
Using a Planner for Coordination of Multiagent
Team Behavior

Oliver Obst

Universität Koblenz-Landau, AI Research Group,
56070 Koblenz, Germany
fruit@uni-koblenz.de

Abstract. We present an approach to coordinate the behavior of a mul-
tiagent team using an HTN planning procedure. To coordinate teams,
high level tasks have to be broken down into subtasks which is a basic
operation in HTN planners. We are using planners in each of the agents
to incorporate domain knowledge and to make agents follow a specified
team strategy. With our approach, agents coordinate deliberatively and
still maintain a high degree of reactivity. In our implementation for use
in RoboCup Simulation League, first results were already very promis-
ing. Using a planner leads to better separation of agent code and expert
knowledge.

1 Introduction

Coordination among different agents and the specification of strategies for mul-
tiagent systems (MAS) is a challenging task. For a human domain expert it is
often very difficult to change the behavior of a multiagent system. This is espe-
cially true when not only general tasks should be specified, but also the way in
which tasks are to be executed. Due to interdependencies simple changes in one
place of the code may easily affect more than one situation during execution.

In this work, we suggest to use Hierarchical Task Network (HTN) planners
in each of the agents in order to achieve coordinated team behavior which is in
accordance with the strategy given by the human expert. The expert knowledge
should be separated from the rest of the agent code in a way that it can easily
be specified and changed. While pursuing the given strategy, agents should keep
as much of their reactiveness as possible. HTN planning explicitly supports the
use of domain specific strategies. To coordinate groups of agents, tasks usually
have to be broken down into subtasks, which is one of the basic operations of
HTN planning. Different levels of detail in the description of strategies further
facilitate the generation of useful information for debugging or synchronization.

In classical planning, operators are deterministic and the single planning agent
is the only reason for changes in the environment under consideration. We show
how it is possible to use an HTN planner in the domain of robotic soccer, even
though the robotic soccer environment is very different from classical planning
domains. For our approach, we have chosen a team of agents using the RoboCup
3D Soccer Simulator [17] that was introduced at RoboCup-2004 in Lisbon [11].

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 90–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using a Planner for Coordination of Multiagent Team Behavior 91

The following section describes our approach to coordinate the behavior of a
multiagent team using an HTN planner. Section 3 contains the description of an
implemented example. We present and discuss the results of our first tests, and
a review of relevant related work. Finally, Sect. 6 concludes the paper.

2 HTN Planning for Multiagent Teams

The usual assumptions for HTN planning, like for classical planning approaches,
are that we plan for a single agent who is the only cause for changes in the
domain. When the plan is executed, all actions succeed as planned. Executing
an action in a classical planning framework is instantaneous, it takes no time,
and therefore the world is always in a defined state.

To plan for agents in a team and in a real-world domain, we have to relax some
of these assumptions and find a way to deal with the new setting. Definition 1 is a
way commonly used to define nondeterministic planning domains. An approach
to deal with these kinds of domains is to use model checking (see for instance [3]).
Depending on the problem and the desired properties of the results, the planner
tries to compute solution plans that have a chance to succeed or solution plans
that succeed no matter what the results of the non-deterministic actions of an
agent are.

Definition 1. A nondeterministic planning domain is a triple Σ = 〈S, A, γ〉,
where:

– S is a finite set of states.
– A is a finite set of actions.
– γ ⊆ S × A × S is the state-transition relation. �

When the number of different possible results of γ is high, computing a plan
can easily become intractable for domains where decisions have to be made
quickly. Nevertheless, using a planner could still be useful to achieve high-level
coordination for a team of several agents in a dynamic environment without using
communication and without a centralized planning facility. For our approach,
all planning should be done in a distributed fashion in each of the autonomous
agents. The goal is that team behavior can easily be specified and extended, the
task of the system is to automatically generate individual actions for the agents
in accordance with those plans during execution. Despite using plans, agents
should still be able to react to unforeseen changes in the environment.

2.1 Multiagent Team Behavior with HTN Plans

In Hierarchical Task Network (HTN, see also Definition 2) planning, the objec-
tive is to perform tasks. Tasks can be complex or primitive. HTN planners use
methods to expand complex tasks into subtasks, until the tasks are primitive.
Primitive tasks can be performed directly by using planning operators.

