

Lecture Notes in Artificial Intelligence 3862
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Rafael H. Bordini Mehdi Dastani
Jürgen Dix Amal El Fallah Seghrouchni (Eds.)

Programming
Multi-Agent Systems

Third International Workshop, ProMAS 2005
Utrecht, The Netherlands, July 26, 2005
Revised and Invited Papers

13

Volume Editors

Rafael H. Bordini
University of Durham, Department of Computer Science
Durham DH1 3LE, UK
E-mail: R.Bordini@durham.ac.uk

Mehdi Dastani
Utrecht University, Intelligent Systems Group
3508 TB Utrecht, The Netherlands
E-mail: mehdi@cs.uu.nl

Jürgen Dix
Clausthal University of Technology, Department of Computer Science
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: dix@tu-clausthal.de

Amal El Fallah Seghrouchni
University of Paris 6, LIP6, Paris, France
E-mail: Amal.Elfallah@lip6.fr

Library of Congress Control Number: 2006921790

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-32616-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32616-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11678823 06/3142 5 4 3 2 1 0

Preface

These are the proceedings of the Third International Workshop on Programming
Multi-Agent Systems (ProMAS 2005), held in July 2005 in Utrecht (Netherlands)
as an associated event of AAMAS 2005: the main international conference on
autonomous agents and multi-agent systems. ProMAS 2005 was the third of
a series of workshops that is attracting increasing attention of researchers and
practitioners in multi-agent systems.

The idea of organizing the first workshop of the series was first discussed
during the Dagstuhl seminar Programming Multi-Agent Systems based on Logic
(see [4]), where the focus was on logic-based approaches. It was felt that the scope
should be broadened beyond logic-based approaches, thus giving the current
scope and aims of ProMAS; see [3] for the proceedings of the first event (ProMAS
2003) and [1] for the proceedings of the second workshop (ProMAS 2004). All
three events of the series were held as AAMAS workshops.

Besides the ProMAS Steering Committee (Rafael Bordini, Mehdi Dastani,
Jürgen Dix, and Amal El Fallah Seghrouchni), an AgentLink III Technical Forum
Group on Programming Multi-Agent Systems has been very active in the last
couple of years (see http://www.cs.uu.nl/∼mehdi/al3promas.html for details on
that group). Moreover, we have edited a book on Multi-Agent Programming [2],
and ProMAS 2006 will be held with AAMAS 2006 on May, in Hakodate, Japan
(see http://www.cs.uu.nl/ProMAS/ for up-to-date information about ProMAS).

One of the driving motivations behind this workshop series is the observa-
tion that the area of autonomous agents and multi-agent systems (MAS) has
grown into a promising technology offering sensible alternatives for the design
of distributed, intelligent systems. Several efforts have been made by researchers
and practitioners, both in academia and industry, and by several standardization
consortia in order to provide new languages, tools, methods, and frameworks so
as to establish the necessary standards for a wide use of MAS technology.

However, until recently the main focus of the MAS research community has
been on the development, sometimes by formal methods but often informally,
of concepts (concerning both mental and social attitudes), architectures, coor-
dination techniques, and general approaches to the analysis and specification
of MAS. In particular, this contribution has been quite fragmented, without
any clear way of “putting it all together,” and thus completely inaccessible to
practitioners.

We are convinced that the next step in furthering the achievement of the
MAS project is irrevocably associated with the development of programming
languages and tools that can effectively support MAS programming and the im-
plementation of key notions in MAS in a unified framework. The success of MAS
development can only be guaranteed if we can bridge the gap from analysis and
design to effective implementation. This, in turn, requires the development of

VI Preface

fully fledged and general purpose programming technology so that the concepts
and techniques of MAS can be easily and directly implemented.

ProMAS 2005, as indeed ProMAS 2003 and ProMAS 2004, was an invaluable
opportunity that brought together leading researchers from both academia and
industry to discuss various issues on programming languages and tools for MAS.
Showing the increasing importance of the ProMAS aims, the attendance in our
workshop has been growing steadily: ProMAS 2005 was the most popular of all
AMAAS workshops in terms of number of registered participants.

This volume of the LNAI series constitutes the official (post-)proceedings
of ProMAS 2005. It presents the main contributions that featured in the latest
ProMAS event. Besides the final 14 high-quality accepted papers, we also invited
two additional papers. The structure of this volume is as follows:

Invited Papers: Michael Fisher, a leading researcher in the area, gave an in-
vited talk at the ProMAS workshop. Subsequently, he wrote a paper based
on his talk, which is featured in these proceedings. We also invited Peter
McBurney and Mike Luck, who were at the time actively working on the
AgentLink III “Agent Technology Roadmap,” to summarize their findings
from that exercise, highlighting the importance that the ProMAS topics will
have in the efforts towards widespread uptake of agent technology.

– The first invited paper, MetaTem: The Story So Far, by Michael Fisher,
illustrates MetaTem, a programming language based on the direct execu-
tion of temporal statements. After a brief introduction to temporal logic
and the notion of executing a formula, a concurrent version of MetaTem
is introduced. This allows to model multiple, asynchronously executing
agents. These agents can be organized into groups that allow for multi-
cast message passing.

– The second invited paper, Agent-Based Computing and Programming of
Agent Systems, by Michael Luck, Peter McBurney and Jorge Gonzalez-
Palacios, is partly based on the Agentlink III Roadmap, from which a
nice classification of the development of MAS within the next decade
is taken. The paper discusses several issues involved in multi-agent pro-
gramming and open, distributed systems in general.

Multi-agent Techniques and Issues: The second part of this volume con-
tains five papers. The first paper, Dynamic Self-Control of Autonomous
Agents by Caroline Chopinaud, Amal El Fallah Seghrouchni and Patrick
Taillibert, focuses on ensuring that a MAS behaves correspondingly to what
its developers expect. As standard validation techniques still allow the occur-
rence of errors during execution, the paper proposes an additional approach
of dynamic self-monitoring and self-regulation such that an agent can control
its own behavior.

The second paper, Bridging Agent Theory and Object Orientation: Im-
porting Social Roles in Object-Oriented Languages by Matteo Baldoni, Guido
Boella and Leendert van der Torre focuses on describing how to introduce
the notion of social role in programming languages. To limit the restrictions

Preface VII

on their approach, the authors extended Java itself as it is the most com-
monly used language to develop software agents. This way they were not
restricted by specific agent or MAS architectures or other characteristics.

The third paper, Implementation Techniques for Solving POMDPs in
Personal Assistant Domains by Pradeep Varakantham, Rajiv Maheswaran
and Milind Tambe, treats the problem of using POMDPs to build agents able
to make decisions in an environment that includes human beings. As this is
computationally very expensive, the authors propose two new solutions to
reach decisions faster, one of them is optimal and the other approximated.
To achieve this, they based their work on the notion of progress or dynamics
in personal assistant domains and the density of policy vectors.

The fourth paper, Using a Planner for Coordination Of Multiagent Team
Behavior, authored by Oliver Obst, concentrates on using HTN planners to
achieve coordination between agents in a MAS. This paper also presents
promising results obtained during the RoboCup.

Finally, Juan M. Serrano, Sascha Ossowski and Sergio Saugar’s paper
on Reusability Issues in the Instrumentation of Agent Interactions is about
engineering component interactions in large-scale open systems. To advance
this issue, the authors present the RICA-J programming framework which
provides executable constructs for every organizational, ACL-based abstrac-
tion of the RICA theory. Their execution semantics is defined over the JADE
platform. This paper also presents a systematic reuse approach for interac-
tions engineering.

Multi-agent Programming: The third part comprises four papers on “Multi-
Agent Programming.” The first paper is entitled An AgentSpeak Meta-
Interpreter and its Applications by Michael Winikoff. It presents a meta-
interpreter for AgentSpeak (i.e., the interpreter itself is written in AgentS-
peak) and gives a sketch of its correctness proof. Furthermore, the paper
argues that using a meta-interpreter may facilitate certain aspects such as
debugging, failure handling, making selection functions explicit, and extend-
ing the language.

The second paper, Extending the Capability Concept for Flexible BDI
Modularization by Lars Braubach, Alexander Pokahr, and Winfried Lamers-
dorf, deals with the capability construct found in the literature, and discusses
how to implement an extended notion within Jadex. Capabilities allow for
the implementation of BDI agents to be carried out as a composition of con-
figurable modules, very much in the spirit of software engineering principles.

The third paper, A Model-Based Executive for Commanding Robot Teams
by Anthony Barrett, builds upon Milind Tambe’s model of flexible teamwork
and combines it with a high-level language that facilitates the task of giving
commands to a robotic system. From the initial global model, a compiler
handles the distribution of control functions to team members.

The final paper in this part, Hermes: Implementing Goal-Oriented Agent
Interactions, by Christopher Cheong and Michael Winikoff, presents the Her-
mes methodology for designing agent interaction in terms of interaction
goals. The paper also provides guidelines on how interaction goals can be

VIII Preface

mapped down to plans typical of BDI-like agents, therefore appropriate for
many existing agent platforms.

Multi-agent Platforms and Organization: The first paper of the last part
of this book is from Ichiro Satoh: Organization and Mobility in Mobile Agent
Computing. It presents two mechanisms for dynamically organizing mobile
agents distributed over several computers. In the first mechanism, a mobile
agent may contain other mobile agents, while in the second mechanism a group
ofmobile agents are bound to one mobile agent. The migration ofmobile agents
is determined by the migration of the agents that contains/binds other agents.

The second paper, Programming MAS with Artifacts, is from Alessandro
Ricci, Mirko Viroli and Andrea Omicini. It discusses the role of coordination
artifacts as first-class entities in the development of MAS. In particular,
there is a discussion on the implementation of MAS in terms of programming
coordination artifact that coordinate the behavior of programmed individual
cognitive agents.

The third paper, Programming Deliberative Agents for Mobile Services: the
3APL-M Platform, written by Fernando Koch, John-Jules C. Meyer, Frank
Dignum, and Iyad Rahwan, presents a platform for building MAS where indi-
vidual agents execute on handheld and embedded computational devices. In-
dividual agents are implemented by a 3APL-inspired programming language.

The fourth paper, entitled Implementing Multi-Agent Systems Organiza-
tions with INGENIAS, is by Jorge J. Gomez-Sanz and Juan Pavon. This pa-
per discusses some general requirements for organization modelling that can
be used to analyze, design, and implement MAS. The discussion is accompa-
nied with an example of a MAS developed with the INGENIAS methodology
and implemented on the JADE platform.

Finally, the last paper of this book is by Mengqiu Wang, Mariusz Home-
ostasis and Martin Parvis: Declarative Agent Programming Support for a
FIPA-Compliant Agent Platform. This paper focuses on the relation be-
tween high-level declarative agent models and low-level agent platforms that
enable the communication between agents. In particular, it discusses how
declarative agent programming support can be provided to develop MAS on
the OPAL platform that supports FICA standards.

We would like to thank all the authors, the invited speaker, Programme Com-
mittee members, and reviewers for their outstanding contribution to the success
of ProMAS 2005. We are particularly grateful to the AMAAS 2005 organizers
for their technical support and for hosting ProMAS 2005.

November 2005 Rafael H. Bordini
Mehdi Dastani

Jürgen Dix
Amal El Fallah Seghrouchni

Organizers ProMAS 2005

Preface IX

References

1. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
editors. Programming Multi-Agent Systems: Second International Workshop (Pro-
MAS 2004), held with AAMAS-2004, 20th of July, New York City, NY (Revised
Selected and Invited Papers), number 3346 in LNAI, Berlin, 2004. Springer-Verlag.

2. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
editors. Multi-Agent Programming: Languages, Platforms and Applications. Num-
ber 15 in Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer, 2005.

3. M. Dastani, J. Dix, and A. El Fallah Segrouchni, editors. Programming Multi Agent
Systems (ProMAS’03), LNCS 3067, Berlin, 2004. Springer.

4. Jürgen Dix, Michael Fisher, and Yingqian Zhang. Programming Multi Agent Sys-
tems based on Logic. Technical Report Dagstuhl Seminar Report 361, IBFI GmbH,
Schloß Dagstuhl, 2002.

Organization

ProMAS 2005 was held as a workshop of the Fourth International Joint
Conference on Autonomous Agents and Multi-Agent Systems, in Utrecht, The
Netherlands, on July 2005.

Organizing Committee

Rafael H. Bordini (University of Durham, UK)
Mehdi Dastani (Utrecht University, Netherlands)
Jürgen Dix (Clausthal University of Technology, Germany)
Amal El Fallah Seghrouchni (University of Paris VI, France)

Programme Committee

Chris van Aart (Acklin, The Netherlands)
Jean-Pierre Briot (University of Paris VI, France)
Monique Calisti (Whitestein Technologies, Switzerland)
Yves Demazeau (Institut IMAG – Grenoble, France)
Frank Dignum (Utrecht University, Netherlands)
Michael Fisher (University of Liverpool, UK)
Vladimir Gorodetsky (Russian Academy of Sciences, Russia)
Jomi Hübner (Universidade Regional de Blumenau, Brazil)
Toru Ishida (Kyoto University, Japan)
David Kinny (CTO, Agentis Software, USA)
João Alexandre Leite (Universidade Nova de Lisboa, Portugal)
Jiming Liu (Hong Kong Baptist University, Hong Kong)
John-Jules Meyer (Utrecht University, Netherlands)
Jörg Müller (Clausthal University of Technology, Germany)
Oliver Obst (Koblenz-Landau University, Germany)
Gregory O’Hare (University College Dublin, Ireland)
Andrea Omicini (University of Bologna, Italy)
Julian Padget (University of Bath, UK)
Agostino Poggi (Università degli Studi di Parma, Italy)
Chris Reed (Calico Jack Ltd., UK)
Ichiro Satoh (National Institute of Informatics, Kyoto, Japan)
Onn Shehory (IBM Haifa Research Labs, Haifa University, Israel)
Kostas Stathis (City University London, UK)
Milind Tambe (University of Southern California, USA)
Leendert van der Torre (CWI, Netherlands)
Paolo Torroni (University of Bologna, Italy)

XII Organization

Gerhard Weiss (Technische Universität München, Germany)
Michael Winikoff (RMIT University, Melbourne, Australia)
Cees Witteveen (Delft University, Netherlands)

Additional Reviewer

Felix Fischer (Ludwig - Maximilians - Universität München, Germany)

Table of Contents

I Invited Papers

MetateM: The Story so Far
Michael Fisher . 3

Agent-Based Computing and Programming of Agent Systems
Michael Luck, Peter McBurney, Jorge Gonzalez-Palacios 23

II Multi-agent Techniques and Issues

Dynamic Self-control of Autonomous Agents
Caroline Chopinaud, Amal El Fallah Seghrouchni,
Patrick Taillibert . 41

Bridging Agent Theory and Object Orientation: Importing Social Roles
in Object Oriented Languages

Matteo Baldoni, Guido Boella, Leendert van der Torre 57

Implementation Techniques for Solving POMDPs in Personal Assistant
Agents

Pradeep Varakantham, Rajiv Maheswaran, Milind Tambe 76

Using a Planner for Coordination of Multiagent Team Behavior
Oliver Obst . 90

Reusable Components for Implementing Agent Interactions
Juan M. Serrano, Sascha Ossowski, Sergio Saugar 101

III Multi-agent Programming

An AgentSpeak Meta-interpreter and Its Applications
Michael Winikoff . 123

Extending the Capability Concept for Flexible BDI Agent
Modularization

Lars Braubach, Alexander Pokahr, Winfried Lamersdorf 139

A Model-Based Executive for Commanding Robot Teams
Anthony Barrett . 156

XIV Table of Contents

Hermes: Implementing Goal-Oriented Agent Interactions
Christopher Cheong, Michael Winikoff . 168

IV Multi-agent Platforms and Organisation

Organization and Mobility in Mobile Agent Computing
Ichiro Satoh . 187

Programming MAS with Artifacts
Alessandro Ricci, Mirko Viroli, Andrea Omicini 206

Programming Deliberative Agents for Mobile Services: The 3APL-M
Platform

Fernando Koch, John-Jules C. Meyer, Frank Dignum,
Iyad Rahwan . 222

Implementing Multi-agent Systems Organizations with INGENIAS
Jorge J. Gómez-Sanz, Juan Pavón . 236

Declarative Agent Programming Support for a FIPA-Compliant Agent
Platform

Mengqiu Wang, Mariusz Nowostawski, Martin Purvis 252

Author Index . 267

Part I

Invited Papers

METATEM: The Story so Far

Michael Fisher

Department of Computer Science, University of Liverpool, United Kingdom
http://www.csc.liv.ac.uk/∼michael

1 Introduction

METATEM is a simple programming language based on the direct execution of tempo-
ral logic statements. It was introduced through a number of papers [35,2,3] culminating
in a book collecting together work on the basic temporal language [5]. However, since
that time, there has been a programme of research, carried out over a number of years,
extending, adapting and applying the basic approach. In particular, much of the research
has concerned the development of descendents of METATEM for describing and imple-
menting complex multi-agent systems.

Thus, while there are a number of other approaches to executing temporal state-
ments [32,18], we will concentrate on this one particular approach and will describe the
developments over the last 15 years. The structure of this article mirrors the research
developments in that the path through these developments is not linear. The diagram
below gives a pictorial explanation of the sections that follow.

1. Introduction
↓

2. Temporal Logic

↓
3. Executing Temporal Logic

↙ ↘
4. Concurrent METATEM 5. Beyond Temporal Logic

↘ ↙
6. Groups and Organisations

↓
7. METATEM at Work

↓
8. Concluding Remarks

Thus, we begin with a brief review of temporal logic itself.

2 Temporal Logic

We will begin with a review of basic temporal logic. Rather than providing an in-depth
account of temporal logic, we will just provide a simple description that can be used
throughout this article. For a more thorough exposition of the formal properties of this

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 3–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 M. Fisher

logic, see [11], while for examples of the use of temporal logic in program specification
in general, see [50].

Temporal logic is an extension of classical logic, whereby time becomes an extra
parameter when considering the truth of logical statements. The variety of temporal
logic we are concerned with is based upon a discrete, linear model of time, having both
a finite past and infinite future, i.e.,

σ = s0, s1, s2, s3, . . .

Here, a model (σ) for the logic is an infinite sequence of states which can be thought
of as ‘moments’ or ‘points’ in time. Since we will only consider propositional temporal
logic here, then, associated with each of these states is a valuation for all the proposi-
tions in the language.

The temporal language we use is that of classical logic extended with various modal-
ities characterising different aspects of the temporal structure above. Examples of the
key operators include ‘ �ϕ’, which is satisfied if ϕ is satisfied at the next moment in
time, ‘♦ϕ’, which is satisfied if ϕ is satisfied at some future moment in time, and ‘ ϕ’,
which is satisfied if ϕ is satisfied at all future moments in time.

More formally, a semantics of the language can be defined with respect to the model
(σ) in which the statement is to be interpreted, and the moment in time (i) at which it is
to be interpreted. Thus, a semantics for the key temporal operators is given below.

〈σ, i〉 |= �A iff 〈σ, i+ 1〉 |= A
〈σ, i〉 |= A iff for all j ≥ i. 〈σ, j〉 |= A
〈σ, i〉 |= ♦A iff exists j ≥ i. 〈σ, j〉 |= A
〈σ, i〉 |= AUB iff exists k ≥ i. 〈σ, k〉 |= B and for all k > j ≥ i. 〈σ, j〉 |= A
〈σ, i〉 |= AW B iff either 〈σ, i〉 |= AUB or 〈σ, i〉 |= A

Note that the temporal operators ‘U ’ (“until”) and ‘W ’ (“unless”) characterise inter-
vals within the temporal sequence during which certain properties hold. Thus, ‘ψU ϕ’
means that ϕ is satisfied at some point in the future and, at every moment between now
and that point, ψ must be satisfied. In addition to temporal operators referring to the
future, it is also possible to utilise temporal operators relating to the past [49], such as
‘ ’ (“always in the past”), ‘♦• ’ (“sometime in the past”), ‘ ��������’ (“in the previous mo-
ment in time”), and ‘S ’ (“since”). However, adding past-time operators here does not
extend the expressive power of the language and such operators can all be removed by
translation of arbitrary temporal formulae into a specific normal form (see Section 3.2).
Finally, we add a nullary operator ‘start’, which is only satisfied at the “beginning of
time”:

〈σ, i〉 |= start iff i = 0

2.1 Why Temporal Logic?

But, why do we use temporal logic? One reason is that it allows the concise expression
of useful dynamic properties of individual components. For example, the formula

request ⇒ reply U acknowledgement

METATEM: The Story so Far 5

characterises a system where, once a request is received, a reply is continually sent up
until the point where an acknowledgement is received. And, importantly, an acknowl-
edgement is guaranteed to be received eventually. In addition, pre-conditions, such as

¬started ⇒ �¬moving

can easily be described in this logic.
As the temporal model on which the logic is based comprises a linear sequence of

moments, then the logic can also be used to express the order in which activities occur,
for example

hungry ⇒ (buy food ∧ �cook food ∧ � �eat) .

While the logic is clearly useful for representing the dynamic activity of individual
components, and this relates very closely to traditional applications of temporal logic
in program specification [50], the formalism is also useful for characterising properties
of the overall system. For example, the formula

broadcast(msg) ⇒ ∀a ∈ Group. ♦receive(msg,a)

describes the message-passing behaviour within a group of components (characterised
by the finite set ‘Group’). Thus, temporal logic can be used to represent both the internal
behaviour of a component and the macro-level behaviour of systems.

3 Executing Temporal Logic

3.1 What Is Execution?

But, what does it mean to execute a formula, ϕ, of logic, L? In general, this means
constructing a model, M , for ϕ, i.e.

M |=L ϕ .

Typically, this construction takes place under some external constraints on ϕ, and many
different models might satisfy ϕ. However, we note that:

– as ϕ represents a declarative statement, then producing M can be seen as execution
in the declarative language L; and

– if ϕ is a specification, then constructing M can also be seen as prototyping an
implementation of that specification.

Languages such as Prolog effectively build a form of model by attempting to refute the
negation of a goal.

We execute arbitrary formulae from the temporal logic using an execution mecha-
nism which is complete for propositional, linear temporal logic. In order to simplify the
execution algorithm, arbitrary formulae are transformed into a specific normal form,
called SNF (see Section 3.2). Thus, the execution algorithm works on formulae in SNF;
this algorithm will be described in more detail in Section 3.3.

Although deciding propositional temporal logic formulae is complex (PSPACE-
complete), deciding first-order temporal logic (FOTL) formulae is much worse! FOTL
is incomplete (i.e. not recursively enumerable) [56,1] and so, if we wish to use arbitrary
FOTL in our specifications then we are left with a few options:

6 M. Fisher

1. restrict the logic and provide a ‘complete’ execution mechanism; or
2. execute the full logic, treating execution as simply an attempt to build a model for

the formula.

Fragments of FOTL with ‘good’ properties are difficult to find and, once found [53,44],
turn out to be quite restrictive. Thus, we choose (2). In addition, completeness cannot
be retained in general, especially as we wish to extend the basic execution mechanism
to include not only constrained backtracking, but also a dynamic model of concurrent
computation and communication. Thus, in summary, execution of temporal specifica-
tions is synonymous with attempting to build models for such specifications.

3.2 What Is SNF?

The specification of a component’s behaviour is given as a temporal formula, then trans-
formed into a simple normal form, called Separated Normal Form (SNF) [14,19]. In this
normal form, the majority of the temporal operators are removed, and formulae are rep-
resented as

n

i=1

Ri

where each Ri, termed a rule, is one of the following forms.

start ⇒
r

b=1

lb (an initial rule)

g

a=1

ka ⇒ �

[
r

b=1

lb

]
(a step rule)

g

a=1

ka ⇒ ♦l (a sometime rule)

Note, here, that each ka, lb, or l is a literal. This normal form gives a simple and intuitive
description of what is true at the beginning of execution (via initial rules), what must
be true during any execution step (via step rules), and what constraints exist on future
execution states (via sometime rules). For example, the formulae below correspond to
the three different types of SNF rules.

INITIAL: start ⇒ (sad ∨optimistic)
STEP: (sad ∧¬optimistic)⇒ �sad
SOMETIME: optimistic ⇒♦¬sad

3.3 Execution Algorithm

The basic execution algorithm of METATEM [2,3] attempts to build a model for the
formula in a simple forward-chaining fashion. The basic approach, as defined in [31,3]
is described below. Assuming we are executing a set of SNF rules, R:

METATEM: The Story so Far 7

1. By examining the initial rules in R, constraints on the possible start states for the
temporal model can be generated. Call these choices, C. Let ‘Ω’, the list of out-
standing eventualities, be an empty list.

2. Make a choice from C. If there are no unexplored choices, return to a choice point
in a previous state. Note that this choice mechanism takes into account a number of
elements, including Ω.
For the choice taken, generate additional eventualities, Evs, by checking applica-
bility of sometime rules. Append Evs to Ω.

3. Generate a new state, s, from the choice made in (2) and define s as being a succes-
sor to the current state. Note that, by default, if propositions are not constrained we
choose to leave them unsatisfied.
Remove from Ω all eventualities satisfied within s.
If s is inconsistent, or if any member of Ω has been continuously outstanding for
more than 25|R| states, then return to (2) and select a different alternative.

4. Generate constraints on next states by checking applicability in s of step rules in
R. Set C to be these choices. Note that C here represents all the possible choices of
valuations for the next state, while Ω gives the list of eventualities that remain to be
satisfied.

5. With current state, s, the set of choices on next state, C, and the list of outstanding
eventualities, Ω, go to (2).

The key result here is that, under certain constraints on the choice mechanism within
(2), this execution algorithm represents a decision procedure.

Theorem 1 (See [3]). If a set of SNF rules, R, is executed using the above algorithm,
with the proviso that the choice in (3) ensures that the oldest outstanding eventualities
are attempted first at each step, then a model for R will be generated if, and only if, R
is satisfiable.

The above proviso ensures that, if an eventuality is outstanding for an infinite number of
steps, then it will be attempted an infinite number of times. Once the choice mechanism
is extended to include arbitrary ordering functions, as in [20] (see Section 5.1), then
a more general version of the above theorem can be given wherein we only require a
form of fairness on the choice mechanism. While the above proviso effectively means
that we can potentially explore every possibility, the incorporation in the algorithm of a
bound on the number of states that eventualities can remain outstanding, together with
the finite model property of the logic, ensures that all of the possible states in the model
can be explored if necessary.

Example. Imagine a ‘car’ component which can go, turn and stop, but can also run out
of fuel (empty) and overheat.

The internal definition might be given by a temporal logic specification in SNF, for
example,

start ⇒ ¬moving
go ⇒ ♦moving

(moving∧go) ⇒ �(overheat∨ empty)

8 M. Fisher

The component’s behaviour is implemented by forward-chaining through these
formulae.

– Thus, moving is false at the beginning of time.
– Whenever go is true, a commitment to eventually make moving true is given.
– Whenever both go and moving are true, then either overheat or empty will be made

true in the next moment in time.

4 Concurrent METATEM

4.1 From One to Many

Once we have a temporal description for a component, we can extend this to give its
behaviour within an environment consisting of multiple other components. We do this
simply by providing a definition of the component’s interface with its environment [16].
Such an interface describes the messages that the reactive component can receive (i.e.
those that come in) and send (i.e. those that go out). For example, let us consider the
abstract specification of a ‘car’ with the behaviour given above. This car can be told
to go, turn and stop, but can also notify other components that it has run out of fuel
(empty) or has overheated (overheat). A (partial) definition is given below.

car()
in: go,stop,turn

out: empty,overheat
rules: start ⇒ ¬moving

(moving∧go) ⇒ �(overheat∨ empty)
go ⇒ ♦moving

This shows that the component recognises the messages ‘go’, ‘stop’ and ‘turn’, and can
potentially send out ‘empty’ and ‘overheat’ messages. Its behaviour is then specified by
the temporal formula ⎡⎢⎢⎢⎢⎣

start ⇒ ¬moving
∧

(moving∧go) ⇒ �(overheat∨ empty)
∧

go ⇒ ♦moving

⎤⎥⎥⎥⎥⎦
Both the messages received and the messages sent are interpreted as propositions (or
predicates) that can be used as part of the reactive component’s specification. In addi-
tion, standard propositions (predicates) appear in the specification, for example ‘mov-
ing’ in the description above. These atoms are essentially internal and do not directly
correspond to communication activity by either the component or its environment.

4.2 Communication and Concurrency

Each component executes independently. However, execution may be either synchro-
nous, whereby the steps in each component occur at exactly the same time (and thus

METATEM: The Story so Far 9

the notion of next is common amongst the executing components), or asynchronous,
whereby the steps in each component are distinct. The classification of a component’s
predicates as environment or component (or, indeed, internal) implements communica-
tion in a natural (and logical) way. Environment predicates are under the control of the
component’s environment, while the other categories of predicate can be made true or
false by the component itself. Thus, when a component’s execution mechanism makes
an internal predicate true, it just records the fact in its internal memory, while when
it makes a component predicate true, it also broadcasts a message corresponding to
this predicate to all other components. Thus, in the above car example, when either
empty or overheat is made true, then the messageempty or overheat, respectively, is
broadcast. If an appropriate message is received, the corresponding environment predi-
cate set to true. In the example given above, if a go message is received, the proposition
go is made true.

The use of broadcast message passing not only matches the logical view of com-
putation but, as we will see later, also fits well with applications which concern open
and dynamic systems (and where a component cannot know all the other components it
might deal with).

4.3 Towards Semantics

If we consider a single METATEM component, then its semantics is effectively its tem-
poral specification. However, once we move to a scenario with multiple components,
the semantics of our system becomes more complex. If, as in [17,22], we consider ‘[[]]’
to represent a function providing temporal semantics, then the behaviour of a system of
multiple (in this case, two) components running in parallel (‘‖’), is typically given by

[[c1‖c2]] = [[c1]] ∧ [[c2]] .

However, we must also be careful to distinguish the information that c1 deals with from
that which c2 deals with. Consequently, [[c1]] is not just the temporal rules contained
within the c1’s specification and so we must enhance these rules in some way in order
to capture the different components.

An obvious way to ensure that, for example, proposition p in c1 is distinguished
from p in c2, is to rename the propositions in the component’s rules ensuring that each
one is ‘tagged’ by the name of the component in which it occurs. Thus, we would have
propositions such as pc1 and pc2 ; this is exactly the approach used in [17]. A further im-
portant aspect of the semantics given in [17] is that it allows for either synchronous or
asynchronous models of concurrency within the framework. In the case of synchronous
execution, the semantics of each component is given as a (tagged) temporal formula in
a discrete, linear temporal, as described above. However, once we consider asynchro-
nous execution, the semantics is given as a formula in the Temporal Logic of the Reals
(TLR) [6], which is a temporal logic based upon the Real, rather than Natural, Num-
bers. The density of this Real Number model is useful in representing the asynchronous
nature of each component’s execution.

A further complication is that, once communication is added to the synchronous
case, we use

[[c1‖c2]] = [[c1]] ∧ [[c2]] ∧ comms(c1,c2) .

10 M. Fisher

where comms(c1,c2) is a temporal specification of the communication properties, such
as broadcast message-passing. However, since once a message is broadcast from a com-
ponent, then the execution of that component can no longer backtrack past such a broad-
cast, the semantics of communicating components becomes much more complex [60].

5 Beyond Temporal Logics

So far, we have seen how specifications given in temporal logic can be directly executed
in order to animate the component’s behaviour. Thus, this approach provides a high-
level programming notation, while maintaining a close link between the program and
its specification. However, when moving towards the representation and execution of
agents [61], particularly rational agents [62,58], we naturally want to represent more
than an agent’s basic temporal behaviour. Basic agents are just autonomous components
and these can be modelled, at a simple level, by Concurrent METATEM as described
above [16,15,33].

Although the central aspect of an agent is autonomy, rational agents are agents that
have reasonable and explainable courses of action that they undertake. The key concept
that rational agents have brought to the forefront of software design is that, as well as
describing what an agent does, it is vital to describe why it does it. Hence the need to
represent the reasons for certain autonomous behaviour within agents.

In line with the BDI framework [54], and with other rational agent theories [57], it
is important to represent not only an agent’s temporal behaviour, but also

– its informational aspects, such as what it believes or knows,
– its motivational aspects, such as its goals or intentions, and
– its deliberative aspects, such as why it makes the choices it does.

Thus, inspired by the success of the BDI framework [54] in representing deliberation,
the basic METATEM system was extended, in [20], with information representation, in
terms of beliefs and explicit mechanisms for ordering goals. The representation of belief
was given by extending the temporal basis with a standard modal logic having Kripke
semantics [40]. Thus, during execution, modal formulae related to belief were decided
again by a forward chaining process. This allowed more complex (and mixed) formulae
such as

happy ⇒ Bx
x ⇒ �rich .

Goals, corresponding to both desires and intentions in the BDI model were, in turn,
represented by temporal eventualities. This then allowed deliberation to be represented
via user defined functions providing an ordering on the satisfaction of eventualities.
This is best explained with an example.

5.1 Deliberation Via Goal Re-ordering

Recall that, in the basic METATEM execution above, outstanding eventualities are stored
in an age-ordered (i.e. oldest-first) list that is passed on to the next execution state. For
example, consider an agent that has the following eventualities it needs to satisfy

[♦be famous,♦sleep,♦eat lunch,♦make lunch] .

METATEM: The Story so Far 11

Now, if these were passed on to the next execution state, the standard approach would
be to execute these oldest-first, i.e attempt to make be famous true, then attempt to make
sleep true, and so on. In [20], the ability to re-order this list before it is passed on to
the next execution state was provided. Now, in the example above, imagine the agent
actually re-ordered the list in terms of what it considered to be most important, e.g.

[♦be famous,♦eat lunch,♦sleep,♦make lunch] .

Indeed, the agent could re-order the list further if it had an idea about what it could
actually achieve, e.g. what it knew how to make true. Thus, if the agent had no way (i.e.
no plan) to make be famous true, it might move it to the end of the list. If the agent knew
how to make eat lunch true, it might move it towards the front of the list. However, it
might also be able to infer that a pre-condition of making eat lunch true is to make
make lunch lunch true and so it might well move this to the front of the list. Thus, the
list passed on to the next execution state is then

[♦make lunch,♦eat lunch,♦sleep,♦be famous] .

5.2 Resource-Bounded Reasoning

While the above provides a simple and concise mechanism for representing and imple-
menting deliberative agents, it does not deal with a further important aspect of ‘real’
agents, namely their resource-bounded nature [9]. In particular, the representation of
belief was given by extending the temporal basis with a standard modal logic having
Kripke semantics [40]. As is well known, this does not match the resource-bounded na-
ture of ‘real’ reasoners [39]. Indeed modal logics generally model logically omniscient
agents which are forced to believe (and compute) all the logical consequences of their
own beliefs.

Thus, in [23], we modified the METATEM execution framework so that it was based
on multi-context logics of belief [10,37,36] rather than traditional modal logics. Multi-
context logics [38,7] allow much finer control of the reasoning processes. In using this
basis for belief in METATEM, we then have much finer control over how beliefs are ex-
plored, executed and reasoned about. In particular, we can control how much reasoning
an agent carried out during its execution, and this allows us to capture an element of
resource-boundedness.

This work was applied, for example to parts of the RoboCup scenario [24,25], and
was extended to incorporate bounds on the temporal resourced consumed, i.e. the agent
can reason about what it might do in the future, but the distance it can reason into the
future about is limited [34].

A final modification brought in the concepts of ability and confidence [26], giving
us the ABC framework which incorporates:

– Ability — captured in a very simple modal extension, where Aiϕ intuitively means
“i is able to do ϕ”, for example,

Amebuy ticket ⇒ �buy ticket

12 M. Fisher

– Belief — captured by multi-context belief with potential resource-bounds, where
Bi represents the beliefs of agent i, for example

buy ticket ⇒ Bmelottery winner

– Confidence — captured by the combination of Bi and ♦, where “agent i is confident
of ϕ’ is given by Bi♦ϕ.

The idea of confidence replaces the use of just ‘♦’ to represent goals. Expressing con-
fidence in terms of belief about the future not only keeps the logic simple, it allows
us to express weaker motivational attitudes. This confidence can be used as an agent’s
reason for doing something. Importantly, confidence can come not only from the agent
itself, but also from the agent’s confidence in other agents in this system. This allows us
to use the notion of confidence in a number of ways within both individual agents and
multi-agent systems [26].

This also leads us on to considering more complex multi-agent systems.

6 Groups and Organisations

In Concurrent METATEM we introduced the idea of multiple, asynchronously execut-
ing, agents (let us call them this, rather than ‘components’ from now on) communicat-
ing through broadcast message-passing. Although this is a good model from a logical
point of view it has two disadvantages: (1) in practice, broadcasting to large numbers of
agents is costly, and (2) the multi-agent system is essentially flat and unstructured, and
so it is difficult to represent more complex systems using this approach.

Thus, as Concurrent METATEM has developed, a range of structuring mechanisms
for the agent space have been developed. All are based on the notion of groups, derived
from both social constructs and ideas in distributed operating systems [8]. Thus all
agents can occur in multiple groups [15], while groups themselves are dynamic and
open, and may contain sub-groups and each agent may be a member of several groups.
When an agent broadcasts a message it is restricted to being sent to members of (some
of) the groups the agent occurs within. Hence, groups are useful both for restricting the
extent of broadcast and structuring the agent space, effectively replacing full broadcast
by a form of multicast message-passing.

However, a basic grouping mechanism is not enough. We often want to define dif-
ferent computational properties for the different groups the agent might be a member
of. Thus, from initial ideas concerning additional logical properties that groups might
have [21], we developed the view that agents and groups are exactly the same enti-
ties [30,28]. Thus, the notion of a group as essentially being a container, where agents
have behaviour and groups contain agents, i.e.,

Agent ::= Behaviour : Spec

Group ::= Contents : P (Agent)

became the notion that all agents have the potential to contain others, just as all have
the potential to have behaviour, i.e.

METATEM: The Story so Far 13

Agent ::= Behaviour : Spec
Contents : P (Agent)
Context : P (Agent)

Thus, we can think of several varieties of agent:

– A simple agent: Contents = /0.
– A simple group: Behaviour = /0.
– A more complex group: Contents �= /0 and Behaviour �= /0.

Thus groups, rather than being mere containers, can now have behaviours, captured
by their internal policies and rules. In particular, agents can control the communica-
tion policies, organisation policies, etc., within their Contents. Once agents and groups
are the same entities, a number of aspects become clear. For example, since agents
are opaque (i.e., their internal structure is hidden from other agents) it is not obvious
whether agents have certain abilities natively, or merely make use of other (internal)
agents. In addition, any agent has the potential to dynamically become a group! In
particular, all agents respond to ‘addToContent’ and ‘addToContext’ messages
(two primitive operations accessing the Content and Context aspects of an agent), and
all agents can clone themselves (and perform a shallow copy of their contents), as well
as terminate themselves or merge with another agent.

6.1 Building Organisations

With the structures in place to support more complex multi-agent systems, the ques-
tion remains: how can we use the logical apparatus, such as the Ability, Belief and
Confidence framework, in order to program agents to dynamically form complex struc-
tures. In a number of papers, mechanisms for describing and constructing such complex
groups, teams and organisations have been described [27,28,29].

Let us give an outline using an example. Suppose that agent i wishes for ϕ to occur
(Bi♦ϕ), but does not have the corresponding ability (¬Aiϕ). Within the agent’s behav-
iour we might have a rule such as

Bi♦ϕ∧¬Aiϕ ⇒ �sendi(A?ϕ)

In this case the agent sends out a message asking for help from any agent that is able to
achieve ϕ. Various agents, depending on their own goals, might choose to reply that they
have the required ability (namely, the ability to achieve ϕ, i.e. Aϕ). Then the original
(sending) agent has a choice about how to deal with these replies and, consequently,
how to deal with the agents who might be of help. For example [27], the sender might

– invite relevant agents to join its Content,
– create a new “dedicated” agent to serve as a container for agents that share the

relevant ability, or
– join a group that can help it solve its problem,

All of these can be supported through the flexible group structure and can be imple-
mented using logical rules. Each gives a very different organisation structure.

14 M. Fisher

7 METATEM at Work

Here we outline a number of examples showing how METATEM can be used. Note that
we only provide an overview of each example — full details can usually be found in
the cited papers.

7.1 Train Signalling

In [13], METATEM was used to model a simple railway signalling scenario. Here, the
system was modelled as one large set of SNF rules. Thus there was not the separation
one might expect with Concurrent METATEM. The SNF specification is then executed
to animate the rail simulation. The specification consists of predicates relating to sta-
tions, trains and lines, and the key specifications concern each station’s control of the
trains that come into it and each trains request for entry to a station. Each of the stations
‘knows’ which lines it has connecting itself to other stations, what trains the station has,
and which lines each train runs on. Consequently, there are rules such as1:

– [station(S) ∧ moved(T, S)] ⇒ �has(S, T)
i.e., the station (S) now has the train (T) if T moved to S in the last step;

– [station(S) ∧ request(T, S)] ⇒ ♦permit(T, S)
i.e., if station S receives a request from train T to enter S, then the station guarantees
to permit this move at some point in the future;

– [station(S) ∧ has(S, T) ∧ ¬moved(T, New)] ⇒ �has(S, T)
i.e., if station S has train T and T does not move, then S will still have T in the next
step;

– [station(S) ∧ permit(T1, S) ∧ permit(T2, S)] ⇒ (T1 == T 2)
i.e., if a station permits two trains, T 1 and T 2, to enter, then T 1 and T 2 must
actually be the same train.

7.2 Patient Monitoring

In [55], Reynolds applies METATEM to the modelling and animation of a patient mon-
itoring system (PMS). Temporal formulae are used to specify, for example, under what
conditions (i.e. what patient vital signs) an alarm should be sounded. Here, the specifi-
cation is split into separate components, e.g.

nurse(alarm, display)[act, seen, req]

Here, for example, the message req is sent out by the nurse requesting information.
SNF rules then characterise the internal behaviour of such components:

– [wtr(P) ∧ ¬req(P)] ⇒ �wtr(Q)
i.e., if the nurse is “waiting to request information” (wtr) about a patient, but does
not request such information (req) then the nurse will continue to wait to request
information in the next step;

1 Assume, here, that all variables beginning with upper-case letters and all variables are univer-
sally quantified.

METATEM: The Story so Far 15

– [wtr(P) ∧ req(P) ∧ next(P,Q)] ⇒ �wtr(P)
i.e., if the nurse is “waiting to request information” about a patient, and does also
request this information, then the nurse moves on to “waiting to request informa-
tion” from the next patient;

– alarm(P) ⇒ �act
i.e., if an alarm sounds for a patient, the nurse will act.

7.3 Economic Games

We next outline a simple economic game, a simplified variation of the Nash [51] de-
mand game. Here, two synchronous agents make bids to an arbiter who gives out
rewards (in line with a specific matrix). Agents usually bid based on the best previ-
ous strategy, but sometimes (quite rarely) can choose a random value. In our case, the
arbiter agent implements the reward matrix:

agent1 bid : 1 2 3 1 2 3 1 2 3
agent2 bid : 1 1 1 2 2 2 3 3 3

agent1 reward : 1 2 3 1 2 0 1 0 0
agent2 reward : 1 1 1 2 2 0 3 0 0

Thus, sample arbiter code includes (for brevity we replace agent1 by a1, and agent2
by a2, respectively)

[bid(a1,V1) ∧ bid(a2,V2) ∧ (4 < (V1 +V2))] ⇒ �reward(a1,V1,0)
[bid(a1,V1) ∧ bid(a2,V2) ∧ (4 < (V1 +V2))] ⇒ �reward(a2,V2,0)
[bid(a1,V1) ∧ bid(a2,V2) ∧ (4 ≥ (V1 +V2))] ⇒ �reward(a1,V1,V1)
[bid(a1,V1) ∧ bid(a2,V2) ∧ (4 ≥ (V1 +V2))] ⇒ �reward(a2,V2,V2)

The arbiter agent receives bid messages from each of the agents and then sends
out reward messages. Note that the reward sent from the arbiter back to bidding
agents contains the bid made in its second argument.

As we can see from the above, these rules make use of much more arithmetical
operators. The rules within the bidding agents use even more. Bidding agents send out
bids and receive rewards. Internally, they keep track of which bids (1, 2, or 3) have
generated the most rewards. In addition, a small random element is introduced so that
the bidding agent can choose a different bid, rather than just the most successful so far.
Some sample rules for the bidding agents are2:

rand(V) ⇒ �seed(V)
[seed(V) ∧ (V ≤ 3072) ∧ (V1 == (V%3 + 1))] ⇒ �bid(agent1,V1)

[seed(V) ∧ (3072 < V) ∧ bestso f ar(V1)] ⇒ �bid(agent1,V1)

Once executing, even though small perturbations (i.e. random bids outside the optimal)
are introduced, the bidding stabilises so that the agent’s bid is based on the accumulated
history and this isn’t significantly distorted by small numbers of random bids. In the
case of our reward matrix above, both bidding agent settle down to bidding ‘2’.

2 Note that rand(V) binds V to a random number between 0 and 216 and V %3+1 is V modulo
3, with 1 then added (thus giving a result of either 1, 2 or 3).

16 M. Fisher

7.4 Resource-Bounded Deliberation

In this example, taken from [24], we have a simple football scenario. Pictorially, we
have the following situation.

M2

J3 M1

J1

J2

The ‘J’ team are attacking the goal, while the ‘M’ team are defending it. Agent J1 has
the ball but has two abilities: to shoot towards goal, or to pass to a team-mate. Motivated
by the aim of scoring, J1 has to decide what to do.

Now, rather than giving the program rules (which are quite complex), we outline the
reasoning process that J1 goes through.

– We again note that J1 has two things it can do: pass or shoot. Initially, before any
reasoning is carried out, J1 has a slight (in-built) preference for shooting.

– However, J1 begins to reason about its options, about its beliefs about its team-
mates, about its beliefs about its team-mates beliefs, etc. Given sufficient reasoning
time, J1 can work out that the best approach is to pass to J2 who, J1 believes, will
then pass on to J3. This is based on the belief that J3 has the best chance of scoring,
and that J2 believes this also.
Thus, given sufficient reasoning time, J1 will choose to pass rather than shoot.

– However, in time-constrained situations, such as near the end of the game, we can
put a bound on the amount of reasoning concerning belief that J1 is able to carry
out. We do this by fixing a maximum depth of nested beliefs that J1 is able to deal
with.
In such a scenario, J1 does not have enough (reasoning) time to work out that pass-
ing is the best option.
Consequently, in time-constrained situations, such as this, J1 chooses to shoot.

It is important to note here that the program rules are exactly the same for both options.
All that has happened is that a belief bound is changed, yet this has the significant effect
of leading the agent to prefer one action over another.

7.5 Active Museum

In [42] a particular scenario from pervasive/ubiquitous computing was examined. This
is the idea of an Active Museum [52]. Here, a museum provides visitors with electronic
guides (such as PDAs) and these guides can be programmed with the visitor’s prefer-
ences. As the visitor moves through the museum, the rooms, exhibits, etc., can all inter-
act with the PDA and, in this way, the PDA can advise the visitor what to look at next.

METATEM: The Story so Far 17

We model this via three aspects:

– the organisational structure of rooms, exhibits, visitors, etc.;
– the organisational structure of the agent’s interests; and
– the rule(s) within the visitor agent concerning deliberation.

Thus, the group structure, combining physical aspects and museum interests can be
represented as

M

R1 R2

E1 E2 E3 V1 E4 E5 E6 V2

AG TG CG

V1 V2

For example, visitor V1 is within the group representing room R1 but is also within
the groups representing the two interest groups relating to a particular artist (AG) and
to time (TG). Now, those groups provide the context for the visitor agent and broadcast
important information to it.

Each visitor agent effectively only has one rule:

[canSee(Exhibit) ∧ ¬exclude(Exhibit)] ⇒ ♦lookAt(Exhibit)

Thus, if the visitor agent can see an exhibit and is not excluded (by one of its interest
groups) from looking at it, it will eventually look at it. Note that canSee messages are
broadcast by the agent’s context, and so moving context changes what the agent does.

While visitor agents have one main rule, the important aspect concerns the delib-
eration of the visitor agent about what order to visit the exhibits in. In this, the agent
utilises preferences to implement the deliberative re-ordering of eventualities seen ear-
lier. Preferences are very simple, e.g. prefer(E3,E1). Pictorially, we have:

PrefsV

Room 1

Group
Interest

Artist
Interest
Group

Time
Prefs

Some preferences are internal to the agent; most are obtained by the agent from its Con-
text. Thus, the preferences help the visitor agent decide between eventualities. Moving
between rooms changes what the agent can see, but it is moving between interest groups
that changes what the agent prefers to look at first.

18 M. Fisher

8 Concluding Remarks

This article has provided an overview of the work that has been carried out on exe-
cutable temporal and modal logics based on the METATEM approach. This has led to
several practical systems developed over the years. Initially, Owens developed a basic
METATEM system in Prolog, while Fisher developed a Concurrent METATEM harness
in C++; early implementation techniques were described in [31]. The developments
on agent representation and execution were implemented in Prolog [20] and, in paral-
lel, more efficient mechanisms for the implementation of Concurrent METATEM were
examined [47,46]. Most recently, the ABC framework has be implemented in Java [43].

But, what of the future? There are several areas actively being investigated at present,
ranging from theoretical to practical and from single agent to multi-agent. These themes
are outlined below.

– The broader application, particularly of the ABC approach, to the modelling and
simulating of various forms of organisations. In particular, the development of vir-
tual organisations (along the lines of the Active Museum example) and applications
in pervasive and ubiquitous computing.
This mainly involves practical application, but also involves more work on ad-hoc
team formation and on probabilistic ABC, some of which is already under way [12].

– The development of a lightweight implementation, based on J2ME3 and use of
the above approaches in resource constrained environments, e.g. mobile, wearable,
devices.

– Extending the theoretical work on high-level semantics of the group approach,
which was recently investigated in [43] where groups were shown to match Milner’s
bigraphs [45] in many ways, while adapting earlier work on the use of Concurrent
METATEM as a high-level coordination language [48] for use in multi-agent and
pervasive applications.

– Developing a more practical (and flexible) approach to meta-level programming in
METATEM. Based on [4], but extended for the ABC framework, and allowing the
use of both complex meta-level adaption and simpler, preference-based, delibera-
tion (as in [42]).

Through previous and future work our intention is to continue to develop a framework
that utilises formal logic in the specification, verification and implementation of reac-
tive [41] and multi-agent [59] systems. This framework comprises

– a logic (typically based on a combination of simpler logics) in which the high-level
behaviours (of both agent and organisation) can be concisely specified, and

– a programming language providing flexible and practical concepts close to the spec-
ification notation used.

Acknowledgements

Most of the work outlined in this article was carried out in collaboration with others, and
so thanks go to Howard Barringer, Nivea de Carvalho Ferreira, Marcello Finger, Dov

3 http://java.sun.com/j2me

METATEM: The Story so Far 19

Gabbay, Chiara Ghidini, Graham Gough, Benjamin Hirsch, Wiebe van der Hoek, Tony
Kakoudakis, Adam Kellett, Richard Owens, Mark Reynolds, and Mike Wooldridge.

References

1. M. Abadi. The Power of Temporal Proofs. Theoretical Computer Science, 64:35–84, 1989.
2. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A Framework for

Programming in Temporal Logic. In Proceedings of REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness, Mook, Netherlands, June 1989.
(Published in Lecture Notes in Computer Science, volume 430, Springer Verlag).

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An Introduction.
Formal Aspects of Computing, 7(5):533–549, 1995.

4. H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-Reasoning in Executable Temporal
Logic. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning (KR), Cambridge,
Massachusetts, April 1991. Morgan Kaufmann.

5. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The Imperative Fu-
ture: Principles of Executable Temporal Logics. Research Studies Press, Chichester, United
Kingdom, 1996.

6. H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent Model and its Tempo-
ral Logic. In Proceedings of the Thirteenth ACM Symposium on the Principles of Program-
ming Languages, St. Petersberg Beach, Florida, January 1986.

7. M. Benerecetti, A. Cimatti, E. Giunchiglia, F. Giunchiglia, and L. Serafini. Formal Specifica-
tion of Beliefs in Multi-Agent Systems. In J. P. Müller, M. J. Wooldridge, and N. R. Jennings,
editors, Intelligent Agents III — Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages (ATAL-96), Lecture Notes in Artificial Intelligence.
Springer-Verlag, Heidelberg, 1996.

8. K. P. Birman. The Process Group Approach to Reliable Distributed Computing. Techanical
Report TR91-1216, Department of Computer Science, Cornell University, July 1991.

9. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and Resource-Bounded Practical
Reasoning. Computational Intelligence, 4:349–355, 1988.

10. A. Cimatti and L. Serafini. Multi-Agent Reasoning with Belief Contexts: the Approach and a
Case Study. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Ar-
chitectures, and Languages (LNAI Volume 890), pages 71–85. Springer-Verlag: Heidelberg,
Germany, January 1995.

11. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 996–1072. Elsevier, 1990.

12. N. de C. Ferreira, M. Fisher, and W. van der Hoek. A Logical Implementation of Uncertain
Agents. In Workshop on Multi-Agent Systems: Theory and Applications (MASTA), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2005.

13. M. Finger, M. Fisher, and R. Owens. METATEM at Work: Modelling Reactive Systems
Using Executable Temporal Logic. In Sixth International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE), Edinburgh,
U.K., June 1993. Gordon and Breach Publishers.

14. M. Fisher. A Normal Form for First-Order Temporal Formulae. In Proceedings of Eleventh
International Conference on Automated Deduction (CADE), Saratoga Springs, New York,
June 1992. (Published in Lecture Notes in Computer Science, volume 607, Springer-Verlag).

15. M. Fisher. A Survey of Concurrent METATEM — The Language and its Applications. In
First International Conference on Temporal Logic (ICTL), Bonn, Germany, July 1994. (Pub-
lished in Lecture Notes in Computer Science, volume 827, Springer-Verlag).

20 M. Fisher

16. M. Fisher. Representing and Executing Agent-Based Systems. In M. Wooldridge and N. R.
Jennings, editors, Intelligent Agents. Springer-Verlag, 1995.

17. M. Fisher. A Temporal Semantics for Concurrent METATEM. Journal of Symbolic Compu-
tation, 22(5/6), November/December 1996.

18. M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineering Review,
11(1):43–56, March 1996.

19. M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-Proving and
Execution. Journal of Logic and Computation, 7(4), August 1997.

