and independent component anal-
ysis, the signals are assumed to be real-valued. In a number of practical appli-
cations, however, measurements are naturally represented using complex linear
models. In wireless communications, multiantenna or multiple-input, multiple-
output systems can be conveniently described using a complex-valued mixture
model. Multiple-sensor recordings in various biological signal processing applica-
tions are also well-represented in complex form [3]. These applications motivate
the study of m-dimensional complex-valued signal mixtures of the form

x(k) = As(k), (1)

where A is an arbitrary complex-valued (m x m) matrix and the source signal
vector sequence s(k) contains statistically-independent complex-valued elements.

Recently, work in complex ICA has uncovered a statistical structure that is
unlike the real-valued case [1,2]. In particular, it is possible in some cases to
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identify A in (1) using only second-order statistics from x(k) at time k, a situa-
tion that is distinct from the real-valued case. The key construct in these results
is the strong-uncorrelating transform, which we now describe. Without loss of
generality, assume that the source covariance and pseudo-covariance matrices
are E{s(k)s™ (k)} =T and E{s(k)s”(k)} = A, respectively, where A is a diago-
nal matrix of ordered real-valued entries between zero and one called circularity
coefficients {\;}, @ € {1,...,m}. Define the covariance and pseudo-covariance
matrices of x(k) as

R = B{x(k)x"(k)} = AA" and P = E{x(k)x"(k)} = AAAT, (2)
respectively. Then, the strong-uncorrelating transform W is a matrix satisfying
WRW” =1  and WPW” =4, (3)

If the {\;} values are distinct, then a matrix W satisfying (3) is also a separating
matrix for the mixing model in (1). Additional results for the strong-uncorrelating
transform are in [1,2], and [9] uses the transform to derive kurtosis-based fixed-
point algorithms for complex signal mixtures.

In [1], a technique for computing the strong uncorrelating transform for given
values of R and P is described. This technique employs both an eigenvalue
decomposition of a Hermitian symmetric matrix and the Takagi factorization of
a complex symmetric matrix, the latter of which requires specialized numerical
code [5]. A Jacobi-type rotation method for the Takagi factorization is outlined
in [6], but its numerical and convergence properties are not established. Both
of these methods are computationally-complex and not amenable to situations
in which the second-order data statistics are slowly-varying. Since few methods
for computing the strong-uncorrelation transform currently exist, it is of great
interest to derive simple algorithms for the strong-uncorrelating transform that
could be employed in adaptive estimation and tracking tasks.

This paper describes two simple iterative procedures for computing the strong
uncorrelating transform adaptively. Both procedures can be viewed as extensions
of the method in [7]. The first procedure employs sample estimates of the covari-
ance and pseudo-covariance matrices and is equivariant with respect to the mix-
ing system A when sample-based averages of these matrices are used. The second
equivariant procedure estimates the strong-uncorrelating transform directly from
measurements. Both techniques have the significant advantage of not requiring
estimates of the circularity coefficients {\;} for their successful operation. Sim-
ulations show the abilities of the methods to perform strong-uncorrelation in a
source clustering task for wireless communications.

2 An Adaptive Algorithm for the Strong Uncorrelating
Transform

The simple algorithms described in this paper adapt a row-scaled version of W,
termed W (k), to compute the strong uncorrelating transform. In the interest of
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algorithm simplicity, and because overall output signal scaling is often not an
issue, we define the space of allowable solutions for W (k) as

Jlim W(ERWH (k) =D  and Jlim W(k)PWT (k) =DA, (4)

where D is an arbitrary diagonal matrix of positively-valued diagonal entries. If
R is available or can be estimated, then a W (k) satisfying (4) can be turned
into a W satisfying (3) using W = D=2 W (k).

Our first proposed algorithm for adaptively computing the strong-
uncorrelating transform is

W(k+1):W(k)+u(I—W(k)ﬁ(k)WH(k)—tri[W(k)ﬁ(k)WT(k)])W(k), (5)

where ﬁ(k) and f’(k) are sample estimates of R and P and tri[M] denotes
a matrix whose lower triangular portion is identical to that of M and whose
strictly-upper triangular portion is zero.

The following three theorems describe important theoretical and practical
convergence properties of this algorithm, the proofs of which are in the Appendix.

Theorem 1. The algorithm in (5) is equivariant with respect to the mizing matriz
A under the data model in (1).

Remark. Although the algorithm is equivariant with respect to the mixing
matrix A, its performance is affected by the values in A that depend on the sources.
Thus, convergence of the algorithm may be fast or slow depending on A.

Theorem 2. The space of stationary points for the algorithm in (5) are W = 0
and the set of matrices that satisfy

WRWY =1-D and WPWT =D, (6)

where D is a diagonal matrix of real-valued unordered entries that are all less
than or equal to one.

Theorem 3. Suppose the diagonal entries of A are distinct and positive. Then,
the only locally-stable stationary point of the algorithm in (5) is the unique matriz
W that yields the solution

WRW = (1+A4)7! and WPW7” = (I+A4)7'A. (7)

Remark. We could have A; = 0 or A\; = A; for some diagonal entries of A.
In such cases, there is not one unique stationary point for the algorithm. This
situation is similar to that for the strong uncorrelated transform, in which a
unique solution is not guaranteed. Experience shows that the algorithm still
accurately computes a strong uncorrelating transform satisfying (4) despite the
fact that this transform may not be unique.
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3 A Simple Algorithm for Tracking the Strong
Uncorrelating Transform

In many applications, tracking versions of algorithms are desired. We seek a
simpler version of (5) for tracking a strong-uncorrelating transform solution given
a measured sequence x(k). Our second proposed algorithm replaces R(k) and
P(k) in (5) with their instantaneous values x(k)x (k) and x(k)xT (k) to yield

y (k) =W (k)x(k) (®)

Wk +1)=W (k) + u(k)[W (k) —y (k)y" (k)W (k) trily (k)y" (k)] W (k)] (9)

This algorithm is particularly simple, requiring approximately 5m? complex-
valued multiply/adds at each iteration if an order-recursive procedure is used
to compute tri[y (k)y T (k)]W (k). As in all similar adaptive algorithms, the step
size sequence pu(k) controls both the data-averaging of the x(k) terms and the
convergence performance of W (k). Care must be taken in choosing u(k).

The algorithm in (8)—(9) is equivariant with respect to the mixing matrix A
in (1). Moreover, because the discrete-time and differential averaged versions
of (8)—(9) are the same as those for the updates in (5) and (17), respectively,
Theorems 2 and 3 also apply to (8)—(9). Provided a suitably small step size is
chosen and x(k) is a stationary input signal with distinct non-zero circularity
coefficients, the only stable stationary point of (8)—(9) satisfies (7).

Eqns. (8)—(9) are closely related to simple decorrelation methods for real-
valued signals [8]. One could view (8)—(9) as the complex extension of the nat-
ural gradient method in [8], with the additional feature that it computes the
strong uncorrelating transform if P # 0. In situations where x(k) is circularly-
symmetric (i.e. P = A = 0), then E{trily(k)y” (k)]} ~ 0, such that (8)—(9)
becomes a natural gradient algorithm for ordinary whitening of complex signals.

For source separation or clustering based on non-circularity, both (5) and
(8)—(9) have the nice property that the sources {s;(k)} are grouped in y(k) in
the order of their decreasing circularity coefficients. This property is maintained
despite the fact that the algorithm does not estimate the circularity coefficients
of the sources explicitly. A similar feature was noted for the algorithm in [7].

4 Simulations

We now explore the behaviors of the two proposed algorithms via simulations.
The first set of simulations illustrate the algorithms’ convergence behaviors when
A is identifiable through the strong-uncorrelating transform. Let s(k) contain six
zero-mean, unit-variance, uncorrelated, and non-circular Gaussian sources with
distinct circularity coefficients {A1, A2, A3, A4, A5, A }={1, 0.8, 0.6, 0.4, 0.2, 0.1}.
One hundred simulations are run, in which A is generated as a random mixing
matrix with jointly-Gaussian real and imaginary elements. Both exponential
(e = 0.999), denoted by ’exp’, and growing-window, denoted by ’lin’, averaging
of the sequences x(k)x (k) and x(k)x” (k) with R(0) = P(0) = 0.01I were
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Fig. 1. Convergence of E{yp(k)} and E{vs(k)} in the first simulation example showing
the proposed algorithms’ successful estimation of the strong-uncorrelating transform

used to estimate ﬁ(kz) and 13(/6) for two versions of (5). The combined system
coefficient vector C(k) = W (k)A is computed and used to evaluate two metrics:

1. Pseudo-covariance Diagonalization: This cost verifies that the algorithms
diagonalize the pseudo-covariance and is given by

IC(k)ACT (k) — diag[C(k) ACT (k)]||.
||diag[C (k) ACT (k)]|[7 '

2. Source Separation Without De-rotation: This cost is the average of the
inter-channel interferences of the combined system matrices C(k) and CT'(k), as

|cii (K e (K)|?
E E + —1. (11
Vs (k ~om ( < Maxi<i<n |czl( )2 maxi<i<n e (k)2 (11)

Shown in Figure 1(a) and (b) are the evolutions of E{yp(k)} and E{vs(k)} for
the various algorithms with their associated data averaging methods, where y =
p(k) = 0.007 for (5) and (8)—(9). As can be seen, all versions of the algorithms
diagonalize the pseudo-covariance matrix over time, and they also perform source
separation for this scenario.

We now illustrate the behaviors of the simple algorithm in (8)—(9) in a more-
practical setting. Let s(k) contain two BPSK and one 16-QAM source signals.

e (k) = (10)
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Fig. 2. Output signal constellations obtained by (8)—(9) for a source clustering task in
wireless communications

The circularity coefficients in this situation are {A;, A2, A3} = {1,1,0}. The
strong-uncorrelating transform applied to mixtures of these sources creates a
combined system matrix C(k) = W(k)A in which the first two rows (resp.
columns) are nearly orthogonal to the third row (resp. column). Thus, y (k)
and yo(k) largely contain mixtures of the two real-valued BPSK sources, and
y3(k) largely contains the 16-QAM source. Shown in Figure 2 are the output
signal constellations from y;(k), i € {1,2,3}, 20000 < n < 25000, obtained by
applying (8)—(9) with p = 0.0001 to noisy mixtures of these sources, in which
A contains jointly circular Gaussian entries with variance 2 and the (complex
circular Gaussian) additive noise has variance 0.001. The first two outputs clearly
show mixtures of the two real BPSK sources, whereas the last output contains
the 16-QAM source.

5 Conclusions

The strong-uncorrelating transform is an important linear transform in complex
independent component analysis. This paper describes two simple algorithms for
adaptively estimating the strong-uncorrelating transform from known covariance
and pseudo-covariance matrices and from measured signals, respectively. The al-
gorithms are equivariant to the mixing system, and local stability analyses verify
that they perform strong-uncorrelation reliably. Simulations illustrate their per-
formances in separation and source clustering tasks.
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Appendix

Proof of Theorem 1. Substituting the expressions for R and P in (2) for R(k)
and P(k) in (5) and defining C(k) = W (k)A, an equivalent expression for (5) is

C(k+1) = C(k) + pu (I— C(k)C" (k) — tri[C(k)ACT (k)]) C(k),  (12)
which does not depend on W (k) or A individually.
Proof of Theorem 2. The stationary points of the algorithm are defined by
(I- WRW" — tri WPW']) W = 0. (13)

Clearly, W = 0 defines one stationary point. The other stationary points are
determined by the solutions of M = 0, where

M = trilWPW7] + WRW# 1. (14)

Consider the symmetric and anti-symmetric parts of M separately. The anti-
symmetric part of M is

M, = %(M -MH) = % (triWPWT] — triWPWT 7). (15)

For M, = 0, we must have that WPW7 = D, where D has real-valued but
potentially-unordered entries. Under this condition, the symmetric part of M is

1
M, = 5(M+MH) = WRW? —1+D. (16)
For M, = 0 to hold, we must have WRW = I—-D, which verifies (6). Moreover,

since R is non-negative definite, the diagonal entries of I — D are non-negative,
and the diagonal entries of D must satisfy 0 < d; < 1.
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Proof of Theorem 3. Consider the differential form of the update in (5):

dW
=W WRWHIW — triWPWW. (17)
Substituting the expressions for R and P in (2) into (17) and post-multiplying

both sides of (17) by A, we re-write (17) in the combined matrix C = WA as

dC

7 —C- ccfic - ti[cAcT]C. (18)
First, assume that C is near a stationary point corresponding to W = 0, and
let C = A, where A is a matrix of small complex-valued entries. Then, we can

rewrite the update in (18) in the entries of A as

dA 9
prai A+ 0(45) (19)
where O(A?j) denotes terms that are second and higher-order in the entries of
A. Eq. (19) is exponentially unstable; W = 0 is not a stable stationary point.
Now, assume that C is near a stationary point such that C;C¥ =TI —D and
C,ACT = D, where D is a diagonal matrix of real-valued scaling factors {d;}
satisfying 0 < d; < 1, and let C = (I + A)C,, where A is a matrix of small
complex-valued entries. Then, we can rewrite the update in (18) in the entries
of A as

dA
- =—AI-D)- (- D)A" — tri[AD + DAT] + 0(4F).  (20)
Ignoring second and higher-order terms, the diagonal entries of A evolve as
dA.;
"= 2A, 21
7 (21)

and they are exponentially convergent. The off-diagonal entries of A evolve in a
pairwise coupled manner and for i < j satisfy

dt] _ ( 1+ d])Az] + (—1 + di)Aji (22)
dtj _ Aij + (_1 + dl)Aﬂ — diAji (23)

Considering the real and imaginary parts of A;; = Ag;; + jAr:; and Ay =
AR,ji + .jAI,j'L' jointly, we have

AR,ij —1+d; -1+d; 0 0 AR,z‘j
i AR i _ -1 -1 0 0 AR ji (24)
dt AI,U 0 0 -1+ dj 1—4d; A]ﬂ‘j ’

Arqji 0 0 -1 1-2d; Arji

For these terms to be convergent, the (2 x 2) dominant sub-matrices in the above
transition matrix must have negative real parts. Recall that 0 < d; < 1 for all
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1 <1 < m by the stationary point condition. Then, the eigenvalue of the first
dominant (2 x 2) matrix with the largest real part is

2—d; / di — d;
SO A | 1—4—"—7_ .
Tma:r 2 ( + 4(2 _ dj)Q) (25)

For %e[r%,)m] < 0, we require that d; > d;. With this result, the eigenvalue of
the second dominant (2 x 2) matrix with the largest real part is

2d; — d; d; + d; — 2d;d,
(2) _ T 7 -1 1—4 7 J 1] 2
rmaw 2 ( + \/ (le _ dj)2 ) ? ( 6)

which for d; > d; is guaranteed to satisfy %e[rﬁiw] < 0. Thus, the only stable
stationary point of the algorithm is when dy > dy > -+ > d,.

