
Organization and Mobility in Mobile Agent Computing

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. A mobile agent system for organizing multiple mobile agents is pre-
sented. It provides two unique two mechanisms for dynamically organizing mo-
bile agents, which may be running on single or multiple computers. The first
enables a mobile agent to contain other mobile agents inside it and migrate to
another mobile agent or computer with its inner agents. It provides an approach
to composing large-scale mobile software from a collection of mobile agents and
using mobile agents as deployable software components. The second enables a
mobile agent to be deployed at computers according to the movements of other
mobile agents. It can move a federation of agents running on different comput-
ers, over a distributed system. It can build and aggregate distributed applications
from one or more mobile components that can be dynamically deployed at mo-
bile or stationary computers during the execution of the application. This paper
also presents a prototype implementation of the system and its application.

1 Introduction

Distributed computing systems are composed of a number of software components run-
ning on different computers and interacting with one another via a network. The com-
plexity of modern distributed systems impairs our ability to deploy components at ap-
propriate computers using traditional approaches, such as those that are centralized and
top-down Moreover, the requirements of applications in a distributed system tend to
vary and change dynamically. Applications must adapt to such changes. Software com-
ponents, which an application consists of, need to be adapted and deployed at comput-
ers in a distributed system according to changes in the requirements of the applications
and the structure and computational resources of the system. Mobile agents can provide
a solution to this problem, because they are autotomous programs that can travel from
computer to computer in a network, at times and to places of their own choosing. Unfor-
tunately, existing mobile agent systems lack the mechanisms for structurally assembling
and relocating multiple mobile agents, which may run on different computers.

To solve this problem, a few attempts to organize mobile agents have been proposed,
e.g., MobileSpaces [11], CLAIM [5], and FarGo [7]. MobileSpaces and CLAIM en-
able each mobile agent to be organized within a tree structure and to migrate to other
mobile agents, which may run on different computers, with its inner agents. FarGo [7]
introduces the notion of a dynamic layout for distributed applications. It explicitly binds
more than one mobile agent to a single mobile agent and, when the latter migrates to
another location, it relocates the latter agent at the same destination to follow the for-
mer agent. This paper proposes a framework for structurally and dynamically federating

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 187–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 I. Satoh

multiple mobile agent-based components running on either the same computer or dif-
ferent computers. The framework makes two contributions to distributed systems. The
first enables large-scale mobile software to be composed from a collection of mobile
agents and the second enables a mobile agent to be deployed at computers according to
the movements of other mobile agents in a self-organizing manner. The system provides
a general test-bed for bio-inspired approaches over real distributed systems.

In this paper, we describe our design goals (Section 2), the design of our framework,
and a prototype implementation (Section 3). We outline programs in the system and ap-
plications running on it (Section 4), and explain the current status of the implementation
(Section 5). We also describe our experience with the framework (Section 6). We then
briefly review related work (Section 7), provide a summary, and discuss some future
issues (Section 8).

2 Approach

Mobile agents within this framework are computational entities like other mobile
agents. When an agent migrates, not only its code but also its state can be transferred to
the destination.1

2.1 Mobile Agent Composition

Our framework enabled us to construct a distributed computing system as a federation
of mobile agent-based software components running on the same or different comput-
ers. It provides two approaches for composing mobile agents.

Strong Composition. The framework enables a large-scale mobile agent to be orga-
nized within a tree structure according to the following notions.

– Agent Hierarchy: Each mobile agent can be contained within at most one mobile
agent.

– Inter-agent Migration: Each mobile agent can migrate between mobile agents as
a whole with all its inner agents.

When an agent contains other agents, we call the former agent a parent and the latter
agents children. Agents that nested by an agent are called descendent agents of the
agent, and conversely agents that are nesting an agent are called ancestral agents of
the agent. Parent agents are responsible for providing their own services and resources
to their children, and can directly access the services and resources offered by their
children. These concepts themselves were discussed in our previous paper [11].

Weak Composition. The framework builds partitioned applications as mobile agent-
based software components, enabling them to run on different computers and move to
other computers while running. The movement of one agent may affect other agents.
For example, two components may be required to be on the same computer when the
first is a program that controls the keyboard and the second is a program that displays

1 The framework treats the mobile code approach as a subset of the mobile agent approach.

Organization and Mobility in Mobile Agent Computing 189

follow
hook

step 1

agent migration

computer

A

computer

B

step 2

step 3

agent migration

shift
hook

step 1

agent migration

computercomputer

A

computer

B

shift
hook

step 2

computercomputer computer

B A

shift
hook

step 3

computercomputer computer

AB

agent migration

follow
hook

computer computer

B A

follow
hook

computer computer

AB

Fig. 1. Component migration with relocation policy

content on the screen. The framework enables each agent to explicitly specify a policy,
called a hook, for agent migration. The current implementation provides two types of
hooks, as shown in Fig. 1. The first enables an agent to follow another component and
the second enables an agent to migrate to the source location of another agent.