20. M. Fisher. Implementing BDI-like Systems by Direct Execution. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Morgan-Kaufmann, 1997.

21. M. Fisher. Representing Abstract Agent Architectures. In J. P. Müller, M. P. Singh, and
A. S. Rao, editors, Intelligent Agents V — Proceedings of the Fifth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in Artificial In-
telligence. Springer-Verlag, Heidelberg, 1999.

22. M. Fisher. Temporal Development Methods for Agent-Based Systems. Journal of Au-
tonomous Agents and Multi-Agent Systems, 10(1):41–66, January 2005.

23. M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kauf-
mann, 1999.

24. M. Fisher and C. Ghidini. Agents Playing with Dynamic Resource Bounds. In ECAI Work-
shop on Balancing Reactivity and Social Deliberation in Multi-Agent Systems, Berlin, Ger-
many, 2000.

25. M. Fisher and C. Ghidini. Specifying and Implementing Agents with Dynamic Resource
Bounds. In Proceedings of Second International Cognitive Robotics Workshop, Berlin, Ger-
many, 2000.

26. M. Fisher and C. Ghidini. The ABC of Rational Agent Programming. In Proc. First In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
849–856. ACM Press, July 2002.

27. M. Fisher, C. Ghidini, and B. Hirsch. Organising Logic-Based Agents. In M. Hinchey,
J. Rash, W. Truszkowski, C. Rouff, and D. Gordon-Spears, editors, Formal Approaches to
Agent-Based Systems, Second International Workshop, FAABS 2002, Greenbelt, MD, USA,
October 29-31, 2002, Revised Papers, volume 2699 of Lecture Notes in Computer Science,
pages 15–27. Springer, 2003.

28. M. Fisher, C. Ghidini, and B. Hirsch. Organising Computation through Dynamic Grouping.
In Objects, Agents and Features, volume 2975 of Lecture Notes in Computer Science, pages
117–136. Springer-Verlag, 2004.

29. M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents. In Computa-
tional Logic in Multi-Agent Systems (CLIMA-IV), volume 3259 of 849–856. Springer-Verlag,
November 2004.

30. M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executable Temporal Logic.
In Gergatsoulis and Rondogiannis, editors, Intensional Programming II. World Scientific
Publishing Co., March 2000.

31. M. Fisher and R. Owens. From the Past to the Future: Executing Temporal Logic Programs.
In Proceedings of Logic Programming and Automated Reasoning (LPAR), St. Petersberg,
Russia, July 1992. (Published in Lecture Notes in Computer Science, volume 624, Springer-
Verlag).

32. M. Fisher and R. Owens, editors. Executable Modal and Temporal Logics, volume 897 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg, Germany, February
1995.

33. M. Fisher and M. Wooldridge. A Logical Approach to the Representation of Societies of
Agents. In N. Gilbert and R. Conte, editors, Artificial Societies. UCL Press, 1995.

METATEM: The Story so Far 21

34. M. Fisher and C. Ghidini. Agents with Bounded Temporal Resources. Lecture Notes in
Computer Science, 2403:169–??, 2002.

35. D. Gabbay. Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proceedings of
Colloquium on Temporal Logic in Specification, pages 402–450, Altrincham, U.K., 1987.
(Published in Lecture Notes in Computer Science, volume 398, Springer-Verlag).

36. C. Ghidini. Modelling (Un)Bounded Beliefs. In Proc. Second International and Interdisci-
plinary Conf. on Modeling and Using Context (CONTEXT), Trento, Italy, 1999.

37. F. Giunchiglia and C. Ghidini. Local Models Semantics, or Contextual Reasoning = Local-
ity + Compatibility. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), pages 282–289, Trento, 1998. Morgan
Kaufmann. Long version forthcoming in “Artificial Intelligence”.

38. F. Giunchiglia and L. Serafini. Multilanguage Hierarchical Logics (or: how we can do with-
out modal logics). Artificial Intelligence, 65:29–70, 1994. Also IRST-Technical Report
9110-07, IRST, Trento, Italy.

39. F. Giunchiglia, L. Serafini, E. Giunchiglia, and M. Frixione. Non-Omniscient Belief as
Context-Based Reasoning. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI), pages 548–554, Chambery, France, 1993. Also IRST-
Technical Report 9206-03, IRST, Trento, Italy.

40. J. Y. Halpern and Y. Moses. A Guide to Completeness and Complexity for Modal Logics of
Knowledge and Belief. Artificial Intelligence, 54:319–379, 1992.

41. D. Harel and A. Pnueli. On the Development of Reactive Systems. Technical Report CS85-
02, Department of Applied Mathematics, The Weizmann Institute of Science, Revohot, Is-
rael, January 1985.

42. B. Hirsch, M. Fisher, C. Ghidini, and P. Busetta. Organising Software in Active Environ-
ments. In Computational Logic in Multi-Agent Systems (CLIMA-V), volume 3487 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

43. B. Hirsch. Programming Rational Agents. PhD thesis, Department of Computer Science,
University of Liverpool, United Kingdom, May 2005.

44. I. Hodkinson, F. Wolter, and M. Zakharyashev. Decidable Fragments of First-Order Temporal
Logics. Annals of Pure and Applied Logic, 2000.

45. O. H. Jensen and R. Milner. Bigraphs and Mobile Processes (revised). Technical Report
UCAM-CL-TR-580, Computer Lab, Cambridge University, U.K., 2004.

46. A. Kellett. Implementation Techniques for Concurrent METATEM. PhD thesis, Department
of Computing and Mathematics, Manchester Metropolitan University, 2000.

47. A. Kellett and M. Fisher. Automata Representations for Concurrent METATEM. In Pro-
ceedings of the Fourth International Workshop on Temporal Representation and Reasoning
(TIME). IEEE Press, May 1997.

48. A. Kellett and M. Fisher. Coordinating Heterogeneous Components using Executable Tem-
poral Logic. In Meyer and Treur, editors, Agents, Reasoning and Dynamics, Vol. 6 in Series
of Handbooks in Defeasible Reasoning and Uncertainty Management Systems. Kluwer Aca-
demic publishers, 2001.

49. O. Lichtenstein, A. Pnueli, and L. Zuck. The Glory of the Past. Lecture Notes in Computer
Science, 193:196–218, June 1985.

50. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1992.

51. J. F. Nash. Two-person Cooperative Games. Econometrica, 21:128–140, 1953.
52. O. Stock and M. Zancanaro. Intelligent Interactive Information Presentation for Cultural

Tourism. In Proceedings of the International CLASS Workshop on Natural Intell igent and
Effective Interaction in Multimodal Dialogue Systems, Copenhagen, Denmark, 28-29 June
2002.

22 M. Fisher

53. R. Pliuskevicius. On the Completeness and Decidability of a Restricted First Order Linear
Temporal Logic. In LNCS 1289, pages 241–254. Springer-Verlag, 1997.

54. A. S. Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In R. Fikes and
E. Sandewall, editors, International Conference on Principles of Knowledge Representation
and Reasoning (KR), Cambridge, Massachusetts, April 1991. Morgan Kaufmann.

55. M. Reynolds. METATEM in Intensive Care. Technical Report tr-97-01, Kings College,
London, 1997.

56. A. Szalas and L. Holenderski. Incompleteness of First-Order Temporal Logic with Until.
Theoretical Computer Science, 57:317–325, 1988.

57. B. van Linder, W. van der Hoek, and J. J. Ch. Meyer. How to Motivate your Agents. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II (LNAI 1037), pages
17–32. Springer-Verlag: Heidelberg, Germany, 1996.

58. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.
59. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.
60. M. Wooldridge, J. Bradfield, M. Fisher, and M. Pauly. Game-Theoretic Interpretations of

Executable Logic. (Unpublished paper.).
61. M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. The Knowledge

Engineering Review, 10(2):115–152, 1995.
62. M. Wooldridge and A. Rao, editors. Foundations of Rational Agency. Applied Logic Series.

Kluwer Academic Publishers, March 1999.

Agent-Based Computing and Programming of
Agent Systems

Michael Luck1, Peter McBurney2, and Jorge Gonzalez-Palacios1

1 School of Electronics and Computer Science,
University of Southampton, United Kingdom

mml@ecs.soton.ac.uk, jlgp03r@ecs.soton.ac.uk
2 Department of Computer Science,

University of Liverpool, United Kingdom
p.j.mcburney@csc.liv.ac.uk

Abstract. The concepts of autonomous agent and multi-agent system
provide appropriate levels of abstraction for the design, implementation
and simulation of many complex, distributed computational systems,
particularly those systems open to external participants. Programming
such agent systems presents many difficult challenges, both conceptually
and practically, and addressing these challenges will be crucial for the
development of agent technologies. We discuss, at a general level, some
of the issues involved in programming multi-agent and open, distributed
systems, drawing on the recently-published AgentLink III Roadmap of
Agent Based Computing Technologies.

1 Introduction

Since Shoham’s seminal paper [14] on agent-oriented programming in 1993, pro-
gramming of agent systems has been a key focus of interest. Certainly, the issues
surrounding the programming of agent systems had been considered earlier, but
Shoham’s work marked a key point in identifying agent-oriented programming
as a distinct paradigm in a way that had not been done previously. Yet program-
ming agent systems is in fact a broader area that is not restricted to program-
ming paradigms, but includes a whole host of issues ranging from methodological
concerns for developers to the specific agent architectures that are required for
particular interpreters for agent systems. The purpose of this paper is neither
to review the field of programming of agent systems, nor to provide an analysis
of particular problems in the area, but more generally to examine the broader
context for programming of agents systems in relation to the field of agent-based
computing.

As we have argued previously [11], agent technologies can be considered from
three perspectives: as a design metaphor; as a source of distinct technologies;
and as a simulation tool. Interestingly, the programming of agent systems can
be considered in relation to each of these perspectives. First, the programming
of agent systems is clearly related to the design metaphor in the development of
systems involving large numbers of interacting autonomous components. Second,

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 23–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 M. Luck, P. McBurney, and J. Gonzalez-Palacios

programming such systems requires the use of particular techniques to develop
appropriate architectures and interaction mechanisms. And third, multi-agent
systems may also be used as simulations of a system under construction or
in operation, thereby assisting developers or controllers with programming of
multi-agent systems.

As a design metaphor, agents provide designers and developers with a way
of structuring an application around autonomous, communicative elements, and
lead to the construction of software tools and infrastructure to support systems
development. In this sense, they offer a new and often more appropriate route to
the development of complex systems, especially in open and dynamic environ-
ments. In order to support this view of systems development, particular tools and
techniques need to be introduced. For example, methodologies to guide analysis
and design are required; agent architectures are needed for the design of individ-
ual components, and supporting infrastructure (including more general, current
technologies, such as Web Services) must be integrated.

As a source of technologies, agent-based computing spans a range of specific
techniques and algorithms for dealing with interactions with others in dynamic
and open environments. These include issues such as balancing reaction and
deliberation in individual agent architectures, learning from and about other
agents in the environment and user preferences, finding ways to negotiate and
cooperate with agents and developing appropriate means of forming and manag-
ing coalitions. Moreover, the adoption of agent-based approaches is increasingly
influential in other domains. For example, multi-agent systems can provide faster
and more effective methods of resource allocation in complex environments, such
as the management of utility networks, than any human-centred approach.

As a simulation tool, multi-agent systems can also play a role in programming
MAS. One common means to develop a complex, computational system is to pro-
ceed through construction of a sequence of prototypes, in a Rapid Applications
Development (RAD)-style approach. In such an approach, the successive proto-
types effectively act as simulations of the final system under construction; they
may be used by the system designers and developers as means to understand sys-
tem properties under differing conditions or parameter values, and to learn about
the system dynamics as agents enter, interact and leave the system. If adequate
formal verification methods for multi-agent systems existed, such simulations
would not be necessary, but most systems are too complex for the current state-
of-the-art in formal verification. For example, the development of online auction
systems relies on mathematical game theory for the design of the precise rules
of auctions (what economists call mechanism design). However, with any more
than just a handful of participants, many common auction institutions result in
mathematics that is not tractable, and for which analytic solutions may not be
known to exist. Thus, auction designers are forced to make assumptions about
the participants (for example, that they are utility-maximisers with unbounded
processing capabilities) or the mechanism (for example, that communication be-
tween participants is instantaneous) that do not apply in the real world. More-
over, designers of computational auction systems face problems not envisioned

Agent-Based Computing and Programming of Agent Systems 25

by game theory pioneers, such as malicious participants or participants with
buggy code. Accordingly, designers and developers of complex computational
systems often build prototypes in which to simulate system performance.1 Sim-
ilarly, system controllers may use a simulation of a system in order to diagnose
and manage system performance; this is common practice, for example, in util-
ity networks, where a controller may have end-to-end responsibility for quality
of service levels provided over physical infrastructures that are not all within
the same network. As with the designers’ use of MAS systems for simulation,
both the end-system being simulated and the system used for simulation are
multi-agent systems.

Although this paper does not delve deeply into such distinctions, these are a
useful means of drawing out the relevant current and future issues that must be
addressed for agent-based computing to see more general application, and for
programming and development frameworks to consider if they are to move out
of the laboratory, or even provide an alternative to the current de facto use of
object technologies for building agents systems.

Instead, however, the paper is structured as follows. First, in Section 2, we
present in outline form a structure of different levels of abstraction of multi-agent
system, which provides a framework through which research and development
in agent technologies may be viewed. Then, in Section 3, we discuss agent pro-
gramming languages and methods, while in Section 4, we consider infrastructure
and supporting technologies. Specific aspects of programming open multi-agent
systems are then discussed in Section 5, and the paper concludes in Section 6.

2 Levels of Abstraction

There are several distinct high-level trends and drivers, such as Grid computing,
ambient intelligence and service-oriented computing, for example, which have led
to a heightened interest in agent technologies, and in the low-level computing
infrastructures that make them practically feasible. In this context, we consider
the key technologies and techniques required to design and implement agent
systems that are the focus of current research and development. Because agent
technologies are mission-critical for engineering and for managing certain types of
information systems, such as Grid systems and systems for ambient intelligence,
the technologies and techniques discussed below will be important for many
applications, even those not labeled as agent systems. These technologies can be
grouped into three categories, according to the scale at which they apply.

– Organisation-level: at the top level are technologies and techniques related
to agent societies as a whole. Here, issues of organisational structure, trust,
norms and obligations, and self-organisation in open agent societies are

1 For example, Guala [5] describes the simulation activities — both computational
and human — used by economists who advised the US Federal Communications
Commission on the development of online mobile spectrum auctions, undertaken
since 1994.

26 M. Luck, P. McBurney, and J. Gonzalez-Palacios

paramount. Once again, many of these questions have been studied in other
disciplines — for example, in sociology, anthropology and biology. Draw-
ing on this related work, research and development is currently focused on
technologies for designing, evolving and managing complex agent societies.

– Interaction-level: these are technologies and techniques that concern commu-
nications between agents — for example, technologies related to communi-
cation languages, interaction protocols and resource allocation mechanisms.
Many of the problems that these technologies aim to solve have been stud-
ied in other disciplines, including economics, political science, philosophy
and linguistics. Accordingly, research and development is drawing on this
prior work to develop computational theories and technologies for agent in-
teraction, communication and decision-making.

– Agent-level: these are technologies and techniques concerned only with indi-
vidual agents — for example, procedures for agent reasoning and learning.
Problems at this level have been the primary focus of artificial intelligence
since its inception, aiming to build machines that can reason and operate
autonomously in the world. Agent research and development has drawn ex-
tensively on this prior work, and most attention in the field of agent-based
computing now focuses at the previous two higher levels.

This analysis parallels the abstraction of Zambonelli and Omicini [17] in refer-
ring to the macro, meso and micro levels of agent-oriented software engineering,
respectively. Within these levels of abstraction, we can consider technologies pro-
viding infrastructure and supporting tools for agent systems, such as agent pro-
gramming languages and software engineering methodologies. These supporting
technologies and techniques provide the basis for both the theoretical under-
standing and the practical implementation of agent systems, and are considered
in more detail in the next section. In particular, we outline key issues, and con-
sider likely and important challenges to move forward the technology, in research,
development and application.

3 Agent Programming

3.1 Agent Programming Languages

Most research in agent-oriented programming languages is based on declarative
approaches, mostly logic based. Imperative languages are in essence inappro-
priate for expressing the high-level abstractions associated with agent systems
design; however, agent-oriented programming languages should (and indeed tend
to) allow for easy integration with (legacy) code written in imperative languages.
From the technological perspective, the design and development of agent-based
languages is also important.

Currently, real agent-oriented languages (such as BDI-style ones) are limited,
and used largely for research purposes; apart from some niche applications, they
remain unused in practice. However, recent years have seen a significant increase
in the degree of maturity of such languages, and major improvements in the

Agent-Based Computing and Programming of Agent Systems 27

development platforms and tools that support them [1]. Current research em-
phasises the role of multi-agent systems development environments to assist in
the development of complex multi-agent systems, new programming principles
to model and realise agent features, and formal semantics for agent programming
languages to implement specific agent behaviours.

A programming language for multi-agent systems should respect the prin-
ciple of separation of concerns and provide dedicated programming constructs
for implementing individual agents, their organisation, their coordination, and
their environment. However, due to the lack of dedicated agent programming
languages and development tools (as well as more fundamental concerns relat-
ing to the lack of clear semantics for agents, coordination, etc), the construction
of multi-agent systems is still a time-consuming and demanding activity.

One key challenge in agent-oriented programming is to define and implement
some truly agent-oriented languages that integrate concepts from both declar-
ative and object-oriented programming, to allow the definition of agents in a
declarative way, yet supported by serious monitoring and debugging facilities.
These languages should be highly efficient, and provide interfaces to existing
mainstream languages for easy integration with code and legacy packages. While
existing agent languages already address some of these issues, further progress is
expected in the short term, but thorough practical experimentation in real-world
settings (particularly large-scale systems) will be required before such languages
can be adopted by industry, in the medium to long term.

In addition to languages for single agents, we also need languages for high-
level programming of multi-agent systems. In particular, the need for expressive,
easy-to-use, and efficient languages for coordinating and orchestrating intelligent
heterogeneous components is already pressing and, although much research is
already being done, the development of an effective programming language for
coordinating huge, open, scalable and dynamic multi-agent systems composed
of heterogeneous components is a longer term goal.

3.2 Formal Methods

While agent-oriented programming ultimately seeks practical application, the
development of appropriate languages demands an associated formal analysis.
While the notion of an agent acting autonomously in the world is intuitively
simple, formal analysis of systems containing multiple agents is inherently com-
plex. In particular, to understand the properties of systems containing multiple
actors, powerful modelling and reasoning techniques are needed to capture pos-
sible trajectories of the system. Such techniques are required if agents and agent
systems are to be modelled and analysed computationally.

Research in the area of formal models for agent systems attempts to represent
and understand properties of the systems through the use of logical formalisms
describing both the mental states of individual agents and the possible interac-
tions in the system. The logics used are often logics of belief or other modalities,
along with temporal modalities, and such logics require efficient theorem-proving
or model-checking algorithms when applied to problems of significant scale.

28 M. Luck, P. McBurney, and J. Gonzalez-Palacios

Recent efforts have used logical formalisms to represent social properties, such
as coalitions of agents, preferences and game-type properties.

It is clear that formal techniques such as model checking are needed to test, de-
bug and verify properties of implemented multi-agent systems. Despite progress,
there is still a real need to address the issues that arise from differences in agent
systems, in relation to the paradigm, the programming languages used, and es-
pecially the design of self-organising and emergent behaviour. For the latter, a
programming paradigm that supports automated checking of both functional
and non-functional system properties may be needed. This would lead to the
need to certify agent components for correctness with respect to their specifi-
cations. Such a certification could be obtained either by selecting components
that have already been verified and validated off-line using traditional techniques
such as inspection, testing and model checking or by generating code automati-
cally from specifications. Furthermore, techniques are needed to ensure that the
system still executes in an acceptable, or safe, manner during the adaptation
process, for example using techniques such as dependency analysis or high level
contracts and invariants to monitor system correctness before, during and after
adaptation.

4 Infrastructure and Supporting Technologies

Any infrastructure deployed to support the execution of agent applications, such
as those found in ambient and ubiquitous computing must, by definition, be
long lived and robust. In the context of self-organising systems, this is further
complicated, and new approaches supporting the evolution of the infrastructures,
and facilitating their upgrade and update at runtime, will be required. Given
the potentially vast collection of devices, sensors, and personalised applications
for which agent systems and self-organisation may be applicable, this update
problem is significantly more complex than so far encountered. More generally,
middleware, or platforms for agent interoperability, as well as standards, will be
crucial for the medium term development of agent systems.

4.1 Interoperability

At present, the majority of agent applications exist in academic and commercial
laboratories, but are not widely available in the real world. The move out of the
laboratory is likely to happen over the next ten years, but far greater automation
than is currently available in dealing with knowledge management is needed for
information agents. In particular, this demands new web standards that enable
structural and semantic description of information; and services that make use
of these semantic representations for information access at a higher level. The
creation of common ontologies, thesauri or knowledge bases plays a central role
here, and merits further work on the formal descriptions of information and
actions, and, potentially, a reference architecture to support the higher level
services mentioned above.

Agent-Based Computing and Programming of Agent Systems 29

Distributed agent systems that adapt to their environment must both adapt
individual agent components and coordinate adaptation across system layers
(i.e. application, presentation and middleware) and platforms. In other words
interoperability must be maintained across possibly heterogeneous agent com-
ponents during and after self-organisation actions and outcomes. Furthermore,
agent components are likely to come from different vendors and hence the de-
veloper may need to integrate different self-organisation mechanisms to meet
application requirements. The problem is further complicated by the diversity of
self-organisation approaches applicable at different system layers. In many cases,
even solutions within the same layer are often not compatible. Consequently, de-
velopers need tools and methods to integrate the operation of agent components
across the layers of a single system, among multiple computing systems, as well
as between different self-organisation frameworks.

4.2 Agent Oriented Software Engineering Methodologies

Despite a number of languages, frameworks, development environments, and
platforms that have appeared in the literature, implementing multi-agent sys-
tems is still a challenging task. To manage the complexity of multi-agent systems
design and implementation, the research community has produced a number of
methodologies that aim to structure agent development. However, even if prac-
titioners follow such methodologies during the design phase, there are difficulties
in the implementation phase, partly due to the lack of maturity in both method-
ologies and programming tools. There are also difficulties in implementation due
to: a lack of specialised debugging tools; skills needed to move from analysis
and design to code; the problems associated with awareness of the specifics of
different agent platforms; and in understanding the nature of what is a new and
distinct approach to systems development.

In relation to open and dynamic systems, new methodologies for systemati-
cally considering self-organisation are required. These methodologies should be
able to provide support for all phases of the agent-based software engineering
lifecycle, allowing the developer to start from requirements analysis, identify
the aspects of the problem that should be addressed using self-organisation
and design and implement the self-organisation mechanisms in the behaviour
of the agent components. Such methodologies should also encompass techniques
for monitoring and controlling the self-organising application or system once
deployed.

4.3 Integrated Development Environments

In general, integrated development environment (IDE) support for developing
agent systems is rather weak, and existing agent tools do not offer the same level
of usability as state-of-the-art object oriented IDEs. One main reason for this is
the previous unavoidable tight coupling of agent IDEs and agent platforms, which
results from the variety of agent models, platforms and programming languages.

30 M. Luck, P. McBurney, and J. Gonzalez-Palacios

This is now changing, however, with an increased trend towards modelling rather
than programming.

With existing tools, multi-agent systems often generate a huge amount of
information related to the internal state of agents, messages sent and actions
taken, but there are not yet adequate methods for managing this information
in the context of the development process. This has impacts both for dealing
with the information generated in the system and for obtaining this information
without altering the design of the agents within it.

Platforms like JADE provide general introspection facilities for the state of
agents and for messages, but they enforce a concrete agent architecture that
may not be appropriate for all applications. Thus, tools for inspecting any agent
architecture, analogous to the remote debugging tools in current object-oriented
IDEs, are needed, and some are now starting to appear [2]. Extending this to
address other issues related to debugging for organisational features, and for
considering issues arising from emergence in self-organising systems will also be
important in the longer term. The challenge is relevant now, but will grow in
importance as the complexity of installed systems increases further.

The inherent complexity of agent applications also demands a new generation
of CASE tools to assist application designers in harnessing the large amount of
information involved. This requires providing reasoning at appropriate levels
of abstraction, automating the design and implementation process as much as
possible, and allowing for the calibration of deployed multi-agent systems by
simulation and run-time verification and control.

More generally, there is a need to integrate existing tools into IDEs rather
than starting from scratch. At present there are many research tools, but little
that integrates with generic development environments, such as Eclipse; such
advances would boost agent development and reduce implementation costs. In-
deed, developing multi-agent systems currently involves higher costs than using
conventional paradigms due to the lack of supporting methods and tools.

The next generation of computing system is likely to demand large num-
bers of interacting components, be they services, agents or otherwise. Cur-
rent tools work well with limited numbers of agents, but are generally not yet
suitable for the development of large-scale (and efficient) agent systems, nor
do they offer development, management or monitoring facilities able to deal
with large amounts of information or tune the behaviour of the system in such
cases.

4.4 Metrics

Metrics for agent-oriented software are also needed: engineering always implies
some activity of measurement, and traditional software engineering already uses
widely applied measuring methods to quantify aspects of software such as
complexity, robustness and mean time between failures. However, the dynamic
nature of agent systems, and the generally non-deterministic behaviour of
self-organising agent applications deem traditional techniques for measurement
and evaluation inappropriate. Consequently, new measures and techniques for

Agent-Based Computing and Programming of Agent Systems 31

both quantitatively and qualitatively assessing and classifying multi-agent
systems applications (be they self-organising or not) are needed.

5 Open Systems

5.1 Introduction

The advent of low-cost computation has driven the proliferation of computers
and computational devices over the last two decades, and with them, a pro-
liferation of physical networks. With the interconnections provided by physical
networks come requirements for computational societies — means of distributing
data gathering, processing intelligence, resource allocation and system control,
as in ambient intelligence, pervasive computing, Grid computing, etc. These
computational societies increasingly require applications which are large-scale,
decentralised, proactive, situated and open.

However, traditional approaches (for example, object-oriented and component-
based computing) have fallen short in engineering these types of application
because they utilise too low a level of abstraction, focusing on the “physical
distribution of data, resources and processes,” rather than on the “logical distri-
bution of responsibility, control and regulation,” to quote Pitt’s apt distinction
[13, p. 140]. As a consequence, alternative approaches have been proposed, with
a consensus emerging that the concept of autonomous agency provides the ap-
propriate level of abstraction to successfully develop these types of systems [8].
As mentioned above, this has led to the appearance of several agent-oriented
software methodologies, which aim to support development of open systems.

More specifically, an open system is a one that allows run-time incorpora-
tion of components that may not be known at design time. In addition, the
components of an open system are typically not designed and developed by the
same design team or for the same stakeholders, and different teams may use
different development tools or adopt different policies or objectives, leading to
the appearance of self-interested components. In whatever way or for whom the
components are developed, they will normally have the right to access the cor-
responding facilities provided by the system, as well as having an obligation to
adhere to the system’s rules.

5.2 Specification of Open Systems

Even though several methodologies exist to support the development of open
systems, these present drawbacks when dealing with the incorporation of new
components to an existing system. In fact, the phase of operation of a system is
generally not considered in methodologies. For example, despite the importance
of providing developers with a description of system properties, the problem of
what must be present in such a description and how it must be described has
been scarcely addressed.

Although each system can have its own form of specification (comprising a list
of the features provided by the system, as well as the requirements to join it), a

32 M. Luck, P. McBurney, and J. Gonzalez-Palacios

common model of specification would bring multiple benefits. First, by using pre-
defined models, the time spent on creating specifications can be reduced. Second,
using common models would promote the creation of standards, of which much
has already been written, and much work undertaken. Finally, by defining and
structuring the description of a system, the model of specification is valuable
in defining the inputs of run-time components that check system properties,
for example that new agents comply with required characteristics, and do not
violate operating principles.

In particular, because of the autonomous and pro-active nature of the com-
ponents (agents) of multi-agent systems, such specifications are likely to be vital
in appropriately enabling and regulating self-interested behaviour in open sys-
tem. This suggests that tools and techniques for the development of open systems
(including the above discussed methodologies, design tools, monitoring tools, de-
buggers, platforms, and so on) will be required if the requirements of large-scale
open systems that underlie visions of Grid computing and similar paradigms are
to be satisfied. In addition, a focus on standardisation of abstractions, operating
models, interaction protocols and other patterns of activity will be needed.

In relation to these issues, we outline below some further concerns in the
context of the current situation that require further research and development.

5.3 Methodologies

Current methodologies are not complete or detailed enough. Even if we restrict
our attention only to the analysis and design phases of the development cy-
cle, very few methodologies cover all the corresponding activities. For example,
SODA does not address intra-agent issues, Gaia does not consider how the ser-
vices an agent provides are realised [15], Gaia extended with organisational ab-
stractions is not sufficiently elaborated [16], the models of MAS-CommonKADS
require further improvement, as recognised by its developers [7], and the evalu-
ation of MESSAGE reports that it is not complete nor mature [9].

5.4 Agent Architectures

Despite the focus on development and programming, it is impossible not to
consider specific agent architectures during the design and programming of in-
dividual agents. Different approaches are taken by different methodologies, with
three significant styles as follows.

– For some methodologies, architectures are outside their scope since they were
designed only for analysis and high-level design, for example, Gaia [15].

– Some methodologies and languages are tied to a specific architecture. For
example the methodological work of Kinny, Georgeff and Rao [10] is tied to
the BDI architecture.

– Some other methodologies are tied to a specific architecture but it is sug-
gested that the same principles can be applied to other architectures, or that
other architectures can be adapted to fit. For example, MESSAGE [9] uses
the generic Layer Architecture for this purpose.

Agent-Based Computing and Programming of Agent Systems 33

While there are clearly efforts to incorporate architectures into methodolo-
gies, no methodology satisfactorily incorporates even a subset of the most popu-
lar agent architectures. Conversely, the development of programming languages
seems to require commitment to particular architectures (see, for example, 3APL
[6], AgentSpeak(L) [3], and AGENT-0[14]), yet mapping from one to another is
problematic. The variety of domains of application of agent-based computing,
especially in open systems, requires programming languages such as these to be
broadly applicable; for this to be the case, some solution, technical or consensual,
is needed.

5.5 Interactions in Open Systems

Interactions are a key element in both the modelling and operation of multi-agent
systems, since agents achieve their goals by interacting with other agents. In the
case of open systems, interaction mechanisms should be flexible enough to allow
new agents to be incorporated into the system. However, most methodologies
neither facilitate nor obstruct the development of open systems, and some effort
is required to explicitly consider this issue. For example, enriching the analysis
and upper design phases of MESSAGE [9] with the organisational abstractions
recommended by Zambonelli et al. [16] could lead to a methodology suitable for
tackling open systems.

6 Conclusions

In any high-technology domain, the systems deployed in commercial or industrial
applications tend to embody research findings somewhat behind the leading edge
of academic and industrial research. Multi-agent systems are no exception to this,
with currently-deployed systems having features found in published research and
prototypes of three to five years ago. By looking at current research interests
and areas of focus, we were therefore able in [12] to extrapolate future trends
in deployed systems, which we classified into four broad phases of development
of multi-agent system technology over the next decade; we summarise these
phases here.

The four phases are, of necessity, only indicative, since there will always be
some companies and organisations which are leading users of agent technologies,
pushing applications ahead of these phases, while many other organisations will
not be as advanced in their use of the technology. We aim to describe the majority
of research challenges at each time period.

6.1 Phase 1: Current

Multi-agent systems are currently typically designed by one design team for
one corporate environment, with participating agents sharing common high-
level goals in a single domain. These systems may be characterised as closed. (Of

34 M. Luck, P. McBurney, and J. Gonzalez-Palacios

course, there is also work on individual competitive agents for automated negoti-
ation, trading agents, and so forth, but typically also constrained by closed envi-
ronments.) The communication languages and interaction protocols are typically
in-house protocols, defined by the design team prior to any agent interactions.
Systems are usually only scalable under controlled, or simulated, conditions. De-
sign approaches, as well as development platforms, tend to be ad hoc, inspired
by the agent paradigm rather than using principled methodologies, tools or lan-
guages. Although this is still largely true, there is now an increased focus on, for
example, taking methodologies out of the laboratory and into development envi-
ronments, with commercial work being done on establishing industrial-strength
development techniques and notations. As part of this effort, some platforms
now come with their own protocol libraries and force the use of standardised
messages, taking one step towards the short-term agenda.

6.2 Phase 2: Short-Term Future

In the next phase of development, systems will increasingly be designed to cross
corporate boundaries, so that the participating agents have fewer goals in com-
mon, although their interactions will still concern a common domain, and the
agents will be designed by the same team, and will share common domain knowl-
edge. Increasingly, standard agent communication languages, such as FIPA ACL
[4], will be used, but interaction protocols will be mixed between standard and
non-standard ones. These systems will be able to handle large numbers of agents
in pre-determined environments, such as those of Grid applications. Development
methodologies, languages and tools will have reached a degree of maturity, and
systems will be designed on top of standard infrastructures such as web services
or Grid services, for example.

6.3 Phase 3: Medium-Term Future

In the third phase, multi-agent systems will permit participation by heteroge-
neous agents, designed by different designers or teams. Any agent will be able to
participate in these systems, provided their (observable) behaviour conforms to
publicly-stated requirements and standards. However, these open systems will
typically be specific to particular application domains, such as B2B eCommerce
or bioinformatics. The languages and protocols used in these systems will be
agreed and standardised, perhaps drawn from public libraries of alternative pro-
tocols that will, nevertheless, likely differ by domain. In particular, it will be
important for agents and systems to master this semantic heterogeneity. Sup-
porting this will be the increased use of new, commonly agreed modelling lan-
guages (such as Agent-UML, an extension of UML 2.0), which will promote the
use of IDEs and, hopefully, start a harmonisation process as was the case for
objects with UML.

Systems will scale to large numbers of participants, although typically only
within the domains concerned, and with particular techniques (such as domain-
bridging agents), to translate between separate domains. System development

Agent-Based Computing and Programming of Agent Systems 35

will proceed by standard agent-specific methodologies, including templates and
patterns for different types of agents and organisations. Agent-specific program-
ming languages and tools will be increasingly used, making the use of formal
verification techniques possible to some extent. Semantic issues related to, for
example, coordination between heterogeneous agents, access control and trust,
are of particular importance here. Also, because these systems will typically be
open, issues such as robustness against malicious or faulty agents, and finding
an appropriate trade-off between system adaptability and system predictability,
will become increasingly important.

6.4 Phase 4: Long-Term Future

The fourth phase in this projected future will see the development of open
multi-agent systems spanning multiple application domains, and involving het-
erogeneous participants developed by diverse design teams. Agents seeking to
participate in these systems will be able to learn the appropriate behaviour for
participation in the course of interacting, rather than having to prove adher-
ence before entry. Selection of communications protocols and mechanisms, and
of participant strategies, will be undertaken automatically, without human in-
tervention. Similarly, ad hoc coalitions of agents will be formed, managed and
dissolved automatically. Although standard communication languages and inter-
action protocols will have been available for some time, systems in this phase
will enable these mechanisms to emerge by evolutionary means from actual par-
ticipant interactions, rather than being imposed at design time. In addition,
agents will be able to form and re-form dynamic coalitions and virtual organisa-
tions on-the-fly and pursue ever-changing goals through appropriate interaction
mechanisms for distributed cognition and joint action. In these environments,
emergent phenomena will likely appear, with systems having properties (both
good and bad) not imagined by the initial design team. Multi-agent systems will
be able, adaptable and adept in the face of such dynamic, indeed turbulent, envi-
ronments, and they will exhibit many of the self-aware characteristics described
in the autonomic computing vision.

By this phase, systems will be fully scalable in the sense that they will not
be restricted to arbitrary limits (on agents, users, interaction mechanisms, agent
relationships, complexity, etc). As previously, systems development will proceed
by use of rigorous agent-specification design methodologies, in conjunction with
programming and verification techniques.

6.5 Realization

Of course, achieving the ambitious future vision outlined in these four phases
of development will not proceed without obstacles. Significant research, devel-
opment and deployment challenges exist for both academic researchers and for
commercial developers of agent computing technologies. Languages and method-
ologies for programming autonomous agents and multi-agent systems are among

36 M. Luck, P. McBurney, and J. Gonzalez-Palacios

the most important of these, and will remain at the centre of agent-based
computing for at least the next decade.

Acknowledgements

This paper is in part based on, and borrows heavily from, the AgentLink III
Roadmap [12] which, in turn, drew on inputs and contributions from the
PROMAS Technical Forum Group (as well as others) during the lifetime of
AgentLink III.

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Springer, 2005.

2. J. Botia, A. Lopez-Acosta, and A. Gomez-Skarmeta. Aclanalyser: A tool for de-
bugging multi-agent systems. In Proceedings of the Sixteenth European Conference
on Artificial Intelligence, pages 967–968, 2004.

3. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation, 8(3):233–260, 1998.

4. FIPA. Communicative Act Library Specification. Standard SC00037J, Foundation
for Intelligent Physical Agents, 3 December 2002.

5. F. Guala. Building economic machines: The FCC Auctions. Studies in the History
and Philosophy of Science, 32(3):453–477, 2001.

6. K. V. Hindriks, F. S. de Boer, W. van der Hoek, , and J-J. Ch. Meyer. Formal
semantics for an abstract agent programming language. In Intelligent Agents IV:
Proceedings of the Fourth International Workshop on Agent Theories, Architectures
and Languages, Lecture Notes in Artificial Intelligence, Volume 1365, pages 215–
229. Springer-Verlag, 1998.

7. C. A. Iglesias, M. Garijo, J. C. Gonzalez, and J. R. Velasco. Analysis and design
of multiagent systems using mas-commonkads. In M. P. Singh, A. Rao, and M. J.
Wooldridge, editors, Intelligent Agents IV: Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages, Lecture Notes in Ar-
tificial Intelligence, Volume 1365, pages 313–326. Springer-Verlag, 1998.

8. N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41, 2001.

9. P. Kearney, J. Stark, G. Caire, F. J. Garijo, J. J. Gomez Sanz, J. Pavon, F. Leal,
P. Chainho, and P. Massonet. Message: Methodology for engineering systems of
software agents. Technical Report EDIN 0223-0907, Eurescom, 2001.

10. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for
systems of bdi agents. In W. van der Velde and J. Perram, editors, Agents Breaking
Away: Proceedings of the Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Lecture Notes in Artificial Intelligence, Volume
1038, pages 56–71. Springer-Verlag, 1996.

11. M. Luck, P. McBurney, and C. Preist. A manifesto for agent technology: To-
wards next generation computing. Autonomous Agents and Multi-Agent Systems,
9(3):203–252, 2004.

12. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction. A Roadmap for Agent Based Computing. AgentLink III, 2005.

Agent-Based Computing and Programming of Agent Systems 37

13. J. Pitt. The open agent society as a platform for the user-friendly information
society. AI and Society, 19:123–158, 2005.

14. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

15. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

16. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an ab-
straction for the analysis and design of multi-agent systems. International Journal
of Software Engineering and Knowledge Engineering, 11(3):303–328, 2001.

17. F. Zambonelli and A. Omicini. Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–283,
2004.

Part II

Multi-agent Techniques and
Issues

Dynamic Self-control of Autonomous Agents

Caroline Chopinaud1,2, Amal El Fallah Seghrouchni2, and Patrick Taillibert1

1 Thales Airborne Systems, 2 avenue Gay Lussac 78851 Elancourt, France
{caroline.chopinaud, patrick.taillibert}@fr.thalesgroup.com

2 LIP6, 8 rue du Capitaine Scott 75015 Paris, France
amal.elfallah@lip6.fr

Abstract. Being able to trust in a system behavior is of prime impor-
tance, particularly within the context of critical applications as embed-
ded or real-time systems. We want to ensure that a multiagent system
has a behavior corresponding to what its developers expect. The use of
standard techniques to validate a system does not guarantee it against
the occurence of errors in real condition of execution. So, we propose
an additional approach of dynamic self-monitoring and self-regulation
such that an agent might control, in real condition, its own behavior.
Our approach consists in providing the agents with a set of laws that
they have to respect throughout their execution. This paper presents a
framework which generates agents capable of self-control from an agent
model, a behavior description and laws. For that, the framework modifies
the agents program by injecting, some checkpoints allowing the detec-
tion of particular events. The laws are represented in the agents by Petri
nets connected to the checkpoints in order to verify the agreement be-
tween their behavior and the laws. The principles of the framework are
illustrated on an example.

1 Introduction

Autonomy is an essential feature of cognitive agents. We will consider the auton-
omy as the ability of an agent to take its decisions without the help of another
entity [1]. From the developer’s point of view, it means that the implementation
of an agent requires to take into account that the behavior of the other agents
cannot be predicted with certainty. This perspective brings up the problem of
the confidence that we can have in a system behavior. When critical applications
are concerned, the use of such system might raise objections because of this un-
predictability. So, it is essential to ensure that MAS and its agents respect some
behavioral requirements which are essential for the application.

The aim of our research is to ensure that a MAS behavior will fulfill with these
requirements. A first approach could be the use of classical methods of validation,
such as tests, Model Checking [2] and automatic demonstration to validate a
multiagent system. But, these techniques are never in the position to detect all
possible errors and let situations in which errors may occur at runtime. That is
the reason why we will consider an on-line verification of the system behavior.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 41–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

This verification consists in monitoring and regulating the system behavior to
prevent its failure. We call this verification the agent control.

Moreover, we think that the agents are better placed to make themselves the
control of their behavior. So, we provide the agents with the means to monitor
their behavior and, thanks to their capabilities of reasoning, they can regulate
their behavior in order to avoid undesirable behaviors.

Although it is possible for a developer to insert the control code into the
agents, a manual instrumentation of a system program, to insert probes, is hard,
time-consuming and prone to error [12]. When several agents are concerned, it
is worst. So, upgrading the agents behavior and control becomes hard, if we
consider that the monitoring code is fragmented in the agent program and also
distributed among the agents. On the basis of automatic instrumentation for
monitoring distributed systems, a possible solution could be to automatically
modify the agent program in order to introduce the control and so, facilitate
the work of the developer. We are particularly interested in monitoring software
which consists in inserting software probes into the program to detect events [3].
The automation of the insertion can take two forms : (1) the developer uses a
metalanguage [10] or a routines library [6] allowing the insertion of probes in
a transparent way; (2) the insertion will be made by compiler from the speci-
fication of the interested events [9]. We focus on the last form and we propose
a generator which creates agents being able to check their own behavior from
a description of the requirements associated with the agents and their behavior
program.

In the section 2 we will present the principles of the control of autonomous
agent. An example will be described in the section 3 to illustrate during the
rest of the paper the operation of the generator. In the section 4, we will de-
scribe the SCAAR framework allowing the generation of self-controlled agents.
In this part we will focus on laws concepts and generation of the control from
these laws.

2 Control of Autonomous Agent

We consider controlling MAS relies on the monitoring of agents behavior during
the MAS execution and also the regulation when an error occurs. The idea it to
make an automatic insertion into the agents of the necessary means of control,
allowing agents to monitor themselves and detect undesirable behaviors.

2.1 Behavior Verification

Making a model of a whole MAS and its agents is not conceivable because
of its complexity (indeterminism, state explosion, distributed nature). So, we
propose to use norms to express properties about the agents behavior. In general,
norms [15] define constraints on the agents behavior in order to guarantee a
social order. An agent decide to respect or not a norm by restricting its set
of possible actions. We use laws to describe desired or dreaded behaviors or

Dynamic Self-control of Autonomous Agents 43

situations. Laws are norms that don’t be taken into account by the agents at the
decision process (i.e. the agents can act as they want and our approach consists
in verifying if the chosen action respects the laws afterwards) because we want to
distinguish the agent implementation and the laws/control description. The laws
represents signification or critical requirements of the system execution. An agent
capable of self-control checks that laws are respected throughout its execution.
But monitoring is not enough, when an agent detects the transgression of a law,
it must regulate its behavior from transgression information.

In oder that the agent can deduce their behavior when they are informed of
a law transgression, we suppose that the laws are known by the agents. Either
the developer constructs the agents from requirements, consequently he verifies
that the agents respect the laws by construction, or the agents have a represen-
tation of this laws that they attempt to respect throughout their execution. So
our approach consists in adding a dynamic verification to make sure that the
developer correctly implements the agents and the latter always respect the laws
once running in multiagent context.

2.2 Level of Laws

We wish that the person who decides of the laws does not be necessarily the
developer. In general the customers define the requirements and the developers
implement the system form these requirements. Also, the customer is in position
to know what is important to verify without to know the agents implementation.
So, we suppose that the laws are expressed in natural language by the customer
and translated by an expert in a description language. Therefore, it is necessary
to express the laws at an abstraction level understandable by the customer and
allowing an easy translation.

Moreover, for a sake of generality, we would provide a control mechanism
for several agent models. The level of law must permit to include several kinds
of agent models. So, the laws must state general concepts representing the
agent model and the application. The model designer provides a set of concepts
representing the model specificities and the system designer/developer provides
typical application concepts. From this set of concepts, the expert can describe
the laws expressed by the customer by using the description language.

2.3 Control Enforcement

The control enforcement is divided in five steps (Fig.1):

1. The model developer must provide a description of the concepts and their
hooks with the model implementation.

2. The customer provides the set of laws that he wants to be verified throughout
the system execution. These laws can concern one or several agents.

3. The system designer/developer describes the concepts representing the ap-
plication.The system developer implements the agents form the set of laws
or/and the agents use the laws to deduce their behavior at runtime. He
provides the agents with strategies of regulation associated with each laws.

44 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Fig. 1. Aspects of agent control

4. An expert translates the laws expressed in (2) by using a description lan-
guage. The laws state concepts describes in (1) and (3).

5. The generator translates laws, written in a particular language, into expres-
sions using deontic logic. From these expressions, the generator deduces the
Petri nets representing the laws. Also, the generator inserts control points
into the agents program to allow the detection of the expected events defined
in the laws. The generator provides the agents with a particular structure
to obtain self-controlled agents.

3 An Example

3.1 The Multiagent System

We introduce a simple multiagent system of problem resolution. MAS is con-
stituted of three kinds of agent : an agent A, used as an interface between the
user and the system; an agent B, assuming the management of the problems
forwarded by A; an agent C, resolving the problems sent by B. The agent model
used is a Petri net. The behavior of each agent is described in figure 2.

Fig. 2. The behavior of each agents

Dynamic Self-control of Autonomous Agents 45

3.2 Laws of the System

The customer expresses the laws of the system in English. We will take the
example of three laws which can be associated with the previous MAS :

L1: “anAagentmustnot sendmessageto aBagent at a rate greater than
one message per second”. For instance, this law ensures that the agent B can
follow the requests sent by the agent A and C can answer in a reasonable time.
L2: “a B agent must not create a C agent if another C agent is available
in the system”. This law prevents the agent B to create too many agents and
consequently prevents the application overload.
L3: “a C agent must receive consecutively a message about the wait-
ing time, a message of identification, the data of the problem without
any other interleaved messages”. This law allows the verification of com-
munication protocols used between the agents. In this case, the law concerns the
receiver agent which must receive three messages in a particular order without
another message between them.

4 SCAAR: A Framework for the Generation of
Self-controlled Autonomous Agents

SCAAR (Self-Controlled Autonomous Agent geneRator) is a framework allowing
the generation of agents capable of self-control. The generator uses the set of laws
associated to the agents, the set of concepts used in laws and injects the control
code into the agents program. The figure 3 represents the framework architecture
which consists of :

• Ontology: The set of concepts representing the agents models and the ap-
plication.

• Laws: The set of properties that the agents must respect.
• Agent Model: The hooks between the model description (the concepts)

and the model implementation.
• Agent Program: The code of agent behavior.
• Generator: The creator of the final agent from the previous elements.
• Self-controlled agent: The executable final agent. It monitors its own

behavior in order to verify if the laws are respected and regulate it if a law
is transgressed.

Fig. 3. The SCAAR Framework

46 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

4.1 Ontology

We saw that the laws are based on high-level concepts allowing the description of
agents and system specificity. So,we construct a basic ontology representing known
models used to construct agents. A set of agent concepts is provided by D.N. Lam
and K.S. Barber [8] for agent verification. The concepts proposed are: Goal, Belief,
Intention, Action, Event, Message. We take a part of this concepts (Goal, Action,
Message) and we add other ones which are more typical of agent models from our
point of view (BDI, CLAIM, personal agent models): Agent, Object, Knowledge,
Plan, Agent Creation, Message Sending, Message Receipt, Migration). We propose
to divide the concepts up into three categories: Agent, textscFeature and Ac-
tion. The figure 4 represents the distribution of the concepts.

Fig. 4. Agent Ontology

This set of basic concepts can be extended by the model designer to refine
the model description with sub-concepts or instances. The system designer can
extend the set of concepts defining the model with instances. In our example,
the agent model can be described with the basic concept of: ReceiptMessage,
SendingMessage, CreationAgent, Action, Agent. The refinement of the de-
scription is done with the concepts of: Statewhich is a sub-concept of Knowledge
and has a parameter : available or not, and ReceivedMessage which is a sub-
concept of Message.

4.2 The Laws

We can distinguish two kinds of law :

• One representing unwanted state or behavior of an agent. It allows the de-
tection of situations where an event occurs while it should not.

• One representing expected state or behavior of an agent. It allows the de-
tection of situations where an expected event does not occurs.

Dynamic Self-control of Autonomous Agents 47

We propose that our laws are expressed by using deontic operators, which are
widely used in the context of norms. So, we provide a language of law description
allowing the expression of prohibition and obligation to represent the two pre-
vious kinds of law. The language applies to events and states about the agents,
corresponding to the general basic concepts of Features and Action intro-
duced previously. An event can be the execution of an action or the change of a
feature value. A state represents the resulting state of an event. The expression
of time or temporal relation between the events and states is possible. We can
divide a law in three parts:

• CONCERNED AGENTS (CA): The statement of the agents concerned
by the law. These are the agents that can be subject to the law and agents
used to describe the laws application context.

• DEONTIC ASSERTION (DA): The description of what is obligatory
and forbidden. It is a set of relationship between an agent and an event or a
state.

• APPLICATION CONDITIONS (APC): The description of the law
context. It is an expression describing when the DA must be respected rela-
tively to a set of events or states.

So, the language syntax is as follows:

LAW := (CA)(DA 〈APC 〉)
CA := (agent : AGENT 〈 and PROP 〉)+
DA := DEONTIC EXP | DA AND EXP |

DA THEN EXP
APC := QUA1 EVENT 〈 AND EVENT 〉 |

QUA1 EVENT 〈 THEN EVENT 〉 |
QUA2 STATE 〈 AND STATE 〉 |
QUA1 seconde | APC APC

DEONTIC:= FORBIDDEN | OBLIGED
EXP := (EVENT) | NOT EXP
EVENT := agent do SMTH 〈 and PROP 〉
STATE := agent be SMTH 〈 and PROP 〉
QUA1 := AFTER | BEFORE
QUA2 := IF
PROP := funct(concept.argument)
AGENT := Concept : Agent
SMTH := Concept : Action | Concept : Feature

The semantic of our language is based on the dynamic deontic logic [13]. This
logic is a variant of the deontic logic [16] and allows the expression of relation
of time between actions and states. The table 1 represents the correspondence
between the language of laws description and the dynamic deontic logic.

To explain the language we will express the law given in section 31.

1 An agent of type X will be denoted agX.

48 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Table 1. Relation between our language and the Dynamic Deontic logic (not
exhaustive)

LANGUAGE LOGIC
FORBIDDEN (EV) F(EV)

OBLIGED (EV) O (EV)
FORBIDDEN (EV1) AND (EV2) F(EV1 & EV2)
FORBIDDEN (EV1) THEN (EV2) F(EV1 ; EV2)
FORBIDDEN (EV2) AFTER (EV1) [EV1]F(EV2)
FORBIDDEN (EV1) BEFORE (EV2) F(EV1)[EV2]

... AFTER (EV1) AND (EV2) [EV1 & EV2]...
... AFTER (EV1) THEN (EV2) [EV1 ; EV2]...

FORBIDDEN (EV1) IF (STATE) STATE ⊃ F(EV1)
NOT(EVENT) EV ENT

EV1 EV2 BEFORE(Sec) EV1 EV2[time(Sec)]
EV1 EV2 AFTER(Sec) EV1[time(Sec)]EV2

L1 : “an A agent must not send message to a B agent at a rate greater than
one message per second” could be expressed as a prohibition:

(CA) For each agA.
(DA) It is forbidden for agA to send a message to agB,
(APC) After agA send a message to agB and before one second.

By using the language and the concepts defined for the system, we can write the
law as:

(L1) (agA : Agent and agA.type = A)(agB : Agent and agB.type= B)
FORBIDDEN(agA do SendingMessage and receiver = agB)
AFTER(agA do SendingMessage and receiver = agB)
BEFORE(1).

L2 : “a B agent must not create a C agent if another C agent is available in the
system” could be expressed as a prohibition:

(CA) For each agB and for each agC.
(DA) It is forbidden for agB to create a new C agent,
(APC) If agC is in an available state.

By using the language:

(L2) (agB : Agent and agB.type = B)(agC : Agent and agC.type = C)
FORBIDDEN(agB do CreationAgent and created.type = C)
IF(agC be State and value = available).

L3 : “a C agent must receive consecutively a message about the waiting time
(M1), a message of identification (M2), the data of the problem (M3) without
any another interleaved message” could be expressed as an obligation:

Dynamic Self-control of Autonomous Agents 49

(CA) For each agC.
(DA) It is obligatory for agC to receive M1 then M2 then M3 without any

other interleaved message,
(CAP) nothing.

By using the language:

(L3)(agC : Agent and agC.type = C)
OBLIGED(agC be ReceivedMessage and content = M1)
THEN (agC do ReceivedMessage and content = M2)
AND NOT (agC do ReceivedMessage and content <> M2)
THEN (agC do ReceivedMessage and content = M3)
AND NOT(agC do ReceivedMessage and content <> M3).

4.3 Hooks Between Concepts and the Implementation of the Agent
Model

The generation of self-controlled agents required the agents program instrumen-
tation in order to insert control points for verifying the respect of the laws. The
concepts used in laws must have a representation in the agents programs. The
designer of the model provides the hooks between the abstract concepts and
the implementation of the agent model. From this hooks the generator inserts
the control code in the implementation of the agent model and consequently in
the agents.

hook(’SendingMessage’, predicate(sendMessage, 2),
[MESSAGE, RECEIVER], [argument(1), argument(2)]).

hook(’ReceivedMessage’, argument(predicate(setIncomingMessage,2),1),
[CONTENT, SENDER],
[call(predicate(getContent,1),1), call(predicate(getSender,1),1)]).

