
Reusable Components for Implementing Agent
Interactions�

Juan M. Serrano, Sascha Ossowski, and Sergio Saugar

University Rey Juan Carlos, Department of Computing
{JuanManuel.Serrano, Sascha.Ossowski, Sergio.Saugar}@urjc.es

Abstract. Engineering component interactions is a major challenge in
the development of large-scale, open systems. In the realm of multia-
gent system research, organizational abstractions have been proposed to
overcome the complexity of this task. However, the gap between these
modeling abstractions, and the constructs provided by todays agent-
oriented software frameworks is still rather big. This paper reports on
the RICA−J multiagent programming framework, which provides exe-
cutable constructs for each of the organizational, ACL-based modeling
abstractions of the RICA theory. Setting out from a components and
connectors perspective on the elements of the RICA metamodel, their
executions semantics is defined and instrumented on top of the JADE
platform. Moreover, a systematic reuse approach to the engineering of
interactions is put forward.

1 Introduction

In the past few years, multi-agent systems (MAS) have been proposed as a
suitable software engineering paradigm to face the challenges posed by the
development of large-scale, open systems [1, 2]. Two major characteristics of
MAS are commonly put forward to justify this claim. Firstly, agents are excel-
lent candidates to occupy the place of autonomous, heterogeneous and dynamic
components that open systems require [2]. Secondly, the organizational stance
advocated in various degrees by most MAS methodologies, provides an excel-
lent basis to deal with the complexity and dynamism of the interactions among
system components [1]. In particular, organization-oriented abstractions such as
roles, social interactions, groups, organizations, institutions, etc., have proved to
be an effective means to model the interaction space of complex MAS [1, 3–5].

However, the gap between these modeling abstractions, and the constructs pro-
vided by todays agent-oriented software frameworks is still huge. A way to bridge
this gap is to include organization-oriented abstractions as first-class constructs
into a multiagent programming language. For this purpose, it is essential to define
the execution semantics of the new programming constructs, in a way that is inde-
pendent from any technological basis [6]. In addition, from a mainstream software

� Research sponsored by the Spanish Ministry of Science and Education (MEC),
project TIC2003-08763-C02-02.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 101–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

102 J.M. Serrano, S. Ossowski, and S. Saugar

engineering perspective, it is of foremost importance that the new abstractions
foster a systematic reuse approach, specially in the context of large-scale software
systems [7]. A similar concern has been put forward in the field of MAS engineer-
ing regarding the reuse of organizational structures [8] and agents [9].

This paper reports on the RICA−J multiagent programming framework,
which provides executable constructs for each of the modeling abstractions of
the Role/Interaction/Communicative Action (RICA) theory [4]. For this pur-
pose, the execution semantics of the different elements of the RICA metamodel
is specified, drawing inspiration from component and connector (C&C) architec-
tures [10]. With regard to reusability matters, the RICA−J software framework
exploits the organizational stance on ACLs postulated by the RICA theory, which
results in the identification of generic application-independent social interactions.

The remainder of the paper is organized as follows. Section 2 shows how a
C&C perspective on the RICA theory can be used to define an execution se-
mantics for its elements. Section 3 analyzes communicative roles and interactions
from the point of view of generic software components [7], so as to identify poli-
cies for their reuse. Section 4 provides a survey of the RICA−J framework,
emphasizing the mapping of the C&C-based execution semantics to the JADE
platform, and the architecture of a RICA−J application. The paper is con-
cluded with a discussion on the lessons learned as well as pointers to current
and future work.

2 MAS as a C&C Style

From a software architecture point of view an application structure is described
as a collection of interacting components [10]. Components represent the com-
putational elements or processing units of the system (the locus of control and
computation), while connectors represent interactions among components. Dif-
ferent types of connectors represent different forms of interaction: pipes, proce-
dure call, SQL link, event-broadcast, etc. This section will first show how this
general view of software architecture fits the multiagent social architecture en-
dorsed by the RICA theory. Then, based upon this view, and as a previous
step to the instrumentation of the theory, the execution semantics of the RICA
theory will be outlined.

2.1 Components and Connectors in the RICA Theory

The metamodel of the RICA theory provides a modeling language of the orga-
nizational and communicative features of MAS [4]. In this section we will focus
on the key organizational abstraction, namely social interactions. Moreover, we
introduce group meetings as the context in which social interactions take place,
thus extending the basic set of abstractions of the theory1. The next section
deals with the communicative layer of the metamodel.
1 The metamodel may be further extended with other kinds of abstractions such as

Organization Types and Norms. However, given the purpose of this paper, they are
not needed.

Reusable Components for Implementing Agent Interactions 103

Here, and throughout the rest of this paper, we will refer for illustration
purposes to a common application domain in the organization literature: the
management of scientific conferences [1][11]. Authors, Reviewers, Program Com-
mittee Members and Program Committee Chairs (PC chairs) would be common
roles played by agents within an organization designed to support this process.
Interactions among these agents will take place in the context of several group
meetings, such as the submission and the reviewing group types. Figure 1 shows
a partial RICA model of the submission group expressed in terms of a UML
class diagram, which makes use of several stereotypes that refer to the kind of
meta-entities and -relationships of the RICA metamodel (the <<C>> stereotype
stands for the capabilities of interactive role types).