2.2 Prototype-Based Agent-Creation

Object-oriented languages, which most existing mobile agents are defined in, are
classified into two types: class-based and prototype-based. About twenty years ago, re-
searchers discussed the advantages and disadvantages of these two languages.2

Although the former has swept over almost the entire-field of object orientation, the
latter still has several distinct advantages. Existing mobile agents are defined with class-
based oriented languages, e.g., Java. Nevertheless, mobile agents can also be viewed as
prototype-based objects. When a mobile agent migrates to another computer, the state
of the agent’s running program is marshaled into data and is then transmitted to the
destination as passive data with its program code. Mobile agents can easily and natu-
rally make replicas of themselves by duplicating their marshaled agents. As a result,
mobile agents can be created by cloning existing agents as well as instantiating them
from classes to define their behaviors. Mobile agents, on the other hand, cannot control
the process of cloning themselves at program-level, because their cloning mechanisms
are supported by their runtime systems or libraries, instead of their programs. Cloning

2 There have been numerous discussions on the notions of prototype-based paradigms and del-
egation. However, we do not intend to discuss the definitions of these notions again. We will
only introduce the notions as an approach to programming mobile agents.

190 I. Satoh

facilities for object-creation provided by prototype-based languages are useful in
enabling mobile agents to customize their cloning.

Class-based languages provide the notion of inheritance as a mechanism for shar-
ing the behavior of objects, whereas prototype-based languages provide the notion of
delegation-sharing both the behavior and state of objects. Although existing mobile
agents have no mechanisms corresponding to the notion of delegation, it makes agents
extensible. For example, each mobile agent is defined by classes that already know
everything about the agent so that it cannot adapt its behavior to changes in its require-
ments or its execution environment. This problem is solved by allowing agents to be
created by extending or sharing other agents.

3 Design and Implementation

This framework consists of two parts: runtime systems and mobile agents. It was im-
plemented with Java language and operated on the Java virtual machine. We tried to
contain the implementation within the framework as much as possible.

3.1 Runtime Systems for Hierarchical Mobile Agents

Each runtime system runs on a computer and executes and migrates mobile agents. Each
also establishes at most one TCP connection with each of its neighboring systems and
exchanges control messages, agents, and inter-component communications with these
through the connection. Fig. 2 outlines the basic structure of a runtime system, which
is similar to the micro-kernel architecture in several operating systems. That is, the sys-
tem itself only offers minimal functions and other functions are implemented in mobile
agents running on the system.

Agent Hierarchy Management. Each runtime system manages an agent hierarchy as
a tree structure in which each node contains a mobile agent and its attributes. Also, each
runtime system corresponds to the root node in its own tree structure. This framework

Component

A

Core Runtime System

OS/Hardware

component host 1 component host 2

Transport Protocol

TCP session

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

B
Component

C

Component

C

Core Runtime System

OS/Hardware

Transport Protocol

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

D
Component

E

Inter-component communication

component migrationD

Fig. 2. Architecture for runtime system

Organization and Mobility in Mobile Agent Computing 191

method B

method A

method G

method C

method C

method D

state

state

child agent

parent agent

delegation

callback or service method invocation

method E

method F

method G

method H

state

neighboring agent

delegation

inter-agent

communication

Fig. 3. Delegation between mobile agents

assumes that each agent is active but subordinate to its container agent. Therefore, each
agent has direct control of its descendent agents. That is, an agent can instruct its de-
scendent agents to move to other agents, and serialize and destroy them. No agent has
direct control over its ancestral agents.

Agent Execution Management. The runtime system can control all agents in its agent
hierarchy, under the protection of Java’s security manager. Each agent can have one or
more activities, which are implemented by using the Java thread library. Furthermore,
the runtime system maintains the life-cycle of agents: initialization, execution, suspen-
sion, and termination. When the life-cycle state of an agent is changed, the runtime
system issues certain events to the agent and its descendent agents. The system can im-
pose specified time constraints on all method invocations between agents to avoid being
blocked forever.

Agent Delegation Management. Agent hierarchy not only defines the structure of
mobile agents but also their functions. Each agent can explicitly provide a set of ser-
vice methods, which can be accessed by its children, instead of descendent agents. That
is, a child agent can share the behavior and state of its parent agent like the notion
of delegation in prototype-based languages. Fig. 3 has an example of delegation be-
tween mobile agents. The parent agent provides a method, called writeOnDisk, to
save data in secondary storage but the child agent has no methods of saving its state.
However, the child can access the parent’s method to save its state in storage. As a re-
sult, the semantics and properties of an agent are partially provided by its parent agent.
It is worth mentioning why we imposed the restriction that a mobile agent could not
access any services supported by ancestral agents other than their parent and station-
ary agents. This restriction is the key idea in allowing successful migration to occur.
If it were not imposed, then migrating an agent could mean that the descendants of
that agent might suddenly find they could no longer delegate services upon which they
relied.