Now, consider the only stable stationary point solution in (6). Define W =
(I - D)~ '/2W such that

WRW# =1 and WPW” = (I-D)"'D. (27)

It is straightforward to show that d; > d; implies d;/(1 —d;) > d;/(1—d;), such
that (I-D)~!'D has ordered entries. Eqn. (27) is exactly the strong uncorrelating
transform, such that (I-D)™'D = A,orD = (I+A) !Aand I-D = (I+A4)~ L.
This proves the theorem.
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Abstract. In this work, we address the problem of source separation
of post-nonlinear mixtures based on mutual information minimization.
There are two main problems related to the training of separating sys-
tems in this case: the requirement of entropy estimation and the risk
of local convergence. In order to overcome both difficulties, we propose
a training paradigm based on entropy estimation through order statis-
tics and on an evolutionary-based learning algorithm. Simulation results
indicate the validity of the novel approach.

1 Introduction

The problem of blind source separation (BSS) is related to the idea of recovering
a set of source signals from samples that are mixtures of these original signals.
Until the end of the last decade, the majority of the proposed techniques [1]
were designed to solve the standard linear and instantaneous mixture problem.
However, in some applications [2], as a consequence of the nonlinear character of
the sensors, the use of linear BSS algorithms may lead to unsatisfactory results,
which motivates the use of nonlinear mixing models.

An inherent difficulty associated with the separation of nonlinear mixtures
comes from the fact that, in contrast to the linear case, there is no guarantee
that it be always possible to recover the sources solely by means of independent
component analysis (ICA). Nonetheless, the ICA framework still holds in the so-
called Post-Nonlinear (PNL) model as pointed out in [2], and further analyzed
in [3].

In [2], Taleb and Jutten proposed a solid paradigm for inverting the action
of a PNL mixture system that was based on the minimization of the mutual
information between the source estimates. Despite its theoretical solidness, this
approach suffers from two major practical drawbacks. The first one comes from
the fact that the evaluation of the mutual information demands estimation of
the marginal entropies, which may be a rather complex task. The second one is

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 66-73, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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related with the presence of local minima in the mutual information-based cost
function [4], which poses a problem to the adaptation of the separating system
via gradient-based algorithms.

In view of interesting results obtained in entropy estimation using order statis-
tics [6, 7] and of the inherent ability of evolutionary algorithms to perform multi-
modal optimization tasks, in this work we propose a novel paradigm for training
separating systems for PNL mixtures based on these approaches. Related efforts
can be found in [4, 5], in which standard genetic algorithms (GA) are employed
in the learning process. The present proposal differs from them in two aspects:
firstly, we deal with a class of evolutionary techniques that are more robust to
suboptimal convergence than the GA, as observed, for instance, in [8]; secondly,
a significantly different mutual information estimator is adopted in this work.

The work is structured as follows. In Section 2, the fundamentals of the prob-
lem of separating PNL mixtures are discussed. In Section 3, we discuss the major
problems present in the treatment of PNL mixture model and expose the training
algorithm. The simulation results are shown and discussed in Section 4. Finally,
in Section 5, we present the concluding remarks.

2 Problem Statement

Let s(t) = [s1(t), s2(t), ..., sn(t)]" denote N mutually independent sources and
x(t) = [x1(t), 22(t), ..., xn(t)]" be the N mixtures of the source signals, i.c.,
x(t) = ¢(s(t)). The aim of a BSS technique is to recover the source signals based
solely on the observed samples of the mixtures.

The simplest form of BSS problem takes place when the mixture process is
modeled as a linear and instantaneous system, i.e., x(t) = As(t), where A de-
notes the mixing matrix. In this case, separation can be achieved by multiplying
the mixture vector by a separating matrix W, i.e. y(t) = Wx(¢), so that the
elements of y(¢) be mutually statistically independent. This approach, known as
Independent Component Analysis (ICA), allows the recovery of the sources up
to scaling and permutation ambiguities [1].

A natural extension of the standard BSS problem is to consider a nonlinear
mixture process. In such case, the independence hypothesis may no longer be
enough to obtain the original sources, indicating that, in general, the solution
of the nonlinear BSS problem goes beyond the scope of ICA, in the sense that
a priori information about the sources and/or the mixture model is necessary.
Thus, one possible approach to deal with nonlinear BSS would be to restrain the
nonlinear mixing model to a class of separable models, i.e., mixing systems in
which statistical independence of the outputs leads to a perfect recovery of the
sources.

The most representative example of nonlinear separable mixture model is the
PNL system (Fig. 1), where the mixture process is given by x(t) = f(As(¢)),
where £(-) = [f1(-), f2(), ..., fa(-)]" denotes the nonlinearities applied to each
output of the linear mixing stage.
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Fig. 1. The PNL problem structure

In [2], source separation of PNL mixtures was achieved by considering the
separating system y(t) = Wg(x(t)), where g(-) = [g1(), g2(),- ., gu()]T is
set of nonlinear functions that must be carefully adjusted to invert the action
of f(-), and A corresponds to the linear separating matrix. In [2] it has been
shown that it is possible, under some mild conditions over A, W, f(-) and g(-),
to perform source separation in this sort of system relying exclusively on the
ICA framework.

2.1 Source Separation Based on the Minimization of Mutual
Information

According to the previous discussion, independence between the components of
the estimated vector y leads to source separation. Consequently, one possible
criterion to recover the source signals is to minimize the mutual information
between the components of y, given by

I(y)=)_ Hy)~ H(y), (1)

where H (y) represents the joint entropy of y and H (y;) the entropy of each one
of its components. Considering the separating structure depicted in Fig. 1, it is
possible to express the mutual information as [2]

I(y) = Y H(y:) - Hx) —log|det W| — E{log [T lgi(w)l},  (2)

with g¢;(-) denoting the first derivative of the nonlinearity g;(-). It is important
to note that Eq. (2) holds only if the functions g;(-) are invertible, a restriction
that must be taken into account in the development of the learning algorithm.

Eq. (2) states that accurate estimation of the mutual information relies on
proper estimation of both H(y;) and H(x). However, it should be observed
that H(x) does not depend on the parameters of the separating system, and,
moreover, is constant for static mixing systems. As a consequence, it can be
ignored in the learning process, since our goal is to minimize Eq.(2) with respect
to the parameters of the separating system.

On the other hand, H(y;) is closely related with the system under adaptation,
and therefore must be efficiently calculated. In this context, an attractive method
for entropy estimation is that based on order statistics [6], which will be employed
in our proposal.
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3 Proposed Technique

As discussed in the previous section, the mutual information between the esti-
mates of the sources is a consistent cost function. In nonlinear BSS, however,
the problem of convergence to local minima becomes more patent, as we are
adapting a nonlinear system to separate the sources. Hence, the use of more
robust optimization tools is required. In addition to that, the evaluation of the
cost function demands effective methods for estimating the marginal entropies
of each output y;.

In the present work, we employ an evolutionary algorithm, the opt-aiNet,
to locate the global optimum of the cost function. The opt-aiNet has a good
performance in the optimization of multimodal cost functions, as indicated in
[8]. With respect to the entropy estimation task, we adopted a solution based on
order statistics, which is a good compromise between accuracy and complexity.

In the following, we describe the fundamentals of entropy estimation based
on order statistics and the employed search algorithm.

3.1 Entropy Estimation Using Order Statistics

Entropy estimation based on order statistics has been successfully used in blind

source separation of instantaneous mixtures [6, 7]. An attractive feature associated

with this approach is its low computational complexity when compared, for in-

stance, to density estimation methods. However, the use of order statistics does not

easily yield gradient-based algorithms [6], and therefore other optimization tools,

such as the evolutionary algorithm presented in section 3.2, must be employed.
Consider a set of T' samples of the variable Y organized as

ya:r) S Yer) < S YT, (3)

where y(x.1), called kth order statistic [6], is the kth value, in ascending order,
among the T available samples.

In order clarify the applicability of order statistics to the problem of entropy
estimation, let us rewrite the entropy of a random variable Y in terms of its
quantile function Qy (u) = inf{y € ®: P (Y <y) > u}, which is, in fact, the
inverse of the cumulative distribution function Fy (y) = P (Y < y). Using this
definition, it is possible to show that [6]

Hw- [ "y (1) og @y [y ()] dr = / log QY (u)du, (4)

where fy (y) and Q/Y (y) denote the probability density function and the deriva-
tive of the quantile function of y, respectively.

For practical reasons, in order to evaluate the entropy of a given signal y;, it
is necessary to obtain a discretized form of (4), which is given by

L
H(yi) ~ ) _log {QY" (ur) = @y, (“k—l)] Uk — Uk—1 (5)
k=2

Uk — Uk—1 ur —ui

with {u1,ua,...,ur} denoting a set of increasing number in the interval [0, 1].
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The link between entropy estimation and order statistics relies on the close re-
lationship between order statistics and the quantile function. In fact, an estimate
of the value of Qy(T]_“|r1 ), called empirical quantile function, is given by kth or-
der statistic y .7 [6]. Therefore, we approximate the value of Qy (-) in Eq. (5) by
Qy; (u) = yg.1), for k such that Tﬁ’l is the closest point to u. This simplification
results in a fast algorithm for entropy estimation, which is a desirable character-

istic when dealing with optimization using evolutionary algorithms.

3.2 Evolutionary Optimization Technique

The research field of evolutionary computation encompasses a number of opti-
mization techniques whose modus operandi is based on the idea of evolution. In
this work, we shall concentrate our attention on a member of the class of artifi-
cial immune systems (AIS): the opt-aiNet (Optimization version of an Artificial
Immune Network) [9], which can be defined as a multimodal optimization algo-
rithm founded on two theoretical constructs, viz., the notions of clonal selection
and affinity maturation and the idea of immune network.

Under the conceptual framework of clonal selection and affinity maturation,
the immune system is understood as being composed of cells and molecules that
carry receptors for antigens (disease-causing agents). In simple terms, when these
receptors recognize a given antigen, they are stimulated to proliferate. During
the process, controlled mutation takes place, and, thereafter, the individuals
are subjected to a natural selection mechanism that tends to preserve the most
adapted.

A different view on the defense system is provided by the immune network
theory, which states that it is possible for the immune cells and molecules to
interact with each other in a way that engenders “eigen-behaviors” even in the
absence of antigens. As a consequence, the “invasion” could be thought of as a
sort of ”perturbation” of a well-organized state of things.

In order to transform these ideas into an efficient optimization technique, it
is imperative that some parallels be established: the function to be optimized
represents a measure of affinity between antibody and antigen (fitness), each
solution corresponds to the information contained in a given receptor (network
cell), and, finally, the affinity between cells is quantified with the aid of a simple
Euclidean distance measure. Having these concepts in mind, let us expose the
algorithm.

1. Initialization: randomly create initial network cells;
2. Local search: while stopping criterion is not met, do:

(a) Clonal expansion: for each network cell, determine its fitness (an objec-
tive function to be optimized). Generate a set of N, antibodies, named
clones, which are the exact copies of their parent cell;

(b) Affinity maturation: mutate each clone with a rate that is inversely pro-
portional to the fitness of its parent antibody, which itself is kept unmu-
tated. The mutation follows

d =c+aN(0,1), with a = 7 exp (—f*) (6)
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where ¢ and ¢ represent the mutated and the original individual, re-
spectively; 3 is a free parameter that controls the decay of the inverse
exponential function, and f* is the fitness of an individual. For each mu-
tated clone, select the one with highest fitness and calculate the average
fitness of the selected cells;

(¢) Local convergence: if the average fitness of the population does not vary
significantly from one iteration to the other, go to the next step; else,
return to Step 2;

3. Network interactions: determine the similarity between each pair of network
antibodies;

4. Network suppression: eliminate all but one of the network cells whose affinity
with each other is lower than a pre-specified threshold o, and determine the
number of remaining cells in the network;

5. Diversity: introduce a number of new randomly generated cells into the net-
work and return to Step 2.

After initialization, Step 2 is responsible for performing a process of local
search that is based on a fitness-dependent mutation operator; Steps 3 and 4
account for the “immune network character” of the technique, a consequence of
which is the emergence of a method for controlling the population size; at last,
Step 5 allows that new features be introduced in the population. The combina-
tion of these stages produces an algorithm that allies a good balance between
exploration and exploitation with the notion of seeking a parsimonious use of
the available resources.

4 Results

In order to evaluate our technique, we conducted simulations under two different
scenarios. In the first one, two sources with uniform distribution between [—1, 1]
were mixed through a system with

106 fi(e1) = tanh(2e;)
A_ |:05 1 :| and f2(62) :2\5/62 ’ (7>

The second scenario is composed of three uniform sources and a mixing system
defined by

1 0.60.5 filer) =2e;
A=1051 04 and fg(eg) = 2\3/62. (8)
0406 1 f3(63) = 23/63

In both cases, the separating system to be optimized consists of a square
matrix W and a polynomial of order 5, only with odd powers, i.e., y = ax® +
bx3 + cx. In view of the fact that the separability property [2] of the PNL model
requires that g(f(-)) be a monotonic function, the coefficients of each polynomial
were restricted to be positive. The parameters of the opt-aiNet were adjusted
after several experiments, and for both cases we considered the following set:
N =10, N. =17, 3 =60 and o5 = 2.
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In Fig. 2(a), the joint distribution of the mixture signals in the first case is
shown. For this situation, 2000 samples of the mixtures were considered in the
training stage. The joint distribution of the recovered is depicted in Fig. 2(b),
where it can be noted that, despite some residual nonlinear distortion (which
is expected, given that it is impossible to invert the hyperbolic tangent using
a polynomial), the obtained distribution is also uniform, indicating that the
separation task was fulfilled.

-2

-3

-4 i I I
-2 -1 0 1 2

(a) Mixed signals. (b) Recovered signals.