{pattern=CRCRequestProtocol}

{pattern=PaperSubmission}

Fig. 1. RICA model of the Submission group

The specification of a group type establishes the kinds of agents which may
participate in groups of that kind by identifying several Group Role types. Au-
thors and PC Chairs, for example, represent the agents that may participate in
a submission group. Moreover, the different kinds of interactions held in some
group meeting must be specified as well. For instance, in the context of the
submission group, Paper Submission and Camera Ready Copy (CRC) Request
interactions will happen. An agent participates in a social interaction by taking
on certain Interactive Role types. For instance, an author will participate in a
paper submission interaction as the Paper Submitter, whereas the PC chair will
take part in these interactions as a Paper Submittee. The plays association in the
RICA metamodel among a group role and an interactive role establishes that
agents occupying the former position may take part in some kind of interaction
by playing the latter interactive role. Interactive role types characterize the be-
haviours that agents may show when they engage in the interaction, in terms of
the communicative actions (CA) (e.g. submit, agree) and other types of social
actions (e.g. doCRC, performed by authors in order to generate the CRC of an

104 J.M. Serrano, S. Ossowski, and S. Saugar

accepted paper) that they can perform. Besides the participant roles, other com-
ponents may form part of the definition of a kind of social interaction. Firstly, a
collection of parameter types which specify the content of the interaction, such
as the paper to be submitted and its evaluation. Input/output parameters of
communicative and social actions must refer to the parameters declared for the
interaction type. Secondly, a collection of interaction protocol types representing
different patterns along which the interaction is supposed to develop (e.g. the
submissionProcedure).

From an organizational point of view on MAS [1, 11, 12], and without discard-
ing the autonomy of agents, it is possible to abstract from the agents’ internal
architecture, and focus on the roles that an agent may play within the organi-
zation. So, agents can be conceived as a particular type of software component.
Furthermore, social interactions can be considered as different kinds of connec-
tors2, since they establish the interaction rules among agents, and thus medi-
ate their communication and coordination activities: paper submission, CRC
requests, and so on, specify the particular manner in which authors and PC
Chairs interact in the context of the submission group. Moreover, pushing the
analogy even further, connector types declare a number of roles and protocols
[13] which directly map onto the interactive roles and interaction protocols that
the RICA theory associates to social interactions. For instance, caller and callee
in a RPC connector interaction, reader and writer in a pipe interaction, and so
forth, are analogues of PaperSubmitter and PaperSubmittee as declared by the
paper submission interaction.

Social interactions mainly differ from pipes, SQL links, and other types of con-
nectors in their characteristic interaction mechanism: the Agent Communication
Language (ACL). Firstly, ACLs allow for a more anthropomorphic description
of the interactive roles and protocols than connectors. Secondly, they allow for
more flexibility, as the equivalent to connector protocols may be derived from
the communicative action semantics [14].

2.2 An Execution Semantics for RICA Models

As a first step towards defining programming abstractions that correspond to the
RICA modeling entities, the execution semantics of the later needs to be defined:
we have to show how social social interactions are enacted by agents at run-time
in the context of group meetings3. In this section we will sketch this execution
semantics based on a run-time instance of the previous conference management
model (see Figure 2). As we focus on the dynamics of social interactions, we
will assume that an instance of the submission group has already been set up by
some PC Chair. Moreover, we will consider that three authors, a3, a4 and a5,
and two PC chairs, a1 and a2, has joined this group meeting.

The behaviour of agents within a group meeting is given by the group role
instances and the interactive role instances that they play. Hence, an agent
2 Group types may also be conceptualised as a special kind of connector.
3 Here, agents, social roles, interactions, and so forth, denote instances of the corre-

sponding RICA metamodel abstractions.

Reusable Components for Implementing Agent Interactions 105

:PCChair

:SubmissionGroup

a3:Agent

r1:Author

a1:Agent

:PCChair

a2:Agent

i1:PaperSubmission
r2:PaperSubmitter

i2:PaperSubmission

:PaperSubmittee

:Submit

i3:PaperSubmission

a4:Agent

:Author

a5:Agent

:Author i4:PaperSubmission

r3:PaperSubmitter

Fig. 2. Run-time instance of the e-commerce model

comprises a set of role instances: each of them encapsulates an action selection
strategy that is compliant with the restrictions put forward by the role type.
Role instances are run in parallel by the agent and may be active or suspended.

If some agent has activated a given group role instance, it may engage other
agent(s) of the same group in social interaction. Submission interactions, for
example, will be started by authors. The execution of an engage action results
in the creation of a new interaction. Once the interaction has been created,
the agent will instantiate the corresponding interactive role type to carry out
its activity within that particular interaction. Thus, a given agent has as many
interactive role instances as interactions in which it is participating. For instance,
in figure 2, the participation of author agent a3 in paper submission interactions
i1 and i2 is carried out by its role instances r2 and r3, respectively.

The engage action specifies a collection of addressees which will be notified
of the new interaction. In our example, authors will normally engage any PC
Chair in paper submission. Interaction i3, shown in the example, represents the
result of the engagement performed by agent a4. Once some agent is notified of
a new interaction addressed to it, it may join that interaction and instantiate its
corresponding interactive role type. Only the addressees of some interaction may
join it. However, it may happen that some agent who received the engagement
notification can not join the interaction because the role’s position is already
occupied by other agent who was faster in joining it4. Note that the engage
action automatically involves a join action performed by the initiator agent.

The interactive role behaviour determines which types of actions will be ex-
ecuted by the agent in the course of the interaction. It also makes sure that the

4 This essentially depends on the cardinality feature declared by the interactive role
type. For instance, in multi-party conversations such as auctions multiple bidders
may join the interaction.