Agent Migration. When an agent is moved inside a computer, the agent and its inner
agents can still be running. When an agent is transferred over a network, the runtime

192 I. Satoh

system stores the state and the codes of the agent, including the agents embedded in
it, into a bit-stream formed in Java’s JAR file format, which can support digital signa-
tures for authentication. The system provides a built-in mechanism for transmitting the
bit-stream over the network by using an extension of the HTTP protocol.3 The current
system basically uses the Java object serialization package for marshaling agents. The
package does not support the capturing of stack frames of threads. Instead, when an
agent is saved or migrated, the runtime system issues events to it and all its descen-
dent agents to invoke their specified methods, which should be executed before their
migration, and then suspends their active threads and migrates them to the destination.

Agent Cloning. Mobile agents are often created as self-contained entities in other
existing mobile agent systems, whereas this framework allows each mobile agent to
share the behaviors of its ancestral agents. Therefore, if a clone had been created from
an agent, which relies on the services of its parent, it could no longer access these
services. Object-oriented languages, on the other hand, provide two mechanisms for
cloning objects: shallow-copy and deep-copy. The former creates a clone of the state of
an agent and shares the behaviors with the agent from which it was cloned by means of
delegation. The latter creates a clone of both the state and behavior of the agent. Each
runtime system provides two approaches corresponding to the two mechanisms.

– The first creates a clone of only the target agent and provides the forwarder agents
of its ancestral agents to the clone so that the clone agent can access the services
provided by the ancestral agents.

– The second not only creates a clone of the agent but also the clones of ancestral
agents whose services the agent may access.

The current implementation does not support a mechanism for analyzing which ances-
tral agents the clone shares services with. Therefore, when an agent creates a clone, it
specifies which ancestral agents should be cloned with it. Since the framework assumes
that a component and its clone are independent, it does not support any mechanism for
sharing their updating states with them.

3.2 Mobile Agent Model

Each agent in the current implementation of the framework is a collection of Java ob-
jects in the standard JAR file format.

Interagent Communication. Each agent can offer a meeting place for its inner agents.
It initially supports basic types of inter-agent communication, e.g., asynchronous one-
way message passing, synchronous method call, and future communication. However,
runtime systems do not offer mechanisms for communicating between agents, which
may be contained in different parents, in a computer. Instead, the system provides two
agents, called forwarder agents, to support inter-agent communications between agents
contained in different agents. Each agent has its own proxy agent, called a forwarder

3 Section 5 describes how the system enables agent migration protocols to be implemented in
mobile agents.

Organization and Mobility in Mobile Agent Computing 193

agent. When it receives messages, it automatically redirects these to its or their specified
destinations. An agent permits other agents to communicate with it and it thus deploys
its forwarder agents at their parent agents. As a result, the agents can send messages to
the agent via its forwarder agent. When they want replies from the agent, they deploy
their forwarder agents at it via its forwarder agent.

Forwarder agents are used for tracking the current locations of moving agents. When
an agent wants to interact with another agent, it must know where the target agent is
currently located. Immediately before an agent moves into another agent, it creates and
leaves a forwarder agent behind. The forwarder agent inherits the name of the moving
agent and transfers the visiting agent to the new location of the moving agent. Therefore,
when an agent wants to migrate itself to or send a message to another agent that has
moved elsewhere, it can migrate into the forwarder agent instead of the target agent.
The forwarder agent then automatically transfers the visiting agent or message to the
current location of the target agent.

Several schemes for efficiently forwarding messages or agents to and locating mov-
ing agents have been explored in the field of process/object migration in distributed
operating systems. Such forwarder agents can easily support most of these schemes
because they are programmable entities that can flexibly negotiate with one another.
Moreover, since forwarder agents are still mobile agents, they can be dynamically de-
ployed at remote computers.

Agent Relocation. When multiple mobile agents coordinate with one another, if one of
them migrates to another computer, the others may be required to migrate to other com-
puters. This framework provides a mechanism for enabling mobile agents to be dynami-
cally deployed at computers according to the movement of other agents. The mechanism
itself provides carrier agents, which convey their inner agents over a network. It enables
each carrier agent to specify at most one target container agent. The former agent also
carries its inner agents to a suitable computer according to its own policy, when the latter
agent carries its inner agents to another computer or agent. We assumed that a carrier
agent would have a policy for another carrier agent. That is, when the former agent mi-
grated to another agent or computer, the framework would provide carriers agents based
on several basic policies. For example, the latter (or its clone) migrates to the former’s
destination through the follow policy (or dispatch policy), and the latter (or its clone)
would migrate to the former’s source through the shift policy (or fill policy).

Each carrier agent can contain at most one mobile agent. It can inherit its inner agent
and forward its received messages and visiting agent to this inner agent. Therefore, it
can be viewed as its inner agent by external agents, which interact with this inner agent,
and it can explicitly restrict the mobility of the inner agent. The carrier agent carries the
inner agent according to its own policy. Although each carrier agent can have at most
one policy, agents can be contained in one or more carrier agents.4 We can easily define
more advanced or complicated policies by combining these policies.

