
Programming MAS with Artifacts

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Alma Mater Studiorum, Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

a.ricci@unibo.it, mirko.viroli@unibo.it, andrea.omicini@unibo.it

Abstract. This paper introduces the notion of artifact as a first-class
abstraction in MASs (multi-agent systems) and focuses on its impact on
MAS programming. Artifacts are runtime devices providing some kind
of function or service which agents can fruitfully use – both individually
and collectively – to achieve their individual as well as social objectives.
Artifacts can be conceived (and programmed) as basic building blocks
to model and build agent (working) environments. Besides introducing a
conceptual and modelling framework, the paper discusses the impact of
this new notion on MAS programming, focussing in particular on MAS
composed by cognitive agents. To make the discussion more concrete, we
provide an example scenario featuring 3APL agents whose coordination
activity is supported by TuCSoN tuple centres – an existing coordination
model providing some of the basic properties of artifacts for MASs.

1 Introduction

Research on agent programming has been mainly focused so far on issues con-
cerning individual agents, from theories to architectures, and programming lan-
guages. In particular, in the research contexts where a notion of strong agency is
adopted, this attitude results in facing the basic systemic issues concerning MAS
(Multi-Agent Systems) – such as coordination and organisation – mainly from the
subjective perspective, i.e. exclusively relying on agent computational and com-
municative abilities. Such an approach has indeed some benefits in terms of uni-
formity, but has also some strong limits in scaling up with complexity, in particular
when coordination activities are concerned [14]. On the one side, programming the
glue – even the simple glue – still remains a challenging and complex task. Typi-
cally, simple coordination problems result in agents with high complexity, either
in terms of the communication protocols or the reasoning capabilities that they
must exhibit. On the other side, wrapping (and programming) any kind of use-
ful environmental resource as an agent does not scale up with software systems
complexity, in particular in MAS composed of cognitive agents.

A naive observation is that not every entity or abstraction in a MAS is suit-
ably modelled as a goal-governed or goal-oriented system. They can of course
be wrapped within an agent, but such a solution is more like a trick than a
well-defined engineering choice. This point is simple and old: modelling and pro-
gramming aspects of a system with abstractions that have not been conceived
for this purpose has a dramatically negative impact, in particular as far as the

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 206–221, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Programming MAS with Artifacts 207

system becomes complex and when the application domain requires forms of
dynamic control and evolution.

In this paper we aim at tackling the problem at the foundation level. For this
purpose, we introduce the notion of artifact, as a first-class abstraction used to
design / program / build those aspects of a MAS for which the agent abstraction
is not suitable for, i.e. everything that is not suitably modelled as a goal- or task-
oriented system. In this paper we will focus in particular on the programming
aspect – even though this issue affects every aspect of the agent paradigm, from
theories to engineering methodologies.

By abstracting from specific mechanisms, artifacts are meant to be basic build-
ing blocks – along with agents – that MAS designers and programmers can design
and program to build systems: agents and artifacts are meant to be first-class
abstractions from design to runtime, supported by suitable infrastructures.

Generally speaking, artifacts can be used to program and build suitable agent
workspaces, i.e. working environments populated by the set of objects (in the wide
sense) and tools that agents can share and use to support their individual as well
as social activities. Examples range from simple artifacts providing communica-
tion functionality, such as mail boxes and blackboards, to artifacts providing coor-
dination services, such as workflow engines or auction-engines, or again artifacts
representing general purpose shared resources, such as a shared memories.

Actually, artifacts and tools have been the focus of important theories study-
ing the development of activities in human society. Main examples are Activity
Theory and Distributed Cognition [11,8]. According to such theories, most of
the human activities are mediated by some kind of artifacts, and the design and
use of such tools play a key role in activities development, heavily influencing
their performance and their scalability with problem complexity. Also, the de-
velopment of human societies itself is strictly related to the development of the
tools constructed and used in such societies.

In this paper, we first briefly introduce the conceptual framework character-
ising the artifact abstraction and the relationships between agents and artifacts
– generalising over previous works on coordination artifacts [19,15] –, and then
focus on the impact of using artifacts for programming MASs.

The rest of the paper is organised as follows: first we frame the artifact notion
from a conceptual and theoretical point of view, providing a first model as well as
some examples of artifacts (Section 2). Then, we introduce some issues related
to artifact programming, providing some concrete examples using an existing
coordination model – the tuple centre model [13] – which have some of the main
properties of artifacts (Section 3). As an important point of the contribution,
we consider then the impact of artifacts in agent programming, providing some
basic examples using 3APL extended to deal with artifacts (Section 4). Related
works (Section 5), conclusions and future works (Section 6) complete the paper.

