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Abstract. Agents or agent teams deployed to assist humans often face
the challenges of monitoring the state of key processes in their environ-
ment (including the state of their human users themselves) and mak-
ing periodic decisions based on such monitoring. POMDPs appear well
suited to enable agents to address these challenges, given the uncer-
tain environment and cost of actions, but optimal policy generation for
POMDPs is computationally expensive. This paper introduces two key
implementation techniques (one exact and one approximate) to speedup
POMDP policy generation that exploit the notion of progress or dy-
namics in personal assistant domains and the density of policy vectors.
Policy computation is restricted to the belief space polytope that re-
mains reachable given the progress structure of a domain. One is based
on applying Lagrangian methods to compute a bounded belief space sup-
port in polynomial time and other based on approximating policy vectors
in the bounded belief polytope. We illustrate this by enhancing two of
the fastest existing algorithms for exact POMDP policy generation. The
order of magnitude speedups demonstrate the utility of our implementa-
tion techniques in facilitating the deployment of POMDPs within agents
assisting human users.

1 Introduction

Recent research has focused on individual agents or agent teams that assist
humans in offices, at home, in medical care and in many other spheres of daily
activities [13,9,4,12,6,8]. Such agents must often monitor the evolution of some
process or state over time (including that of the human, the agents are deployed
to assist) and make periodic decisions based on such monitoring. For example,
in office environments, agent assistants may monitor the location of users in
transit and make decisions such as delaying, canceling meetings or asking users
for more information [12]. Similarly, in assisting with caring for the elderly [9]
and therapy planning [6, 8], agents may monitor users’ states/plans and make
periodic decisions such as sending reminders.

Unfortunately, such agents (henceforth referred to as personal assistant agents
(PAAs)) must monitor and make decisions despite significant uncertainty in their
observations (as the true state of the world may not be known explicitly) and
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actions (outcome of agents’ actions may be non-deterministic). Furthermore,
actions have costs, e.g., delaying a meeting has repercussions on attendees. Re-
searchers have turned to decision-theoretic frameworks to reason about costs and
benefits under uncertainty. However, this research has mostly focused on Markov
decision processes (MDPs) [12, 6, 8], ignoring the observational uncertainty in
these domains, and thus potentially degrading agent performance significantly
and/or requiring unrealistic assumptions about PAAs’ observational abilities.
POMDPs (Partially Observable Markov Decision Processes) address such un-
certainty, but the long run-times for generating optimal policies for POMDPs
remains a significant hurdle in their use in PAAs.

Recognizing the run-time barrier to POMDP usage, previous work on
POMDPs has made encouraging progress using two approaches. The first is
an exact approach, where one tries to find the optimal solution [1, 2]. However,
despite advances, exact algorithms remain computationally expensive and cur-
rently do not scale to problems of interest in PAA domains. The second is an
approximate approach, where one sacrifices solution quality for speed [14,5,3,15].
Unfortunately, current approximate algorithms often provide loose (or no) qual-
ity guarantees on the solutions, even though such guarantees are crucial for PAAs
to inhabit human environments.

This paper aims to practically apply POMDPs to PAA domains by intro-
ducing novel implementation techniques that are particularly suitable for such
settings. One key insight is that when monitoring users or processes over time,
large but shifting parts of the belief space in POMDPs (i.e., regions or states of
uncertainty) remain unreachable. Thus, we can focus policy computation on the
reachable belief-space polytope, which changes dynamically due to progress in
the domain. For instance, consider a PAA monitoring a user driving to a meet-
ing. Given knowledge of the user’s current location, the reachable belief region is
bounded by the maximum probability of the user’s being in different locations at
the next time step as defined by the transition function. Similarly, in a POMDP
where decisions are made every 5 minutes, an agent can exploit the fact that
there is zero probability of going from a world state with T ime = 1:00 PM to a
world state with T ime = 1:30 PM. Current POMDP algorithms typically fail to
exploit such belief region reachability properties. POMDP algorithms that re-
strict belief regions fail to do so dynamically [11,7]. The other key contribution of
this paper is an approximation technique, that considers all policies which have
expected values seperated by ε(the parameter of approximation) as one single
policy. As shown in later sections, this method provides an error bound, which
depends on the exact structure of the value function, rather than depending on
upper and lower bounds for expected value. This fact in itself can help provide
tighter bounds. We enhance two state-of-the-art exact POMDP algorithms [1,2]
delivering over an order of magnitude speedup for two different PAA domains.

