
Dynamic Self-control of Autonomous Agents

Caroline Chopinaud1,2, Amal El Fallah Seghrouchni2, and Patrick Taillibert1

1 Thales Airborne Systems, 2 avenue Gay Lussac 78851 Elancourt, France
{caroline.chopinaud, patrick.taillibert}@fr.thalesgroup.com

2 LIP6, 8 rue du Capitaine Scott 75015 Paris, France
amal.elfallah@lip6.fr

Abstract. Being able to trust in a system behavior is of prime impor-
tance, particularly within the context of critical applications as embed-
ded or real-time systems. We want to ensure that a multiagent system
has a behavior corresponding to what its developers expect. The use of
standard techniques to validate a system does not guarantee it against
the occurence of errors in real condition of execution. So, we propose
an additional approach of dynamic self-monitoring and self-regulation
such that an agent might control, in real condition, its own behavior.
Our approach consists in providing the agents with a set of laws that
they have to respect throughout their execution. This paper presents a
framework which generates agents capable of self-control from an agent
model, a behavior description and laws. For that, the framework modifies
the agents program by injecting, some checkpoints allowing the detec-
tion of particular events. The laws are represented in the agents by Petri
nets connected to the checkpoints in order to verify the agreement be-
tween their behavior and the laws. The principles of the framework are
illustrated on an example.

1 Introduction

Autonomy is an essential feature of cognitive agents. We will consider the auton-
omy as the ability of an agent to take its decisions without the help of another
entity [1]. From the developer’s point of view, it means that the implementation
of an agent requires to take into account that the behavior of the other agents
cannot be predicted with certainty. This perspective brings up the problem of
the confidence that we can have in a system behavior. When critical applications
are concerned, the use of such system might raise objections because of this un-
predictability. So, it is essential to ensure that MAS and its agents respect some
behavioral requirements which are essential for the application.

The aim of our research is to ensure that a MAS behavior will fulfill with these
requirements. A first approach could be the use of classical methods of validation,
such as tests, Model Checking [2] and automatic demonstration to validate a
multiagent system. But, these techniques are never in the position to detect all
possible errors and let situations in which errors may occur at runtime. That is
the reason why we will consider an on-line verification of the system behavior.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 41–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

This verification consists in monitoring and regulating the system behavior to
prevent its failure. We call this verification the agent control.

Moreover, we think that the agents are better placed to make themselves the
control of their behavior. So, we provide the agents with the means to monitor
their behavior and, thanks to their capabilities of reasoning, they can regulate
their behavior in order to avoid undesirable behaviors.

Although it is possible for a developer to insert the control code into the
agents, a manual instrumentation of a system program, to insert probes, is hard,
time-consuming and prone to error [12]. When several agents are concerned, it
is worst. So, upgrading the agents behavior and control becomes hard, if we
consider that the monitoring code is fragmented in the agent program and also
distributed among the agents. On the basis of automatic instrumentation for
monitoring distributed systems, a possible solution could be to automatically
modify the agent program in order to introduce the control and so, facilitate
the work of the developer. We are particularly interested in monitoring software
which consists in inserting software probes into the program to detect events [3].
The automation of the insertion can take two forms : (1) the developer uses a
metalanguage [10] or a routines library [6] allowing the insertion of probes in
a transparent way; (2) the insertion will be made by compiler from the speci-
fication of the interested events [9]. We focus on the last form and we propose
a generator which creates agents being able to check their own behavior from
a description of the requirements associated with the agents and their behavior
program.

In the section 2 we will present the principles of the control of autonomous
agent. An example will be described in the section 3 to illustrate during the
rest of the paper the operation of the generator. In the section 4, we will de-
scribe the SCAAR framework allowing the generation of self-controlled agents.
In this part we will focus on laws concepts and generation of the control from
these laws.

2 Control of Autonomous Agent

We consider controlling MAS relies on the monitoring of agents behavior during
the MAS execution and also the regulation when an error occurs. The idea it to
make an automatic insertion into the agents of the necessary means of control,
allowing agents to monitor themselves and detect undesirable behaviors.