Since carrier agents are just programmable entities, we can easily customize their
policies. The current implementation assumes that the carrier agents comprising a group

4 When carrier agents are nested, a parent carrier agent’s policy proceeds to its descendent carrier
agents’ policy.

194 I. Satoh

will be deployed to computers within a localized space smaller than the domain of
a sub-network for UDP multicasting. Therefore, the deployment of carrier agents is
managed by exchanging control messages through UDP-multicasting. When a carrier
agent migrates to another computer, the destination computers ask the source computer
(or the previous source computer) to multicast a query message about carrier agents
whose policies contain the moving carrier agent.

3.3 Mobile Agent Programming Model

Each agent is defined as a collection of Java objects. It has its own name based on the
agent hierarchy and a message queue for incoming messages. It has to be an instance of
the Agent interface, the ContainerAgent interface, the DuplicatableAgent
interface, and/or the MobileAgent interface. The first defines the callback methods
of a stationary agent, the second defines the callback methods of a container agent, the
third defines the callback methods of a duplicatable agent, and the fourth defines the
callback methods of a mobile agent. The callback methods are invoked by the runtime
system when the life-cycle of a mobile agent changes. Parts of these interfaces are as
follows:

public interface Agent {
public void create(AgentEvent evt, Context ctxt);
public void destroy(AgentEvent evt, Context ctxt);

}

where create() and destroy() are invoked after the agent is created and before
it is terminated. This framework uses interfaces for agents as declarations about their
basic functions, e.g., mobility and duplicatability.

public interface ContainerAgent extends Agent {
public void add(AgentEvent evt, Context ctxt);
public void remove(AgentEvent evt, Context ctxt);

}

The above program is the definition of the ContainerAgent interface, where add()
is invoked after the agent has received another agent and remove() is invoked after
it has sent the visiting agent.

public interface DuplicatableAgent extends Serializable, Agent {
public void duplicate(AgentEvent evt, Context ctxt);
public void parent(AgentEvent evt, Context ctxt);
public void child(AgentEvent evt, Context ctxt);

}

Each agent must implement the above interface so that it can be cloned.duplicate()
is invoked before the agent is duplicated. parent() is invoked at the original agent
and child() is invoked at a clone of the agent after it is duplicated.

public interface MobileAgent extends Serializable, Agent {
public void arrive(AgentEvent evt, Context ctxt);
public void leave(AgentEvent evt, Context ctxt);

}

Organization and Mobility in Mobile Agent Computing 195

Each mobile agent must be an instance of the above interface. arrive() is invoked
before the agent has migrated to another location leave() is invoked after it has
migrated. The AgentEvent class in these programs defines information about the
agent, e.g., its current location, source, and destination. The Context class defines
service methods for agents as follows:

class Context {
void go(URL url) throws NoSuchHostException { ... }
void go(URL url, String methodName) throws NoSuchHostException,
throws NoSuchMethodException { ... }

AgentID shallowCopy() throws IllegalAccessException { ... }
AgentID deepCopy(AgentID aid) throws IllegalAccessException { ... }
ServiceID getService(Message msg)} throws NoServiceException { ... }
Object execService(ServiceID sid)} throws IllegalAcceessException { ... }
setPolicy(AgentProfile cref, MigrationPolicy mpolicy) { ... }
setTTL(int lifespan) { ... }
.....

}

We will now explain the main methods defined in the Context class.

– When an agent performs go(url, methodName, it migrates itself to the desti-
nation agent specified as the url and executes the method specified in the second
argument. This url specifies the destination agent for agent migration based on the
containment relationships of an agent hierarchy on a local or remote computer as
follows:

MATP://some.where.com/application-name/function-name

where MATP specifies the protocol for agent migration.
– By invokingshallowCopy(), an agent creates a clone of itself, including its code

and instance variables and its inner agents. When an agent invokes deepCopy()
with the identifier of its ancestral agent, it creates a clone of its code and instance
variables and its inner agents, and clones of the specified ancestral agent and the
agents that are contained in the ancestral agent.

– An agent can access service methods provided by its parent agent by invoking
getService() with an instance of the Message class, which can specify the
kind of message, arbitrary objects as arguments, and the deadline for timeout ex-
ceptions.

– The framework provides APIs for invoking the methods of other agents. Our pro-
gramming interface for method invocation is similar to CORBA’s dynamic invoca-
tion interface and does not have to statically define any stub or skeleton interfaces
through a precompiler approach because distributed computing environments are
dynamic.

– The setTTL() specifies the life span, called time-to-live (TTL), of the agent. The
span decrements TTL over time. When the TTL of an agent reaches zero, the agent
automatically removes itself.

While each agent is running, it can declare at most one deployment policy and one
or more message policies by invoking setPolicy of the Context class. Although
policies are open for developers to define their own policies, the current implementation
provides the following deployment policies.

196 I. Satoh

– If an agent declares a follow policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s destination computer.

– If an agent declares a dispatch policy for another agent, when the latter migrates
to another computer, a copy of the former is created and deployed at the latter’s
destination computer.

– If an agent declares a shift policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s source computer.

– If an agent declares a fill policy for another agent, when the latter migrates to an-
other computer, a copy of the former is created and deployed at the latter’s source
computer.

When an agent is created, the dispatch and fill policies can explicitly control whether
the newly created agent can inherit the state of its original agent. The following message
policies forward messages to agents when messages are specified in the policies.