2 A First Theory of Artifacts

By considering the conceptual framework described in [1], agents can be gener-
ally conceived as goal-governed or goal-oriented system. Goal-governed systems

208 A. Ricci, M. Viroli, and A. Omicini

refer to the strong notion of agency, i.e. agents with some forms of cognitive
capabilities, which make it possible to explicitly represent their goals, driving
the selection of agents’ actions. Goal-oriented systems refer to the weak no-
tion of agency, i.e. agents whose behaviour is directly designed and programmed
to achieve some goal, which is not to be explicitly represented. In both goal-
governed and goal-oriented systems, goals are internal. External goals instead
refer to goals which typically belong to the social context or environment where
the agents are situated. External goals are sort of regulatory states that condi-
tion agent behaviour: a goal-governed system follows external goals by adjusting
internal ones [1].

Then, there are systems or parts of a system that are better characterised as
resources or tools that are used to achieve some goals, having neither internal
goals nor a pro-active behaviour, but more simply some kind of functionality
that can be suitably exploited, as a service. Here we refer to such basic entities
as artifacts. Artifacts are computational devices explicitly designed to embody
and provide a certain function, which can exploited by agents to achieve their
individual as well as social goals – in other words, to support the execution
of their individual as well as social tasks. By taking the human society as a
reference, the distinction between agents and artifacts mirrors the distinctions
between humans as autonomous entities and the artificial, non-autonomous tools
they exploit everyday in their activities.

So, while the notions of goal and task are central for agents, the notion of use
and function1 – which is used here, quite roughly, as a synonym of service – are
central for artifacts. As for the devices in human society, artifacts are used by
means of a basic well-defined set of operations which define artifacts’ interface.
From a philosophical and conceptual point of view, there is a neat distinction
between communication and use: more precisely, agents communicate with other
agents but not with artifacts, which are instead used though their interface.

As for artifacts in human society, external goals can be attached to an artifact
by its users, in spite of its designed function: in this case, the destination of the
artifact is different from the purposes for which it has been built.

As remarked in Activity Theory and Distributed Cognition, despite their
specific function, artifacts are always kind of mediators between agents and
their objectives, i.e. instruments to transform agent objectives in outcomes. As
discussed in next sections, such a mediation has different concrete forms: we can
e.g. have mediation of agents interaction, as in the case of coordination artifacts,
which are shared and used by multiple agents with the purpose of providing
some kind of coordination service; or we can have mediation of an agent with
respect to its organisational environment, as in the case of boundary artifacts,
which are used by a single agent with the purpose of constraining its action space
according to some organisational rules.

An important distinction characterising agents / artifacts relationships con-
cerns use and use value [1]. Use value corresponds to the evaluation of artifact

1 The term function here refers to a functionality or service, and should not be confused
with the term function as used e.g. in functional languages.

Programming MAS with Artifacts 209

Fig. 1. An abstract representation of an artifact, along with some specific instances

characteristics and function, in order to select it for a (future) use. This distinc-
tion actually corresponds to two different kinds of external goals attached to an
artifact by a user agent: (i) the use value goal, according to which the artifact
should have the power of making its user agent achieve its objective by exploit-
ing the artifact itself – such an external goal drives the agent actions concerning
the selection of the artifact –; (ii) the use goal, which directly corresponds to
the agent goal, which drives the usage of the artifact. From the agent point of
view, when an artifact is selected and used it has then a use value goal which
corresponds to its internal goal.

Finally, besides users, artifact designers and programmers play an important
role in the picture, acting as the agents (either artificial or not) with the power
of constructing, manipulating, adapting artifact behaviour, either for changing /
expanding artifact function or for improving current behaviour without changing
its function or interface.

2.1 A Model

From the conceptual framework discussed above, we can devise out a first model
for the artifact abstraction. As mentioned previously, an artifact can be defined as

a computational device populating agents’ environment, designed to pro-
vide some kind of function or service, to be used by agents –either in-
dividually or collectively—to achieve their goals and to support their
tasks.

An abstract representation of an artifact is depicted in Fig.1. We identified
four basic elements to describe an artifact: the usage interface, the operating
instructions, the function, and the structure and behaviour.

The Usage Interface (UI) is the set of the operations which agents can invoke to
use the artifact and exploit its functionality. The invocation of an operation – as
an agent external action – can result in the occurrence of events at some point(s) in
the future, typically bringing some information about the result of the operation.
Such events are perceived by the agent as external events (perceptions).

Operating instructions (OI) are a description of how to use the artifact to get
its functionality. Operating instructions describe the possible usage protocols,

210 A. Ricci, M. Viroli, and A. Omicini

i.e. sequences of operations that can be invoked on the artifact, in order to
exploit its function. Besides a syntactic information, they can embed also some
kind of semantic information that rational agents can eventually understand and
exploit in their reasoning processes, to enable and promote the cognitive use of
the artifact.

The function of an artifact is its intended purpose, i.e. the purpose estab-
lished by the designer / programmer of the artifact, in other words what are the
intended functionalities the artifact provides.