106 J.M. Serrano, S. Ossowski, and S. Saugar

agent observes the types of actions executed by other participant in the interac-
tion, and that it aborts action execution if some condition is fulfilled. Abortions
will normally affect non-communicative actions, whereas observation will result
in the suspension of the role behaviour until the action (normally, a CA) is
performed.

For instance, as soon as a PC Chair joins a submission interaction initiated
by some author it will wait for the author’s submission (i.e. for the performance
of a submit CA, as exemplified in interaction i2). Once the author submits its
paper, it will be vigilant for the agreement or refusal of the PC Chair. In case
of agreement, the PC Chair will eventually notify the evaluation of the paper.
The PC Chair may then leave the interaction and deallocate its interactive role,
thus finishing its participation in that conversation. Once the author receives
the notification of the paper’s evaluation it will close (and, hence, also leave) the
interaction. Some interaction may only be closed by its initiator (i.e. the one who
initially engage other agents in the conversation). If some interaction is closed
the pending agent(s) will be only able to leave it (i.e. no action performing will
be allowed). Interaction i4 represents an interaction between agents a5 and a2,
closed by the initiator agent a5.

Interaction behaviour need not be explicitly declared by role types, but can
also be inferred from the protocol which regulate the social interaction. Thus,
protocol instances in RICA provide all the aforementioned services: action exe-
cution, observation, abortion, etc. Still, the particular way in which these services
are provided depends on the execution semantics of the technique in which the
interaction protocol is specified (FSMs, Petri nets, etc.).

3 ACLs and Component-Based Development

This section will evaluate the potential for reusability of the RICA theory in
the context of the above execution semantics. Specifically, we look for reusable
software artifacts (i.e. components5 [7]), which may support a systematic reuse
approach. First, we will show how ACL dialects serve to identify these reusable
components. Then, we will discuss their associated customization mechanisms.

3.1 Reusable Components in the RICA Theory

As the CRCRequest interaction model shows (see figure 1), a social interaction
type must specify the communicative actions that participating agents can per-
form. Protocols that regulate their behaviours may be defined as well. Still, PC
Chairs are not the only kind of agents that will issue requests or cancellations.
Similarly, a CRC request protocol may essentially be modeled after a generic
“request protocol” (e.g. as the FIPA Request Protocol [15]). The RICA theory

5 This sense of the word “component” should not be confused with the meaning of
the term in the context of C&C architectures. The context will provide the right
interpretation.

Reusable Components for Implementing Agent Interactions 107

abstracts these pragmatic features (CAs and protocols) away from the defini-
tion of interactive roles and social interactions, and encapsulates them in their
characteristic communicative roles and communicative interactions, particular
types of interactive roles and social interactions defined from a set of performa-
tives and protocols, i.e. an ACL dialect. For instance, the requester role type is
the unique type of role characterized by request and cancel CAs. Communicative
roles may also include non-communicative actions. For instance, requestee agents
will need to determine if the requested action can be performed or not, which
may be accomplished by the evalRequest action. We call the characteristic in-
teraction in which requester and requestee agents participate action performing.
This communicative interaction type, shown in figure 3, encapsulates the request
protocol, besides generic content parameters such as the action to be requested,
the agreement conditions, etc.

Thanks to the cross-domain features of CAs and protocols, ACL-based in-
teractions are generic first-order reusable components6. Indeed, communicative
interactions provide the pragmatic features of application-dependent social inter-
actions, which basically differ at the semantic level. However, dynamic features
of interactive role types are not completely defined at this level of abstraction.
Particularly, a communicative interaction type says nothing about the rules to
be followed in order to set up or close an interaction of that kind: the engage-
ment and closing rules. Similarly, the joining and leaving rules for each kind of
communicative role type are not declared either, so that these kinds of roles will
be abstract. Note that these rules complements the static features of the RICA
metamodel described in the last section.

3.2 Customization Mechanism

There are two major customization mechanisms to reuse communicative inter-
action components in a given application domain: delegation and specialization.
Due to lack of space, the discussion is constrained to the latter mechanism, which
relies in a recursive definition model by which some type (the derived type) is
defined in terms of a super-type (or base type), by extending, overriding and/or
inheriting some of its definition components7.

For instance, figure 3 shows the recursive specification of the CRC Request
social interaction, by customizing the action performing communicative inter-
action. Different characteristics are inherited: the content parameters and the
request protocol. Similarly, CRC Requester and Requestees inherit the CAs.
Some features of the action performing interaction are not inherited, but over-
ridden by specializing components. For instance, the evalRequest action that
CRC Requestees perform as a special kind of requestee, is overriden by the eval-
CRCRequest action, which represents the particular way in which a request will
6 Note that these reusable components are actually connectors, in the C&C perspec-

tive.
7 This recursive model applies not only to interactive roles and social interactions,

but also to any kind of meta-entity of the RICA metamodel: group types, protocol
types, and so forth.

108 J.M. Serrano, S. Ossowski, and S. Saugar

be evaluated in this context. In general, social actions may either declare a de-
fault execution method, or be abstract, so that particular agents must provide
the actual implementation. In the case of the evalCRCRequest action, a default
implementation may be provided whereby the request will be accepted if the
requestee is actually the author of the paper. Overriding declarations of role ac-
tions introduces a dynamic binding feature in the execution semantics of RICA
models. For instance, when CRC Requestee agents are required to perform the
evalRequest action (which is legal, since they are requestee agents), the action
that is actually executed at run-time is evalCRCRequest8.