2 Motivating PAA Domains

We present two motivating examples, where teams of software PAAs are de-
ployed in office environments to assist human users [12,4]. The first is a meeting



78 P. Varakantham, R. Maheswaran, and M. Tambe

rescheduling problem (MRP), as implemented in the Electric-Elves system [12].
In this large-scale operationalized system, agents monitored the location of users
and made decisions such as: (i) delaying the meeting if the user is projected to
be late; (ii) asking the user for information if he/she plans to attend the meeting;
(iii) canceling the meeting; (iv) waiting. The agent relied on MDPs to arrive at
decisions, as its actions such as asking had non-deterministic outcomes (e.g. a
user may or may not respond) and decisions such as delaying had costs. The
MDP state represented user location, meeting location and time to the meet-
ing (e.g., user@home, meeting@USC, 10 minutes) and a policy mapped such
states to actions. Unfortunately, observational uncertainty about user location
was ignored while computing the policy.

A second key example is a task management problem (TMP) domain [4]. In
this domain, a set of dependent tasks (e.g. T1, T2, T3 in Figure 1) is to be
performed by human users (e.g. users U1, U2, U3 in Figure 1). Agents (e.g.
A1, A2, A3 in Figure 1) monitor the progress of humans and make reallocation
decisions. The lines connecting agents and users indicate the lines of commu-
nication. An illustration of reallocation is the following scenario: suppose T1,
T2 and T3 are assigned to U1, U2 and U3 respectively based on their initial
capabilities. However, if U1 is observed to be progressing too slowly on T1, e.g.,
U1 may be unwell, then A1 may need to reallocate T1 to ensure that the three
tasks finish before a given deadline. A1 may reallocate T1 to U2, if U2’s orig-
inal task T2 is nearing completion and U2 is known to be more capable than
U3 for T1. However, if U2 is also progressing slowly, then T1 may have to be
reallocated to U3 despite the potential loss in capability. POMDPs provide a
framework to analyze and obtain policies in domains such as MRP and TMP.
In a TMP, a POMDP policy can take into account the possibly uneven progress
of different users, e.g., some users may make most of their progress well before
the deadline, while others do the bulk of their work closer to the deadline. In
contrast, an instantaneous decision-maker cannot take into account such dy-
namics of progress. For instance, consider a TMP scenario where there are five
levels of task progress x ∈ {0.00, 0.25, 0.50, 0.75, 1.00} and five decision points
before the deadline t ∈ {1, 2, 3, 4, 5}. Observations are the five levels of task
progress {0.00, 0.25, 0.50, 0.75, 1.00} and time moves forward in single steps, i.e.
T ([x, t], a, [x̃, t̃]) = 0 if t̃ �= t + 1. While transition uncertainty implies irregular
task progress, observation uncertainty implies agent may observe progress x as
for instance x or x + 0.25 (unless x = 1.00). Despite this uncertainty in observ-
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Fig. 2. Partial Sample Policy for a TMP

ing task progress, a PAA needs to choose among waiting (W), asking user for
info (A), or reallocate (R). A POMDP policy tree that takes into account both
the uncertainty of observations and future costs of decisions, and maps obser-
vations to actions, for the above scenario is shown in Figure 2 (nodes=actions,
links=observations). In more complex domains with additional actions such as
delaying deadlines, the cascading effects of actions will require even more careful
planning afforded by POMDP policy generation. Such scenarios in TMP and
MRPs are investigated and discussed in Section 5.