Fig. 2. First scenario

The application of our proposal has also led to accurate source estimates in the
second scenario, as it can be seen in Fig. 3, in which one source and its estimated
version are depicted. In this case, the mean-square error (MSE) between these
signals (after variance normalization) was 0.0335. For the other two sources, the
obtained MSEs were 0.011 and 0.015.

Fig. 3. Second scenario - one of the recovered sources:(—) original source; (- — -) esti-
mated source
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5 Final Comments and Conclusions

In this work, a new training method for PNL separating systems was presented.
The proposal has a twofold motivation: 1) to avoid local convergence, a menace
originated by nonlinear BSS cost functions; and 2) to obtain a fast and effective
method for evaluating the chosen function. In order to meet these requirements,
the proposed technique was founded on two pillars: 1) an evolutionary optimiza-
tion tool, the opt-ailNet, specially-tailored to solve multimodal problems; and 2)
an entropy estimation method based on order statistics. Two sets of simulation
results attest the efficacy of the proposed methodology in representative PNL
scenarios. Finally, a possible extension of this work is to analyze the possibility
of employing more flexible functions in the separating system.
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Abstract. The CICAAR algorithm (convolutive independent compo-
nent analysis with an auto-regressive inverse model) allows separation
of white (i.i.d) source signals from convolutive mixtures. We introduce a
source color model as a simple extension to the CICAAR which allows
for a more parsimonious representation in many practical mixtures. The
new filter-CICAAR allows Bayesian model selection and can help answer
questions like: ’Are we actually dealing with a convolutive mixture?’. We
try to answer this question for EEG data.

1 Introduction

Convolutive ICA (CICA) is a topic of high current interest and several schemes
are now available for recovering mixing matrices and sources signals from
convolutive mixtures, see e.g., [7]. Convolutive models are more complex than
conventional instantaneous models, hence, the issue of model optimization is
important. Convolutive ICA in its basic form concerns reconstruction of the
L+1 mixing matrices A, and the N source signal vectors s; of dimension K,
from a D-dimensional convolutive mixture

L
Xt = ZATSt—T (1)
=0

Here we focus, for simplicity, on the case where the number of sources equals
the number of sensors, D = K.

We have earlier proposed the CICAAR approach for convolutive ICA [4] as a
generalization of Infomax [3] to convolutive mixtures. The CICAAR exploits the
relatively simple structure of the un-mixing system resulting when the inverse
mixing is represented as an autoregressive process. In the original derivation we
were forced to assume white (i.d.d) sources, i.e., that all temporal correlation in
the mixture signals appeared through the convolutive mixing process. A more
economic representation is obtained, however, if we explicitly introduce filters to
represent possible auto-correlation of sources. This added degree of freedom also
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carries another benefit, it allows for optimizing the model structure: How much
correlation should be accounted for by the source filters, and how much should
be accounted for by the convolutive mixture? Explicit source auto-correlation
modeling using filtered white noise has been proposed earlier by several authors,
see e.g., [12,11,2].

2 Modelling Convolutive ICA with Auto-correlated
Sources

We introduce a model for each of the sources
M
se(t) = he(N)zr(t — A) (2)
A=0

where zj(t) represents a whitened version of the source signal. The negative log
likelihood for the model combining (1) and (2) is given by

N
L = Nlog|det Ag| + N> log|hx(0)] = > logp(2) (3)
k t=1

where Z; is a vector of whitened source signal estimates at time t using an
operator that represents the inverse of (2). We can without loss of generality set
hi(0) = 1, then

N

L = Nlog|det Ag| — Zlog p(%t) (4)

t=1
The number of parameters in this model is D?(L + 1) + DM, and it can thus be
minimized if M is increased so as to explain the source auto-correlations allowing
L to be reduced in return. An algorithm for convolutive ICA which includes the
source model can be derived by making a relative straight forward modification
to the equations of the CICAAR algorithm found in [4], see appendix A.

3 Model Selection Protocol

Let M represent a specific choice of model structure (L, M). The Bayes Infor-
mation Criterion (BIC) is given by log p(M|X) ~ log p(X|90,M)—% log N
where dim @ is the number of parameters in the model, and @ are the maximum
likelihood parameters [13]. BIC has previously been used in context of ICA, see
e.g. [5,8,6].

We propose a simple protocol for the dimensions (L, M) of the convolutional-
and source-filters. First, expand the convolution length L without a source model
(i.e. keeping M = 0). This will model the total temporal dependency structure
of the system. The optimal L, denote it Ly, is found by monitoring BIC. Next,
expand the dimensions M of the source model filters while keeping the temporal
dependency constant, i.e. keeping (L + M) = Lyax-
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3.1 Simulation Example

The first experiment is designed to illustrate the protocol for determining the
dimensions of the convolution and the source filters. We create a 2 x 2 system
with known source filters M = 15 and known convolution L = 10...

Source 1 - Sensor 1

Source 2 - Sensor 1

1 F T
ool | leme
Source-1 Source-2 1 Source 1 - Sensor 2 Source 2 - Sensor 2
i e | M 0
oW | e |
0 5 10 15 0 5 10 15 0 5 10 0 5 10
(a) Source color filters, M = 15. (b) Convolutive mixing system, L = 10.

Fig. 1. Filters for generating synthetic data. First, two i.i.d. signals are colored through
their respective filters (a). Then, the colored signals are convolutively mixed using a
distinct filter for each source-sensor path (b).
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(d) BIC optimal is (L, M) = (5, 20).

20

Fig. 2. Mixing filters convolved with respective color filters. (a) for the generating
model. (b) for an estimated model with the 'true’ L and M. (c) for the Bayes optimal

model with (L, M) = (5,20). (d) shows the BIC for various models, and (L,M)=(5,20)
is found optimal.



Model Structure Selection in Convolutive Mixtures 77

Data — Two signals are generated by filtering temporally white signals us-
ing the filters shown on Figure-1(a). The signals are then mixed using the
2 x 2 x 10 system shown on Figure-1(b). The generating model has thus (L, M)
= (10, 15).

Result — First we note, the model is in itself ambiguous; an arbitrary filter can
be applied to a color filter if the inverse filter is applied to the respective column
of mixing filters. Therefore, to compare results we inspect the system as a whole,
i.e. source color convolved with a column of mixing filters.

Figure-2 displays convolutive mixing systems where each mixing channel has
been convolved with the respective color filter; (a) for the true generating model;
(b) a run with the algorithm using N = 300000 training samples and using the
(L, M) of the generating model. The result is perfect up to sign and scaling
ICA ambiguities; (c¢) shows a run with the algorithm using N = 100000 and the
Bayes optimal choice of (L, M) = (5,20) c.f. (d), in the finite data the protocol
has found a parsimonious model with similar overall transfer function. We first
study the learning curves, i.e., how does the training set dimension N, influence
learning. We use the likelihood evaluated on a test set to measure the learning of
different models. We now compare learning curves for three models; one which
is the generating model (L, M) = (10,15), one (L, M) = (25,0) which is more
complex but fully capable of imitating the first model, and (L, M) = (5,20)
which is optimal according to BIC. Figure-3 shows learning curves of the three
models, the test set is Niest = 300000 samples. The uniform improvements in
generalization of the ‘optimal model’ further underlines the importance of model
selection in the context of convolutive mixing.

830000
X O R -
_ 825000 5 g A
) oo 0 I
S 820000 |* .
E 815000 |- ]
810000 | .
805000 — - . ?'*;““‘ﬁ
10 10 10

Size of training set [samples]

Fig. 3. Learning curves for three models: The generating model (L, M) = (10,15), a
model with (L, M) = (25,0) which is more complex but fully capable of ‘imitating’ the
first model, and the model (L, M) = (5,20) which was found Bayes optimal according
to BIC. The generalization error is estimated as the likelihood of a test set (Niest =
300000). The uniform improvements in generalization of the ‘optimal model’ further
underlines the importance of model selection in the context.
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3.2 Rejecting Convolution in an Instantaneous Mixture

We will now illustrate the importance of the source color filters when dealing with
the following fundamental question: 'Do we learn anything by using Convolutive
ICA instead of instantaneous ICA?"—or put in another way: ’should L be larger
than zero?’.

Data — To produce an instantaneous mixture we now mix the two colored
sources from before using a random matrix.

Result — Figure-4(a) shows the result of using Bayesian model selection without
allowing for a filter (M = 0). This corresponds to model selection in a conven-
tional convolutive model. Since the signals are non-white L is detected and the
model BIC simply increases as function of L up to the maximum which is at-
tained at a value of L = 15. Next, in Figure-4(b) we fix L + M = 15. Models
with a greater L have at least the same capability as a model with a lower L;
but as expected lower L are preferable because the models has fewer parameters.
Thus, thanks to the filters, we now get the correct answer: "There is no evidence
of convolutive ICA’.

_28000 -31640 T T T T T T
L+M=15 -
32000 |t -31680 . I
-36000 [ 1
O S Bi720 p e 1
-40000 |+ .
44000 | 1 -31760 e
3 M:O """ e - +
_48000 | L | L _31800 1 1 1 1 1 1 1
0 5 10 15 20 25 02468101214
L L
(a) M =0 (b) M+L=15

Fig. 4. (a) the result of using Bayesian model selection without allowing for a filter
(M = 0). Since the signals are non-white L is detected at a value of L = 15. (b) We
fix L + M = 15, and now get the correct answer: L = 0 — ’There is no evidence of
convolutive ICA’.

4 Is Convolutive ICA Relevant for EEG?

The EEG signals from the entire brain superimpose onto every EEG electrode
instantaneously; there are no delays or echoes, hence, the mixing of the electro-
magnetic activity is definitely not a convolutive process. However, the question
is whether the convolutive mixing model is relevant as a model for the brain
activity itself, see also [1]. It is well known that EEG activity exhibits rich
spatio-temporal dynamics and that different tasks of the brain combine different
regions in different frequency bands, and so, we expect the Bayes optimal model
to potentially include some convolutive mixing L > 0.
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Data — 20 minutes of a 71-channel human EEG recording downsampled to a 50-
Hz sampling rate after filtering between 1 and 25 Hz with phase-indifferent FIR
filters. First, the recorded (channels-by-times) data matrix (X) was decomposed
using extended infomax ICA [3,9] into 71 maximally independent components
whose (’activation’) time series were contained in (components-by-times) ma-
trix S'°4 and whose (’scalp map’) projections to the sensors were specified in
(channels-by-components) mixing matrix A4, assuming instantaneous linear
mixing X = AICASICA Three of the resulting independent components were
selected for further analysis on the basis of event-related coherence results that
showed a transient partial collapse of component independence following the
subject button presses [10]. Their scalp maps (the relevant three columns of
ACA) are shown on Figure 5(a).

Convolutive ICA analysis — Next, convolutive ICA decomposition was applied
to the three component activation time series (relevant three rows of S'°) which
we shall refer to as channels chy, chy and chs. Following our proposed protocol,
we find Lyax = 110, then L = 9 as shown on Figure-5(c) — so, we are in fact
dealing with a convolutive mixture. Figure-5(b) shows, for one of the resulting
convolutive ICA components, cross correlation functions between its contribution
to the channels (with each a scalp map associated). Clearly, there are delayed
correlation between the different brain regions, and this is not possible to model
with an instantaneous ICA model, hence the need for convolutive mixing.

15 -222000 ——s
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(b) (c) We find L=9

Fig. 5. (a) Scalp maps for the three ICA components. (b) For one of the resulting
convolutive ICA components, cross correlation functions between its contribution to
the channels. (¢) Finding L = 9 for the EEG data.

5 Conclusion

We have incorporated filters for modelling possible source auto-correlations into
an existing algorithm for convolutive ICA. We have proposed a protocol for
determining the dimension L of a convolutive mixture utilizing the filters. We
have shown that convolutive ICA is relevant for real EEG data.
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Appendix A: Source Modeling with the CICAAR

Algorithm

For notational convenience we introduce the following matrix notation instead
of (2), handling all sources in one matrix equation

M
St = Z HAth)\ (5)
A=0

where the Hy’s are diagonal matrices defined by (Hy):; = hi(A).



Model Structure Selection in Convolutive Mixtures 81

Given a current estimate of the mixing matrices A, and the source filter
coefficients hy (), First apply equation 7 of [4] to obtain §. Then apply the
inverse source coloring operator

M
7=8 -y Haz (6)
A=1

which must replace §; in [4] (in equations 6,8,9 and 11). This involves the fol-

lowing partial derivatives which in turn uses the result from [4] (from equations
7,10,12)

), 0(3) M z
8(BT)];» a(B.) E (™)

where B, = A, for 7 > 0 and By = Aa . Furthermore

M

8(215) o RN 82t_ ’
a(HA)kn‘ = 8k = ()i - <Z H 5(HA;n‘>k ' ®)

A=1

The work involved in this plug-in is minimal due to the diagonal structure of
the H) matrices. Finally,

Z«/F ‘%t (9)

where (:)r = P'((20)x)/ P((20)k)-
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Abstract. In this paper, we propose a fast and accurate approximation to the in-
formation potential of Information Theoretic Learning (ITL) using the Fast
Gauss Transform (FGT). We exemplify here the case of the Minimum Error
Entropy criterion to train adaptive systems. The FGT reduces the complexity of
the estimation from O(N°) to O(pkN) where p is the order of the Hermite ap-
proximation and k the number of clusters utilized in FGT. Further, we show that
FGT converges to the actual entropy value rapidly with increasing order p
unlike the Stochastic Information Gradient, the present O(pN) approximation to
reduce the computational complexity in ITL. We test the performance of these
FGT methods on System Identification with encouraging results.