{pattern=RequestProtocol}

{ENGAGEMENT RULE =
x must engage y
when achieved(y::PaperSubmission(paper)::x)
iff accepted(paper) }

{CLOSING RULE =
x should close
iff achieved or y leaved or not joined}

{JOIN RULE =
y must join
when addressed
iff true}

{LEAVE RULE =
y should leave
iff achieved}

Fig. 3. Recursive definition of CRCRequest interactions

The model of figure 3 also illustrates the case of extensions: e.g. the doCRC
action extends the inherited and overridden set of actions that CRC Requestee
agents can perform. As another example of extension (involving abstract features
of the parent type), the social interaction type also declares the engagement,
closing, joining and leaving rules. These rules are represented in figure 3 as
tagged values inside notes. Engagement and closing rules are defined for CRC
Requesters, while joining and leaving are defined for CRC Requestees:

– Engagement rule: The set up may be established when a paper submission
interaction finishes successfully and the paper was accepted. If so happens,

8 This mechanism allows for a direct reuse of interaction protocols, fully specified in
the scope of communicative interactions. For instance, the Interaction State Machine
(ISM) specification of the request protocol [16] may be reused “as-is” by the CRC
request interaction.

Reusable Components for Implementing Agent Interactions 109

the paper submittee (a PC Chair, as declared in figure 1), must engage the
paper submitter (an author) to play the requester role and obtain the CRC
of the accepted paper9.

– Joining rule: An author must join the interaction as a requestee when it is
addressed by the PC Chair.

– Leaving rule: An author should leave the interaction when the CRC is pro-
vided (i.e. the interaction’s purpose is achieved).

– Closing rule: A PC Chair should close the interaction if and only if the CRC
has been provided, the author leaves the interaction before finishing its job,
or the addressed author does not join before the established deadline for the
delivery of the CRC.

Finally, it should be noted that communicative interactions may be reused to
specify other communicative interactions as well. For example, the Submission
communicative interaction may be defined as an specialisation of Action Per-
forming interactions. Moreover, taking into account that a submit CA is a special
kind of request, the generic RequestProtocol may be used in place of particular
submission protocols.

4 The RICA−J Framework

The RICA theory, given its metamodel and execution semantics, can be con-
ceived as a programming language with close links to Architectural Description
Languages (ADLs) [13]. For instance, the CRC Requestee role type may be de-
clared as shown in figure 4. Unlike its UML representation (see figure 3), the
grammatical form also conveys the full declaration of social actions (parameters
and execution blocks). Dotted lines should be replaced by actual code, possibly
object-oriented (e.g. Java). The reserved words player and interaction play
a similar role to the reserved word this in Java: the first one denotes the agent
which is playing that role instance (an Author agent, in the example); the second
one, the interaction to which the agent is connected as a player of the interactive
role type (an instance of CRCRequest, in the example). Finally, the functions
achieved and addressedFor denote predefined operations of social interaction
and agent instances, respectively.

As a more pragmatic alternative to the direct instrumentation of the “RICA
programming language”, the RICA−J (RICA-JADE [17]) framework instru-
ments the RICA theory on top of the FIPA-compliant JADE platform [18],
which is used as the underlying middleware and programming environment. This
section will first describe the RICA−J architecture and general features based
on the execution semantics described in section 2. Then, we outline how the the
reusability concern described in section 3 is captured in the framework.

9 In general, the engagement rule may not specify a particular agent as the addressee
but a definite description representing a collection of agents. The engagement rules
for paper submission interactions, as suggested previously, may establish that the
author must engage any agent playing the PC Chair role in the submission group.

110 J.M. Serrano, S. Ossowski, and S. Saugar

interactive role type CRCRequestee specialises Requestee
must be joined by Author when player.addressedFor(CRCRequest)
should be leaved iff interaction.achieved()
performs{
 social action type evalCRCRequest(in paper)
 overrides evalRequest
 executes{ ... }

 social action type doCRC(in paper, out crc)
 executes{ ... }
}

Fig. 4. Grammatical declaration of the Seller role

4.1 RICA−J Architecture

The RICA−J framework extends the JADE platform with a layer that pro-
vides a virtual machine based on the RICA abstractions. This layer is de-
composed into two major modules, implemented by the rica.reflect and
rica.core Java packages, which instrument the RICA metamodel and exe-
cution semantics, respectively. Thus, the former package includes the classes
InteractiveRoleType, SocialInteractionType, etc., while the latter contains
abstract types, such as Agent, InteractiveRole and SocialInteraction. The
rica.reflect classes are functional analogues of the reflective classes of the
standard java.lang.reflect package. Moreover, they ensure the consistency
of the programmed RICA model (e.g. that any social role specializes a commu-
nicative role). On the other hand, rica.core classes may be seen as analogues of
the java.lang.Object class since, for instance, all particular agent types must
be programmed by extending the rica.core.Agent class.

The rica.core classes map the common behaviour and structure of agents,
roles, etc., as defined by the RICA execution semantics, to the supported ab-
stractions of the JADE framework: basically, agents, behaviours and ACL mes-
sages. The resulting architecture of a RICA−J agent is exemplified in figure 5.
This figure’s object model depicts the run-time structure of the a3 author agent
previously shown in figure 2.