– If an agent declares a forward policy for another agent, when specified messages
are sent to other agents, the messages are forwarded to the latter as well as the
former.

– If an agent declares a delegate policy for another agent, when specified messages
are send to the former, the messages are forwarded to the latter but not to the former.

Fig. 4 outlines four deployment policies, which are related to phenomena in biological
processes. For example, a follow policy enables an agent to approach another agent.
For example, when multiple agents declare a policy for a leader agent, they can swarm
around it. A shift policy enables an agent to follow the movement of another agent.
The former agent can track the latter as it moves. The policy thus corresponds to the

B

C

A

AB

C

B

C

A

Clone B

Clone C

B

C

A

A
B

C

B

C

A

A

C

B

C

B

Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW)

Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH)

Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT)

Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL)

Step 2 (Policy.FILL)

Follow Policy Dispatch Policy

Shift Policy Fill Policy

Fig. 4. Basic migration policies

Organization and Mobility in Mobile Agent Computing 197

parent agent (transmitter agent)
child agent (editor agent)

buttons for operating mobile agents

Fig. 5. Control window for runtime system

phenomenon of cytoplasmic streaming. A dispatch) policy enables an agent to stay
in the current location and then deploy its clone at the destination of another moving
agent. It can model the footprint of a motile cell. We have assumed that an agent can
declare the policy for another agent and specify the TTLs of its clones as their life-
spans. As the latter agent moves, cloned former agents are deployed at its footmark and
these clones are automatically volatilized after their life-spans are over. Therefore, the
clone agents can be viewed as a pheromone that is left behind after the latter agent has
moved on. A fill policy corresponds to the phenomenon of cell division. The framework
is open to define policies as long as they are subclasses of the MigrationPolicy so
that we can easily define new policies, including bio-inspired ones. A forward policy
is useful when two agents share the same information and a delegate policy provides a
master-slave relation between agents.

4 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit version 1.4. The implementation provided graphical user interfaces for oper-
ating the mobile agents shown in Fig. 5. These interfaces allowed us to easily load and
migrate mobile agents via full drag-and-drop operations.

Basic Performance. Although the current implementation was not constructed for per-
formance, we evaluated that of several basic operations in a distributed system where
eight computers (Pentium-M 1.4 MHz with Windows XP Professional and J2SE 1.4.2)
were connected through a fast ethernet. The cost of agent migration in an agent hierar-
chy was measured to be 4 ms, including the cost of checking whether the visiting agent
was permitted to enter the destination agent or not. The cost of agent migration between
agents allocated on two computers was measured to be 30 ms. The moving agent was
simple and consisted of basic callback methods and contained two child agents. Its data
capacity was about 7 Kbytes (zip-compressed). The cost of agent migration included that
of opening TCP-transmission, marshaling the agents, migrating the agents from their
source hosts to their destination hosts, unmarshaling the agents, and verifying security.

198 I. Satoh

0

100

200

300

400

500

600

2 3 4 5 6 7 8

number of computers

follow policy

dispatch policy

shift policy

fill policy

0

200

400

600

800

1000

1200

1 2 3 4

number of agents

follow policy

disatpch policy

shift policy

fill policy

Fig. 6. Cost of multiple-hops for two agents between two to eight computers (left) and cost of
multiple-hops for multiple agents between eight computers (right)

The left of Fig. 6 illustrates the cost of multiple-hops for two agents between two to
eight computers, where the first agent declares a follow, dispatch, shift, or fill policy for
the second and the second migrates between these computers sequentially without syn-
chronizing the migration of the first. The latency between two computers is measured
as the half-time of the round-trip time between the source and destination computers.
To accurately measure the latency between more than three computers, these computers
were connected through a ring topology. That is, the start and and goal of the second
agent are assigned to the same computer and we measured the difference between the
timing for the first agent to start and the second to arrive at the computer. Each cost at
the left of Fig. 6 is the latency for the first agent arriving after the second has begun to
migrate to another computer. The cost of agent migration according the dispatch (or fill)
policy is larger than that of the the follow (or shift) policy, because the former needs to
create a copy of the first agent that has the policy. The cost of agent migration according
to follow (or dispatch) is larger than that for dispatch (or shift), because the former and
latter agents are deployed at different computers.

The right of Fig. 6 shows the cost of multiple-hops for multiple agents between
eight computers, when agents (from one to four) have follow, dispatch, shift, or fill
policies for a moving agent. Unfortunately, the cost with many hops is large because
the follow and dispatch policies vary due to congestion at several computers. That is,
two or more agents may attempt to have their own active threads in a single processor
and to simultaneously transmit themselves to the destinations of their target agent in
a TCP network connection. Once agents experience congestion at a computer, they
tend to migrate as a chunk to further destinations rather than as individuals and this
often engulfs other newly arrival agents. Congestion does not always reappear, since
computers are not synchronized and congestion often causes more congestion in agent
routes. We expect that there will be large fluctuations in the cost of agent migration in
large-scale, heterogenous, distributed systems.