Fig. 5. Example of hooks between concepts and model program

Let’s see on the example the necessary hooks to insert control in the
agents. The agents are programmed in Prolog, we focus on two concepts:
SendingMessage and ReceivedMessage. The first concept corresponds, in the
implementation of agent model, to the sendMessage clause. The message can
be found in the first argument and the receiver in the second argument of
sendMessage. Received-Message concept is linked in the program with a cer-
tain variable. We get its value in argument of the clause SetIncomingMessage.
The message content and the sender can also be get by a call of a method. The
figure 5 shows the code to describe the hooks between the concepts and the
program.

50 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

4.4 Structure of Generated Agents

A generated agent is obtained directly from :

• The agent behavior program
• The set of laws associated with the agent
• The links between the concepts used in the laws and the model

implementation

To allow the agent to control their own behavior, we propose the use of the
observer approach [4].

The Observer Approach. The observer approach consists in executing a pro-
gram and a model of property, about the program execution, in parallel. The
model and the program are connected with control points. A controller checks
on the model and the program execution are consistent.

Fig. 6. The observer approach

For instance, the properties can be modeled in the form of Petri net whose
transitions are bound to the program with the control points. When the program
execution finds a control point, the controller makes sure the tokens are in the
right place at the right time in the corresponding nets, and brings about some
change in the model, accordingly. If the system execution does not match to the
models, the verification fails.

So, we propose to put this approach in place into the agents in order to provide
them the means of controlling their own behavior. Firstly, the laws are modeled
by Petri nets. In order to simplify this stage of modeling, we propose to generate
automatically the Petri nets representing the laws. Secondly, we insert into the
agent behavior program the control points linked to the transitions of the Petri
nets and we generate a runnable agent with a specific architecture, using the
observer approach.

The Architecture. A generated agent has a specific architecture allowing the
monitoring of the agent behavior and the detection of the transgression of the laws
associated with an agent. The architecture is divided in two parts, the behavior
part and the control part. The figure 7 represents the agent architecture.

The behavior part matches the program under surveillance in the observer ap-
proach. It includes the real agent behavior and strategies of regulation defined

Dynamic Self-control of Autonomous Agents 51

Fig. 7. The architecture of a self-controlled agent

by the developer. Indeed, we would not like only that the verification fails when
an inconsistence is detected but that the agent can regulate its behavior when a
law is transgressed. The control part matches the controller which is an integral
part of the agent. The control part includes the set of Petri nets representing
the laws associated with the agent and makes sure of the detection of the laws
violation. The connections between the program and the models are simulated
by a sending of information from the behavior part to the control part. To allow
this sending of information, we instrument the behavior part by inserting auto-
matically some control points associated with the events and states contained
in the laws. The control part receives the information and verifies the respect of
the laws.

4.5 The Generator

The generation of a self-controlled agent comes down to the generation of the
Petri net representing each law concerning the agent and the instrumentation
of the agent behavior to detect the occurrence of events and states expressed in
the laws.

The Instrumentation. To monitor a system execution, it is essential to insert
probes into the program to detect the occurrence of events. We propose an auto-
matic instrumentation of the agent behavior program to monitor the occurrence
of the events and states expressed in the laws by inserting control points. This
instrumentation is done thanks to the hooks defined by the developer, between
the concepts describing the model and its implementation. In order to do that,
we draw ours inspiration from the principle of weaving. The weaving is an
important part of the aspect programming [17]. The latter consists in modular-
izing crosscutting structure. The aspect programming uses the weaving to inject
aspects in classes of an application, at methods level, to modify the system ex-
ecution after the compilation. An aspect is a module representing crosscutting
concerns. The interest of the aspect programming to integrate the monitoring
in an application was demonstrated in another light by [11]. So, our approach
consists in:

52 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Table 2. Translation of logic expression in Petri Net (not exhaustive)

LOGIC PETRI NET LOGIC PETRI NET

F(EVENT) O(EVENT)

F(EV1 & EV2) O(EV1 & EV2)

F(EV1 ; EV2) [EV1]F(EV2)

F(EV1)[EV2] [EV1 & EV2]

[EV1 ; EV2] STATE ⊃ F(EV1)

EV1 EV2 [Sec] EV1 [Sec] EV2

1. Extracting the events to be detected.
2. For each event, searching for the provided hook to the implementation.
3. Injecting, before or after the provided hook, the code allowing the sending

of information to the control part and the recovery of possible information
of transgression to enable the agent to begin a strategy of regulation.

The Generation of Petri Nets. The generation of a Petri net representing a
law is divided in three stages :

• The translation of the law in a logic expression L, by using the table 1, in
order to point out a set of elementary logic expressions, {l1, ..., ln}.

• The deduction of a set of Petri net, {p1, ..., pn} representative of each ex-
pression in {l1, ..., ln}, by using the table 2.

• The fusion of all the nets in {p1, ..., pn} from the relations between l1, ..., ln
expressed in L, by using the table 2 to obtain a final Petri net, P , representing
the law.

The final Petri net P , is embedded into the control part of each agent submitted
to the law. This Petri net includes two parts: the conditional part with states
and transitions associated with the events and states described in the APC of
the law; the deontic part with states and transitions associated with the events
or states described in the DA of the law. For example, from the law L1:

Dynamic Self-control of Autonomous Agents 53

Fig. 8. The generation of the Petri net for L1

(L1) (agA : Agent and agA.type = A)(agB : Agent and agB.type= B)
FORBIDDEN(agA do SendingMessage and receiver = agB)
AFTER(agA do SendingMessage and receiver = agB)
BEFORE(1).

We can deduce the following logic expression:

[SendingMessage(agA,agB,M1) ∧ agent(agA,A) ∧ agent(agB,B)]
F (SendingMessage(agA,agB,M2) ∧ agent(agA,A) ∧ agent(agB,B))[time(1)]

From this expression, the generator deduces the Petri net representing the law.
To represent a prohibition we use an inhibitor hyperarc:

Inhibitor hyperarc: A branch inhibitor hyperarc between places P1, ..., Pk and
a transition T , means that T is not firable if all the places are marked [7].

To express a real time, we use a timed Petri net. The figure 8 represents the
generation of a Petri net representing the law L1 with inhibitor hyperarc and
time.

4.6 Multiagent Laws

For a law applied to several agents, our aim is to distribute as much as possible
the control into each agent affected by the law. We would like to avoid a cen-
tralized solution. So the Petri net representing the “multiagent law” is deduces
as in a single agent context. Then, the net is distributed into the control parts
of the agents concerned by the law. For example, the figure 9 represents the
distribution of the Petri net representing the multiagent law L2 :

(L2) (agB : Agent and agB.type = B)(agC : Agent and agC.type = C)
FORBIDDEN(agB do CreationAgent and created.type = C)
IF(agC be State and value = available).

Let us note that the control parts of each agents are only linked through
the arcs between places and transitions (themselves distributed over the control
parts of agents). These links represent the information flow between the control
parts (i.e. the flow of the token).

54 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

Fig. 9. Distribution between two agents

So, when a control part, CA, receives an information from its agent, if this
information is associated with a transition T whose the next place is in the
control part of another agent, CB, then CA sends information about the firing
of this transition, (actually, it sends the token) to the control part CB and
waits for an acknowledgment of receipt. During this waiting, the behavior of the
agent is temporarily stopped and the information associated with T is considered
as always available. The control part CB receives the information, sends the
acknowledgment to the control part CA and verifies the respect of its part of
the law. When CA receives the acknowledgment, the transition can be really
fired, the information associated with T is consumed and the agent behavior can
continue.

5 Related Work

M.S. Feather and al. [5] treat also the agreement between a system and its
requirements. In their approach, an external monitor collects events sent by
the agents and a reconciler is going, when a requirement violation is detected,
not to hand the system in a state that respected requirements, but to modify
requirements so that they are in agreement with the new behavior. The authors
do not consider essential requirements for the system execution, they do not seek
to prevent inconsistent behavior. They try that a system and its requirements
adapt themselves to stay in agreement during the system execution.

D.N. Lam and K.S. Barber [8] propose a methodology, the Tracing Method,
to test and explain the agents behavior. The aim of this method is to ensure that
an agent performs actions for the right reasons, and if an unexpected action oc-
curred, to help explain why an agent decided to perform the action. We have
in common an agent ontology to compare specifications (state-chart diagrams,
communication protocol diagrams) and agents real behavior. But in our ap-
proach we propose an automation of the code instrumentation and the detection
of inconsistencies between the expected and the observed behaviors. Finally, our
control is embedded into agents to allow an on-line detection of errors. The Trac-
ing Method allows an off-line analysis of the program traces generated during
the system execution.

Dynamic Self-control of Autonomous Agents 55

Finally, we cite the recent work of R. Paes [14]. In the context of open multi-
agent systems, the authors propose the use of laws to control the emergence of
wrong behaviors. If the idea is similar, the authors apply their control only to
the messages passing between the agents and not to the whole behavior. They
propose the use of a mediator which receives the messages, applies the laws on
these messages and forwards them to the addressed agent. Here, it is about the
surveillance of the agents interaction thanks to an external entity.

6 Conclusion

We have presented in this paper a framework, SCAAR, allowing the generation
of agents being able to verify their own behavior. This verification consists in
making sure that a set of laws associated with an agent is respected throughout
the MAS execution. These laws represent requirements about agents behavior
and state. The interest of our approach is principally to permit the description
of laws by someone not involved in the MAS development. Another important
point lies in the fact that the control can be applied to agents implemented
with different kinds of agent model, in condition that the model used can be
described from our agent concepts. With our framework, we provide a language
to describe laws. We propose a mechanism for automatic generation of Petri nets
representing the laws and insertion of control points to detect expected events.
The Petri nets are used to monitor the agent behavior and detect when laws are
transgressed, by using the observer approach. Finally, we propose a first solution
for the enforcement of laws at the multiagent level.

References

1. K.S. Barber and C.E. Martin. Agent autonomy : Specification, measurement and
dynamic adjustment. In Proc. of the Autonomy Control Software workshop at
Autonomous Agents’99, pages 8–15, May 1999.

2. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
3. M. de Sousa Dias and D.J. Richardson. Issues on software monitoring. Technical

report, Department of Information and Computer Science, University of California,
July 2002.

4. M. Diaz, G. Juanole, and J-P. Courtiat. Observer-a concept for formal on-line
validation of distributed systems. IEEE Trans. Softw. Eng., 20(12):900–913, 1994.

5. M.S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling System
Requirements and Runtime Behavior. In Proceedings of IWSSD9, Isobe, Japan,
1998.

6. Y. Huang and C. Kintala. Software fault tolerance in the application layer. In
Software Fault Tolerance, 1995.

7. R. Janicki and M. Koutny. On causality semantics of nets with priorities. Funda-
menta Informaticae, (38):223–255, 1999.

8. D.N. Lam and K.S. Barber. Debugging agent behavior in an implemented agent
system. In Proceedings of PROMAS’04, pages 45–56, New York City, July 20 2004.

9. Y. Liao and D. Cohen. A specificational approach to high level program monitoring
and measuring. IEEE Trans. Software Engineering, 18(11), November 1992.

56 C. Chopinaud, A.E.F. Seghrouchni, and P. Taillibert

10. J.E. Lumpp, T.L. Casavant, H.J. Siegle, and D.C. Marinescu. Specification and
identification of events for debugging and performance monitoring of distributed
multiprocessor systems. In Proceedings of the 10th International Conference on
Distributed Systems, pages 476–483, June 1990.

11. D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat. Program instrumenta-
tion for debugging and monitoring with AspectC++. In Proc. of the 5th IEEE
International symposium on Object-Oriented Real-time Distributed Computing,
Washington DC, USA, April 29 – May 1 2002.

12. M. Mansouri-Samani. Monitoring of Distributed Sytems. PhD thesis, University
of London, London, UK, 1995.

13. JJCH. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1), 1988.

14. R. Paes, G. Carvalho, C. Lucena, P. Alencar, H. Almeida, and V. Silva. Specifying
laws in open multi-agent systems. In ANIREM, Utrecht, July 2005.

15. J. Vázquez-Salceda, H. Aldewerld, and F. Dignum. Implementing norms in multi-
agent systems. In Proceedings of MATES’04, Erfurt, Germany, September, 29–30
2004.

16. G.H. von Wright. Deontic logic. Mind, 60(237):1–15, 1951.
17. Dean Wampler. The future of aspect oriented programming, 2003. White Paper,

available on http://www.aspectprogramming.com.

Bridging Agent Theory and Object Orientation:
Importing Social Roles in Object

Oriented Languages

Matteo Baldoni1, Guido Boella1, and Leendert van der Torre2

1 Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
{baldoni, guido}@di.unito.it

2 CWI Amsterdam and Delft University of Technology, The Netherlands
torre@cwi.nl

Abstract. Social roles structure social institutions like organizations in Multi-
Agent Systems (MAS). In this paper we describe how to introduce the notion
of social role in programming languages. To avoid the commitment to a partic-
ular agent model, architecture or language, we decided to extend Java, the most
prominent object oriented programming language, by adding social roles. The
obtained language allows an easier implementation of MAS’s w.r.t. the Java lan-
guage. We also show that many important properties of social roles, studied in
the MAS field, can be applied to objects. Two are the essential features of social
roles according to an analysis reported in the paper: social roles are defined by
other entities (called institutions), and when an agent plays a role it is endowed
with powers by the institution that defines it. We interpret these two features into
the object oriented paradigm as the fact that social roles are objects, which are
defined in and exist only inside other objects (corresponding to institutions), and
that, through a role, external objects playing the role can access to the object
(institution) the role belongs to.

1 Introduction

Social roles are central in MAS since they are the basis for coordinating agents by
means of organizations [1]. Roles are central also in object oriented modelling and pro-
gramming (OO), where they are used to dynamically add behaviors to objects, to fac-
torize features of objects like methods or access rights, and to separate the interactional
properties of objects from their core behavior, thus achieving a separation of concerns.

Although it would surely be useful to find a unified notion of role, in both agent
oriented (AO) and object oriented systems, the existence of many distinct notions of
role (as well as of agent) makes this task a difficult challenge. Starting from the analysis
of Boella and van der Torre [2], in this paper we describe how to introduce the notion of
social role in programming languages. Since it is difficult to choose among the different
agent systems and languages proposed by the MAS community, because each of them
has its own idiosyncrasies (many types of agents are used, from reactive to cognitive
ones; many architectures are used, from mobile to robotic ones; different definitions of
organizations with social roles are used, from groups [4] to set of rules [5]), we propose
an implementation that is set in the more traditional OO framework, whilst using the

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 57–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 M. Baldoni, G. Boella, and L. van der Torre

analysis developed in MAS research. More specifically, the research question of this
paper is: How to extend Java by introducing the notion of social role? To answer this
question we first analyze the relevant properties of social roles and, then, we map them
to programming constructs in the OO context.

The choice of the Java language is due to the fact that it is one of the prototypical OO
programming languages; moreover, MAS systems are often implemented in Java and
some agent programming languages are extensions of Java, e.g., see the Jade framework
[6]. In this way we can directly use roles offered by our extension of Java when building
MAS systems or extending agent programming languages.

Furthermore, we believe that to contribute to the success of the Autonomous Agents
and Multiagent Systems research, the theories and concepts developed in this area
should be applicable also to more traditional views. It is a challenge for the agent com-
munity to apply its concepts outside strictly agent based applications, and the object
oriented paradigm is central in Computer Science. As suggested also by Juan and Ster-
ling [7], before AO can be widely used in industry, its attractive theoretical properties
must be first translated to simple, concrete constructs and mechanisms that are of simi-
lar granularity as objects.

The methodology that we use in this paper is to map the properties of social roles
to roles in objects. To provide a semantics for the new programming language, called
powerJava, we use a mapping to pure Java by means of a precompilation phase.

In Section 2 we discuss how social roles can fit the ontology of OO. In Section 3 we
provide our definition of social roles and in Section 4 we map it to the OO domain. In
Section 5 we introduce powerJava and in Section 7 we describe how it is translated
to Java. Conclusions end the paper.

2 Social Roles Among Objects

Why should it be useful for the OO paradigm to introduce a notion of social role, as de-
veloped in MAS? Even if the utility of roles is widely recognized in OO for organizing
software programs, the diversity of conflicting approaches witnesses some difficulties,
as the survey of Steimann [8] shows.

The success of the OO paradigm in many disciplines (KR, SE, DB, programming
languages) is due also to the large conceptual modelling work behind it. The object ori-
entation paradigm is inspired to the ontology used by humans to conceptualize material
reality, in particular the fact that objects are composed of other objects, that they can
be classified in classes, and that each class offers a different distinct behavior. These
features find straightforward counterparts in programming languages. In particular, the
abstraction and encapsulation principles, polymorphism, modularity and software reuse
can be realized by means of the notion of object with its methods, and of class hierarchy.

The likely reason why the object oriented paradigm cannot accommodate easily the
notion of role is that the notion of role does not belong to the fragment of ontology to
which object orientation refers.

In this paper we extend the domain of the reference ontology of OO to the domain
of social reality, which social roles belong to. The ontology of social reality represents
the conceptual model of the social life of humans. Researches in this domain mostly

Bridging Agent Theory and Object Orientation 59

stem from the agent oriented paradigm as a way to solve coordination problems among
agents in multiagent systems. But it is also an area of interest of ontological research,
like in [9,10].

The notion of social role refers to the structure of social entities like institutions,
organizations, normative systems, or even groups. These social entities are organized in
roles [1,4,5]. Roles are usually considered as a means to distribute the responsibilities
necessary for the functioning of the institution or organization. Moreover, roles allow
the uncoupling of the features of the individuals from those of their roles. Finally, roles
are used to define common interaction patterns, and embed information and capabilities
needed to communication and coordination [11]. E.g., the roles of auctioneer and bidder
are defined in an auction, each with their possible moves.

We call our extension of Java powerJava, since the powers given by institutions
to roles are a key feature of roles in our model. An example is the role of director
of a department: a buying order, signed by the agent playing the role of director, is
considered as a commitment of the institution, that will pay for the delivered goods.

3 Properties of Social Roles

We consider as characteristic of roles two properties highlighted respectively in the
knowledge representation area [10] and in the multiagent system area [12].

Definitional dependence: The definition of the role must be given inside the definition
of the institution it belongs to. This property is related to the foundation property
of roles [13]: a role instance is always associated with an instance of the institution
it belongs to.

Powers: When an agent starts playing a role in an institution, it is empowered by the
institution: the actions which it performs in its role “count as” [14] actions of the
institution itself. This is possible only because of the definitional dependence: since
the role is defined by the institution it is the institution itself which gives it some
powers.

Institutions like groups, organizations, normative systems are not material entities,
since they belong to the social reality, which exists only as a construction of human
beings. According to the model of Boella and van der Torre [15,16], social entities can
be modelled as agents, albeit of a special kind since they act in the world via the actions
of other agents. In [2,12], also roles are considered as (description of) agents.

In this work, agents - like their players and institutions are - are modelled as objects,
and, thus, by the previous observation, roles are modelled as objects too. In order to
work at the level of objects we do not consider typical properties of agents like auton-
omy or proactiveness.

To understand these issues we propose a running example. Consider the role “stu-
dent”. A student is always a student of some school. Without the school the role does
not exist anymore: e.g., if the school goes bankrupt, the actor (e.g. a person) of the role
cannot be called a student anymore. The institution (the school) also specifies which
are the properties of the student which extend the properties of the person playing the
role of student: the school specifies the role’s enrollment number, its email address in

60 M. Baldoni, G. Boella, and L. van der Torre

the school intranet, its scores at past examinations. Most importantly the school also
specifies how the student can behave. For example, the student can give an exam by
submitting some written examination; this action is clearly defined by the school since
it is the school which specifies how an examination is valued and it is the school which
maintains the official records of the examinations which is updated with the new mark.
Finally, the student can contact the secretary who is obliged to provide it with an en-
rollment certificate; also this action depends on the definition the school gives both to
the student role and to the secretary role, otherwise the student could not have an effect
on the her.

But in defining such actions the school empowers the person who is playing the role
of student.

4 Modelling Roles as Objects

To translate the notion of social role in OO we need to find a suitable mapping between
the agent domain and the object domain. The basic idea is that agents are mapped to
objects. Their behaviors are mapped in methods invoked on the objects. We have to
distinguish at least three different kinds of agents:

– Players of roles: their basic feature is that they can exercise the powers given by
their roles when they act in a role, since their actions “count as” actions of their
roles [14].

– Institutions: their basic feature is to have parts (roles) which are not independent,
but which are defined by themselves. They must give to the defined roles access to
their private fields and methods.

– Roles: they describe how the player of the role is connected to the institution via its
powers. They do not exist without the institution defining them and they do not act
without the agent playing the role.

The mapping between agents and objects must preserve this classification, so we
need three kinds of objects.

– Objects playing roles: when they play a role, it is possible to invoke on them the
methods representing the powers given by the role.

– Institutions: their definition must contain the definition they give to the roles be-
longing to them.

– Roles: they must specify which object can play the role and which powers are added
to it. They must be connected both to the institution, since the powers have effect
on it, and to the player of the role.

In OO terms, the player of the role can determine the behavior of the object, in
which the role is defined, without having either a reference to it or access to its private
fields and methods. In this way, it is possible to exogenously coordinate its behavior, as
requested by Arbab [17].

In the next sections we will address in details the three different kinds of objects we
need to model in powerJava.

Bridging Agent Theory and Object Orientation 61

4.1 Playing a Role

An object has different (or additional) properties when it plays a certain role, and it can
perform new activities, as specified by the role definition. Moreover, a role represents
a specific state which is different from the player’s one, which can evolve with time
by invoking methods on the roles (or on other roles of the same institution, as we have
seen in the running example). The relation between the object and the role must be
transparent to the programmer: it is the object which has to maintain a reference to
its roles. For example, if a person is a student and a student can be asked to return its
enrollment number, then, we want to be able to invoke the method on the person as a
student without referring to the role instance. A role is not an independent object, it is a
facet of the player.

Since an agent can play multiple roles, the same method will have a different be-
havior, depending on the role which the object is playing when it is invoked. It must
be sufficient to specify with is the role of a given object we are referring to. On the
other hand, methods of a role can exhibit different behaviors according to whom is
playing a role. So a method returning the name of the student together with the name of
the school returns not only a different school name according to the school, but also a
different value for the name according to whom is playing the role of student.

Note that roles are always roles in an institution. Hence an object can play at the
same moment a role more than once, albeit in different institutions. For example, one
can be a student at the high school, a student of foreign languages in another school,
etc. We do not consider in this paper the case of an object playing the same role more
than once in the same institution. However, an object can play several roles in the same
institution. For example, a person can be an MP and a minister at the same time (even
if it is not required to be an MP to become minister).

In order to specify the role under which an object is referred to, we evocatively use
the same terminology used for casting by Java. For example, if a person is playing the
role of student and we want to invoke a method on it as a student, we say that there is
a casting from the object to the role. Recall that to make this casting we do not only
have to specify which role we are referring to, but also the institution where the object
is playing the role, too. Otherwise, if an object plays the same role in more than one
institution, the cast would be ambiguous.

We call this role casting. Type casting in Java allows to see the same object under
different perspectives while maintaining the same structure and identity. In contrast, role
casting conceals a delegation mechanism: the delegated object can only act as allowed
by the powers of the role; it can access the state of the institution and, by exploiting a
construct that will be introduced shortly (that) can also refer to the delegating object.

4.2 Institutions Defining Roles

The basic feature of institutions, as intended in our framework, is to define roles in-
side themselves. If roles are defined inside an institution, they can have access to the
private variables and methods of the institution. The “definition” of an object must be
read as the definition of the class the object is an instance of, thus, we have that the
class defining an institution includes the class definition of the roles belonging to the
institution.

62 M. Baldoni, G. Boella, and L. van der Torre

The fact that the role class definition is included inside the institution class def-
inition determines some special properties of the methods that can be invoked on a
role. In fact, for the notion of role to be meaningful, these methods should go be-
yond standard methods, whose implementation can access the private state of the role
only. Roles add powers to objects playing the roles. Power means the capability of
modifying also the state of the institution which defines the role and the state of the
other roles defined in the same institution. This capability seems to violate the stan-
dard encapsulation principle, where the private variables and methods are visible only
to the class they belong to: however, here, the role definition is itself inside the class
definition, so encapsulation is not violated. This means also that the role must have
a reference to the institution, in order to refer to its private or public methods and
fields.

In our example, the method by which a student takes an examination must modify
the private state of the school. If the exam is successful, the mark will be added to
the registry of exams in the school. Similarly, if the method of asking the secretary
a certificate should be able to access the private method of the secretary to print a
certificate.

In MAS, roles can be played by different agents, it is sufficient that they have the
suitable capabilities. This is translated in OO as the fact that to play a role an object must
implement the suitable methods. In Java this corresponds to implementing an interface,
i.e., a collection of method signatures. To specify who can play it, a role specifies an
interface representing the requirements to play a role. Thus, an object to play a role
must implements an interface.

The objects which can play the role can be of different classes, so that roles can be
specified independently of the particular classes playing the role. This possibility is a
form of polymorphism which allows to achieve a flexible external coordination and to
make roles reusable.

At the same time a role expresses the powers which can be exercised by its player.
Again, since powers are mapped into methods, a role is related to another interface
definition. In summary, a role has two faces (see also Figure 1):

– It describes the methods that an object must show in order to play/enact the role.
We call them requirements.

– It describes the methods that are offered by the role to an object that might enact it.
We call them powers.

For Steimann and Mayer [18] roles define a certain behavior or protocol demanded in a
context independently of how or by whom this behavior is to be delivered. In our model
this translates to the fact that a role defines both the behavior required by the player of
the role and the behavior offered by playing the role. However, the implementation of
both the requested and offered behavior is not specified in the role.

The implementation of the requirements is obviously given inside the class of the
object playing the role. The implementation of the powers must be necessarily given
in the definition of the institution, which the role belongs to; the reason is that only in
this way such methods can really be powers: they can have access to the state of the
institution and change it.

Bridging Agent Theory and Object Orientation 63

Fig. 1. The players will interact according to the acquired powers (they will follow the protocol
implemented by the institution and its roles)

5 Introducing Roles in Java: powerJava

We now have all the elements to introduce roles as the new construct in powerJava.

5.1 The Syntax of powerJava

To introduce roles in powerJava we need very limited modifications of the Java syn-
tax (see sketch in Figure 2):

1. A construct specifying the role with its name, requirements and powers (non-termi-
nal symbol rolespec).

2. A construct that allows the implementation of a role, inside an institution and ac-
cording to the specification of its powers (non-terminal symbol roledef).

3. A role casting construct, together with the specification of the institution to which
the role belongs (non-terminal symbol rcast).

Note that nothing is required for an object to become the player of a role, apart from
having the appropriate behavior required by the role specified by the keyword enacts.

The definition of a role using the keyword role is similar to the definition of an
interface: it is in fact the specification of the powers acquired by the role in the form
of methods signatures. The only difference is that the role specification refers also to
another interface (e.g., StudentRequirements in Figure 3), that in turn gives the
requirements to which an object, willing to play the role, must conform. This is im-
plemented by the keyword playedby. This mechanism mirrors the idea, discussed in
the previous section, that roles have two faces: the requirements and the powers. In the
example, role specifies the powers of Student, whilst StudentRequirements
- trivially - specifies its requirements.

64 M. Baldoni, G. Boella, and L. van der Torre

rolespec := "role" identifier "playedby"
identifier interfacebody

classdef ::= ["public"|"private"|...]
"class" identifier ["enacts" identifier*]
["extends" identifier] ["implements" identifier*]
classbody

classbody ::= "{" fielddef* constructors*
methoddef* roledef* "}"

roledef ::= "definerole" identifier
["enacts" identifier*] rolebody

rolebody ::= "{" fielddef* methoddef* roledef* "}"

rcast ::= (expr.identifier) expr

Fig. 2. Syntax

role Student playedby StudentRequirements {
public String getName ();
public void takeExam (int examCode, String text);
public int getMark (int examCode);

}

interface StudentRequirements {
public String getName ();
public int getSocSecNum ();

}

Fig. 3. Specification of the powers and requirements

Roles must be implemented inside an institution; the keyword definerole has
been added to implement a role inside another class. A role implementation is like an
inner-class definition. It is not possible, however, to define constructors; only the pre-
defined one is available, having as a parameter the player of the role. Moreover, the
definition of a role can contain other roles in turn (in this case the role itself becomes an
institution). Finally, it is worth noting that the definition of institution is a class which can
be extended by means of the normal Java constructs but the roles cannot be overridden.

Since the behavior of a role instance depends on the player of the role, in the method
implementation the player instance can be retrieved via a new reserved keyword: that.
So this keyword refers to that object which is playing the role at issue, and it is used
only in the role implementation. The value of that is initialized when the constructor
of the role is invoked. Notice that the type of the referred object is the type defined by
the role requirements or a subtype of it.

Bridging Agent Theory and Object Orientation 65

The greatest conceptual change in powerJava is the introduction of role casting
expressions with the original Java syntax for casting. A rcast specifies both the role
and the instance of the institution the role belongs to (or no object in case of a single in-
stitution). Note that the casting of an object returns an object which can be manipulated
as any other object invoking methods and accessing variables on it.

We do not need a special expression for creating roles since we use the notation of
Java for inner classes: starting from an institution instance the keyword “new” allows
the creation of an instance of the role as if the role were an inner class of the institution.
For example, let us suppose that harvard is a instance of School and that chris is
a person who wants to become a student of harvard. This is expressed by the instruc-
tion harvard.new Student(chris), using the predefined parameter having the
role requirements StudentRequirements as type.

5.2 How to Use powerJava

In Figures 3-5 we present our running example in powerJava. In Figure 3, the name of
the role Student is introduced as well as the prototypes of the methods that constitute
the powers and requirements. For example, returning the name of the Student, sub-
mitting a text as an examination, and so forth. As in an interface, no non-static variables

class School {
private int[][] marks;
private String schoolName;
public School (String name) {
this.schoolName = name;

}
definerole Student {
private int studentID;
public void setStudentID (int studentID) {

this.studentID = studentID;
}
public int getStudentID () {

return studentID;
}
public void takeExam (int examCode, String text) {

marks[studentID][examCode] = eval(text);
}
public int getMark (int examCode) {

return mark[studentID][examCode];
}
public int getName () {

return that.getName() + " at " + schoolName;
}

}
public int eval (String text){...}

}

Fig. 4. Defining the institution and implementing a role specification

66 M. Baldoni, G. Boella, and L. van der Torre

class Person enacts Student {
private String name;
private int SSNumber;
public Person (String name) { this.name = name; }
public String getName () { return name; }
public int getSocSecNum () { return SSnumber; }

}

class TestRole {
public static void main(String[] args) {
Person chris = new Person("Christine");
School harvard = new School("Harvard");
School mit = new School("MIT");
harvard.new Student(chris);
mit.new Student(chris);
String x=((harvard.Student)chris).getName();
String y=((mit.Student)chris).getName();

}
}

Fig. 5. Palying a role

can be declared. Differently from a Java interface, we couple a role with the specifi-
cation of its requirements. This specification is given by means of the name of a Java
interface, in this case, StudentRequirements, imposing the presence of methods
getName and getSocSecNum (the person’s social security number).

As explained, roles must be implemented inside some institution. In our running
example (Figure 4), the role Student is implemented in a class School. The imple-
mentation must respect the method signature of the role powers. As for an inner class
in Java, a role implementation has access to the private fields and methods of the outer
class and of the other roles defined in the outer class; this possibility does not disrupt the
encapsulation principle since all roles of an institutions are defined by who defines the
institution itself. In other words, an object that has assumed a given role, by means of it,
has access and can change the state of the corresponding institution and of the sibling
roles. In this way, we achieve what envisaged by the analysis of the notion of role.

The object playing a role can be accessed by means of the special construct that,
which refers to the object that enacts the role. In the example such an object has type
StudentRequirements; the that construct is used in the method getName()
in order to combine the player’s name with the name of the school it attends. Like an
instance of a class, a role instance can have a state, specified by its private fields, in this
example, studentID.

In order for an object to play a role it is sufficient that it conforms to the role
requirements. Since the role requirements are implemented as a Java interface, it is
sufficient that the class of the object implements the methods of such an interface.
In Figure 4, the class Person can play the role Student, because it conforms to
the interface StudentRequirements by implementing the methods getName and
getSocSecNum.

Bridging Agent Theory and Object Orientation 67

A role is created by means of the construct new as well as it is done in Java for inner
class instance creation. For example, (see Figure 5, method main of class TestRole),
the object referred by chris can play the part of the student of the school harvard
by executing the following instruction: harvard.new Student(chris). In this
context, i.e. within the role definition, that will refer to chris. Moreover, note that
the same person can play the same role in more than one school. In the example chris
is also a student of mit: mit.new Student(chris).

Differently than other objects, role instances do not exist by themselves and are
always associated to their players: when it is necessary to invoke a method of the student
it is sufficient to have a referent to its player object. Methods can be invoked from the
players of the role, given that the player is seen in its role (e.g. Student). This is done
in powerJava by casting the player of the role to the role we want to refer to.

We use the Java cast syntax with a difference: the object is not casted to a type, but
to a role. However, since roles do not exist out of the institution defining them, in order
to specify a role, it is necessary to specify the institution it belongs to. In the syntax
of powerJava the structure of a role casting is captured by rcast (see Figure 2).
For instance, ((harvard.Student) chris).getName() takes chris in the
role of student in the institution harvard. As a result, if getName applied to chris
initially returned only the person’s name, after the cast, the same invocation will return
“Christine at Harvard”. Obviously, if we cast chris to the role of student at mit
((mit.Student) chris).getName(), we obtain “Christine at MIT”.

With respect to type casting, role casting does not only selects the methods available
for the object, but it changes also the state of the object and the meaning of the methods:
here, the name returned by the role is different from the name of the player since the
method has a different behavior. As it is done in Java for the interfaces, roles can be
viewed as types, and, as such, they can be used also in variable declarations, parameter
declarations, and as method return types. Thus, roles allow programmers to conform to
Gamma et al. [19]’s principle of “programming to an interface”.
powerJava allows the definition of roles which can be further articulated into other

roles. For example, a school can be articulated in school classes (another social entity)
which are, in turn, articulated into student roles. This is possible because, as we discuss
in next section, roles are implemented by means of classes, which can be nested one
into the other. In this way, it is possible to create a hierarchy of social entities, where
each entity defines the social entities it contains. As described by [12], this hierarchy
recalls the composition hierarchy of objects, which have other objects as their parts.

6 An Example About Protocols

Hereafter, we report an example set in the framework of interaction protocols, describ-
ing an implementation of well-known contract net protocol [3] in our language. Con-
tract net is used in electronic commerce and in robotics for allowing object of the class
Agent which are unable to do some task to have them done. The protocol is only con-
cerned with the realization of a specific pattern of interaction, in which the manager
sends a call for proposal to a set of bidders. Each bidder can either accept and send a
proposal or refuse. The manager collects all the proposals and selects one of them.

68 M. Baldoni, G. Boella, and L. van der Torre

The powerJava implementation comprises the roles of Manager and that of
Bidder. A Manager has the power of of starting a negotiation. Bidders have the
power of taking part to a negotiation. The contract net protocol is the institution inside
which the two roles are defined. Notice that the capability of the Bidder of defining a
proposal as well as that of the Manager of evaluating the proposals depend on the spe-
cific task that is the object of the negotiation and on the business logics of the two role
players. The requirements of the two roles express the need of having this capabilities
in the role players.

role Manager {
public void startNegotiation(Task task);

}
interface ManagerReq {

public int evaluateProposal(Proposal[] proposal);
public void receiveResult(Object result);

}

interface Bidder {
public void partecipateNegotiation();

}
interface BidderReq {

public boolean evaluateTask(Task task);
public Proposal getProposal(Task task);
public void removeProposal(Task task, Proposal proposal);
public ResultTask performTask(Task task);

}

class ContractNetProtocol {
Task task;
Manager manager;
Bidders[] bidders;
Proposal[] proposals;
int i; int count;
public ContractNetProtocol() {

// initializes the state
}

definerole Manager {
public void startNegotiation(Task task) {

ContractNetProtocol.this.manager = that;
ContractNetProrocol.this.task = task;
for (int i=0; i < count; i++)

bidders[i].cfp(task);
}
private void refuse(Bidder bidder) {

i = i + 1;
if (i >= count) notifyBidders();

}
private void propose(Proposal proposal, Bidder bidder) {

Bridging Agent Theory and Object Orientation 69

i = i + 1;
proposals[bidder.getID()] = proposal;
if (i >= count) notifyBidders();

}
private void failure(TaskExecException err, Bidder bidder){

that.receiveResult(err);
}
private void inform(ResultTask result, Bidder bidder) {

that.receiveResult(result);
}
private void notifyBidders() (

int selectedProposal =
that.evaluateProposals(proposals);

bidders[selectedProposal].acceptProposal(
proposals[selectedProposal]);

for (int j=0; j<count; J++)
if (selectedProposals != j)

bidders[j].refuseProposal(
proposals[selectedProposal]);

}
}
definerole Bidder {
int ID;
public void partecipateNegotiation() {

// add this new bidder to the array of bidders
// assign an ID and increments count

}
private void cfp() {

if (that.evaluateTask(task))
manager.propose(that.getProposal(task));

else
manager.refuse(this);

}
private void refusePoposal(Proposal proposal) {

that.removeProposal(proposal);
}
private void acceptProposal(Proposal proposal) {

try {
manager.inform(that.performTask(proposal, task)), this);

} catch(TaskExecException err) {
manager.failure(err, this);

}
}

}
}

Notice that in LifeTimeManager, which is the part of the code in which three
“agents” are created and used to play a Manager and two Bidders, to carry on the ne-
gotiation it is sufficient that the players respectively invoke the power for initiating and
the power for partecipating to the negation itself. The interaction at this level is “hid-

70 M. Baldoni, G. Boella, and L. van der Torre

den” because it is carried on within the institution corresponding to the protocol. For
the sake of simplicity the code does not contain references to threads, which are indeed
necessary for a correct execution. An object of class Agent that shows a complete set of
requirements could play different roles even at the same time even in the same instance
of protocol.

class LifeTimeManager {
public static void main(String[] args) {
Agent initiator = new Agent(...);
Agent partecipant1 = new Agent(...);
Agent partecipant2 = new Agent(...);
ContractNetProtocol cnp = new ContractNetProtocol();
cnp.new Manager(initiator, task);
cnp.new Bidder(partecipant1);
((cnp.Bidder)partecipant1).partecipateNegotiation();
cnp.new Bidder(partecipant2);
((cnp.Bidder)partecipant1).partecipateNegotiation();
((cnp.Manager)initiator).startNegotiation();

}
}

7 Translating Roles in Java

In this section we provide a translation of the role construct into Java, for giving a
semantics to powerJava and to validate our proposal. This is done by means of a

interface Student {
public String getName();
public void giveExam(int examCode, String text);
public int getMark(int examCode);

}

class Person enacts StudentRequirements {
private java.util.Hashtable studentList =
new java.util.Hashtable();

public void setStudent (Student sp, Object inst) {
studentList.put(inst, sp);

}
public Student getStudent (Object inst) {
return studentList.get(inst);

}
private String name;
private int SSNumber;
public Person (String name) { this.name = name; }
public String getName() { return name; }
public int getSocSecNum () { return SSNumber; }

}

Fig. 6. Translation of a role and its player

Bridging Agent Theory and Object Orientation 71

precompilation phase, as, e.g., [17] proposes for introducing components and channels
in Java, or in the way inner classes are implemented in Java. The precompiler has been
implemented by means of the tool javaCC, provided by Sun Microsystems [20].

The role definition is simply an interface (see Figure 6) to be implemented by the
inner class defining the role. So the role powers and its requirements form a pair of
interfaces used to match the player of the role and the institution the role belongs
to. The relation between the role interface and the requirement interface is used to
constrain the creation of role instances relatively to players that conform to the
requirements.

While a role definition is precompiled into a Java interface, a specific role imple-
mentation is precompiled into a Java inner class which implements such an interface.
The inner class resides in the class that implements the institution. For example, the
implementation of the role Student in the class School is precompiled into an inner
class of School, named automatically StudentPower. StudentPower imple-
ments the interface into which the role is translated, Student. The that construct,
which keeps the relation between the player instance and the role instance, is precom-
piled into a field of StudentPower of type StudentRequirements. This field is
automatically initialized by means of an ad hoc constructor School. This predefined
constructor is introduced by the precompiler in the inner class and it takes the player
as a parameter which must have the type required by the role definition. In this case
StudentRequirements.

All the constructor does is to initialize the that parameter with the player instance
and to manipulate the player instance in order to let it have a referent to the role instance.
This is necessary for establishing a correspondence between the instance of the player
class and the instance of the inner class. The remaining link between the instance of the
inner class and the outer class defining it (the institution) is provided automatically by
Java (e.g., School.this).

Since every object can play many roles simultaneously, it is necessary to keep, re-
lated to the object at hand, the set of its roles. This is obtained by adding, at precompi-
lation time, to every class for each different kind of role that it can play, a structure for
book-keeping its role instances. As an example, Person enacts the role Student. So

class School {
public School (String schoolName) {
this.schoolName = schoolName;

}
class StudentPower implements Student {
StudentRequirements that;
public Student (StudentRequirements that) {

this.that = that;
(this.that).setStudent(this, School.this);

//role’s fields and methods ...
}
//institution’s fields and methods ...

}

Fig. 7. Translation of institution

72 M. Baldoni, G. Boella, and L. van der Torre

its instances will have a hash-table that keeps the many student roles played by them in
different institutions. In the case of chris there will be an instance corresponding to
the fact that she is a student of harvard and one for her being a student of mit. Meth-
ods for accessing to this structure are supplied. In the example they allow setting and
getting the Student role: setStudent and getStudent. Notice that book-keeping
could be implemented in a more general way, using just one hash table and indexing
w.r.t. the institution and the role.

Finally, we describe how role casting is precompiled. The expression referring to an
object in its role (a Person as a Student, e.g., (harvard.Student)chris) is
translated into the selector returning the reference to the inner class instance, represent-
ing the desired role w.r.t. the specified institution. The translation will be
chris.getStudent(harvard) (see Figure 7).

A summary of all this translation is shown in Figure 9 as an UML class diagram,
where dashed lines represent the newly introduced concepts.

class TestRole {
public static void main(String[] args) {
Person chris = new Person("Christine");
School harvard = new School("harvard");
School mit = new School("MIT");
harvard.new StudentPower(chris);
mit.new StudentPower(chris);
String x = chris.getStudent(harvard).getName();
String y = chris.getStudent(mit).getName();

}
}

Fig. 8. Translation of main

Fig. 9. The UML class diagram

Bridging Agent Theory and Object Orientation 73

8 Conclusion

In this paper, we extend Java by introducing the notion of social role developed in MAS.
The basic features of roles in our model are that they are definitionally dependent on the
institution they belong to, and they offer powers to the entities playing them. We map
agents, institutions and roles to objects, and powers to methods, that are offered by roles
to the objects playing those roles. The characteristic feature of powers is that they can
access the private fields and methods of the institution they belong to and those of the
sibling roles defined in the same institution. In order to allow an object to be seen in the
role it plays we extend the notion of casting offered by Java: type casting in Java allows
to see the same object under different perspectives while maintaining the same structure
and identity; in contrast, role casting allows to see the object as having a different state
and different methods, as specified by the role powers.

We are currently working at an extension of powerJava some preliminary results
can be found in [24]. In particular, in this work powerJava is compared to proposals
coming from the Object-Oriented community.

Our approach shares the idea of gathering roles inside wider entities with languages
like Object Teams [21] and Ceasar [22]. These languages emerge as refinements of as-
pect oriented languages aiming at resolving practical limitations of other languages. In
contrast, our language starts from a conceptual modelling of roles and then it imple-
ments the model as language constructs. Differently than these languages we do not
model aspects. The motivation is that we want to stick as much as possible to the Java
language. However, aspects can be included in our conceptual model as well, under
the idea that actions of an agent playing a role “count as” actions executed by the role
itself. In the same way, the execution of methods of an object can give raise by advice
weaving to the execution of a method of a role. On the other hand, these languages do
not provide the notion of role casting we introduce in powerJava. Roles as double
face interfaces have some similarities with Traits [23] and Mixins. However, they are
distinguished because roles are used to extend instances and not classes.

By implementing roles in an OO programming language, we gain in simplicity in the
language development, importing concepts that have been developed by the agent com-
munity inside the Java language itself. This language is, undoubtedly, one of the most
successful currently existing programming languages, which is also used to implement
agents even though it does not supply specific features for doing it. The language ex-
tension that we propose is a step towards the overcoming of these limits.

At the same time, introducing theoretically attractive agent concepts in a widely
used language can contribute to the success of the Autonomous Agents and Multiagent
Systems research in other fields. Developers not interested in the complexity of agent
systems can anyway benefit from the advances in this area by using simple and concrete
constructs in a traditional programming language.

Future work concerns, on one hand, the provision of a formal semantics to
powerJava and the extension of the Java type system with roles; on the other hand, the
role construct of powerJava can be extended, for example, by allowing roles playing
roles (e.g., a student can play the role of representative in the school), and we also study
how our definition of social roles can directly be used in Java based agent programming
languages, in frameworks like Jade [6].

74 M. Baldoni, G. Boella, and L. van der Torre

In this paper we present a “lite” version of the powerJava language. We are cur-
rently developing a full fledged version that allows more natural programming for the
Java expert, in which the role implementation does not require a specific construct
(definerole), but it entirely relies upon the inner class definition mechanism. Such
inner classes must implement the role specifications. The advantages are many: on a
hand, one can have more implementations of a role inside the same institution, inner
classes can enact other roles, they can be institutions themselves, and use extensions.

References

1. Bauer, B., Muller, J., Odell, J.: Agent UML: A formalism for specifying multiagent software
systems. Int. Journal of Software Engineering and Knowledge Engineering 11(3) (2001)
207–230

2. Boella, G., van der Torre, L.: Attributing mental attitudes to roles: The agent metaphor
applied to organizational design. In: Procs. of ICEC’04, IEEE Press (2004)

3. Davis, R., and Smith, R. G.: Negotiation as a metaphor for distributed problem-solving. In
Artificial Intelligence, 20, 1983.

4. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of
multiagent systems. In: LNCS n. 2935: Procs. of AOSE’03, Springer Verlag (2003) 214–230

5. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. IEEE Transactions of Software Engineering and Methodology 12(3) (2003)
317–370

6. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. (Software - Practice And Experience) 103–128

7. Juan, T., Sterling, L.: Achieving dynamic interfaces with agents concepts. In: Procs. of
AAMAS’04. (2004)

8. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data and Knowledge Engineering 35 (2000) 83–848

9. Boella, G., van der Torre, L.: An agent oriented ontology of social reality. In: Procs. of
FOIS’04, Torino (2004) 199–209

10. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social roles and their descriptions. In: Procs. of KR’04. (2004)

11. Cabri, G., Ferrari, L., Leonardi, L.: Agent role-based collaboration and coordination: a sur-
vey about existing approaches. In: IEEE Systems, Man and Cybernetics Conference. (2004)

12. Boella, G., van der Torre, L.: Organizations as socially constructed agents in the agent ori-
ented paradigm. In: Procs. of ESAW’04, Berlin, Springer Verlag (2004)

13. Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Communications
of ACM 45(2) (2002) 61–65

14. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
15. Boella, G., van der Torre, L.: Groups as agents with mental attitudes. In: Procs. of AA-

MAS’04, ACM Press (2004) 964–971
16. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent

systems. In: Procs. of KR’04, AAAI Press (2004) 255–265
17. Arbab, F.: Abstract behavior types: A foundation model for components and their composi-

tion. In: Formal Methods for Components and Objects, LNCS 2852. Springer Verlag, Berlin
(2003) 33–70

18. Steimann, F., Mayer, P.: Patterns of interface-based programming. Journal of Object Tech-
nology (2005)

Bridging Agent Theory and Object Orientation 75

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Software. Addison-Wesley (1995)

20. Java compiler compiler [tm] (javaCC [tm]) - the java parser generator. (Sun Microsystems)
https://javacc.dev.java.net/.

21. Herrmann, S.: Object teams: Improving modularity for crosscutting collaborations. In: Procs.
of Net.ObjectDays. (2002)

22. Mezini, M., K.Ostermann: Conquering aspects with caesar. In: Procs. of the 2nd International
Conference on Aspect-Oriented Software Development (AOSD), ACM Press (2004) 90–100

23. N. Scharli, S. Ducasse, O.N., Black, A.: Traits: Composable units of behavior. In Verlag, S.,
ed.: LNCS, vol. 2743: Procs. of ECOOP’03, Berlin (2003) 248–274

24. Baldoni, M., Boella, G., and van der Torre, L.: powerJava : Ontologically Founded Roles
in Object Oriented Programming Languages. In D. Ancona and M. Viroli, editors, Proc. of
21st ACM Symposium on Applied Computing, SAC 2006, Special Track on Object-Oriented
Programming Languages and Systems (OOPS 2006), Dijon, France, April 2006. ACM. To
appear.

Implementation Techniques for Solving
POMDPs in Personal Assistant Agents

Pradeep Varakantham, Rajiv Maheswaran, and Milind Tambe

Department of Computer Science,
University of Southern California,

Los Angeles, CA, 90089
{varakant, maheswar, tambe}@usc.edu

Abstract. Agents or agent teams deployed to assist humans often face
the challenges of monitoring the state of key processes in their environ-
ment (including the state of their human users themselves) and mak-
ing periodic decisions based on such monitoring. POMDPs appear well
suited to enable agents to address these challenges, given the uncer-
tain environment and cost of actions, but optimal policy generation for
POMDPs is computationally expensive. This paper introduces two key
implementation techniques (one exact and one approximate) to speedup
POMDP policy generation that exploit the notion of progress or dy-
namics in personal assistant domains and the density of policy vectors.
Policy computation is restricted to the belief space polytope that re-
mains reachable given the progress structure of a domain. One is based
on applying Lagrangian methods to compute a bounded belief space sup-
port in polynomial time and other based on approximating policy vectors
in the bounded belief polytope. We illustrate this by enhancing two of
the fastest existing algorithms for exact POMDP policy generation. The
order of magnitude speedups demonstrate the utility of our implementa-
tion techniques in facilitating the deployment of POMDPs within agents
assisting human users.

1 Introduction

Recent research has focused on individual agents or agent teams that assist
humans in offices, at home, in medical care and in many other spheres of daily
activities [13,9,4,12,6,8]. Such agents must often monitor the evolution of some
process or state over time (including that of the human, the agents are deployed
to assist) and make periodic decisions based on such monitoring. For example,
in office environments, agent assistants may monitor the location of users in
transit and make decisions such as delaying, canceling meetings or asking users
for more information [12]. Similarly, in assisting with caring for the elderly [9]
and therapy planning [6, 8], agents may monitor users’ states/plans and make
periodic decisions such as sending reminders.

Unfortunately, such agents (henceforth referred to as personal assistant agents
(PAAs)) must monitor and make decisions despite significant uncertainty in their
observations (as the true state of the world may not be known explicitly) and

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 76–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Implementation Techniques for Solving POMDPs in PAAs 77

actions (outcome of agents’ actions may be non-deterministic). Furthermore,
actions have costs, e.g., delaying a meeting has repercussions on attendees. Re-
searchers have turned to decision-theoretic frameworks to reason about costs and
benefits under uncertainty. However, this research has mostly focused on Markov
decision processes (MDPs) [12, 6, 8], ignoring the observational uncertainty in
these domains, and thus potentially degrading agent performance significantly
and/or requiring unrealistic assumptions about PAAs’ observational abilities.
POMDPs (Partially Observable Markov Decision Processes) address such un-
certainty, but the long run-times for generating optimal policies for POMDPs
remains a significant hurdle in their use in PAAs.

Recognizing the run-time barrier to POMDP usage, previous work on
POMDPs has made encouraging progress using two approaches. The first is
an exact approach, where one tries to find the optimal solution [1, 2]. However,
despite advances, exact algorithms remain computationally expensive and cur-
rently do not scale to problems of interest in PAA domains. The second is an
approximate approach, where one sacrifices solution quality for speed [14,5,3,15].
Unfortunately, current approximate algorithms often provide loose (or no) qual-
ity guarantees on the solutions, even though such guarantees are crucial for PAAs
to inhabit human environments.

This paper aims to practically apply POMDPs to PAA domains by intro-
ducing novel implementation techniques that are particularly suitable for such
settings. One key insight is that when monitoring users or processes over time,
large but shifting parts of the belief space in POMDPs (i.e., regions or states of
uncertainty) remain unreachable. Thus, we can focus policy computation on the
reachable belief-space polytope, which changes dynamically due to progress in
the domain. For instance, consider a PAA monitoring a user driving to a meet-
ing. Given knowledge of the user’s current location, the reachable belief region is
bounded by the maximum probability of the user’s being in different locations at
the next time step as defined by the transition function. Similarly, in a POMDP
where decisions are made every 5 minutes, an agent can exploit the fact that
there is zero probability of going from a world state with T ime = 1:00 PM to a
world state with T ime = 1:30 PM. Current POMDP algorithms typically fail to
exploit such belief region reachability properties. POMDP algorithms that re-
strict belief regions fail to do so dynamically [11,7]. The other key contribution of
this paper is an approximation technique, that considers all policies which have
expected values seperated by ε(the parameter of approximation) as one single
policy. As shown in later sections, this method provides an error bound, which
depends on the exact structure of the value function, rather than depending on
upper and lower bounds for expected value. This fact in itself can help provide
tighter bounds. We enhance two state-of-the-art exact POMDP algorithms [1,2]
delivering over an order of magnitude speedup for two different PAA domains.

2 Motivating PAA Domains

We present two motivating examples, where teams of software PAAs are de-
ployed in office environments to assist human users [12,4]. The first is a meeting

78 P. Varakantham, R. Maheswaran, and M. Tambe

rescheduling problem (MRP), as implemented in the Electric-Elves system [12].
In this large-scale operationalized system, agents monitored the location of users
and made decisions such as: (i) delaying the meeting if the user is projected to
be late; (ii) asking the user for information if he/she plans to attend the meeting;
(iii) canceling the meeting; (iv) waiting. The agent relied on MDPs to arrive at
decisions, as its actions such as asking had non-deterministic outcomes (e.g. a
user may or may not respond) and decisions such as delaying had costs. The
MDP state represented user location, meeting location and time to the meet-
ing (e.g., user@home, meeting@USC, 10 minutes) and a policy mapped such
states to actions. Unfortunately, observational uncertainty about user location
was ignored while computing the policy.