1 Introduction

Information Theoretic Learning (ITL) is a methodology to non-parametrically esti-
mate entropy and divergence directly from data, with direct applications to adaptive
systems training [1]. The centerpiece of the theory is a new estimator for Renyi’s
quadratic entropy that avoids the explicit estimation of the probability density func-
tion. The argument of the logarithm of Renyi’s entropy is called the Information Po-
tential (IP), and since the logarithm is a monotonic function, it is sufficient to use the
IP in training [2]. ITL has been used in ICA [3], blind equalization [4], clustering [5],
and projections that preserve discriminability [6]. One of the difficulties of ITL is that
the calculation of the IP is O(N”), which may become prohibitive for large data sets. A
stochastic approximation of the IP called the Stochastic Information Gradient (SIG)
[7] decreases the complexity to O(N), but slows down training due to the noise in the
estimate. This paper presents an effort to make the estimation faster and more accu-
rate using the Fast Gauss Transform (FGT). The FGT is one of a class of very
interesting and important new families of fast evaluation algorithms that have been
developed over the past dozen years to enable rapid calculation of approximations at
arbitrary accuracy to matrix-vector products of the form Ad where a; = © (Ix; — x; |)
and @ is a particular special function. These sums first arose in astrophysical observa-
tions where the function @ was the gravitational field. The basic idea is to cluster the
sources and target points using appropriate data structures, and to replace the sums

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 82—89, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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with smaller summations that are equivalent to a given level of precision. We will use
here the FGT algorithm proposed by Greengard and Strain [8] and the farthest-point
clustering proposed by Gonzalez [9] for evaluating Gaussian sums.

The paper will be organized as follows. First we will briefly describe one of the
simplest ITL algorithms that minimize the error entropy between a desired response
and the adaptive filter output. Next, we present the FGT algorithm and its interaction
with the MEE criterion, followed by some simulation results and conclusions.

2 Minimum Error Entropy (MEE)

Suppose that the adaptive system is an FIR structure with a weight vector w. The
error samples are e, =d, —wiu,, where d, is the desired response, and u . is the

input vector. The error PDF is estimated using Parzen windows as
n 1 &
fo@ =72 ko(e=e) (1
i=1

where k_(-)is kernel function with a kernel size o. So, Renyi’s quadratic entropy

estimator for a set of discrete data samples becomes:

Hy,(e)==log [f(e)de=—logV (e) 2

V(e) =N1222k(,ﬁ<ej —e)- 3)

=1 i=l
Minimizing the entropy in (2) is equivalent to maximizing the information poten-

tial since the log is a monotonic function. Thus, the weight update of MEE is
Wi =W, +4VV(e) (4)

where for a Gaussian kernel the gradient is,
1 N N
VV(e)=WZZGUﬁ(ej—ei){ej—ei}{u_,.—u,.}. (5)
=1 i=1

j=1i

For online training methods, the information potential can be estimated using the
Stochastic Information Gradient (SIG) as shown in (6), where the sum is over the
most recent L samples at time k. Thus for a filter order of length M, the complexity of
MEE is equal to O(ML) per weight update,

1 k-1
Vier=_ Dk, (e —e) (©6)

i=k—L

where ¢ =d, —wiu,, for k—L<i<k.
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3 MEE Using the Fast Gauss Transform

For efficient computation of information potential, we use the principle of Fast Gauss
Transform. Direct evaluation of the information potential (3) requires O(NZ). We
apply the FGT idea by using the following expansions for the Gaussian in one dimen-
sion (the method can be easily extended to multiple dimensions):

(ej—el.)2 (e s\ (e —s
S AT LN il A
exp[ ppe J Zn,( 20] ( o J+e(p) (7)

where the Hermite function £, (x) is defined by

n

- (exp(— x? )) (®)

In practice a single expansion about one center is not always valid or accurate over
the entire domain. A space subdivision scheme is applied in the FGT and the Gaussian
functions are expanded at multiple centers. To efficiently subdivide the space, we use a
very simple greedy algorithm, called farthest-point clustering that computes a data
partition with a maximum radius at most twice the optimum. The direct implementa-
tion of farthest-point clustering has running time O(kN), which k is the number of clus-

dx

ters. Thus, the information potential V' (e) is given as

Vo, L =3¥5t (

lenO

JCH (B) ©)

where B is a cluster with center S, and C, (B ) is defined by

C,I(B)=Z[e" _sﬂjn : (10)

eEeB 20.

From the above equation, we can see that the total number of operations required is
O(pkN) per data dimension. The truncation order p depends on the desired accuracy
alone, and is independent of N.

The gradient of the information potential with respect to the weights is given as

VV(e) = ZZZ { H( % J{;]Q(B)M"[e’;YBJ-VC”(B)} (11)

/anO 20— o

where Ve, (B) is defined by

Ve, (B)= zn[ei _SBJH[— et } : (12)
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4 Simulations

4.1 Entropy Estimation Using Fast Gauss Transform

We start by analyzing the accuracy of the FGT in the calculation of the IP for the
Gaussian and Uniform distributions, using the original definition (3), the SIG (6) and
the FGT approximation (9) for two sample sizes (100 and 1,000 samples). For a com-
parison between SIG and FGT we use p = L in all our simulations. We fix the radius
of the farthest point clustering algorithm atr = ¢ . This radius is related to the number
of clusters, i.e., as the radius increases, the number of clusters (hence the computation

time) decreases, but the approximation accuracy may suffer. Results are depicted in
Fig. 1 and 2.
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Fig. 1. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen
window for a Gaussian distribution with 100 and 1000 samples
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Fig. 2. Plot of the absolute error for SIG and FGT with respect to the IP estimated using Parzen
window for a uniform distribution with 100 and 1000 samples

As can be observed in Fig.1 and 2, the absolute error between the IP and the FGT
estimation decreases with the order p of the Hermite expansion to very small values,
while that of the SIG fluctuates around 0.005 (100 samples) and 0.001 (1000 sam-
ples). We can conclude that from a strictly absolute error point of view, a FGT with
order p >3 outperforms the SIG method for all cases.
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Fig. 3. Plot of the average number of clusters in FGT when estimating the IP for the Gaussian
and uniform distribution with 100 and 1000 samples (40 times Monte Carlo)
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Fig. 4. Plot of the absolute error for a given p (=2, 4, 8 and 16) as the radius of the farthest-point

clustering algorithm ( r = h X ¢ ) for Gaussian and uniform distribution with 1000 samples

Fig. 3 shows the relation between FGT estimation and the number of clusters. Ac-
cording to data size, the number of clusters does not vary for the uniform distribution,
while for the Gaussian distribution the number of cluster is larger as the number of
data samples increases.

We also fix the number of points to N=1000 and vary the radius 7 for clustering
from 0.10 to 20 and plot the absolute error for a given p (= 2, 4, 8 and 16) in Fig. 4.
The results show that the error of the FGT is reduced as the radius decreases, as ex-
pected such that the user can control the approximation error to IP.

However, for our ITL application, the accuracy of the IP is not the primary objec-
tive. Indeed, in ITL we would like to train adaptive systems using gradient informa-
tion, so the smoothness of the cost function is perhaps more important.

4.2 System Identification

We next consider the system identification of a moving-average model with a 9" order
transfer function given by

H(z)=0.1+02z"+03z7+04z7 +0.5z"*

(13)
+04z7°+03z°402z7 +0.1°
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using the minimization of the error entropy [10]. Although the true advantage of MEE
is for nonlinear system identification with nonlinear filters, here the goal is to com-
pare adaptation accuracy and speed so we elected to use a linear plant and a FIR adap-
tive filter with the same plant order (zero achievable error). A standard method of
comparing the performance in system identification problems is to plot the weight
error norm since this is directly related to misadjustment. In each case the power of
the weight noise was plotted versus the number of epochs performed. In this simula-
tion, the inputs to both the plant and the adaptive filter are also white Gaussian or
uniform noise. We choose a proper kernel size by using Silverman’s rule (¢ = 0.707)
the radius of the farthest point clustering algorithm r=g.

0 Gaussian Distributed Random Noise ( S=1000 ) 0

10 — === —T—— T

Weight Error Power
Weight Error Power

20| —+— MEE 20| =+ MEE
10 | - - SIG(L=2) SRae 10 | — - SIG(L=2)
- SIG(L=16) e SIG(L=16)
— FGT(p=2) — FGT(p=2)
102 - FGT(p=16) Do i FGT(p=16)
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of Epochs Number of Epochs

Fig. 5. Comparison of different methods for system identification with Gaussian and uniform
noise, using (S) = 1000 samples

As can be observed in Fig. 5, all the versions of IP produce converging filters.
However, the speed of convergence and the actual value of the final error are differ-
ent. The FGT method performs better in training the adaptive system as compared to
SIG. A SIG with 16 samples approaches the FGT with p=2, and the FGT with p=16 is
virtually identical to the true IP. The case of the uniform input noise does not change
the conclusions.

Fig. 6. shows the plot of the number of clusters during adaptation. Since the error is
decreasing at each epoch, the number of clusters gets progressively smaller. In this case,
where the achievable error is zero, the number reduces to one cluster after 5 epochs.
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—— Uniform, p=16

Number of Clusters
I
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- o N
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Fig. 6. Plot of the average number of clusters during adaptation in system identification
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5 Conclusions

Information Theoretic Learning and in particular the Minimum Error Entropy crite-
rion has been recently proposed as a more principled approach for training adaptive
systems. But, a major bottleneck in this method is the high computational complexity
of O(N°) per epoch, thus limiting its use for many practical applications in signal
processing, communications and machine learning. The method of the Fast Gaussian
Transform helps alleviate this problem by accurate and efficient computation of en-
tropy using the Hermite series expansion in O(pN) operations. Furthermore, since this
series converges rapidly, a small order p gives a very good approximation of the IP
and can therefore provide accurate and fast converging optimal filters. Indeed we
have shown that the FGT has a performance virtually identical to the exact informa-
tion potential for p=16. The FGT seems therefore to be preferable to the SIG algo-
rithm we have been using.

We still need to quantify the performance of FGT for training MIMO (multiple in-
put multiple output) systems such in ICA or discriminative projections. In these cases
ITL algorithms will be applied to multidimensional signals and the computation be-
comes prohibitive. A straight application of the algorithm presented in this paper will
raise p to the number of dimensions in the complexity calculation. However, recent
results show that it is possible to avoid the multiplicative factor in complexity brought
by the dimensionality of the space of interactions [11]. If further testing corroborates
these initial results, the class of FGT algorithms may very well take away the compu-
tational drawback of ITL versus the MSE criterion to adapt nonlinear models both in
Adaptive Systems and Pattern Recognition applications.
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Abstract. In this paper we introduce a simple distance measure from a m-
dimensional point a hyper-line in the complex-valued domain. Based on this
distance measure, the K-EVD clustering algorithm is proposed for estimating
the basis matrix A in sparse representation model X = AS + N . Compared to
existing clustering algorithms, the proposed one has advantages in two aspects:
it is very fast; furthermore, when the number of basis vectors is overestimated,
this algorithm can estimate and identify the significant basis vectors which
represent a basis matrix, thus the number of sources can be also precisely
estimated. We have applied the proposed approach for blind source separation.
The simulations show that the proposed algorithm is reliable and of high
accuracy, even when the number of sources is unknown and/or overestimated.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analysis. For
example, it can be used for signal compression, blind source separation, feature
extraction, regularization in inverse problems, and so on. Especially in the applications
of sparse representation and undetermined blind source separation, the basis matrix
usually needs to be identified in advance using line orientation clustering algorithms
such as K-SVD method [1], K-means method [10], Georgiev, Theis and Cichocki
method [2][14], potential-function method [9], time-frequency mask method [13], the
extension method of DUET and TIFROM [3][4], soft-LOST [7], hard-LOST [8]. After
the basis matrix is estimated, some algorithms, such as FOCUSS algorithms [11],
shortest-path-decomposition [9] or its extension [12], linear programming [3][4][10]
etc, can be employed to estimate the matrix S representing unknown source signals.
In our approach the hyper-line orientation clustering plays a key role in sparse
representation under assumption that all sources are sufficiently reach represented and
they are all sparse, i.e., each source for many samples achieves dominant value, while
other sources at the same time are negligibly small [2][14]. If the basis matrix is not
well estimated, it’s impossible to find the source signals.

For above mentioned clustering algorithms, it is usually assumed that the number
of sources is known. However, in some applications such as BSS, we do not know the

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 90—97, 2006.
© Springer-Verlag Berlin Heidelberg 2006



K-EVD Clustering and Its Applications to Sparse Component Analysis 91

number of source signals in advance and their number is usually overestimated. It’s
very difficult to accurately estimate the number of source signals. On the other side, if
one underestimates the number of source signals, the estimated source signals could
be completely different from the true sources. One possible approach is to
overestimate the number of source signals and in the next stage to remove possibly all
redundant or spurious basis vectors g, of the overestimated basis matrix A.

For this purpose, in this paper we discuss K-EVD clustering method for complex
valued data based on the distance measure presented in Section 2. In contrast to the
K-SVD which estimates the clustering centroid matrix by Singular Value
Decomposition (SVD) for long matrix, our approach achieve the same goal by Eigen-
Value Decomposition (EVD) for smaller dimension matrices.

2 The Distance Formula from a Point to a Hyper-line

Consider a point P(p,,---, p,) (see Figure 1) and hyper-line in the m-dimensional
complex domain. We attempt to calculate the distance from the point P to the hyper-
line L, whose direction vector is 1=(l,,1, )T. This problem can be converted to
searching an optimal point Z, (located on the hyper-line L), which is closest to P,
i.e., we can formulate this problem as the following optimization problem:

2

mzind(z)=Hp—Z
z ey

subjectto:ﬁ:...:l’
L l

where z=(z,z,,,2,) €C"> p=(p,py-,p,) € C"» C denotes complex valued

number and i 4 (z) denotes minimizing with respect to vector argument z .

P(pip)

o
P

L(h,++.1,)
Z(Zps 22

0 Z(Zl’“.’zm)

Fig. 1. The distance from a point P to aline L

Let ?:“_:%:kec.Sowehave

1 m

2=(2,200:2,) =k(luhyel,) =k (2)
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From equation (2), optimization problem (1) can be described as

mind (k) =[p-&[" =(p~K.p-K)
=(p.p)—(p.k)—(Kl, p)+ (k) 3)
={p,p)—k(p,1)~k (I, p)+kk (1),

where <> stands for inner product. For any real valued function f(2) of a complex

valued variable z the gradients with respect to the real and imaginary part are
obtained by taking derivatives formally with respect to the conjugate quantities z°,
ignoring the nonconjugate occurrences of z [5][6], i.e.,

o (), ¥ (2)_,(2).

OR(z) A(z) ~ o @
Therefore the derivative of cost function d(+) with respect to k" is
agk(;) (L p)+k(LI)- 5)
Let BL@=0’ we get
ok’
L {Lp). 6)

(L.0)

Substitute equation (6) and equation (2) into (1), we have

d(p.0)=(p.p)- L2V P, ™

(1)

3 K-EVD Clustering for Estimating the Basis Matrix A

In this paper, we assume that sources are very sparse in the sense that each source for
many samples is dominant. In such case the observed data x(;) builds up hyper-lines.