Security. The current implementation can encrypt agents before migrating them over
the network and can then decrypt them after they arrive at their destinations. Moreover,

Organization and Mobility in Mobile Agent Computing 199

since each agent is simply a programmable entity, it can explicitly encrypt its particular
fields and migrate itself with these fields and its own cryptographic procedure. The Java
virtual machine could explicitly restrict agents so that they can only access specified
resources to protect hosts from malicious agents. Although the current implementation
cannot protect agents from malicious hosts, the runtime system supports authentication
mechanisms for agent migration so that each agent host can only send agents to, and
only receive from, trusted hosts.

5 Initial Experience

This section presents several example applications that illustrate how the framework
works.

5.1 Point-to-Point Channels for Agent Migration

The first example is mobile agent-based active networking for mobile agents. It enables
point-to-point agent migration to be provided by mobile agents, called transmitters.
Transmitter agents correspond to a data-link layer or a network layer and are respon-
sible for establishing point-to-point channels for agent migration between the source
host and destination host through a (single-hop or multiple-hops) data transmission in-
frastructure, such as TCP/IP, as shown in Fig. 7. They abstract away the variety in
the underlying network infrastructure and exchange their inner agents with coexisting
agents running at remote computers through their favorite communication protocols.
Furthermore, transmitter agents are implemented as mobile agents so that they can be
dynamically added to and removed from the system by migrating and replacing corre-
sponding agents, enabling them to keep up with changes in the network environment.
After an agent arrives at a transmitter agent from the upper layer, the arriving agent
indicates its final destination. The transmitter suspends the arriving agent (including its
inner agents), then requests the core system to serialize the state and code of the ar-
riving agent. It next sends the serialized agent to a coexisting transmitter agent located
at the destination. The transmitter agent at the destination receives the data and then
reconstructs the agent (including its inner agents) and migrates it to the destination or
to specified agents that offer upper-layer protocols.

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

channel

transimission
through
their protocol

Computer A Computer B

Runtime System Runtime System

Agent migration in
an agent hierarchy

Agent migration in
an agent hierarchy

Fig. 7. Transmitter mobile agents for establishing channels between nodes

200 I. Satoh

Several transmitter agents have already been implemented based on data commu-
nication protocols widely used on the Internet, such as TCP, HTTP, and SMTP. The
authentication services normally available in a secure communications infrastructure
include this functionality. Therefore, our secure transmitter agents, which can exchange
agents, are implemented with a secure socket layer (SSL), which is one of the most
popular secure communication protocols on the Internet. A virtual class is provided in
Java that can be specialized to create transmitter agents for various protocols. Therefore,
point-to-point channels can easily be implemented based on other secure communica-
tion protocols for data transmission.

5.2 Autonomic Electronic-Mail System

The second example is an electronic mail system based on the framework, consisting
of two main components: an inbox document and letter documents (Fig. 8). The inbox
document provides a window component that can contain two components. The first of
these is the history of received mail and the second offers a visual space for displaying
content selected from the history. A letter document corresponds to a letter. Since it
is implemented as a compound document, it can contain various components for ac-
cessing text, graphics, and animation, in addition to a mobility-control component that
defines an itinerary for more than one destination. It also has a window for displaying
its content. It can migrate itself to its destination, but it is not a complete GUI appli-
cation because it cannot display its content without the collaboration of its container,
i.e., the inbox document. For example, to edit the text in a letter component, one simply
clicks on it, and an editor program is invoked by the in-place editing mechanism of the
framework. The component can deliver itself and its inner components to an inbox doc-
ument at the receiver. After a moving letter has been accepted by the inbox document,
if a letter in the list of received mail is clicked, the selected letter creates a frame object
of itself and requests the document to display the frame object within its frame. Since
the inbox document is the root of the letter component, when the document is stored

image viewr component
(child agent)

text editor component
(child agent)

letter component
(parent agent)

Fig. 8. Window for Compound Letter Agent

Organization and Mobility in Mobile Agent Computing 201

migration

step 1

Host A

Editor Component

Host C

Host B

migration

migration

step 2

Host A

Host B

Editor Component

Server

Server

Editor

Component

forwarding

Components

Duplication

Component

Newspaper

Compound

Document

duplications

Newspaper Compound Document

Editor Components

forwarding

Components

migration

migration

migration

Duplication Component

Host C

Fig. 9. Newsletter editing system

and moved, all the components embedded in the document are stored and moved with
the document.

5.3 Application-Specific Document Distribution

One of the most illustrative examples of the framework presented in this paper is in
providing documents to workflow management systems. A second example is an editing
system for an in-house newsletter. Each newsletter is edited by automatically compiling
one or more text parts, which are written by different people, as can be seen in Fig. 9. A
newsletter is implemented as a compound document that can contain the text component
inside it and each text part is a mobile agent including a viewer/editor program and
its own text data. When the newsletter is being edited, each text part moves from the
document to the computer on which it was written, and displays a window for its editor
program on the computer’s desktop to assist the writer, as shown in Fig. 9. Each editor
goes back to the original document after the writer has finished writing it and then the
document arranges the arriving components as a bound set. The document is still a
mobile agent and can thus be easily duplicated and distributed to multiple locations.