Fig. 5. RICA−J agent architecture

Reusable Components for Implementing Agent Interactions 111

Anyrica.core.Agent (akindof JADEagent) schedules anGroupRoleMonitor
(a JADE cyclic behaviour), in charge of creating and deallocating the group role
instances in which its functionality is decomposed. The activation of a given group
role has two major consequences: firstly, the agent makes public in a role-based
Directory Facilitator (actually, a wrapper of the jade.domain.DFService) that
it currently plays that role; secondly, the GroupRoleBehaviour (a JADE paral-
lel behaviour) managed by the rica.core.GroupRole instance is scheduled. This
parallel behaviour contains a ParticipationMonitorbehaviour10, in charge of en-
acting new interactions (through engagement) or joining the agent to interactions
initiated by other agents. When some agent initiates its participation in a new in-
teraction, it will instantiate the correspondingrica.core.InteractiveRolesub-
class, together with the JADE behaviour which manages its participation in the
interaction. This behaviour will be part of the group role’s parallel behaviour.

According to the execution semantics, the interactive role behaviour deter-
mines the actions that will be executed, observed or interrupted by the agent
in the course of the interaction. As far as CAs are concerned, their execu-
tion will result in the automatic creation and sending of the corresponding
jade.lang.acl.ACLMessage. Conversely, the observation of CAs results in re-
ceiving an ACLMessage and automatically translating it back to a rica.core.
CommAction object. These conversions can be performed automatically by relying
on the content parameters, the JADE ontology, and the addressee language that
the interaction instance holds. The ProtocolBehaviour class models a generic
interactive role behaviour which determines the agent’s activity according to the
rules established by a protocol which regulates the interaction. This behaviour is
decoupled from the particular formalism used to specify the given protocol, since
it only depends on the rica.core.Protocol interface (which declares the pro-
tocol services specified by the execution semantics). Particular formalisms may
be integrated into the framework by instrumenting their execution semantics in
a Protocol subclass.

4.2 Programming in RICA−J

The architecture of a MAS in the RICA−J framework, shown in figure 6, is
structured around two major types of modules: the first one refers to the imple-
mentation of the different agents participating in the MAS; the second one, to the
implementation of the MAS organization. This composite module closely follows
the structure of its RICA model: in essence, we may identify an optional protocol
formalism module, one mandatory communication module, and the implemen-
tation of the application-dependent social interactions and non-interactive roles.

As we argued in section 3, communicative components are highly reusable
components, so that they will be likely reused from an application-independent

10 This cyclic behaviour acts as an interaction factory: since RICA−J interac-
tions are instrumented subjectively, each participant (initiator or not) holds a
rica.core.SocialInteraction instance representing the interaction from its own
perspective.

112 J.M. Serrano, S. Ossowski, and S. Saugar

Fig. 6. Architecture of a RICA−J MAS application

library of communicative interactions. This library, implemented under the acl
package, currently contains some of the FIPA ACL underlying interactions [4],
and other “non-standard” interactions such as submission and advisement inter-
actions. On the other hand, protocol formalisms are highly reusable as well. The
protocol.ism package instruments the Interaction State Machine specification
technique [16]. Therefore, the protocol and communication module will be likely
implemented by component developers, whereas the application-dependent social
module would be in charge of organization developers. Finally, independent users
would be in charged of implementing their agents. These programmers rely on
the components available in the organizational library, possibly customizing the
roles types to be played by overriding their default functionality or implementing
their abstract actions. The following paragraphs will briefly describe some gen-
eral guidelines in the implementation of communicative and social interaction
components.

Reusable Components for Implementing Agent Interactions 113

Communicative Components. Above all, communicative roles and interac-
tions encapsulate the CAs and protocols of their characteristic ACL dialect.
However, the Java classes which instrument these components also provide basic
support functionality for the execution semantics of these components. Firstly,
the constructors of the social interaction classes may provide the required ini-
tialization of the content parameters and participant addresses. Secondly, the
generic vocabulary of the communicative interaction (including the performa-
tives), will be implemented as a JADE ontology. Finally, generic social actions
defined by communicative roles may be provided with default implementations.

For instance, figure 7 partially shows the implementation of the Requestee com-
municative role type. The RICA type information is embedded in the Java class
by means of public static final fields, following the established implementa-
tion scheme for communicative roles types: a field of type CommInteractionType
declares the type of communicative interaction to which the role type belongs,
whereas role capabilities are declared by fields whose types are assignable from the
SocialActionType class (so, CommActType fields will contribute to the role capa-
bilities, since this class extends the former one). Furthermore, the class constructor
allows the player agent to register the JADE ontology defined for action performing
interactions. This ontology declares the performatives (e.g. agree, refuse, etc.) and
other generic concepts and predicates (e.g. the predicate CanNotPerform, useful
when the kind of requested action is not among the capabilities of the requestee
agent). Note that the java class is declared abstract, since the rules for joining
and leaving this kind of roles are not declared.