2.1 Behavior Verification

Making a model of a whole MAS and its agents is not conceivable because
of its complexity (indeterminism, state explosion, distributed nature). So, we
propose to use norms to express properties about the agents behavior. In general,
norms [15] define constraints on the agents behavior in order to guarantee a
social order. An agent decide to respect or not a norm by restricting its set
of possible actions. We use laws to describe desired or dreaded behaviors or

Dynamic Self-control of Autonomous Agents 43

situations. Laws are norms that don’t be taken into account by the agents at the
decision process (i.e. the agents can act as they want and our approach consists
in verifying if the chosen action respects the laws afterwards) because we want to
distinguish the agent implementation and the laws/control description. The laws
represents signification or critical requirements of the system execution. An agent
capable of self-control checks that laws are respected throughout its execution.
But monitoring is not enough, when an agent detects the transgression of a law,
it must regulate its behavior from transgression information.

In oder that the agent can deduce their behavior when they are informed of
a law transgression, we suppose that the laws are known by the agents. Either
the developer constructs the agents from requirements, consequently he verifies
that the agents respect the laws by construction, or the agents have a represen-
tation of this laws that they attempt to respect throughout their execution. So
our approach consists in adding a dynamic verification to make sure that the
developer correctly implements the agents and the latter always respect the laws
once running in multiagent context.

2.2 Level of Laws

We wish that the person who decides of the laws does not be necessarily the
developer. In general the customers define the requirements and the developers
implement the system form these requirements. Also, the customer is in position
to know what is important to verify without to know the agents implementation.
So, we suppose that the laws are expressed in natural language by the customer
and translated by an expert in a description language. Therefore, it is necessary
to express the laws at an abstraction level understandable by the customer and
allowing an easy translation.

Moreover, for a sake of generality, we would provide a control mechanism
for several agent models. The level of law must permit to include several kinds
of agent models. So, the laws must state general concepts representing the
agent model and the application. The model designer provides a set of concepts
representing the model specificities and the system designer/developer provides
typical application concepts. From this set of concepts, the expert can describe
the laws expressed by the customer by using the description language.

2.3 Control Enforcement

The control enforcement is divided in five steps (Fig.1):

1. The model developer must provide a description of the concepts and their
hooks with the model implementation.

2. The customer provides the set of laws that he wants to be verified throughout
the system execution. These laws can concern one or several agents.

3. The system designer/developer describes the concepts representing the ap-
plication.The system developer implements the agents form the set of laws
or/and the agents use the laws to deduce their behavior at runtime. He
provides the agents with strategies of regulation associated with each laws.

44 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Fig. 1. Aspects of agent control

4. An expert translates the laws expressed in (2) by using a description lan-
guage. The laws state concepts describes in (1) and (3).

5. The generator translates laws, written in a particular language, into expres-
sions using deontic logic. From these expressions, the generator deduces the
Petri nets representing the laws. Also, the generator inserts control points
into the agents program to allow the detection of the expected events defined
in the laws. The generator provides the agents with a particular structure
to obtain self-controlled agents.

3 An Example

3.1 The Multiagent System

We introduce a simple multiagent system of problem resolution. MAS is con-
stituted of three kinds of agent : an agent A, used as an interface between the
user and the system; an agent B, assuming the management of the problems
forwarded by A; an agent C, resolving the problems sent by B. The agent model
used is a Petri net. The behavior of each agent is described in figure 2.

Fig. 2. The behavior of each agents

Dynamic Self-control of Autonomous Agents 45

3.2 Laws of the System

The customer expresses the laws of the system in English. We will take the
example of three laws which can be associated with the previous MAS :

L1: “anAagentmustnot sendmessageto aBagent at a rate greater than
one message per second”. For instance, this law ensures that the agent B can
follow the requests sent by the agent A and C can answer in a reasonable time.
L2: “a B agent must not create a C agent if another C agent is available
in the system”. This law prevents the agent B to create too many agents and
consequently prevents the application overload.
L3: “a C agent must receive consecutively a message about the wait-
ing time, a message of identification, the data of the problem without
any other interleaved messages”. This law allows the verification of com-
munication protocols used between the agents. In this case, the law concerns the
receiver agent which must receive three messages in a particular order without
another message between them.