3 POMDPs and Incremental Pruning

A POMDP can be represented using the tuple {S, A, T, O, Ω, R}, where S is a
finite set of states; A is a finite set of actions; Ω is a finite set of observations;
T (s, a, s′) provides the probability of transitioning from state s to s′ when tak-
ing action a; O(s′, a, o) is probability of observing o after taking an action a and
reaching s′; R(s, a) is the reward function. A belief state b, is a probability dis-
tribution over the set of states S. A value function over a belief state is defined
as: V (b) = maxa∈A {R(b, a) + β Σb′∈BT (b, a, b′)V (b′)}. Currently, the most effi-
cient exact algorithms for POMDPs are value iteration algorithms, specifically
GIP [1] and RBIP [2]. These are dynamic programming algorithms, where at
each iteration the value function is represented with a minimal set of dominant
vectors called the parsimonious set. Given a parsimonious set at time t, Vt, we
generate the parsimonious set at time t − 1, Vt−1 as follows (notation similar to
the one used in [1] and [2]):

1.
{
va,o,i

t−1 (s) = r(s, a)/|Ω| + β Σs′∈SPr(o, s′|s, a)vi
t(s

′)
}

=: V̂a,o
t−1 where vi

t ∈
Vt.

2. Va,o
t−1 = PRUNE(V̂a,o

t−1)
3. Va

t−1 = PRUNE(· · · (PRUNE(Va,o1
t−1 ⊕ Va,o2

t−1 ) · · · ⊕ Va,o|Ω|
t−1 )

4. Vt−1 = PRUNE(
⋃

a∈A Va
t−1)

Each PRUNE call executes a linear program (LP) which is recognized as a
computationally expensive phase in the generation of parsimonious sets in exact
algorithm [1, 2]. Our approach effectively translates into obtaining speedups by
reducing the quantity of these calls.
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4 Dynamic Belief Supports

We propose two new implementation techniques for solving POMDPs in PAA
domains: (i) dynamic belief supports (DB); (ii) expected value approximation
(EVA). These ideas may be used to enhance existing POMDP algorithms such
as GIP and RBIP. The key intuition in DB, is that for personal assistant do-
mains, progress implies a dynamically changing polytope (of belief states) re-
mains reachable through time, and policy computation can be speeded up by
computing the parsimonious set over just this polytope. The speedups with (i)
are due to the elimination of policies dominant in regions outside this polytope,
which reduces the number of LP calls. On the other hand, EVA exploits the
density of policy vectors in the belief polytope calculated using DB. EVA works
by using a lesser density set to represent the optimal set, thus sacrificing on
quality of the solution.

4.1 Dynamic Belief Spaces (DB)

Before introducing the general belief support technique, we introduce a special
case of it called as DBSimple. In this only states that are reachable (given the
transitional dynamics) at each epoch are considered. This is a special case of the
general belief restriction in that the belief support is bounded by only 0.00, rather
than any number less than 1.00. By introducing DBSimple, we are attempting
to more accurately model the support on which reachable beliefs will occur.
We can make this process more precise by using information about the initial
belief distribution, the transition and observation probabilities to bound belief
dimensions with positive support. For example, if we know that our initial belief
regarding task progress can have at most 0.10 probability of being at 0.25 with
the rest of the probability mass on being at 0.00, we can find the maximum
probability of being at 0.00 or 0.25 or 0.50 at the next stage, given a dynamic
transition matrix. Below we outline a polynomial-time procedure by which we
can obtain such bounds on belief support.

Let Bt ⊂ [0 1]|St| be a space such that P (bt /∈ Bt) = 0. That is, there exists
no initial belief vector and action/observation sequence of length t such that by
applying the standard belief update rule, one would get a belief vector bt not
captured in the set Bt. Then, we have

bt+1(st+1) ≥ min
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmin
t+1(st+1)

bt+1(st+1) ≤ max
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmax
t+1 (st+1)

where F (st+1, a, o, bt) :=

Ot(st+1, a, o)
∑

st∈St
Tt(st, a, st+1)bt(st)∑

s̃t+1∈St+1
Ot(s̃t+1, a, o)

∑
st∈St

Tt(st, a, s̃t+1)bt(st)

Thus, if we have the belief polytope

Bt+1 = [bmin
t+1(s1)bmax

t+1 (s1)] × · · · × [bmin
t+1(s|St+1|)b

max
t+1 (s|St+1|)],
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Algorithm 1. DB + GIP

Func POMDP-SOLVE (L, S, A, T, Ω, O, R)
1: ({St}, {Ot}, {Bmax

t }) = DSDODB-GIP (L, S, A, T, Ω, O, R)
2: t ← L;Vt ← 0
3: for t = L to 1 do
4: Vt−1 = DP-UPDATE(Vt, t)