92 O. Obst

Definition 2. A task network is an acyclic directed graph w = 〈N, A〉, where
N is the set of nodes, and A is the set of directed edges. Each node in N contains
a task tn. A task network is primitive, if all of its tasks are primitive, otherwise
it is nonprimitive. �

Our approach of interleaving planning and acting and also of handling non-
deterministic actions is similar to the one described in [1], where a HTN plan-
ner is used for navigation planning of a single robot. Here, like in most realistic
environments, it is not enough to initially create a plan and blindly execute it, but
after execution of each action the state of the world needs to be sensed in order to
monitor progress. As a consequence, for generating HTN plans it is not absolutely
necessary to generate a primitive task network from the beginning. Instead a HTN
where the first tasks are primitive is sufficient, if we interleave planning and acting.
Future tasks are left unexpanded or partially expanded until the present tasks are
done and there is no other task in front. In dynamic and complex environments,
creating a detailed plan can be considered as wasted time, because it is virtually
impossible to predict the state of the world after only a few actions.

Rather than expanding complex tasks completely, our planner generates what
is called plan stub in [1], a task network with a primitive task as the first task.
As soon as a plan stub has been found, an agent can start executing its task.
The algorithm in Fig. 1 expands a list of tasks to a plan stub, if it is not already
in that form.

Function: plan(snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w an ordered set of tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e. the empty plan
if t1 is a pending primitive task then

active ← {(a, σ)|a is a ground instance of an operator in O,
σ is a substitution such that a is relevant for σ(t1),
and a is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (a, σ) ∈ active;
return (σ(〈t1, ..., tk〉), γ(snow, a));

else if t1 is a pending complex task then
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

else
// t1 is an already executed expanded task and can be removed
return plan(snow, 〈t2, ..., tk〉, O, M);

Fig. 1. Creating an initial plan stub (Notation according to [7])

Using a Planner for Coordination of Multiagent Team Behavior 93

In classical planning, executing an action takes no time. That means immedi-
ately after executing a planning operator, the world is in the successor state. In
our approach we have to consider that actions are not instantaneous and might
not even yield the desired result. The first problem is when to regard operators as
finally executed: Depending on the actual domain agents are acting in, actions
can be regarded as finished after a given amount of time or when a specified
condition holds. This domain specific solution to this problem is not part of the
algorithms in this paper.

A second problem is the computation of the successor state: as defined above,
for non-deterministic environments γ is a relation with possibly several results
for the same state-action pair. For our algorithms, we expect γ to be a func-
tion returning the desired successor state. Likewise, the effects of an operator
describe the desired effects. The underlying assumption is that operators have
a single purpose so that the desired successor state can be uniquely described.
The desired effects can be used by the operators to coordinate actions of team-
mates during the same plan step. For this, we introduce multiagent operators in
Definition 3, which is effectively a shortcut for defining a set of combinations of
operators. Actions that are executed simultaneously but which do not contribute
to the desired effects of the multiagent operator are simply not included. This
makes it easy for the developer of a multiagent team to create team operators,
but the disadvantage is that agents not part of the multiagent team cannot be
regarded with our approach.

Definition 3 (Multiagent Operator). Let o1, ..., on be operators, and
effects−(oj) ∩ effects+(ok) = ∅ for all j, k ∈ {1, ..., n}. p is a new operator
with name(p) = name(o1) while 〈name(o2), ..., name(on)〉. The preconditions
and effects of p are defined as unions over the preconditions and effects of all oi,
respectively:

pre(p) =
⋃

i=1,...,n

pre(oi), and effects(p) =
⋃

i=1,...,n

effects(oi)
�

At the same time, the desired successor state is used to check the success of the
last operator application in the second algorithm (see Fig. 2). Here, the executed
tasks are removed from the plan and the first algorithm is used again to create
an updated plan stub.

2.2 Handling Non-determinism

To handle non-determinism, we treat a plan as a stack. Tasks on this stack are
marked as either pending or as expanded. Pending tasks are either about to be
executed, if they are primitive, or waiting to be further expanded, if they are
complex. Tasks marked as expanded are complex tasks which already have been
expanded into subtasks. If a subtask of a complex task fails, all the remaining
subtasks of that complex task are removed from the stack and it is checked if the
complex task can be tried again. If a task was finished successfully, it is simply
removed from the stack.