Finally, the structure and behaviour concerns the internal aspects of the ar-
tifact, that is how the artifact is implemented in order to provide its function.
Such an aspect is typically hidden to users and resides in the domain of artifact
designers and programmers.

Differently from agents, artifacts are not meant to be autonomous or exhibit a
pro-active behaviour, neither to have social capabilities. Among the main prop-
erties, that are useful according to artifacts’ purpose and nature, we have: (i)
inspectability and controllability, i.e. the capability of observing and controlling
artifacts structure (state) and behaviour at runtime, and of supporting their on-
line management, in terms of diagnosing, debugging, testing; (ii) malleability,
i.e. the capability of changing / adapting artifacts function at runtime (on-the-
fly) according to new requirements or unpredictable events occurring in the open
environment; and (iii) linkability, i.e. the capability of linking together at run-
time distinct artifacts, for scaling up with complexity of the function to provide
and as a mean to support dynamic reuse.

Also, differently from agents, artifacts can have a spatial extension, i.e. given
a MAS with a topology, the same artifact can cover different nodes: in other
words a single artifact can be both conceptually and physically distributed. For
instance, a blackboard artifact can cover different Internet nodes, where agents
use it by exploiting a local interface.

Given such a conceptual model of artifacts, three main aspects can be identi-
fied for characterising their relationships with agents: (i) use, (ii) selection and
(iii) construction and manipulation. Such aspects are quite orthogonal, and in-
volve different aspects of the artifacts on the one side, and different kinds of
abilities of the agents on the other side. The usage interface and, possibly, the
operating instructions are typically the only things an agent needs for using
the artifact. Function is important, instead, for selecting what artifacts to use.
Finally, construction and manipulation mainly touches the structure and behav-
iour of the artifacts. In Section 4 these aspects will be connected to different
kinds of abilities requested to the agents to exploit artifacts at different levels.

2.2 Examples of Artifacts

In order to make the discussion more concrete, we provide some basic examples of
artifacts which frequently recur in MAS design and programming, here classified
according to their purpose (see Fig.2). It is worth remarking that these examples
are not meant to be a rigorous taxonomy to partition artifacts: as happen for
tools in our society, the same artifact can be classified in different ways according

Programming MAS with Artifacts 211

Fig. 2. Some basic types of artifacts: boundary artifacts (B), resource artifact (R),
coordination artifacts (C)

to the point of view. However, the following list is useful for pointing out some
basic kinds of artifacts that frequently appear when engineering MAS.

Coordination artifacts – artifacts designed to provide a coordination service.
Several mechanisms introduced in other computer science fields – concur-
rent system and software engineering in particular – and in foreign fields
such as management science, can be understood as coordination artifacts.
Examples at different levels of abstraction range from artifacts with commu-
nication functions (message boxes, blackboards, event services), to artifacts
with a specific synchronisation function (schedulers, semaphores), up to gen-
eral high-level coordination capabilities (workflow engines, auction-engines,
normative systems, pheromone infrastructures). The notion of coordination
artifact is similar to the concept of coordination medium developed in the
context of coordination models and languages [17]: however, while in general
coordination media have been conceived more for processes in concurrent /
distributed systems, coordination artifacts (as kind of artifacts) have some
basic features – such as Operating Instructions – that make them suitable for
agents as a higher level of abstraction, in particular for goal-governed agents
with cognitive capabilities. Also, coordination artifacts have properties which
are not generally defined for coordination media, such as malleability, link-
ability, inspectability, controllability.
Any coordination artifact is a mediator of agent interaction, with both a
constructive and normative aim: on the one side it is an enabler of agent
interaction, as the place where the interaction occurs; on the other side, it
constrains the agent interaction space to only the subspace which is correct
according to the coordinating function it provides.
In management sciences a set of basic categories concerning coordination
problems have been identified [9], classifying them according to the depen-
dencies to be managed and then identifying for each category a set of possible
mechanisms useful for this purpose [10]. Such a handbook of coordination
knowledge can be ported to MASs, and the corresponding mechanisms im-
plemented as coordination artifacts.
It is worth noting that coordination artifacts represent an engineered ap-
proach to coordination, which basically works when it is possible and useful
to design a priori the solution to a coordination problem, and then to reify
such a knowledge in suitable artifacts. Conversely, there are cases in which

212 A. Ricci, M. Viroli, and A. Omicini

the solution cannot be established a priori by designers, but is either an out-
come of agent reasoning, or it emerges with agent interaction: in such cases
coordination artifacts can be used mainly as interaction enablers. In some
cases however, the coordination knowledge acquired during agent interac-
tion can be used to dynamically forge new coordination artifacts, typically
to improve the effectiveness and efficiency of the coordination process. This
reflects the role of artifacts in reifying the knowledge coming from agents’
experience and history.