Of course not all observed datum belongs to any hyper-line. So, our objective is to
detect and estimate directions of all hyper-lines where there are many outliers and
noise. Roughly speaking, we obtain easily some preliminary K clusters representing
vectors gk =1...,k - Usually, due to noise and many outliers the number of clusters

is much larger than the number of sparse sources.
K-EVD clustering algorithm for estimating A (where X = AS or equivalently

x(t) = As (t),t =1,---,T ) can be outlined as follows:
(1) Initialize the clustering matrix A as Ae ¢™*, where K >n, we assume that only
matrix X e C™ is known.

(2) Partition stage: Assign the sample points in observation matrix
X=[x(1),--~,x(T):|e ¢ into K different clusters ¢(g,),i=1,---,k » Where 6(d,) is a
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data vector set. The estimation of line orientation of set 6(a,) is a.,i=1,-.K (here

A=[a,,
d (x (1),
The  observation point x(1)e 6(d,) if and only if it satisfies
d(x(t),zil.)=min{d(x(t),zi/.),j=1,--~,K}-

(3) Update the cluster centroid matrix stage: for j=1,---, K

4 ]). According to distance formula (7), we can compute each distance
i

di) from observation point x(1),t=1--,T to cluster center line g,i=1,---,K -

Consider each cluster 6(a,), assume it contains 7" entries x(")(l),---,x(")(T")’ which

compose a matrix y () :[x(")(1),-~~,x(i)(T('))}~ For the entries of cluster 6(a,) apply
EVD decomposition 1 ( X(i))H x —ypy* - Suppose dl(i) is the largest eigenvalue, we
T

update the line orientation of cluster g(g,) by v ie, a =v", A=[a,,.d,]-

(4) Return to step (2) and repeat until A converges.
(5) Without the loss of generality, we assume dl(l)"“’dl(K) such that dl(“) >.> dl(’K>. We

rank column vectors g ,... 4, by the order 71,... IK .

(6) Output the clustering centroid matrix 4, = [@)s-od ]-

Remark. Similar to the K-SVD [1], we call this algorithm “K-EVD” in analogy to the
standard clustering K-means. In above algorithm we at most need to perform the EVD
decomposition for a set of mXxXm symmetrical matrices. In contrast sometimes the K-
SVD algorithm even needs to do SVD decomposition for a set of large mxT matrice.
Since in BSS applications T >>m, the proposed K-EVD algorithm is much faster
than the K-SVD. Additionally for the K-EVD, sorting eigenvalues are used to speed
up the convergence.

As mentioned in section 1, usually we have no information about how many
clusters we should discriminate from the observation X . So we usually overestimate
the number of clusters. To reduce the overestimated basis vectors, it’s necessary to
evaluate which basis vectors are significant, i.e. which represent true vectors. The K
maximum eigenvalues 4@ ... 4*) can be used to identify such vectors. We can rank

vectors g ... 4, by the values of corresponding eigenvalues. In other words, we
choose only those K basis vectors which correspond to the largest 4. Our algorithm

is especially useful for such applications where the number of source is unknown and
we can overestimate their number.
The full description of sparse representation algorithm is given as follows:

(1) Estimate the extended basis matrix A, (with spurious vectors) and corresponding

eigenvalues ¢ ... 4" using K-EVD algorithm and next, we can only choose the

(s

first n Dbasis vectors A*:[d”,...";m] corresponding to n largest eigenvalues

d",...,a"™ . The optimal threshold is still an open problem, but some information

criteria can be used here.
(2) Estimate the coefficients of matrix § using shortest-path-decomposition method [9].
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4 Numerical Experiments and Comparison

In order to demonstrate the validity and very good performance of the K-EVD
algorithm, here we give an example how sparse representation is used for BSS. The
basis matrix A is corresponding to the mixing matrix of the BSS and the rows of
matrix § are corresponding to the source signals.

To check how well the mixing matrix is estimated, we introduce the following
Biased Angle (BA) as a performance index (i.e., the angle between the column vector
a, (of mixing matrix) and its corresponding estimation g, ):

BA(a,.d,)=acos(a,.d,)> (8)

where acos(+) denotes the inverse cosine function, <> denotes the inner product and

A:[al’...van].
10
5| M |
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Fig. 2. Source signals

In addition, the Signal to Interference Ratio (SIR) is employed to measure the
accuracy of the estimated source signals.

i(s)z (dB).

SIR(s,5)=10log —=— 9

T

Z(s—§)2

t=1

In the BSS a separated signal § may have an arbitrary nonzero scale constant factor
C(C # 0) , we suitably rescaled the estimated sources in order to optimally match them

to the original sources. Usually, when SIR is larger than 18dB, the source signal is
considered to be successfully estimated.
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In the following two experiments, the 3 by 4 (full row rank) mixing matrix is
generated randomly and normalized to unit length vectors. The sparse source matrix
S e R™™ is generated by the following MATLAB command:

S = —log(rand(n,T)).*max(O,Sign(rand(n,T)—p))~ (10)

Table 1. The results of K-SVD clustering tests

K A d",ed™ BA(a,.d;)
0.3351 0.1164 0.7361 -0.4133 0.6172 0.2067
4 0.8367 0.7810 -0.1214 -0.4917 0.5309 0.0405
e ' e e 0.5304 0.2202
04333 0.6136 0.6659 0.7665 0.3974 0.1882
03449 0.1122 07574 -04208 0.2310 0.6205 0.1785
0.5339 0.0373

5 -0.8286 0.7856 -0.0999 -0.4931 -0.2486 0.5100 :
0.3942 0.2278
04410 0.6085 0.6453 0.7614 0.9407 0.1500(small) 0.1827

0.6221
0.3465 0.0955 0.7573 04203 02310 0.4435 0.5176 0.1786
6 0.8305 0.7662 -0.1000 -0.4924 -0.2486 0.8863 0.5101 0.0326
e ' e ’ ’ ) 0.3940 0.2013
04361 06355 06453 07622 09407 0.1331 0.1500(small) 0.1828
0.1485(small)

In Table 1, the “small” 4 mean that the corresponding basis vectors are spurious.

5

0 WMMWWVWMWWWWWW
.5 | L L |

5 0 1 QO 290 390 490 500

0 bl s st bt L Ao h el o
.5 | L L |

5 0 1 QO 290 390 490 500

0 WWWMWM%WMWWMWW
.5 | L L |

0 100 200 300 400 500

Fig. 3. Observed signals

In expression (10), by choosing different parameter p(0< p<1), we can obtain the

source signals with different sparseness degree. The larger the parameter p is, the
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sparser the sources signals generated by equation (10) are. Here , =4, 7 = 5000, p =0.55 -

It should be noted that the source signals are not very sparse, but we still can estimate
matrix A and recover the original sources.

Example 1. When the number of source signals is overestimated, in this example we
demonstrate how to prior choose those basis vectors with large reliability.
We choose k =4,5,6, respectively, to perform the tests. All tests were convergent

for less than 20 iterations. The detailed results are shown in Table 1.

Example 2. We compare the K-EVD algorithm with K-SVD algorithm [1] in this
example. Here we mainly compare the speed of these two algorithms. For the K =4
case of example 1, in the same simulation environment, K-EVD took about 0.6000
seconds, while K-SVD cost about 26.8890 seconds. Obviously, K-EVD is much faster
than K-SVD.

In addition, in this case, all SIRs of the estimated signals are larger than 18dB, and
are 18.8872dB, 21.3923dB, 21.8182dB, 19.6349dB, respectively.

0 100 200 300 400 500

Fig. 4. Separated signals

5 Conclusions

We proposed a simple distance measure. Based on this distance formula, the K-EVD
algorithm is presented for estimating the basis matrix A in very sparse
representation. When the number of basis vectors is overestimated, K-EVD can
evaluate which basis vectors are most reliable by their corresponding principal
eigenvalues 40 . The simulation experiments illustrate the validity and some

advantages of the proposed algorithm. In fact the K-EVD algorithm can be applied
not only for real but also to sparse representation for the complex valued data. For
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signals that are not sparse in the time domain but sparse in the frequency domain, the
proposed algorithm can work. Here we limited our considerations to real valued data
due to the space limit.
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Abstract. A maximum likelihood blind source separation algorithm is
developed. The temporal dependencies are explained by assuming that
each source is an AR process and the distribution of the associated i.i.d.
innovations process is described using a Mixture of Gaussians (MOG).
Unlike most maximum likelihood methods the proposed algorithm takes
into account both spatial and temporal information, optimization is per-
formed using the Expectation-Maximization method, and the source
model is learned along with the demixing parameters.

1 Introduction

Blind source separation (BSS) involves the application of a linear transformation
to an observed set of M mixtures, x, in an attempt to extract the original M
(unmixed) sources, s. Two of the main types of BSS methods for stationary data
include decorrelation approaches and approaches based on Independent Compo-
nents Analysis (ICA). Methods based on decorrelation minimize the squared
cross-correlation between all possible pairs of source estimates at two or more
lags [1], [2], [3]. Methods based on ICA attempt to make the source estimates
statistically independent at lag 0 [4], [5], [6]. Herein it is assumed that the sources
are mutually statistically independent, the mixing matrix is invertible, and there
are as many sensors as there are sources. If, in addition, at most one source has
a Gaussian probability density function (pdf) then ICA methods are appropri-
ate for BSS even if all the sources have identical spectra, whereas this is not
the case for decorrelation methods. Similarly, if the M sources possess sufficient
spectral diversity then decorrelation methods are appropriate for BSS even if
all the sources are Gaussian-distributed, whereas this is not the case for ICA
methods. Consequently, the appropriate BSS algorithm for a given application
depends on the spatial and temporal structure of the sources in question.

The approach presented here, AR-MOG, differs from most ML methods [7],
[8], [9] in three important ways. First, the proposed criterion makes use of both
the spatial and temporal structure of the sources. Consequently, AR-MOG may
be used in situations for which either of the above two types of BSS algorithms
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are appropriate. Second, AR-MOG is formulated in terms of latent variables
so that it can be optimized using the Expectation-Maximization (EM) method.
Third, instead of assuming the target distributions are known, the proposed
method learns the target distributions directly from the observations.

2 Generative Model

It is assumed that there are M mutually statistically independent sources, each
of which are N samples in length. The variable s represents the (M x N) source
matrix, Spy 1.N represents the (1 x N) vector of the m' row of s, and S1:M,n
represents the (M x 1) vector of the n'* column of s. Each source, s, ,, is as-
sumed to be an autoregressive (AR) process that is generated from a temporally
i.i.d. innovations process, Uy, ». The relationship between a given source and the
associated innovations process is assumed to be w, , = Z,I::go Im.kSm,n—k, Where
gmo=1me {1,2,..., M}, gm is an element of the (M x K, + 1) matrix g of
AR coefficients, and K, is the order of each of the AR filters. The sources are

therefore given by
K

g
Sm,n = — ng,ksm,nfkr + Umn - (1)
k=1
The M observations at time n are assumed to be generated from the sources by
means of a linear, memory-less (M x M) mixing matrix, i.e., &, = As,.
The pdf of each innovations process is assumed to be parameterized by a
Mixture of Gaussians (MOG),

Kq

pUm,n(um,n) = Z pUm,n\Qm,n(um,n|Qm,n = Q)me,n(Qm,n =q)
q=1 9
- 2

:ZN(Um,nmmm Vm.,g) Tm,q

q=1

which should not be confused with pg,,  (Um,n) (the target pdf of each innova-

n

tions process) or pg,, . (lim,n) (the actual pdf of the estimate of the innovations),

and where py, o, . (Umn|@mn = q) has a normal distribution, g, , is the
th th

mean of the ¢"" component (or state) of the m"" source, vy, 4 is the correspond-
ing precision, 7, g = pq,, , (Qm,n = q) is the corresponding prior probability
(constrained such that Efj’l Tm,q=1VYm), and Q. € {1,2,...,Kq} repre-
sents the state (latent variable) of the m!" source at the n** time point. This
particular generative model is able to describe both the non-Gaussianity and the
temporal dependencies of the sources.

3 Criterion

Let py,, . (Um,n) denote the marginal pdf of a particular innovations process and
let py(u) and DY, v (u1:Mm,n) denote the order-M N and order-M joint pdf’s
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of the innovations, respectively. It is assumed that all variables are identically
distributed in time (although this is not valid for the outputs of the IIR filter s,, ,,
until after the transients have died out). Using this notation and the preceding
generative model the data likelihood is given by

N M N
px(w): prl:M,n‘xl;M.Lnfl($1:M’n|w1:M’1:n71): |W‘NH HpUm’n (um,n) 5
n=1 ’ m=1ln=1

(3)
where W = A™! (hence, s, = Wz,), it is understood that the set of all pa-
rameters, {W,g,p,v, 7, Kg,K,}, is given for each pdf, and where u,,,, =

ZkKiO Zl]\il Win i9m, k%1,n—k- Hence, the log likelihood is given by

M N
L=Nm[W[+ ) > lpy,, ()
m=1n=1
M & p (tn,1,Qm,n=q) W
Um,n Qm,n\ T,N M,
:N1n|W|—|—Z ZZ%’“W In : 5 ,
m=1In=1¢=1 g

where the latter expression is given as a function of the posterior state probabili-
ties, Ym,n,qg = Pa,, .|x (@m,n=¢|z). Adaptation using EM, which is guaranteed to
converge (possibly to a local maximum), involves maximizing (4) by alternating
between the E-step and the M-step.

4 EM Algorithm for AR-MOG

In this section we present an EM algorithm for inferring the model from the data
and extracting independent sources.

4.1 E-Step

The E-step maximizes the log likelihood w.r.t. the posteriors, ¥, n, 4, While keep-
ing the parameters fixed. The estimates of the posteriors are given by

. POl (B | Qrn = @)omsg
Yim,ng = ¢ ; (5)
m,n

where &, ,, ensures that fol Am.n.qg =1V m,n, the true pdf’s (conditioned on
the state) have been replaced with the target pdf’s, and all other quantities have
been replaced with their estimates (denoted using the hat symbol).