94 O. Obst

Function: step(sexpected, snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w a set of ordered tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e., the empty plan
if t1 is a pending task then

if sexpected is valid in snow then
i ← the position of the first non-primitive task in the list;
return plan(snow, 〈ti, ..., tk〉, O, M);

else
// t1 was unsuccessful; remove all pending children of our

parent task
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
// t1 is an unsuccessfully terminated expanded task, try to

re-apply it
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then
// t1 cannot be re-applied, remove it from the list and recurse
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

Fig. 2. Remove the top primitive tasks and create a new plan stub

3 Robotic Soccer Sample Implementation

To give an example, we take an example from the simulated soccer domain
[10, 11] and the complex top level task play soccer has already been partially
expanded as shown in Fig. 3. All the pending tasks in Fig. 3 are still complex
tasks. To create a plan stub, the planner needs to further expand the top pending
task. At this level of expansion, the plan still represents a team plan, as seen from
a global perspective. When team tasks – like pass(2,9) – get further expanded
to agent tasks, each agent has to find its role in the team task. In the soccer
domain, agents usually have predefined roles which can be used to describe roles
in specific tasks. An alternative possibility is a distance based role selection.

Agent #2 will expand pass(2,9) to do pass(9), agent #9 has to do a
do receive pass for the same team task. The other agents position themselves
relatively to the current ball position with do positioning at the same time.
The desired effect of pass(2,9) is the same for all the agents, even if the derived
primitive task is different depending on the role of the agent. That means each
agent has to execute a different action, which is realized as C++ function call in our
case, and at the same time an operator has to update the desired successor state
independently. To express that an agent should execute the do positioning

Using a Planner for Coordination of Multiagent Team Behavior 95

��
��
��

��
��
��

���
���
���

���
���
���

1

11
6

4

5

2

3

7

8

9

10

pending-pass(2,9)
pending-pass(9,10)
pending-leading-pass(10,11)
expanded-diagram-4
expanded-build_up_long_pass
expanded-build_up_play
pending-final_touch
pending-shooting
expanded-offensive_phase
expanded-play_soccer

Fig. 3. Soccer Example Situation (left) and plan stack during planning (right)

method pass(A,B)
pre [my_number(A)]
subtasks [do_pass(B) while pass(we,A,B),
do_positioning].

method pass(A,B)
pre [my_number(B)]
subtasks [do_receive_pass while pass(we,A,B)].

method pass(A,B)
pre [my_number(C),#\=(A,C),#\=(B,C)]
subtasks [do_positioning while pass(we,A,B)].

Fig. 4. Different methods to reduce the team task pass(A,B) to agent tasks

behavior while taking the effect of a simultaneous pass between two teammates
into account, we are using terms like do positioning while pass(we,2,9) in
our planner. Figure 4 shows methods reducing the team task pass(A,B) to dif-
ferent primitive player tasks.

In different agents, the applicable methods for the top team task pass(2,9)
lead to different plan stubs. This is an important difference to the work presented
in [1]. The plan stubs created as first step for agent 9 and agent 11 are shown in
Fig. 5. When a plan stub is found, the top primitive tasks are passed to the C++
module of our agent and executed. A ’step’ for a plan in our agents can consist of
more than a single action, for example, we do not want the agent who passes the
ball to stop acting while the ball is already moving to a teammate, but instead
after the kick the agent should adjust its position relative to the ball until the
ball reached its destination and the step is finished. If possible, the agent has
to execute all pending primitive tasks until the next step in the plan starts. If
there are pending primitive tasks after one step is finished, these agent tasks are
simply removed from the plan stack and the next team task can be expanded.
Figure 6 shows the plan stub for the second step from the diagram in Fig. 3. For
player 9, the expansion leads to a plan stub with two primitive tasks in a plan
step while for player 11 there is only one task to be executed.