4 SCAAR: A Framework for the Generation of
Self-controlled Autonomous Agents

SCAAR (Self-Controlled Autonomous Agent geneRator) is a framework allowing
the generation of agents capable of self-control. The generator uses the set of laws
associated to the agents, the set of concepts used in laws and injects the control
code into the agents program. The figure 3 represents the framework architecture
which consists of :

• Ontology: The set of concepts representing the agents models and the ap-
plication.

• Laws: The set of properties that the agents must respect.
• Agent Model: The hooks between the model description (the concepts)

and the model implementation.
• Agent Program: The code of agent behavior.
• Generator: The creator of the final agent from the previous elements.
• Self-controlled agent: The executable final agent. It monitors its own

behavior in order to verify if the laws are respected and regulate it if a law
is transgressed.

Fig. 3. The SCAAR Framework

46 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

4.1 Ontology

We saw that the laws are based on high-level concepts allowing the description of
agents and system specificity. So,we construct a basic ontology representing known
models used to construct agents. A set of agent concepts is provided by D.N. Lam
and K.S. Barber [8] for agent verification. The concepts proposed are: Goal, Belief,
Intention, Action, Event, Message. We take a part of this concepts (Goal, Action,
Message) and we add other ones which are more typical of agent models from our
point of view (BDI, CLAIM, personal agent models): Agent, Object, Knowledge,
Plan, Agent Creation, Message Sending, Message Receipt, Migration). We propose
to divide the concepts up into three categories: Agent, textscFeature and Ac-

tion. The figure 4 represents the distribution of the concepts.

Fig. 4. Agent Ontology

This set of basic concepts can be extended by the model designer to refine
the model description with sub-concepts or instances. The system designer can
extend the set of concepts defining the model with instances. In our example,
the agent model can be described with the basic concept of: ReceiptMessage,
SendingMessage, CreationAgent, Action, Agent. The refinement of the de-
scription is done with the concepts of: Statewhich is a sub-concept of Knowledge
and has a parameter : available or not, and ReceivedMessage which is a sub-
concept of Message.

4.2 The Laws

We can distinguish two kinds of law :

• One representing unwanted state or behavior of an agent. It allows the de-
tection of situations where an event occurs while it should not.

• One representing expected state or behavior of an agent. It allows the de-
tection of situations where an expected event does not occurs.

Dynamic Self-control of Autonomous Agents 47

We propose that our laws are expressed by using deontic operators, which are
widely used in the context of norms. So, we provide a language of law description
allowing the expression of prohibition and obligation to represent the two pre-
vious kinds of law. The language applies to events and states about the agents,
corresponding to the general basic concepts of Features and Action intro-
duced previously. An event can be the execution of an action or the change of a
feature value. A state represents the resulting state of an event. The expression
of time or temporal relation between the events and states is possible. We can
divide a law in three parts:

• CONCERNED AGENTS (CA): The statement of the agents concerned
by the law. These are the agents that can be subject to the law and agents
used to describe the laws application context.

• DEONTIC ASSERTION (DA): The description of what is obligatory
and forbidden. It is a set of relationship between an agent and an event or a
state.

• APPLICATION CONDITIONS (APC): The description of the law
context. It is an expression describing when the DA must be respected rela-
tively to a set of events or states.

So, the language syntax is as follows:

LAW := (CA)(DA 〈APC 〉)
CA := (agent : AGENT 〈 and PROP 〉)+
DA := DEONTIC EXP | DA AND EXP |

DA THEN EXP
APC := QUA1 EVENT 〈 AND EVENT 〉 |

QUA1 EVENT 〈 THEN EVENT 〉 |
QUA2 STATE 〈 AND STATE 〉 |
QUA1 seconde | APC APC

DEONTIC:= FORBIDDEN | OBLIGED
EXP := (EVENT) | NOT EXP
EVENT := agent do SMTH 〈 and PROP 〉
STATE := agent be SMTH 〈 and PROP 〉
QUA1 := AFTER | BEFORE
QUA2 := IF
PROP := funct(concept.argument)
AGENT := Concept : Agent
SMTH := Concept : Action | Concept : Feature

The semantic of our language is based on the dynamic deontic logic [13]. This
logic is a variant of the deontic logic [16] and allows the expression of relation
of time between actions and states. The table 1 represents the correspondence
between the language of laws description and the dynamic deontic logic.