Func DP-UPDATE (V, t)
1: for all a ∈ A do
2: Va

t−1 ← φ
3: for all ωt ∈ Ot do
4: for all vi

t ∈ V do
5: for all st−1 ∈ St−1 do
6: va,ωt,i

t−1 (st−1) = rt−1(st−1, a)/|Ot| + γΣst∈StPr(ωt, st|st−1, a)vi
t(st)

7: Va,ωt
t−1 ← PRUNE({va,ωt,i

t−1 }, t)
8: Va

t−1 ← PRUNE(Va
t−1 ⊕ Va,ωt

t−1 , t)
9: Vt−1 ← PRUNE(

�
a∈A Va

t−1, t)
10: return Vt−1

Func POINT-DOMINATE(w,U, t)
1: for all u ∈ U do
2: if w(st) ≤ u(st), ∀st ∈ St then return true
3: return false

Func LP-DOMINATE(w,U, t)
1: LP vars: d, b(st)[∀st ∈ St]
2: LP max d subject to:
3: b · (w − u) ≥ d, ∀u ∈ U
4: Σst∈Stb(st) ← 1
5: b(st) <= bmax

t (st); b(st) >= 0
6: if d ≥ 0 return b else return nil

Func BEST(b, U)
1: max ← Inf
2: for all u ∈ U do
3: if (b · u > max) or ((b · u = max) and (u <lex w)) then
4: w ← u; max ← b · u
5: return w

Func PRUNE(U, t)
1: W ← φ
2: while U �= φ
3: u ← any element in U
4: if POINT-DOMINATE(u,W, t) = true then
5: U ← U − u
6: else
7: b ←LP-DOMINATE(u,W, t)
8: if b = nil then U ← U − u
9: else w ← BEST (b, U);W ← W

�
w;U ← U − w

10: return W
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Func DB-GIP(L, S, A, T, Ω, O, R)
1: t ← 1; St =Set of starting states
2: for all st ∈ St do
3: bmax

t (st) = 1
4: for t = 1 to L − 1 do
5: for all s ∈ St do
6: ADD-TO(St+1,REACHABLE-STATES(s,T ))
7: Ωt+1 = GET-RELEVANT-OBS(St+1, O)
8: C = GET-CONSTRAINTS (st)
9: bmax

t+1 (st+1) = MAXc∈C(GET-BOUND(st+1, c))
10: return ({St}, {Ωt}, {bmax

t })
Func GET-BOUND(st, constraint)
1: ymin = MINs∈St−1(constraint.c[s]/constraint.d[s])
2: ymax = MAXs∈St−1(constraint.c[s]/constraint.d[s])
3: INT = GET-INTERSECT-SORTED(constraint, ymin, ymax)
4: for all i ∈ INT do
5: Z = SORT(((i + ε) ∗ constraint.d[s] − constraint.c[s]),∀s ∈ St−1

6: sumBound = 1, numer = 0, denom = 0
7: /* IN ASCENDING ORDER */
8: for all z ∈ Z do
9: s = FIND-CORRESPONDING-STATE(z)

10: if sumBound − bound[st−1] > 0 then
11: sumBound− = bound[st−1]
12: numer+ = bound[st−1] ∗ constraint.c[st−1]
13: denom+ = bound[st−1] ∗ constraint.d[st−1]
14: if sumBound − bound[st−1] <= 0 then
15: numer+ = sumBound ∗ constraint.c[st−1]
16: denom+ = sumBound ∗ constraint.d[st−1]
17: BREAK-FOR
18: if numer/denom > i and numer/denom < max then
19: return numer/denom

then we have P (bt+1 /∈ Bt+1) = 0. The proof of optimality preservation for
dynamic beliefs is omitted due to lack of space.

We now show how bmax
t+1 (st+1) (and similarly bmin

t+1(st+1)) can be generated
through a polynomial-time procedure deduced from Lagrangian methods. The
method involves iterating over all a and ω, where for a given action a and
observation ω, we can express the problem as

max
bt∈Bt

ba,ω
t+1(st+1) s.t. ba,ω

t+1(st+1) = cT bt/dT bt

where c(st) = Ot(st+1, a, ω)Tt(st, a, st+1) and d(st) =
∑

st+1∈St+1
Ot(st+1, a, ω)

Tt(st, a, st+1). We rewrite the problem in terms of the new variables as follows:

min
x

(
−cT x/dT x

)
s.t.