96 O. Obst

pending-(do_receive_pass while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

pending-(do_positioning while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

Fig. 5. Step 1: Plan Stubs for player 9 and player 11

pending-(do_pass(10) while
pass(we, 9, 10)),

pending-do_positioning,
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

pending-(do_positioning while
pass(we, 9, 10)),

expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

Fig. 6. Step 2: Plan Stubs for player 9 and player 11

What we did not address so far was the point in time when the transition
from one plan step to the next step takes place. Here, the basic idea is the
following: each step in plans for our team stops or starts with an agent being in
ball possession. If any of the agents on the field is in ball possession, we can check
for the desired effect of our previous action. If the action succeeded, the right
agent possesses the ball and the planner can continue planning by generating
the next plan stub. If an adversarial agent intercepted the ball, the last action
failed and the planner needs to backtrack. For dribbling, the planner needs to
check if the dribbling agent still possesses the ball and arrived at the desired
destination in order to start with the next step.

4 Results and Discussion

For our approach of generating coordinated actions in a team we implemented
an HTN planner in Prolog which supports interleaving of planning and acting.
Our planner supports team actions by explicitly taking the effects of operators
simultaneously used by teammates into account. The planner ensures that the
agents follow the strategy specified by the user of the system by generating
individual actions for each of the agents that are in accordance with it. The
lazy evaluation in the expansion of subtasks which generates plan stubs rather
than a full plan, makes the planning process very fast and enables the agents to
stay reactive to unexpected changes in the environment. The reactiveness could,
however, be increased by adding a situation evaluation mechanism that is used
prior to invoking the planner. This would improve the ability to exploit sudden,
short-lived opportunities during the game.

We implemented a distributed planning system in the sense that each of the
agents uses its own planner. This was, however, somewhat facilitated by the fact

Using a Planner for Coordination of Multiagent Team Behavior 97

that agents in the RoboCup 3D Simulation League are equipped with sensors
that provide them with a full (though possibly inaccurate) view of the world,
similar to Middle-size League robots using omni-vision cameras.

To truly evaluate the approach we presented, it would be necessary to mea-
sure the effort it takes to create a team and compare it to other approaches to
create a team exhibiting the same behavior. We strongly believe that our ap-
proach leads to a modular behavior design and facilitates rapid specification of
team behavior for users of our agents, but we cannot present numbers here. Our
plans can describe plays as introduced in [2], which have shown to be useful for
synchronization in a team. There are some important differences to plays, how-
ever. First, our approach supports different levels of abstraction in plans. That
means there are different levels of detail available to describe what our team and
each single agent is actually doing, from very abstract tasks down to the agent
level tasks. A second important difference is that the planner can find alternative
ways to achieve tasks. This is possible if plays are specified in terms of player
roles or properties rather than fixed player numbers. The approach in [2] was
used for Small Size League, where the numbers of players and the number of al-
ternative ways of doing plays is low. That means in Small Size League, a plan is
either applicable or not. For Simulation League or larger teams in general, more
opportunities are possible for which an approach using fixed teammates seems
to restrictive. On the other hand, the approach in [2] supports adaptation by
changing weights for the selection of successful plays. In our approach, the cor-
responding functionality could be achieved by changing the order in which HTN
methods are used to reduce tasks. At this point in time, our approach does not
support this yet. As soon as we do have an adaptive component in our approach,
it makes sense to compare results of our team with and without adaptation.

The way our plans are created and executed, we assume synchronous actions
for all our agents. Our team actions are geared to actions of the player in ball
possession, so this simplification can be made. There are a few situations in
soccer, where more detailed reasoning over the time actions take would be useful.
This includes for instance all situations where a ball receiver should appear at
the receiving position just in time to surprise the opponent. In our approach, we
make this possible by synchronizing the behavior of two agents in the current
step by using both ball and agent velocity to estimate interception times, in the
operator implementations outside of the planning procedure. Inside our planning
procedure, we do not reason about durations, which would be useful to make
asynchronous actions possible.

Although more detailed evaluations have to be carried out, the first tests
using the planner seem very promising and indicate that our approach provides
a flexible, easily extendable method for coordinating a team of agents in dynamic
domains like the RoboCup 3D Simulation League.

5 Related Work

Several approaches that use a planning component in a MAS can be found in
the literature.