A second key example is a task management problem (TMP) domain [4]. In
this domain, a set of dependent tasks (e.g. T1, T2, T3 in Figure 1) is to be
performed by human users (e.g. users U1, U2, U3 in Figure 1). Agents (e.g.
A1, A2, A3 in Figure 1) monitor the progress of humans and make reallocation
decisions. The lines connecting agents and users indicate the lines of commu-
nication. An illustration of reallocation is the following scenario: suppose T1,
T2 and T3 are assigned to U1, U2 and U3 respectively based on their initial
capabilities. However, if U1 is observed to be progressing too slowly on T1, e.g.,
U1 may be unwell, then A1 may need to reallocate T1 to ensure that the three
tasks finish before a given deadline. A1 may reallocate T1 to U2, if U2’s orig-
inal task T2 is nearing completion and U2 is known to be more capable than
U3 for T1. However, if U2 is also progressing slowly, then T1 may have to be
reallocated to U3 despite the potential loss in capability. POMDPs provide a
framework to analyze and obtain policies in domains such as MRP and TMP.
In a TMP, a POMDP policy can take into account the possibly uneven progress
of different users, e.g., some users may make most of their progress well before
the deadline, while others do the bulk of their work closer to the deadline. In
contrast, an instantaneous decision-maker cannot take into account such dy-
namics of progress. For instance, consider a TMP scenario where there are five
levels of task progress x ∈ {0.00, 0.25, 0.50, 0.75, 1.00} and five decision points
before the deadline t ∈ {1, 2, 3, 4, 5}. Observations are the five levels of task
progress {0.00, 0.25, 0.50, 0.75, 1.00} and time moves forward in single steps, i.e.
T ([x, t], a, [x̃, t̃]) = 0 if t̃ �= t + 1. While transition uncertainty implies irregular
task progress, observation uncertainty implies agent may observe progress x as
for instance x or x + 0.25 (unless x = 1.00). Despite this uncertainty in observ-

U2

U3U1

A3

A2

A1 T1

T2

T3

Fig. 1. Comm. Structure and Task Dependency

Implementation Techniques for Solving POMDPs in PAAs 79

W

A W W

R W

.......

.....

0.00

0.00 0.25

0.25 0.50 1.00

A W

....

W

0.00 0.25 0.75

W

W

Fig. 2. Partial Sample Policy for a TMP

ing task progress, a PAA needs to choose among waiting (W), asking user for
info (A), or reallocate (R). A POMDP policy tree that takes into account both
the uncertainty of observations and future costs of decisions, and maps obser-
vations to actions, for the above scenario is shown in Figure 2 (nodes=actions,
links=observations). In more complex domains with additional actions such as
delaying deadlines, the cascading effects of actions will require even more careful
planning afforded by POMDP policy generation. Such scenarios in TMP and
MRPs are investigated and discussed in Section 5.

3 POMDPs and Incremental Pruning

A POMDP can be represented using the tuple {S, A, T, O, Ω, R}, where S is a
finite set of states; A is a finite set of actions; Ω is a finite set of observations;
T (s, a, s′) provides the probability of transitioning from state s to s′ when tak-
ing action a; O(s′, a, o) is probability of observing o after taking an action a and
reaching s′; R(s, a) is the reward function. A belief state b, is a probability dis-
tribution over the set of states S. A value function over a belief state is defined
as: V (b) = maxa∈A {R(b, a) + β Σb′∈BT (b, a, b′)V (b′)}. Currently, the most effi-
cient exact algorithms for POMDPs are value iteration algorithms, specifically
GIP [1] and RBIP [2]. These are dynamic programming algorithms, where at
each iteration the value function is represented with a minimal set of dominant
vectors called the parsimonious set. Given a parsimonious set at time t, Vt, we
generate the parsimonious set at time t − 1, Vt−1 as follows (notation similar to
the one used in [1] and [2]):

1.
{
va,o,i

t−1 (s) = r(s, a)/|Ω| + β Σs′∈SPr(o, s′|s, a)vi
t(s

′)
}

=: V̂a,o
t−1 where vi

t ∈
Vt.

2. Va,o
t−1 = PRUNE(V̂a,o

t−1)
3. Va

t−1 = PRUNE(· · · (PRUNE(Va,o1
t−1 ⊕ Va,o2

t−1) · · · ⊕ Va,o|Ω|
t−1)

4. Vt−1 = PRUNE(
⋃

a∈A Va
t−1)

Each PRUNE call executes a linear program (LP) which is recognized as a
computationally expensive phase in the generation of parsimonious sets in exact
algorithm [1, 2]. Our approach effectively translates into obtaining speedups by
reducing the quantity of these calls.

80 P. Varakantham, R. Maheswaran, and M. Tambe

4 Dynamic Belief Supports

We propose two new implementation techniques for solving POMDPs in PAA
domains: (i) dynamic belief supports (DB); (ii) expected value approximation
(EVA). These ideas may be used to enhance existing POMDP algorithms such
as GIP and RBIP. The key intuition in DB, is that for personal assistant do-
mains, progress implies a dynamically changing polytope (of belief states) re-
mains reachable through time, and policy computation can be speeded up by
computing the parsimonious set over just this polytope. The speedups with (i)
are due to the elimination of policies dominant in regions outside this polytope,
which reduces the number of LP calls. On the other hand, EVA exploits the
density of policy vectors in the belief polytope calculated using DB. EVA works
by using a lesser density set to represent the optimal set, thus sacrificing on
quality of the solution.

4.1 Dynamic Belief Spaces (DB)

Before introducing the general belief support technique, we introduce a special
case of it called as DBSimple. In this only states that are reachable (given the
transitional dynamics) at each epoch are considered. This is a special case of the
general belief restriction in that the belief support is bounded by only 0.00, rather
than any number less than 1.00. By introducing DBSimple, we are attempting
to more accurately model the support on which reachable beliefs will occur.
We can make this process more precise by using information about the initial
belief distribution, the transition and observation probabilities to bound belief
dimensions with positive support. For example, if we know that our initial belief
regarding task progress can have at most 0.10 probability of being at 0.25 with
the rest of the probability mass on being at 0.00, we can find the maximum
probability of being at 0.00 or 0.25 or 0.50 at the next stage, given a dynamic
transition matrix. Below we outline a polynomial-time procedure by which we
can obtain such bounds on belief support.

Let Bt ⊂ [0 1]|St| be a space such that P (bt /∈ Bt) = 0. That is, there exists
no initial belief vector and action/observation sequence of length t such that by
applying the standard belief update rule, one would get a belief vector bt not
captured in the set Bt. Then, we have

bt+1(st+1) ≥ min
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmin
t+1(st+1)

bt+1(st+1) ≤ max
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmax
t+1 (st+1)

where F (st+1, a, o, bt) :=

Ot(st+1, a, o)
∑

st∈St
Tt(st, a, st+1)bt(st)∑

s̃t+1∈St+1
Ot(s̃t+1, a, o)

∑
st∈St

Tt(st, a, s̃t+1)bt(st)

Thus, if we have the belief polytope

Bt+1 = [bmin
t+1(s1)bmax

t+1 (s1)] × · · · × [bmin
t+1(s|St+1|)b

max
t+1 (s|St+1|)],

Implementation Techniques for Solving POMDPs in PAAs 81

Algorithm 1. DB + GIP

Func POMDP-SOLVE (L, S, A,T, Ω, O, R)
1: ({St}, {Ot}, {Bmax

t }) = DSDODB-GIP (L, S, A, T, Ω, O, R)
2: t ← L;Vt ← 0
3: for t = L to 1 do
4: Vt−1 = DP-UPDATE(Vt, t)

Func DP-UPDATE (V, t)
1: for all a ∈ A do
2: Va

t−1 ← φ
3: for all ωt ∈ Ot do
4: for all vi

t ∈ V do
5: for all st−1 ∈ St−1 do
6: va,ωt,i

t−1 (st−1) = rt−1(st−1, a)/|Ot| + γΣst∈StPr(ωt, st|st−1, a)vi
t(st)

7: Va,ωt
t−1 ← PRUNE({va,ωt,i

t−1 }, t)
8: Va

t−1 ← PRUNE(Va
t−1 ⊕ Va,ωt

t−1 , t)
9: Vt−1 ← PRUNE(a∈A Va

t−1, t)
10: return Vt−1

Func POINT-DOMINATE(w,U, t)
1: for all u ∈ U do
2: if w(st) ≤ u(st), ∀st ∈ St then return true
3: return false

Func LP-DOMINATE(w,U, t)
1: LP vars: d, b(st)[∀st ∈ St]
2: LP max d subject to:
3: b · (w − u) ≥ d, ∀u ∈ U
4: Σst∈Stb(st) ← 1
5: b(st) <= bmax

t (st); b(st) >= 0
6: if d ≥ 0 return b else return nil

Func BEST(b, U)
1: max ← Inf
2: for all u ∈ U do
3: if (b · u > max) or ((b · u = max) and (u <lex w)) then
4: w ← u; max ← b · u
5: return w

Func PRUNE(U, t)
1: W ← φ
2: while U
= φ
3: u ← any element in U
4: if POINT-DOMINATE(u,W, t) = true then
5: U ← U − u
6: else
7: b ←LP-DOMINATE(u,W, t)
8: if b = nil then U ← U − u
9: else w ← BEST (b, U);W ← W w;U ← U − w

10: return W

82 P. Varakantham, R. Maheswaran, and M. Tambe

Func DB-GIP(L, S, A, T, Ω, O, R)
1: t ← 1; St =Set of starting states
2: for all st ∈ St do
3: bmax

t (st) = 1
4: for t = 1 to L − 1 do
5: for all s ∈ St do
6: ADD-TO(St+1,REACHABLE-STATES(s,T))
7: Ωt+1 = GET-RELEVANT-OBS(St+1, O)
8: C = GET-CONSTRAINTS (st)
9: bmax

t+1 (st+1) = MAXc∈C(GET-BOUND(st+1, c))
10: return ({St}, {Ωt}, {bmax

t })
Func GET-BOUND(st, constraint)
1: ymin = MINs∈St−1(constraint.c[s]/constraint.d[s])
2: ymax = MAXs∈St−1(constraint.c[s]/constraint.d[s])
3: INT = GET-INTERSECT-SORTED(constraint, ymin, ymax)
4: for all i ∈ INT do
5: Z = SORT(((i + ε) ∗ constraint.d[s] − constraint.c[s]),∀s ∈ St−1

6: sumBound = 1, numer = 0, denom = 0
7: /* IN ASCENDING ORDER */
8: for all z ∈ Z do
9: s = FIND-CORRESPONDING-STATE(z)

10: if sumBound − bound[st−1] > 0 then
11: sumBound− = bound[st−1]
12: numer+ = bound[st−1] ∗ constraint.c[st−1]
13: denom+ = bound[st−1] ∗ constraint.d[st−1]
14: if sumBound − bound[st−1] <= 0 then
15: numer+ = sumBound ∗ constraint.c[st−1]
16: denom+ = sumBound ∗ constraint.d[st−1]
17: BREAK-FOR
18: if numer/denom > i and numer/denom < max then
19: return numer/denom

then we have P (bt+1 /∈ Bt+1) = 0. The proof of optimality preservation for
dynamic beliefs is omitted due to lack of space.

We now show how bmax
t+1 (st+1) (and similarly bmin

t+1(st+1)) can be generated
through a polynomial-time procedure deduced from Lagrangian methods. The
method involves iterating over all a and ω, where for a given action a and
observation ω, we can express the problem as

max
bt∈Bt

ba,ω
t+1(st+1) s.t. ba,ω

t+1(st+1) = cT bt/dT bt

where c(st) = Ot(st+1, a, ω)Tt(st, a, st+1) and d(st) =
∑

st+1∈St+1
Ot(st+1, a, ω)

Tt(st, a, st+1). We rewrite the problem in terms of the new variables as follows:

min
x

(−cT x/dT x
)

s.t.
∑

i

xi = 1, 0 ≤ xi ≤ bmax
t (si) =: x̄i

Implementation Techniques for Solving POMDPs in PAAs 83

where
∑

i bmax
t (si) ≥ 1 to ensure existence of a feasible solution. Expressing this

problem as a Lagrangian, we have

L =
(−cT x/dT x

)
+ λ(1 −

∑
i

xi) +
∑

i

μ̄i(xi − x̄i) −
∑

i

μixi

from which the KKT conditions imply

xk = x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2 + μ̄k

0 < xk < x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2

xk = 0 λ =[(cT x)dk − (dT x)ck]/(dT x)2 − μk.

Because λ is identical in all three conditions and μ̄k and μk are non-negative for
all k, the component xk associated with the lowest value of [(cT x)/(dT x)]dk − ck

must receive a maximal allocation (assuming x̄k < 1) or the entire allocation
otherwise. Using this reasoning recursively, we see that if x∗ is an extremal
point (i.e. a candidate solution), then the values of its components {xk} must
be constructed by giving as much weight possible to components in the order
prescribed by zk = ydk − ck, where y = (cT x∗)/(dT x∗). Given a value of y,
one can construct a solution by iteratively giving as much weight as possible
(without violating the equality constraint) to the component not already at its
bound with the lowest zk.

The question then becomes finding the maximum value of y which yields a
consistent solution. We note that y is the value we are attempting to maximize,
which we can bound with ymax = maxi ci/di and ymin = mini ci/di. We also note
that for each component k, zk describes a line over the support [ymin, ymax]. We
can then find the set of all points where the set of lines described by {zk} in-
tersect. There can be at most (|st| − 1)|st|/2 intersections points. We can then
partition the support [ymin, ymax] into disjoint intervals using these intersection
points yielding at most (|st| − 1)|st|/2 + 1 regions. In each region, there is a
consistent ordering of {zk} which can be obtained in polynomial time. An il-
lustration of this can be seen in Figure 3. Beginning with the region furthest
to the right on the real line, we can create the candidate solution implied by
the ordering of {zk} in that region and then calculate the value of y for that
candidate solution. If the obtained value of y does not fall within region, then
the solution is inconsistent and we move to the region immediately to the left. If
the obtained value of y does fall within the region, then we have the candidate
extremal point which yields the highest possible value of y, which is the solution
to the problem.

By using this technique we can dynamically propagate forward bounds on
feasible belief states. Line 8 and 9 of the DSDODB-GIP function in Algorithm 1
provide the procedure for DB. The GET-CONSTRAINTS function on Line 8
gives the set of c and d vectors for each state at time t for each action and
observation. By using dynamic beliefs, we increase the costs of pruning by adding
some constraints on maximum probability bmax(st) as shown in line 5 of LP-
dominate. However, there is an overall gain because we are looking for dominant

84 P. Varakantham, R. Maheswaran, and M. Tambe

y

z

z

z

z

y y
min max

z

1

2

3

4

Fig. 3. Partition Procedure for Solving Belief Maximization Lagrangian

vectors over a smaller belief polytope. Thus, reducing the cardinality of the
parsimonious set, leaving fewer vectors/policies to consider at the next iteration.

4.2 Expected Value Approximation (EVA)

Expected Value Approximation (EVA) is an approximate approach for solving
POMDPs. Most of the approximate algorithms for solving POMDPs [5, 15] dis-
cretize the belief space to obtain, however here we provide an algorithm that
discretizes the expected value space. As is known from the literature, the value
function in a POMDP can be expressed using a finite set of linear vectors. EVA
approximates the parsimonious set of the linear vectors (in the “CUP”) using
lesser number of vectors given the approximation parameter α, which indicates
the maximumm error allowed in expected value at any belief point.

Algorithm 2 provides the procedure used for checking whether a vector is
dominated by a set of vectors in algorithms such as GIP and RBIP. EVA uses
the same procedure except for d + ε instead of d in RHS of line 5. This extra

Algorithm 2. LP-DOMINATE(w, U, t, ε)
1: solve the following linear program
2: variables: d, b(st)[∀st ∈ St]
3: maximize d
4: subject to the constraints
5: b · (w − u) ≥ d + ε, ∀u ∈ U
6: Σst∈Stb(st) ← 1
7: b(st) <= bmax

t (st)
8: b(st) >= 0
9: if d ≥ 0 then

10: return b
11: else
12: return nil

Implementation Techniques for Solving POMDPs in PAAs 85

ε (in line 5) implies that for a vector to dominate a set of vectors, it should
dominate each of the vectors by at least ε. That is to say, all vectors which don’t
dominate all the vectors in the set by at least ε are pruned out, hence decreasing
the size of the parsimonious set. Savings provided by EVA are in the number of
vectors in the parsimonious set (vectors after pruning) at each epoch. Reduced
number of vectors after pruning has a chain effect, since it leads to less number
of projections (or vectors before pruning) at the next epoch, which in turn might
lead to reduced number of vectors after pruning in that epoch.

The main difference between some of the existing methods (like the point
based or grid based approaches) and EVA is the space in which approximation
is done. In point-based or grid-based, the approximation is in the belief space,
while in our approach it is in the value space. EVA can provide better bounds
because it is based on value space based approximation that approximates based
on the exact structure of the value function rather than take worst case bounds
on the value function. This is studied extensively in [10].

Proposition 1. Error of the EVA algorithm can be bounded by 2 ∗ ε ∗ |Ω| for
GIP type cross sum pruning.

Proof. EVA algorithm introduces an error whenever a pruning operation is
performed. Since there are three stages where pruning operations are performed,
this proof proceeds by summing the error introduced at each of these stages.

1. Va,o = PRUNE(Va,o,i)
After this pruning step, each of Va,o’s (∀a, ∀o) are away from the optimal by
at-most ε.

2. Va = PRUNE(· · · (PRUNE(Va,o1 ⊕ Va,o2) · · · ⊕ Va,o|Ω|) To calculate the
error bound after this pruning step, we start from the innermost cross-sum
PRUNE. The innermost prune would give a set of vectors which in the worst
case is ε + ε + ε away from the optimal set. In the above bound, first and
second epsilon follow from the fact that there is a cross sum and that each
term is away from optimal by ε in the worst case, while the third epsilon
is because of the PRUNE on this cross sum. Each subsequent prune adds
a further 2 ∗ ε to the bound. Thus each Va,o is away from the optimal by
at-most 2 ∗ ε ∗ (|Ω| − 1) + ε.

3. V ′ = PRUNE(
⋃

a∈A Va) Now since this step does a PRUNE over UNION
of Va, ∀a, it further adds an ε to the bound. Hence making the final error
bound to be 2 ∗ ε ∗ |Ω|.

Thus proved. �

5 Experimental Results

Experiments were conducted on the TMPs and MRPs explained in Section 2.
Each agent uses a POMDP for decision making in both domains. Our enhance-
ments, DBSimple (Dynamic States), and DB (Dynamic Beliefs), were imple-
mented over both GIP and RBIP [2] (RBIP is itself a recent enhancement to

86 P. Varakantham, R. Maheswaran, and M. Tambe

GIP RBIP DS+GIP

Comparison of GIP, RBIP, and DSGIP Comparison of DS, DSDO, DSDODB

Experiments

DS+GIP DSDO+GIP DSDODB+GIP

DS+RBIP DS+GIP

Comparison of DSRBIP and DSGIP MRP Results

DS+RBIP DS+GIP DSDODB+GIP

Fig. 4. TMP: (a) DBSimple+GIP gives orders of magnitude speedup over GIP and
RBIP (b) DB+GIP dominates DBSimple+GIP (c) DBSimple+GIP dominates DB-
Simple+RBIP; MRP: (d) DB+GIP dominates

GIP). All the experiments compare the performance (run-time) of GIP, RBIP
and our enhancements over GIP and RBIP. For both domains, we ran 6 prob-
lems over all methods (GIP, RBIP, DBSimple+GIP, DB+GIP, DB+GIP, DB-
Simple+RBIP, DB+RBIP). Each problem had pre-specified upper limit of 20000
seconds, after which it was terminated.

Figure 4(a)-(c) present results for the TMP domain. Experimental setup in
TMP consisted of a set of seven problems of increasing complexity (A through
G). In all the graphs, the x-axis denotes the problem name, and the y-axis
denotes the run-time for a problem. GIP and RBIP finished before the time
limit in only Problem A, as shown in Figure 4(a). DBSimple+GIP provides 100-
fold speedup in Problem B, and 10-fold speedup in Problems C and D (however,
the actual speedup which we expect to be even larger cannot be seen due to our
cutoff).

DB+GIP finished in almost the same time as DS in Problems A-C. Fig-
ure 4(b) provides comparisons between the three of our enhancements on GIP.
For Problems D-G that are even more complex than A-C, DB dominates the
other enhancements providing approximately 5-fold speedup over DBSimple.

Implementation Techniques for Solving POMDPs in PAAs 87

GIP and RBIP did not terminate within time limit and hence not shown. The
key point of Figure 4(c) is to show that DBSimple+GIP provides 10-fold speedup
(with cut-off) over DBSimple+RBIP, even though RBIP is faster than GIP. This
is also the reason for providing the results of enhancements on GIP instead of
RBIP in Figure 4(b).

Figure 4(d) presents results for the MRP domain. Experimental setup for
MRP consisted of a set of seven problems(A through G). The figure does not
show results for GIP and RBIP, because they did not finish before our cutoff
for any of the 7 problems. DB+GIP provides approximately 6-fold speedups
over DBSimple+GIP. DBSimple+RBIP seems comparable with the other three
methods in Problems A-C, but for Problems D-G, it fails to even finish before
the cutoff. Both domains provide similar conclusions: DB+GIP dominates other
techniques (with around 100 fold speedup over GIP and RBIP in some cases)
and this dominance becomes more significant in larger problems.

Fig. 5. Effect of epsilon on run times

Figure 5 presents results for the EVA approximation algorithm. x-axis shows
different values of ε, approximation parameter and y-axis shows the run times. To
clearly show the capacity of EVA, we present these results on a bigger problem
than A-G. As can be seen, EVA provides orders of magnitude speedup as ε is
decreased from 0.0001 - 0.01. The error bound in the 0.01 case was 2*36*0.01.

6 Related Work

We have already discussed some related work in Section 1. As discussed there,
techniques for solving POMDPs can be categorized as exact and approximate.
GIP [1] and RBIP [2] are exact algorithms, which we have enhanced. Other exact
algorithms attempt to exploit domain-specific properties to speedup POMDPs.
For instance, [7] presents a hybrid framework that combines MDPs with
POMDPs to take advantage of perfectly and partially observable components
of the model. They also focus on reachable belief spaces, but: (i) their analysis
does not capture dynamic changes in belief space reachability; (ii) their analy-
sis is limited to factored POMDPs; (iii) no speedup measurements are shown.

88 P. Varakantham, R. Maheswaran, and M. Tambe

This contrasts with this work which focuses on dynamic changes in belief space
reachability and its application to both flat and factored state POMDPs.

Approximate algorithms are faster than exact algorithms, but at the cost of
solution quality. There has been a significant amount of work in this area, but
point-based [14, 5], grid [3, 15], and policy search approaches dominate other
algorithms. Though these approaches can solve larger problems, most of them
provide loose (or no) quality guarantees on the solution. It is critical to have
good quality guarantees in PAA domains, for an agent to gain the trust of a
human user. Another recently developed technique uses state space dimension-
ality reduction using E-PCA, but it does not provide any guarantee on quality
of the solution [11]. Point Based Value Iteration (PBVI) [5] provides the best
quality guarantees, but to obtain good results it needs to increase sampling,
consequently increasing the run-time. As explained earlier, EVA approach can
provide tighter bounds because of its approximation in the expected value space.

7 Summary

This paper provides techniques to make the application of POMDPs in per-
sonal assistant agents a reality. In particular, we provide three key techniques to
speedup POMDP policy generation that exploit the key properties of the PAA
domains. One key insight is that given an initial (possibly uncertain) starting set
of states, the agent needs to generate a policy for a limited range of dynamically
shifting belief states. The techniques we propose are complementary to most ex-
isting exact and approximate POMDP policy generation algorithms. Indeed, we
illustrate our technique by enhancing GIP and RBIP, two of the most efficient
exact algorithms for POMDP policy generation and obtain orders of magnitude
speedup in policy generation. Another key insight is to exploit the high density of
value vectors, to speedup policy generation, while sacrificing very little in terms
of the quality of solution. We provide a detailed algorithm illustrating our en-
hancements in Algorithm 1, and present proofs of correctness of our techniques.
The techniques presented here facilitate agents’ utilizing POMDPs for policies
when assisting human users.

References

1. M. L. Littman A. R. Cassandra and N. L. Zhang. Incremental pruning: A simple,
fast, exact method for partially observable markov decision processes. In UAI,
1997.

2. Z. Feng and S. Zilberstein. Region based incremental pruning for POMDPs. In
UAI, 2004.

3. M. Hauskrecht. Value-function approximations for POMDPs. JAIR, 13:33–94,
2000.

4. http://www.ai.sri.com/project/CALO, http://calo.sri.com. CALO: Cognitive
Agent that Learns and Organizes, 2003.

5. G. Gordon J. Pineau and S. Thrun. PBVI: An anytime algorithm for POMDPs.
In IJCAI, 2003.

Implementation Techniques for Solving POMDPs in PAAs 89

6. T. Y. Leong and C. Cao. Modeling medical decisions in DynaMoL: A new general
framework of dynamic decision analysis. In World Congress on Medical Informatics
(MEDINFO), pages 483–487, 1998.

7. H. Fraser M. Hauskrecht. Planning treatment of ischemic heart disease with par-
tially observable markov decision processes. AI in Medicine, 18:221–244, 2000.

8. F. Locatelli: P. Magni, R. Bellazzi. Using uncertainty management techniques
in medical therapy planning: A decision-theoretic approach. In Applications of
Uncertainty Formalisms, pages 38–57, 1998.

9. M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy, C. Orosz, B. Peintner, S. Ra-
makrishnan, and I. Tsamardinos. Autominder: An intelligent cognitive orthotic
system for people with memory impairment. Robotics and Autonomous Systems,
44:273–282, 2003.

10. P. Poulpart and Craig Boutilier. Bounded finite state controllers. In NIPS, 2003.
11. N. Roy and G. Gordon. Exponential family PCA for belief compression in

POMDPs. In NIPS, 2002.
12. P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy for the

real-world. JAIR, 17:171–228, 2002.
13. D. Schreckenghost, C. Martin, P. Bonasso, D. Kortenkamp, T.Milam, and

C.Thronesbery. Supporting group interaction among humans and autonomous
agents. In AAAI, 2002.

14. N. L. Zhang and W. Zhang. Speeding up convergence of value iteration in partially
observable markov decision processes. JAIR, 14:29–51, 2001.

15. R. Zhou and E. Hansen. An improved grid-based approximation algorithm for
POMDPs. In IJCAI, 2001.

Using a Planner for Coordination of Multiagent
Team Behavior

Oliver Obst

Universität Koblenz-Landau, AI Research Group,
56070 Koblenz, Germany
fruit@uni-koblenz.de

Abstract. We present an approach to coordinate the behavior of a mul-
tiagent team using an HTN planning procedure. To coordinate teams,
high level tasks have to be broken down into subtasks which is a basic
operation in HTN planners. We are using planners in each of the agents
to incorporate domain knowledge and to make agents follow a specified
team strategy. With our approach, agents coordinate deliberatively and
still maintain a high degree of reactivity. In our implementation for use
in RoboCup Simulation League, first results were already very promis-
ing. Using a planner leads to better separation of agent code and expert
knowledge.

1 Introduction

Coordination among different agents and the specification of strategies for mul-
tiagent systems (MAS) is a challenging task. For a human domain expert it is
often very difficult to change the behavior of a multiagent system. This is espe-
cially true when not only general tasks should be specified, but also the way in
which tasks are to be executed. Due to interdependencies simple changes in one
place of the code may easily affect more than one situation during execution.

In this work, we suggest to use Hierarchical Task Network (HTN) planners
in each of the agents in order to achieve coordinated team behavior which is in
accordance with the strategy given by the human expert. The expert knowledge
should be separated from the rest of the agent code in a way that it can easily
be specified and changed. While pursuing the given strategy, agents should keep
as much of their reactiveness as possible. HTN planning explicitly supports the
use of domain specific strategies. To coordinate groups of agents, tasks usually
have to be broken down into subtasks, which is one of the basic operations of
HTN planning. Different levels of detail in the description of strategies further
facilitate the generation of useful information for debugging or synchronization.

In classical planning, operators are deterministic and the single planning agent
is the only reason for changes in the environment under consideration. We show
how it is possible to use an HTN planner in the domain of robotic soccer, even
though the robotic soccer environment is very different from classical planning
domains. For our approach, we have chosen a team of agents using the RoboCup
3D Soccer Simulator [17] that was introduced at RoboCup-2004 in Lisbon [11].

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 90–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using a Planner for Coordination of Multiagent Team Behavior 91

The following section describes our approach to coordinate the behavior of a
multiagent team using an HTN planner. Section 3 contains the description of an
implemented example. We present and discuss the results of our first tests, and
a review of relevant related work. Finally, Sect. 6 concludes the paper.

2 HTN Planning for Multiagent Teams

The usual assumptions for HTN planning, like for classical planning approaches,
are that we plan for a single agent who is the only cause for changes in the
domain. When the plan is executed, all actions succeed as planned. Executing
an action in a classical planning framework is instantaneous, it takes no time,
and therefore the world is always in a defined state.

To plan for agents in a team and in a real-world domain, we have to relax some
of these assumptions and find a way to deal with the new setting. Definition 1 is a
way commonly used to define nondeterministic planning domains. An approach
to deal with these kinds of domains is to use model checking (see for instance [3]).
Depending on the problem and the desired properties of the results, the planner
tries to compute solution plans that have a chance to succeed or solution plans
that succeed no matter what the results of the non-deterministic actions of an
agent are.

Definition 1. A nondeterministic planning domain is a triple Σ = 〈S, A, γ〉,
where:

– S is a finite set of states.
– A is a finite set of actions.
– γ ⊆ S × A × S is the state-transition relation. �

When the number of different possible results of γ is high, computing a plan
can easily become intractable for domains where decisions have to be made
quickly. Nevertheless, using a planner could still be useful to achieve high-level
coordination for a team of several agents in a dynamic environment without using
communication and without a centralized planning facility. For our approach,
all planning should be done in a distributed fashion in each of the autonomous
agents. The goal is that team behavior can easily be specified and extended, the
task of the system is to automatically generate individual actions for the agents
in accordance with those plans during execution. Despite using plans, agents
should still be able to react to unforeseen changes in the environment.

2.1 Multiagent Team Behavior with HTN Plans

In Hierarchical Task Network (HTN, see also Definition 2) planning, the objec-
tive is to perform tasks. Tasks can be complex or primitive. HTN planners use
methods to expand complex tasks into subtasks, until the tasks are primitive.
Primitive tasks can be performed directly by using planning operators.

92 O. Obst

Definition 2. A task network is an acyclic directed graph w = 〈N, A〉, where
N is the set of nodes, and A is the set of directed edges. Each node in N contains
a task tn. A task network is primitive, if all of its tasks are primitive, otherwise
it is nonprimitive. �

Our approach of interleaving planning and acting and also of handling non-
deterministic actions is similar to the one described in [1], where a HTN plan-
ner is used for navigation planning of a single robot. Here, like in most realistic
environments, it is not enough to initially create a plan and blindly execute it, but
after execution of each action the state of the world needs to be sensed in order to
monitor progress. As a consequence, for generating HTN plans it is not absolutely
necessary to generate a primitive task network from the beginning. Instead a HTN
where the first tasks are primitive is sufficient, if we interleave planning and acting.
Future tasks are left unexpanded or partially expanded until the present tasks are
done and there is no other task in front. In dynamic and complex environments,
creating a detailed plan can be considered as wasted time, because it is virtually
impossible to predict the state of the world after only a few actions.

Rather than expanding complex tasks completely, our planner generates what
is called plan stub in [1], a task network with a primitive task as the first task.
As soon as a plan stub has been found, an agent can start executing its task.
The algorithm in Fig. 1 expands a list of tasks to a plan stub, if it is not already
in that form.

Function: plan(snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w an ordered set of tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e. the empty plan
if t1 is a pending primitive task then

active ← {(a, σ)|a is a ground instance of an operator in O,
σ is a substitution such that a is relevant for σ(t1),
and a is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (a, σ) ∈ active;
return (σ(〈t1, ..., tk〉), γ(snow, a));

else if t1 is a pending complex task then
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

else
// t1 is an already executed expanded task and can be removed
return plan(snow, 〈t2, ..., tk〉, O, M);

Fig. 1. Creating an initial plan stub (Notation according to [7])

Using a Planner for Coordination of Multiagent Team Behavior 93

In classical planning, executing an action takes no time. That means immedi-
ately after executing a planning operator, the world is in the successor state. In
our approach we have to consider that actions are not instantaneous and might
not even yield the desired result. The first problem is when to regard operators as
finally executed: Depending on the actual domain agents are acting in, actions
can be regarded as finished after a given amount of time or when a specified
condition holds. This domain specific solution to this problem is not part of the
algorithms in this paper.

A second problem is the computation of the successor state: as defined above,
for non-deterministic environments γ is a relation with possibly several results
for the same state-action pair. For our algorithms, we expect γ to be a func-
tion returning the desired successor state. Likewise, the effects of an operator
describe the desired effects. The underlying assumption is that operators have
a single purpose so that the desired successor state can be uniquely described.
The desired effects can be used by the operators to coordinate actions of team-
mates during the same plan step. For this, we introduce multiagent operators in
Definition 3, which is effectively a shortcut for defining a set of combinations of
operators. Actions that are executed simultaneously but which do not contribute
to the desired effects of the multiagent operator are simply not included. This
makes it easy for the developer of a multiagent team to create team operators,
but the disadvantage is that agents not part of the multiagent team cannot be
regarded with our approach.

Definition 3 (Multiagent Operator). Let o1, ..., on be operators, and
effects−(oj) ∩ effects+(ok) = ∅ for all j, k ∈ {1, ..., n}. p is a new operator
with name(p) = name(o1) while 〈name(o2), ...,name(on)〉. The preconditions
and effects of p are defined as unions over the preconditions and effects of all oi,
respectively:

pre(p) =
⋃

i=1,...,n

pre(oi), and effects(p) =
⋃

i=1,...,n

effects(oi)
�

At the same time, the desired successor state is used to check the success of the
last operator application in the second algorithm (see Fig. 2). Here, the executed
tasks are removed from the plan and the first algorithm is used again to create
an updated plan stub.

2.2 Handling Non-determinism

To handle non-determinism, we treat a plan as a stack. Tasks on this stack are
marked as either pending or as expanded. Pending tasks are either about to be
executed, if they are primitive, or waiting to be further expanded, if they are
complex. Tasks marked as expanded are complex tasks which already have been
expanded into subtasks. If a subtask of a complex task fails, all the remaining
subtasks of that complex task are removed from the stack and it is checked if the
complex task can be tried again. If a task was finished successfully, it is simply
removed from the stack.

94 O. Obst

Function: step(sexpected, snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w a set of ordered tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e., the empty plan
if t1 is a pending task then

if sexpected is valid in snow then
i ← the position of the first non-primitive task in the list;
return plan(snow, 〈ti, ..., tk〉, O, M);

else
// t1 was unsuccessful; remove all pending children of our

parent task
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
// t1 is an unsuccessfully terminated expanded task, try to

re-apply it
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then
// t1 cannot be re-applied, remove it from the list and recurse
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

Fig. 2. Remove the top primitive tasks and create a new plan stub

3 Robotic Soccer Sample Implementation

To give an example, we take an example from the simulated soccer domain
[10, 11] and the complex top level task play soccer has already been partially
expanded as shown in Fig. 3. All the pending tasks in Fig. 3 are still complex
tasks. To create a plan stub, the planner needs to further expand the top pending
task. At this level of expansion, the plan still represents a team plan, as seen from
a global perspective. When team tasks – like pass(2,9) – get further expanded
to agent tasks, each agent has to find its role in the team task. In the soccer
domain, agents usually have predefined roles which can be used to describe roles
in specific tasks. An alternative possibility is a distance based role selection.

Agent #2 will expand pass(2,9) to do pass(9), agent #9 has to do a
do receive pass for the same team task. The other agents position themselves
relatively to the current ball position with do positioning at the same time.
The desired effect of pass(2,9) is the same for all the agents, even if the derived
primitive task is different depending on the role of the agent. That means each
agent has to execute a different action, which is realized as C++ function call in our
case, and at the same time an operator has to update the desired successor state
independently. To express that an agent should execute the do positioning

Using a Planner for Coordination of Multiagent Team Behavior 95

1

11
6

4

5

2

3

7

8

9

10

pending-pass(2,9)
pending-pass(9,10)
pending-leading-pass(10,11)
expanded-diagram-4
expanded-build_up_long_pass
expanded-build_up_play
pending-final_touch
pending-shooting
expanded-offensive_phase
expanded-play_soccer

Fig. 3. Soccer Example Situation (left) and plan stack during planning (right)

method pass(A,B)
pre [my_number(A)]
subtasks [do_pass(B) while pass(we,A,B),
do_positioning].

method pass(A,B)
pre [my_number(B)]
subtasks [do_receive_pass while pass(we,A,B)].

method pass(A,B)
pre [my_number(C),#\=(A,C),#\=(B,C)]
subtasks [do_positioning while pass(we,A,B)].

Fig. 4. Different methods to reduce the team task pass(A,B) to agent tasks

behavior while taking the effect of a simultaneous pass between two teammates
into account, we are using terms like do positioning while pass(we,2,9) in
our planner. Figure 4 shows methods reducing the team task pass(A,B) to dif-
ferent primitive player tasks.

In different agents, the applicable methods for the top team task pass(2,9)
lead to different plan stubs. This is an important difference to the work presented
in [1]. The plan stubs created as first step for agent 9 and agent 11 are shown in
Fig. 5. When a plan stub is found, the top primitive tasks are passed to the C++
module of our agent and executed. A ’step’ for a plan in our agents can consist of
more than a single action, for example, we do not want the agent who passes the
ball to stop acting while the ball is already moving to a teammate, but instead
after the kick the agent should adjust its position relative to the ball until the
ball reached its destination and the step is finished. If possible, the agent has
to execute all pending primitive tasks until the next step in the plan starts. If
there are pending primitive tasks after one step is finished, these agent tasks are
simply removed from the plan stack and the next team task can be expanded.
Figure 6 shows the plan stub for the second step from the diagram in Fig. 3. For
player 9, the expansion leads to a plan stub with two primitive tasks in a plan
step while for player 11 there is only one task to be executed.

96 O. Obst

pending-(do_receive_pass while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

pending-(do_positioning while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

Fig. 5. Step 1: Plan Stubs for player 9 and player 11

pending-(do_pass(10) while
pass(we, 9, 10)),

pending-do_positioning,
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

pending-(do_positioning while
pass(we, 9, 10)),

expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

Fig. 6. Step 2: Plan Stubs for player 9 and player 11

What we did not address so far was the point in time when the transition
from one plan step to the next step takes place. Here, the basic idea is the
following: each step in plans for our team stops or starts with an agent being in
ball possession. If any of the agents on the field is in ball possession, we can check
for the desired effect of our previous action. If the action succeeded, the right
agent possesses the ball and the planner can continue planning by generating
the next plan stub. If an adversarial agent intercepted the ball, the last action
failed and the planner needs to backtrack. For dribbling, the planner needs to
check if the dribbling agent still possesses the ball and arrived at the desired
destination in order to start with the next step.

4 Results and Discussion

For our approach of generating coordinated actions in a team we implemented
an HTN planner in Prolog which supports interleaving of planning and acting.
Our planner supports team actions by explicitly taking the effects of operators
simultaneously used by teammates into account. The planner ensures that the
agents follow the strategy specified by the user of the system by generating
individual actions for each of the agents that are in accordance with it. The
lazy evaluation in the expansion of subtasks which generates plan stubs rather
than a full plan, makes the planning process very fast and enables the agents to
stay reactive to unexpected changes in the environment. The reactiveness could,
however, be increased by adding a situation evaluation mechanism that is used
prior to invoking the planner. This would improve the ability to exploit sudden,
short-lived opportunities during the game.

We implemented a distributed planning system in the sense that each of the
agents uses its own planner. This was, however, somewhat facilitated by the fact

Using a Planner for Coordination of Multiagent Team Behavior 97

that agents in the RoboCup 3D Simulation League are equipped with sensors
that provide them with a full (though possibly inaccurate) view of the world,
similar to Middle-size League robots using omni-vision cameras.

To truly evaluate the approach we presented, it would be necessary to mea-
sure the effort it takes to create a team and compare it to other approaches to
create a team exhibiting the same behavior. We strongly believe that our ap-
proach leads to a modular behavior design and facilitates rapid specification of
team behavior for users of our agents, but we cannot present numbers here. Our
plans can describe plays as introduced in [2], which have shown to be useful for
synchronization in a team. There are some important differences to plays, how-
ever. First, our approach supports different levels of abstraction in plans. That
means there are different levels of detail available to describe what our team and
each single agent is actually doing, from very abstract tasks down to the agent
level tasks. A second important difference is that the planner can find alternative
ways to achieve tasks. This is possible if plays are specified in terms of player
roles or properties rather than fixed player numbers. The approach in [2] was
used for Small Size League, where the numbers of players and the number of al-
ternative ways of doing plays is low. That means in Small Size League, a plan is
either applicable or not. For Simulation League or larger teams in general, more
opportunities are possible for which an approach using fixed teammates seems
to restrictive. On the other hand, the approach in [2] supports adaptation by
changing weights for the selection of successful plays. In our approach, the cor-
responding functionality could be achieved by changing the order in which HTN
methods are used to reduce tasks. At this point in time, our approach does not
support this yet. As soon as we do have an adaptive component in our approach,
it makes sense to compare results of our team with and without adaptation.

The way our plans are created and executed, we assume synchronous actions
for all our agents. Our team actions are geared to actions of the player in ball
possession, so this simplification can be made. There are a few situations in
soccer, where more detailed reasoning over the time actions take would be useful.
This includes for instance all situations where a ball receiver should appear at
the receiving position just in time to surprise the opponent. In our approach, we
make this possible by synchronizing the behavior of two agents in the current
step by using both ball and agent velocity to estimate interception times, in the
operator implementations outside of the planning procedure. Inside our planning
procedure, we do not reason about durations, which would be useful to make
asynchronous actions possible.

Although more detailed evaluations have to be carried out, the first tests
using the planner seem very promising and indicate that our approach provides
a flexible, easily extendable method for coordinating a team of agents in dynamic
domains like the RoboCup 3D Simulation League.

5 Related Work

Several approaches that use a planning component in a MAS can be found in
the literature.

98 O. Obst

In [6], the authors describe a formalism to integrate the HTN planning sys-
tem SHOP [16] with the IMPACT [21] multiagent environment (A-SHOP). The
preconditions and effects used in SHOP are modified so that preconditions are
evaluated using the code-call mechanism of the framework, and effects change
the state of agents. While the environment of this work clearly is a multiagent
system, the planning is carried out centralized by a single agent. This is a con-
trast to our approach, which uses a planner in each of the agents to coordinate
the agents actions.

A general HTN planning framework for agents in dynamic environments has
been presented in [9]. The authors show how to integrate task decomposition
of HTN planning, action execution, program updates, and plan modifications.
The planning process is done via abstract task decomposition and is augmented
to include additional information such as the history of action execution for
the plans to enable their incremental modification. Rules are given for plan
modifications after having executed certain actions or after program updates. In
the robotic soccer domain, however, the results of actions like e.g. kicking the
ball cannot be undone. Thus, the plan modification mechanism given in [9] does
not apply and could not easily be used for our purposes.

HTN planning has also been studied in the context of creating intelligent,
cooperating Non-Player Characters in computer games. In [13], an HTN plan-
ner is used to enable agents in the highly dynamic environment of the Unreal
Tournament game to pursue a grand strategy designed for the team of agents.

Bowling et al. [2] presents a strategy system that makes use of plays (es-
sentially being multiagent plans) to coordinate team behavior of robots in the
RoboCup Small Size League. Multiple plays are managed in a playbook which
is responsible to choose appropriate plays, and evaluate them for adaption pur-
poses. The plays are specified using a special language designed with ease of
readability and extensibility in mind. Preconditions can be specified that de-
termine when a play can be executed. Furthermore, plays contain termination
conditions, role assignments and sequences of individual behaviors. While the
use of preconditions resembles a classical planning approach, the effects of indi-
vidual plays are not specified due to the difficulties in predicting the outcome of
operators in the dynamic environment. This is in contrast to our approach, as
we use desired effects of the operators in our plans. Another difference is that in
[2] the planning component is also centralized.

Other approaches towards multiagent collaboration like [5, 8] are based on
negotiations between the agents in a multiagent system. However, as pointed
out in [20], this kind of complex communication might take too much time or
might even be infeasible in highly dynamic real-time domains like robotic soccer.

The work in [15, 14] describes the approach to creating our agents so far: We
used UML statecharts to specify behaviors for agents in a multiagent system.
The agents were designed in a top-down manner with a layered architecture. At
the highest level global patterns of behavior are specified in an abstract way,
representing the different states the agent can be in. For each of these states, an
agent has a repertoire of skeleton plans in the next layer. These are applicable

Using a Planner for Coordination of Multiagent Team Behavior 99

as long as the state does not change. Explicit specification of cooperation and
multiagent behaviors can be realized. The third and lowest level of the architec-
ture encompasses the descriptions for the simple and complex actions the agents
can execute, which are used by the scripts in the level above.

This hierarchical decomposition of agent behaviors is similar to the HTN plans
described in this work. However, the separation of domain description knowledge
and the reasoning formalism accomplished through the use of the HTN planner
within our agents provides us with much greater flexibility in respect to the
extensibility of methods and operators, compared to the amount of work needed
to change the state machine description.

6 Conclusion and Future Work

We presented a novel approach that uses an HTN planning component to coor-
dinate the behavior of multiple agents in a dynamic MAS. We formalized expert
domain knowledge and used it in the planning methods to subdivide the given
tasks. The hierarchical structure of the plans speeds up the planning and also
helps to generate useful debugging output for development. Furthermore, the
system is easily extensible as the planning logic and the domain knowledge are
separated.

In order to use the system in the RoboCup competitions, we plan to integrate a
lot more subdivision strategies for the different tasks as described in the diagrams
in [12]. A desirable enhancement to our work would be the integration of an
adaption mechanism. Monitoring the success of different strategies against a
certain opponent, and using this information in the choice of several applicable
action possibilities, as e.g. outlined in [2], should be explored. The introduction
of durative actions into the planner (see for instance [4]) would give a more fine
grained control over the parallelism in the multiagent plans. Simple Temporal
Networks as used in [19] seem to be well suited for this purpose. Furthermore, a
situation assessment will be added to the agents to be able to exploit unforeseen
situations in a more reactive manner. Finally, we want to restrict the sensors of
the agents to receive only partial information about the current world state, and
address the issues that result for the distributed planning process.

References

1. Thorsten Belker, Martin Hammel, and Joachim Hertzberg. Learning to optimize
mobile robot navigation based on HTN plans. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA 2003), pages 4136–4141,
Taipei, Taiwan, September 2003.

2. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as team plans for
coordination and adaptation. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling (ICAPS-04), Vancouver, June 2004.

3. Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak,
strong, and strong cyclic planning via symbolic model checking. Artificial Intelli-
gence, 147(1-2):35–84, 2003.

100 O. Obst

4. Alex M. Coddington, Maria Fox, and Derek Long. Handling durative actions in
classical planning frameworks. In John Levine, editor, Proceedings of the 20th
Workshop of the UK Planning and Scheduling Special Interest Group, pages 44–58.
University of Edinburgh, December 2001.

5. Philip R. Cohen, Hector J. Levesque, and Ira Smith. On team formation. Con-
temporary Action Theory, 1998.

6. Jürgen Dix, Héctor Muñoz-Avila, and Dana Nau. IMPACTing SHOP: Planning in
a Multi-Agent Environment. In Fariba Sadri and Ken Satoh, editors, Proceedings
of CLIMA 2000, Workshop at CL 2000, pages 30–42. Imperial College, 2000.

7. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning Theory and
Practice. Morgan Kaufmann, San Francisco, CA, USA, 2004.

8. Barbara J. Grosz. AAAI-94 presidential address: Collaborative systems. AI Mag-
azine, 17(2):67–85, 1996.

9. Hisashi Hayashi, Kenta Cho, and Akihiko Ohsuga. A new HTN planning frame-
work for agents in dynamic environments. In Jürgen Dix and João Leite, editors,
CLIMA IV 2004, number 3259 in Lecture Notes in Computer Science, pages 108–
133. Springer, Berlin, Heidelberg, New York, 2004.

10. Marco Kögler and Oliver Obst. Simulation league: The next generation. In Polani
et al. [18], pages 458–469.

11. Pedro Lima, Lúıs Custódio, Levent Akin, Adam Jacoff, Gerhard Kraezschmar,
Beng Kiat Ng, Oliver Obst, Thomas Röfer, Yasutake Takahashi, and Changjiu
Zhou. Robocup 2004 competitions and symposium: A small kick for robots, a
giant score for science. AI Magazine, 2005. To appear.

12. Massimo Lucchesi. Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing, 2001.
13. Héctor Muñoz-Avila and Todd Fisher. Strategic planning for Unreal Tournament

bots. In Proceedings of AAAI-04 Workshop on Challenges on Game AI. AAAI
Press, 2004.

14. Jan Murray. Specifying agent behaviors with UML statecharts and StatEdit. In
Polani et al. [18], pages 145–156.

15. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2001. In
Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors, RoboCup 2001:
Robot Soccer World Cup V, volume 2377 of Lecture Notes in Artificial Intelligence,
pages 526–530. Springer, Berlin, Heidelberg, New York, 2002. Team description.

16. Dana S. Nau, Yue Cao, Amnon Lotem, and Héctor Muñoz-Avila. Shop: Simple
hierarchical ordered planner. In Proceedings of IJCAI-99, pages 968–975, 1999.

17. Oliver Obst and Markus Rollmann. SPARK – A Generic Simulator for Physical
Multiagent Simulations. Engineering Intelligent Systems, 13, 2005. To appear.

18. Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida, editors. vol-
ume 3020 of Lecture Notes in Artificial Intelligence. Springer, 2004.

19. Patrick Riley and Manuela Veloso. Planning for distributed execution through
use of probabilistic opponent models. In Proceedings of the Sixth International
Conference on Artificial Intelligence Planning Systems, Toulouse, France, April
2002.

20. Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork. Artificial
Intelligence, 1999.

21. V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press/AAAI Press,
Cambridge, MA, USA, 2000.

Reusable Components for Implementing Agent
Interactions�

Juan M. Serrano, Sascha Ossowski, and Sergio Saugar

University Rey Juan Carlos, Department of Computing
{JuanManuel.Serrano, Sascha.Ossowski, Sergio.Saugar}@urjc.es

Abstract. Engineering component interactions is a major challenge in
the development of large-scale, open systems. In the realm of multia-
gent system research, organizational abstractions have been proposed to
overcome the complexity of this task. However, the gap between these
modeling abstractions, and the constructs provided by todays agent-
oriented software frameworks is still rather big. This paper reports on
the RICA−J multiagent programming framework, which provides exe-
cutable constructs for each of the organizational, ACL-based modeling
abstractions of the RICA theory. Setting out from a components and
connectors perspective on the elements of the RICA metamodel, their
executions semantics is defined and instrumented on top of the JADE
platform. Moreover, a systematic reuse approach to the engineering of
interactions is put forward.

1 Introduction

In the past few years, multi-agent systems (MAS) have been proposed as a
suitable software engineering paradigm to face the challenges posed by the
development of large-scale, open systems [1, 2]. Two major characteristics of
MAS are commonly put forward to justify this claim. Firstly, agents are excel-
lent candidates to occupy the place of autonomous, heterogeneous and dynamic
components that open systems require [2]. Secondly, the organizational stance
advocated in various degrees by most MAS methodologies, provides an excel-
lent basis to deal with the complexity and dynamism of the interactions among
system components [1]. In particular, organization-oriented abstractions such as
roles, social interactions, groups, organizations, institutions, etc., have proved to
be an effective means to model the interaction space of complex MAS [1, 3–5].

However, the gap between these modeling abstractions, and the constructs pro-
vided by todays agent-oriented software frameworks is still huge. A way to bridge
this gap is to include organization-oriented abstractions as first-class constructs
into a multiagent programming language. For this purpose, it is essential to define
the execution semantics of the new programming constructs, in a way that is inde-
pendent from any technological basis [6]. In addition, from a mainstream software

� Research sponsored by the Spanish Ministry of Science and Education (MEC),
project TIC2003-08763-C02-02.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 101–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

102 J.M. Serrano, S. Ossowski, and S. Saugar

engineering perspective, it is of foremost importance that the new abstractions
foster a systematic reuse approach, specially in the context of large-scale software
systems [7]. A similar concern has been put forward in the field of MAS engineer-
ing regarding the reuse of organizational structures [8] and agents [9].

This paper reports on the RICA−J multiagent programming framework,
which provides executable constructs for each of the modeling abstractions of
the Role/Interaction/Communicative Action (RICA) theory [4]. For this pur-
pose, the execution semantics of the different elements of the RICA metamodel
is specified, drawing inspiration from component and connector (C&C) architec-
tures [10]. With regard to reusability matters, the RICA−J software framework
exploits the organizational stance on ACLs postulated by the RICA theory, which
results in the identification of generic application-independent social interactions.

The remainder of the paper is organized as follows. Section 2 shows how a
C&C perspective on the RICA theory can be used to define an execution se-
mantics for its elements. Section 3 analyzes communicative roles and interactions
from the point of view of generic software components [7], so as to identify poli-
cies for their reuse. Section 4 provides a survey of the RICA−J framework,
emphasizing the mapping of the C&C-based execution semantics to the JADE
platform, and the architecture of a RICA−J application. The paper is con-
cluded with a discussion on the lessons learned as well as pointers to current
and future work.

2 MAS as a C&C Style

From a software architecture point of view an application structure is described
as a collection of interacting components [10]. Components represent the com-
putational elements or processing units of the system (the locus of control and
computation), while connectors represent interactions among components. Dif-
ferent types of connectors represent different forms of interaction: pipes, proce-
dure call, SQL link, event-broadcast, etc. This section will first show how this
general view of software architecture fits the multiagent social architecture en-
dorsed by the RICA theory. Then, based upon this view, and as a previous
step to the instrumentation of the theory, the execution semantics of the RICA
theory will be outlined.