Figure 7 also shows a partial implementation of the EvalRequest social action.
Similarly to the Requestee role type, the static features of the action type are de-
clared by static fields: e.g. the input and output fields declares the input and
output parameters of the action, which are initialised with the corresponding
parameter types declared by the ActionPerforming communicative interaction.
For each kind of parameter, a private field parameterValue of the corresponding
type is declared, together with a pair of get/set methods to access and set the
value of the parameter. The implementation of accessor methods for output pa-
rameters provide default values which may be overriden by specialisations of this
action type. Thus, according to the getRefusalReasonmethod, the request will
be refused if the requested action can not be performed by the requestee agent
(the method getPerformer() will return the role instance which is actually ex-
ecuting the action). A default value is also provided for the notificationRequired
parameter, indicating that the agreement to perform the action should be noti-
fied (in particular requests, this default value might be overriden to false if the
performance of the requested action is imminent). Finally, a default implemen-
tation of the Action’s execute() method is also provided: the action will be
considered successfully executed if a refusal reason or the agreement condition
has been set; otherwise, the method returns in a suspended state.

Social Components. Interactive roles and social interactions extend com-
municative roles and interaction classes, thus inheriting the general interaction
management mechanism. Typically, they will provide the engagement, joining,

114 J.M. Serrano, S. Ossowski, and S. Saugar

public abstract class Requestee extends InteractiveRole{

/** Type info. */
public static final CommRoleType type = new CommRoleType(Requestee.class);
public static final CommInteractionType interaction = ActionPerforming.type;
public static final SocialActionType evalRequest = EvalRequest.type;
public static final CommActType agree = Agree.type;
public static final CommActType refuse = Refuse.type;

 ...

/** Creates a requestee role for the specified agent. */
public Requestee(Agent agent){

super(agent);
updateDomainOntology(ActionPerformingOntology.getInstance());
...

 }
}

public class EvalRequest extends SingleSocialAction{

/** Type info. */
public static final SingleSocialActionType type =

new SingleSocialActionType(EvalRequest.class);
public static final ParameterType[] input =

new ParameterType[]{ActionPerforming.action};
public static final ParameterType[] output =

new ParameterType[]{ActionPerforming.notificationRequired,
 ActionPerforming.agreementCondition,
 ActionPerforming.refusalReason};

/** Auxiliary methods for input/output parameters */
private SocialAction actionValue;
public void setAction(SocialAction newValue){...}
public SocialAction getAction(){return actionValue;}

private Predicate refusalReasonValue;
public void setRefusalReason(Predicate newValue){...}
public Predicate getRefusalReason(){

if (refusalReasonValue == null &&
 !getAction().getType().canBePerformedBy(getPerformer().getType())){
 setRefusalReason(new CanNotPerform());

}
return refusalReasonValue;

 }

private Predicate agreementConditionValue;
public void setAgreementCondition(Predicate newValue){...}
public Predicate getAgreementCondition(){return agreementConditionValue;}

private Boolean notificationRequiredValue;
public void setNotificationRequired(Boolean newValue) {...}
public Predicate getNotificationRequired(){

if (notificationRequired==null){
 setNotificationRequired(new Boolean.TRUE)

}
return notificationRequired;

 }

/** Overriden SocialAction interface */
public ExecutionState execute(){

if (getRefusalReason()!=null || getAgreementCondition()!=null){
return ExecutionState.SUCCESSFUL;

}else{
return ExecutionState.SUSPENDED;

}
 }
}

Fig. 7. Implementation of the Requestee communicative role type

leaving and closing rules by overriding/declaring the corresponding methods:
mustBeJoinedBy,shouldBeLeft, etc. Moreover, the Java classes will also provide
the social interaction ontology, application-specific implementations of general

Reusable Components for Implementing Agent Interactions 115

public class CRCRequestee extends Requestee{

 /** Type info. */
 public static final InteractiveRoleType type =
 new InteractiveRoleType(CRCRequestee.class);
 public static final SocialInteractionType interaction = CRCRequest.type;
 public static final SocialActionType evalCRCRequest = EvalCRCRequest.type;
 public static final SocialActionType doCRC = DoCRC.type;
 ...

 /** Overriden Interactive Role interface. */
 public static SocialInteraction mustBeJoinedBy(GroupRole role){
 if (role.getType()!=Author.type){

 return null;
}else{

 return role.addressedFor(CRCRequest.type);
}

 }

 public boolean shouldBeLeft(){
 return getInteraction().hasBeenSuccessful();
 }

 /** Creates a CRCRequestee role for the specified agent. */
 public CRCRequestee(Agent agent){

super(agent);
updateDomainOntology(CRCRequestOntology.getInstance());

 }

}

public class EvalCRCRequest extends EvalRequest{

 /** Type info */
 public static final SingleSocialActionType type =
 new SingleSocialActionType(EvalCRCRequest.class);
 public static final ParameterType[] input =
 new ParameterType[]{CRCRequest.paper};

 /** Auxiliary methods for input/output parameters */
 private Paper paperValue;
 public void setPaper(Paper newValue){...};
 public Paper getPaper(){ return paperValue; }

 /** Overriden Requestee interface */
 public Predicate getRefusalReason(){
 if (refusalReasonValue == null &&
 !getPaper().isAuthor(getPlayer().getAID())){
 setRefusalReason(new NotAuthor());

}
 return refusalReasonValue;
 }

 public Predicate getAgreementCondition(){
 if (agreementConditionValue == null && getRefusalReason()==null){
 setAgreementCondition(new TrueProposition());

}
 return agreementConditionValue;
 }

}

Fig. 8. Implementation of the CRCRequestee interactive role type

communicative rolemethods, and all other code concerning the actual environment
in which the application is deployed (database connection, web servers, etc.).