Boundary artifacts – a particular case of organisation artifacts – with an or-
ganisation and security function. They take inspiration from the Agent Co-
ordination Context notion introduced in the context of coordination models
and infrastructures [12]. A boundary artifact (BA) is an artifact used to
characterise and control the presence (in its most abstract sense) of an agent
inside an organisation context, reifying and enacting a contract between the
agent and the organisation. In role-based environments, a BA embeds the
contract for the role(s) the agent plays inside the organisation.
A BA is released to an agent when starting a working session inside an
organisation, and then it constraints what the agent can do inside the or-
ganisation, in terms of the actions on other artifacts belonging to the the
organisation and the communications to other agents. In other words, a BA
can be conceived as the embodiment of a (boundary) ruled interface between
the agent and the environment.

Resource artifacts – artifacts designed either to mediate access to a specific
existing resource or to directly represent and embody a resource part of
the MAS environment. An example is a database. This kind of artifact is
important to bring at the agent level of abstraction all the computational
(and physical) entities which can be useful for agents, from objects (in the
OO sense) to services, such as a Web Service.
Currently, wrapper agents are typically used as a solution for this prob-
lem: such an approach, however, is useful and conceptually correct when the
resource can be suitably and effectively represented and programmed as a
goal-oriented or goal-governed system. In all the other cases, resources can
be naturally represented as artifacts, as entities providing some kind of ser-
vice that can be exploited by means of well-defined operations listed in the
artifact interface. It is worth remarking that, from an implementation point
of view, artifacts are generally much more light-weight than agents, they
more resemble objects (in the OO acceptation): they are typically passive
entities managed by the infrastructure, with no structures – for instance –
for dealing with task scheduling or reasoning. When engineering complex
systems, with many agents and artifacts, this is clearly an issue affecting
performance and scalability.

3 Programming Artifacts for MAS

In the following, we consider tuple centres as an example of an existing co-
ordination model for MAS exhibiting some of the main features described for

Programming MAS with Artifacts 213

(coordination) artifacts. Actually, the design and development of models / in-
frastructures fully supporting the conceptual framework based on the general
notion of artifact is part of our future works (Section 6).

3.1 The Tuple Centre Example

A tuple centre is a programmable tuple space, i.e. a tuple space enhanced with
the capability of programming its reacting behaviour to communication events
in order to define any kind of coordination laws shaping agent interaction space
[13]. TuCSoN is a coordination infrastructure providing tuple centres as run-
time coordination services distributed among Internet nodes [16]. In the case of
TuCSoN, the communication language adopted is based on logic tuples and the
reactive behaviour can be specified as a set of reactions – always encoded as
logic tuples – in the ReSpecT language. If the reaction specification is empty, a
tuple centre behaves like a tuple space: coordination can be realised by suitably
composing the basic coordination primitives to insert, retrieve, and read tuples.
By programming the tuple centre with a reaction specification, a specific coordi-
nating behaviour (and then the artifact function) is injected in the tuple centre.
The detailed description of tuple centres, ReSpecT and TuCSoN are beyond the
scope of the article: interested readers can read to reference articles listed in the
bibliography.

So, tuple centres can be framed here as general purpose programmable coordi-
nation artifacts, whose coordinating behaviour can be programmed dynamically
according to the coordination problem. More precisely, a tuple centre can be
framed as a coordination artifact where:

– the usage interface is composed by the coordination primitives to insert
(out), retrieve (in), read (rd) tuples, and to inspect (get spec) and set
(set spec) tuple centre coordinating behaviour;

– the coordinating behaviour is expressed as a ReSpecT program;
– the operating instructions and the function description are not explicitly sup-

ported: they are implicitly described in ReSpecT programs defining specific
artifact behaviour.

As for any other artifact operation, invocations are not blocking (the blocking
behaviour has no meaning when dealing with artifacts and agents): after invoking
an in operation on a tuple centre, the invoker agent continues to act according
to its plan (which can include of course also waiting for the completion of the
operation). When the in is satisfied, the operation completes and a completion
event is notified to the agent, as a perception.

To exemplify the approach, here we consider a classic coordination problem:
the dining philosopher [5]. The problem regards a number of philosophers eating
at the same round table, sharing chopsticks. Each philosopher alternates think-
ing with eating. In order to eat, a philosopher needs two chopsticks, which are
shared with other two philosophers, sitting one at his left and one at his right.
Coordination here is mostly needed to avoid deadlock, which can happen if each

214 A. Ricci, M. Viroli, and A. Omicini

Table 1. ReSpecT specification for coordinating dining philosophers

reaction(in(chops(C1,C2)), (pre, out r(required(C1,C2)))).
reaction(out r(required(C1,C2)),(

in r(chop(C1)),in r(chop(C2)),out r(chops(C1,C2)))).
reaction(in(chops(C1,C2)), (post, in r(required(C1,C2)))).
reaction(out(chops(C1,C2)), (out r(chop(C1)),out r(chop(C2)))).
reaction(out(chops(C1,C2)), (in r(chops(C1,C2)))).
reaction(out r(chop(C1)), (

rd r(required(C1,C)),in r(chop(C1)),in r(chop(C)),out r(chops(C1,C)))).
reaction(out r(chop(C2)), (

rd r(required(C,C2)), in r(chop(C)),in r(chop(C2)),out r(chops(C,C2)))).

philosopher has taken a chopstick and is waiting for the other one, which is in
turn taken by a waiting philosopher. In spite of its almost trivial formulation,
the dining philosophers problem is generally used as an archetype for non-trivial
resource access policies.