4.2 M-Step

The M-step maximizes the log likelihood w.r.t. the parameter estimates {W, g,
[, 0,7} while keeping the posteriors fixed. The two parameters that are not
learned by AR-MOG, {K’Q, Kg}, are assumed to be known. The update of W
is performed using multiple iterations of gradient ascent where
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NRQKH

aW Z (Nlm,i - ZZZ ;Ym,n,q(am,n_ﬂm,q)ﬁm,qg'rrL,kgi,n—k)Wi,l ) (6)
m,l

i=1 n=1q=1k=0

which makes use of the natural gradient [10] (also known as the relative gradient
[11]). The solution for the matrix of AR coefficients is

N Ko

P ke = § § ﬁm,nyqﬁm,q(ﬂmyq - §m,n)§m,nfk‘

n=1gqg=1
N Kq (7)

mkk’ § § 'Ymnql/mqsmn ksmn k'

n=1q=1
A —1
9m,1:N = Spm,l:M(Wm,le,ch)

for m € {1,..., M}. The solutions for the parameters that constitute the target
distributions are

N ~ ~
2 n=1 Um,nYm,nq

/’(‘m,q -

N .

Zn:l TYm,n,q

N .
N 2 n=1 Ym,n,g ®)

m,q = IN . N "
Y=t (m,n — fim,qg)*Fm,n.q
N .
T = Dne 1 Ym,n,q

Zn 12 17mnq

5 Experiments

Several different experiments are performed in order to assess the separation
performance of AR-MOG. Separation performance is gauged using the signal-
to-interference ratio (SIR), which is defined by

er]y 1(Wm 1 M141:M,msm7n)2

m’ 1 Zn 1( ’m,l:M141:M,'m’SnL’,n)2

(m/!#

SIR = — Z 101log,, (dB) .

Unless otherwise specified the data is drawn from the same model that is used by
AR-MOG, the innovations are assumed to have the same distribution, M =2, and
N =10% The error bars represent one standard error. When they are included
the mean results represent the average of 10 Monte Carlo trials. Results from
JADE [12], which does not use temporal dependencies (K, = 0), and MRMI-
SIG [6], which essentially uses K. g=1, are also included as benchmarks.

Figure 1a shows the mean separation performance of AR-MOG as a function
of Kg, where K ;=10 and KQ = Kg=4. The means, precisions, and priors are not
adapted in this experiment or the next experiment so that the change in perfor-
mance due to the addition of the AR filters may be better quantified. For Kg =0
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Fig. 1. Separation performance as a function of K. (a) Experiment 1. The inset shows
PUpm.n (Um,n) and a Gaussian distribution (dashed line) having the same mean and
variance. (b) Experiment 2. The inset shows ps,, ,, (Sm.») and a Gaussian distribution
(dashed line) having the same mean and variance.

AR-MOG defaults to the case where no AR model is used, i.e., w =8§. When
no temporal dependencies are used the AR-MOG method performs similarly,
but slightly better, than JADE and MRMI-SIG. For K. g > 4 the performance
improvement of AR-MOG is approximately 15-20 dB.

The separation results in Fig. 1a represent a best case scenario for AR-MOG
since the data are drawn from the model. The results shown in Fig. 1b use
(artificially-mixed) real speech data not drawn from the AR-MOG model. Per-
formance is shown as a function of K, where Kg = 3. The target distribution
Py, (Um,n) is chosen to be unimodal and super-Gaussian since speech is known
to be approximately Laplacian. For the speech data the performance of both
AR-MOG and JADE are reduced by approximately 5-8 dB with respect to the
first experiment. Figure 1b shows that it is not strictly necessary for the sources
to be stationary processes for AR-MOG to perform well (speech is commonly
assumed to be stationary, but only for very short segments [13]).

The third experiment shows the sensitivity of the three BSS algorithms to
an increase in the temporal correlation of the sources. For this experiment N =
3%10%, KQ =Kq=3, Kg =4, and each s, 1. is related to the associated u,, 1.5
by means of a moving average (MA) filter, by, 1., +1. Performance is shown in
Fig. 2a as the order of this filter, K, is varied (increasing K, increases the overall
correlation at an exponentially decreasing rate). Unlike the previous experiments
the means and variances are adapted. For this dataset increasing the temporal
correlation (i.e., K}) causes the separation performance of JADE and MRMI-
SIG to decrease by roughly 30 dB and 6 dB, respectively. The performance of
AR-MOG is not affected by the change in temporal correlation.

The fourth experiment attempts to measure the separation performance as a
function of the initialization of pg,, . (tm, n). For each case considered the separa-
tion performance is given when the parameters that constitute P (Um,n) are
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Fig.2. (a) Separation performance as a function of Kj; (the length of each hy,)
for Experiment 3. (b) Initial (dashed line) and final pg,, , (4m,») distributions and
PUpn.n (Um,n) for Experiment 4. Upper-left: Case 1. Upper-right: Case 2. Lower-left:
Case 3. Lower-right: Case 4.

adapted and when they are fixed. The resulting SIR values are shown in Table I,
where the left column corresponds to when pg,, . (4m,n) is adapted, whereas the
right column keeps pg,, , (Um,n) fixed at the distribution used for initialization
of the left column results. The initial and final pg,, , (Um,n) distributions and
the true distribution, py,, ,, (m,n), are shown in Fig. 2b. For Cases 1 & 2 the ini-
tial innovations distribution and the true distribution are similar and for Cases 3
& 4 the assumed (initial) innovations distribution is far from correct. Likewise, for
Cases 1 & 3 Kg = K,=0 and for Cases 2 & 4 Kg = K,=4. When the initial inno-
vations distribution is similar to the true distribution the separation performance
is excellent independent of whether or not pg,, , (m ) is adapted. When they are
not similar, based on these results, it is advantageous to adapt pg,, , (4m,n). No-
tice that pg,, , (um,n) gets trapped in a local maximum for Cases 3 and 4. This
is indicated by the fact that the target distribution converges to a bimodal solu-
tion for Case 3 and a unimodal solution for Case 4. If AR-MOG is initialized with
the true distribution the final SIR is 62.9 and 67.7 dB, respectively, and the target
distributions for both cases converge to a trimodal solution. The fact that the fi-
nal target distribution is incorrect does not necessarily preclude the possibility of

Table 1. Final SIR separation performance for Experiment 4

Case |Adapt Fixed
P (Umin) [P0 (Umn)
1 45.6 dB 46.3 dB
2 59.5 dB 47.1 dB
3 44.2 dB 0.0 dB
4 51.0 dB 39.5 dB
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achieving good separation performance, as indicated in Table I, because it is neither
sufficient nor necessary for good separation performance that the final pg,, ., (Um,n)
approximates py,, ,, (tm,n). What is necessarily required (but is not sufficient, e.g.,
for Gaussian distributions) is that pg  (sm,n) approximates ps,,, , (Sm,n) for each
m (and allowing for possible permutafions). The ability of AR-MOG to separate
sources even if pg,, . (Um,n) is incorrect is identical to the well-known fact that ML
methods that assume the cumulative density function (cdf) is sigmoidal are often-
times able to separate sources even if the cdf of each source is not sigmoidal [4],
[11], [14], [15], [16], [17]. There is no assurance that AR-MOG will be able to find
a solution for pg,, , (um,n) that allows for good separation, but Table I indicates
that it may be advantageous to try to improve on the original assumptions.

6 Conclusions

This paper develops a BSS algorithm that is based on maximizing the data
likelihood where each source is assumed to be an AR process and the innovations
are described using a MOG distribution. It differs from most ML methods in that
it uses both spatial and temporal information, the EM algorithm is used as the
optimization method, and the parameters that constitute the source model are
adapted to maximize the criterion. Due to the combination of the AR process
and the MOG model, the update equations for each parameter has a very simple
form. The separation performance was compared to several other methods, one
that does not take into account temporal information and one that does. The
proposed method outperforms both. Future work will focus on incorporating
noise directly into the model in a manner similar to that used for the Independent
Factor Analysis method [18].
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Abstract. We recently proposed a markovian image separation method.
The proposed algorithm is however very time consuming so that it cannot
be applied to large-size real-world images. In this paper, we propose
two major modifications i.e. utilization of a low-cost parametric score
function estimator and derivation of a modified equivariant version of
Newton-Raphson algorithm for solving the estimating equations. These
modifications make the algorithm much faster and allow us to perform
more experiments with artificial and real data which are presented in
the paper.

1 Introduction

We recently proposed [1] a quasi-efficient Maximum Likelihood (ML) approach
for blindly separating mixtures of temporally correlated, mono-dimensional inde-
pendent sources where a Markov model was used to simplify the joint Probability
Density Functions (PDF) of successive samples of each source. This approach
exploits both source non-gaussianity and autocorrelation in a quasi-optimal
manner.

In [2], we extended this idea to bi-dimensional sources (in particular images),
where the spatial autocorrelation of each source was described using a second-
order Markov Random Field (MRF). The idea of using MRF for image sepa-
ration has recently been exploited by other authors [3], where the source PDF
are supposed to be known, and are used to choose the Gibbs priors. In [2],
however, we made no assumption about the source PDF so that the method
remains quasi-efficient whatever the source distributions. The first experimen-
tal results reported in [2] confirmed the better performance of our method with
respect to the ML methods which ignore the source autocorrelation [4] and the
autocorrelation-based methods which ignore the source non-gaussianity [5], [6].

The algorithm used in [2] is however very slow: its implementation requires
the estimation of some 5-dimensional conditional score functions using a non-
parametric estimator and the maximization of a likelihood function using a time
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consuming gradient method. In the present paper, we propose a parametric poly-
nomial estimator of the conditional score functions which is much faster than
the non-parametric estimator. We also derive a modified equivariant Newton-
Raphson algorithm which considerably reduces the computational cost of the
optimization procedure. Using this fast algorithm, we performed more simula-
tions with artificial and real-world data to compare our method with classical
approaches.

2 ML Method for Separating Markovian Images

Assume we have N = N; x Ny samples of a K-dimensional vector x(ni,nsg)
resulting from a linear transformation x(ni,ng) = As(ny,ns), where s(ny,ns)
is the vector of independent image sources s;(n1,ns2), each one of dimension
N1 x Ny and possibly spatially autocorrelated, and A is a K x K invertible
matrix. Our objective is to estimate the separating matrix B = A~ up to a
diagonal matrix and a permutation matrix.

The ML method consists in maximizing the joint PDF of all the samples of
all the components of the vector x (all the observations), with respect to the
separating matrix B. We denote this PDF

fx(.’L’l(Ll),--' ,J}K(Ll),--- ,xl(Nl,Ng),“- 7513K(N1,N2)) (1)

Under the assumption of independence of the sources, this function is equal to

(e NHfs 5i(1,1),- -, 5;(Ny, Ny)) (2)

| det

where f;, (.) represents the joint PDF of N samples of the source s;. Each joint PDF
can be decomposed using Bayes rule in many different manners following different
sweeping trajectories within the image corresponding to source s; (Fig. 1). These
schemes being essentially equivalent, we chose the horizontal sweeping. Then, the
joint PDF of source s; can be decomposed using Bayes rule to obtain

fsi(si(l’1)>f5i(si(1’2)|si(171))f5 ( (1 3>|5 (1 2)751( ) )) """
Fo (351, N s3(1, Ny — 1), -+ 55(1, 1)) fo, (502, )i (1, Na), -y si(1,1)) o
fsi(8i(N1, N2)|si(N1, No — 1), -+, 5i(1,1)) (3)

This equation may be simplified by assuming a Markov model for the sources.
We suppose hereafter that the sources are second-order Markov random fields,
i.e. the conditional PDF of a pixel s(n1,ns2) given all the other pixels is equal to
its conditional PDF given its 8 nearest neighbors (Fig. 2). From this assumption,
it is clear that the conditional PDF of a pixel not situated on the boundaries,
given all its predecessors (in the sense of sweeping trajectory) is equal to its
conditional PDF given its three top neighbors and its left neighbor (squares in
Fig. 2). In other words, if D, n, is the set of pixel values s;(k,l) such that
{k <mni} or {k =n1,l <nz}, then
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@ 2 3)

Fig. 1. Different sweeping possibilities

Fig. 2. Second-order Markov random field

fs,(85i(n1,12)| Dy ) = fs, (si(n1,m2)]s:(n1,n2 — 1), 8;(n1 — 1,n9 + 1),
Si(nl — l,ng),si(nl — 1,712 — ].)) (4)

If N is sufficiently large, the conditional PDF of the pixels located on the left,
top and right image boundaries (for which, the 4 mentioned neighbors are not
available) may be neglected in (3). Supposing that the sources are stationary so
that the conditional PDF (4) does not depend on ny and ns, it follows from (4)
that the decomposed joint PDF (3) can be rewritten as

N1 Nz—1

fsi(Si(1,1)78i<1,2)7-~- ,Si(17N2),Si(2,1)7-- N17N2 H H

ny= 277,2 2

fsi(si(n1,m2)|si(n1,ne — 1), s;(n1 — 1,n9 + 1), s;(n1 — 1,na), s4(n1 — 1,n2 — 1))

The log-likelihood function may be obtained by replacing the above PDF in (2)
and taking the logarithm:

K Ni N2—1
Nlog(|det(B +Z Z Z log fs, (si(n1,n2)|si(n1,ne — 1),
i=1 n1=2 ny=2

si(n1 — 1,2 +1),8:(n1 — 1,n2), 8;(n1 — 1,ny — 1)) (5)

Dividing the above cost function by N and defining the spatial average operator
Enl] = ¥ an 9 7];;2;21[]7 Equation (5) may be rewritten in the following
simpler form

K

= log(| det(B)|) + En[>_log f, (si(n1,n2)|si(n1,na — 1), 8i(n1 — 1,nz + 1),
=1

Si(’ﬂl — 1,n2)7si(n1 — ].,TLQ — 1))]
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In [2], the separating matrix B was obtained by maximizing the above cost
function using a relative gradient ascent algorithm which is very time consuming.