As figure 8 shows, the implementation of the CRCRequestee role type firstly
includes the declaration of the static features of the RICA type: essentially, the
set of capabilities, which is extended with the DoCRC action; moreover, the

116 J.M. Serrano, S. Ossowski, and S. Saugar

EvalRequest action is overriden by its specialisation EvalCRCRequest11. The
method mustBeJoined declares the joining rule for CRCRequestee roles accord-
ing to the specification discussed in section 3.2. This method is invoked by the
group role playing the interactive role, i.e. an Author instance, in this particular
case. If the return value is not null, the author agent will join the specified
interaction and will instantiate the CRCRequestee class to carry out its activ-
ity within that interaction. The leaving rule is implemented by overriding the
shouldBeLeft method, declared by the rica.core.InteractiveRole class. It
returns true if, and only if, the interaction has finished successfully. Finally,
the CRCRequestee constructor ensures that the specific ontology for this kind
of interactions is registered in the agent’s content manager. This ontology de-
clares, for example, the proposition NotAuthor, which stands for the fact that
the requestee is not the author of the paper specified in the interaction.

Figure 8 also shows a partial implementation of the EvalCRCRequest social ac-
tion. The EvalCRCRequest class overrides some of the default methods specified
by the EvalRequest class. Specifically, the request will be refused if the player
agent is not the author of the input paper. Moreover, the agreement condition
is automatically set to true if the condition for refusal is not satisfied. Thus,
according to the generic implementation of the inherited execute method, the
action will succeed the first time is performed.

5 Conclusion

This paper has shown how agent interactions can be modeled and instrumented
by customizing generic communicative interactions identified from ACL-dialects.
Communicative interactions serve as micro-organizational modeling patterns
that structure the interaction space of specific MAS, complementing similar
reuse-approaches based on macro-organizational structures [8] or agent compo-
nents [9]. Communicative interactions are also the key computational abstraction
in the RICA−J programming framework, as their execution semantics deter-
mines a substantial part of the logic required to manage agent interactions. The
encapsulation of these interactions around software component libraries signifi-
cantly simplifies the implementation of the multi-agent organization. Moreover,
the RICA−J framework also relieves agent programmers from the implemen-
tation of low-level issues concerning the dynamics of agents within the organi-
zation. On the other hand, it should be stressed that the proposed approach
does not endanger the autonomy of agents, since the social roles available in
the organization library may be fully customized to account for the particular
requirements of each agent.

The currently implemented library of communicative interactions may be ex-
tended to cover dialects proposed for other specific domains (e.g. negotiation
[19, 20]), or the dialogue types put forward by argumentation theorists [21–24].
11 If some action of the super-role is specialised by a new action of the derived role

type, the super-action is implicitly overriden. This is a limitation of the current
implementation.

Reusable Components for Implementing Agent Interactions 117

Note that the implementation of communicative interactions by means of the
RICA−J framework is independent of any semantic paradigm, be it intentional
[25], social [26], or protocol-based [27]. In fact, BDI or commitment-based agent
architectures may be instrumented as refinements of the general C&C agent ar-
chitecture, thus complementing the protocol-based semantics that the RICA−J
framework currently instruments.

Another contribution of this paper refers to the C&C perspective on MAS by
defining the execution semantics of the RICA theory. This specification, albeit
informal, shares the motivations of the formal operational semantics of groups
and role dynamics established by Ferber & Gutknecht [6], and Dastani et al.
[28]. Furthermore, the C&C-based perspective that we have put forward may
well be extended to specify the execution semantics of this and related larger-
grained organizational abstractions, such as scenes [5]. Since these abstractions
can be ultimately reduced to different types of social interactions, they may be
conceived as composite connectors [29]. Moreover, modeling social interactions
in terms of software connectors has as a major consequence the identification
of the characteristic roles that their participant agents may play within it. This
feature of the RICA metamodel allows to distinguish it from other organiza-
tional approaches, and makes possible the reuse approach to social interactions
put forward by this conceptual framework.

We have shown how the RICA−J framework instruments the RICA execu-
tion semantics on top of the JADE platform, but other agent infrastructures (e.g.
tuple-based [9]), or technologies (e.g. web services), may provide the required un-
derlying middleware services and basic abstractions as well. On the other hand,
the programming language perspective on the RICA theory complements the
results on the field of agent-oriented programming languages, currently geared
towards deliberative or cognitive capabilities of agents [30, 31]. Moreover, by
placing MAS in the broader spectrum of software architectures, this paper mo-
tivates the transfer of research from this field (e.g. on ADLs [13]).

Future work will concentrate on further validation of the RICA−J framework
with the final intention to get a JADE add-on release. The extension of the
underlying metamodel with coarse-grained organizational abstractions, and the
instrumentation of the interaction monitoring and compliance capabilities that
any open-driven framework must offer [2], will be considered as well.