A solution to the problem according to our framework consists in using a
suitable coordination artifact playing the role of the table, used by the philoso-
pher agents to access the resources (chopsticks). The coordination artifact is
here implemented with a tuple centre – called table – programmed to provide
the coordinating behaviour which avoids deadlock. As an artifact, the table is
characterised by:

– a usage interface, composed by the operation acquireChops(C1,C2) and
releaseChops(C1,C2). Using a tuple centre, the former operation is realised
by an in(chops(C1,C2)), while the latter with an out(chops(C1,C2));

– a function, informally described as to dine, which matches the the dining
goal of the philosopher agent;

– operating instructions, which can be informally described as follows: “let C1
and C2 be the chopsticks you need, then first invoke acquireChops(C1,C2)
operation. When the operation is completed, dining task can be scheduled.
When the dining task finished, invoke release(C1,C2) operation”. Such
an informal description can be described more rigorously adopting a formal
framework based on operational semantics, as discussed in [20].

– a coordinating behaviour to avoid deadlock. Using a tuple centre, the be-
haviour is provided by the ReSpecT specification described in Table 1 (for
details concerning how the specification works refer to [13]).

Philosopher agents can be realised in any programming language: in Section 4
we show an implementation using 3APL. Basically, the philosopher agents’ goal
is to survive, interleaving thinking and dining behaviour. For the latter one,
following the operating instructions, they need to get the chopsticks from the
table and to give them back when dining has finished.

The main point here is that philosophers do not need to worry about how to
coordinate themselves, or how the resources are represented: they simply need
to know which chopstick pair to ask for, and then they can focus on their main
tasks (thinking and eating).

Programming MAS with Artifacts 215

4 Impact on Agent Programming and Reasoning

An important issue of our approach concerns how artifacts could be effectively
exploited to improve agents’ ability to execute individual as well as social tasks.
Which reasoning models could be adopted by agents to use artifacts in the best
way, simplifying their job? How could operating instructions be used in agent
reasoning processes, in order to help them using artifacts and finally achieving
their goal(s)? Or rather: how could an agent reason to select which artifacts to
use? How could artifact function description be exploited for this purpose? And
finally: how could agents reason to construct or adapt artifacts behaviour in order
to be useful for their goals? All the above questions are strictly related to some
of the main foci in the research in service-oriented (agent-based) architectures,
i.e the description and discovery / brokerage of artifacts (services).

On the one side, the simplest case concerns agents directly programmed to
use specific artifacts, with usage protocols directly defined by the programmer
either as part of the procedural knowledge / plans of the agent for goal-governed
systems, or as part of agent behaviour in goal-oriented systems. In spite of its
simplicity, this case can bring several advantages for MAS engineers, exploiting
separation of concerns when programming light-weight agents, without the bur-
den – e.g. coordination burden – which is instead upon artifacts designed for this
purpose. On the other side, in the case of fully open systems, the intuition is
that operating instructions and function description can be the key for building
MAS where intelligent agents dynamically look for and select which artifacts to
use, and then exploit them accordingly, simplifying the reasoning required to
achieve the goals with respect to the case in which artifacts are not available.

Actually, the conceptual framework discussed in Section 2 makes it possible
to frame such abilities progressively, scaling with the openness and complexity
of the domain context. Some levels can be identified, involving different kinds of
artifact aspects and agents’ abilities:

– unaware use – at this level, agents and agent programmers exploit artifacts
without being aware of them. In other words, agents’ actions never refer
explicitly to the execution of operations on some kinds of artifacts.

– programmed use – at this level agents use some artifacts according to what
has been explicitly programmed by the developer. In the case of cognitive
agents, for instance, agent programmers can specify usage protocols directly
as part of the agent plan. For the agent point of view, there is no need to
understand explicitly artifacts’ operating instructions or function: the only
requirement is that the agent model adopted could be expressive enough to
model in some way the execution of external actions and the perception of
external events.