To explain the language we will express the law given in section 31.

1 An agent of type X will be denoted agX.

48 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Table 1. Relation between our language and the Dynamic Deontic logic (not
exhaustive)

LANGUAGE LOGIC
FORBIDDEN (EV) F(EV)

OBLIGED (EV) O (EV)
FORBIDDEN (EV1) AND (EV2) F(EV1 & EV2)
FORBIDDEN (EV1) THEN (EV2) F(EV1 ; EV2)
FORBIDDEN (EV2) AFTER (EV1) [EV1]F(EV2)
FORBIDDEN (EV1) BEFORE (EV2) F(EV1)[EV2]

... AFTER (EV1) AND (EV2) [EV1 & EV2]...
... AFTER (EV1) THEN (EV2) [EV1 ; EV2]...

FORBIDDEN (EV1) IF (STATE) STATE ⊃ F(EV1)
NOT(EVENT) EV ENT

EV1 EV2 BEFORE(Sec) EV1 EV2[time(Sec)]
EV1 EV2 AFTER(Sec) EV1[time(Sec)]EV2

L1 : “an A agent must not send message to a B agent at a rate greater than
one message per second” could be expressed as a prohibition:

(CA) For each agA.
(DA) It is forbidden for agA to send a message to agB,
(APC) After agA send a message to agB and before one second.

By using the language and the concepts defined for the system, we can write the
law as:

(L1) (agA : Agent and agA.type = A)(agB : Agent and agB.type= B)
FORBIDDEN(agA do SendingMessage and receiver = agB)
AFTER(agA do SendingMessage and receiver = agB)
BEFORE(1).

L2 : “a B agent must not create a C agent if another C agent is available in the
system” could be expressed as a prohibition:

(CA) For each agB and for each agC.
(DA) It is forbidden for agB to create a new C agent,
(APC) If agC is in an available state.

By using the language:

(L2) (agB : Agent and agB.type = B)(agC : Agent and agC.type = C)
FORBIDDEN(agB do CreationAgent and created.type = C)
IF(agC be State and value = available).

L3 : “a C agent must receive consecutively a message about the waiting time
(M1), a message of identification (M2), the data of the problem (M3) without
any another interleaved message” could be expressed as an obligation:

Dynamic Self-control of Autonomous Agents 49

(CA) For each agC.
(DA) It is obligatory for agC to receive M1 then M2 then M3 without any

other interleaved message,
(CAP) nothing.

By using the language:

(L3)(agC : Agent and agC.type = C)
OBLIGED(agC be ReceivedMessage and content = M1)
THEN (agC do ReceivedMessage and content = M2)
AND NOT (agC do ReceivedMessage and content <> M2)
THEN (agC do ReceivedMessage and content = M3)
AND NOT(agC do ReceivedMessage and content <> M3).

4.3 Hooks Between Concepts and the Implementation of the Agent
Model

The generation of self-controlled agents required the agents program instrumen-
tation in order to insert control points for verifying the respect of the laws. The
concepts used in laws must have a representation in the agents programs. The
designer of the model provides the hooks between the abstract concepts and
the implementation of the agent model. From this hooks the generator inserts
the control code in the implementation of the agent model and consequently in
the agents.

hook(’SendingMessage’, predicate(sendMessage, 2),
[MESSAGE, RECEIVER], [argument(1), argument(2)]).

hook(’ReceivedMessage’, argument(predicate(setIncomingMessage,2),1),
[CONTENT, SENDER],
[call(predicate(getContent,1),1), call(predicate(getSender,1),1)]).

Fig. 5. Example of hooks between concepts and model program

Let’s see on the example the necessary hooks to insert control in the
agents. The agents are programmed in Prolog, we focus on two concepts:
SendingMessage and ReceivedMessage. The first concept corresponds, in the
implementation of agent model, to the sendMessage clause. The message can
be found in the first argument and the receiver in the second argument of
sendMessage. Received-Message concept is linked in the program with a cer-
tain variable. We get its value in argument of the clause SetIncomingMessage.
The message content and the sender can also be get by a call of a method. The
figure 5 shows the code to describe the hooks between the concepts and the
program.