∑
i

xi = 1, 0 ≤ xi ≤ bmax
t (si) =: x̄i
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where
∑

i bmax
t (si) ≥ 1 to ensure existence of a feasible solution. Expressing this

problem as a Lagrangian, we have

L =
(
−cT x/dT x

)
+ λ(1 −

∑
i

xi) +
∑

i

µ̄i(xi − x̄i) −
∑

i

µixi

from which the KKT conditions imply

xk = x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2 + µ̄k

0 < xk < x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2

xk = 0 λ =[(cT x)dk − (dT x)ck]/(dT x)2 − µk.

Because λ is identical in all three conditions and µ̄k and µk are non-negative for
all k, the component xk associated with the lowest value of [(cT x)/(dT x)]dk − ck

must receive a maximal allocation (assuming x̄k < 1) or the entire allocation
otherwise. Using this reasoning recursively, we see that if x∗ is an extremal
point (i.e. a candidate solution), then the values of its components {xk} must
be constructed by giving as much weight possible to components in the order
prescribed by zk = ydk − ck, where y = (cT x∗)/(dT x∗). Given a value of y,
one can construct a solution by iteratively giving as much weight as possible
(without violating the equality constraint) to the component not already at its
bound with the lowest zk.

The question then becomes finding the maximum value of y which yields a
consistent solution. We note that y is the value we are attempting to maximize,
which we can bound with ymax = maxi ci/di and ymin = mini ci/di. We also note
that for each component k, zk describes a line over the support [ymin, ymax]. We
can then find the set of all points where the set of lines described by {zk} in-
tersect. There can be at most (|st| − 1)|st|/2 intersections points. We can then
partition the support [ymin, ymax] into disjoint intervals using these intersection
points yielding at most (|st| − 1)|st|/2 + 1 regions. In each region, there is a
consistent ordering of {zk} which can be obtained in polynomial time. An il-
lustration of this can be seen in Figure 3. Beginning with the region furthest
to the right on the real line, we can create the candidate solution implied by
the ordering of {zk} in that region and then calculate the value of y for that
candidate solution. If the obtained value of y does not fall within region, then
the solution is inconsistent and we move to the region immediately to the left. If
the obtained value of y does fall within the region, then we have the candidate
extremal point which yields the highest possible value of y, which is the solution
to the problem.

By using this technique we can dynamically propagate forward bounds on
feasible belief states. Line 8 and 9 of the DSDODB-GIP function in Algorithm 1
provide the procedure for DB. The GET-CONSTRAINTS function on Line 8
gives the set of c and d vectors for each state at time t for each action and
observation. By using dynamic beliefs, we increase the costs of pruning by adding
some constraints on maximum probability bmax(st) as shown in line 5 of LP-
dominate. However, there is an overall gain because we are looking for dominant
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Fig. 3. Partition Procedure for Solving Belief Maximization Lagrangian

vectors over a smaller belief polytope. Thus, reducing the cardinality of the
parsimonious set, leaving fewer vectors/policies to consider at the next iteration.

4.2 Expected Value Approximation (EVA)

Expected Value Approximation (EVA) is an approximate approach for solving
POMDPs. Most of the approximate algorithms for solving POMDPs [5, 15] dis-
cretize the belief space to obtain, however here we provide an algorithm that
discretizes the expected value space. As is known from the literature, the value
function in a POMDP can be expressed using a finite set of linear vectors. EVA
approximates the parsimonious set of the linear vectors (in the “CUP”) using
lesser number of vectors given the approximation parameter α, which indicates
the maximumm error allowed in expected value at any belief point.