– cognitive use – at this level, the agent programmer directly specifies in the
agent program some knowledge about what artifacts to use. However, how
to exploit the artifacts is dynamically discovered by the agent, by reading
the operating instructions. So, generally speaking the agent must be able
to embed the procedural knowledge given by the operating instructions in

216 A. Ricci, M. Viroli, and A. Omicini

the procedural knowledge defined in its plans. In this case the adoption of
shared ontologies for operating instructions description / goal description is
necessary.
Focussing on this point, an interesting note comes from the studies on human
behaviour using artifacts. According to Activity Theory, a hierarchy can be
identified among activities, actions, and operations:

• Operations – Operations are defined as routinised (interactive) behaviour
of individuals, that require little conscious attention (e.g. rapid typing).
Responsive of actual conditions, operations provide an adjustment of
actions to current situations;

• Actions – Actions are defined as behaviour that is characterised by con-
scious planning. There may be many different operations capable of ful-
filling an action. Actions are directed toward goals, which are the objects
of actions. Usually, goals are functionally subordinated to other goals,
which may still subordinated to other goals and so forth. Actions must
be understood within the frame of reference created by the activity;

• Activity – Activity can be defined as the minimum meaningful context
for understanding individual actions. An activity is directed toward a
motive, which is the object which motivates the whole activity.

Such a remark can be useful in our case for exploring two different ways to
use an artifact:

• Conscious – in this case any interaction with the artifact is under the
direct control of the main reasoning process of the agent (e.g. main de-
liberation cycle), where the operating instructions have been embedded;

• Unconscious – in this case the interaction with the artifact is not gov-
erned by the deliberation cycle of the agent, but realised by some auto-
mated procedure which executes directly – on the background of agent
main reasoning – the operating instructions. Only in the case of a break-
down, the reasoning focus of the agent is shifted on the interaction with
the artifact, by properly reacting to perceptions which represent the
problems.

The last case can be very interesting in order to devise out agents that very
efficiently exploit artifacts in the background, while keeping the reasoning
focus on other issues;

– cognitive selection and use – this case extends the previous one by conceiving
agents that autonomously select artifacts to use, get operating instructions
and use them. With respect to the previous case, agents must be able both
to understand and embed the operating instructions, and also understand
artifacts function / service description, in order to possibly decide to use
the artifacts for their own goal(s). It is worth noting that such a selection
process can concern also set of cooperative agents, interested in using a
coordination artifact for their social activities. As in the previous case, shared
ontologies are necessary, in this case both for operating instructions and
function description;

– construction and manipulation – in this case the point of view is changed,
considering agents playing the role of programmers of the artifacts. At this

Programming MAS with Artifacts 217

level agents are supposed to understand how artifacts work, and to adapt
their behaviour (or build new ones from scratch) in order to make it more
effective or efficient for other agents’ goals. For its complexity, this level
generally concerns humans. However, agents can e.g. be adopted to change
artifact behaviour according to schema explicitly defined by the agent pro-
grammer.

4.1 An Example Using 3APL

In order to help the reader’s intuition, in the following we describe a first example
of MAS composed by a set of cognitive agents using a tuple centre as a simple
kind of coordination artifact. Agents are implemented in 3APL [3], which is
taken here as a reference example of agent-oriented programming language for
goal-governed agents.

Actually, the basic 3APL model is extended to support the artifact framework.
In particular the extension introduces external actions and perceptions (external
events), as in the case of dMARS [6]. The extension is a generalisation of the work
described in [4], where 3APL is extended to support communicative actions to
send and receive FIPA ACL message, and to react to external events concerning
the reception of messages. There, the authors define a message base as a new
part of a 3APL agent state: communicative actions and external events alter
the content of the message base. Practical rules with a guard are introduced for
reacting to the presence in the message base of events related to the arrival of
new messages.

Our extension consists first in modelling the execution of an operation on a
specific artifact as a 3APL (external) action. For this purpose, we extend the set
of possible 3APL goals with the action

invoke op(O,A)

where O is a term representing the signature of the operation to be invoked,
and A is a term used as identifier of the artifact. As an example, the action
invoke op(get token, synchroniser) invokes the get token operation on the
synchroniser artifact. Another case is action invoke op(in(age(’Bob’,X)),
dbase), which invokes the in operation on the tuple centre dbase in order to
retrieve a tuple matching the template age(’Bob’,X).