References

1. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12 (2003) 317–370

2. Singh, M.P.: Agent-based abstractions for software development. In Bergenti, F.,
Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering for
Agent Systems. Kluwer (2004) 5–18

3. Ferber, J., Gutknecht, O.: A meta-model for the analysis of organizations in multi-
agent systems. In Demazeau, Y., ed.: Proceedings of the Third International Con-
ference on Multi-Agent Systems (ICMAS’98), Paris, France, IEEE Press (1998)
128–135

118 J.M. Serrano, S. Ossowski, and S. Saugar

4. Serrano, J.M., Ossowski, S., Fernández, A.: The pragmatics of software agents
- analysis and design of agent communication languages. Intelligent Information
Agents - An AgentLink Perspective (Klusch, Bergamaschi, Edwards & Petta, ed.),
Lecture Notes in Computer Science 2586 (2003) 234–274

5. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal
specifications of electronic institutions. In Dignum, F., Sierra, C., eds.: Agent-
mediated Electronic Commerce (The European AgentLink Perspective). Volume
1191 of LNAI., Berlin, Springer (2001) 126–147

6. Ferber, J., Gutknecht, O.: Operational semantics of a role-based agent architecture.
In Jennings, N.R., Lesperance, Y., eds.: Intelligent Agents VI. Proceedings of the
6th Int. Workshop on Agent Theories, Architectures and Languages. Volume 1757
of LNAI., Springer (1999)

7. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse. Architecture, Process and
Organization for Business Success. Addison-Wesley (1997)

8. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organizational abstractions for
the analysis and design of multi-agent systems. In Ciancarini, P., Wooldridge, M.J.,
eds.: AOSE. Volume 1957 of LNCS. Springer (2000) 235–252

9. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems.
In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software
Engineering for Agent Systems. Kluwer (2004) 19–31

10. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6 (1997) 213–249

11. Dignum, V., Vázquez-Salceda, J., Dignum, F.: Omni: Introducing social structure,
norms and ontologies into agent organizations. In Bordini, R., Dastani, M., Dix,
J., Seghrouchni, A., eds.: Programming Multi-Agent Systems Second International
Workshop ProMAS 2004. Volume 3346 of LNAI., Springer (2005) 181–198

12. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: AOSE. (2003)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In Leavens, G.T., Sitaraman, M., eds.: Foundations of Component-
Based Systems. Cambridge University Press (2000) 47–68

14. Bretier, P., Sadek, D.: A rational agent as the Kernel of a cooperative spoken
dialogue system: Implementing a logical theory of interaction. In Müller, J.P.,
Wooldridge, M.J., Jennings, N.R., eds.: Proceedings of the ECAI’96 Workshop on
Agent Theories, Architectures, and Languages: Intelligent Agents III. Volume 1193
of LNAI., Berlin, Springer (1997) 189–204

15. Foundation for Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification. http://www.fipa.org/repository/ips.html (2003)

16. Serrano, J.M., Ossowski, S.: A semantic framework for the recursive specification
of interaction protocols. In: Coordination Models, Languages and Applications.
Special Track of the 19th ACM Symposium on Applied Computing (SAC 2004).
(2005)

17. Serrano, J.M.: The RICAJ framework. http://platon.escet.urjc.es/
∼jserrano (2005)

18. JADE: The JADE project home page. http://jade.cselt.it (2005)
19. Wooldridge, M., Parsons, S.: Languages for negotiation. In Horn, W., ed.: Proceed-

ings of the Fourteenth European Conference on Artificial Intelligence (ECAI-2000),
Berlin, IOS Press (2000) 393–397

Reusable Components for Implementing Agent Interactions 119

20. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for
argumentation-based negotiation. In Singh, M.P., Rao, A., Wooldridge, M.J., eds.:
Proceedings of the 4th International Workshop on Agent Theories, Architectures,
and Languages (ATAL-97. Volume 1365 of LNAI., Berlin, Springer (1998) 177–192

21. McBurney, P., Parsons, S.: A formal framework for inter-agent dialogues. In Müller,
J.P., Andre, E., Sen, S., Frasson, C., eds.: Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, ACM Press (2001) 178–179

22. Lebbink, H., Witteman, C., Meyer, J.J.: A dialogue game to offer an agreement to
disagree. In Bordini, R., Dastani, M., Dix, J., Seghrouchni, A., eds.: Programming
Multi-Agent Systems Second International Workshop ProMAS 2004. Volume 3346
of LNAI., Springer (2005)

23. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In:
E. Durfee, editor, Proceedings of the 4th International Conference on Multi-Agent
Systems (ICMAS-2000), Boston, MA, USA, IEEE Press (2000) 31–38

24. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue. State University of
New York Press (1995)

25. Cohen, P.R., Levesque, H.J.: Communicative actions for artificial agents. In Lesser,
V., ed.: Proceedings of the First International Conference on Multi–Agent Systems,
San Francisco, CA, MIT Press (1995) 65–72

26. Singh, M.P.: A social semantics for agent communication languages. In Dignum,
F., Greaves, M., eds.: Issues in Agent Communication. LNAI, vol. 1916. Springer
(2000) 31–45

27. Pitt, J., Mamdani, A.: A protocol-based semantics for an agent communication
language. In Thomas, D., ed.: Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99-Vol1), S.F., Morgan Kaufmann Publishers
(1999) 486–491

28. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.J.: Enacting
and deacting roles in agent programming. In Odell, J., Giorgini, P., Müller, J.P.,
eds.: Agent-Oriented Software Engineering V, 5th International Workshop, AOSE
2004,. Volume 3382 of Lecture Notes in Computer Science., Springer (2004)

29. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of the 22nd International Conference on Software Engi-
neering, ACM Press (2000) 178–187

30. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2 (1999) 357–401

31. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51–92

	Introduction
	MASasaC&CStyle
	Components and Connectors in the \mathcal{RICA} Theory
	An Execution Semantics for \mathcal{RICA} Models

	ACLs and Component-Based Development
	Reusable Components in the \mathcal{RICA} Theory
	Customization Mechanism

	The $\mathcal{RICA−J}$ Framework
	$\mathcal{RICA−J}$ Architecture
	Programming in $\mathcal{RICA−J}$

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