2.1 Components and Connectors in the RICA Theory

The metamodel of the RICA theory provides a modeling language of the orga-
nizational and communicative features of MAS [4]. In this section we will focus
on the key organizational abstraction, namely social interactions. Moreover, we
introduce group meetings as the context in which social interactions take place,
thus extending the basic set of abstractions of the theory1. The next section
deals with the communicative layer of the metamodel.
1 The metamodel may be further extended with other kinds of abstractions such as

Organization Types and Norms. However, given the purpose of this paper, they are
not needed.

Reusable Components for Implementing Agent Interactions 103

Here, and throughout the rest of this paper, we will refer for illustration
purposes to a common application domain in the organization literature: the
management of scientific conferences [1][11]. Authors, Reviewers, Program Com-
mittee Members and Program Committee Chairs (PC chairs) would be common
roles played by agents within an organization designed to support this process.
Interactions among these agents will take place in the context of several group
meetings, such as the submission and the reviewing group types. Figure 1 shows
a partial RICA model of the submission group expressed in terms of a UML
class diagram, which makes use of several stereotypes that refer to the kind of
meta-entities and -relationships of the RICA metamodel (the <<C>> stereotype
stands for the capabilities of interactive role types).

{pattern=CRCRequestProtocol}

{pattern=PaperSubmission}

Fig. 1. RICA model of the Submission group

The specification of a group type establishes the kinds of agents which may
participate in groups of that kind by identifying several Group Role types. Au-
thors and PC Chairs, for example, represent the agents that may participate in
a submission group. Moreover, the different kinds of interactions held in some
group meeting must be specified as well. For instance, in the context of the
submission group, Paper Submission and Camera Ready Copy (CRC) Request
interactions will happen. An agent participates in a social interaction by taking
on certain Interactive Role types. For instance, an author will participate in a
paper submission interaction as the Paper Submitter, whereas the PC chair will
take part in these interactions as a Paper Submittee. The plays association in the
RICA metamodel among a group role and an interactive role establishes that
agents occupying the former position may take part in some kind of interaction
by playing the latter interactive role. Interactive role types characterize the be-
haviours that agents may show when they engage in the interaction, in terms of
the communicative actions (CA) (e.g. submit, agree) and other types of social
actions (e.g. doCRC, performed by authors in order to generate the CRC of an

104 J.M. Serrano, S. Ossowski, and S. Saugar

accepted paper) that they can perform. Besides the participant roles, other com-
ponents may form part of the definition of a kind of social interaction. Firstly, a
collection of parameter types which specify the content of the interaction, such
as the paper to be submitted and its evaluation. Input/output parameters of
communicative and social actions must refer to the parameters declared for the
interaction type. Secondly, a collection of interaction protocol types representing
different patterns along which the interaction is supposed to develop (e.g. the
submissionProcedure).

From an organizational point of view on MAS [1, 11, 12], and without discard-
ing the autonomy of agents, it is possible to abstract from the agents’ internal
architecture, and focus on the roles that an agent may play within the organi-
zation. So, agents can be conceived as a particular type of software component.
Furthermore, social interactions can be considered as different kinds of connec-
tors2, since they establish the interaction rules among agents, and thus medi-
ate their communication and coordination activities: paper submission, CRC
requests, and so on, specify the particular manner in which authors and PC
Chairs interact in the context of the submission group. Moreover, pushing the
analogy even further, connector types declare a number of roles and protocols
[13] which directly map onto the interactive roles and interaction protocols that
the RICA theory associates to social interactions. For instance, caller and callee
in a RPC connector interaction, reader and writer in a pipe interaction, and so
forth, are analogues of PaperSubmitter and PaperSubmittee as declared by the
paper submission interaction.

Social interactions mainly differ from pipes, SQL links, and other types of con-
nectors in their characteristic interaction mechanism: the Agent Communication
Language (ACL). Firstly, ACLs allow for a more anthropomorphic description
of the interactive roles and protocols than connectors. Secondly, they allow for
more flexibility, as the equivalent to connector protocols may be derived from
the communicative action semantics [14].

2.2 An Execution Semantics for RICA Models

As a first step towards defining programming abstractions that correspond to the
RICA modeling entities, the execution semantics of the later needs to be defined:
we have to show how social social interactions are enacted by agents at run-time
in the context of group meetings3. In this section we will sketch this execution
semantics based on a run-time instance of the previous conference management
model (see Figure 2). As we focus on the dynamics of social interactions, we
will assume that an instance of the submission group has already been set up by
some PC Chair. Moreover, we will consider that three authors, a3, a4 and a5,
and two PC chairs, a1 and a2, has joined this group meeting.

The behaviour of agents within a group meeting is given by the group role
instances and the interactive role instances that they play. Hence, an agent
2 Group types may also be conceptualised as a special kind of connector.
3 Here, agents, social roles, interactions, and so forth, denote instances of the corre-

sponding RICA metamodel abstractions.

Reusable Components for Implementing Agent Interactions 105

:PCChair

:SubmissionGroup

a3:Agent

r1:Author

a1:Agent

:PCChair

a2:Agent

i1:PaperSubmission
r2:PaperSubmitter

i2:PaperSubmission

:PaperSubmittee

:Submit

i3:PaperSubmission

a4:Agent

:Author

a5:Agent

:Author i4:PaperSubmission

r3:PaperSubmitter

Fig. 2. Run-time instance of the e-commerce model

comprises a set of role instances: each of them encapsulates an action selection
strategy that is compliant with the restrictions put forward by the role type.
Role instances are run in parallel by the agent and may be active or suspended.

If some agent has activated a given group role instance, it may engage other
agent(s) of the same group in social interaction. Submission interactions, for
example, will be started by authors. The execution of an engage action results
in the creation of a new interaction. Once the interaction has been created,
the agent will instantiate the corresponding interactive role type to carry out
its activity within that particular interaction. Thus, a given agent has as many
interactive role instances as interactions in which it is participating. For instance,
in figure 2, the participation of author agent a3 in paper submission interactions
i1 and i2 is carried out by its role instances r2 and r3, respectively.

The engage action specifies a collection of addressees which will be notified
of the new interaction. In our example, authors will normally engage any PC
Chair in paper submission. Interaction i3, shown in the example, represents the
result of the engagement performed by agent a4. Once some agent is notified of
a new interaction addressed to it, it may join that interaction and instantiate its
corresponding interactive role type. Only the addressees of some interaction may
join it. However, it may happen that some agent who received the engagement
notification can not join the interaction because the role’s position is already
occupied by other agent who was faster in joining it4. Note that the engage
action automatically involves a join action performed by the initiator agent.

The interactive role behaviour determines which types of actions will be ex-
ecuted by the agent in the course of the interaction. It also makes sure that the

4 This essentially depends on the cardinality feature declared by the interactive role
type. For instance, in multi-party conversations such as auctions multiple bidders
may join the interaction.

106 J.M. Serrano, S. Ossowski, and S. Saugar

agent observes the types of actions executed by other participant in the interac-
tion, and that it aborts action execution if some condition is fulfilled. Abortions
will normally affect non-communicative actions, whereas observation will result
in the suspension of the role behaviour until the action (normally, a CA) is
performed.

For instance, as soon as a PC Chair joins a submission interaction initiated
by some author it will wait for the author’s submission (i.e. for the performance
of a submit CA, as exemplified in interaction i2). Once the author submits its
paper, it will be vigilant for the agreement or refusal of the PC Chair. In case
of agreement, the PC Chair will eventually notify the evaluation of the paper.
The PC Chair may then leave the interaction and deallocate its interactive role,
thus finishing its participation in that conversation. Once the author receives
the notification of the paper’s evaluation it will close (and, hence, also leave) the
interaction. Some interaction may only be closed by its initiator (i.e. the one who
initially engage other agents in the conversation). If some interaction is closed
the pending agent(s) will be only able to leave it (i.e. no action performing will
be allowed). Interaction i4 represents an interaction between agents a5 and a2,
closed by the initiator agent a5.

Interaction behaviour need not be explicitly declared by role types, but can
also be inferred from the protocol which regulate the social interaction. Thus,
protocol instances in RICA provide all the aforementioned services: action exe-
cution, observation, abortion, etc. Still, the particular way in which these services
are provided depends on the execution semantics of the technique in which the
interaction protocol is specified (FSMs, Petri nets, etc.).

3 ACLs and Component-Based Development

This section will evaluate the potential for reusability of the RICA theory in
the context of the above execution semantics. Specifically, we look for reusable
software artifacts (i.e. components5 [7]), which may support a systematic reuse
approach. First, we will show how ACL dialects serve to identify these reusable
components. Then, we will discuss their associated customization mechanisms.

3.1 Reusable Components in the RICA Theory

As the CRCRequest interaction model shows (see figure 1), a social interaction
type must specify the communicative actions that participating agents can per-
form. Protocols that regulate their behaviours may be defined as well. Still, PC
Chairs are not the only kind of agents that will issue requests or cancellations.
Similarly, a CRC request protocol may essentially be modeled after a generic
“request protocol” (e.g. as the FIPA Request Protocol [15]). The RICA theory

5 This sense of the word “component” should not be confused with the meaning of
the term in the context of C&C architectures. The context will provide the right
interpretation.

Reusable Components for Implementing Agent Interactions 107

abstracts these pragmatic features (CAs and protocols) away from the defini-
tion of interactive roles and social interactions, and encapsulates them in their
characteristic communicative roles and communicative interactions, particular
types of interactive roles and social interactions defined from a set of performa-
tives and protocols, i.e. an ACL dialect. For instance, the requester role type is
the unique type of role characterized by request and cancel CAs. Communicative
roles may also include non-communicative actions. For instance, requestee agents
will need to determine if the requested action can be performed or not, which
may be accomplished by the evalRequest action. We call the characteristic in-
teraction in which requester and requestee agents participate action performing.
This communicative interaction type, shown in figure 3, encapsulates the request
protocol, besides generic content parameters such as the action to be requested,
the agreement conditions, etc.

Thanks to the cross-domain features of CAs and protocols, ACL-based in-
teractions are generic first-order reusable components6. Indeed, communicative
interactions provide the pragmatic features of application-dependent social inter-
actions, which basically differ at the semantic level. However, dynamic features
of interactive role types are not completely defined at this level of abstraction.
Particularly, a communicative interaction type says nothing about the rules to
be followed in order to set up or close an interaction of that kind: the engage-
ment and closing rules. Similarly, the joining and leaving rules for each kind of
communicative role type are not declared either, so that these kinds of roles will
be abstract. Note that these rules complements the static features of the RICA
metamodel described in the last section.

3.2 Customization Mechanism

There are two major customization mechanisms to reuse communicative inter-
action components in a given application domain: delegation and specialization.
Due to lack of space, the discussion is constrained to the latter mechanism, which
relies in a recursive definition model by which some type (the derived type) is
defined in terms of a super-type (or base type), by extending, overriding and/or
inheriting some of its definition components7.

For instance, figure 3 shows the recursive specification of the CRC Request
social interaction, by customizing the action performing communicative inter-
action. Different characteristics are inherited: the content parameters and the
request protocol. Similarly, CRC Requester and Requestees inherit the CAs.
Some features of the action performing interaction are not inherited, but over-
ridden by specializing components. For instance, the evalRequest action that
CRC Requestees perform as a special kind of requestee, is overriden by the eval-
CRCRequest action, which represents the particular way in which a request will
6 Note that these reusable components are actually connectors, in the C&C perspec-

tive.
7 This recursive model applies not only to interactive roles and social interactions,

but also to any kind of meta-entity of the RICA metamodel: group types, protocol
types, and so forth.

108 J.M. Serrano, S. Ossowski, and S. Saugar

be evaluated in this context. In general, social actions may either declare a de-
fault execution method, or be abstract, so that particular agents must provide
the actual implementation. In the case of the evalCRCRequest action, a default
implementation may be provided whereby the request will be accepted if the
requestee is actually the author of the paper. Overriding declarations of role ac-
tions introduces a dynamic binding feature in the execution semantics of RICA
models. For instance, when CRC Requestee agents are required to perform the
evalRequest action (which is legal, since they are requestee agents), the action
that is actually executed at run-time is evalCRCRequest8.

{pattern=RequestProtocol}

{ENGAGEMENT RULE =
x must engage y
when achieved(y::PaperSubmission(paper)::x)
iff accepted(paper) }

{CLOSING RULE =
x should close
iff achieved or y leaved or not joined}

{JOIN RULE =
y must join
when addressed
iff true}

{LEAVE RULE =
y should leave
iff achieved}

Fig. 3. Recursive definition of CRCRequest interactions

The model of figure 3 also illustrates the case of extensions: e.g. the doCRC
action extends the inherited and overridden set of actions that CRC Requestee
agents can perform. As another example of extension (involving abstract features
of the parent type), the social interaction type also declares the engagement,
closing, joining and leaving rules. These rules are represented in figure 3 as
tagged values inside notes. Engagement and closing rules are defined for CRC
Requesters, while joining and leaving are defined for CRC Requestees:

– Engagement rule: The set up may be established when a paper submission
interaction finishes successfully and the paper was accepted. If so happens,

8 This mechanism allows for a direct reuse of interaction protocols, fully specified in
the scope of communicative interactions. For instance, the Interaction State Machine
(ISM) specification of the request protocol [16] may be reused “as-is” by the CRC
request interaction.

Reusable Components for Implementing Agent Interactions 109

the paper submittee (a PC Chair, as declared in figure 1), must engage the
paper submitter (an author) to play the requester role and obtain the CRC
of the accepted paper9.

– Joining rule: An author must join the interaction as a requestee when it is
addressed by the PC Chair.

– Leaving rule: An author should leave the interaction when the CRC is pro-
vided (i.e. the interaction’s purpose is achieved).

– Closing rule: A PC Chair should close the interaction if and only if the CRC
has been provided, the author leaves the interaction before finishing its job,
or the addressed author does not join before the established deadline for the
delivery of the CRC.

Finally, it should be noted that communicative interactions may be reused to
specify other communicative interactions as well. For example, the Submission
communicative interaction may be defined as an specialisation of Action Per-
forming interactions. Moreover, taking into account that a submit CA is a special
kind of request, the generic RequestProtocol may be used in place of particular
submission protocols.

4 The RICA−J Framework

The RICA theory, given its metamodel and execution semantics, can be con-
ceived as a programming language with close links to Architectural Description
Languages (ADLs) [13]. For instance, the CRC Requestee role type may be de-
clared as shown in figure 4. Unlike its UML representation (see figure 3), the
grammatical form also conveys the full declaration of social actions (parameters
and execution blocks). Dotted lines should be replaced by actual code, possibly
object-oriented (e.g. Java). The reserved words player and interaction play
a similar role to the reserved word this in Java: the first one denotes the agent
which is playing that role instance (an Author agent, in the example); the second
one, the interaction to which the agent is connected as a player of the interactive
role type (an instance of CRCRequest, in the example). Finally, the functions
achieved and addressedFor denote predefined operations of social interaction
and agent instances, respectively.

As a more pragmatic alternative to the direct instrumentation of the “RICA
programming language”, the RICA−J (RICA-JADE [17]) framework instru-
ments the RICA theory on top of the FIPA-compliant JADE platform [18],
which is used as the underlying middleware and programming environment. This
section will first describe the RICA−J architecture and general features based
on the execution semantics described in section 2. Then, we outline how the the
reusability concern described in section 3 is captured in the framework.

9 In general, the engagement rule may not specify a particular agent as the addressee
but a definite description representing a collection of agents. The engagement rules
for paper submission interactions, as suggested previously, may establish that the
author must engage any agent playing the PC Chair role in the submission group.

110 J.M. Serrano, S. Ossowski, and S. Saugar

interactive role type CRCRequestee specialises Requestee
must be joined by Author when player.addressedFor(CRCRequest)
should be leaved iff interaction.achieved()
performs{
 social action type evalCRCRequest(in paper)
 overrides evalRequest
 executes{ ... }

 social action type doCRC(in paper, out crc)
 executes{ ... }
}

Fig. 4. Grammatical declaration of the Seller role

4.1 RICA−J Architecture

The RICA−J framework extends the JADE platform with a layer that pro-
vides a virtual machine based on the RICA abstractions. This layer is de-
composed into two major modules, implemented by the rica.reflect and
rica.core Java packages, which instrument the RICA metamodel and exe-
cution semantics, respectively. Thus, the former package includes the classes
InteractiveRoleType, SocialInteractionType, etc., while the latter contains
abstract types, such as Agent, InteractiveRole and SocialInteraction. The
rica.reflect classes are functional analogues of the reflective classes of the
standard java.lang.reflect package. Moreover, they ensure the consistency
of the programmed RICA model (e.g. that any social role specializes a commu-
nicative role). On the other hand, rica.core classes may be seen as analogues of
the java.lang.Object class since, for instance, all particular agent types must
be programmed by extending the rica.core.Agent class.

The rica.core classes map the common behaviour and structure of agents,
roles, etc., as defined by the RICA execution semantics, to the supported ab-
stractions of the JADE framework: basically, agents, behaviours and ACL mes-
sages. The resulting architecture of a RICA−J agent is exemplified in figure 5.
This figure’s object model depicts the run-time structure of the a3 author agent
previously shown in figure 2.

Fig. 5. RICA−J agent architecture

Reusable Components for Implementing Agent Interactions 111

Anyrica.core.Agent (akindof JADEagent) schedules anGroupRoleMonitor
(a JADE cyclic behaviour), in charge of creating and deallocating the group role
instances in which its functionality is decomposed. The activation of a given group
role has two major consequences: firstly, the agent makes public in a role-based
Directory Facilitator (actually, a wrapper of the jade.domain.DFService) that
it currently plays that role; secondly, the GroupRoleBehaviour (a JADE paral-
lel behaviour) managed by the rica.core.GroupRole instance is scheduled. This
parallel behaviour contains a ParticipationMonitorbehaviour10, in charge of en-
acting new interactions (through engagement) or joining the agent to interactions
initiated by other agents. When some agent initiates its participation in a new in-
teraction, it will instantiate the correspondingrica.core.InteractiveRolesub-
class, together with the JADE behaviour which manages its participation in the
interaction. This behaviour will be part of the group role’s parallel behaviour.

According to the execution semantics, the interactive role behaviour deter-
mines the actions that will be executed, observed or interrupted by the agent
in the course of the interaction. As far as CAs are concerned, their execu-
tion will result in the automatic creation and sending of the corresponding
jade.lang.acl.ACLMessage. Conversely, the observation of CAs results in re-
ceiving an ACLMessage and automatically translating it back to a rica.core.
CommAction object. These conversions can be performed automatically by relying
on the content parameters, the JADE ontology, and the addressee language that
the interaction instance holds. The ProtocolBehaviour class models a generic
interactive role behaviour which determines the agent’s activity according to the
rules established by a protocol which regulates the interaction. This behaviour is
decoupled from the particular formalism used to specify the given protocol, since
it only depends on the rica.core.Protocol interface (which declares the pro-
tocol services specified by the execution semantics). Particular formalisms may
be integrated into the framework by instrumenting their execution semantics in
a Protocol subclass.

4.2 Programming in RICA−J
The architecture of a MAS in the RICA−J framework, shown in figure 6, is
structured around two major types of modules: the first one refers to the imple-
mentation of the different agents participating in the MAS; the second one, to the
implementation of the MAS organization. This composite module closely follows
the structure of its RICA model: in essence, we may identify an optional protocol
formalism module, one mandatory communication module, and the implemen-
tation of the application-dependent social interactions and non-interactive roles.

As we argued in section 3, communicative components are highly reusable
components, so that they will be likely reused from an application-independent

10 This cyclic behaviour acts as an interaction factory: since RICA−J interac-
tions are instrumented subjectively, each participant (initiator or not) holds a
rica.core.SocialInteraction instance representing the interaction from its own
perspective.

112 J.M. Serrano, S. Ossowski, and S. Saugar

Fig. 6. Architecture of a RICA−J MAS application

library of communicative interactions. This library, implemented under the acl
package, currently contains some of the FIPA ACL underlying interactions [4],
and other “non-standard” interactions such as submission and advisement inter-
actions. On the other hand, protocol formalisms are highly reusable as well. The
protocol.ism package instruments the Interaction State Machine specification
technique [16]. Therefore, the protocol and communication module will be likely
implemented by component developers, whereas the application-dependent social
module would be in charge of organization developers. Finally, independent users
would be in charged of implementing their agents. These programmers rely on
the components available in the organizational library, possibly customizing the
roles types to be played by overriding their default functionality or implementing
their abstract actions. The following paragraphs will briefly describe some gen-
eral guidelines in the implementation of communicative and social interaction
components.

Reusable Components for Implementing Agent Interactions 113

Communicative Components. Above all, communicative roles and interac-
tions encapsulate the CAs and protocols of their characteristic ACL dialect.
However, the Java classes which instrument these components also provide basic
support functionality for the execution semantics of these components. Firstly,
the constructors of the social interaction classes may provide the required ini-
tialization of the content parameters and participant addresses. Secondly, the
generic vocabulary of the communicative interaction (including the performa-
tives), will be implemented as a JADE ontology. Finally, generic social actions
defined by communicative roles may be provided with default implementations.

For instance, figure 7 partially shows the implementation of the Requestee com-
municative role type. The RICA type information is embedded in the Java class
by means of public static final fields, following the established implementa-
tion scheme for communicative roles types: a field of type CommInteractionType
declares the type of communicative interaction to which the role type belongs,
whereas role capabilities are declared by fields whose types are assignable from the
SocialActionType class (so, CommActType fields will contribute to the role capa-
bilities, since this class extends the former one). Furthermore, the class constructor
allows the player agent to register the JADE ontology defined for action performing
interactions. This ontology declares the performatives (e.g. agree, refuse, etc.) and
other generic concepts and predicates (e.g. the predicate CanNotPerform, useful
when the kind of requested action is not among the capabilities of the requestee
agent). Note that the java class is declared abstract, since the rules for joining
and leaving this kind of roles are not declared.

Figure 7 also shows a partial implementation of the EvalRequest social action.
Similarly to the Requestee role type, the static features of the action type are de-
clared by static fields: e.g. the input and output fields declares the input and
output parameters of the action, which are initialised with the corresponding
parameter types declared by the ActionPerforming communicative interaction.
For each kind of parameter, a private field parameterValue of the corresponding
type is declared, together with a pair of get/set methods to access and set the
value of the parameter. The implementation of accessor methods for output pa-
rameters provide default values which may be overriden by specialisations of this
action type. Thus, according to the getRefusalReasonmethod, the request will
be refused if the requested action can not be performed by the requestee agent
(the method getPerformer() will return the role instance which is actually ex-
ecuting the action). A default value is also provided for the notificationRequired
parameter, indicating that the agreement to perform the action should be noti-
fied (in particular requests, this default value might be overriden to false if the
performance of the requested action is imminent). Finally, a default implemen-
tation of the Action’s execute() method is also provided: the action will be
considered successfully executed if a refusal reason or the agreement condition
has been set; otherwise, the method returns in a suspended state.

Social Components. Interactive roles and social interactions extend com-
municative roles and interaction classes, thus inheriting the general interaction
management mechanism. Typically, they will provide the engagement, joining,

114 J.M. Serrano, S. Ossowski, and S. Saugar

public abstract class Requestee extends InteractiveRole{

/** Type info. */
public static final CommRoleType type = new CommRoleType(Requestee.class);
public static final CommInteractionType interaction = ActionPerforming.type;
public static final SocialActionType evalRequest = EvalRequest.type;
public static final CommActType agree = Agree.type;
public static final CommActType refuse = Refuse.type;

 ...

/** Creates a requestee role for the specified agent. */
public Requestee(Agent agent){

super(agent);
updateDomainOntology(ActionPerformingOntology.getInstance());
...

 }
}

public class EvalRequest extends SingleSocialAction{

/** Type info. */
public static final SingleSocialActionType type =

new SingleSocialActionType(EvalRequest.class);
public static final ParameterType[] input =

new ParameterType[]{ActionPerforming.action};
public static final ParameterType[] output =

new ParameterType[]{ActionPerforming.notificationRequired,
 ActionPerforming.agreementCondition,
 ActionPerforming.refusalReason};

/** Auxiliary methods for input/output parameters */
private SocialAction actionValue;
public void setAction(SocialAction newValue){...}
public SocialAction getAction(){return actionValue;}

private Predicate refusalReasonValue;
public void setRefusalReason(Predicate newValue){...}
public Predicate getRefusalReason(){

if (refusalReasonValue == null &&
 !getAction().getType().canBePerformedBy(getPerformer().getType())){
 setRefusalReason(new CanNotPerform());

}
return refusalReasonValue;

 }

private Predicate agreementConditionValue;
public void setAgreementCondition(Predicate newValue){...}
public Predicate getAgreementCondition(){return agreementConditionValue;}

private Boolean notificationRequiredValue;
public void setNotificationRequired(Boolean newValue) {...}
public Predicate getNotificationRequired(){

if (notificationRequired==null){
 setNotificationRequired(new Boolean.TRUE)

}
return notificationRequired;

 }

/** Overriden SocialAction interface */
public ExecutionState execute(){

if (getRefusalReason()!=null || getAgreementCondition()!=null){
return ExecutionState.SUCCESSFUL;

}else{
return ExecutionState.SUSPENDED;

}
 }
}

Fig. 7. Implementation of the Requestee communicative role type

leaving and closing rules by overriding/declaring the corresponding methods:
mustBeJoinedBy,shouldBeLeft, etc. Moreover, the Java classes will also provide
the social interaction ontology, application-specific implementations of general

Reusable Components for Implementing Agent Interactions 115

public class CRCRequestee extends Requestee{

 /** Type info. */
 public static final InteractiveRoleType type =
 new InteractiveRoleType(CRCRequestee.class);
 public static final SocialInteractionType interaction = CRCRequest.type;
 public static final SocialActionType evalCRCRequest = EvalCRCRequest.type;
 public static final SocialActionType doCRC = DoCRC.type;
 ...

 /** Overriden Interactive Role interface. */
 public static SocialInteraction mustBeJoinedBy(GroupRole role){
 if (role.getType()!=Author.type){

 return null;
}else{

 return role.addressedFor(CRCRequest.type);
}

 }

 public boolean shouldBeLeft(){
 return getInteraction().hasBeenSuccessful();
 }

 /** Creates a CRCRequestee role for the specified agent. */
 public CRCRequestee(Agent agent){

super(agent);
updateDomainOntology(CRCRequestOntology.getInstance());

 }

}

public class EvalCRCRequest extends EvalRequest{

 /** Type info */
 public static final SingleSocialActionType type =
 new SingleSocialActionType(EvalCRCRequest.class);
 public static final ParameterType[] input =
 new ParameterType[]{CRCRequest.paper};

 /** Auxiliary methods for input/output parameters */
 private Paper paperValue;
 public void setPaper(Paper newValue){...};
 public Paper getPaper(){ return paperValue; }

 /** Overriden Requestee interface */
 public Predicate getRefusalReason(){
 if (refusalReasonValue == null &&
 !getPaper().isAuthor(getPlayer().getAID())){
 setRefusalReason(new NotAuthor());

}
 return refusalReasonValue;
 }

 public Predicate getAgreementCondition(){
 if (agreementConditionValue == null && getRefusalReason()==null){
 setAgreementCondition(new TrueProposition());

}
 return agreementConditionValue;
 }

}

Fig. 8. Implementation of the CRCRequestee interactive role type

communicative rolemethods, and all other code concerning the actual environment
in which the application is deployed (database connection, web servers, etc.).

As figure 8 shows, the implementation of the CRCRequestee role type firstly
includes the declaration of the static features of the RICA type: essentially, the
set of capabilities, which is extended with the DoCRC action; moreover, the

116 J.M. Serrano, S. Ossowski, and S. Saugar

EvalRequest action is overriden by its specialisation EvalCRCRequest11. The
method mustBeJoined declares the joining rule for CRCRequestee roles accord-
ing to the specification discussed in section 3.2. This method is invoked by the
group role playing the interactive role, i.e. an Author instance, in this particular
case. If the return value is not null, the author agent will join the specified
interaction and will instantiate the CRCRequestee class to carry out its activ-
ity within that interaction. The leaving rule is implemented by overriding the
shouldBeLeft method, declared by the rica.core.InteractiveRole class. It
returns true if, and only if, the interaction has finished successfully. Finally,
the CRCRequestee constructor ensures that the specific ontology for this kind
of interactions is registered in the agent’s content manager. This ontology de-
clares, for example, the proposition NotAuthor, which stands for the fact that
the requestee is not the author of the paper specified in the interaction.

Figure 8 also shows a partial implementation of the EvalCRCRequest social ac-
tion. The EvalCRCRequest class overrides some of the default methods specified
by the EvalRequest class. Specifically, the request will be refused if the player
agent is not the author of the input paper. Moreover, the agreement condition
is automatically set to true if the condition for refusal is not satisfied. Thus,
according to the generic implementation of the inherited execute method, the
action will succeed the first time is performed.

5 Conclusion

This paper has shown how agent interactions can be modeled and instrumented
by customizing generic communicative interactions identified from ACL-dialects.
Communicative interactions serve as micro-organizational modeling patterns
that structure the interaction space of specific MAS, complementing similar
reuse-approaches based on macro-organizational structures [8] or agent compo-
nents [9]. Communicative interactions are also the key computational abstraction
in the RICA−J programming framework, as their execution semantics deter-
mines a substantial part of the logic required to manage agent interactions. The
encapsulation of these interactions around software component libraries signifi-
cantly simplifies the implementation of the multi-agent organization. Moreover,
the RICA−J framework also relieves agent programmers from the implemen-
tation of low-level issues concerning the dynamics of agents within the organi-
zation. On the other hand, it should be stressed that the proposed approach
does not endanger the autonomy of agents, since the social roles available in
the organization library may be fully customized to account for the particular
requirements of each agent.

The currently implemented library of communicative interactions may be ex-
tended to cover dialects proposed for other specific domains (e.g. negotiation
[19, 20]), or the dialogue types put forward by argumentation theorists [21–24].
11 If some action of the super-role is specialised by a new action of the derived role

type, the super-action is implicitly overriden. This is a limitation of the current
implementation.

Reusable Components for Implementing Agent Interactions 117

Note that the implementation of communicative interactions by means of the
RICA−J framework is independent of any semantic paradigm, be it intentional
[25], social [26], or protocol-based [27]. In fact, BDI or commitment-based agent
architectures may be instrumented as refinements of the general C&C agent ar-
chitecture, thus complementing the protocol-based semantics that the RICA−J
framework currently instruments.

Another contribution of this paper refers to the C&C perspective on MAS by
defining the execution semantics of the RICA theory. This specification, albeit
informal, shares the motivations of the formal operational semantics of groups
and role dynamics established by Ferber & Gutknecht [6], and Dastani et al.
[28]. Furthermore, the C&C-based perspective that we have put forward may
well be extended to specify the execution semantics of this and related larger-
grained organizational abstractions, such as scenes [5]. Since these abstractions
can be ultimately reduced to different types of social interactions, they may be
conceived as composite connectors [29]. Moreover, modeling social interactions
in terms of software connectors has as a major consequence the identification
of the characteristic roles that their participant agents may play within it. This
feature of the RICA metamodel allows to distinguish it from other organiza-
tional approaches, and makes possible the reuse approach to social interactions
put forward by this conceptual framework.

We have shown how the RICA−J framework instruments the RICA execu-
tion semantics on top of the JADE platform, but other agent infrastructures (e.g.
tuple-based [9]), or technologies (e.g. web services), may provide the required un-
derlying middleware services and basic abstractions as well. On the other hand,
the programming language perspective on the RICA theory complements the
results on the field of agent-oriented programming languages, currently geared
towards deliberative or cognitive capabilities of agents [30, 31]. Moreover, by
placing MAS in the broader spectrum of software architectures, this paper mo-
tivates the transfer of research from this field (e.g. on ADLs [13]).

Future work will concentrate on further validation of the RICA−J framework
with the final intention to get a JADE add-on release. The extension of the
underlying metamodel with coarse-grained organizational abstractions, and the
instrumentation of the interaction monitoring and compliance capabilities that
any open-driven framework must offer [2], will be considered as well.

References

1. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12 (2003) 317–370

2. Singh, M.P.: Agent-based abstractions for software development. In Bergenti, F.,
Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering for
Agent Systems. Kluwer (2004) 5–18

3. Ferber, J., Gutknecht, O.: A meta-model for the analysis of organizations in multi-
agent systems. In Demazeau, Y., ed.: Proceedings of the Third International Con-
ference on Multi-Agent Systems (ICMAS’98), Paris, France, IEEE Press (1998)
128–135

118 J.M. Serrano, S. Ossowski, and S. Saugar

4. Serrano, J.M., Ossowski, S., Fernández, A.: The pragmatics of software agents
- analysis and design of agent communication languages. Intelligent Information
Agents - An AgentLink Perspective (Klusch, Bergamaschi, Edwards & Petta, ed.),
Lecture Notes in Computer Science 2586 (2003) 234–274

5. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal
specifications of electronic institutions. In Dignum, F., Sierra, C., eds.: Agent-
mediated Electronic Commerce (The European AgentLink Perspective). Volume
1191 of LNAI., Berlin, Springer (2001) 126–147

6. Ferber, J., Gutknecht, O.: Operational semantics of a role-based agent architecture.
In Jennings, N.R., Lesperance, Y., eds.: Intelligent Agents VI. Proceedings of the
6th Int. Workshop on Agent Theories, Architectures and Languages. Volume 1757
of LNAI., Springer (1999)

7. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse. Architecture, Process and
Organization for Business Success. Addison-Wesley (1997)

8. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organizational abstractions for
the analysis and design of multi-agent systems. In Ciancarini, P., Wooldridge, M.J.,
eds.: AOSE. Volume 1957 of LNCS. Springer (2000) 235–252

9. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems.
In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software
Engineering for Agent Systems. Kluwer (2004) 19–31

10. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6 (1997) 213–249

11. Dignum, V., Vázquez-Salceda, J., Dignum, F.: Omni: Introducing social structure,
norms and ontologies into agent organizations. In Bordini, R., Dastani, M., Dix,
J., Seghrouchni, A., eds.: Programming Multi-Agent Systems Second International
Workshop ProMAS 2004. Volume 3346 of LNAI., Springer (2005) 181–198

12. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: AOSE. (2003)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In Leavens, G.T., Sitaraman, M., eds.: Foundations of Component-
Based Systems. Cambridge University Press (2000) 47–68

14. Bretier, P., Sadek, D.: A rational agent as the Kernel of a cooperative spoken
dialogue system: Implementing a logical theory of interaction. In Müller, J.P.,
Wooldridge, M.J., Jennings, N.R., eds.: Proceedings of the ECAI’96 Workshop on
Agent Theories, Architectures, and Languages: Intelligent Agents III. Volume 1193
of LNAI., Berlin, Springer (1997) 189–204

15. Foundation for Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification. http://www.fipa.org/repository/ips.html (2003)

16. Serrano, J.M., Ossowski, S.: A semantic framework for the recursive specification
of interaction protocols. In: Coordination Models, Languages and Applications.
Special Track of the 19th ACM Symposium on Applied Computing (SAC 2004).
(2005)

17. Serrano, J.M.: The RICAJ framework. http://platon.escet.urjc.es/
∼jserrano (2005)

18. JADE: The JADE project home page. http://jade.cselt.it (2005)
19. Wooldridge, M., Parsons, S.: Languages for negotiation. In Horn, W., ed.: Proceed-

ings of the Fourteenth European Conference on Artificial Intelligence (ECAI-2000),
Berlin, IOS Press (2000) 393–397

Reusable Components for Implementing Agent Interactions 119

20. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for
argumentation-based negotiation. In Singh, M.P., Rao, A., Wooldridge, M.J., eds.:
Proceedings of the 4th International Workshop on Agent Theories, Architectures,
and Languages (ATAL-97. Volume 1365 of LNAI., Berlin, Springer (1998) 177–192

21. McBurney, P., Parsons, S.: A formal framework for inter-agent dialogues. In Müller,
J.P., Andre, E., Sen, S., Frasson, C., eds.: Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, ACM Press (2001) 178–179

22. Lebbink, H., Witteman, C., Meyer, J.J.: A dialogue game to offer an agreement to
disagree. In Bordini, R., Dastani, M., Dix, J., Seghrouchni, A., eds.: Programming
Multi-Agent Systems Second International Workshop ProMAS 2004. Volume 3346
of LNAI., Springer (2005)

23. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In:
E. Durfee, editor, Proceedings of the 4th International Conference on Multi-Agent
Systems (ICMAS-2000), Boston, MA, USA, IEEE Press (2000) 31–38

24. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue. State University of
New York Press (1995)

25. Cohen, P.R., Levesque, H.J.: Communicative actions for artificial agents. In Lesser,
V., ed.: Proceedings of the First International Conference on Multi–Agent Systems,
San Francisco, CA, MIT Press (1995) 65–72

26. Singh, M.P.: A social semantics for agent communication languages. In Dignum,
F., Greaves, M., eds.: Issues in Agent Communication. LNAI, vol. 1916. Springer
(2000) 31–45

27. Pitt, J., Mamdani, A.: A protocol-based semantics for an agent communication
language. In Thomas, D., ed.: Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99-Vol1), S.F., Morgan Kaufmann Publishers
(1999) 486–491

28. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.J.: Enacting
and deacting roles in agent programming. In Odell, J., Giorgini, P., Müller, J.P.,
eds.: Agent-Oriented Software Engineering V, 5th International Workshop, AOSE
2004,. Volume 3382 of Lecture Notes in Computer Science., Springer (2004)

29. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of the 22nd International Conference on Software Engi-
neering, ACM Press (2000) 178–187

30. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2 (1999) 357–401

31. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51–92

Part III

Multi-agent Programming

An AgentSpeak Meta-interpreter and Its Applications

Michael Winikoff

RMIT University, Melbourne, Australia
winikoff@cs.rmit.edu.au

Abstract. A meta-interpreter for a language can provide an easy way of ex-
perimenting with modifications or extensions to a language. We give a meta-
interpreter for the AgentSpeak language, prove its correctness, and show how
the meta-interpreter can be used to extend the AgentSpeak language and to add
features to the implementation.

1 Introduction

A meta-interpreter for a given programming language is an interpreter for that lan-
guage which is written in the same language. For example, a program written in LISP
that interprets LISP programs. A distinguishing feature of meta-interpreters (sometimes
described as “meta-circular interpreters”) is that certain details of the implementation
are not handled directly by the meta-interpreter, but are delegated to the underlying im-
plementation. For example, the original LISP meta-interpreter [1] defines the meaning
of the symbol CAR (in code being interpreted by the meta-interpreter) in terms of the
function car provided by the underlying implementation.

Although meta-interpreters can help in understanding a programming language, they
do not give complete formal semantics, because certain aspects are delegated to the
underlying language. For example, defining CAR in terms of car allows the meta-
interpreter to correctly interpret programs (assuming that the underlying LISP imple-
mentation provides a suitable implementation of car), but does not shed any light on
the meaning of the symbol CAR.

Meta-interpreters are useful as a way of easily prototyping extensions or changes to
a language. For example, the Erlang language began life as a Prolog meta-interpreter
which was then extended [2], and the interpreter for Concurrent Prolog can be seen
as an extended Prolog meta-interpreter [3]. Being able to modify the semantics of an
agent platform is often essential to researchers experimenting with extensions to agent
platforms (e.g. [4,5]), and we argue that meta-interpreters can provide a much easier
way of doing so than modifying the agent platform itself.

A drawback of meta-interpreters is the efficiency overhead of the additional layer of
interpretation. However, this may not be significant in a prototype if the aim is to explore
language design, rather than develop software of any significant size. It has also been
suggested that partial evaluation could be used to “evaluate away” the meta-interpreter
given a meta-interpreter and a program that it is to interpret [6].

In this paper we present a meta-interpreter for the AgentSpeak1 agent-oriented pro-
gramming language [7]. Although meta-interpreters exist for a range of programming

1 Properly the language is called “AgentSpeak(L)”, but in the remainder of the paper we shall
refer to it as “AgentSpeak”.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 123–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 M. Winikoff

languages, to the best of our knowledge this is the first meta-interpreter for an
agent-oriented programming language.

Given the meta-interpreter for AgentSpeak, we then show a number of ways in which
it can be modified for various purposes such as extending the language or adding func-
tionality. The extensions that we present are very simple to implement: most involve
the addition or change of a very small number of lines of code, and the code is written
in AgentSpeak itself. By contrast, other approaches for making agent platforms exten-
sible, such as PARADIGMA [8] and the Java Agent Framework2, require the user to
change languages to the implementation language and to delve into the implementa-
tion which includes both high-level control issues (what is the sequence of events), and
lower-level representation issues (e.g. how are beliefs represented in terms of Java ob-
jects). Another approach, that is closer to the use of meta-interpreters, is that of Dastani
et. al. [9] where the essential control cycle of an agent is broken down into primitives
such as executing a goal, selecting a rule, etc. and a customised agent deliberation cy-
cle is programmed in terms of these primitives using a meta-language. Compared with
our approach, a disadvantage is the need to introduce a distinct meta-language with its
own semantics. An interesting direction for future work would be to add similar prim-
itives to the AgentSpeak language: this would extend the range of modifications that
could be easily done using a meta-interpreter, and would avoid the need for a distinct
meta-language by using AgentSpeak as its own meta-language.

The remainder of this paper is structured as follows. In section 2 we briefly sum-
marise AgentSpeak’s syntax, present (another) formal operational semantics for the
language, and discuss a number of issues with the language. In section 3 we present a
meta-interpreter for AgentSpeak and in section 4 show a number of modifications to
the meta-interpreter. The implementation and performance of the meta-interpreter are
briefly examined in section 5 and we then conclude in section 6.

2 AgentSpeak

Agent programming languages in the BDI tradition define an agent’s behaviour by pro-
viding a library of recipes (“plans”), each indicating (i) the goal that it aims to achieve
(modelled as a triggering event), (ii) the situations in which the plan should be used
(defined using a logical condition, the “context condition”), and (iii) a plan body. Given
a collection of plans, the following execution cycle is used:

1. An event is posted (which can be used to model a new goal being adopted by the
agent, as well as new information (“percepts”), or a significant change that needs
to be responded to).

2. The plans that handle that event are collected and form the relevant plan set.
3. A plan with a true context condition is applicable. An applicable plan is selected

and its body is run.
4. If the plan fails, then an alternative applicable plan is found and its body is run.

This repeats until either a plan succeeds, or there are no more applicable plans, in
which case failure is propagated.

2 http://dis.cs.umass.edu/research/jaf/

An AgentSpeak Meta-interpreter and Its Applications 125

There are a number of agent programming languages in the BDI tradition, such as
dMARS [10], JAM [11], PRS [12,13], UM-PRS [14], and JACK [15]. The language
AgentSpeak [7] was proposed by Anand Rao in an attempt to capture the common
essence of existing BDI programming languages whilst having precisely defined seman-
tics. Although Rao’s formal semantics are incomplete, the work has inspired a number
of implementations of AgentSpeak such as AgentTalk3, an implementation based on
SIM AGENT [16], an implementation in Java that is designed to run on hand-held de-
vices [17], and the Java-based Jason4.

2.1 Syntax

An agent program (denoted by Π) consists of a collection of plan clauses of the form5

e : c ← P where e is an event6, c is a context condition (a logical formula over the
agent’s beliefs) which must be true in order for the plan to be applicable and P is the
plan body. A condition, C, is a logical formula over belief terms7 (where b is a belief
atom). The plan body P is built up from the following constructs. We have primitive
actions (act), operations to add (+b) and delete (−b) beliefs, a test for a condition (?c),
and posting an event (!e). These can be sequenced (P1; P2). These cases are summarised
below.

C ::= b | C ∧ C | C ∨ C | ¬C | ∃x.C

P ::= act | +b | −b | ?c | !e | P ; P

In addition to these constructs which can be used by the programmer, we define a
number of constructs that are used in the formal semantics. These are:

– true which is the empty step which always succeeds.
– fail which is a step which always fails.
– P1 � P2 is sequential disjunction: P1 is run, and if it succeeds then P2 is discarded

and P1 � P2 has succeeded. Otherwise, P2 is executed.
– �Δ�, where Δ is a set of plan bodies (P1 . . . Pn) which is used to represent a set of

possible alternatives. It is executed by selecting a Pi from Δ and executing it (with
the remainder of Δ being kept as possible alternatives in case Pi fails).

2.2 Semantics

In the years since Rao introduced AgentSpeak a number of authors have published
(complete) formal semantics for the language. The specification language Z (“Zed”)

3 http://www.cs.rmit.edu.au/∼winikoff/agenttalk
4 http://jason.sourceforge.net/
5 An omitted c is equivalent to true, i.e. e ← P ≡ e : true ← P .
6 In Rao’s original formulation, e is one of +!g, +?g, −!g, −?g, +b, −b corresponding respec-

tively to the addition of an achievement or query goal, the deletion of an achievement or query
goal, the addition of a belief, and the deletion of a belief. In practice it is rare for any other
than the +!g form to be used. Indeed, Rao’s semantics only address this event form, and so in
the remainder of this paper we write e in the heads of clauses as shorthand for +!e. Similarly,
we write e as shorthand for !e in the bodies of clauses.

7 In Rao’s formulation only conjunctions of literals were permitted.

126 M. Winikoff

was used to formally specify the essential execution cycle of AgentSpeak [18], and
an operational semantics for AgentSpeak was given by Moreira and Bordini [19]. The
operational semantics that we give here is in the style of Plotkin’s Structural Operational
Semantics [20], and is based on the semantics of the CAN notation [21], which is a
superset of AgentSpeak. Unlike the previous semantics, it includes failure handling: if
a plan fails, then alternative plans are tried (step 4 of the execution cycle at the start of
this section).

The semantics assume that operations exist that check whether a condition follows
from a belief set (B |= c), that add a belief to a belief set (B ∪ {b}), and that delete
a belief from a belief set (B \ {b}). In the case of beliefs being a set of ground atoms
these operations are respectively consequence checking, and set addition/deletion. Tra-
ditionally, agent systems have represented beliefs as a set of ground atoms, but there is
no reason why more sophisticated representations and reasoning mechanisms (such as
belief revision, Bayesian reasoning etc.) could not be used.

We define a basic configuration S = 〈B, P 〉 where B is the beliefs of the agent and
P is the plan body being executed (i.e. the intention). A transition S0 −→ S1 specifies
that executing S0 a single step yields S1. We define S0

∗−→ Sn in the usual way: Sn is
the result of zero or more single step transitions. The transition relation is defined using

rules of the form S −→ S′ or of the form
S′ −→ Sr

S −→ S′
r ; the latter are conditional with the

top (numerator) being the premise and the bottom (denominator) being the conclusion.
In order to make the presentation more readable we use the convention that where a
component of S isn’t mentioned it is the same in S and S′ (and in Sr and S′

r). We also
assume that B refers to the agent’s beliefs, and elide angle brackets. Thus each of the
following rules on the left is shorthand for the corresponding right rule.

B |= c

?c −→ true
?c

B |= c

〈B, ?c〉 −→ 〈B, true〉 ?c

P1 −→ P ′

P1; P2 −→ P ′; P2
;

〈B, P1〉 −→ 〈B′, P ′〉
〈B,P1; P2〉 −→ 〈B′, P ′; P2〉

;

The first rule above specifies that the condition test ?c transitions to true if the condition
c is a consequence of the agent’s beliefs (B |= c). The second rule specifies that P1; P2
transitions to P ′; P2 where P ′ is the result of a single execution step of P1. The full set
of rules are given in figure 1.

We extend simple configurations (which correspond to a single thread of execution
within an agent) to agent configurations SA = 〈N, B, Ps〉 which consist of a name, a
single (shared) belief set, and a set of intentions (executing plans). The following rule
defines the operational semantics over agent configurations in terms of the operational
semantics over simple configurations.

P = SI(Γ) 〈B, P 〉 −→ 〈B′, P ′〉
〈N, B, Γ 〉 −→ 〈N, B′, (Γ \ {P}) ∪ {P ′}〉 Agent

Note that there is non-determinism in AgentSpeak and in these semantics, e.g. the
choice of plan to execute from a set of applicable plans. In addition, the Agent rule

An AgentSpeak Meta-interpreter and Its Applications 127

B |= c

?c −→ true
?ct

B
|= c

?c −→ fail
?cf

act −→ true
act

B, +b −→ B ∪ {b}, true
+b

B, −b −→ B \ {b}, true
−b

Δ = {Piθ|(ti : ci ← Pi) ∈ Π ∧ ti = +!e ∧ B |= ciθ}
!e −→ �Δ�

Ev

P1 −→ P ′

P1; P2 −→ P ′; P2
;

true;P −→ P
;t

fail; P −→ fail
;f

�� −→ fail
Self

Pi = SO(Δ)
�Δ� −→ Pi � �Δ \ {Pi}�

Sel

P1 −→ P ′

P1 � P2 −→ P ′ � P2
�

true � P −→ true
�t

fail � P −→ P
�f

P = SI(Γ) 〈B, P 〉 −→ 〈B′, P ′〉
〈N, B, Γ 〉 −→ 〈N, B′, (Γ \ {P}) ∪ {P ′}〉 Agent

P = SI(Γ) P ∈ {true, fail}
〈N, B,Γ 〉 −→ 〈N, B, (Γ \ {P})〉 Agenttf

e is a new external event
〈N, B, Γ 〉 −→ 〈N, B, Γ ∪ {!e}〉 Agentext

Fig. 1. Operational Semantics for AgentSpeak

non-deterministically selects an executing plan. Instead of resolving these non-
deterministic choices with an arbitrary policy, AgentSpeak defines selection functions
SI , SO , and SE which respectively select a plan from the set of executing plans, an
option from the set of applicable plans, and an event from the set of events. These are
assumed to be provided by an AgentSpeak implementation and could also be replaced
by the programmer.

Two of these selection functions (SI and SO) are used in our formal semantics. The
third selection function (SE) is not used. The reason is that AgentSpeak splits event
processing into two steps: adding the event to a set of events, and then selecting an
event from the set and adding an intention corresponding to the applicable plans for
that event. Since neither of these steps results in any changes to the agent’s beliefs or
to its environment, these two steps can be merged into a single atomic step without any
loss of generality, i.e. events in AgentSpeak are eliminable (which has been formally
proven by Hindriks et. al. [22]), and eliminating events simplifies the formal semantics.

2.3 Issues with AgentSpeak

The semantics of AgentSpeak as presented by Rao [7] are incomplete in a number of
ways.

One area of incompleteness is failure recovery. All of the platforms that AgentSpeak
was intended to model provide failure handling by trying alternative plans if a plan

128 M. Winikoff

fails. This form of failure handling is based on the idea that for a given goal the relevant
plans offer alternative means of achieving the goal, and that if one way of achieving a
goal fails, alternative ways should be considered8. However, because AgentSpeak [7]
focuses on describing the execution cycle around plan selection, it does not explicitly
specify what should be done when a plan fails. This omission has led to certain imple-
mentations (such as Jason) not providing this form of failure handling9. We regard the
omission of failure handling from Rao’s semantics as unfortunate, since it has allowed
implementations of AgentSpeak to be consistent with the original AgentSpeak paper,
but to be incompatible with each other, and with other BDI-platforms. For example,
although the semantics of Jason [19] are consistent with Rao’s semantics [7], Jason’s
failure handling is quite different from that of other BDI-platforms such as dMARS
[10], JAM [11], PRS [12,13], UM-PRS [14] and JACK [15].

A more subtle issue concerns the context condition of plans, specifically when are
they evaluated? There are two possibilities: one can either evaluate the context condi-
tions of all relevant plans at once giving a set of applicable plans, or one can evaluate
relevant plans one at a time. The former – “eager” evaluation – is simpler semanti-
cally, but the latter – “lazy” evaluation – has the advantage that when a plan is consid-
ered for execution, its context condition is evaluated in the current state of the world,
not in the state of the world that held when the event was first posted. The execution
cycle at the start of this section is deliberately ambiguous about when context condi-
tions are evaluated because BDI platforms differ in their handling of this issue. For
example, JAM is eager whereas JACK is lazy, and in the CAN notation [21] each plan
has an eager context condition and a lazy context condition. Since Rao’s semantics
for AgentSpeak specify eager evaluation [7, Figure 1], this is what our rule for Ev
specifies.

Another issue concerns multiple solutions to context conditions. Suppose that we
have a program clause e : c ← P and that given the agent’s current beliefs there
are two different ways of satisfying c which give different substitutions θ1 and θ2.
Should there be a single applicable plan Pθi (where i is arbitrarily either 1 or 2),
or should there be two applicable plan (instances), Pθ1 and Pθ2? Again, there is no
consensus among BDI platforms, for example, JAM doesn’t support multiple solu-
tions to context conditions whereas JACK does. The semantics of AgentSpeak spec-
ifies multiple substitutions10: [7, Figure 1] computes the applicable plans Oe as Oe =
{pθ|θ is an applicable unifier for event e and plan p}. Our semantics therefore allows
multiple substitutions, providing an applicable plan instance for each substitution.

Finally, a very minor syntactical issue that is nonetheless worth mentioning, is that
having to write !e in the bodies of plans is error-prone: it is too easy to write e by
mistake.

8 This is not backtracking in the logic programming sense because there is no attempt to undo
the actions of a failed plan.

9 Jason provides an alternative form of failure handling where failure of a plan posts a failure
event of the form −!g and this event can be handled by an “exception handling” plan.

10 But note that AgentSpeak’s semantics are inconsistent as to whether θ is unique: although
Figure 1 says that θ is “an” applicable unifier, Definition 10 says that θ is “the correct answer
substitution” (emphasis added).

An AgentSpeak Meta-interpreter and Its Applications 129

3 An AgentSpeak Meta Interpreter

Logic programming languages have particularly elegant meta-interpreters. For example,
the meta-interpreter for Prolog is only a few lines long [23, section 17.2] and follows
the pattern of interpreting connectives and primitives in terms of themselves (lines 1
& 2) and interpreting an atom by non-deterministically selecting a program clause and
solving it (line 3).

1. solve(true) ← true.
2. solve((A,B)) ← solve(A) , solve(B).
3. solve(A) ← clause(A,B) , solve(B).

Meta-interpreters for other logic programming languages can be developed along
similar lines, for example the logic programming language Lygon, which is based on
linear logic, has a meta-interpreter along similar lines [24, section 5.6].

A meta-interpreter for AgentSpeak can also be defined similarly:

1. solve(Act) : isAction(Act) ← do(Act).
2. solve(true) ← true.
3. solve(fail) ← fail.
4. solve(−B) ← −B.
5. solve(+B) ← +B.
6. solve(?C) ← ?C.
7. solve(P1 ; P2) ← solve(P1) ; solve(P2).
8. solve(!E) : clause(+!E,G,P) ∧ isTrue(G) ← solve(P).