Second, the extension also models the perception of events generated by ar-
tifacts. To this end, the practical rule on message reception is generalised to
consider also external events concerning the completion of an operation exe-
cuted on an artifact. A new guard is introduced:

op completed(O,A,R)

where O represents the signature of an operation previously invoked, A the source
artifact, and R a result term carrying information related to the completion of
the operation. An examples of rule is:

<- op completed(get token, synchroniser,) | do critical task()

218 A. Ricci, M. Viroli, and A. Omicini

Table 2. A dining philosopher implemented in 3APL, using the tuple centre table as
a coordination artifact

1 PROGRAM "philosopher"
2
3 CAPABILITIES:
4 { not hungry } think { hungry },
5 { hungry } eat {not hungry },
6 { not holding chops } update chop belief(acquired) { holding chops },
7 { holding chops } update chop belief(released) { not holding chops },
8 { left chop(C1),right chop(C2) } invoke op(in(chops(C1,C2)),table) {},
9 { left chop(C1),right chop(C2) } invoke op(out(chops(C1,C2)),table) {}
10
11 BELIEFBASE:
12 left chop(...),
13 right chop(...)
14
15 GOALBASE:
16 survive()
17
18 RULEBASE
19 survive() <- not hungry | think,
20 survive() <- hungry | dine,
21 dine() <- not holding chops | invoke op(in(chops(C1,C2)),table),
22 dine() <- holding chops | eat ; invoke op(out(chops(C1,C2)),table),
23 <- op completed(in(chops(C1,C2)),table,) | update chop belief(acquired),
24 <- op completed(out(chops(C1,C2)),table,) | update chop belief(released)

This practical rule executes the goal do critical task() when the completion
of the operation acquire lock is perceived. The following rule executes the goal
update info when the in operation completes, retrieving a tuple from the tuple
centre dbase:

<- op completed(in(age(’Bob’,X)),dbase?in(age(,Y)))|update info(Y)

As an application example, we consider a solution to the dining philosopher
problem, using 3APL agents as philosophers and exploiting the table as a co-
ordination artifact. This is a a case of programmed use of artifacts, since the
knowledge about how to use the artifact is directly encoded by the agent pro-
grammer among the practical rules of the agent. As a coordination artifact, we
consider the tuple centre described in Section 3: in the overall we build up a
solution with 3APL agents exploiting a TuCSoN tuple centre. The source code
of the 3APL philosopher is shown in Table 2.

The agent goal is to survive. The plan to survive is described in the rule base,
and involves thinking and dining activities. If the philosopher is not hungry, he
can think: thinking activity is simplified into a simple action in the capabilities
(line 4), whose effect is to make the philosopher hungry (hungry is inserted in the
belief base). If the philosopher is hungry, then he plans to dine (line 20). In order
to dine, the philosopher needs to have the chopsticks. If he believes to hold them
(holding chops is his belief base, line 22), then he can start the eating activity,
again simplified into a simple action (line 5), whose effect is to make the agent not
hungry. Instead, if the philosopher believes not to hold the chopsticks, then he
interacts with the artifact table to get the chopsticks. In particular, he executes

Programming MAS with Artifacts 219

an external action to invoke an in operation on the tuple centre table to get
a tuple chops(C1,C2) representing the chopsticks (line 21, 8). The information
about the specific chopsticks to request are stored in the belief base in the form
of the left chop and right chop beliefs. When the philosopher perceives the
completion of the operation to get the chopsticks (line 23), the belief base is
updated by means of an internal action asserting the holding chops fact (line
6). Then, the plan of the agent is to release the chopsticks after eating. For
this purpose an external action is executed (line 22, 9), which invokes an out
operation on the same tuple centre, inserting back the tuple chops(C1,C2).
When the philosopher perceives that the operation to release the chopsticks has
completed (line 24), the belief base is updated by means of an internal action
asserting the not holding chops.

5 Related Work

This work generalises and extends previous works on coordination artifacts [15].
The artifact abstraction brings in MAS ideas and concepts that have played

a central role in other (un)related fields. From concurrent and distributed sys-
tems, coordination artifacts in particular can be considered the generalisation of
traditional coordination abstractions, from low level ones such as semaphores,
monitors, to high-level ones, such as tuple spaces and, more generally, coordi-
nation media as found in coordination models and languages [17]. Blackboards
as defined in Distributed Artificial Intelligence context can be framed and mod-
elled in MAS as coordination artifacts, toward the integration of the two differ-
ent points of view (traditional multi-agent and blackboard systems) in designing
collaborating-software engineering space [2].

Actually, artifacts can be exploited as an analytical tool for describing existing
approaches based on some form of mediated / environment-based interaction.
For instance, the environment provided by the pheromone infrastructure in [18]
supporting stigmergy coordination can be interpreted as a coordination artifact
exploited by ants to coordinate: as such, it provides operations for depositing
and sensing pheromones, and the coordinating behaviour is given by the envi-
ronmental laws ruling the diffusion, aggregation and evaporation of pheromones.

Also some coordination and organisation approaches developed in the context
of intelligent / cognitive agents can be framed in terms of artifacts. A main exam-
ple is is given by electronic institutions ([7] is an example), where agent societies
live upon an infrastructure (middleware) which governs agent interaction accord-
ing to the norms established for the specific organisation, representing both or-
ganisation and coordination rules. The institution then can be framed as a kind
of shared artifact, characterised by an interface with operations that agents use
to communicate, and providing a normative function on the overall set of agents.