Algorithm 2 provides the procedure used for checking whether a vector is
dominated by a set of vectors in algorithms such as GIP and RBIP. EVA uses
the same procedure except for d + ε instead of d in RHS of line 5. This extra

Algorithm 2. LP-DOMINATE(w, U, t, ε)
1: solve the following linear program
2: variables: d, b(st)[∀st ∈ St]
3: maximize d
4: subject to the constraints
5: b · (w − u) ≥ d + ε, ∀u ∈ U
6: Σst∈Stb(st) ← 1
7: b(st) <= bmax

t (st)
8: b(st) >= 0
9: if d ≥ 0 then

10: return b
11: else
12: return nil
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ε (in line 5) implies that for a vector to dominate a set of vectors, it should
dominate each of the vectors by at least ε. That is to say, all vectors which don’t
dominate all the vectors in the set by at least ε are pruned out, hence decreasing
the size of the parsimonious set. Savings provided by EVA are in the number of
vectors in the parsimonious set (vectors after pruning) at each epoch. Reduced
number of vectors after pruning has a chain effect, since it leads to less number
of projections (or vectors before pruning) at the next epoch, which in turn might
lead to reduced number of vectors after pruning in that epoch.

The main difference between some of the existing methods (like the point
based or grid based approaches) and EVA is the space in which approximation
is done. In point-based or grid-based, the approximation is in the belief space,
while in our approach it is in the value space. EVA can provide better bounds
because it is based on value space based approximation that approximates based
on the exact structure of the value function rather than take worst case bounds
on the value function. This is studied extensively in [10].

Proposition 1. Error of the EVA algorithm can be bounded by 2 ∗ ε ∗ |Ω| for
GIP type cross sum pruning.

Proof. EVA algorithm introduces an error whenever a pruning operation is
performed. Since there are three stages where pruning operations are performed,
this proof proceeds by summing the error introduced at each of these stages.

1. Va,o = PRUNE(Va,o,i)
After this pruning step, each of Va,o’s (∀a, ∀o) are away from the optimal by
at-most ε.

2. Va = PRUNE(· · · (PRUNE(Va,o1 ⊕ Va,o2) · · · ⊕ Va,o|Ω|) To calculate the
error bound after this pruning step, we start from the innermost cross-sum
PRUNE. The innermost prune would give a set of vectors which in the worst
case is ε + ε + ε away from the optimal set. In the above bound, first and
second epsilon follow from the fact that there is a cross sum and that each
term is away from optimal by ε in the worst case, while the third epsilon
is because of the PRUNE on this cross sum. Each subsequent prune adds
a further 2 ∗ ε to the bound. Thus each Va,o is away from the optimal by
at-most 2 ∗ ε ∗ (|Ω| − 1) + ε.

3. V ′ = PRUNE(
⋃

a∈A Va) Now since this step does a PRUNE over UNION
of Va, ∀a, it further adds an ε to the bound. Hence making the final error
bound to be 2 ∗ ε ∗ |Ω|.

Thus proved. �

5 Experimental Results

Experiments were conducted on the TMPs and MRPs explained in Section 2.
Each agent uses a POMDP for decision making in both domains. Our enhance-
ments, DBSimple (Dynamic States), and DB (Dynamic Beliefs), were imple-
mented over both GIP and RBIP [2] (RBIP is itself a recent enhancement to
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GIP RBIP DS+GIP

Comparison of GIP, RBIP, and DSGIP Comparison of DS, DSDO, DSDODB

Experiments

DS+GIP DSDO+GIP DSDODB+GIP

DS+RBIP DS+GIP

Comparison of DSRBIP and DSGIP MRP Results

DS+RBIP DS+GIP DSDODB+GIP

Fig. 4. TMP: (a) DBSimple+GIP gives orders of magnitude speedup over GIP and
RBIP (b) DB+GIP dominates DBSimple+GIP (c) DBSimple+GIP dominates DB-
Simple+RBIP; MRP: (d) DB+GIP dominates

GIP). All the experiments compare the performance (run-time) of GIP, RBIP
and our enhancements over GIP and RBIP. For both domains, we ran 6 prob-
lems over all methods (GIP, RBIP, DBSimple+GIP, DB+GIP, DB+GIP, DB-
Simple+RBIP, DB+RBIP). Each problem had pre-specified upper limit of 20000
seconds, after which it was terminated.

Figure 4(a)-(c) present results for the TMP domain. Experimental setup in
TMP consisted of a set of seven problems of increasing complexity (A through
G). In all the graphs, the x-axis denotes the problem name, and the y-axis
denotes the run-time for a problem. GIP and RBIP finished before the time
limit in only Problem A, as shown in Figure 4(a). DBSimple+GIP provides 100-
fold speedup in Problem B, and 10-fold speedup in Problems C and D (however,
the actual speedup which we expect to be even larger cannot be seen due to our
cutoff).