OL; __ 0
e
using a modified equivariant Newton-Raphson algorithm.
3 Estimating Equations and Their Solution
As shown in [2], the gradient of the cost function L; is equal to
oL
5‘Bl = — EN]| Z wFD (ny ng) xT(ny — k,ng —1)] (6)

(k,Her

where T = {(0,0),(0,1),(1,—1),(1,0),(1,1)} and the vector ¥V (ny, ny)
contains the conditional score functions of the K sources, which are denoted
(k D (n1,n2) hereafter for simplicity, and which read explicitly

1/J£f’l)(n1, ng) = 1/J§f’l)(8i(n1, na)|si(ni,ng — 1), 84(n1 — 1,2 + 1),

-0
si(nl — 17712),82‘(77/1 — 17’[’L2 — 1)) = asi(nl — k7n2 — l) logfsi(si(nl,ngﬂ
si(nl,ng — 1)757;(711 — 17712 + 1),81‘(711 - 1,712), si(nl - 1,712 - 1)) (7)

Setting (6) to zero, then post-multiplying by B? we obtain

[ Z ng’l)(ﬂhnz).ST(nl —k,no — l)} =1 (8)
(k,Her

This yields the K(K — 1) estimating equations

Ey [Z ¢(kl(nl,nQ).sj(nl—k,ng—l)]:() i#£j=1,,K (9

(k,)eTr

which determine B up to a diagonal and a permutation matrix. The other K
equations En [} yer wgf’l)(nl,ng).si(nl —kng—=10]=1 i=1,--- K are
not important and can be replaced by any other scaling convention.

The system of equations (9) may be solved using the Newton-Raphson algo-
rithm. We propose a modified version of this algorithm which has the equivari-
ance property, i.e. its performance does not depend on the mixing matrix.

To ensure the equivariance property, the adaptation gain must be proportional
to the previous value of B. Let B be an initial estimation of B. We want to find
a matrix A so that the estimation B = (I+A)B be a solution of (9). To simplify
the notations, we here only consider the case K = 2 but the same approach may
be used for higher values of K. In the appendix, we show that the off-diagonal
entries of A, 612 and 621, are the solutions of the following linear system of
equations



110 S. Hosseini et al.

En| Z l/J(kl (n1,n2).51(n1 — k,ng —1)]621
(k,D)ET

+EN[ Z { Z 851 51 7117712) )éz(nl — i,’ng —j)}.ég(nl — k‘/ﬂg - l)]612

n 7277/ —
(kD)EY (inj)ET 1 27J
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The computation of the coefficients 612 and 621 requires the estimation of the con-
ditional score functions and their derivatives. In [2], we used a non-parametric
method proposed in [7] involving the estimation of joint entropies using a discrete
Riemann sum and third-order cardinal spline kernels. This estimator is very time
and memory consuming and does not provide the derivatives of the score func-
tions required for Newton-Raphson algorithm. In the following section, we pro-
pose another solution based on a third order polynomial parametric estimation
of the score functions which is very fast and directly provides the derivatives of
the score functions. Then, the terms 612 and 21 can be obtained by solving (10).
The diagonal entries of A are not important because they influence only the scale
factors. Thus, we can fix them arbitrarily to zero.

4 Parametric Estimation of the Score Functions

Our parametric estimator of the conditional score functions is based on the
following theorem, proved in [8] in the scalar case:

Theorem. If limy, 400 fy(Y0, ** ,Yg)9(Yo, -+ ,yg) = 0 ' where f, is the joint
PDF of yo,--- .y, and g is an arbitrary function of these variables, then

o1 P
- ZOELA ) gy - p Py

Following this theorem, if g(yo, - - , ¥4, W) is a mean-square parametric estima-

_ Olog fy (Y0, ,Yq)

By , its parameter

tor of the joint score function ¥y, (yo,- - ,yq) =
vector W, can be found from

! When ¢(.) is bounded, this condition is satisfied for every real-world signal because
its joint PDF tends to zero at infinity.
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[ag(yoa o ayqvw)

W = argmin{E[g*(yo, - ,Yyq, W)] — 2F i 1}

(12)
Note that the function to be minimized does not explicitly depend on the score
function itself. In our problem, we want to estimate the conditional score func-
tions. Each conditional score function can be written as the difference between
two joint score functions:

0log fy(yo, -+ ,yq) = Olog fy(y1, - ,yq)
wyi(yowl""qu):_ yayi L+ ya;i q

:1/)3;71(3407"‘ 7yq)71/}y1:(y17"' 7yq) (13>

Each of two joint score functions in the above equation can be estimated using
a parametric estimator which may be realized in different manners. In our work,
we used the polynomial functions because of their linearity with respect to the
parameters which simplifies the computations.

The conditional score functions used in our work being of dimension 5, they
may be written as the difference between two joint score functions of dimensions
5 and 4 respectively. We used third-order polynomial functions for estimating
them. The polynomial function modeling the 5-dimensional joint score function
must contain all the possible terms in {1, (yo,y1, Y2, Y3, Y4), (Y0, Y1, Y2, Y3, Ya)?,
(Y0, Y1, Y2,Y3,y4)>}. Hence, it contains 22:0 (5+£71) = 56 coefficients. In the
same manner, the polynomial function modeling the 4-dimensional joint score
function contains Y y_, (*TF7!) = 35 coefficients.

Our tests confirm that the above parametric estimator is much more faster,
roughly 100 times, than the non-parametric estimator used in [2] and leads to
the same performance.

5 Simulation Results

In the following experiments, we compare our method with two well-known al-
gorithms: SOBI [6] and Pham-Garat [4]. SOBI is a second-order method which
consists in jointly diagonalizing several covariance matrices evaluated at different
lags. The Pham-Garat algorithm is based on a maximum likelihood approach
which supposes that the sources are i.i.d. and therefore does not take into ac-
count their possible autocorrelation. For each experiment, the output Signal to
Interference Ratio (in dB) was computed by SIR = 0.5 2?21 10log;, E[(;E[iil)z],
after normalizing the estimated sources, §;(ni,n2), so that they have the same
variances and signs as the source signals, s;(n1,n2).

In the first experiment, we use artificial image sources of size 100 x 100 which sat-
isfy exactly the considered Markov model. Two independent non-autocorrelated
and uniformly distributed image noises, e;(n1,n2) and ea(n1,n2), are filtered by
two autoregressive (AR) filters using the following formula:

si(n1,n2) = ej(n1,n2) + po15i(ni,ne — 1) + p1,—15;(n1 — 1,n2 + 1)
+p1,08(n1 — 1,n2) + prasi(ni — L,ng — 1) (14)
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The coefficients p; ; are chosen to guarantee a sufficient stability condition.
Thus, the coefficients of the first and the second filters are respectively fixed to
{-0.5,0.4,0.5,0.3} and {—0.5, p1,—1,0.5,0.3}. The coefficient p; _; of the second
filter may change in its stability interval, i.e. [0.2,0.6]. Then, the source images
s;(n1,n2) are mixed by the mixing matrix A = 0 ;9 O.i)9 . The mean of SIR
over 100 Monte Carlo simulations as a function of the coefficient p;,_; of the
second AR filter is shown in Fig. 3-a. Our algorithm outperforms the other two,

whatever pq 1.

In the second experiment, the same non-autocorrelated and uniformly dis-
tributed image noises, e1(n1,n9) and ea(n1,ng), were generated and one of them
was filtered by a symmetrical FIR filter. It is evident that the filtered signal is
no longer a 2nd-order MRF. Then, the signals were mixed by the same matrix
as in the first experiment. The mean of SIR as a function of the selectivity of the
FIR filter is shown in Fig. 3-b. The performance of our method is always better
than SOBI. It also outperforms Pham-Garat unless the filter selectivity is small
so that the filtered signal is nearly uncorrelated. In the last experiment, the two
real images of dimension 230 x 270 pixels, shown in Fig. 4, were mixed by the
same matrix. It is clear that the working hypotheses are no longer true because
the images are not stationary and cannot be described by 2nd-order MRFs.
However, the images are autocorrelated and nearly cyclostationary because the
correlation profiles on different circles are similar. Thus, the conditional score
functions on different circles are nearly similar. Once more, the three mentioned
algorithms were used for separating the sources. Our algorithm led to 57-dB SIR
while SOBI and Pham-Garat led to 23-dB and 12-dB SIR respectively.

(@)

SIR(dB)

25 N J Markov / T Markov
N ; Pham J Pham
20| . ; ___ soBI

__ SoBl

1 v
0 02 04 06 08
82 03 04 p,_, 05 06 07 Fiter selectivity

Fig. 3. Simulation results using (a) IIR and (b) FIR filters

Fig. 4. Real-world images used in the experiment
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6 Conclusion

In this paper, we made two major modifications in our markovian blind image
separation algorithm i.e. utilization of a low-cost parametric score function es-
timator instead of the non-parametric estimator, and derivation of a modified
equivariant Newton-Raphson algorithm for solving the estimating equations in-
stead of maximizing the log-likelihood function by a relative gradient algorithm.
These modifications led to a much faster algorithm and allowed us to perform
more experiments using artificial and real-world data. These experiments con-
firmed the better performance of our method in comparison to the classical
methods which ignore spatial autocorrelation or non-gaussianity of data.
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Appendix. Derivation of Equations (10)

Post-multiplying B = (I+ A)B by x we obtain § = (I + A)3. Denoting A =
611 6 e —~ ~ ~ ~
(511 512>, it implies that 81(n1,ng) = 51(n1,m2) + 61151 (11, n2) + 01252(n1, 12)
21 022
and gg(’ﬂl, ’I'LQ) = gg(nl, ng) + 621:;1 (nl, ng) + 522§2(n1, ng). Since §1 and §2 must
satisfy the estimating equations (9), by replacing the above relations in the first
estimating equation and considering (7) we obtain
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E{ Z {lﬁg’l) (81(n1,m2) + 61181 (n1, n2) + 61282 (n1, n2)[31 (N1, n2 — 1)
(k,l)er

+01151(n1,m2 — 1) + b61252(n1,n2 — 1),...,51(n1 — 1,ng — 1)

+511§1(TL1 — ].,77,2 — 1) + 512§2(n1 — 1,77,2 — 1))}{§Q(TL1 — ]f, N9 — l)

+(521§1(TL1 —k,ng — l) + 522§2(TL1 —k,ng — l)}] = 0(15)

Using a first-order Taylor development of the score function, noting that the
separated sources are independent at the vicinity of the solution, neglecting the
terms containing the products of ¢;;, and neglecting 622 with respect to 1, we
obtain by some simple calculus the first equation in (10). The second equation
can be derived by symmetry.
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Abstract. Causal discovery is the task of finding plausible causal re-
lationships from statistical data [1,2]. Such methods rely on various as-
sumptions about the data generating process to identify it from
uncontrolled observations. We have recently proposed a causal discovery
method based on independent component analysis (ICA) called LINGAM
[3], showing how to completely identify the data generating process under
the assumptions of linearity, non-gaussianity, and no hidden variables. In
this paper, after briefly recapitulating this approach, we focus on the al-
gorithmic problems encountered when the number of variables considered
is large. Thus we extend the applicability of the method to data sets with
tens of variables or more. Experiments confirm the performance of the
proposed algorithms, implemented as part of the latest version of our
freely available Matlab/Octave LINGAM package.

1 Introduction

Several authors [1,2] have recently formalized concepts related to causality using
probability distributions defined on directed acyclic graphs. This line of research
emphasizes the importance of understanding the process which generated the
data, rather than only characterizing the joint distribution of the observed vari-
ables. The reasoning is that a causal understanding of the data is essential to be
able to predict the consequences of interventions, such as setting a given variable
to some specified value.

An interesting question within this theoretical framework is: ‘Under what
circumstances and in what way can one determine causal structure on the basis
of observational data alone?’. In many cases it is impossible or too expensive to
perform controlled experiments, and hence methods for discovering likely causal
relations from uncontrolled data would be very valuable.

For continuous-valued data the main approach has been based on assump-
tions of linearity and gaussianity [1,2]. Those assumptions generally lead only to
a set of possible models equivalent in their conditional correlation structure. We
have recently showed [3] that an assumption of non-gaussianity in fact allows
the full model to be identified using a method based on independent component
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analysis (ICA). However, this new method poses some challenging computa-
tional problems. In this paper we describe and solve these problems, allowing
the application of the method to problems of high dimensionality.

The paper is structured as follows. In Section 2 we briefly describe the basics
of LINGAM, before focusing on the computational problems in Section 3. The
proposed algorithms are empirically evaluated in Section 4. Conclusions are given
in Section 5.

2 LiINGAM

Assume that we observe data generated from a process with the following
properties:

1. The observed variables z;, i = {1...n} can be arranged in a causal order
k(i), defined to be an ordering of the variables such that no later variable in
the order participates in generating the value of any earlier variable. That
is, the generating process is recursive [4], meaning it can be represented
graphically by a directed acyclic graph (DAG) [2,1].

2. The value assigned to each variable x; is a linear function of the values
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term e;,
and plus an optional constant term c;, that is

XT; = Z bij.’L‘j +e; +c¢. (1)
k(5)<k(i)

3. The disturbances e; are all continuous random variables having non-gaussian
distributions with non-zero variances, and the e; are independent of each

other, i.e. p(e1,...,en) = [, pi(es).

A model with these three properties we call a Linear, Non-Gaussian, Acyclic
Model, abbreviated LINGAM.

We assume that we observe a large number of data vectors x (containing the
components z;), and each is generated according to the above described process,
with the same causal order k(i), same coefficients b;;, same constants ¢;, and
the disturbances e; sampled independently from the same distributions. Note
that the above assumptions imply that there are no unobserved confounders [2]
(hidden variables). Spirtes et al. [1] call this the causally sufficient case.

To see how we can identify the parameters of the model from the set of data
vectors X, we start by subtracting out the mean of each variable x;, leaving us
with the following system of equations:

x =Bx+e, (2)

where B is a matrix that contains the coeflicients b;; and that could be permuted
(by simultaneous equal row and column permutations) to strict lower triangular-
ity if one knew a causal ordering k(%) of the variables. (Strict lower triangularity
is here defined as lower triangular with all zeros on the diagonal.) Solving for x
one obtains

x = Ae, (3)
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where A = (I — B)~!. Again, A could be permuted to lower triangularity (al-
though not strict lower triangularity, actually in this case all diagonal elements
will be non-zero) with an appropriate permutation k(i). Taken together, equa-
tion (3) and the independence and non-gaussianity of the components of e define
the standard linear independent component analysis (ICA) model [5,6], which is
known to be identifiable.