50 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

4.4 Structure of Generated Agents

A generated agent is obtained directly from :

• The agent behavior program
• The set of laws associated with the agent
• The links between the concepts used in the laws and the model

implementation

To allow the agent to control their own behavior, we propose the use of the
observer approach [4].

The Observer Approach. The observer approach consists in executing a pro-
gram and a model of property, about the program execution, in parallel. The
model and the program are connected with control points. A controller checks
on the model and the program execution are consistent.

Fig. 6. The observer approach

For instance, the properties can be modeled in the form of Petri net whose
transitions are bound to the program with the control points. When the program
execution finds a control point, the controller makes sure the tokens are in the
right place at the right time in the corresponding nets, and brings about some
change in the model, accordingly. If the system execution does not match to the
models, the verification fails.

So, we propose to put this approach in place into the agents in order to provide
them the means of controlling their own behavior. Firstly, the laws are modeled
by Petri nets. In order to simplify this stage of modeling, we propose to generate
automatically the Petri nets representing the laws. Secondly, we insert into the
agent behavior program the control points linked to the transitions of the Petri
nets and we generate a runnable agent with a specific architecture, using the
observer approach.

The Architecture. A generated agent has a specific architecture allowing the
monitoring of the agent behavior and the detection of the transgression of the laws
associated with an agent. The architecture is divided in two parts, the behavior
part and the control part. The figure 7 represents the agent architecture.

The behavior part matches the program under surveillance in the observer ap-
proach. It includes the real agent behavior and strategies of regulation defined

Dynamic Self-control of Autonomous Agents 51

Fig. 7. The architecture of a self-controlled agent

by the developer. Indeed, we would not like only that the verification fails when
an inconsistence is detected but that the agent can regulate its behavior when a
law is transgressed. The control part matches the controller which is an integral
part of the agent. The control part includes the set of Petri nets representing
the laws associated with the agent and makes sure of the detection of the laws
violation. The connections between the program and the models are simulated
by a sending of information from the behavior part to the control part. To allow
this sending of information, we instrument the behavior part by inserting auto-
matically some control points associated with the events and states contained
in the laws. The control part receives the information and verifies the respect of
the laws.

4.5 The Generator

The generation of a self-controlled agent comes down to the generation of the
Petri net representing each law concerning the agent and the instrumentation
of the agent behavior to detect the occurrence of events and states expressed in
the laws.

The Instrumentation. To monitor a system execution, it is essential to insert
probes into the program to detect the occurrence of events. We propose an auto-
matic instrumentation of the agent behavior program to monitor the occurrence
of the events and states expressed in the laws by inserting control points. This
instrumentation is done thanks to the hooks defined by the developer, between
the concepts describing the model and its implementation. In order to do that,
we draw ours inspiration from the principle of weaving. The weaving is an
important part of the aspect programming [17]. The latter consists in modular-
izing crosscutting structure. The aspect programming uses the weaving to inject
aspects in classes of an application, at methods level, to modify the system ex-
ecution after the compilation. An aspect is a module representing crosscutting
concerns. The interest of the aspect programming to integrate the monitoring
in an application was demonstrated in another light by [11]. So, our approach
consists in:

52 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Table 2. Translation of logic expression in Petri Net (not exhaustive)

LOGIC PETRI NET LOGIC PETRI NET

F(EVENT) O(EVENT)

F(EV1 & EV2) O(EV1 & EV2)

F(EV1 ; EV2) [EV1]F(EV2)

F(EV1)[EV2] [EV1 & EV2]

[EV1 ; EV2] STATE ⊃ F(EV1)

EV1 EV2 [Sec] EV1 [Sec] EV2

1. Extracting the events to be detected.
2. For each event, searching for the provided hook to the implementation.
3. Injecting, before or after the provided hook, the code allowing the sending

of information to the control part and the recovery of possible information
of transgression to enable the agent to begin a strategy of regulation.

The Generation of Petri Nets. The generation of a Petri net representing a
law is divided in three stages :

• The translation of the law in a logic expression L, by using the table 1, in
order to point out a set of elementary logic expressions, {l1, ..., ln}.