DB+GIP finished in almost the same time as DS in Problems A-C. Fig-
ure 4(b) provides comparisons between the three of our enhancements on GIP.
For Problems D-G that are even more complex than A-C, DB dominates the
other enhancements providing approximately 5-fold speedup over DBSimple.



Implementation Techniques for Solving POMDPs in PAAs 87

GIP and RBIP did not terminate within time limit and hence not shown. The
key point of Figure 4(c) is to show that DBSimple+GIP provides 10-fold speedup
(with cut-off) over DBSimple+RBIP, even though RBIP is faster than GIP. This
is also the reason for providing the results of enhancements on GIP instead of
RBIP in Figure 4(b).

Figure 4(d) presents results for the MRP domain. Experimental setup for
MRP consisted of a set of seven problems(A through G). The figure does not
show results for GIP and RBIP, because they did not finish before our cutoff
for any of the 7 problems. DB+GIP provides approximately 6-fold speedups
over DBSimple+GIP. DBSimple+RBIP seems comparable with the other three
methods in Problems A-C, but for Problems D-G, it fails to even finish before
the cutoff. Both domains provide similar conclusions: DB+GIP dominates other
techniques (with around 100 fold speedup over GIP and RBIP in some cases)
and this dominance becomes more significant in larger problems.

Fig. 5. Effect of epsilon on run times

Figure 5 presents results for the EVA approximation algorithm. x-axis shows
different values of ε, approximation parameter and y-axis shows the run times. To
clearly show the capacity of EVA, we present these results on a bigger problem
than A-G. As can be seen, EVA provides orders of magnitude speedup as ε is
decreased from 0.0001 - 0.01. The error bound in the 0.01 case was 2*36*0.01.

6 Related Work

We have already discussed some related work in Section 1. As discussed there,
techniques for solving POMDPs can be categorized as exact and approximate.
GIP [1] and RBIP [2] are exact algorithms, which we have enhanced. Other exact
algorithms attempt to exploit domain-specific properties to speedup POMDPs.
For instance, [7] presents a hybrid framework that combines MDPs with
POMDPs to take advantage of perfectly and partially observable components
of the model. They also focus on reachable belief spaces, but: (i) their analysis
does not capture dynamic changes in belief space reachability; (ii) their analy-
sis is limited to factored POMDPs; (iii) no speedup measurements are shown.
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This contrasts with this work which focuses on dynamic changes in belief space
reachability and its application to both flat and factored state POMDPs.

Approximate algorithms are faster than exact algorithms, but at the cost of
solution quality. There has been a significant amount of work in this area, but
point-based [14, 5], grid [3, 15], and policy search approaches dominate other
algorithms. Though these approaches can solve larger problems, most of them
provide loose (or no) quality guarantees on the solution. It is critical to have
good quality guarantees in PAA domains, for an agent to gain the trust of a
human user. Another recently developed technique uses state space dimension-
ality reduction using E-PCA, but it does not provide any guarantee on quality
of the solution [11]. Point Based Value Iteration (PBVI) [5] provides the best
quality guarantees, but to obtain good results it needs to increase sampling,
consequently increasing the run-time. As explained earlier, EVA approach can
provide tighter bounds because of its approximation in the expected value space.

7 Summary

This paper provides techniques to make the application of POMDPs in per-
sonal assistant agents a reality. In particular, we provide three key techniques to
speedup POMDP policy generation that exploit the key properties of the PAA
domains. One key insight is that given an initial (possibly uncertain) starting set
of states, the agent needs to generate a policy for a limited range of dynamically
shifting belief states. The techniques we propose are complementary to most ex-
isting exact and approximate POMDP policy generation algorithms. Indeed, we
illustrate our technique by enhancing GIP and RBIP, two of the most efficient
exact algorithms for POMDP policy generation and obtain orders of magnitude
speedup in policy generation. Another key insight is to exploit the high density of
value vectors, to speedup policy generation, while sacrificing very little in terms
of the quality of solution. We provide a detailed algorithm illustrating our en-
hancements in Algorithm 1, and present proofs of correctness of our techniques.
The techniques presented here facilitate agents’ utilizing POMDPs for policies
when assisting human users.
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