We assume that the agent has a collection of beliefs of the form clause(H,G,P) which
represent the program being interpreted.

In order for this meta-interpreter to work the underlying AgentSpeak implementa-
tion needs to support multiple solutions for context conditions. This is needed because
the meta-interpreter’s last clause, where alternative plans are retrieved, needs to have
multiple instances corresponding to different solutions to clause.

Lemma 1. If P
∗−→ X and X �∈ {true, fail} then there exists Y such that X −→ Y .

Theorem 1. The above meta-interpreter is correct. Formally, given an AgentSpeak pro-
gram Π and its translation into a collection of clause beliefs (denoted by Π̂), the exe-
cution of an intention P with program Π is mirrored11 by the execution of the intention
solve(P) with program Π̂∪M, where M denotes the above meta-interpreter. By “mir-
rored” we mean that 〈B, P 〉 ∗−→ 〈B′, R〉 with R ∈ {true, fail} and with a given se-
quence of actions A, if and only if 〈B, solve(P)〉 ∗−→ 〈B′, R〉 with the same sequence
of actions A. We use S ⇒ S′ where S′ = 〈A, B, R〉 as shorthand for “S

∗−→ 〈B, R〉
with the sequence of actions A”. In the following proof we use [] to denote the empty
sequence and ⊕ to denote sequence concatenation.

Proof (sketch): Proof by induction on the length of the derivation, we consider three
cases since the other base cases are analogous to the first base case.
11 We don’t precisely define this due to lack of space. The formal concept corresponding to this

is bisimulation.

130 M. Winikoff

– Firstly, consider a base case, 〈B, +b〉 → 〈B∪{b}, true〉. Given the meta-interpreter
clause solve(+B) ← +B we have 〈B, solve(+b)〉 −→ 〈B, �+b�〉 −→ 〈B, +b �
��〉 −→ 〈B ∪ {b}, true � ��〉 −→ 〈B ∪ {b}, true〉. Since both sequences of
transitions involve no actions we have that 〈B, +b〉 ⇒ 〈[], B ∪ {b}, true〉 and
〈B, solve(+b)〉 ⇒ 〈[], B ∪ {b}, true〉. Since both sequences of transitions are
deterministic (no other transitions are possible) we have that 〈B, +b〉 ⇒ S iff
〈B, solve(+b)〉 ⇒ S as required.

– Now consider the case of P1; P2. We assume by the inductive hypothesis that 〈B, P1〉
⇒ S1 iff 〈B, solve(P1)〉 ⇒ S1 (where S1 = 〈A1, B1, R1〉) and similarly for P2.
There are then two cases: P1

∗−→ true and P1
∗−→ fail. In the first case we have

that 〈B, P1; P2〉 ⇒ 〈A1, B1, true; P2〉 and then 〈B1, true; P2〉 −→ 〈B1, P2〉 ⇒
〈A2, B2, R2〉. We also have that solve(P1; P2) −→ �solve(P1); solve(P2)� −→
solve(P1); solve(P2) � ��, that 〈B, solve(P1); solve(P2) � ��〉 ⇒ 〈A1, B1, true;
solve(P2) � ��〉, and that 〈B1, true; solve(P2) � ��〉 −→ 〈B1, solve(P2) � ��〉 ⇒
〈A2, B2, R2 � ��〉. Now, regardless of whether R2 is true or fail this transitions
to R2 since true � �� −→ true and fail � �� −→ �� −→ fail. Hence, in the first
case, where P1

∗−→ true, we have that 〈B, P1; P2〉 ⇒ 〈A1 ⊕A2, B2, R2〉 and that
〈B, solve(P1; P2)〉 ⇒ 〈A1 ⊕ A2, B2, R2〉. In the second case, P1

∗−→ fail, we
have that 〈B, P1; P2〉 ⇒ 〈A1, B1, fail; P2〉. We then have from the semantics that
fail; P2 −→ fail and hence that 〈B, P1; P2〉 ⇒ 〈A1, B1, fail〉. We also have
that solve(P1; P2) −→ �solve(P1); solve(P2)� −→ solve(P1); solve(P2) � ��,
that 〈B, solve(P1); solve(P2) � ��〉 ⇒ 〈A1, B1, fail; solve(P2) � ��〉, and that
this then transitions to fail � �� −→ �� −→ fail, i.e. that 〈B, solve(P1; P2)〉 ⇒
〈A1, B1, fail〉. Thus, in both cases the execution of P1; P2 and solve(P1; P2) mir-
ror each other.

– We now consider the clause solve(!E) : clause(+!E,G,P) ∧ isTrue(G) ← solve(P).
We have that if Π contains a program clause +!e : c ← p then !e −→ �Δ�
where Δ = {Piθ|(ti : ci ← Pi) ∈ Π ∧ ti = +!e ∧ B |= ciθ}. We also have
solve(!e) −→ �Ω� where Ω is the instances of the clause in the meta-interpreter
(since this is the only clause applicable to solving !e), i.e. Ω = {solve(P)θ | B |=
(clause(+!e, ci, P)∧isT rue(ci))θ}. Since for each clause ti : ci ← Pi in Π there
is an equivalent clause(ti, ci, Pi) in Π̂ we have that (ti : ci ← Pi) ∈ Π ∧ ti =
+!e whenever B |= clause(+!e, ci, P). We also have that B |= ciθ whenever
B |= isT rue(ci)θ (assuming a correct implementation of isTrue), thus Ω has the
same alternatives as Δ, more precisely Ω = {solve(P)|P ∈ Δ}. Hence !e −→
�Δ� and solve(!e) ∗−→ �{solve(P)|P ∈ Δ}�. Once a given Pi is selected from
Δ (respectively Ω) we have by the induction hypothesis that 〈B, Pi〉 ⇒ Ri iff
〈B, solve(Pi)〉 ⇒ Ri which is easily extended to show that 〈B, Pi ��Δ\{Pi}�〉 ⇒
R iff 〈B, solve(Pi)� �Ω \{solve(Pi)}�〉 ⇒ R, and hence, provided that SO(Ω) =
solve(SO(Δ)), that 〈B, !e〉 ⇒ R iff 〈B, solve(!e)〉 ⇒ R as desired. �

4 Variations on a Theme

In this section we present a number of variations of the meta-interpreter which extend
the AgentSpeak language in various ways or add functionality to the implementation.

An AgentSpeak Meta-interpreter and Its Applications 131

The key point here is that these modifications are very easy to implement by changing
the meta-interpreter. We invite the reader to consider how much work would be involved
in making each of these modifications to their favourite agent platform by modifying
the underlying implementation.

4.1 Debugging

Just as with any form of software, agent systems need to be debugged. Unlike debugging
logic programs, multi-agent systems offer additional challenges to debugging due to
their concurrency, and due to the use of interaction between agents, i.e. debugging a
MAS involves debugging multiple agents, not just a single agent.

One approach to debugging agent interaction is to use interaction protocols that have
been produced as part of the design process. An additional “monitoring” agent is added
to the system. This agent eavesdrops on conversations in the system and checks that the
agents in the system are following the interaction protocols that they are supposed to
follow [25,5].

In order for the monitoring agent to be able to eavesdrop on conversations all agents
in the system need to send the monitoring agent copies of all messages that they send.
This can be done manually, by changing the code of each agent. However, it is better
(and more reliable) to do this by modifying the behaviour of the send primitive. Modi-
fying the behaviour of a primitive using a meta-interpreter is quite simple: one merely
modifies the existing clause that executes actions to exclude the primitive in question
and adds an additional clause that provides the desired behaviour:

1a. solve(Act) : Act �= send(R,M) ← do(Act).
1b. solve(send(R,M)) ← ?myID(I) ; send(monitor,msg(I,R,M)) ; send(R,M).

Debugging the internals of agents can be done by enhancing the meta-interpreter in
the same ways that one would enhance a Prolog meta-interpreter to aid in debugging
[23, Section 17.2 & 17.3]. For example, it is easy to modify a meta-interpreter to trace
through the computation. Another possibility is to modify the meta-interpreter to build
up a data structure that captures the computation being performed. Once the compu-
tation has been completed the resulting data structure can be manipulated in various
ways. Finally, another possible modification, suggested by one of the reviewers, is that
the interpreter could be modified to send messages to a monitoring agent whenever the
agent changes its beliefs:

4. solve(−B) ← −B ; send(monitor,delbelief(B)).
5. solve(+B) ← +B ; send(monitor,addbelief(B)).

4.2 Failure Handling

The meta-interpreter presented in the previous section delegates the handling of failure
to the underlying implementation. However, if we want to change the way in which
failure is handled, then we need to “take control” of failure handling. This involves
extending the meta-interpreter to handle failure explicitly, which can be done by adding
the following clause:

9. solve(!E) ← fail.

132 M. Winikoff

This additional clause applies the default failure handling rule which simply fails, but
it does provide a “hook” where we can insert code to deal with failure. For example,
the code could call a planner to generate alternative plans. Note that this clause applies
to any intention, and so it must be selected after the other clauses have been tried and
failed. For example, if the selection function (SO) selects clauses in the order in which
they are listed in the program text then this clause should come last.

Another possible response to failure is to consider that perhaps the agent lacks the
know-how to achieve the goal in question. One possible source for additional plans
that might allow the agent to achieve its goal is other (trusted) agents [26]. Adding
additional plans at run-time is difficult to do in compiled implementations, but is very
easy to do using a meta-interpreter: since the program is stored as a belief set one
simply adds to this belief set. Clause 9 below is intended as a replacement for the failure
handling clause above. Once a plan is received it is stored, and then used immediately
(useClause).

9. solve(!E) ← !getPlan(E,H,G,B) ; +clause(H,G,B) ; !useClause(G,B).
10. getPlan(E,H,G,B) :trust(Agent) ← send(Agent,getPlan(E)) ; receive(plan(H,G,B)).
11. useClause(G,B) : isTrue(G) ← solve(B).

4.3 Making Selection Explicit

AgentSpeak defines a number of selection functions that are used to select which event
to process (SE), which intention to execute next (SI), and which plan (option) to use
(SO). In some implementations, such as Jason, these selection functions can be replaced
with user-provided functions. However, other implementations may not allow easy re-
placement of the provided default selection functions. Even if the underlying imple-
mentation does allow for the selection functions to be replaced, using a meta-interpreter
might be easier since it allows the selection functions to be written in AgentSpeak rather
than in the underlying implementation language (for example in Jason user-provided
selection functions are written in Java). By extending the meta-interpreter to make the
selection of plans explicit we can override the provided defaults regardless of whether
the implementation provides for this.

Extending the meta-interpreter to do plan selection (i.e. selecting the option, SO),
explicitly is done as follows. The key idea is that we add an additional argument to solve
which holds the alternative options. Then instead of solve(!E) having multiple instances
corresponding to different options, it collects all of the options into a set of alternatives
(using options), selects an option (using the user-provided select), and solves it. The
set of alternatives is ignored by solve, except where failure occurs, in which case we
explicitly handle it (lines 9 and 10) by selecting an alternative from the set of remaining
alternatives and trying it. If there are no alternatives remaining then fail (line 10).

0. solve(P) ← solve(P,[]).
1. solve(Act,) : isAction(Act) ← do(Act).

. . . Similarly, add an extra argument to solve for the other clauses
7. solve((P1; P2), Os) ← solve(P1, Os) ; solve(P2, Os).
8. solve(!E,) ← ?options(E,Os) ; ?select(I,Is,Os) ; solve(I,Is).

An AgentSpeak Meta-interpreter and Its Applications 133

9. solve(B,Os) : Os �= [] ← ?select(I,Is,Os) ; solve(I,Is).
10. solve(B,Os) : Os = [] ← fail.
11. options(E,Os) ← find all solutions to clause(+!E,G,P) ∧ isTrue(G) and return the

values of P in Os. In Prolog this could be written as findall(P, appClause(E,P),Os)
where appClause(E,B) ← clause(+!E,G,B) ∧ isTrue(G).

12. select(I,Is,Os) ← select an intention I from Os (Is is the remaining options, i.e.
Is = Os \ {I})

4.4 A Richer Plan Language

The bodies of plans in AgentSpeak are sequences of primitives (actions, belief manip-
ulation etc.). This is fairly limited, and it can be useful to extend the language with
additional constructs such as disjunction and iteration:

9. solve(if(C,P1,P2)) : isTrue(C) ← solve(P1).
10. solve(if(C,P1,P2)) : ¬ isTrue(C) ← solve(P2).
11. solve(while(C,P)) : isTrue(C) ← solve(P) ; solve(while(C,P)).
12. solve(while(C,P)) : ¬ isTrue(C) ← true.

5 Implementation

The meta-interpreter described in section 3 has been implemented and tested. Since
Jason doesn’t support failure handling and AgentTalk doesn’t support multiple solutions
to a context condition, we have implemented a simple AgentSpeak interpreter in order
to be able to test the meta-interpreter. This simple interpreter runs under Prolog and can
be found at http://www.cs.rmit.edu.au/∼winikoff/AS.

In addition to enabling the meta-interpreter to be tested, not just proven correct12,
the implementation allowed us to quantify the efficiency overhead associated with the
additional layer of interpretation introduced by the meta-interpreter.

In order to measure the efficiency overhead incurred by the meta-interpreter we use
a simple benchmark program. This program controls a hypothetical robot who is travel-
ling along a one-dimensional track (perhaps a train track?) containing obstacles which
need to be cleared. The robot is given a list of obstacle locations which need to be
cleared, and it in turn travels to each obstacle, picks up the obstacle, returns to its start-
ing point and disposes of the obstacle. Since we are interested in the relative efficiency
of the program running with and without the meta-interpreter, the details of the program
(given below) are not particularly important.

1. move ← message(’moving towards obstacle’).
2. moveback ← message(’moving back towards base’).
3. return(0) ← true.
4. return(N) : N > 0 ∧ N1 = N − 1 ← !moveback ; !return(N1).
5. get(0) ← true.

12 “Beware of bugs in the above code; I have only proved it correct, not tried it” (Donald Knuth,
http://www-cs-faculty.stanford.edu/∼knuth/faq.html)

134 M. Winikoff

6. get(N) : N > 0 ∧ N1 = N − 1 ← !move ; !get(N1).
7. collect([]) ← true.
8. collect([X |Xs]) ← !get(X) ; message(’pickup’) ; !return(X) ; message(’dispose’)

; !collect(Xs).
9. collect30 ← !collect([1,2,3,4,5,6,7 . . . ,28,29,30]).

Handling the event collect30 with the AgentSpeak interpreter (i.e. without the meta-
interpreter) took 169 milliseconds13 whereas the same program run with the meta-
interpreter took 403 milliseconds. The graph below depicts the slow-down factor (403/
169 = 2.42) compared with the slow-down factor for various Prolog meta-interpreters
reported by O’Keefe [27, Page 273]. The comparison between our slow-down factor
and O’Keefe’s should be taken only as a rough indication that the overhead incurred by
the AgentSpeak meta-interpreter is comparable to that of a carefully-engineered Pro-
log meta-interpreter. There are too many differences between our measurement and
O’Keefe’s measurements to allow much significance to be read into the results, e.g. the
Prolog implementations are different, the underlying hardware is different, and O’Keefe
measured the time to run a naı̈ve reverse benchmark under the (Prolog) meta-interpreter
and under the meta-interpreter interpreting itself interpreting the benchmark.

0

5

10

2.42

AgentSpeak

3.54

Defaulty

�

8.8

Wrapped

�

3.71

Rule/2

� �

2.39

Rule/3

� �

�

�

�

� �

Slow-down

6 Conclusion

We presented an AgentSpeak meta-interpreter, proved its correctness, and then showed
a number of ways in which it could be used to extend the AgentSpeak language and add
facilities, such as debugging, to the AgentSpeak interpreter.

Although the extended meta-interpreters that we presented were very simple, not all
extensions are easy to do with the meta-interpreter. The meta-interpreter that we pre-
sented focuses on the interpretation of individual intentions. Consequently, it is difficult
to make changes that cut across intentions, such as changing the mechanism for select-
ing which intention to work on next (SI). This doesn’t mean that such changes cannot
be made using a meta-interpreter, just that a different meta-interpreter is required which
explicitly captures the top-level agent processing cycle including intention selection.

Another issue is that although the meta-interpreter has been presented as “an Agent-
Speak meta-interpreter”, in fact it won’t work with the Jason or with the AgentTalk

13 The AgentSpeak interpreter was run under B-Prolog (http://www.probp.com) version 5.0b on
a SPARC machine running SunOS 5.9. Timings are the average of ten runs.

An AgentSpeak Meta-interpreter and Its Applications 135

implementations of AgentSpeak! The reason for this is that due to the incomplete-
ness of the semantics originally presented for AgentSpeak, different implementations
of “AgentSpeak” actually implement quite different languages (some of these differ-
ences were discussed in section 2.3). There are a number of approaches to addressing
this issue. One approach is for the authors of different AgentSpeak implementations
to agree on a common semantics for the language. Another, less ambitious, approach
to addressing this issue is to develop a more detailed meta-interpreter that explicitly
handles areas where there are differences between implementations. For example, the
meta-interpreter in section 4.3 explicitly handles alternative plans rather than delegating
this to the underlying interpreter, and so should work with the AgentTalk implementa-
tion. A third approach is to use a different agent programming language such as CAN
[21] or 3APL [9].

Both these areas are left for future work. An additional area for future work is
extending the semantics given in section 2.2 to include variables and unification. In
AgentSpeak unifying the triggering event with a clause head doesn’t bind variables in
the triggering event, because the clause could fail. Instead, when the clause succeeds the
unification is applied to the triggering event [7]. This is a relatively subtle issue which
only affects non-ground events, and if handled incorrectly causes the meta-interpreter
clause solve(?C) ← ?C to work incorrectly. Since this issue is both subtle and causes
problems if done incorrectly, we feel that it is valuable to specify it formally.

Acknowledgements

I would like to thank James Harland for comments on a draft of this paper and to
acknowledge the support of Agent Oriented Software Pty. Ltd. and of the Australian
Research Council (ARC) under grant LP0453486. I would also like to thank the anony-
mous reviewers for their comments which helped improve this paper.

References

1. McCarthy, J.: Recursive functions of symbolic expressions and their computation by ma-
chine, part i. Communications of the ACM (1960) 184–195

2. Armstrong, J., Virding, S., Williams, M.: Use of prolog for developing a new programming
language. In: The Practical Application of Prolog. (1992)

3. Shapiro, E.: A Subset of Concurrent Prolog and Its Interpreter. In: Concurrent Prolog:
Collected Papers (Volume 1). MIT Press (1987) 27–83

4. Thangarajah, J., Winikoff, M., Padgham, L., Fischer, K.: Avoiding resource conflicts in
intelligent agents. In van Harmelen, F., ed.: Proceedings of the 15th European Conference
on Artificial Intelligence, IOS Press (2002)

5. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS’02), ACM Press
(2002) 960–967

6. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-
tion. Prentice Hall International (1993) ISBN 0-13-020249-5.

136 M. Winikoff

7. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In
de Velde, W.V., Perrame, J., eds.: Agents Breaking Away: Proceedings of the Seventh Euro-
pean Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
Springer Verlag (1996) 42–55 LNAI, Volume 1038.

8. Ashri, R., Luck, M., d’Inverno, M.: Infrastructure support for agent-based development. In:
Foundations and Applications of Multi-Agent Systems, Springer-Verlag LNAI 2333 (2002)
73–88

9. Dastani, M., de Boer, F., Dignum, F., Meyer, J.J.: Programming agent deliberation: An
approach illustrating the 3APL language. In Rosenschein, J.S., Sandholm, T., Wooldridge,
M., Yokoo, M., eds.: Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’03), Melbourne, Australia, ACM Press (2003) 97–104

10. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS. In
Singh, M., Rao, A., Wooldridge, M., eds.: Intelligent Agents IV: Proceedings of the Fourth
International Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag
LNAI 1365 (1998) 155–176

11. Huber, M.J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the Third
International Conference on Autonomous Agents (Agents’99). (1999) 236–243

12. Georgeff, M.P., Lansky, A.L.: Procedural knowledge. Proceedings of the IEEE Special Issue
on Knowledge Representation 74 (1986) 1383–1398

13. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning and system
control. IEEE Expert 7 (1992)

14. Lee, J., Huber, M.J., Kenny, P.G., Durfee, E.H.: UM-PRS: An implementation of the pro-
cedural reasoning system for multirobot applications. In: Proceedings of the Conference on
Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS’94). (1994) 842–849

15. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents - Components
for Intelligent Agents in Java. Technical report, Agent Oriented Software Pty. Ltd, Mel-
bourne, Australia (1998) Available from http://www.agent-software.com.

16. Machado, R., Bordini, R.: Running AgentSpeak(L) agents on SIM AGENT. In Meyer, J.J.,
Tambe, M., eds.: Intelligent Agents VIII - Proceedings of the Eighth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-2001), Springer-Verlag LNAI 2333
(2001)

17. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-based support for mobile users using
AgentSpeak(L). In Giorgini, P., Henderson-Sellers, B., Winikoff, M., eds.: Agent-Oriented
Information Systems (AOIS 2003): Revised Selected Papers, Springer LNAI 3030 (2004)
45–60

18. d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer-Verlag (2001)
19. Moreira, A., Bordini, R.: An operational semantics for a BDI agent-oriented programming

language. In Meyer, J.J.C., Wooldridge, M.J., eds.: Proceedings of the Workshop on Logics
for Agent-Based Systems (LABS-02). (2002) 45–59

20. Plotkin, G.: Structural operational semantics (lecture notes). Technical Report DAIMI FN-
19, Aarhus University (1981 (reprinted 1991))

21. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2002), Toulouse, France (2002)

22. Hindriks, K.V., Boer, F.S.D., van der Hoek, W., Meyer, J.J.C.: A formal embedding of
AgentSpeak(L) in 3APL. In Antoniou, G., Slaney, J., eds.: Advanced Topics in Artificial
Intelligence, Springer Verlag LNAI 1502 (1998) 155–166

23. Sterling, L., Shapiro, E.: The Art of Prolog. Second edn. MIT Press (1994)
24. Winikoff, M.: Logic Programming with Linear Logic. PhD thesis, Melbourne University

(1997)

An AgentSpeak Meta-interpreter and Its Applications 137

25. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the prometheus
methodology. EAAI special issue on “Agent-oriented software development” 18/2 (2005)

26. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-agentspeak: Cooperation in
agentspeak through plan exchange. In Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M.,
eds.: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM Press (2004) 698–705

27. O’Keefe, R.A.: The Craft of Prolog. MIT Press (1990)

A A Failed Attempt

In order to show that the meta-interpreter isn’t obvious, here we briefly present an al-
ternative meta-interpreter that was considered and explain why it doesn’t work. The
intention of this meta-interpreter was that by evaluating the context condition as part
of the body, rather than the context condition, we could obtain lazy context conditions
regardless of the implementation’s semantics.

1. solve(Act) : isAction(Act) ← do(Act).
2. solve(true) ← true.
3. solve(fail) ← fail.
4. solve(−B) ← −B.
5. solve(+B) ← +B.
6. solve(?C) ← ?C.
7. solve(P1 ; P2) ← solve(P1) ; solve(P2).
8. solve(!E) : clause(+!E,G,P) ← ?isTrue(G) ; solve(P).

Unfortunately this meta-interpreter does not give correct semantics. The reason is
that in order to determine that a clause is not applicable it must be selected and tried,
after which it is discarded. This means that if another plan is tried and fails, preceding
clauses are no longer available. To see this, consider the following program14:

1. g : p ← print(’lazy.’).
2. g : true ← +p ; fail.
3. g : p ← print(’clause 3’).
4. g : true ← print(’eager.’).

If this program is run with a lazy implementation then the following occurs:

1. Clause 2 is selected (since clause 1 isn’t applicable)
2. The belief p is added and clause 2 then fails
3. Clause 1 is now applicable and is selected, printing lazy before succeeding.

If the program is run with an eager implementation then the following occurs:

1. Clauses 2 and 4 are applicable, whereas clauses 1 and 3 are discarded.
2. Clause 2 is selected

14 We assume that SO selects clause in the order in which they are written.

138 M. Winikoff

3. The belief p is added and clause 2 then fails
4. Clause 4 now runs printing eager before succeeding.

However, if the program is run with the incorrect meta-interpreter above then the
following occurs:

1. Clause 1 is selected and its guard evaluated. Since the guard is false, the clause
instance fails, and it is discarded.

2. Clause 2 is selected, its guard succeeds and it runs, adding p and then failing.
3. Clause 3 is now considered, its guard succeeds and it runs, printing clause 3

before succeeding.

It should be noted that although this interpreter doesn’t work, it is certainly possible
to write an interpreter that gives lazy context conditions even when run under an eager
implementation. This can be done by making selection explicit (see section 4.3).

Extending the Capability Concept for Flexible
BDI Agent Modularization

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Distributed Systems and Information Systems,
Computer Science Department, University of Hamburg,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{braubach, pokahr, lamersd}@informatik.uni-hamburg.de

Abstract. Multi-agent systems are a natural way of decomposing com-
plex systems into more manageable and decentralized units. Neverthe-
less, as single agents can represent complex subsystems themselves,
software engineering principles for the design and implementation of
coherent parts of single agents are necessary for producing modular and
reusable software artifacts. This paper picks up the formerly proposed
capability concept for structuring BDI agents in functional clusters, and
generalizes and extends it to support a higher degree of reusability. The
resulting mechanism allows for designing and implementing BDI agents
as a composition of configurable agent modules (capabilities). It is based
on a black-box approach with export interfaces that is in line with object-
oriented engineering principles.

1 Introduction

One important traditional software-engineering principle is modularization [12],
which means that functionality is packaged into delimited units. Thereby, re-
ferring to [6] a module is seen as “[. . .] a well-defined component of a software
system that provides a set of services to other modules. Services are computa-
tional elements that other modules may use.”

For example, in the imperative paradigm modules represent collections of
procedures, data types and constants from which only a small subset is made
accessible through the module’s export interface. For other paradigms such as
functional programming or object-orientation adapted forms of modularization
have been developed as well. Generally, modularization achieves inter alia the
following three advantages: First and most importantly, it enables reuse and ex-
tensibility of software artifacts as modules form separate units of functionality.
Secondly, modules enhance flexibility through encapsulation, because changes
inside a module should not affect other modules. Thirdly, modularization in-
creases the effectiveness of software development and the comprehensibility of
the applications as separate modules represent abstractions that can be consid-
ered independently for understanding cutouts of the system.

To achieve those advantages in practice, fundamental design principles have
to be taken into account for module creation. On the one hand the coupling

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 139–155, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 L. Braubach, A. Pokahr, and W. Lamersdorf

of different modules (interrelationships) should be minimized, whereas on the
other hand the cohesion of the elements contained in a module should be maxi-
mized [18]. The basic idea of modules is to abstract from implementation details
through information hiding [12], which means that the internals of a module are
encapsulated and can therefore be changed without affecting other modules. Ad-
hering to these principles ensures that modules represent self-contained, reusable
entities for some well-defined functionality.

For the agent paradigm modularization is also an important topic. Even
though multi-agent systems are a natural technique for decomposing complex
scenarios into autonomous actors, the resulting agents can still be fairly complex.
Breaking down such complex agents into teams of smaller ones is not always an
appropriate solution, because splitting up a self-contained entity requires a con-
nection between those smaller agents to be established at the communication
level, leading to possibly inefficient solutions.

Hence, specifically adapted concepts for structuring the internals of an agent
are necessary. Such a structuring technique depends in turn on the consid-
ered agent architecture determining the high-level elements and processes which
may or may not be suitable for modularization. Cognitive architectures such as
3APL[4], BDI [16] or SOAR [11] propose different high-level abstractions leading
to possibly different modularization approaches. In this paper Busetta et al.’s
capability concept [3] for modularization of BDI agents is taken up and extended
to support more flexible agent configuration.

In the next section the original capability concept is shortly sketched and
its limitations are described. In section 3 the extended capability concept is
proposed and its implementation within the Jadex BDI reasoning engine is de-
scribed in section 4. The concepts are further clarified by an example application
in section 5. A summary and an outlook of future work conclude the paper.

2 Capabilities Revisited

The capability concept for structuring BDI agents in modules and its implemen-
tation within the JACK agent framework [8] was first described in [3]. The main
idea of the original proposal is to define beliefs, goals and plans that functionally
belong together in a common namespace called capability. In addition, scoping
rules allow for an exact specification of the parts of a capability that should be
visible from the outside. According to [3] a capability is defined as:

1. an identifier (that is, a name);
2. a set of plans;
3. a fragment of the knowledge base concerning the beliefs manipulated by the

plans of the capability;
4. the visibility rules for those beliefs, that is, which ones are restricted to the

plans of the capability and which ones can be seen from the outside;
5. which types of events, generated as a consequence of the activity of the

capability are visible outside its scope, and their processing algorithm;

Extending the Capability Concept 141

Fig. 1. Original capability concept

6. which types of events, generated outside the capability, are relevant to the
capability (that is, to one or more of its plans);

7. finally, recursive inclusion of other capabilities.

Each capability type specified in this way can be included in another capabil-
ity or in the agent. For this inclusion an additional symbolic name has to be
provided to allow multiple usages of one capability type within the same con-
text. This is similar to the usage of a class in an object-oriented language, i.e.
the symbolic name identifies a specific instance. In Fig. 1 the main ideas of the
original capability concept are also illustrated graphically. The interface of the
inner capability is defined by means of the (different kinds of) external events
the inner capability can process and also by those exported events that could be
handled in the outside capability. In addition beliefs of the inner capability can
be made visible for the outer capability, while plans are only visible locally.

As an example, in [3] negotiation functionalities for two types of agents partic-
ipating in a negotiation are described (initiator and bidder). These functionalities
can be encapsulated in two capabilities and reused by all agents which like to
take part in a negotiation.

2.1 Limitations

The original capability concept as outlined above allows for grouping mental
attitudes according to their functional purpose and therefore is an effective tech-
nique for modularization. Nevertheless, this approach exposes some conceptual
limitations that are discussed next:

– Concerning the export interface, the approach distinguishes explicitly be-
tween mental attitudes and treats them in a different manner. This means

142 L. Braubach, A. Pokahr, and W. Lamersdorf

that there is no continuous mechanism for all types of elements. So, for events
the propagation (from the outside/to the outside) is relevant, for beliefs the
visibility can be defined (local vs. external) and for plans only their usage can
be declared. Having specific means for each of the elements to be grouped
inside a capability not only renders the mechanism hard to learn and use, it
is also not easily possible to adapt the reusability mechanism to other mental
notions, be it extensions to the BDI model or alternative mental models.

– Another important limitation of the approach is concerned with parametriza-
tion as only the static structure is considered. Besides the static structure
the initial mental state of a capability respective an agent is of major im-
portance. In the current form, capabilities cannot be configured with some
initial mental state, which hinders flexible reuse.

– Only design-time composition has been taken into account. No work has been
done so far regarding the possibilities of dynamic agent behavior modification
by adding/removing or exchanging capabilities at runtime. In this respect a
model would have to be provided, how the addition or removal of a capability
influences the functionality of other capabilities.

– The concept does not allow for refinement of parts of a capability specifica-
tion. E.g. it is not possible to provide an extended context condition for a
plan. Elements have to be used in exactly the way they are defined in the
inner capability, which hinders flexible reuse.

3 Extending the Notion of Capabilities

This section presents a capability concept, suitable to address the aforementioned
shortcomings. It follows the general idea of a capability being “[...] a cluster of
plans, beliefs, events and scoping rules over them” [3], but differs from the original
capability concept in several important ways.

1. The locality principle assures that all elements of a capability are part of
exactly one capability.

2. A general import/export mechanism is introduced to define which elements
are part of the capability’s interface and are visible from the outside. Ele-
ments contained in the interface can be used in the containing capability by
defining local proxy elements.

3. A creation semantics determines which element instances of a static struc-
ture (composed of a single concrete element type and arbitrarily many prox-
ies) are created at runtime.

4. The explicit specification of initial configurations separately to the static
structure of a capability is supported.

5. The foundations of dynamic capability modifications are layed down.

These extensions are discussed in the following sections.

Extending the Capability Concept 143

3.1 Locality Principle

The original capability concept assumes a global repository of mental elements
(i.e. event or plan type specifications) which are then just referenced in a ca-
pability definition. Therefore the same type of element can be used in different
capabilities or even agents (i.e. for sending and receiving message events).

In our model we follow the locality principle of elements which means that
a capability itself defines the available types (e.g. of beliefs), and forms the
namespace for these types. These element types are not globally available, but
only inside the capability. As a consequence e.g. from within plans only locally
defined beliefs are accessible, which means that it is not sufficient to know that
a belief of a contained capability is exported. To be able to use such a belief a
local reference has to be declared.

Following the locality principle has the main advantage of increasing the trans-
parency. This is because e.g. a plan only depends on local elements and not on
elements defined in a subcapability. Changes with respect to a subcapability are
therefore hidden from the plan. Another advantage concerns the openness of
agent applications. As no global elements such as message events are specified,
each agent can interpret a received message in its own respect, not depending
on message representation details of other agents.

3.2 Import/Export Mechanism

The locality principle requires a newly designed import/export concept. For
usability, all mental notions and their interrelations across capability borders
should be defined using the same mechanism. The main idea is to cleanly dis-
tinguish relationships between different mental elements (such as a certain goal
being handled by a certain plan) from the import and export specifications
that relate elements from different capabilities. Relationships between mental
elements follow the locality principle, and therefore are only allowed inside a
capability. Import and export specifications permit a single logical element to
be present in several connected capabilities using a proxy model (see Fig. 2).
The figure shows how a capability (outer) can reuse functionality from another
(inner) capability. Concrete elements (which may be beliefs, goals, etc.) are pre-
sented as white rectangles. Proxy elements (i.e. placeholders for beliefs or goals
of another capability) are shown as grey rectangles.

Per default, any concrete element is internal, meaning that it is only visible
locally in its enclosing capability. E.g. internal beliefs can only be accessed by
plans of the same capability. If an element should be accessible to the outer
capability it can be marked as exported. To be used from the outside, a place-
holder (called reference) for the original element has to be defined in the outer
capability. The reference element specification includes the relative name of the
inner element it refers to (e.g. in the form “subcapability.elementname”). Note
that references to exported inner elements are optional. An outer capability is
only required to provide a reference, when the element is accessed from other
elements of the outer capability. For example when a plan of the outer capabil-
ity wants to access a belief defined in the inner capability, the outer capability

144 L. Braubach, A. Pokahr, and W. Lamersdorf

Fig. 2. Reference concept

defines a belief reference, which acts as a proxy for the inner belief. The plan
accesses the proxy like it would access a locally defined belief. Therefore, it is
transparent to the plan that the belief is actually defined in the inner capability.

A capability may also include abstract elements, i.e. proxies which are not
assigned to any concrete element by themselves. An abstract optional element
is an element, which does not require an assignment, what means that the func-
tionality of the capability can also be used, when this element is not present. For
example, an abstract belief provides an extension point, where the outer capa-
bility can add knowledge to the inner capability. A plan in the inner capability
can then check if the belief is available and proceed in different ways according
to the information from the belief. An abstract required element is an element,
which is required for proper operation of the capability.

Both required and optional abstract elements are assigned from the outside,
by adding “assignto” specifications to concrete elements of the outer capability.
An outer element may be assigned to many different abstract elements, but an
abstract element must be assigned from (at most) a single concrete element. In
addition, it is also possible to define proxies for proxies, i.e. to define a reference to
an element which is itself a reference, or to assign an abstract element to another
abstract element of a child capability. This allows building up reference structures
through multiple levels of capabilities. E.g. in the figure, the outer capability
might choose to re-export elements referenced from the inner capability.

3.3 Creation Semantics

The proxy concept introduced in the last section shows how an element can
be visible in a different capability. The definition of proxies only specifies a
static structure of references for element visibility. It depends on the creation
context, if an instance of a proxy is created for a specific element instance.

Extending the Capability Concept 145

Fig. 3. Element creation cases: a) instantiation of a reference, b) instantiation of an
element, when an abstract element exists inside, c) instantiation of an element, when
a reference exists outside, d) instantiation of an abstract element assigned from the
outside

It has to be assured that changes outside of a capability do not affect the internal
functionality, as this would violate the information hiding principle.

To solve these issues semantics is associated to the creation process of elements
and proxies in all possible cases. On the one hand, a proxy might be in the outer
capability (i.e. a reference) or in the inner capability (i.e. an abstract element).
On the other hand, creation of an element might be issued on the original element
itself, or the proxy. This leads to four different cases (cf. Fig. 3):

In the first two cases (a and b) the creation is triggered inside the outer
capability. It is safe to create elements in the inner capability, because they are
an explicit part of the interface. In the last case (d) the initially created element
in the inner capability is just a proxy. Therefore it is necessary to subsequently
create the original element in the outer capability. As can be seen in the figure, it
is only in case c, that a proxy element is not instantiated. In this case the original
element is part of the inner capability and creation is triggered from the inside.
Creating the outer element would lead to problems, because the element (e.g. an
event) might inadvertently be handled in the outside capability, thereby breaking
functionality of the inner capability. The export / reference concept assures
that an element can be used from the outside (e.g. a goal created outside), but
the local functionality (e.g. the goal processing) remains unchanged. Abstract
elements provide a way for the inner capability to connect to functionality of an
outer capability.

146 L. Braubach, A. Pokahr, and W. Lamersdorf

3.4 Initial Configurations

One important aspect of reusability is parametrization of the reused components,
to adapt them to the special requirements imposed by settings in which they
get reused [7]. When considering parametrization of capabilities, two questions
have to be answered: First, what can be parametrized, i.e. what constitutes a
configuration of a capability? Second, how can a capability be parametrized from
the outside, when its elements are encapsulated?

As an answer to the first question, we introduce the notion of an initial mental
state. The initial mental state is a simplified runtime state of a capability, con-
taining the initial values of beliefs (which are singleton instances), as well as zero
or more initial instances of the other elements (such as goals, plans, and events)
with initial properties (e.g. goal parameter values). In addition, the initial state
defines recursively the initial mental state of all included subcapabilities.

To parametrize a capability, its initial mental state has to be adapted to the
current needs. Respecting the information hiding principle, it should not be pos-
sible to specify all elements of the initial mental state from the outside. E.g.
some capability might require an instance of a maintain goal for proper opera-
tion, but the maintain goal should not be visible to the outside. Our approach
allows parametrization at two levels of granularity: The capability level, and the
level of individual elements. A capability itself can provide one or more initial
configurations, which can be referenced by a given name. In this way, common
use cases can be captured as a whole, allowing easy out-of-the-box reuse. These
configurations are part of the capability, and therefore can contain exported and
internal elements. Parametrization at the level of individual elements is only
possible when these elements are exported. For example for exported beliefs, the
outer capability can override the initial value by defining a reference and locally
assigning a new value to this referenced belief.

3.5 Dynamic Runtime Composition

The new improved capability concept is also capable of handling various issues
concerning runtime modification of agent behaviour. For that purpose generally
two distinct kinds of operations can be performed.

On the one hand complete capabilities could be plugged into or removed from
an agent at runtime. The addition of a capability at runtime is conceptually
not difficult as it requires only information about the capability type, its initial
state, the target capability within the agent and some connection data such as
the instance name of the new capability. Given that all information is provided
the capability can be linked with the target capability using the connection data
and can subsequently be started meaning that its initial state will be executed.
The removal of a capability at runtime is far more intricate as the agent’s exe-
cution state must be considered before a capability can be removed safely. This
means the agent e.g. could currently utilize plans or goals from the capability to
remove and it needs to be determined if these plans or goals should be executed
completely before removal.

Extending the Capability Concept 147

On the other hand the modification of a capability at runtime should be
possible. Prerequisite for these kinds of modifications is that each capability
relies on its personal copy of the underlying capability model, so that changes
can be performed without affecting other capability instances of the same type.
The creation process for a new model element (regardless if it is an element
or an element reference) consists basically of two steps. First, the element has
to be created in the capability model. In a second step the elements has to be
registered at the runtime layer, making the agent aware of its new element. For
the deletion of an element at runtime a similar process can be used. The element
has to be deregistered at the capability instance and can afterwards be deleted
from the model. In this respect it has again to be considered if existing elements
of the removed type should be discarded at once.

For the complete freedom of removing or exchanging a capability at runtime
it is a necessary prerequisite that a capability instance is a self-contained entity
with well-defined connection points. In the proposed capability approach this is
supported by the locality principle which is also valid for capabilities at runtime.
Elements from other capabilities are not accessed directly but through local
proxies. When a capability or element of a capability is removed, proxies in
other capabilities can be preserved, and later be reconnected when an alternative
capability or element is available. Further elaborating and implementing the
details of this mechanism is planned for future work.

3.6 Discussion

Capabilities are a decomposition concept for agents allowing to reuse function-
ality captured in a self-contained module with clearly defined import and export
interface. This form of reuse is termed blackbox-reuse as only the interface and
no details about the internals are known. In contrast to (more flexible) whitebox-
reuse changing the internals of a blackbox-component does not break existing
usages, leading to application designs that are easier to maintain [17].

Furthermore, the capability concept addresses most of the five fundamental
criteria of modularization from [12]: decomposability, composability, understand-
ability, continuity and protection. The concept naturally supports decomposabil-
ity and composability as functional coherent units can be built and connected in
flexible ways. The understandability for BDI agents is increased because capabil-
ities represent encapsulated functionalities that normally have few connections
to other capabilities. Additionally, the understandability for a single capability
is supported by the locality principle which makes them self-contained. The con-
tinuity criterion requires that a small change of the problem specification leads
to limited changes in only few concerned modules. This is achieved by exten-
sively using the information hiding principle using small and simple interfaces
through the general import / export mechanism. Finally, protection is attained
when the effect of an abnormal condition occurring at runtime is confined to
the originating module. Capabilities do not add a new level of protection to the
development of BDI agents. Nevertheless, failure of plans is already covered by
the normal BDI mechanism.

148 L. Braubach, A. Pokahr, and W. Lamersdorf

Another decomposition method for BDI agents inspired directly from object-
oriented ideas was proposed in [10]. It is based mainly on the inheritance mech-
anism for agent classes explicitly allowing also multiple inheritance relationships
between agent classes. In order to control the exact semantics of inheritance
relationships an agent class consists of individual submodels for beliefs, plans
and goals respecting the specifics of the individual mentalistic concepts. Simi-
lar to capabilities, this approach decomposes agents at the detailed design and
implementation level. Other decomposition approaches consider high-level con-
cepts such as roles. E.g. in [9] an experimental system based on the Zeus [13]
toolkit is described, which uses roles to group primitive and rule-based tasks as
well as external code into a reusable module. Role constraints and a role algebra
are introduced to describe how agents can be statically composed of predefined
roles. Dastani et al. describe in [5] a formal model of roles composed of beliefs,
goals, plans and rules. The approach focuses on an operational semantics for
dynamic enacting and deacting of roles. It does not cover interfaces between
different roles of the same agent, but assumes that only one role is active at each
moment in time.

4 Realization of Capabilities

The extended capability concept as presented in the last section has been im-
plemented within the Jadex BDI reasoning engine [1,15]. In Jadex agents are
specified in two different kinds of files. The static structure of an agent or ca-
pability including its initial mental state is defined within an XML-file that
adheres to the Jadex BDI metamodel specified in XML-schema. The behavior
of Jadex agents is encoded within plan bodies that are programmed with plain
Java. From within user programmed plans the BDI facilities such as modifying
beliefs or creating goals are accessible through an API.

In Fig. 4 the condensed Jadex capability metamodel is depicted. All entities
share the same abstract base class “element”. Furthermore an agent is modeled
as an extended capability. This reflects the fact that agent specifications are very

Fig. 4. Capability metamodel

Extending the Capability Concept 149

similar to capabilities and additionally may support entities composed of agents
such as groups sharing e.g. some beliefs or goals.

A capability is composed of two different kinds of elements. On the one hand
it is a container for “referenceable elements”, which form the abstract base class
for mental attitudes such as beliefs, goals, plans and events (not illustrated).
Their common property is that they can be referenced by a proxy termed “ele-
ment reference” from another capability. Element references, which are used to
represent abstract elements as well, are themselves also “referenceable elements”
as references to references are explicitly allowed in the model. On the other hand
capabilities can contain subcapabilities, which is expressed by the relationship
to “capability references”. This indirection is used, because a capability includes
a subcapability under a symbolic name allowing for inclusion of more than one
instance of the same capability type.

5 Example Application

To illustrate the aforementioned concepts in this section an example application
for a hunter-prey scenario is detailed. Even though the hunter-prey domain is
a well-known and extensively studied AI playing field, various different inter-
pretations exist making it necessary to outline our settings. The environment is
inhabited by two different species of creatures (hunters and preys) and various
obstacles (trees) which hinder them in their movements. The creature’s main
objective is to survive by looking for food. Hence, hunters are exploring the ter-
rain in search of prey which they will try to chase and eat. Contrarily, preys
look for plants growing in the environment and try to flee if chased by some
hunter.

5.1 Scenario Design Details

This scenario is designed as (possibly distributed) agent-based simulation in
which the creatures as well as the environment are represented as autonomous
entities. The environment agent is responsible not only for holding a represen-
tation of the environment which is set up as a discrete grid world, but also for
controlling the advancement of time. For simplicity reasons a time-driven scheme
is employed, which requires the creatures to announce their next intended action
within an adjustable timeframe.

Initially, creatures are placed at random locations in the world and are only
able to perceive a cutout of the world according to their vision (automatically
sent from the environment to the creatures at the beginning of each round).
In each round the creatures have to decide which action they would like to
perform. Possible actions are moving to an adjacent field (up, down, left or
right) or trying to eat some object resp. creature near to it. The actions have
to be communicated to the environment as messages following a hunter-prey
domain ontology. If a creature fails to provide its intended action within the
round time (e.g. because it reasons too slowly or a network error occurred) the
simulation proceeds executing no action in that round for the creature.

150 L. Braubach, A. Pokahr, and W. Lamersdorf

As all creatures need basic abilities for sensing and acting in their environ-
ment it is natural and advantageous to develop a basic module for handling this
fundamental aspect of creature behavior in a reusable way.

5.2 Defining a Capability

In Fig. 5 the capability specification for basic sensing and acting in the environ-
ment is depicted. It has two main purposes: The first one is to automatically
process “inform vision” messages (lines 51-65) which contain the current vision
of the creature sent from the environment. Whenever such a message event is
received the “update vision” plan (lines 44-47) is triggered. This plan will ex-
tract the information contained in the vision and update the creature’s belief
sets about known hunters, preys, obstacles and food (lines 13-16) accordingly.
Note that all of these belief sets are exported to be accessible from an outer
capability and the creature agent itself.

The second purpose is to provide high-level abstractions for performing ac-
tions in the environment. Therefore, the capability defines exported goal types
for moving and eating (lines 24-29). To initiate an action, a creature has to cre-
ate and dispatch a new move or eat goal. Such goal instances will subsequently
be handled within the act/sense capability by triggering corresponding move or
eat plans (lines 36-43) which encode the action into a message and communicate
with the environment agent (defined as belief in line 17).

To locate the environment agent the act/sense capability itself relies on an
included directory facilitator (DF) capability (lines 8-10) which offers goals for
(de)registering and searching at a DF. For being able to access the DF func-
tionality the act/sense capability defines a concrete goal reference to the “df
search” goal (lines 30-32). Hence, from within plans of the act/sense capability
“df search” goals can be created and dispatched.

For the communication with the environment agent it is necessary for the
creature to identify itself which is done by including information available in
the “my self” belief. As the act/sense capability should be usable by hunters as
well as preys the value depends on the concrete usage of the capability. Thus,
the belief is specified as abstract and required (which is the default for abstract
beliefs) and needs to be assigned from the outer capability respective the agent
that uses the act/sense capability.

5.3 Capability Parametrization

To exhibit reasonable behavior it is necessary for creatures to describe their
high-level objectives and the means for achieving them. In this section a “basic
behavior” capability (Fig. 6) for preys is described, which enables preys to explore
their environment, eat food and flee from near hunters. Three goal types are
designed for this purpose. An instance of a “keep alone” maintain goal (lines 27-
29) has the task to monitor if the prey is currently in danger. It becomes active
whenever a hunter is nearby and will trigger plans for fleeing from the hunter.
“Eat food” achieve goals (lines 30-35) are created automatically for every piece

Extending the Capability Concept 151

01 <capability xmlns="http://jadex.sourceforge.net/jadex"
02 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
04 http://jadex.sourceforge.net/jadex-0.94.xsd"
05 package="jadex.examples.hunterprey.creature.actsense"
06 name="ActSense">
07
08 <capabilities>
09 <capability name="dfcap" file="jadex.planlib.DF"/>
10 </capabilities>
11
12 <beliefs>
13 <beliefset name="hunters" class="Hunter" exported="true"/>
14 <beliefset name="preys" class="Preys" exported="true"/>
15 <beliefset name="obstacles" class="Obstacle" exported="true"/>
16 <beliefset name="food" class="Food" exported="true"/>
17 <belief name="environmentagent" class="jadex.adapter.fipa.AgentIdentifier"/>
18 <beliefref name="my_self" class="Creature" exported="true">
19 <abstract/>
20 </beliefref>
21 </beliefs>
22
23 <goals>
24 <achievegoal name="move" exported="true">
25 <parameter name="direction" class="String"/>
26 </achievegoal>
27 <achievegoal name="eat" exported="true">
28 <parameter name="object" class="WorldObject"/>
29 </achievegoal>
30 <achievegoalref name="df_search">
31 <concrete ref="dfcap.df_search"/>
32 </achievegoalref>
33 </goals>
34
35 <plans>
36 <plan name="move">
37 <body>new MovePlan()</body>
38 <trigger><goal ref="move"/></trigger>
39 </plan>
40 <plan name="eat">
41 <body>new EatPlan()</body>
42 <trigger><goal ref="eat"/></trigger>
43 </plan>
44 <plan name="updatevision">
45 <body>new UpdateVisionPlan()</body>
46 <trigger><messageevent ref="inform_vision"/></trigger>
47 </plan>
48 </plans>
49
50 <events>
51 <messageevent name="inform_vision" type="fipa" direction="receive">
52 <parameter name="performative" class="String" direction="fixed">
53 <value>jadex.adapter.fipa.SFipa.INFORM</value>
54 </parameter>
55 <parameter name="language" class="String" direction="fixed">
56 <value>jadex.adapter.fipa.SFipa.JAVA_XML</value>
57 </parameter>
58 <parameter name="ontology" class="String" direction="fixed">
59 <value>HunterPreyOntology.ONTOLOGY_NAME</value>
60 </parameter>
61 <parameter name="content-class" class="Class" direction="fixed">
62 <value>CurrentVision.class</value>
63 </parameter>
64 <parameter name="content" class="CurrentVision"/>
65 </messageevent>
66 </events>
67 </capability>

Fig. 5. Act/sense capability

152 L. Braubach, A. Pokahr, and W. Lamersdorf

01 <capability xmlns="http://jadex.sourceforge.net/jadex"
02 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
04 http://jadex.sourceforge.net/jadex-0.94.xsd"
05 package="jadex.examples.hunterprey.creature.preys.basicbehaviour"
06 name="BasicBehaviour">
07
08 <capabilities>
09 <capability name="actsensecap" class="ActSense"/>
10 </capabilities>
11
12 <beliefs>
13 <beliefsetref name="hunters" class="Hunter" exported="true">
14 <concrete ref="actsensecap.hunters" />
15 <beliefsetref>
16 <!– similar declarations for obstacles and food omitted for brevity. –>
17 <beliefref name="my_self" class="Creature" exported="true">
18 <assignto ref="actsensecap.my_self"/>
19 <abstract/>
20 </beliefref>
21 <belief name="eating_allowed" class="boolean">
22 <fact>true</fact>
23 </belief>
24 </beliefs>
25
26 <goals>
27 <maintaingoal name="keep_alone" exclude="never">
28 <!– details omitted for brevity. –>
29 </maintaingoal>
30 <achievegoal name="eat_food">
31 <creationcondition>
32 $beliefbase.eating_allowed && $beliefbase.food.length>0
33 </creationcondition>
34 <!– further details omitted for brevity. –>
35 </achievegoal>
36 <performgoal name="wander_around" retry="true" exclude="never"/>
37 <achievegoalref name="move">
38 <concrete ref="actsensecap.move"/>
39 </achievegoalref>
40 <achievegoalref name="eat">
41 <concrete ref="actsensecap.eat"/>
42 </achievegoalref>
43 </goals>
44
45 <plans><!– omitted for brevity. –></plans>
46
47 <initialstates>
48 <initialstate name="flee">
49 <beliefs>
50 <initialbelief ref="eating_allowed">
51 <fact>false</fact>
52 </initialbelief>
53 </beliefs>
54 <goals>
55 <initialgoal name="escapegoal" ref="keep_alone"/>
56 </goals>
57 </initialstate>
58 <initialstate name="wander_flee_eat">
59 <goals>
60 <initialgoal name="wandergoal" ref="wander_around"/>
61 <initialgoal name="escapegoal" ref="keep_alone"/>
62 </goals>
63 </initialstate>
64 </initialstates>
65 </capability>

Fig. 6. Basic prey behavior capability

Extending the Capability Concept 153

of food the creature discovers. They will lead to plan executions for reaching the
food’s location and eating it. The third goal type is called “wander around” (line
36) and initiates random walking on the map. In this paper the details of goal
declarations are out of scope, for an extensive description the reader can refer
to [2,14].

For proper operation the basic behavior capability needs access to the en-
vironmental beliefs made available by the included act/sense capability (lines
8-10). Therefore concrete belief set references are defined for hunters, obstacles
and food (lines 13-16). These belief set references are also exported allowing an
outer capability or the creature itself to access these values. An abstract and ex-
ported belief reference is assigned for “my self”, as the basic behavior capability
still does not know in which exact kind of prey it will be used.

To illustrate the parametrization of capabilities it is assumed that two differ-
ent kinds of preys need to be created from the basic behavior capability. The
first labeled “LazyPrey” should only flee from nearby hunters and otherwise just
sit and wait where it is. On the contrary a “CleverPrey” should wander around
to explore the map, eat food and flee from hunters. For each kind of prey a
separate initial mental state has been specified (lines 48-57 and lines 58-63).