• The deduction of a set of Petri net, {p1, ..., pn} representative of each ex-
pression in {l1, ..., ln}, by using the table 2.

• The fusion of all the nets in {p1, ..., pn} from the relations between l1, ..., ln
expressed in L, by using the table 2 to obtain a final Petri net, P , representing
the law.

The final Petri net P , is embedded into the control part of each agent submitted
to the law. This Petri net includes two parts: the conditional part with states
and transitions associated with the events and states described in the APC of
the law; the deontic part with states and transitions associated with the events
or states described in the DA of the law. For example, from the law L1:

Dynamic Self-control of Autonomous Agents 53

Fig. 8. The generation of the Petri net for L1

(L1) (agA : Agent and agA.type = A)(agB : Agent and agB.type= B)
FORBIDDEN(agA do SendingMessage and receiver = agB)
AFTER(agA do SendingMessage and receiver = agB)
BEFORE(1).

We can deduce the following logic expression:

[SendingMessage(agA,agB,M1) ∧ agent(agA,A) ∧ agent(agB,B)]
F (SendingMessage(agA,agB,M2) ∧ agent(agA,A) ∧ agent(agB,B))[time(1)]

From this expression, the generator deduces the Petri net representing the law.
To represent a prohibition we use an inhibitor hyperarc:

Inhibitor hyperarc: A branch inhibitor hyperarc between places P1, ..., Pk and
a transition T , means that T is not firable if all the places are marked [7].

To express a real time, we use a timed Petri net. The figure 8 represents the
generation of a Petri net representing the law L1 with inhibitor hyperarc and
time.

4.6 Multiagent Laws

For a law applied to several agents, our aim is to distribute as much as possible
the control into each agent affected by the law. We would like to avoid a cen-
tralized solution. So the Petri net representing the “multiagent law” is deduces
as in a single agent context. Then, the net is distributed into the control parts
of the agents concerned by the law. For example, the figure 9 represents the
distribution of the Petri net representing the multiagent law L2 :

(L2) (agB : Agent and agB.type = B)(agC : Agent and agC.type = C)
FORBIDDEN(agB do CreationAgent and created.type = C)
IF(agC be State and value = available).

Let us note that the control parts of each agents are only linked through
the arcs between places and transitions (themselves distributed over the control
parts of agents). These links represent the information flow between the control
parts (i.e. the flow of the token).

54 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Fig. 9. Distribution between two agents

So, when a control part, CA, receives an information from its agent, if this
information is associated with a transition T whose the next place is in the
control part of another agent, CB, then CA sends information about the firing
of this transition, (actually, it sends the token) to the control part CB and
waits for an acknowledgment of receipt. During this waiting, the behavior of the
agent is temporarily stopped and the information associated with T is considered
as always available. The control part CB receives the information, sends the
acknowledgment to the control part CA and verifies the respect of its part of
the law. When CA receives the acknowledgment, the transition can be really
fired, the information associated with T is consumed and the agent behavior can
continue.

5 Related Work

M.S. Feather and al. [5] treat also the agreement between a system and its
requirements. In their approach, an external monitor collects events sent by
the agents and a reconciler is going, when a requirement violation is detected,
not to hand the system in a state that respected requirements, but to modify
requirements so that they are in agreement with the new behavior. The authors
do not consider essential requirements for the system execution, they do not seek
to prevent inconsistent behavior. They try that a system and its requirements
adapt themselves to stay in agreement during the system execution.

D.N. Lam and K.S. Barber [8] propose a methodology, the Tracing Method,
to test and explain the agents behavior. The aim of this method is to ensure that
an agent performs actions for the right reasons, and if an unexpected action oc-
curred, to help explain why an agent decided to perform the action. We have
in common an agent ontology to compare specifications (state-chart diagrams,
communication protocol diagrams) and agents real behavior. But in our ap-
proach we propose an automation of the code instrumentation and the detection
of inconsistencies between the expected and the observed behaviors. Finally, our
control is embedded into agents to allow an on-line detection of errors. The Trac-
ing Method allows an off-line analysis of the program traces generated during
the system execution.