While ICA is essentially able to estimate A (and W = A1), there are
two important indeterminacies that ICA cannot solve: First and foremost, the
order of the independent components is in no way defined or fixed. Thus, we
could reorder the independent components and, correspondingly, the columns
of A (and rows of W) and get an equivalent ICA model (the same probability
density for the data). In most applications of ICA, this indeterminacy is of no
significance and can be ignored, but in LINGAM, we can and we have to find
the correct permutation as described in Section 3 below.

The second indeterminancy of ICA concerns the scaling of the independent
components. In ICA, this is usually handled by assuming all independent com-
ponents to have unit variance, and scaling W and A appropriately. On the other
hand, in LINGAM (as in structural equation modeling, SEM [4]) we allow the
disturbance variables to have arbitrary (non-zero) variances, but fix their weight
(connection strength) to their corresponding observed variable to unity. This re-
quires us to re-normalize the rows of W so that all the diagonal elements equal
unity, before computing B.

Our LiINGAM discovery algorithm [3] can thus be briefly summarized: First,
use a standard ICA algorithm to obtain an estimate of the demixing matrix W,
permute its rows such that there are no zeros on its diagonal, rescale each row
by dividing by the element on the diagonal, and finally compute B = 1 — W',
where W’ denotes the permuted and rescaled W.

To find a causal order k(i) we must subsequently find a second permutation,
to be applied equally both to the rows and columns of B, which yields strict
lower triangularity.

3 Algorithms for Solving the Permutation Problems

3.1 Permuting the Rows of W

As pointed out above, because of the permutation indeterminancy of ICA, the
rows of W will be in random order. This means that we do not yet have the
correct correspondence between the disturbance variables e; and the observed
variables ;. The former correspond to the rows of W while the latter correspond
to the columns of W. Thus, our first task is to permute the rows to obtain a cor-
respondence between the rows and columns. If W were estimated exactly, there
would exist one (and only one!) row permutation that would give a matrix with
no zeros on the diagonal, and this permutation gives the correct correspondence
[3]. Furthermore, finding the correct permutation would be trivial.

In practice, however, ICA algorithms applied on finite data sets will yield
estimates which are only approximately zero for those elements which should be
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exactly zero. Thus, we need to search for the correct permutation by minimizing
a cost functionA/ which heavily penalizes small absolute values in the diagonal,
such as ), 1/|W;;|, where W denotes the row-permuted W.

An exhaustive search over all possible row-permutations is feasible only in
relatively small dimensions [3]. For larger problems other optimization meth-
ods are needed. Fortunately, it turns out that the optimization problem can be
written in the form of the classical linear assignment problem. To see this set
C;; = 1/|W;;], in which case the problem can be written as the minimization of

> Coiyi (4)
=1

where ¢ denotes the permutation to be optimized over. A great number of al-
gorithms exist for this problem, with the best achieving worst-case complexity
of O(n?) where n is the number of variables, see e.g. [7]. In our current imple-
mentation though, we simply use general-purpose linear programming software
to find the optimum, which is good enough to solve problems involving tens of
variables. Future implementations will use the more efficient algorithms.

3.2 Permuting B to Get a Causal Order

Once we have obtained the correct correspondence between rows and columns of
the ICA decomposition, calculating estimates of the b;; is straightforward. First,
we normalize the rows of the permuted matrix to yield W', and then calculate
B =1I— W' as described in Section 2 [3].

Although we now have initial estimates of all coefficients b;; we do not yet
have available a causal ordering k(7) of the variables. Such an ordering (in general
there may exist many if the generating network is not fully connected) is needed
to achieve a directed acyclic graph, thus completing the estimation process.
Essentially, after the ordering we can force half of the coefficients to equal zero
such that the resulting network has no directed cycles.

A causal ordering can be found by permuting both rows and columns (using
the same permutation) of the matrix B (containing the initial estimated connec-
tion strengths) to yield a strictly lower triangular matrix. If the estimates were
exact, this would be a trivial task, using the following algorithm:

Algorithm A: Testing for DAGness, and returning a causal order if true
1. Initialize the permutation p to be an empty list
2. Repeat until B contains no more elements:
(a) Find a row i of B containing all zeros, if not possible return false
(b) Append i to the end of the list p
(c) Remove the i:th row and the i:th column from B
3. Return true and the found permutation p
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However, since our estimates will not contain exact zeros, we will have to find
a permutation such that setting the upper triangular elements to zero changes
the matrix as little as possible. For instance, we could define our objective to
be to minimize the sum of squares of elements on and above the diagonal, that
is Zigj B?j where B = PBP” denotes the permuted B, and P denotes the
permutation matrix representing the sought permutation. In low dimensions,
the optimal permutation can be found by exhaustive search. However, for larger
problems this is obviously infeasible. Since we are not aware of any efficient
method for exactly solving this combinatorial problem, we have taken another
approach to handling the high-dimensional case.

Our approach is based on setting small (absolute) valued elements to zero,
and testing whether the resulting matrix can be permuted to strict lower trian-
gularity. Thus, the algorithm is:

Algorithm B: Finding a permutation of B by iterative pruning and testing

1. Set the n(n + 1)/2 smallest (in absolute value) elements of B to zero
2. Repeat
(a) Test if B can be permuted to strict lower triangularity (using Algorithm A
above). If the answer is yes, stop and return the permuted B
(b) Additionally set the next smallest (in absolute value) element of B to zero

If in the problem, all the true zeros resulted in estimates smaller than all
of the true non-zeros, this algorithm finds the optimal permutation. In general,
however, the result is not optimal in terms of the above proposed objective;
more elements are usually set to zero than would be needed. Fortunately, this
is not a big problem because in sparse networks there are many more zeros in
the coefficients than required by the acyclicity of the model, hence we would
nevertheless like to prune out the small values from the estimated coefficients.
See [3] for some discussion on pruning the estimated coefficients.

4 Experiments

In [3] we empirically verified the basic concept of LINGAM by generating data
from such models and estimating them using our method. However, because of
the lack of efficient permutation algorithms we were limited to problems with
small numbers of variables (8 variables or less). In the present paper we demon-
strate that the method also works well in high dimensions by employing the
permutation algorithms discussed in Section 3. All experimental code (including
the precise code to produce Figure 1) is included in the LINGAM code package,
available at:

http://www.cs.helsinki.fi/group/neuroinf/lingam/
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Fig. 1. Scatterplots of the estimated b;; versus the original (generating) values. The
different plots correspond to different numbers of variables and different numbers of
data vectors. Although for small data sizes the estimation often fails, when there is
sufficient data the estimation works essentially flawlessly, as evidenced by the grouping
of the points along the diagonal.

We
1.

repeatedly performed the following experiment:

First, we randomly constructed a strictly lower-triangular matrix B. Various
dimensionalities (10, 30, and 50) were used. Both fully connected (no zeros
in the strictly lower triangular part) and sparse networks (many zeros) were
tested. We also randomly selected variances of the disturbance variables and
values for the constants c;.

Next, we generated data by independently drawing the disturbance variables
e; from gaussian distributions and subsequently passing them through a
power non-linearity (raising the absolute value to an exponent in the interval
[0.5, 0.8] or [1.2, 2.0], but keeping the original sign) to make them non-
gaussian. Various data set sizes were tested. The e; were then scaled to yield
the desired variances, and the observed data X was generated according to
the assumed recursive process (1).

Before feeding the data to the LINGAM algorithm, we randomly permuted
the rows of the data matrix X to hide the causal order with which the data
was generated. At this point, we also permuted the generating coefficients,
the ¢;, as well as the variances of the disturbance variables to match the new
order in the data.

Finally, we fed the data to our discovery algorithm, and compared the es-
timated parameters to the generating parameters. In particular, we made a
scatterplot of the entries in the estimated matrix B against the correspond-
ing generating coeflicients.
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Fig. 2. Left: example original network. Right: estimated network. Graphs plotted us-
ing the latest version of the LINGAM package which connects seamlessly to the free
Graphviz software, a sophisticated tool for plotting graphs.

Since the number of different possible parameter configurations is limitless,
we feel that the reader is best convinced by personally running the simulations
using various settings. This can be easily done by anyone by downloading our
software and running it using Matlab or the freely available Octave software.
Nevertheless, we here show some representative results.

Figure 1 gives combined scatterplots of the elements of B versus the gen-
erating coefficients. The different plots correspond to different dimensionalities
(numbers of variables) and different data sizes (numbers of data vectors), where
each plot combines the data for a number of different network sparseness lev-
els and non-linearities. Although for very small data sizes the estimation often
fails, when the data size grows the estimation works practically flawlessly, as
evidenced by the grouping of the datapoints onto the main diagonal.

In summary, the experiments verify that the new algorithms are able to find
the appropriate permutations even in high dimensions, and demonstrate that
reliable estimation is possible even when the number of variables is large. Com-
paring with the experiments in [3] we note that for larger dimensions we clearly
need more data, but the amounts of data required are still reasonable.

5 Conclusions

Developing methods for causal inference from non-experimental data (data which
does not come from controlled, randomized experiments) is a fundamental prob-
lem with a very large number of potential applications. Although one can never
fully prove the validity of a causal model from observational data alone, such
methods are nevertheless crucial in cases where it is impossible or very costly to
perform experiments.

The estimation of linear causal models can be based purely on the covariance
structure of the data [4,1,2] but such methods cannot in most cases distinguish
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between multiple equally possible causal models that all imply the same condi-
tional correlation structure. We have recently shown [3] that an assumption of
non-gaussianity of the disturbance variables allows the full causal model to be
identified, and provided an algorithm for this estimation. The method is essen-
tially a post-processing method of ICA results.

In this paper we have shown how to solve one of the main remaining problems
with our LINGAM method, that of finding the appropriate permutations when
the number of variables is large. The proposed algorithms have been implemented
in our freely available software package, and tested in thorough experiments.
The code package has also been extended to include graph plotting capability
(in combination with Graphviz), as Figure 2 demonstrates.

How well real-world causal processes fit our assumptions, in particular that of
linearity, will be crucial to the success or failure of applications of LINGAM. We
are currently involved in testing the method on real-world data and comparing its
power and usefulness with other causal discovery methods, such as those based
purely on conditional correlation structure. For the most recent developments,
please see the project webpage.
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Abstract. This paper describes blind source separation (BSS) problems
in the frequency domain using an eigenvector algorithm (EVA) with ref-
erence signals. The proposed EVA has such an attractive feature that all
source signals are separated simultaneously from their mixtures. This is
an advantage against the methods using deflation process (e.g., super-
exponential method), because those methods sometimes do not work so
as to converge to desired solutions, due to deflation failure. Computer
simulation demonstrates the validity of the proposed EVA.

1 Introduction

This paper deals with the blind source separation (BSS) problem for a multiple-
input multiple-output (MIMO) static system driven by independent source sig-
nals. To solve this problem, we draw on the ideas of eigenvector algorithms
(EVAs) with reference signals. Jelonnek et al. have proposed EVAs derived from
a criterion using a reference signal, in order to solve blind equalization of single-
input single-output (SISO) systems [1,2]. They have shown that the equalizer
can be derived from the eigenvectors of a fourth-order cumulant matrix. In this
paper, the EVA derived from a criterion with reference signals is used for solv-
ing the BSS problem of MIMO static systems. The proposed EVA has such an
attractive feature that all source signals are separated simultaneously from their
mixtures, while the other methods using deflation process extract signals one by
one. If the deflation process fails, all the signals cannot be separated. However,
the EVA with reference signals enables us to extract all the sources without any
deflation methods.

Through computer simulations and real environment experiments, we show
the effectiveness of the proposed methods.

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 123-131, 2006.
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2 Problem Formulation

Throughout this paper, let us consider the following MIMO static system with
n inputs and m outputs, a convolutive mixture model with additive noise (See
figure 1.);

reference signal

l tput si 1
so—s 1 00 O

Fig. 1. The composite system of an unknown system and a filter, and reference system

y(t) =Y H(k)s(t — k) +n(1), (1)
k

where y(t) represents an m-column output vector called the observed signal, s(t)
represents an n-column input vector called the source signal, n(t) represents an
m-column noise vector and H (t) is an m x n(m > n) mixing matrix.

To achieve the blind source separation for the system (1), a convolutive mix-
ture in the time domain is converted into instantaneous mixtures in the frequency
domain with the short-time Fourier transform (STFT),

Y(f7t) :H(f)S(f,t)-i-N(f,t) (2)

The following n filters, which are m-input single-output (MISO) static systems
driven by the observed signals, are used for each frequency bin:

Zl(fut):WlH(f)Y(fvt)v l=1,2,...,n, (3)

where superscript © denotes the conjugate transpose (Hermitian) of a ma-
trix or a vector and Z;(f,t) is the Ith output of the filter, w;(f) =
[wi1 (f), Wiz (f), - -, Wim]® is an m-column vector representing the m coefficients
of the filter in frequency bin f. Substituting (2) into (3), we obtain

Zi(f,t) = wi (F)B()S(f,1) +wi' (/)N(f,1),
:ng(f)S(f7t)+W1H(f)N(f7t)ﬂ 1=1,2,...,n, (4)

where g(f) = [gu(f),g2(f).--.am(H]T = HI(f)wi(f) is an n-column
vector. The BSS problem considered in this paper can be formulated as follows:

Find n filters w;(f)’s denoted by w;(f)’s satisfying the following condition, with-
out the knowledge of H(f), even if the Gaussian noise N(f,t) is added to the
observed signal Y(f,¢),

gl(f):HH(f)‘x"l(f):gl(f% 1=12,...,n, (5)

where Sl(f) is an m-column vector whose elements Slr(f)(r =1,2,...,n) are
equal to zero except for p;(f)th element.
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To solve the blind separation problem, we put the following assumptions on
the system and the source signals.

A1) The matrix H(f) in (2) has full column rank.

A2) The input sequence {S(f,t)} is a zero-mean, non-Gaussian vector whose
element processes {S;(f,t)},7i =1,2,...,n, are mutually statistically inde-
pendent and have nonzero variance, afi (f) and nonzero fourth-order cumu-
lants, v;(f), i=1,2,...,n.

A3) The noise sequence {N(f,¢)} is stationary process vector, whose elements,
{N;(f,t)},i=1,2,...,m are Gaussian processes with zero mean.

A4) The two vector sequences {N(f,¢)} and {S(f,t)} are mutually independent.

3 Eigenvector Algorithms (EVAs)

3.1 Analysis of EVAs with the Referen