98 O. Obst

In [6], the authors describe a formalism to integrate the HTN planning sys-
tem SHOP [16] with the IMPACT [21] multiagent environment (A-SHOP). The
preconditions and effects used in SHOP are modified so that preconditions are
evaluated using the code-call mechanism of the framework, and effects change
the state of agents. While the environment of this work clearly is a multiagent
system, the planning is carried out centralized by a single agent. This is a con-
trast to our approach, which uses a planner in each of the agents to coordinate
the agents actions.

A general HTN planning framework for agents in dynamic environments has
been presented in [9]. The authors show how to integrate task decomposition
of HTN planning, action execution, program updates, and plan modifications.
The planning process is done via abstract task decomposition and is augmented
to include additional information such as the history of action execution for
the plans to enable their incremental modification. Rules are given for plan
modifications after having executed certain actions or after program updates. In
the robotic soccer domain, however, the results of actions like e.g. kicking the
ball cannot be undone. Thus, the plan modification mechanism given in [9] does
not apply and could not easily be used for our purposes.

HTN planning has also been studied in the context of creating intelligent,
cooperating Non-Player Characters in computer games. In [13], an HTN plan-
ner is used to enable agents in the highly dynamic environment of the Unreal
Tournament game to pursue a grand strategy designed for the team of agents.

Bowling et al. [2] presents a strategy system that makes use of plays (es-
sentially being multiagent plans) to coordinate team behavior of robots in the
RoboCup Small Size League. Multiple plays are managed in a playbook which
is responsible to choose appropriate plays, and evaluate them for adaption pur-
poses. The plays are specified using a special language designed with ease of
readability and extensibility in mind. Preconditions can be specified that de-
termine when a play can be executed. Furthermore, plays contain termination
conditions, role assignments and sequences of individual behaviors. While the
use of preconditions resembles a classical planning approach, the effects of indi-
vidual plays are not specified due to the difficulties in predicting the outcome of
operators in the dynamic environment. This is in contrast to our approach, as
we use desired effects of the operators in our plans. Another difference is that in
[2] the planning component is also centralized.

Other approaches towards multiagent collaboration like [5, 8] are based on
negotiations between the agents in a multiagent system. However, as pointed
out in [20], this kind of complex communication might take too much time or
might even be infeasible in highly dynamic real-time domains like robotic soccer.

The work in [15, 14] describes the approach to creating our agents so far: We
used UML statecharts to specify behaviors for agents in a multiagent system.
The agents were designed in a top-down manner with a layered architecture. At
the highest level global patterns of behavior are specified in an abstract way,
representing the different states the agent can be in. For each of these states, an
agent has a repertoire of skeleton plans in the next layer. These are applicable

Using a Planner for Coordination of Multiagent Team Behavior 99

as long as the state does not change. Explicit specification of cooperation and
multiagent behaviors can be realized. The third and lowest level of the architec-
ture encompasses the descriptions for the simple and complex actions the agents
can execute, which are used by the scripts in the level above.

This hierarchical decomposition of agent behaviors is similar to the HTN plans
described in this work. However, the separation of domain description knowledge
and the reasoning formalism accomplished through the use of the HTN planner
within our agents provides us with much greater flexibility in respect to the
extensibility of methods and operators, compared to the amount of work needed
to change the state machine description.

6 Conclusion and Future Work

We presented a novel approach that uses an HTN planning component to coor-
dinate the behavior of multiple agents in a dynamic MAS. We formalized expert
domain knowledge and used it in the planning methods to subdivide the given
tasks. The hierarchical structure of the plans speeds up the planning and also
helps to generate useful debugging output for development. Furthermore, the
system is easily extensible as the planning logic and the domain knowledge are
separated.

In order to use the system in the RoboCup competitions, we plan to integrate a
lot more subdivision strategies for the different tasks as described in the diagrams
in [12]. A desirable enhancement to our work would be the integration of an
adaption mechanism. Monitoring the success of different strategies against a
certain opponent, and using this information in the choice of several applicable
action possibilities, as e.g. outlined in [2], should be explored. The introduction
of durative actions into the planner (see for instance [4]) would give a more fine
grained control over the parallelism in the multiagent plans. Simple Temporal
Networks as used in [19] seem to be well suited for this purpose. Furthermore, a
situation assessment will be added to the agents to be able to exploit unforeseen
situations in a more reactive manner. Finally, we want to restrict the sensors of
the agents to receive only partial information about the current world state, and
address the issues that result for the distributed planning process.