For the operation of a LazyPrey it is necessary to have an instance of a “keep
alone” goal to flee from hunters. This is achieved by creating an initial goal of
that type (line 55). Additionally, it is required to turn off the reactive creation of
“eat food” goals which cannot be done directly. Hence, a belief “eating allowed”
is introduced as some kind of goal creation switch and used in the creation
condition of the “eat food” goal. In the initial state this belief is negated which
ensures that no “eat food” goals will be instantiated at runtime.

A CleverPrey needs to exploit the whole functionality of the basic behavior
capability. Thus, initial goals for exploring the map (line 60) and for escaping
from nearby hunters (line 61) are created. Nothing has to be declared in the
initial state for “eat food” goals, because these are created automatically at
runtime whenever a new piece of food is discovered as mentioned earlier.

6 Summary and Outlook

This paper revisits the capability concept introduced by Busetta et al. for modu-
larizing BDI agents, in which several conceptual limitations have been identified:

– No generic mechanism for importing / exporting arbitrary mental elements
such as beliefs and goals is available leading to a decreased usability.

– The parametrization of capabilities is not supported which hinders flexible
reuse of capabilities.

– Only design time composition is supported.
– Refinements of mental elements are not addressed.

In turn a new capability concept based on the main ideas of the original proposal
is introduced to address most of these shortcomings. Regarding the usability and
generality a new import / export mechanism is presented, allowing to treat all

154 L. Braubach, A. Pokahr, and W. Lamersdorf

elements (e.g. beliefs or goals) in a similar fashion and hence simplifying the
way in which a capability interface is defined. Furthermore, parametrization is
supported through the definition of an initial mental state, which is defined as a
part of the capability itself. This allows for easy capability configuration as only
the state names need to be known in the including capability.

In addition to the aforementioned issues the new capability concept is also pre-
pared to handle the dynamic composition of capabilities at runtime to flexibly
adopt agent behavior. The extension points to add functionality at runtime are
already present in the new capability concept and have been tested in the current
implementation. The process of removing capabilities and their elements at any
time during the agent execution has only been sketched and is left for future work.

Another area of future work which is also facilitated through the locality prin-
ciple is the refinement of elements from subcapabilities. Properties of an element
might be redefined on a proxy element. In our vision such an element refinement
has similarities with the inheritance relationship from object-orientation. E.g. a
goal reference type could be used to inherit all the properties of the concrete goal
and add new properties such as additional parameters. At runtime the proposed
creation semantics could help in deciding in which cases the redefined or the
original specification should be used.

Finally, an interesting topic for future research regards bringing together the
role-based decomposition approaches with the component-based capability ap-
proach. A capability might provide an implementation entity for a role identified
in an abstract design. Building agents capable of playing certain roles could then
be easily done by composing the agent from capabilities for each role.

References

1. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI Agent System Combin-
ing Middleware and Reasoning. In R. Unland, M. Calisti, and M. Klusch, editors,
Software Agent-Based Applications, Platforms and Development Kits. Birkhäuser,
2005.

2. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for
BDI Agent Systems. In Proc. of the 2nd Workshop on Programming Multiagent
Systems: Languages, frameworks, techniques, and tools (ProMAS04), 2004.

3. P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents
in Functional Clusters. In Proc. of the 6th Int. Workshop, Agent Theories, Archi-
tectures, and Languages (ATAL) ’99, pages 277–289. Springer, 2000.

4. M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A Programming
Language for Cognitive Agents: Goal Directed 3APL. In Proceedings of the first
Workshop on Programming Multiagent Systems (ProMAS03), 2003.

5. M. Dastani, B. van Riemsdijk, J. Hulstijn, F. Dignum, and J.-J. Meyer. Enacting
and deacting roles in agent programming. In Proceedings of the 5th International
Workshop on Agent-Oriented Software Engineering (AOSE’04), 2004.

6. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering.
Prentice-Hall, Inc., 2003.

7. D. Heimbigner and A. Wolf. Post-deployment configuration management. In
System Configuration Management, ICSE’96 SCM-6 Workshop, pages 272–276.
Springer, 1996.

Extending the Capability Concept 155

8. N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents -
Summary of an Agent Infrastructure. In Proceedings of the 5th ACM International
Conference on Autonomous Agents, 2001.

9. A. Karageorgos, S. Thompson, and N. Mehandjiev. Specifying reuse concerns in
agent system design using a role algebra. In Agent Technologies, Infrastructures,
Tools, and Applications for e-Services, 2003.

10. D. Kinny and M. Georgeff. Modelling and Design of Multi-Agent Systems. In Intel-
ligent Agents III: Third International Workshop on Agent Theories, Architectures,
and Languages (ATAL-96). Springer-Verlag, 1996.

11. J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar,
an architecture for human cognition. Invitation to Cognitive Science, 4, 1996.

12. B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, 1997.
13. H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: a toolkit and approach for build-

ing distributed multi-agent systems. In Proceedings of the third annual conference
on Autonomous Agents, pages 360–361. ACM Press, 1999.

14. A. Pokahr, L. Braubach, and W. Lamersdorf. A Goal Deliberation Strategy for
BDI Agent Systems. In T. Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and
M. Huhns, editors, Third German Conference on Multi-Agent Technologies and
Systems (MATES 2005). Springer, 2005.

15. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In
R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming. Kluwer, 2005.

16. A. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS’95), pages
312–319. The MIT Press: Cambridge, MA, USA, 1995.

17. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley, 2002.

18. E. Yourdon and L. Constantine. Structured Design: Fundamentals of a Discipline
of Computer Program and Systems Design. Prentice-Hall, Inc., 1979.

R. H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 156 – 167, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model-Based Executive for Commanding Robot Teams

Anthony Barrett

Jet Propulsion Laboratory, California Institute of Technology, M/S 126-347,
4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA

anthony.barrett@jpl.nasa.gov

Abstract. The paper presents a way to robustly command a system of systems
as a single entity. Instead of modeling each component system in isolation and
then manually crafting interaction protocols, this approach starts with a model
of the collective population as a single system. By compiling the model into
separate elements for each component system and utilizing a teamwork model
for coordination, it circumvents the complexities of manually crafting robust in-
teraction protocols. The resulting systems are both globally responsive by vir-
tue of a team oriented interaction model and locally responsive by virtue of a
distributed approach to model-based fault detection, isolation, and recovery.

1 Introduction

Over the next decades NASA mission concepts are expected to involve growing
teams of tightly coordinated spacecraft in dynamic, partially understood environ-
ments. In order to maintain team coherence, each spacecraft must robustly respond to
global coordination anomalies as well as local events. Currently techniques for
implementing such teams are extremely difficult. They involve either having one
spacecraft tightly control the team or giving each spacecraft separate commands with
explicit communication actions to coordinate with others. While both approaches
can handle two or three simple spacecraft, neither scales well to larger populations or
more complex spacecraft. New techniques are needed to facilitate managing popula-
tions of three or more complex spacecraft.

Flexible teamwork is a technique developed in the multi-agent community for
teams of agents that achieve joint goals in the face of uncertainties arising from com-
plex dynamic domains that obstruct coherent teamwork. Flexible teamwork involves
giving the agents a shared team plan and a general model of teamwork. Agents
exploit this model and team plan to autonomously reason about coordination and
communication, providing the requisite flexibility. While this framework has been
implemented in the context of real-world synthetic environments like robotic soccer
and helicopter-combat simulation, these systems take an ad hoc rule-based approach
toward failure diagnosis and response.

Our system takes a model-based approach toward representing teams and encoding
their group activities. As Figure 1 shows, a user models a team as if one member
tightly controls the others, but a compiler takes that model and distributes it across the
team to move all reasoning as close as possible to the components being reasoned
about. The result is a team with elements that are both locally and globally respon-
sive, without having a user explicitly reason about the distribution.

 A Model-Based Executive for Commanding Robot Teams 157

Fig. 1. User models system assuming a central controller, and a compiler handles the underly-
ing distribution and coordination

Defining the approach starts with an explanation of the system architecture that re-
sides on each component and how the components interact. Sections 3 and 4 then
discuss the team sequencing and distributed mode management aspects of the system
respectively. Section 5 subsequently discusses related work followed by conclusions
in section 6.

2 System Architecture

The system architecture involves three distinct distributed components: mode identi-
fier, mode reconfigurer, and team sequencer. As illustrated in Figure 2, the mode
identifier combines sensory information from the hardware with past commands from
the reconfigurer to determine the mode of the system. The mode reconfigurer in
turn takes the current state estimate with a target mode from the team sequencer to

Fig. 2. The component architecture of executive on each robotic element consists of three
elements that current state information – some of which is identified as team state information
and has to be kept consistent among all robotic elements

Mode Identification Mode Reconfiguration

Team Sequencing

commands

affectors sensors

updates

Team State

Current Mode &
Execution State target states

Model
Compiler

 Central
CPU

158 A. Barrett

determine the next commands to pass to a robot’s hardware drivers. Finally, the team
sequencer procedurally controls the identifier-reconfigurer-driver feedback loop by
providing target states to the reconfigurer. At all times local mode identifiers main-
tain state knowledge, and sequencers react to this information by changing the target
state. While this system can take manually generated commands, it was initially mo-
tivated as an executive that supports distributed autonomy via shared activities [1].

While this architecture has been explored for single agent systems using TITAN
[2], it has yet to be cleanly extended to tightly coordinated teams. This work makes
the extension by developing distributed techniques for mode identification, mode
reconfiguration, and team sequencing. In each component the techniques motivated
replacing the underlying algorithms to provide the original capabilities while support-
ing distributed computation and hard real-time performance guarantees.

3 Team Sequencing

The distributed onboard sequencer is based both on the Reactive Model-based Pro-
gramming Language (RMPL) [3] and a model of flexible teamwork [4] developed
within the distributed artificial intelligence community. This teamwork is more than a
union of agents’ simultaneous execution of individual plans, even if such plans have
explicit coordination actions. Uncertainties often obstruct pre-planned coordination,
resulting in a corresponding breakdown in teamwork. Flexible teamwork involves
giving agents a shared team plan and a general model of teamwork. Agents then ex-
ploit this model and plan to autonomously handle coordination and communication,
providing the flexibility needed to overcome the emergence of unexpected interac-
tions caused either by slight timing delays or anomalies.

3.1 Procedural Control

RMPL elevates the level at which a control programmer thinks about a robotic sys-
tems. Instead of reasoning about sensors, actuators, and hardware, a RMPL
programmer thinks in terms of commanding a system through a sequence of configu-
ration states. As such, a control program is written at a higher level of abstraction, by
asserting and checking states which may not be directly controllable or observable.

As an example of the rich types of behavior that an RMPL control programmer can
encode, consider the control program below for a simplistic approach toward getting
to rovers to jointly lift a bar. It performs the task by commanding the robot arms into
a rising mode whenever they are stopped, and then stopping when one of the robots
senses that its arm is at the top position. While only partially shown in this simplistic
example, RMPL code can express numerous types of behavior including conditional
branching, iteration, concurrent task accomplishment, and preemption.

 (do (parallel
 (whenever (= RArm.Mode stopped)
 donext (= RArm.Mode rising))
 (whenever (= LArm.Mode stopped)
 donext (= LArm.Mode rising)))
 watching (:or (= LArmAtTop T) (= RArmAtTop T)))

 A Model-Based Executive for Commanding Robot Teams 159

Fig. 3. Hierarchical constraint automaton (HCA) for two rovers lifting a bar consist of four
locations inside nested automata, where LAAT, RAAT, LAM, and RAM respectively denote
LArmAtTop, RArmAtTop, LArm.Mode, and RArm.Mode

The formal semantics of RMPL has been defined in terms of Hierarchical Con-
straint Automata (HCA) [2], where the nesting of automata directly corresponds to the
nesting of RMPL constructs. For instance, Figure 3 has the HCA for our example,
where the outer and two inner boxes respectively correspond to the do-watching
and the two whenever-donext constructs.

Unlike standard automata, multiple locations in an HCA can be marked. When
marked a location stays marked until its target state (if any) has been reached. At
which point the mark gets replicated zero or more times over arcs that have true con-
ditions. For instance, the two left locations lack target states, but stay marked by
virtue of the loop arcs. Whenever a robot arm stops, the appropriate arc is enabled
and the arm’s target state becomes ‘rising’. This continues until the Maintain() fails
and erases the entire automaton, reflecting the do-watching construct.

In general, an HCA corresponds to a tree of parallel processes whose execution
follows the algorithm below. As this algorithm shows, a location is a simple
process that asserts a target state and exits upon reaching that state or being
aborted from above. Higher level HCAs manage their child components and
cannot be restarted until exiting. This algorithm differs from the one presented in
[2] due to maintaining a more hierarchical agent focus, which facilitates subse-
quent distribution. Cycling through all of the processes on each state change and
recording the exits at the end of a cycle to subsequently enable transitions on the
next cycle would make the two become identical. This divergence was made to
facilitate distributed execution of an HCA.

 Process Execute(HCA)
 If HCA is a location then
 Assert target state until target reached
 Else
 For each initial child component M
 Start Execute(M)
 Repeat
 Wait for a change to the local/team state

Maintain(LAAT=T||RAAT=T)

RAM=stopped
RAM rising

LAM=stopped
LAM rising

160 A. Barrett

 If the Maintain() condition fails then
 Abort each active child component
 Else
 For each child component M that just exited
 For each transition M ⎯→⎯C

N in HCA
 If C holds and N is not executing then
 Start Execute(N)
 Until no more child components are executing
 Exit on end of cycle.

3.2 Teamwork Extensions

From a representational standpoint, team plans are similar to any other hierarchical
plan. The only syntactic addition to turn a hierarchical plan into a team plan involves
defining teams to perform activities and assigning roles to teammates. More pre-
cisely, injecting teamwork modeling into an existing hierarchical plan execution sys-
tem involves adding three features [4]:

− generalization of activities to represent team activities with role assignments;
− representation of team and/or sub-team states; and
− restrictions to only let a teammate modify a team state.

The key observation underlying the use of RMPL is how the language’s approach
to defining a control program as an HCA naturally matches the approach to defining a
team plan with a model of flexible teamwork. Team plans are hierarchically defined
in terms of sub-plans and primitive actions, where each teammate is assigned a role
consisting of a subset of the sub-plans and actions. Returning to the our example, the
Maintain() is a team HCA with components that are local HCAs for each rover. Thus
the right hand rover need only address the components of Figure 4, and the two rovers
need only communicate to be consistent over the team’s Maintain() condition. The
condition tells the rovers when to collectively abort their HCAs. In general, agents
only need to communicate when a team level automaton changes its active compo-
nents or some property of its Maintain() condition changes. Changes in a local
HCA’s components can be hidden.

Fig. 4. The right rover executes an HCA that ignores local information regarding the left rover

Maintain(LAAT=T||RAAT=T)

RAM=stopped
RAM rising

Local to left rover

 A Model-Based Executive for Commanding Robot Teams 161

As the example illustrates, all an RMPL programmer has to do to facilitate distrib-
uted sequencing is associate state variables with teammates to determine local and
team HCAs. He does not have to worry about synchronization issues across multiple
agents. The underlying model of flexible teamwork will robustly manage these issues
by keeping team state information consistent among the closely coordinated popula-
tion of agents.

4 Distributed Mode Management

By building off of the model-based device description language developed for DS-1’s
Mode Identification & Recovery (MIR) executive [5], we acquire a representation for
explicitly defining the interrelationships between an agent team’s complete set of
software and hardware components. This facilitates reasoning about how one com-
ponent’s status affects others’ and ultimately sensor observations, which facilitates
taking a set of observations and inferring the team’s status. While there are a number
of constructs in the language, they all support defining a network of typed compo-
nents. These component types are defined in terms of how a component’s modes
define constraints among its port variables, and these constraints are encode using
variable logic equations – Boolean equations where the literals are simply variable
equality constraints. For instance, the following defines a simplistic system with two
components for its robot arms using the language defined in [6].

(defvalues ArmCmd (raise lower none))
(defvalues bool (T F))
(defcomponent Arm
 :ports ((ArmCmd cmd)(bool stress))
 :modes ((stalled)(stopped)(rising)(falling))
 :transitions
 ((* -> rising (:and (= stress F)(= cmd raise)))
 (* -> falling (:and (= stress F)(= cmd lower)))
 (* -> stalled (= stress T))
 (stalled -> stopped (= stress F))))
(defsystem rovers
 :sensors ((bool LArmAtTop)(bool LArmStress)
 (bool RArmAtTop)(bool RArmStress))
 :affectors ((ArmCmd LArmCmd)(ArmCmd RArmCmd))
 :structure
 ((Arm RArm (RArmCmd RArmStress))
 (Arm LArm (LArmCmd LArmStress))))

Current model-based diagnosis techniques use some variant of truth maintenance [7],
where components are translated into Boolean equations. In both cases the systems
require collecting all observations into a central place and then invoking heuristic algo-
rithms to find the most probable mode that agrees with the observations. While some
work has been done to distribute these systems, their underlying algorithms cannot
support hard real-time guarantees by virtue of having to solve an NP-Complete problem
for each collection of observations. While heuristics can make these algorithms fast on
average, the point is that they cannot easily guarantee performance in all cases.

162 A. Barrett

Instead of trying to prove the problem dependent speed of heuristics, we will take
an approach suggested by knowledge compilation research. This approach involves
moving as much of the computation into the off board compilation phase as possible
to simplify the onboard computation. Where previous systems take linear time to
compile a model and then possibly exponential time to use the compilation to perform
mode estimation, our approach takes possibly exponential time to compile a model
into a decomposable negation normal form representation and then linear time to
perform mode estimation with the equation.

Definition 1. A variable logic equation is in Decomposable Negation Normal Form
(DNNF) if (1) it contains no negations and (2) the subexpressions under each conjunct
refer to disjoint sets of variables.

For instance, the two robot arm example compiles into a tree-like structure with two
subtrees like Figures 6 and 7 for the two robot arms, and these subtrees are com-
bined with an “and” node. In general, the compilation results look like Figure 5
with a substructure for each agent, and these substructures are combined in the team
state.

Fig. 5. The global structure of compiled model consists of substructures local to each team
member that are connected through a structure in a shared team state

4.1 Mode Estimation

Given that conjuncts have a disjoint branch variables property, the minimal cost of a
satisfying variable assignment is just the cost of a variable assignment with single
assignment equations, the minimum of the subexpression costs for a disjunct, and the
sum of the subexpression costs for a conjunct. With this observation, finding the
optimal satisfying variable assignments becomes a simple three-step process:

1. associate costs with variable assignments in leaves;
2. propagate node costs up through the tree by either assigning the min or sum of the

descendents’ costs to an OR or AND node respectively; and
3. if the root’s cost is 0, infinity, or some other value then respectively return default

assignments, failure, or descend from the root to determine and return the variable
assignments that contribute to its cost.

local states

team state

 A Model-Based Executive for Commanding Robot Teams 163

Fig. 6. Utilizing local reasoning on its local and team model, the right-hand rover can determine
that it has transitioned to a stopped mode

For instance, Figure 6 illustrates the process of determining that the right arm is
stopped. First observing that RArmStress is false results in assigning values to the
RArmStress leaves, and the mode and command leaves get costs related to the last
known modes and commands. Second, costs are propagated to the tree root. Third,
the root node’s cost of zero is used to drill down to find the lowest cost tree with the
mode assignment (i.e. RAM1=stopped).

Distributing the DNNF equations across a population is a simple matter of assign-
ing sensors to agent and then assigning each node to an agent depending on the loca-
tions of sensors that contribute to that node’s computation. If all contributers are on a
single agent, then the node can be locally computed. Other nodes contribute to the
team state. While all of the higher level nodes can be managed in the team state, it is
more efficient to minimize the nodes in the team state. One way to reduce the number
of nodes is to exclude nodes whose costs can be computed from other nodes in the
team state. This results in only including the leftmost nodes of Figure 5’s the team
state structure. In any case, given the team state component of the structure, any
agent can drill down to determine its local modes.

4.2 Mode Reconfiguration

It turns out that not only do components have modes to estimate, but they also accept
commands to change modes to a target configuration once an estimate is determined.
For instance, the simplistic robot arm model has four modes. In general, each compo-
nent is modeled as a state machine that takes commands to transition between states and
each state determines interactions among variables. In the example the robot arm can be

[RAM1=stopped]

[RAM1=falling]

[RAM0=stopped]

[RAM0=rising]

[RAM1=rising]

[RArmStress0=F]

[RAM0=falling]

[RArmCmd0=none]

[RArmCmd0=raise]

[RAM0=stalled]

 [RArmStress0=T]

 [RAMode1=stalled]

[RArmCmd0=lower]

0 :

0 :

inf :

0 :

0 :

inf :

0 :

inf :

inf :

0 :

inf :

0 :

inf :

or

or

and
and

and

and

and

and

and

and

and

164 A. Barrett

commanded to rise or drop, but it stalls once arm stress is detected. This stalled mode
subsequently puts the arm into a stopped mode once the stress is relieved.

While DS-1’s MIR executive was able to perform real-time reconfiguration planning
with this approach to representing models, it required a modeler to conform to four
requirements: only consider reversible control actions, unless the only effect is to repair
failures; each control variable has an idling assignment that appears in no transitions and
each transition has a non-idling control condition; no set of control conditions for a
transition is a proper subset of control conditions for another transition; and the compo-
nents must be totally orderable such that the effects of one component has no impact on
previous components. Alternative approaches based on universal planning [8] avoid
these restrictions by taking a model and a target state and generating a structure that is
used to generate commands to reach the target state in real-time regardless of the current
state. Unfortunately universal plans are restricted to determine actions for reaching a
single target state, but a robot will tend to have an evolving target state as it performs its
commands. Also, universal plans tend to grow rapidly with system size.

This system both avoids the DS-1 restrictions and the universal plan limitations by
taking a user supplied parameter n and guaranteeing to find an optimal plan from the
current state to a target state if such can be reached within n steps. This guarantee is
facilitated by evaluating a universal(n) plan against the current configuration and
target configuration [9].

Definition 2. A universal(n) plan is a structure that can be evaluated in linear time to
generate an optimal n level plan to reach any target configuration from any current
configuration if such a plan exists.

Fig. 7. Utilizing local reasoning on its local and team model, the right-hand rover can determine
how to make the arm rise

[RAM1=stopped]

[RAM0=stopped]

[RAM0=rising]

[RAM1=rising]

[RAM1=falling]

[RArmStress0=F]

[RAM0=falling]

[RArmCmd0=none]

[RArmCmd0=raise]

[RAM0=stalled]

 [RArmStress0=T]

 [RAMode1=stalled]

[RArmCmd0=lower]

0 :

0 :

0 :

inf :

inf :

inf :

0 :

0 :

inf :

inf :

0 :

inf :

inf :

or

or

and
and

and

and

and

and

and

and

and

 A Model-Based Executive for Commanding Robot Teams 165

Universal(n) plans are more general than universal plans by virtue of their not being tied
down to a specific target configuration. They are more restricted than universal plans
by virtue of the n level requirement, where a level is any number of simultaneous non-
interacting actions. When increasing n, the universal(n) plan becomes less restrictive
until reaching some model dependent value M – where there is a guarantee that target
configuration can be reached from any configuration within M steps. In practice n is
kept relatively small because universal(n) plans tend to grow rapidly with n.

To provide an example, Figure 7 uses a DNNF equation to represent a universal(1)
plan for the two robot arm example. Just as in mode estimation, using the DNNF to
determine the next command is a three-step process. First the current and target
modes are used to assign costs to the RAM0 and RAM1 leaves respectively, and the
RArmCmd0 command leaves get user supplied command costs. Second, costs are
propagated to the tree root. Third, the root node’s cost of 0 is used to drill down to
find the actual command to perform. In this simplistic case the current right arm
mode was stopped and, the target mode was rising, and the found command to pass to
the right arm was raise.

5 Related Work

The closest related work on distributed sequencing comes from STEAM [4],
MONAD [10], and TPOT-RL [11]. These two systems address teams of tightly coor-
dinated agents that can fail, but they are based on rule-based approaches that lack
system models to facilitate principled approaches to mode estimation and failure re-
sponse. Work by Stolzenburg and Arai [12] takes a more model-based approach by
using Statecharts to specify a multiagent system, but they focus on communication via
events as opposed to maintaining team state information. Still, the constructs of
RMPL can be defined in terms of compilation to Statechart fragments instead of
HCAs to facilitate formal analysis.

While others have made the leap to applying compilation techniques to both sim-
plify and accelerate embedded computation to determine a system’s current mode of
operation, they are more restricted than this system. First, DNNF equation creation
and evaluation was initially developed in a diagnosis application [13], but the result-
ing system restricted a component to only have one output and that there cannot be
directed cycles between components. Our system makes neither of these restrictions.
The Mimi-ME system [14] similarly avoided making these restrictions, but it can
neither support distributed reasoning nor provide real-time guarantees by virtue of
having to collect all information in one place and then solve an NP-complete problem,
called MIN-SAT, when converting observations into mode estimates. Our approach
both supports distribution and real-time guarantees.

The closest related work on real-time reconfiguration planning comes from the Burton
reconfiguration planner used on DS-1 [5] and other research on planning via symbolic
model checking [15]. In the case of Burton our system improves on that work by relaxing
a number of restricting assumptions. For instance, Burton required the absence of causal
cycles, but our system has no problem with them. On the other hand, our system can only
plan n steps ahead where Burton did not have that limitation. Similarly, the work using

166 A. Barrett

symbolic model checking lacked the n-step restriction, but it compiled out a universal plan
for a particular target state. Our system uses the same compiled structure to determine
how to reach any target state within n steps of the current state.

Finally, distribute behavioral systems like CAMPOUT [16] solve similar problems,
but lack mechanisms for error handling. Such systems form a natural layer below the
system presented here for teams with joint activities that are too tightly interacting to
allow reasoning about mode management.

6 Conclusions

This paper presents a model-based executive for commanding teams of agents. It
works by letting an operator define and command the team as a single entity with a
single controlling CPU. A compiler then distributes the control functions guided by a
specification assigning system components (sensors and actuators) to team members.

As the example suggests, there are several ways to improve the system. From a
representational perspective, the assignment of an agent to a role in a group activity is
hardwired. For instance, there is no way to represent the possibility that LArm and
RArm are interchangeable. The multi-agent community has explored multiple tech-
niques for role assignment, but work needs to be done to include them in the team
sequencer.

Also, knowledge compilation approaches like those used in mode management are
not perfect. While onboard computation has linear complexity, that complexity is in
terms of compiled DNNF equation size. Some problems are inherently intractable
and lead to equations that are exponentially larger than the source model, but in prac-
tice that should never happen with engineered designs. Designs that result in inher-
ently intractable mode estimation problems would be too uncontrollable to use in
practice. As a rule of thumb, a system’s mode estimation difficulty rises with the
number of unobserved component interactions. Thus the number of interactions in-
creases the size of the DNNF equation, but the number of sensors decreases it. Since
engineers currently simplify estimation difficulty by adding sensors to a design,
DNNF compilation results can be used to guide sensor placement if desired.

Finally, the system has only been tested in toy scenarios like this paper’s running
example. The main evaluation metrics are the size of the DNNF equation generated
by the compiler and the size of the computed team state. Initial experiments in toy
domains as well as a domain for a formation flying interferometer [17] show that the
size of the teamstate component of the DNNF equation depends on the complexity of
the robot interactions and not on the complexity of the entire system. This bodes well
for scaling issues.

Acknowledgements

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administra-
tion. The author would also like to thank Alan Oursland, Seung Chung, Adnan Dar-
wiche, Milind Tambe, Daniel Dvorak, and Mitch Ingham for discussions contributing
to this effort.

 A Model-Based Executive for Commanding Robot Teams 167

References

1. Clement, B., Barrett, A.: “Continual Coordination through Shared Activities.” In Proceed-
ings of the Second International Conference on Autonomous Agents and Multi-Agent
Systems, 2003.

2. Ingham, M., Ragno, R., and Williams, B. C.: “A Reactive Model-based Programming
Language for Robotic Space Explorers.” In Proceeding of the International Symposium on
Artificial Intelligence, Robotics and Automation in Space, June 2001.

3. Williams, B. C., Chung, S., and Gupta, V.: “Mode Estimation of Model-based Programs:
Monitoring Systems with Complex Behavior.” In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence. August 2001.

4. Tambe, M., “Towards Flexible Teamwork.” In Journal of Artificial Intelligence Research,
Volume 7. 1997

5. Williams, B. C., Nayak, P. “A Model-based Approach to Reactive Self-Configuring Sys-
tems.” In Proceedings of the Thirteenth National Conference on Artificial Intelligence.
August 1996.

6. Barrett, A. “Model Compilation for Real-Time Planning and Diagnosis with Feedback.” In
Prodeedings of the Nineteenth Interantional Joint Conference on Artificial Intelligence.
July 2005

7. Nayak, P., Williams, B. C. “Fast Context Switching in Real-time Propositional Reasoning,”
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, July 1997.

8. Schoppers, M. “The use of dynamics in an intelligent controller for a space faring rescue
robot.” Artificial Intelligence 73:175-230. 1995.

9. Barrett, A. “Domain Compilation for Embedded Real-Time Planning.” In Proceedings
of the Fourteenth International Conference on Automated Planning & Scheduling, June
2004.

10. Vu, T., Go, J., Kaminka, G., Veloso, M., Browning, B. “MONAD: A Flexible Architecture
for Multi-Agent Control.” In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems. July 2003.

11. Stone, P. Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soc-
cer, MIT Press, Cambridge, MA 1998.

12. Stolzenburg, F., Arai, T. “From the Specificatio of Multiagent Systems by Statecharts to
Their Formal Analysis by Model Checking: Towards Safety-Critical Applications.” In:
Schillo, M. et al. (Eds.): MATES 2003, Lecture Notes in Computer Science, Vol. 2831.
Springer-Verlag Berlin Heidelberg (2003). 131-143.

13. Darwiche, A. “Compiling Devices: A Structure-Based Approach,” In Proceedings of the
Sixth International Conference on Knowledge Representation and Reasoning (KR). June
1998.

14. Chung, S., Van Eepoel, J., Williams, B. C. “Improving Model-based Mode Estimation
through Offline Compilation,” In Proceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space, June 2001.

15. Cimatti, A., Roveri, M. “Conformant Planning via Model Checking.” In: Biunido, S., Fox,
M. (eds.): Recent Advances in AI Planning, 5th European Conference on Planning. Lecture
Notes in Computer Science, Vol. 1809. Springer-Verlag, Berlin Heidelberg (2000). 21-34.

16. Pirjanian, P., Huntsberger, T., Barrett, A. “Representing and Executing Plan Sequences for
Distributed Multi-Agent Systems.” In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, November 2001.

17. Chung, S., Barrett, A. “Distributed Real-time Model-based Diagnosis.” In Proceedings of
the 2003 IEEE Aerospace Conference, March 2003.

Hermes: Implementing Goal-Oriented Agent
Interactions

Christopher Cheong and Michael Winikoff

RMIT University, Melbourne, Australia
{chris, winikoff}@cs.rmit.edu.au

Abstract. Traditional approaches to designing agent interactions focus on defin-
ing agent interaction in terms of legal sequences of messages. These message-
centric approaches are not a good match with autonomous proactive agents since
they unnecessarily limit the agents’ autonomy and flexibility. The Hermes method-
ology proposes an approach for designing agent interactions in terms of interac-
tion goals. In this paper we focus on how Hermes designs can be implemented by
mapping the design artefacts to collections of plans.

1 Introduction

Existing approaches to designing agent interactions are message-centric. These ap-
proaches, such as using Petri nets, AUML interaction protocols [1], or finite state ma-
chines, are not a good fit with autonomous proactive agents. For instance, they do not
support goals, and legal message sequences are explicitly defined in terms of messages
and combining forms such as sequencing, alternatives, and loops. One consequence is
that autonomous agents are forced to follow these prescribed message sequences, thus
limiting the flexibility of interactions. Furthermore, due to the limited flexibility, inter-
actions are also less robust since there are limited recovery options.

The Hermes1 methodology [2, 3] aims to address this by designing interactions in
terms of goals, and allowing agents to achieve these goals flexibly and robustly. Hermes
uses Interaction Goals (IGs) as a basis for designing interactions, along with available
actions and timing dependency constraints. Possible message sequences are determined
by the agents in accordance with these interaction goals, actions and constraints, allow-
ing message sequences to emerge from the interaction. Whereas traditional approaches
to interaction design specify message sequences directly, with Hermes the sequences of
messages that are possible are specified implicitly: the possible sequences are, roughly
speaking, the solutions to the constraints specified by the interaction goal hierarchy and
the action maps.

The Hermes approach results in a greater degree of flexibility and robustness, and
consequently, Hermes is better suited for proactive autonomous agents than current
message-centric approaches.

The Hermes methodology aims to be a complete and practical approach to develop-
ing agents that interact flexibly and robustly. The design aspects of Hermes, including

1 In Greek mythology, Hermes was an Olympian god who acted as the herald of the gods and
served as their messenger (http://www.pantheon.org).

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 168–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hermes: Implementing Goal-Oriented Agent Interactions 169

a design process, notations, techniques, and failure handling mechanisms, have been
described elsewhere [3].

In this paper we focus on the implementation of goal-oriented agent interactions
that have been designed using the Hermes methodology. We present a set of guidelines
which can be used to implement a Hermean design, and apply them to implement a
sample design in Jadex [4]. The guidelines produce a set of goals and plans that are
suitable for implementation using any of a number of goal-plan agent platforms, such
as JACK, JAM, Jason, and many others.

To illustrate our work we use an e-commerce protocol based on the NetBill [5] proto-
col in which a Customer purchases goods online from a Merchant. The NetBill protocol
was chosen since a number of other non-message-centric approaches have used it [6–8],
and by using the same example it becomes easier to compare our approach to existing
approaches.

In section 2 we briefly describe the Hermes methodology, including the design arte-
facts that are used in the implementation phase. Section 3, which is the central contribu-
tion of this paper, describes how a Hermean design can be systematically implemented
by mapping design artefacts to a collection of plans. We then conclude in section 4.

2 Background: Hermes

In this section, we briefly explain the Hermes methodology. Since Hermes has been
described elsewhere [2, 3] we only describe here the notations and outcomes of the
design process, as these are needed in order to understand the implementation described
in section 3. The aspects of Hermes which are not necessary in order to present the
implementation, including the design process, are not presented here and we refer the
reader to [3] for a more detailed description of the Hermes methodology.

Figure 1 provides an overview of the Hermes design process. The process is shown
as an incremental mini-waterfall model in which each step is derived from the previ-
ous step. However, as is typical of design, the process is applied in an iterative fashion
where developing the design may suggest changes to previously developed aspects.
Steps marked as Final Design Artefacts are used directly in implementing the design,
and these artefacts are described in the following sections. Other artefacts, such as Ac-
tion Sequence and Action Message diagrams, are used to validate that the implemen-
tation matches the design. Although these intermediate design artefacts can be useful
in generating test cases for the implementation, they are not discussed further in this
paper.

2.1 Interaction Goal Hierarchy Diagram

An Interaction Goal (IG) is a goal of the interaction, for example to agree on a price, or
to make a trade. Note that it is not a goal of an individual agent, but of the interaction as
a whole. The interaction goals and their relationships are captured using an Interaction
Goal Hierarchy Diagram which is effectively a goal-tree, similar to those used in agent-
oriented methodologies such as MaSE [9] or Prometheus [10]. This represents IGs as
circles containing the name of the IG, the initiator role which initiates trying to achieve

170 C. Cheong and M. Winikoff

2.
Interaction Goal

 Hierarchy

1.
Role and

Interaction Goal
Identification

3.
Action

Identification

4.
Action

Sequences

5.
Message

Identification

6.
Message

Definitions

Key
Final Design Artefact

Intermediate Design Artefact

Derives/Feedback

Crosscheck

Fig. 1. Hermes Methodology Overview Diagram

the given IG2, and the roles which are involved in achieving the IG. Interaction Goals
can be decomposed into sub-goals, where achieving an IG’s sub-goals will achieve that
interaction goal. For example (refer to Figure 2), the Trade IG can be decomposed into
the IGs Agree and Exchange. Sub-goal decomposition is indicated on the diagram by
(undirected) lines. In addition to capturing sub-goal relationships, the Interaction Goal
Hierarchy Diagram also captures temporal dependencies, depicted as directed arrows
between IGs. For example, Exchange is dependent on Agree and thus, Agree must be
completed before Exchange can be started.

2.2 Action Maps

An action is a step, taken by a single agent, that moves the interaction closer to achiev-
ing its goal. The actions that can be used to achieve a given interaction goal and their
relationships are captured using an action map for that (leaf3) interaction goal. Action
maps are divided into “swim lanes”; one per role involved in the interaction goal. Each
swim lane contains different types of actions (see next paragraph) that can be performed
by that role.

2 An upward arrow, ↑, is used to indicate that the initiator for the IG is the same role that initiated
the parent IG.

3 There is no need to identify actions for non-leaf-level goals, since they are completed when
their sub-goals are completed.

Hermes: Implementing Goal-Oriented Agent Interactions 171

Negotiate
Details

I:
R: C, M

Negotiate
Price

I:
R: C, M

Transfer
Goods

I: M
R: C, M

Send
Receipt

I: M
R: C, M

Payment
I: C

R: C, M

Agree
I:

R: C, M

Exchange
I:

R: C, M

Trade
I:

R: C, M

Determine
Availability

I:
R: C, M

Fig. 2. Interaction Goal (IG) Hierarchy Diagram

Customer Merchant

Rectify Price
Rejection

Terminate
Interaction Goal

Successfully

Consider
Price

Reject
Price

Accept
Price

Price
not

acceptable

Propose
price

acceptable

Propose
Price

Key

Final
Caused
Action

Caused
Action

Causality

Independent
Action

Final
Independent

Action

Fig. 3. Action Map for the NegotiatePrice IG

The key in Figure 3 illustrates four different action types, each of which has a differ-
ent meaning and use4. An Independent Action is one that can start independently from
other actions, i.e. it is not necessarily caused by another action, but it may be caused by
another action. Independent Actions are entry points into interaction goals. A Caused
Action is one which cannot start independently and must be triggered by another ac-
tion. A Final Caused Action is a Caused Action which terminates the interaction goal
for a particular role. Note that performing a final action does not necessarily mean the
interaction goal is successfully achieved, only that it is completed. For example, the
interaction designer may wish to end the NegotiatePrice IG with failure when a price
offer is rejected by the Merchant (but this is not the case in Figure 3).

4 The fourth type, Final Independent Action is not used in the example, and so is not explained
here.

172 C. Cheong and M. Winikoff

Causality constraints (depicted in Figure 3 as directed arrows) specify that certain ac-
tions cannot take place until other actions have occurred. For example, the ProposePrice
action causes the ConsiderPrice action. Where an action is causally linked to more than
one action the causality arrows are intended to depict alternative possibilities. For exam-
ple, the ConsiderPrice action either triggers AcceptPrice or RejectPrice, but not both.
Which action is triggered will depend on certain conditions or states and it can be useful
to label the causality arrows with the condition or state.

2.3 Messages

When using Hermes, messages are identified by considering action sequences and ac-
tion message diagrams (not described in this paper). What is important to know in order
to be able to understand the implementation is that the outcome of this process is a col-
lection of messages. A message is defined whenever an action in the action map triggers
another action that is performed by a different role.

2.4 Handling Failure

Successfully handling failure is an important part of enabling agent interactions to be
flexible and robust. There are two types of failures in the Hermes methodology: action
failure and interaction goal failure.

An action failure is where an action does not achieve its interaction goal. For exam-
ple, offering a price may fail to achieve the goal of agreeing on a price if the proposed
price is rejected. An action failure can be recovered from by trying further actions (“ac-
tion retry”), or the interaction goal can be failed. If an action failure is to be handled
by failing the interaction goal being pursued, then the appropriate action (e.g. Recti-
fyPriceRejection) needs to request a termination of the current IG, or a rollback to a
previous IG, specifying an earlier interaction goal as the rollback target.

An interaction goal failure is where an interaction goal cannot be achieved. For ex-
ample, if the price proposed is rejected but a better offer cannot be made then the goal
of agreeing on a price cannot be achieved. Interaction goal failure can be handled ei-
ther by failing the entire interaction, or by rolling back to an earlier interaction goal
(“rollback”).

Rollback is a failure recovery mechanism based on the idea that if a previous in-
teraction goal is re-achieved in a different manner, the failed interaction goal may be
successfully achieved. For example, if the Merchant and Customer have agreed on a
product and its details (NegotiateDetails) but cannot agree on a price (NegotiatePrice)
then going back and agreeing on different product details may enable agreement on a
price to be reached.

Terminating the interaction and rolling back may not be appropriate for all IGs. For
example, if goods have already been transferred then neither rollback nor termination
should be permitted. Therefore, for each IG the designer indicates whether termina-
tion is permitted, whether rollback is permitted, and if rollback is permitted, to which
(earlier) IGs should rollback be allowed. For example, the NegotiatePrice IG allows ter-
mination, and allows rollback to the DetermineAvailability and NegotiateDetails IGs.

Hermes: Implementing Goal-Oriented Agent Interactions 173

3 Implementing the Design

In this section we discuss how the Hermean design can be systematically mapped to an
implementation. Goal-oriented interactions are implemented by mapping design arte-
facts, such as the Interaction Goal Hierarchy and the Action Maps, to collections of
plans which can be used by agent platforms. Since the design is in terms of interaction
goals, we have chosen to develop an implementation scheme which targets agent plat-
forms where the behaviour of agents is defined using plans and goals. Such platforms
include those based on the Belief Desire Intention (BDI) model, such as JACK5, Jadex6,
JAM7, and Jason8. For the purposes of our work, we have implemented our design us-
ing the Jadex agent platform [4], however a Hermean design can be implemented using
any of the aforementioned agent platforms.

Figure 4 shows an overview of the implementation, including different plan types
and their inter-connections. Coordination plans are derived from interaction goals and
are used to coordinate the participating agents through the interaction. Achievement
plans are directly derived from actions and are steps which agents take towards com-
pleting an interaction goal. Interface plans are not derived from any design artefacts,
but are used to transform inter-agent messages into goals and events for intra-agent
processing. For example, when a Merchant receives a NegotiateDetails message from a
Customer, the message is handled by the Merchant’s HandleProposals Interface plan,
which converts the message to a proposeDetails goal event and dispatches it for internal
agent processing.

In the following sub-sections, we further describe the different components of the
implementation, giving pseudo-code for the different plan types. As is typical for de-
scriptions of implementation techniques and algorithms, the description is necessarily
somewhat detailed.

3.1 Agent Beliefs and Interaction Goal State Representation

Agents are able to coordinate through the interaction goals via the use of a beliefset that
is shared between the different types of plans within a given agent (refer to Figure 4).
One important use of the beliefs is to represent the state of the interaction goals. This is
done with a combination of three Boolean beliefs for each interaction goal: in, finished,
and success. The in belief indicates that the IG is currently active. The finished belief is
used to indicate whether the IG has been completed, whilst success indicates whether
the IG has been successful.

The states of the IG and valid transitions between states are shown in Figure 5. The
dashed circles represent intermediate states that have no conceptual meaning, but are
required to change state from active to either succeeded or failed. The Boolean string in
parentheses show the values of the three beliefs, in, finished, and success, respectively.

The general structure for an agent’s beliefset, along with a brief summary of its use,
is shown in Table 1.

5 http://www.agent-software.com/
6 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
7 http://www.marcush.net/IRS/irs downloads.html
8 http://jason.sourceforge.net/

174 C. Cheong and M. Winikoff

Beliefset

Achievement
Plans

Coordination
Plans

Interface
PlansMessage

Message

Goal
Event

Goal
Event

Agent

Fig. 4. Implementation Overview

SUCCESS

FINISHED

FINISHED

IN

IN

Active
(TFF)

A
(TFT)

B
(TTT)

INInitial
(FFF)

Succeeded
(FTT)

C
(TTF)

Failed
(FTF)

Fig. 5. Interaction Goals States

Table 1. Belief structure and use

Belief Use

role Identifies the agent’s role in the interaction.
initiator Identifies the interaction’s initiator.
Interaction Goal Initiators A series of beliefs which identifies the initiator

of each IG, e.g. tradeIGInitiator (one per IG).
Interaction Goal States A series of beliefs used to represent the state of IGs,

i.e. in, finished, and success.
Used for Coordination-Achievement Plan connections.

Interaction Goal Retries A series of beliefs for retrying IGs.
One for each IG that is allowed to be retried
(refer to Section 3.4), e.g. retryNegDetails.

Interaction Specific Beliefs Beliefs which are specific to the given interaction,
e.g. merchantName, product, etc.

3.2 Coordination Plans

Coordination plans are directly derived from interaction goals from the Interaction Goal
Hierarchy diagram. There are two flavours of Coordination plans: leaf-node and non-

Hermes: Implementing Goal-Oriented Agent Interactions 175

Algorithm 1. Coordination Plan for Trade (Non-leaf-node Coordination Plan)
Require: inTrade == true
1: // Coordination
2: inAgree = true
3: waitFor(finishedAgree and not inAgree)
4:
5: if agreeSuccessful then
6: inExchange = true
7: waitFor(finishedExchange and not inExchange)
8: if exchangeSuccessful then
9: tradeSuccessful = true

10: end if
11: end if
12:
13: // Synchronization (with other Coordination plans)
14: finishedTrade = true
15: inTrade = false

leaf-node. The non-leaf-node variety are obtained from IGs which have at least one
sub-IG. These types of Coordination plans deal with coordination between themselves
and other Coordination plans. Leaf-node Coordination plans are derived from IGs which
have no sub-IGs. These plans deal with coordination between themselves and actions.

All non-leaf-node Coordination plans follow the same structure as the Trade Coordi-
nation plan, shown in Algorithm 1. The coordination rules, obtained from the sub-goal
and temporal dependencies in Figure 2, are shown in the Coordination section of the
plan (lines 1 – 11).

The require statement in Algorithm 1 specifies the trigger condition for the Trade
Coordination plan. Thus when inTrade becomes true, i.e. the Trade IG is active, the
plan begins execution. The initial step of the plan (line 2) is to set the Agree IG to the
active state which triggers the Agree Coordination plan. The waitFor() statement blocks
until the Agree interaction goal enters a final state (i.e. succeeded or failed), which is
set by the Agree coordination plan.

When the Agree IG is achieved, the Agree Coordination plan sets the appropriate
beliefs to move the Agree IG from active to either succeeded or failed, depending on
the outcome. The condition in the Trade Coordination plan’s waitFor() (line 3) is then
satisfied and the plan continues executing.

If the Agree IG is successful, the interaction proceeds onto the Exchange goal, other-
wise it is terminated. This is based on the temporal dependency link between the Agree
and Exchange goals in Figure 2.

The Synchronisation section (lines 13 – 15 in Algorithm 1) is used to set the finished
and in beliefs to move the IGs into a final state (either succeeded or failed).

The sub-goal relationships between the Trade, Agree, and Exchange interactions
goals (refer to Figure 2) are implemented by the Trade Coordination plan waiting for
completion of the Agree and Exchange IGs (lines 3 and 7 in Algorithm 1). The depen-
dency between Agree and Exchange is achieved by triggering the Exchange coordina-
tion plan after the Agree IG has been successfully completed (lines 5 and 6).

176 C. Cheong and M. Winikoff

Algorithm 2. Coordination Plan for NegotiatePrice (Leaf-node Coordination Plan)
Require: inNegPrice == true
1: if not negPriceSuccess then
2: if role == initiator then
3: dispatch(new proposePriceGoal())
4: end if
5: end if
6:
7: // Synchronisation (with Achievement plans)
8: waitFor(finishedNegPrice)
9: inNegPrice = false

The leaf-node Coordination plans follow the same structure as the NegotiatePrice
Coordination plan, shown in Algorithm 2 and are slightly different to non-leaf-node
Coordination plans. The main difference lies in lines 1 – 5 of the leaf-node Coordination
plan. These lines dispatch a proposePriceGoal if the agent’s role is the initiator of this
IG. Every agent has a set of common beliefs which list the initiator of every IG and also
a role belief which indicates their role in the interaction (e.g. customer or merchant in
this particular scenario, refer to Table 1). In our e-commerce example, the Customer is
the initiator for the NegotiatePrice IG, thus it takes the initiative and proposes a price
to the Merchant.

Although both leaf and non-leaf plans have a Synchronisation section at the end,
they serve different purposes. In the non-leaf-node plans, the Synchronisation section
synchronises Coordination plans with other Coordination plans, whereas in the leaf-
node plans, it is used to synchronise Coordination plans with Achievement plans. The
waitFor() statement (line 8 of Algorithm 2) allows an arbitrary number of Achievement
plans to run. When the final Achievement plan (derived from a final action) has com-
pleted its execution, the IG is in either the B or C state, shown in Figure 5 (i.e. the
finished belief is set to true). This in turn un-blocks the waitFor() method and allows
the Coordination plan to change the IG state to either Succeeded or Failed.

3.3 Achievement Plans

Achievement plans are derived directly from actions in the Action Maps. There are
some slight variations to the Achievement plans depending on which type of action
they are implementing, however, Achievement plans all follow the same structure as
the PriceAccepted Achievement plan, shown in Algorithm 3.

Achievement plans are triggered via goal events that are usually dispatched from
Interface or Coordination plans (refer to the first line of Algorithm 3). They have two
distinct sections: Synchronisation and Achieve. The Synchronisation section is simi-
lar to that of the Coordination plans and synchronises the Achievement plan with its
respective Coordination plan.

All Achievement plans begin with a Synchronisation section (lines 1 and 2), which
acts as a guard condition and allows them to execute only when the interaction is achiev-
ing the correct interaction goal. Some achievement plans are only applicable in certain

Hermes: Implementing Goal-Oriented Agent Interactions 177

Algorithm 3. Achievement Plan for the PriceAccepted Action
Require: priceAcceptedGoalEvent and priceAcceptable()
1: // Synchronisation (with Coordination plan)
2: waitFor(inNegPrice)
3:
4: // Achieve IG (application specific)
5: price = priceAcceptedGoalEvent.getPrice()
6: if action achieves IG then
7: negPriceSuccess = true // Action achieves IG
8: end if
9:

10: // Finish IG, only done if action is final
11: // Synchronisation (with Coordination plan)
12: if action is final then
13: finishedNegPrice = true
14: end if

situations, and the additional condition, for example only agreeing to a price if it is ac-
ceptable, is included in the required condition for the plan to run (first line of Algorithm
3). Whether an action is only applicable in certain situations can be seen in the action
map as labels on the causality links. The definition of the condition (e.g. priceAccept-
able()) is provided by the agent in question. The following section, Achieve IG (lines
4 and 5), contains application-specific code for the action. Furthermore, if an Achieve-
ment plan successfully achieves an IG (determined by application-specific conditions),
it sets the success belief to true (lines 6 – 8).

Achievement plans implemented from a final action have an additional Synchronisa-
tion section at the end (lines 10 – 14) which signals the end of the Achievement plans’
execution and returns processing control back to the appropriate Coordination plan for
the given IG.

Note that unlike Coordination plans the synchronisation between actions is implicitly
handled by having actions trigger other actions with internal events (within a role) and
messages (between roles).

3.4 Implementing Failure Handling Mechanisms

This section details how the failure handling mechanisms described in Section 2.4 are
implemented. An action failure can be addressed by either terminating the interaction
or by attempting to recover from the failure (by using action retry or rollback).

Termination is implemented by adding three actions to each interaction goal that
permits termination: RequestTermination, TerminateOnRequest and Terminate. For ex-
ample, when the Customer wants to terminate the interaction, it uses the RequestTer-
mination action (which is only available in particular IGs as defined by the interaction
designer). The Merchant responds by using the TerminateOnRequest action. Once the
Merchant has terminated the interaction, it replies to the Customer, which then performs
the Terminate action. The interaction is then ended.

178 C. Cheong and M. Winikoff

The RequestTermination plan is an achievement plan that simply requests a termina-
tion of the interaction from the current interaction goal. The TerminateOnRequest plan,
also an achievement plan, contains IG specific details to terminate the interaction at
that point. This may include matters such as re-setting beliefs or general clean up of the
interaction and agent state.

Action retry can be implemented by incorporating an action which loops through the
interaction again. For example, in Figure 3, the RectifyPriceRejection could be used to
loop through the interaction again. This will involve RectifyPriceRejection triggering
ProposePrice to send a new proposal with a higher price to the Merchant (not shown in
Figure 3). Of course, an upper limit would have to be placed on the price to ensure that
the Customer and Merchant do not haggle over the price endlessly.

The implementation of rollback is the most complicated of the three failure handling
mechanisms. It is implemented by adding the following actions to every interaction
goal which permits rollback: ProposeRollback and Rollback (one for each role). For
example, if the Customer and Merchant cannot agree on a price, it is possible for them
to rollback to re-negotiate the details and then try to negotiate on the price again. The
Customer will perform ProposeRollback and the Merchant will use Rollback to roll
back to the NegotiateDetails IG, after which the Merchant will send a message to let
the Customer know that it has rolled back. The Customer will then use Rollback to roll
back to the NegotiateDetails IG.

The ProposeRollback achievement plan simply sends a request to roll back. The
Rollback achievement plan is the plan that does the actual rolling back. Rollback plans
follow the same structure as Algorithm 4, an example of the Customer’s rollback plan
for rolling back from the NegotiatePrice IG to the NegotiateDetails IG.

Rollback is achieved by re-starting the interaction from a specific interaction goal.
Therefore, when the rollbackGoalEvent is received and the interaction is in the correct
IG (lines 1 and 2), the first step is to terminate the current IG, which will terminate the
entire interaction. This is achieved by setting its three state representation beliefs to false
(lines 4–6). Once the interaction is terminated (line 8), the appropriate beliefs are set to
flag at which IG the interaction should re-start from (lines 9–17). This includes setting a
Boolean belief (retryNegDetails) to notify that a rollback has been issued (line 17). The
retryNegDetails belief is used when the interaction re-starts so that the ProposeDetails
achievement plan will request a different solution (i.e. colour) to the previous one in
order to achieve a different result so that the NegotiateDetails IG may succeed. The
remainder of the rollback plan simply re-starts the interaction and notifies any relevant
agents. In the case of the Customer, it does not have to notify any agents that it has
rolled back.