6 Conclusion and Future Works

In the paper we introduced the notion of artifact as first-class abstraction for
MAS engineering. Artifacts are meant to be used as basic bricks to program

220 A. Ricci, M. Viroli, and A. Omicini

MAS working environments, supporting agents in their individual and social
activities. After providing some glances about artifact programming, in the paper
we focused on the impact on agent programming, framing some levels related to
artifact adoption.

Several directions characterise future works. An important one is devoted to
deepen the investigation on how the artifact abstraction and its basic properties
can be effective in supporting agent reasoning in achieving individual as well as
collective goals. Another direction concerns the development of infrastructures
and tools fully supporting the artifact abstraction and the basic kind of artifacts
discussed in the paper, in particular integrating such infrastructures with existing
MAS platforms for cognitive agents (3APL is an example). In particular, as
in the case of service-oriented architectures, the infrastructure should provide
services that agents can exploit for registering, discovering, locating artifacts, for
retrieving their description and operating instructions (for agent using artifacts)
and for their inspection and control (for human and agents managing artifacts).
For this purpose, existing research literature on service description and discovery
/ brokerage will be considered among the reference sources.

Finally, our intuition is that the separation of concerns obtained by intro-
ducing artifacts could be important to make more tractable the verification /
validation of formal properties of (open) MAS; accordingly, research studies will
be devoted to define formal frameworks to specify artifacts function / behaviour
semantics, and to explore how to use them for verification problems, both offline
and on-line.

References

1. R. Conte and C. Castelfranchi, editors. Cognitive and Social Action. University
College London, 1995.

2. D. D. Corkill. Collaborating software: Blackboard and multi-agent systems & the
future. In International Lisp Conference, 2003.

3. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent delibera-
tion: an approach illustrated using the 3APL language. In Proceedings of AAMAS
’03, pages 97–104. ACM Press, 2003.

4. M. Dastani, J. van der Ham, and F. Dignum. Communication for goal directed
agents. In M.-P. Huget, editor, Communication in Multiagent Systems, Agent
Communication Languages and Conversation Polocies., volume 2650 of Lecture
Notes in Computer Science, pages 239–252. Springer, 2003.

5. E. Dijkstra. Co-operating Sequential Processes. Academic Press, London, 1965.
6. M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge. The dMARS

architecture: A specification of the distributed multi-agent reasoning system. Au-
tonomous Agents and Multi-Agent Systems, 1:5–53, 2004.

7. M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An
agent-based middleware for electronic institutions. In Proceedings of AAMAS ’04,
volume 1, pages 236–243, New York, USA, 19–23 July 2004. ACM.

8. D. Kirsh. Distributed cognition, coordination and environment design. In Proceed-
ings of the European conference on Cognitive Science, pages 1–11, 1999.

9. T. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys, 26(1):87–119, 1994.

Programming MAS with Artifacts 221

10. T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for inventing organizations: Toward a handbook of organizational processes.
Management Science, 45(3):425–443, 1999.

11. B. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

12. A. Omicini. Towards a notion of agent coordination context. In D. Marinescu and
C. Lee, editors, Process Coordination and Ubiquitous Computing, pages 187–200.
CRC Press, 2002.

13. A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of Computer
Programming, 41(3):277–294, Nov. 2001.

14. A. Omicini and S. Ossowski. Objective versus subjective coordination in the engi-
neering of agent systems. In M. Klusch, S. Bergamaschi, P. Edwards, and P. Petta,
editors, Intelligent Information Agents: An AgentLink Perspective, volume 2586 of
LNAI: State-of-the-Art Survey, pages 179–202. Springer-Verlag, Mar. 2003.

15. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In Proceedings of
AAMAS ’04, volume 1, pages 286–293, New York, USA, 19–23 July 2004. ACM.

16. A. Omicini and F. Zambonelli. Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999. Special
Issue: Coordination Mechanisms for Web Agents.

17. G. A. Papadopoulos and F. Arbab. Coordination models and languages. Advances
in Computers, 46:329–400, 1998.

18. H. V. D. Parunak, S. Brueckner, and J. Sauter. Digital pheromone mechanisms for
coordination of unmanned vehicles. In Proceedings of AAMAS ’02, pages 449–450.
ACM Press, 2002.

19. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS
coordination. In Engineering Societies in the Agents World III, volume 2577 of
LNCS, pages 96–110. Springer-Verlag, Apr. 2003.

20. M. Viroli and A. Ricci. Instructions-based semantics of agent mediated interaction.
In Proceedings of AAMAS ’04, volume 1, pages 102–109, New York, USA, 19–23
July 2004. ACM.

	Introduction
	A First Theory of Artifacts
	A Model
	Examples of Artifacts

	Programming Artifacts for MAS
	The Tuple Centre Example

	Impact on Agent Programming and Reasoning
	An Example Using 3APL

	Related Work
	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