References

1. Thorsten Belker, Martin Hammel, and Joachim Hertzberg. Learning to optimize
mobile robot navigation based on HTN plans. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA 2003), pages 4136–4141,
Taipei, Taiwan, September 2003.

2. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as team plans for
coordination and adaptation. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling (ICAPS-04), Vancouver, June 2004.

3. Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak,
strong, and strong cyclic planning via symbolic model checking. Artificial Intelli-
gence, 147(1-2):35–84, 2003.

100 O. Obst

4. Alex M. Coddington, Maria Fox, and Derek Long. Handling durative actions in
classical planning frameworks. In John Levine, editor, Proceedings of the 20th
Workshop of the UK Planning and Scheduling Special Interest Group, pages 44–58.
University of Edinburgh, December 2001.

5. Philip R. Cohen, Hector J. Levesque, and Ira Smith. On team formation. Con-
temporary Action Theory, 1998.

6. Jürgen Dix, Héctor Muñoz-Avila, and Dana Nau. IMPACTing SHOP: Planning in
a Multi-Agent Environment. In Fariba Sadri and Ken Satoh, editors, Proceedings
of CLIMA 2000, Workshop at CL 2000, pages 30–42. Imperial College, 2000.

7. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning Theory and
Practice. Morgan Kaufmann, San Francisco, CA, USA, 2004.

8. Barbara J. Grosz. AAAI-94 presidential address: Collaborative systems. AI Mag-
azine, 17(2):67–85, 1996.

9. Hisashi Hayashi, Kenta Cho, and Akihiko Ohsuga. A new HTN planning frame-
work for agents in dynamic environments. In Jürgen Dix and João Leite, editors,
CLIMA IV 2004, number 3259 in Lecture Notes in Computer Science, pages 108–
133. Springer, Berlin, Heidelberg, New York, 2004.

10. Marco Kögler and Oliver Obst. Simulation league: The next generation. In Polani
et al. [18], pages 458–469.

11. Pedro Lima, Lúıs Custódio, Levent Akin, Adam Jacoff, Gerhard Kraezschmar,
Beng Kiat Ng, Oliver Obst, Thomas Röfer, Yasutake Takahashi, and Changjiu
Zhou. Robocup 2004 competitions and symposium: A small kick for robots, a
giant score for science. AI Magazine, 2005. To appear.

12. Massimo Lucchesi. Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing, 2001.
13. Héctor Muñoz-Avila and Todd Fisher. Strategic planning for Unreal Tournament

bots. In Proceedings of AAAI-04 Workshop on Challenges on Game AI. AAAI
Press, 2004.

14. Jan Murray. Specifying agent behaviors with UML statecharts and StatEdit. In
Polani et al. [18], pages 145–156.

15. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2001. In
Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors, RoboCup 2001:
Robot Soccer World Cup V, volume 2377 of Lecture Notes in Artificial Intelligence,
pages 526–530. Springer, Berlin, Heidelberg, New York, 2002. Team description.

16. Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. Shop: Simple
hierarchical ordered planner. In Proceedings of IJCAI-99, pages 968–975, 1999.

17. Oliver Obst and Markus Rollmann. SPARK – A Generic Simulator for Physical
Multiagent Simulations. Engineering Intelligent Systems, 13, 2005. To appear.

18. Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida, editors. vol-
ume 3020 of Lecture Notes in Artificial Intelligence. Springer, 2004.

19. Patrick Riley and Manuela Veloso. Planning for distributed execution through
use of probabilistic opponent models. In Proceedings of the Sixth International
Conference on Artificial Intelligence Planning Systems, Toulouse, France, April
2002.

20. Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork. Artificial
Intelligence, 1999.

21. V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press/AAAI Press,
Cambridge, MA, USA, 2000.

	Introduction
	HTN Planning for Multiagent Teams
	Multiagent Team Behavior with HTN Plans
	Handling Non-determinism

	Robotic Soccer Sample Implementation
	Results and Discussion
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