5.4 Ant-Based Routing Mechanisms

Ants are able to locate a path to a food source using trails of chemical substances called
pheromones deposited by other ants. Several researchers have attempted to use the no-
tion of ant pheromones for network-routing mechanisms [1,4]. Our framework allows
moving components to leave traces on trails that are automatically volatilized after
their life-spans are over. A mobile agent corresponding to an ant corresponding to a
pheromone is attached to another mobile agent corresponding to another ant based on
the fill policy. When the latter agent randomly selects its destination and migrates there,

202 I. Satoh

the former agent creates a clone and migrates to the source host of the latter. Since
each of the cloned agents defines its life-span by invoking setTTL(), they are active
for a specified duration after being created. If there are other agents corresponding to
pheromones in the host, the visiting agent adds their time spans to its own time span.
When another agent corresponding to another ant migrates over the network, it can
select a host that has agents corresponding to pheromones whose time-spans are the
longest from the neighboring hosts. We experimented on ant-based routing for mobile
agents using this prototype implementation and eight hosts. However, we knew that it
would be difficult to quickly converge a short-path to the destination in real systems,
because the routing mechanisms tend to diverge.5

5.5 Component Diffusion in Sensor Networks

The last example is the speculative deployment of components based on changes in the
physical world. A mechanism is provided that dynamically and speculatively deploys
components at sensor nodes when there are environmental changes. It was assumed that
the sensor field was a two-dimensional surface composed of sensor nodes that monitor
environmental changes, such as motion in objects and variations in temperature. It is
well known that after a sensor node detects environmental changes within its cover-
age area, geographically neighboring nodes tend to detect similar changes after a short
time. This diffusion occurs as follows in our framework. When a component on a sensor
node detects changes in its environment, the component duplicates itself and deploys
the clone at neighboring nodes as long as the nodes have the same kinds of components
(Fig. 10). Each component is associated with a resource limit that functions as a gener-
alized time-to-live field. Although a node can monitor changes in environments, it sets
the TTLs of its components to their own initial value. It otherwise decrements TTLs
over time. When the TTL of a component reaches zero, the component automatically
removes itself. This example is still in the early stages of experimentation but we have
developed mobile agent-based middleware for sensor networks [17] and plan to extend
this framework to the middleware.

Step 1

duplication

duplication

volatilizing

volatilizing

volatilizing

volatilizing

Step 2

moving entity moving entity

sensor node sensor node

Fig. 10. Component diffusion with moving entities

5 This problem is common in Ant-based routing mechanisms.

Organization and Mobility in Mobile Agent Computing 203

6 Related Work

Numerous mobile agent systems have been released, e.g., Aglets [9], Mole [16], Tele-
script [18], and Voyager [10]. Mole introduces the notion of agent groups to encourage
coordination among mobile agents [2]. Its agent groups can consist of agents working
together on a common task, but they are not mobile. The FarGo system introduces the
notion of a dynamic layout for distributed applications [7] in a decentralized manner.
This is similar to our relocation policy in the sense that it allows each agent to have
its own policy, but it is aimed at allowing one or more agents to control a single agent,
whereas ours aims at allowing one agent to describe its own migration. This is because
our framework treats agents as autonomous entities that travel from computer to com-
puter under their own control. This difference is important, because FarGo’s policies
may conflict if two agents can declare different relocation policies for one single agent.
Our framework is free of conflict because each agent can only declare a policy to relo-
cate itself but not for other agents.

There have been a few agent systems based on the concept of agent hierarchy. To our
knowledge, the first attempt at introducing hierarchically mobile agents was the Mo-
bileSpaces mobile agent system. It proposed two concepts, agent hierarchy and inter-
agent migration like the framework presented in this paper, and allowed more than one
mobile agent to be dynamically assembled into a single mobile agent. It could provide a
practical framework for mobile agent-based applications that were large and complex.
Although the framework presented with this paper is based on experience with the Mo-
bileSpaces system, it not only offers hierarchical agent compositions but also horizontal
agent compositions in the sense that agents can define their relocations according to the
locations of other agents.

The notion of agent hierarchy presented in this paper is similar to a process calculus
for modeling process migration, called mobile ambients [3]. The calculus can formalize
a mobile process including other mobile processes like ours, but it is just a theoretical
framework. Therefore, to develop a practical implementation of the calculus, we must
entirely change its semantics. El Fallah-Seghrouchni and Suna. proposed the CLAIM
system [5] that provides hierarchical mobile agents based on the concept of mobile
ambients. The system aimed at implementing basic operations of mobile ambients to
support intelligent agents, whereas the system presented in this paper uses agent hierar-
chy as a (meta) mechanism for providing agents with various services, including agent
organization over a distributed system.

Several mobile agent systems, e.g., Telescript, have introduced the concept of places
in addition to mobile agents. Places are agents that can contain mobile agents and places
inside them, but they are not mobile. Our mobile agent system, on the other hand, allows
one or more mobile agents to be dynamically organized into a single mobile agent, and
thus we do not have to distinguish between mobile agents and places. Therefore, a
distributed application, in particular a mobile application that is complex and large in
scale, can be easily constructed by combining more than one agent.