Dynamic Self-control of Autonomous Agents 55

Finally, we cite the recent work of R. Paes [14]. In the context of open multi-
agent systems, the authors propose the use of laws to control the emergence of
wrong behaviors. If the idea is similar, the authors apply their control only to
the messages passing between the agents and not to the whole behavior. They
propose the use of a mediator which receives the messages, applies the laws on
these messages and forwards them to the addressed agent. Here, it is about the
surveillance of the agents interaction thanks to an external entity.

6 Conclusion

We have presented in this paper a framework, SCAAR, allowing the generation
of agents being able to verify their own behavior. This verification consists in
making sure that a set of laws associated with an agent is respected throughout
the MAS execution. These laws represent requirements about agents behavior
and state. The interest of our approach is principally to permit the description
of laws by someone not involved in the MAS development. Another important
point lies in the fact that the control can be applied to agents implemented
with different kinds of agent model, in condition that the model used can be
described from our agent concepts. With our framework, we provide a language
to describe laws. We propose a mechanism for automatic generation of Petri nets
representing the laws and insertion of control points to detect expected events.
The Petri nets are used to monitor the agent behavior and detect when laws are
transgressed, by using the observer approach. Finally, we propose a first solution
for the enforcement of laws at the multiagent level.

References

1. K.S. Barber and C.E. Martin. Agent autonomy : Specification, measurement and
dynamic adjustment. In Proc. of the Autonomy Control Software workshop at
Autonomous Agents’99, pages 8–15, May 1999.

2. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
3. M. de Sousa Dias and D.J. Richardson. Issues on software monitoring. Technical

report, Department of Information and Computer Science, University of California,
July 2002.

4. M. Diaz, G. Juanole, and J-P. Courtiat. Observer-a concept for formal on-line
validation of distributed systems. IEEE Trans. Softw. Eng., 20(12):900–913, 1994.

5. M.S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling System
Requirements and Runtime Behavior. In Proceedings of IWSSD9, Isobe, Japan,
1998.

6. Y. Huang and C. Kintala. Software fault tolerance in the application layer. In
Software Fault Tolerance, 1995.

7. R. Janicki and M. Koutny. On causality semantics of nets with priorities. Funda-
menta Informaticae, (38):223–255, 1999.

8. D.N. Lam and K.S. Barber. Debugging agent behavior in an implemented agent
system. In Proceedings of PROMAS’04, pages 45–56, New York City, July 20 2004.

9. Y. Liao and D. Cohen. A specificational approach to high level program monitoring
and measuring. IEEE Trans. Software Engineering, 18(11), November 1992.

56 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

10. J.E. Lumpp, T.L. Casavant, H.J. Siegle, and D.C. Marinescu. Specification and
identification of events for debugging and performance monitoring of distributed
multiprocessor systems. In Proceedings of the 10th International Conference on
Distributed Systems, pages 476–483, June 1990.

11. D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat. Program instrumenta-
tion for debugging and monitoring with AspectC++. In Proc. of the 5th IEEE
International symposium on Object-Oriented Real-time Distributed Computing,
Washington DC, USA, April 29 – May 1 2002.

12. M. Mansouri-Samani. Monitoring of Distributed Sytems. PhD thesis, University
of London, London, UK, 1995.

13. JJCH. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1), 1988.

14. R. Paes, G. Carvalho, C. Lucena, P. Alencar, H. Almeida, and V. Silva. Specifying
laws in open multi-agent systems. In ANIREM, Utrecht, July 2005.

15. J. Vázquez-Salceda, H. Aldewerld, and F. Dignum. Implementing norms in multi-
agent systems. In Proceedings of MATES’04, Erfurt, Germany, September, 29–30
2004.

16. G.H. von Wright. Deontic logic. Mind, 60(237):1–15, 1951.
17. Dean Wampler. The future of aspect oriented programming, 2003. White Paper,

available on http://www.aspectprogramming.com.

	Introduction
	Control of Autonomous Agent
	Behavior Verification
	Level of Laws
	Control Enforcement

	An Example
	The Multiagent System
	Laws of the System

	SCAAR: A Framework for the Generation of Self-controlled Autonomous Agents
	Ontology
	The Laws
	Hooks Between Concepts and the Implementation of the Agent Model
	Structure of Generated Agents
	The Generator
	Multiagent Laws

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