There have been several attempts to construct an application from software compo-
nents running on different computers. Most of these have aimed at dynamically con-
figuring interactions between components or objects running on different computers
(e.g., see [6,8]), whereas the framework presented in the paper aims at dynamically

204 I. Satoh

deploying components to different computers. Since it supports the typical communi-
cation primitives that existing approaches to configuring interactions between compo-
nents need for coordinating and configuring distributed components, it can naturally
use these approaches as configuration mechanisms for deployable components. That is,
it can complement existing dynamic configuration approaches to distributed objects or
components.

There have been several attempts to develop infrastructures to dynamically deploy
components between computers in large-scale computing environments, e.g.,
workstation-clusters and grid computing. Most of these have aimed at dynamically de-
ploying partitioned applications to different computers in distributed systems to balance
the computational load or network traffic. However, they have explicitly or implicitly
assumed centralized management approaches to deploy partitioned applications to dif-
ferent computers, so that they have not allowed each partitioned application to have its
own deployment approach.

7 Conclusion

This paper described a framework for dynamically organizing multiple mobile agents
in distributed computing environments. It is unique to existing systems because it pro-
vides two mechanisms for organizing multiple mobile agents. The first enables a mo-
bile agent to contain other mobile agent inside it and migrate to another mobile agent
or computer with its inner agents. It is useful in developing large-scale mobile soft-
ware from a collection of mobile agents. The second enables a mobile agent to be
deployed at computers according to the movements of other mobile agents. It can move
a federation of agents, running on different computers, over a distributed system in
a self-organizing manner. We designed and implemented a prototype system for the
framework and demonstrated its effectiveness in several practical applications. We be-
lieve that the framework provides a general and practical infrastructure for building
deployable applications over a distributed system.

In concluding, we would like to identify further issues that need to be resolved. We
are interested in security mechanisms that would enable interactions between people
and agents. We developed an approach to test context-aware applications on mobile
computers [13], but need to develop a methodology for it. We are further interested
in developing a methodology for testing distributed applications that are based on this
new framework by using the approach. We also proposed a specification language for
the itinerary of mobile software for hierarchical mobile agents [12,14,15]. The language
enables more flexible and varied policies to be defined for deploying agents.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. J. Baumann and N. Radounklis, Agent Groups in Mobile Agent Systems, Proceedings of
Conference on Distributed Applications and Interoperable Systems, 1997.

Organization and Mobility in Mobile Agent Computing 205

3. L. Cardelli and A. D. Gordon, Mobile Ambients, Proceedings on Foundations of Software
Science and Computational Structures, LNCS, vol. 1378, pp. 140–155, Springer 1998.

4. G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive Routing, Pro-
ceedings of Hawaii International Conference on Systems, pp.74-83, Computer Society Press,
January 1998.

5. A. El Fallah-Seghrouchni, A. Suna CLAIM: A Computational Language for Autonomous,
Intelligent and Mobile Agents, Proceedings of ProMAS’03, 2003.

6. K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson and R. Sethuraman, The
Programmers Playground: I/O Abstractions for User-Configurable Distributed Applications,
IEEE Transactions on Software Engineering, Vol.21, No.9, pp. 735-746, 1995.

7. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed
Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

8. Jeff Kramer and Jeff Magee, Dynamic configuration for distributed systems, IEEE Transac-
tions on Software Engineering, Vol. 11, No. 4, pp.424-436, April 1985.

9. B. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

10. ObjectSpace Inc., ObjectSpace Voyager Technical Overview, ObjectSpace, Inc. 1997.
11. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-

ing a Hierarchical Mobile Agent System, Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168, April 2000.

12. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

13. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

14. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet, Cluster Com-
puting (The Journal of Networks, Software Tools and Applications), vol. 7, no.1, pp.73-83,
Kluwer, January 2004.

15. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

16. M. Strasser and J. Baumann, and F. Hole, Mole: A Java Based Mobile Agent System, Pro-
ceeding of ECOOP Workshop on Mobile Objects (MOS’96), 1996.

17. T. Umezawa, I. Satoh, and Y. Anzai, A Mobile Agent-based Framework for Configurable
Sensor Networks, Proceedings of International Workshop on Mobile Agents for Telecom-
munication Applications (MATA’2002), LNCS, Vol. 2521, pp.128-140, Springer, 2002.

18. J. E. White, Telescript Technology: Mobile Agents, General Magic, 1995.

	Introduction
	Approach
	Mobile Agent Composition
	Prototype-Based Agent-Creation

	Design and Implementation
	Runtime Systems for Hierarchical Mobile Agents
	Mobile Agent Model
	Mobile Agent Programming Model

	Current Status
	Initial Experience
	Point-to-Point Channels for Agent Migration
	Autonomic Electronic-Mail System
	Application-Specific Document Distribution
	Ant-Based Routing Mechanisms
	Component Diffusion in Sensor Networks

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