3.5 Sample Execution

In this section, we provide an example trace of the implementation in which the Cus-
tomer is attempting to purchase a monitor at the maximum price of $100 with the fol-
lowing colour preferences: red, blue, yellow, and green and the Merchant is selling blue
and yellow monitors at the minimum prices of $110 and $100 respectively. In this sit-
uation, for a successful sale to occur, the Merchant must sell a yellow monitor to the
Customer at $100. We demonstrate how such an interaction executes on an implemen-

Hermes: Implementing Goal-Oriented Agent Interactions 179

Algorithm 4. Customer Rollback Plan (from NegotiatePrice to NegotiateDetails)
Require: rollbackGoalEvent
1: // Synchronise (with Coordination plan)
2: waitFor(inNegPrice)
3: // 1. Terminate current IG
4: negPriceSuccessful = false
5: finishedNegPrice = true
6: inNegPrice = false
7: // 2. Wait for apex IG to terminate
8: waitFor(finishedTrade and not inTrade)
9: // 3. Set appropriate beliefs to re-start interaction and to begin at desired IG (shortcut)

10: // 3.1. Reset current IG beliefs
11: finishedNegPrice = false
12: // 3.2. Set beliefs of IG to begin next interaction from (shortcut)
13: negDetailsSuccessful = false
14: finishedNegDetails = false
15: inNegDetails = true
16: // 3.3. Set beliefs for “retry” attempt
17: retryNegDetails = true
18: // 4. Re-start interaction, set “in” belief of apex stage to “true”
19: inTrade = true
20: // 5. Notify relevant agents

tation based on a goal-oriented Hermean design. Figure 6 presents the initial execution
steps graphically.

The interaction begins with the Customer receiving a request to start the interaction.
This is handled by its Interface plan, HandleRequests, which flags a Boolean belief
(inTrade) to start the interaction. The Customer then enters the Trade IG, then the Agree
IG, and then DetermineAvailability IG (based on the Interaction Goal Hierarchy and the
Coordination plans, refer to Figure 2 and Algorithm 1 respectively).

The DetermineAvailability Coordination plan executes and triggers its achievement
plan, RequestAvailability, which executes and sends a message to the Merchant, enquir-
ing about the availability of a monitor.

The message is received by the Merchant’s Interface plan and is converted into a
checkAvailablity goal which triggers the Merchant’s GoodsAvailable plan (since it does
sell monitors). Although the GoodsAvailable plan is triggered, it does not execute as it
is waiting for the Merchant to enter the DetermineAvailability IG. Since the Merchant
has not started the Trade interaction, when it receives the message from the Customer,
it starts the interaction (at the Trade IG) and moves into the DetermineAvailability IG.
The GoodsAvailable plan then executes and sends a message to the Customer, informing
it that there are monitors available. The DetermineAvailability IG is then successfully
achieved for the Merchant.

The Customer’s Interface plan, HandleRequests, handles the message and converts it
into a goal for internal agent processing. The DetermineAvailability IG is successfully
achieved for the Customer, it moves into the NegotiateDetails IG and its ProposeDe-
tails achievement plan is triggered. The ProposeDetails plan sends a message to the

180 C. Cheong and M. Winikoff

Trade

Agree

Determine
Availability

inAgree
= true

inDetAvail
= true

GOAL:
requestAvailability

REQUEST: start;

REQUEST:
Determine Availability; monitor;

Trade

Agree

Determine
Availability

Goods
Available

Handle
Requests

Request
Availability

inTrade
= true

Handle
Requests

inDetAvail
= true

Handle
Requests

INFORM:
Determine Availability;

monitor; success;

Agree

inNegDetails
= true

Negotiate
Details

Product
Available

Agree

Negotiate
Details

detAvailSuccess
= true

finishedDetAvail
= true

detAvailSuccess
= true

finishedDetAvail
 = true

inNegDetails
= true

GOAL:
productAvailability

inTrade
= true

inAgree
= true GOAL:

checkAvailability

Customer Merchant

Key

Coordination Plan

Achievement Plan

Interface Plan

Fig. 6. Sample execution

Merchant to request a red monitor. As the Merchant does not have red monitors, it
sends a rejection message to the Customer. The Customer’s DetailsRejected plan is
triggered (after the message is converted to a goal by the Customer’s Interface plan).
The DetailsRejected plan then creates a new goal to trigger the ProposeDetails plan to
send a message requesting a blue monitor.

As the Merchant sells blue monitors, it returns a positive reply to the Customer and
moves into the NegotiatePrice IG. The Customer receives the message and also moves
into the NegotiatePrice IG.

The negotiations over the price of the monitor proceed similarly to the negotiation
of the colour of the monitor. When the Merchant rejects the Customer’s highest price of
$100 (as the Merchant’s minimum is $110), the Customer’s RectifyPriceRejection plan
triggers the ProposeRollback plan, which sends a rollback request to the Merchant. The

Hermes: Implementing Goal-Oriented Agent Interactions 181

Merchant then uses its Rollback plan to return to the NegotiateDetails IG and notifies
the Customer that it has successfully rolled back. The Customer then executes its Roll-
back to roll back to the NegotiateDetails IG.

The Customer and the Merchant re-negotiate the colour of the monitor and settle
on yellow. The interaction then proceeds to the negotiation of the price and is able to
terminate successfully.

4 Conclusion

We have (briefly) outlined the Hermes design process, focussing on its notations and
outcomes, and then presented a mapping from Hermes designs to plans that realise the
designed interaction. This mapping produces collections of plans that can be imple-
mented using a goal-plan agent architecture.

A Hermean design for a trading scenario based on the NetBill protocol has been
implemented by following this mapping. We have also implemented a Hermean design
for a brokering scenario based on [11]. These implementations have shown that the
mapping works and that the implementations are capable of realising flexible and robust
interactions.

4.1 Related Work

There are other approaches which aim to provide more flexible agent interaction by
moving away from a message-centric approach. These include approaches based on so-
cial commitments [7, 8, 12], Kumar et al.’s landmark-based approach [13], and Hutchi-
son and Winikoff’s goal-plan approach [6].

Approaches based on social commitments such as Yolum and Singh’s commitment
machines [7, 8] or the work of Flores and Kremer [12] captures the meanings of agents’
actions in terms of their effects on social commitments. A social commitment is made
from one agent to another and represents a condition which an agent will endeavour
to bring about for another agent9. Commitments are attained and manipulated through
inter-agent communicative acts. Therefore, in the course of interacting, agents create
and manipulate commitments. Although both approaches allow for complex interac-
tions which would be difficult to implement with message-centric protocols, their de-
sign aspects are not well defined. It is not obvious how to determine what commitments
are required for a given interaction.

In Kumar et al.’s work [13], it is argued that the state of affairs brought about by a
communicative act is more important than the communicative act itself. As such, the
focus of the work is on the states of affairs, which are represented as landmarks. Thus,
an interaction involves navigating through landmarks to reach a desired final state of
affairs. Their work is theoretical in nature, and requires significant expertise in modal
and temporal logics. Although an implementation (“STAPLE”) has been mentioned, no
details have been published beyond two posters [14, 15].

Hutchison and Winikoff’s approach [6], involves modelling protocols as goals and
plans. This involves determining the goals of the protocol and defining plans which are

9 Flores and Kremer define commitments as being to perform actions, rather than to bring about
conditions.

182 C. Cheong and M. Winikoff

able to achieve the goals. Their work can be seen as a predecessor to our work: it gives
neither a detailed design process, nor a mapping from design to implementation.

Although the SODA methodology [16] — like Hermes — deals with inter-agent de-
sign and treats interactions as first class entities, their aims are different. SODA is firstly
intended for the analysis and design of Internet-based systems, whilst Hermes is more
generic in that it is not specifically intended for Internet-based systems. Furthermore,
SODA aims at a broader design methodology in that it is for the design of agent so-
cieties whereas Hermes is for the design of agent interactions only (agent interaction
design can be seen as a subset of agent society design). Finally and perhaps most im-
portantly, the interaction design in SODA appears to be message-centric as they seem
to be focused on passing appropriate information between entities.

4.2 Future Work

One area for future work is to develop a mapping for non-goal-plan agents. In addition
there are a number of areas where the Hermes methodology can be further developed
including the provision of tool support for the design process. One possibility that we
are considering is to develop this by extending the Prometheus Design Tool10. We envis-
age that this tool support will encompass the generation of skeleton code in accordance
with the mapping described in this paper.

The mapping described in this paper targets plan-goal agent platforms. One area
for future work is to target other platforms that do not define agents in terms of goal-
triggered plans. One approach is to compile down to interaction protocols using some
representation such as finite state machines, Petri nets, or AUML.

Agent interactions are only one part of creating an agent system. As such, we intend
to integrate Hermes with an agent methodology, such as Prometheus [10]. The design
methodology and notation will also require further refinement as we undertake research
into adapting Hermes to function with protocols which involve many agents. Other,
longer term, areas for future work include looking at the verification of goal-oriented
interactions, and an experimental evaluation of the approach.

Acknowledgements

We would like to acknowledge the support of Agent Oriented Software Pty. Ltd. and of
the Australian Research Council (ARC) under grant LP0453486.

References

1. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In:
Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering
(AOSE). (2004)

2. Cheong, C., Winikoff, M.: Hermes: A Methodology for Goal-Oriented Agent Interactions
(Poster). In: The Fourth International Joint Conference on Autonomous Agents and Multi-
Agents Systems. To appear. (2005)

10 http://www.cs.rmit.edu.au/agents/pdt

Hermes: Implementing Goal-Oriented Agent Interactions 183

3. Cheong, C., Winikoff, M.: Hermes: Designing goal-oriented agent interactions. In: Proceed-
ings of the 6th International Workshop on Agent-Oriented Software Engineering (AOSE-
2005). (2005)

4. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-Infrastructure for
JADE Agents. EXP - In Search of Innovation (Special Issue on JADE) 3 (2003) 76 – 85

5. Sirbu, M., Tygar, J.D.: NetBill: An Internet Commerce System Optimized for Network-
Delivered Services. IEEE Personal Communications 2 (1995) 34 – 39

6. Hutchison, J., Winikoff, M.: Flexibility and Robustness in Agent Interaction Protocols. In:
Workshop on Challenges in Open Agent Systems at the First International Joint Conference
on Autonomous Agents and Multi-Agents Systems. (2002)

7. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Computational Logic in Multi-Agent Systems 42 (2004) 227–253

8. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). (2002) 527–534

9. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering 11 (2001) 231–258

10. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons (2004) ISBN 0-470-86120-7.

11. Mbala, A., Padgham, L., Winikoff, M.: Design options for subscription managers. In: Pro-
ceedings of the Seventh International Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems (AOIS). (2005)

12. Flores, R.A., Kremer, R.C.: A principled modular approach to construct flexible conversation
protocols. In Tawfik, A., Goodwin, S., eds.: Advances in Artificial Intelligence, Springer-
Verlag, LNCS 3060 (2004) 1–15

13. Kumar, S., Huber, M.J., Cohen, P.R.: Representing and executing protocols as joint ac-
tions. In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, ACM Press (2002) 543 – 550

14. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in STAPLE.
In: Proceedings of the First International Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2002), ACM Press (2002) 567–568

15. Kumar, S., Cohen, P.R.: STAPLE: An agent programming language based on the joint in-
tention theory. In: Proceedings of the Third International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS 2004), ACM Press (2004) 1390–1391

16. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In: Proceedings of the 1st International Workshop on Agent-Oriented Software
Engineering (AOSE-2000). (2000) 185–193

Part IV

Multi-agent Platforms and
Organisation

Organization and Mobility in Mobile Agent Computing

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. A mobile agent system for organizing multiple mobile agents is pre-
sented. It provides two unique two mechanisms for dynamically organizing mo-
bile agents, which may be running on single or multiple computers. The first
enables a mobile agent to contain other mobile agents inside it and migrate to
another mobile agent or computer with its inner agents. It provides an approach
to composing large-scale mobile software from a collection of mobile agents and
using mobile agents as deployable software components. The second enables a
mobile agent to be deployed at computers according to the movements of other
mobile agents. It can move a federation of agents running on different comput-
ers, over a distributed system. It can build and aggregate distributed applications
from one or more mobile components that can be dynamically deployed at mo-
bile or stationary computers during the execution of the application. This paper
also presents a prototype implementation of the system and its application.

1 Introduction

Distributed computing systems are composed of a number of software components run-
ning on different computers and interacting with one another via a network. The com-
plexity of modern distributed systems impairs our ability to deploy components at ap-
propriate computers using traditional approaches, such as those that are centralized and
top-down Moreover, the requirements of applications in a distributed system tend to
vary and change dynamically. Applications must adapt to such changes. Software com-
ponents, which an application consists of, need to be adapted and deployed at comput-
ers in a distributed system according to changes in the requirements of the applications
and the structure and computational resources of the system. Mobile agents can provide
a solution to this problem, because they are autotomous programs that can travel from
computer to computer in a network, at times and to places of their own choosing. Unfor-
tunately, existing mobile agent systems lack the mechanisms for structurally assembling
and relocating multiple mobile agents, which may run on different computers.

To solve this problem, a few attempts to organize mobile agents have been proposed,
e.g., MobileSpaces [11], CLAIM [5], and FarGo [7]. MobileSpaces and CLAIM en-
able each mobile agent to be organized within a tree structure and to migrate to other
mobile agents, which may run on different computers, with its inner agents. FarGo [7]
introduces the notion of a dynamic layout for distributed applications. It explicitly binds
more than one mobile agent to a single mobile agent and, when the latter migrates to
another location, it relocates the latter agent at the same destination to follow the for-
mer agent. This paper proposes a framework for structurally and dynamically federating

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 187–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 I. Satoh

multiple mobile agent-based components running on either the same computer or dif-
ferent computers. The framework makes two contributions to distributed systems. The
first enables large-scale mobile software to be composed from a collection of mobile
agents and the second enables a mobile agent to be deployed at computers according to
the movements of other mobile agents in a self-organizing manner. The system provides
a general test-bed for bio-inspired approaches over real distributed systems.

In this paper, we describe our design goals (Section 2), the design of our framework,
and a prototype implementation (Section 3). We outline programs in the system and ap-
plications running on it (Section 4), and explain the current status of the implementation
(Section 5). We also describe our experience with the framework (Section 6). We then
briefly review related work (Section 7), provide a summary, and discuss some future
issues (Section 8).

2 Approach

Mobile agents within this framework are computational entities like other mobile
agents. When an agent migrates, not only its code but also its state can be transferred to
the destination.1

2.1 Mobile Agent Composition

Our framework enabled us to construct a distributed computing system as a federation
of mobile agent-based software components running on the same or different comput-
ers. It provides two approaches for composing mobile agents.

Strong Composition. The framework enables a large-scale mobile agent to be orga-
nized within a tree structure according to the following notions.

– Agent Hierarchy: Each mobile agent can be contained within at most one mobile
agent.

– Inter-agent Migration: Each mobile agent can migrate between mobile agents as
a whole with all its inner agents.

When an agent contains other agents, we call the former agent a parent and the latter
agents children. Agents that nested by an agent are called descendent agents of the
agent, and conversely agents that are nesting an agent are called ancestral agents of
the agent. Parent agents are responsible for providing their own services and resources
to their children, and can directly access the services and resources offered by their
children. These concepts themselves were discussed in our previous paper [11].

Weak Composition. The framework builds partitioned applications as mobile agent-
based software components, enabling them to run on different computers and move to
other computers while running. The movement of one agent may affect other agents.
For example, two components may be required to be on the same computer when the
first is a program that controls the keyboard and the second is a program that displays

1 The framework treats the mobile code approach as a subset of the mobile agent approach.

Organization and Mobility in Mobile Agent Computing 189

follow
hook

step 1

agent migration

computer

A

computer

B

step 2

step 3

agent migration

shift
hook

step 1

agent migration

computercomputer

A

computer

B

shift
hook

step 2

computercomputer computer

B A

shift
hook

step 3

computercomputer computer

AB

agent migration

follow
hook

computer computer

B A

follow
hook

computer computer

AB

Fig. 1. Component migration with relocation policy

content on the screen. The framework enables each agent to explicitly specify a policy,
called a hook, for agent migration. The current implementation provides two types of
hooks, as shown in Fig. 1. The first enables an agent to follow another component and
the second enables an agent to migrate to the source location of another agent.

2.2 Prototype-Based Agent-Creation

Object-oriented languages, which most existing mobile agents are defined in, are
classified into two types: class-based and prototype-based. About twenty years ago, re-
searchers discussed the advantages and disadvantages of these two languages.2

Although the former has swept over almost the entire-field of object orientation, the
latter still has several distinct advantages. Existing mobile agents are defined with class-
based oriented languages, e.g., Java. Nevertheless, mobile agents can also be viewed as
prototype-based objects. When a mobile agent migrates to another computer, the state
of the agent’s running program is marshaled into data and is then transmitted to the
destination as passive data with its program code. Mobile agents can easily and natu-
rally make replicas of themselves by duplicating their marshaled agents. As a result,
mobile agents can be created by cloning existing agents as well as instantiating them
from classes to define their behaviors. Mobile agents, on the other hand, cannot control
the process of cloning themselves at program-level, because their cloning mechanisms
are supported by their runtime systems or libraries, instead of their programs. Cloning

2 There have been numerous discussions on the notions of prototype-based paradigms and del-
egation. However, we do not intend to discuss the definitions of these notions again. We will
only introduce the notions as an approach to programming mobile agents.

190 I. Satoh

facilities for object-creation provided by prototype-based languages are useful in
enabling mobile agents to customize their cloning.

Class-based languages provide the notion of inheritance as a mechanism for shar-
ing the behavior of objects, whereas prototype-based languages provide the notion of
delegation-sharing both the behavior and state of objects. Although existing mobile
agents have no mechanisms corresponding to the notion of delegation, it makes agents
extensible. For example, each mobile agent is defined by classes that already know
everything about the agent so that it cannot adapt its behavior to changes in its require-
ments or its execution environment. This problem is solved by allowing agents to be
created by extending or sharing other agents.

3 Design and Implementation

This framework consists of two parts: runtime systems and mobile agents. It was im-
plemented with Java language and operated on the Java virtual machine. We tried to
contain the implementation within the framework as much as possible.

3.1 Runtime Systems for Hierarchical Mobile Agents

Each runtime system runs on a computer and executes and migrates mobile agents. Each
also establishes at most one TCP connection with each of its neighboring systems and
exchanges control messages, agents, and inter-component communications with these
through the connection. Fig. 2 outlines the basic structure of a runtime system, which
is similar to the micro-kernel architecture in several operating systems. That is, the sys-
tem itself only offers minimal functions and other functions are implemented in mobile
agents running on the system.

Agent Hierarchy Management. Each runtime system manages an agent hierarchy as
a tree structure in which each node contains a mobile agent and its attributes. Also, each
runtime system corresponds to the root node in its own tree structure. This framework

Component

A

Core Runtime System

OS/Hardware

component host 1 component host 2

Transport Protocol

TCP session

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

B
Component

C

Component

C

Core Runtime System

OS/Hardware

Transport Protocol

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

D
Component

E

Inter-component communication

component migrationD

Fig. 2. Architecture for runtime system

Organization and Mobility in Mobile Agent Computing 191

method B

method A

method G

method C

method C

method D

state

state

child agent

parent agent

delegation

callback or service method invocation

method E

method F

method G

method H

state

neighboring agent

delegation

inter-agent

communication

Fig. 3. Delegation between mobile agents

assumes that each agent is active but subordinate to its container agent. Therefore, each
agent has direct control of its descendent agents. That is, an agent can instruct its de-
scendent agents to move to other agents, and serialize and destroy them. No agent has
direct control over its ancestral agents.

Agent Execution Management. The runtime system can control all agents in its agent
hierarchy, under the protection of Java’s security manager. Each agent can have one or
more activities, which are implemented by using the Java thread library. Furthermore,
the runtime system maintains the life-cycle of agents: initialization, execution, suspen-
sion, and termination. When the life-cycle state of an agent is changed, the runtime
system issues certain events to the agent and its descendent agents. The system can im-
pose specified time constraints on all method invocations between agents to avoid being
blocked forever.

Agent Delegation Management. Agent hierarchy not only defines the structure of
mobile agents but also their functions. Each agent can explicitly provide a set of ser-
vice methods, which can be accessed by its children, instead of descendent agents. That
is, a child agent can share the behavior and state of its parent agent like the notion
of delegation in prototype-based languages. Fig. 3 has an example of delegation be-
tween mobile agents. The parent agent provides a method, called writeOnDisk, to
save data in secondary storage but the child agent has no methods of saving its state.
However, the child can access the parent’s method to save its state in storage. As a re-
sult, the semantics and properties of an agent are partially provided by its parent agent.
It is worth mentioning why we imposed the restriction that a mobile agent could not
access any services supported by ancestral agents other than their parent and station-
ary agents. This restriction is the key idea in allowing successful migration to occur.
If it were not imposed, then migrating an agent could mean that the descendants of
that agent might suddenly find they could no longer delegate services upon which they
relied.

Agent Migration. When an agent is moved inside a computer, the agent and its inner
agents can still be running. When an agent is transferred over a network, the runtime

192 I. Satoh

system stores the state and the codes of the agent, including the agents embedded in
it, into a bit-stream formed in Java’s JAR file format, which can support digital signa-
tures for authentication. The system provides a built-in mechanism for transmitting the
bit-stream over the network by using an extension of the HTTP protocol.3 The current
system basically uses the Java object serialization package for marshaling agents. The
package does not support the capturing of stack frames of threads. Instead, when an
agent is saved or migrated, the runtime system issues events to it and all its descen-
dent agents to invoke their specified methods, which should be executed before their
migration, and then suspends their active threads and migrates them to the destination.

Agent Cloning. Mobile agents are often created as self-contained entities in other
existing mobile agent systems, whereas this framework allows each mobile agent to
share the behaviors of its ancestral agents. Therefore, if a clone had been created from
an agent, which relies on the services of its parent, it could no longer access these
services. Object-oriented languages, on the other hand, provide two mechanisms for
cloning objects: shallow-copy and deep-copy. The former creates a clone of the state of
an agent and shares the behaviors with the agent from which it was cloned by means of
delegation. The latter creates a clone of both the state and behavior of the agent. Each
runtime system provides two approaches corresponding to the two mechanisms.

– The first creates a clone of only the target agent and provides the forwarder agents
of its ancestral agents to the clone so that the clone agent can access the services
provided by the ancestral agents.

– The second not only creates a clone of the agent but also the clones of ancestral
agents whose services the agent may access.

The current implementation does not support a mechanism for analyzing which ances-
tral agents the clone shares services with. Therefore, when an agent creates a clone, it
specifies which ancestral agents should be cloned with it. Since the framework assumes
that a component and its clone are independent, it does not support any mechanism for
sharing their updating states with them.

3.2 Mobile Agent Model

Each agent in the current implementation of the framework is a collection of Java ob-
jects in the standard JAR file format.

Interagent Communication. Each agent can offer a meeting place for its inner agents.
It initially supports basic types of inter-agent communication, e.g., asynchronous one-
way message passing, synchronous method call, and future communication. However,
runtime systems do not offer mechanisms for communicating between agents, which
may be contained in different parents, in a computer. Instead, the system provides two
agents, called forwarder agents, to support inter-agent communications between agents
contained in different agents. Each agent has its own proxy agent, called a forwarder

3 Section 5 describes how the system enables agent migration protocols to be implemented in
mobile agents.

Organization and Mobility in Mobile Agent Computing 193

agent. When it receives messages, it automatically redirects these to its or their specified
destinations. An agent permits other agents to communicate with it and it thus deploys
its forwarder agents at their parent agents. As a result, the agents can send messages to
the agent via its forwarder agent. When they want replies from the agent, they deploy
their forwarder agents at it via its forwarder agent.

Forwarder agents are used for tracking the current locations of moving agents. When
an agent wants to interact with another agent, it must know where the target agent is
currently located. Immediately before an agent moves into another agent, it creates and
leaves a forwarder agent behind. The forwarder agent inherits the name of the moving
agent and transfers the visiting agent to the new location of the moving agent. Therefore,
when an agent wants to migrate itself to or send a message to another agent that has
moved elsewhere, it can migrate into the forwarder agent instead of the target agent.
The forwarder agent then automatically transfers the visiting agent or message to the
current location of the target agent.

Several schemes for efficiently forwarding messages or agents to and locating mov-
ing agents have been explored in the field of process/object migration in distributed
operating systems. Such forwarder agents can easily support most of these schemes
because they are programmable entities that can flexibly negotiate with one another.
Moreover, since forwarder agents are still mobile agents, they can be dynamically de-
ployed at remote computers.

Agent Relocation. When multiple mobile agents coordinate with one another, if one of
them migrates to another computer, the others may be required to migrate to other com-
puters. This framework provides a mechanism for enabling mobile agents to be dynami-
cally deployed at computers according to the movement of other agents. The mechanism
itself provides carrier agents, which convey their inner agents over a network. It enables
each carrier agent to specify at most one target container agent. The former agent also
carries its inner agents to a suitable computer according to its own policy, when the latter
agent carries its inner agents to another computer or agent. We assumed that a carrier
agent would have a policy for another carrier agent. That is, when the former agent mi-
grated to another agent or computer, the framework would provide carriers agents based
on several basic policies. For example, the latter (or its clone) migrates to the former’s
destination through the follow policy (or dispatch policy), and the latter (or its clone)
would migrate to the former’s source through the shift policy (or fill policy).

Each carrier agent can contain at most one mobile agent. It can inherit its inner agent
and forward its received messages and visiting agent to this inner agent. Therefore, it
can be viewed as its inner agent by external agents, which interact with this inner agent,
and it can explicitly restrict the mobility of the inner agent. The carrier agent carries the
inner agent according to its own policy. Although each carrier agent can have at most
one policy, agents can be contained in one or more carrier agents.4 We can easily define
more advanced or complicated policies by combining these policies.

Since carrier agents are just programmable entities, we can easily customize their
policies. The current implementation assumes that the carrier agents comprising a group

4 When carrier agents are nested, a parent carrier agent’s policy proceeds to its descendent carrier
agents’ policy.

194 I. Satoh

will be deployed to computers within a localized space smaller than the domain of
a sub-network for UDP multicasting. Therefore, the deployment of carrier agents is
managed by exchanging control messages through UDP-multicasting. When a carrier
agent migrates to another computer, the destination computers ask the source computer
(or the previous source computer) to multicast a query message about carrier agents
whose policies contain the moving carrier agent.

3.3 Mobile Agent Programming Model

Each agent is defined as a collection of Java objects. It has its own name based on the
agent hierarchy and a message queue for incoming messages. It has to be an instance of
the Agent interface, the ContainerAgent interface, the DuplicatableAgent
interface, and/or the MobileAgent interface. The first defines the callback methods
of a stationary agent, the second defines the callback methods of a container agent, the
third defines the callback methods of a duplicatable agent, and the fourth defines the
callback methods of a mobile agent. The callback methods are invoked by the runtime
system when the life-cycle of a mobile agent changes. Parts of these interfaces are as
follows:

public interface Agent {
public void create(AgentEvent evt, Context ctxt);
public void destroy(AgentEvent evt, Context ctxt);

}

where create() and destroy() are invoked after the agent is created and before
it is terminated. This framework uses interfaces for agents as declarations about their
basic functions, e.g., mobility and duplicatability.

public interface ContainerAgent extends Agent {
public void add(AgentEvent evt, Context ctxt);
public void remove(AgentEvent evt, Context ctxt);

}

The above program is the definition of the ContainerAgent interface, where add()
is invoked after the agent has received another agent and remove() is invoked after
it has sent the visiting agent.

public interface DuplicatableAgent extends Serializable, Agent {
public void duplicate(AgentEvent evt, Context ctxt);
public void parent(AgentEvent evt, Context ctxt);
public void child(AgentEvent evt, Context ctxt);

}

Each agent must implement the above interface so that it can be cloned.duplicate()
is invoked before the agent is duplicated. parent() is invoked at the original agent
and child() is invoked at a clone of the agent after it is duplicated.

public interface MobileAgent extends Serializable, Agent {
public void arrive(AgentEvent evt, Context ctxt);
public void leave(AgentEvent evt, Context ctxt);

}

Organization and Mobility in Mobile Agent Computing 195

Each mobile agent must be an instance of the above interface. arrive() is invoked
before the agent has migrated to another location leave() is invoked after it has
migrated. The AgentEvent class in these programs defines information about the
agent, e.g., its current location, source, and destination. The Context class defines
service methods for agents as follows:

class Context {
void go(URL url) throws NoSuchHostException { ... }
void go(URL url, String methodName) throws NoSuchHostException,
throws NoSuchMethodException { ... }

AgentID shallowCopy() throws IllegalAccessException { ... }
AgentID deepCopy(AgentID aid) throws IllegalAccessException { ... }
ServiceID getService(Message msg)} throws NoServiceException { ... }
Object execService(ServiceID sid)} throws IllegalAcceessException { ... }
setPolicy(AgentProfile cref, MigrationPolicy mpolicy) { ... }
setTTL(int lifespan) { ... }
.....

}

We will now explain the main methods defined in the Context class.

– When an agent performs go(url, methodName, it migrates itself to the desti-
nation agent specified as the url and executes the method specified in the second
argument. This url specifies the destination agent for agent migration based on the
containment relationships of an agent hierarchy on a local or remote computer as
follows:

MATP://some.where.com/application-name/function-name

where MATP specifies the protocol for agent migration.
– By invokingshallowCopy(), an agent creates a clone of itself, including its code

and instance variables and its inner agents. When an agent invokes deepCopy()
with the identifier of its ancestral agent, it creates a clone of its code and instance
variables and its inner agents, and clones of the specified ancestral agent and the
agents that are contained in the ancestral agent.

– An agent can access service methods provided by its parent agent by invoking
getService() with an instance of the Message class, which can specify the
kind of message, arbitrary objects as arguments, and the deadline for timeout ex-
ceptions.

– The framework provides APIs for invoking the methods of other agents. Our pro-
gramming interface for method invocation is similar to CORBA’s dynamic invoca-
tion interface and does not have to statically define any stub or skeleton interfaces
through a precompiler approach because distributed computing environments are
dynamic.

– The setTTL() specifies the life span, called time-to-live (TTL), of the agent. The
span decrements TTL over time. When the TTL of an agent reaches zero, the agent
automatically removes itself.

While each agent is running, it can declare at most one deployment policy and one
or more message policies by invoking setPolicy of the Context class. Although
policies are open for developers to define their own policies, the current implementation
provides the following deployment policies.

196 I. Satoh

– If an agent declares a follow policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s destination computer.

– If an agent declares a dispatch policy for another agent, when the latter migrates
to another computer, a copy of the former is created and deployed at the latter’s
destination computer.

– If an agent declares a shift policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s source computer.

– If an agent declares a fill policy for another agent, when the latter migrates to an-
other computer, a copy of the former is created and deployed at the latter’s source
computer.

When an agent is created, the dispatch and fill policies can explicitly control whether
the newly created agent can inherit the state of its original agent. The following message
policies forward messages to agents when messages are specified in the policies.

– If an agent declares a forward policy for another agent, when specified messages
are sent to other agents, the messages are forwarded to the latter as well as the
former.

– If an agent declares a delegate policy for another agent, when specified messages
are send to the former, the messages are forwarded to the latter but not to the former.

Fig. 4 outlines four deployment policies, which are related to phenomena in biological
processes. For example, a follow policy enables an agent to approach another agent.
For example, when multiple agents declare a policy for a leader agent, they can swarm
around it. A shift policy enables an agent to follow the movement of another agent.
The former agent can track the latter as it moves. The policy thus corresponds to the

B

C

A

AB

C

B

C

A

Clone B

Clone C

B

C

A

A
B

C

B

C

A

A

C

B

C

B

Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW)

Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH)

Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT)

Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL)

Step 2 (Policy.FILL)

Follow Policy Dispatch Policy

Shift Policy Fill Policy

Fig. 4. Basic migration policies

Organization and Mobility in Mobile Agent Computing 197

parent agent (transmitter agent)
child agent (editor agent)

buttons for operating mobile agents

Fig. 5. Control window for runtime system

phenomenon of cytoplasmic streaming. A dispatch) policy enables an agent to stay
in the current location and then deploy its clone at the destination of another moving
agent. It can model the footprint of a motile cell. We have assumed that an agent can
declare the policy for another agent and specify the TTLs of its clones as their life-
spans. As the latter agent moves, cloned former agents are deployed at its footmark and
these clones are automatically volatilized after their life-spans are over. Therefore, the
clone agents can be viewed as a pheromone that is left behind after the latter agent has
moved on. A fill policy corresponds to the phenomenon of cell division. The framework
is open to define policies as long as they are subclasses of the MigrationPolicy so
that we can easily define new policies, including bio-inspired ones. A forward policy
is useful when two agents share the same information and a delegate policy provides a
master-slave relation between agents.

4 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit version 1.4. The implementation provided graphical user interfaces for oper-
ating the mobile agents shown in Fig. 5. These interfaces allowed us to easily load and
migrate mobile agents via full drag-and-drop operations.

Basic Performance. Although the current implementation was not constructed for per-
formance, we evaluated that of several basic operations in a distributed system where
eight computers (Pentium-M 1.4 MHz with Windows XP Professional and J2SE 1.4.2)
were connected through a fast ethernet. The cost of agent migration in an agent hierar-
chy was measured to be 4 ms, including the cost of checking whether the visiting agent
was permitted to enter the destination agent or not. The cost of agent migration between
agents allocated on two computers was measured to be 30 ms. The moving agent was
simple and consisted of basic callback methods and contained two child agents. Its data
capacity was about 7 Kbytes (zip-compressed). The cost of agent migration included that
of opening TCP-transmission, marshaling the agents, migrating the agents from their
source hosts to their destination hosts, unmarshaling the agents, and verifying security.

198 I. Satoh

0

100

200

300

400

500

600

2 3 4 5 6 7 8

number of computers

follow policy

dispatch policy

shift policy

fill policy

0

200

400

600

800

1000

1200

1 2 3 4

number of agents

follow policy

disatpch policy

shift policy

fill policy

Fig. 6. Cost of multiple-hops for two agents between two to eight computers (left) and cost of
multiple-hops for multiple agents between eight computers (right)

The left of Fig. 6 illustrates the cost of multiple-hops for two agents between two to
eight computers, where the first agent declares a follow, dispatch, shift, or fill policy for
the second and the second migrates between these computers sequentially without syn-
chronizing the migration of the first. The latency between two computers is measured
as the half-time of the round-trip time between the source and destination computers.
To accurately measure the latency between more than three computers, these computers
were connected through a ring topology. That is, the start and and goal of the second
agent are assigned to the same computer and we measured the difference between the
timing for the first agent to start and the second to arrive at the computer. Each cost at
the left of Fig. 6 is the latency for the first agent arriving after the second has begun to
migrate to another computer. The cost of agent migration according the dispatch (or fill)
policy is larger than that of the the follow (or shift) policy, because the former needs to
create a copy of the first agent that has the policy. The cost of agent migration according
to follow (or dispatch) is larger than that for dispatch (or shift), because the former and
latter agents are deployed at different computers.

The right of Fig. 6 shows the cost of multiple-hops for multiple agents between
eight computers, when agents (from one to four) have follow, dispatch, shift, or fill
policies for a moving agent. Unfortunately, the cost with many hops is large because
the follow and dispatch policies vary due to congestion at several computers. That is,
two or more agents may attempt to have their own active threads in a single processor
and to simultaneously transmit themselves to the destinations of their target agent in
a TCP network connection. Once agents experience congestion at a computer, they
tend to migrate as a chunk to further destinations rather than as individuals and this
often engulfs other newly arrival agents. Congestion does not always reappear, since
computers are not synchronized and congestion often causes more congestion in agent
routes. We expect that there will be large fluctuations in the cost of agent migration in
large-scale, heterogenous, distributed systems.

Security. The current implementation can encrypt agents before migrating them over
the network and can then decrypt them after they arrive at their destinations. Moreover,

Organization and Mobility in Mobile Agent Computing 199

since each agent is simply a programmable entity, it can explicitly encrypt its particular
fields and migrate itself with these fields and its own cryptographic procedure. The Java
virtual machine could explicitly restrict agents so that they can only access specified
resources to protect hosts from malicious agents. Although the current implementation
cannot protect agents from malicious hosts, the runtime system supports authentication
mechanisms for agent migration so that each agent host can only send agents to, and
only receive from, trusted hosts.

5 Initial Experience

This section presents several example applications that illustrate how the framework
works.

5.1 Point-to-Point Channels for Agent Migration

The first example is mobile agent-based active networking for mobile agents. It enables
point-to-point agent migration to be provided by mobile agents, called transmitters.
Transmitter agents correspond to a data-link layer or a network layer and are respon-
sible for establishing point-to-point channels for agent migration between the source
host and destination host through a (single-hop or multiple-hops) data transmission in-
frastructure, such as TCP/IP, as shown in Fig. 7. They abstract away the variety in
the underlying network infrastructure and exchange their inner agents with coexisting
agents running at remote computers through their favorite communication protocols.
Furthermore, transmitter agents are implemented as mobile agents so that they can be
dynamically added to and removed from the system by migrating and replacing corre-
sponding agents, enabling them to keep up with changes in the network environment.
After an agent arrives at a transmitter agent from the upper layer, the arriving agent
indicates its final destination. The transmitter suspends the arriving agent (including its
inner agents), then requests the core system to serialize the state and code of the ar-
riving agent. It next sends the serialized agent to a coexisting transmitter agent located
at the destination. The transmitter agent at the destination receives the data and then
reconstructs the agent (including its inner agents) and migrates it to the destination or
to specified agents that offer upper-layer protocols.

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

Transmitter Agent

Routing Agent

Mobile Agent A

Mobile Agent B

channel

transimission
through
their protocol

Computer A Computer B

Runtime System Runtime System

Agent migration in
an agent hierarchy

Agent migration in
an agent hierarchy

Fig. 7. Transmitter mobile agents for establishing channels between nodes

200 I. Satoh

Several transmitter agents have already been implemented based on data commu-
nication protocols widely used on the Internet, such as TCP, HTTP, and SMTP. The
authentication services normally available in a secure communications infrastructure
include this functionality. Therefore, our secure transmitter agents, which can exchange
agents, are implemented with a secure socket layer (SSL), which is one of the most
popular secure communication protocols on the Internet. A virtual class is provided in
Java that can be specialized to create transmitter agents for various protocols. Therefore,
point-to-point channels can easily be implemented based on other secure communica-
tion protocols for data transmission.

5.2 Autonomic Electronic-Mail System

The second example is an electronic mail system based on the framework, consisting
of two main components: an inbox document and letter documents (Fig. 8). The inbox
document provides a window component that can contain two components. The first of
these is the history of received mail and the second offers a visual space for displaying
content selected from the history. A letter document corresponds to a letter. Since it
is implemented as a compound document, it can contain various components for ac-
cessing text, graphics, and animation, in addition to a mobility-control component that
defines an itinerary for more than one destination. It also has a window for displaying
its content. It can migrate itself to its destination, but it is not a complete GUI appli-
cation because it cannot display its content without the collaboration of its container,
i.e., the inbox document. For example, to edit the text in a letter component, one simply
clicks on it, and an editor program is invoked by the in-place editing mechanism of the
framework. The component can deliver itself and its inner components to an inbox doc-
ument at the receiver. After a moving letter has been accepted by the inbox document,
if a letter in the list of received mail is clicked, the selected letter creates a frame object
of itself and requests the document to display the frame object within its frame. Since
the inbox document is the root of the letter component, when the document is stored

image viewr component
(child agent)

text editor component
(child agent)

letter component
(parent agent)

Fig. 8. Window for Compound Letter Agent

Organization and Mobility in Mobile Agent Computing 201

migration

step 1

Host A

Editor Component

Host C

Host B

migration

migration

step 2

Host A

Host B

Editor Component

Server

Server

Editor

Component

forwarding

Components

Duplication

Component

Newspaper

Compound

Document

duplications

Newspaper Compound Document

Editor Components

forwarding

Components

migration

migration

migration

Duplication Component

Host C

Fig. 9. Newsletter editing system

and moved, all the components embedded in the document are stored and moved with
the document.

5.3 Application-Specific Document Distribution

One of the most illustrative examples of the framework presented in this paper is in
providing documents to workflow management systems. A second example is an editing
system for an in-house newsletter. Each newsletter is edited by automatically compiling
one or more text parts, which are written by different people, as can be seen in Fig. 9. A
newsletter is implemented as a compound document that can contain the text component
inside it and each text part is a mobile agent including a viewer/editor program and
its own text data. When the newsletter is being edited, each text part moves from the
document to the computer on which it was written, and displays a window for its editor
program on the computer’s desktop to assist the writer, as shown in Fig. 9. Each editor
goes back to the original document after the writer has finished writing it and then the
document arranges the arriving components as a bound set. The document is still a
mobile agent and can thus be easily duplicated and distributed to multiple locations.

5.4 Ant-Based Routing Mechanisms

Ants are able to locate a path to a food source using trails of chemical substances called
pheromones deposited by other ants. Several researchers have attempted to use the no-
tion of ant pheromones for network-routing mechanisms [1,4]. Our framework allows
moving components to leave traces on trails that are automatically volatilized after
their life-spans are over. A mobile agent corresponding to an ant corresponding to a
pheromone is attached to another mobile agent corresponding to another ant based on
the fill policy. When the latter agent randomly selects its destination and migrates there,

202 I. Satoh

the former agent creates a clone and migrates to the source host of the latter. Since
each of the cloned agents defines its life-span by invoking setTTL(), they are active
for a specified duration after being created. If there are other agents corresponding to
pheromones in the host, the visiting agent adds their time spans to its own time span.
When another agent corresponding to another ant migrates over the network, it can
select a host that has agents corresponding to pheromones whose time-spans are the
longest from the neighboring hosts. We experimented on ant-based routing for mobile
agents using this prototype implementation and eight hosts. However, we knew that it
would be difficult to quickly converge a short-path to the destination in real systems,
because the routing mechanisms tend to diverge.5

5.5 Component Diffusion in Sensor Networks

The last example is the speculative deployment of components based on changes in the
physical world. A mechanism is provided that dynamically and speculatively deploys
components at sensor nodes when there are environmental changes. It was assumed that
the sensor field was a two-dimensional surface composed of sensor nodes that monitor
environmental changes, such as motion in objects and variations in temperature. It is
well known that after a sensor node detects environmental changes within its cover-
age area, geographically neighboring nodes tend to detect similar changes after a short
time. This diffusion occurs as follows in our framework. When a component on a sensor
node detects changes in its environment, the component duplicates itself and deploys
the clone at neighboring nodes as long as the nodes have the same kinds of components
(Fig. 10). Each component is associated with a resource limit that functions as a gener-
alized time-to-live field. Although a node can monitor changes in environments, it sets
the TTLs of its components to their own initial value. It otherwise decrements TTLs
over time. When the TTL of a component reaches zero, the component automatically
removes itself. This example is still in the early stages of experimentation but we have
developed mobile agent-based middleware for sensor networks [17] and plan to extend
this framework to the middleware.

Step 1

duplication

duplication

volatilizing

volatilizing

volatilizing

volatilizing

Step 2

moving entity moving entity

sensor node sensor node

Fig. 10. Component diffusion with moving entities

5 This problem is common in Ant-based routing mechanisms.

Organization and Mobility in Mobile Agent Computing 203

6 Related Work

Numerous mobile agent systems have been released, e.g., Aglets [9], Mole [16], Tele-
script [18], and Voyager [10]. Mole introduces the notion of agent groups to encourage
coordination among mobile agents [2]. Its agent groups can consist of agents working
together on a common task, but they are not mobile. The FarGo system introduces the
notion of a dynamic layout for distributed applications [7] in a decentralized manner.
This is similar to our relocation policy in the sense that it allows each agent to have
its own policy, but it is aimed at allowing one or more agents to control a single agent,
whereas ours aims at allowing one agent to describe its own migration. This is because
our framework treats agents as autonomous entities that travel from computer to com-
puter under their own control. This difference is important, because FarGo’s policies
may conflict if two agents can declare different relocation policies for one single agent.
Our framework is free of conflict because each agent can only declare a policy to relo-
cate itself but not for other agents.

There have been a few agent systems based on the concept of agent hierarchy. To our
knowledge, the first attempt at introducing hierarchically mobile agents was the Mo-
bileSpaces mobile agent system. It proposed two concepts, agent hierarchy and inter-
agent migration like the framework presented in this paper, and allowed more than one
mobile agent to be dynamically assembled into a single mobile agent. It could provide a
practical framework for mobile agent-based applications that were large and complex.
Although the framework presented with this paper is based on experience with the Mo-
bileSpaces system, it not only offers hierarchical agent compositions but also horizontal
agent compositions in the sense that agents can define their relocations according to the
locations of other agents.

The notion of agent hierarchy presented in this paper is similar to a process calculus
for modeling process migration, called mobile ambients [3]. The calculus can formalize
a mobile process including other mobile processes like ours, but it is just a theoretical
framework. Therefore, to develop a practical implementation of the calculus, we must
entirely change its semantics. El Fallah-Seghrouchni and Suna. proposed the CLAIM
system [5] that provides hierarchical mobile agents based on the concept of mobile
ambients. The system aimed at implementing basic operations of mobile ambients to
support intelligent agents, whereas the system presented in this paper uses agent hierar-
chy as a (meta) mechanism for providing agents with various services, including agent
organization over a distributed system.

Several mobile agent systems, e.g., Telescript, have introduced the concept of places
in addition to mobile agents. Places are agents that can contain mobile agents and places
inside them, but they are not mobile. Our mobile agent system, on the other hand, allows
one or more mobile agents to be dynamically organized into a single mobile agent, and
thus we do not have to distinguish between mobile agents and places. Therefore, a
distributed application, in particular a mobile application that is complex and large in
scale, can be easily constructed by combining more than one agent.

There have been several attempts to construct an application from software compo-
nents running on different computers. Most of these have aimed at dynamically con-
figuring interactions between components or objects running on different computers
(e.g., see [6,8]), whereas the framework presented in the paper aims at dynamically

204 I. Satoh

deploying components to different computers. Since it supports the typical communi-
cation primitives that existing approaches to configuring interactions between compo-
nents need for coordinating and configuring distributed components, it can naturally
use these approaches as configuration mechanisms for deployable components. That is,
it can complement existing dynamic configuration approaches to distributed objects or
components.

There have been several attempts to develop infrastructures to dynamically deploy
components between computers in large-scale computing environments, e.g.,
workstation-clusters and grid computing. Most of these have aimed at dynamically de-
ploying partitioned applications to different computers in distributed systems to balance
the computational load or network traffic. However, they have explicitly or implicitly
assumed centralized management approaches to deploy partitioned applications to dif-
ferent computers, so that they have not allowed each partitioned application to have its
own deployment approach.

7 Conclusion

This paper described a framework for dynamically organizing multiple mobile agents
in distributed computing environments. It is unique to existing systems because it pro-
vides two mechanisms for organizing multiple mobile agents. The first enables a mo-
bile agent to contain other mobile agent inside it and migrate to another mobile agent
or computer with its inner agents. It is useful in developing large-scale mobile soft-
ware from a collection of mobile agents. The second enables a mobile agent to be
deployed at computers according to the movements of other mobile agents. It can move
a federation of agents, running on different computers, over a distributed system in
a self-organizing manner. We designed and implemented a prototype system for the
framework and demonstrated its effectiveness in several practical applications. We be-
lieve that the framework provides a general and practical infrastructure for building
deployable applications over a distributed system.

In concluding, we would like to identify further issues that need to be resolved. We
are interested in security mechanisms that would enable interactions between people
and agents. We developed an approach to test context-aware applications on mobile
computers [13], but need to develop a methodology for it. We are further interested
in developing a methodology for testing distributed applications that are based on this
new framework by using the approach. We also proposed a specification language for
the itinerary of mobile software for hierarchical mobile agents [12,14,15]. The language
enables more flexible and varied policies to be defined for deploying agents.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. J. Baumann and N. Radounklis, Agent Groups in Mobile Agent Systems, Proceedings of
Conference on Distributed Applications and Interoperable Systems, 1997.

Organization and Mobility in Mobile Agent Computing 205

3. L. Cardelli and A. D. Gordon, Mobile Ambients, Proceedings on Foundations of Software
Science and Computational Structures, LNCS, vol. 1378, pp. 140–155, Springer 1998.

4. G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive Routing, Pro-
ceedings of Hawaii International Conference on Systems, pp.74-83, Computer Society Press,
January 1998.

5. A. El Fallah-Seghrouchni, A. Suna CLAIM: A Computational Language for Autonomous,
Intelligent and Mobile Agents, Proceedings of ProMAS’03, 2003.

6. K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson and R. Sethuraman, The
Programmers Playground: I/O Abstractions for User-Configurable Distributed Applications,
IEEE Transactions on Software Engineering, Vol.21, No.9, pp. 735-746, 1995.

7. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed
Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

8. Jeff Kramer and Jeff Magee, Dynamic configuration for distributed systems, IEEE Transac-
tions on Software Engineering, Vol. 11, No. 4, pp.424-436, April 1985.

9. B. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

10. ObjectSpace Inc., ObjectSpace Voyager Technical Overview, ObjectSpace, Inc. 1997.
11. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-

ing a Hierarchical Mobile Agent System, Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168, April 2000.

12. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

13. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

14. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet, Cluster Com-
puting (The Journal of Networks, Software Tools and Applications), vol. 7, no.1, pp.73-83,
Kluwer, January 2004.

15. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

16. M. Strasser and J. Baumann, and F. Hole, Mole: A Java Based Mobile Agent System, Pro-
ceeding of ECOOP Workshop on Mobile Objects (MOS’96), 1996.

17. T. Umezawa, I. Satoh, and Y. Anzai, A Mobile Agent-based Framework for Configurable
Sensor Networks, Proceedings of International Workshop on Mobile Agents for Telecom-
munication Applications (MATA’2002), LNCS, Vol. 2521, pp.128-140, Springer, 2002.

18. J. E. White, Telescript Technology: Mobile Agents, General Magic, 1995.

Programming MAS with Artifacts

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Alma Mater Studiorum, Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

a.ricci@unibo.it, mirko.viroli@unibo.it, andrea.omicini@unibo.it

Abstract. This paper introduces the notion of artifact as a first-class
abstraction in MASs (multi-agent systems) and focuses on its impact on
MAS programming. Artifacts are runtime devices providing some kind
of function or service which agents can fruitfully use – both individually
and collectively – to achieve their individual as well as social objectives.
Artifacts can be conceived (and programmed) as basic building blocks
to model and build agent (working) environments. Besides introducing a
conceptual and modelling framework, the paper discusses the impact of
this new notion on MAS programming, focussing in particular on MAS
composed by cognitive agents. To make the discussion more concrete, we
provide an example scenario featuring 3APL agents whose coordination
activity is supported by TuCSoN tuple centres – an existing coordination
model providing some of the basic properties of artifacts for MASs.

1 Introduction

Research on agent programming has been mainly focused so far on issues con-
cerning individual agents, from theories to architectures, and programming lan-
guages. In particular, in the research contexts where a notion of strong agency is
adopted, this attitude results in facing the basic systemic issues concerning MAS
(Multi-Agent Systems) – such as coordination and organisation – mainly from the
subjective perspective, i.e. exclusively relying on agent computational and com-
municative abilities. Such an approach has indeed some benefits in terms of uni-
formity, but has also some strong limits in scaling up with complexity, in particular
when coordination activities are concerned [14]. On the one side, programming the
glue – even the simple glue – still remains a challenging and complex task. Typi-
cally, simple coordination problems result in agents with high complexity, either
in terms of the communication protocols or the reasoning capabilities that they
must exhibit. On the other side, wrapping (and programming) any kind of use-
ful environmental resource as an agent does not scale up with software systems
complexity, in particular in MAS composed of cognitive agents.

A naive observation is that not every entity or abstraction in a MAS is suit-
ably modelled as a goal-governed or goal-oriented system. They can of course
be wrapped within an agent, but such a solution is more like a trick than a
well-defined engineering choice. This point is simple and old: modelling and pro-
gramming aspects of a system with abstractions that have not been conceived
for this purpose has a dramatically negative impact, in particular as far as the

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 206–221, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Programming MAS with Artifacts 207

system becomes complex and when the application domain requires forms of
dynamic control and evolution.

In this paper we aim at tackling the problem at the foundation level. For this
purpose, we introduce the notion of artifact, as a first-class abstraction used to
design / program / build those aspects of a MAS for which the agent abstraction
is not suitable for, i.e. everything that is not suitably modelled as a goal- or task-
oriented system. In this paper we will focus in particular on the programming
aspect – even though this issue affects every aspect of the agent paradigm, from
theories to engineering methodologies.

By abstracting from specific mechanisms, artifacts are meant to be basic build-
ing blocks – along with agents – that MAS designers and programmers can design
and program to build systems: agents and artifacts are meant to be first-class
abstractions from design to runtime, supported by suitable infrastructures.

Generally speaking, artifacts can be used to program and build suitable agent
workspaces, i.e. working environments populated by the set of objects (in the wide
sense) and tools that agents can share and use to support their individual as well
as social activities. Examples range from simple artifacts providing communica-
tion functionality, such as mail boxes and blackboards, to artifacts providing coor-
dination services, such as workflow engines or auction-engines, or again artifacts
representing general purpose shared resources, such as a shared memories.

Actually, artifacts and tools have been the focus of important theories study-
ing the development of activities in human society. Main examples are Activity
Theory and Distributed Cognition [11,8]. According to such theories, most of
the human activities are mediated by some kind of artifacts, and the design and
use of such tools play a key role in activities development, heavily influencing
their performance and their scalability with problem complexity. Also, the de-
velopment of human societies itself is strictly related to the development of the
tools constructed and used in such societies.

In this paper, we first briefly introduce the conceptual framework character-
ising the artifact abstraction and the relationships between agents and artifacts
– generalising over previous works on coordination artifacts [19,15] –, and then
focus on the impact of using artifacts for programming MASs.

The rest of the paper is organised as follows: first we frame the artifact notion
from a conceptual and theoretical point of view, providing a first model as well as
some examples of artifacts (Section 2). Then, we introduce some issues related
to artifact programming, providing some concrete examples using an existing
coordination model – the tuple centre model [13] – which have some of the main
properties of artifacts (Section 3). As an important point of the contribution,
we consider then the impact of artifacts in agent programming, providing some
basic examples using 3APL extended to deal with artifacts (Section 4). Related
works (Section 5), conclusions and future works (Section 6) complete the paper.

2 A First Theory of Artifacts

By considering the conceptual framework described in [1], agents can be gener-
ally conceived as goal-governed or goal-oriented system. Goal-governed systems

208 A. Ricci, M. Viroli, and A. Omicini

refer to the strong notion of agency, i.e. agents with some forms of cognitive
capabilities, which make it possible to explicitly represent their goals, driving
the selection of agents’ actions. Goal-oriented systems refer to the weak no-
tion of agency, i.e. agents whose behaviour is directly designed and programmed
to achieve some goal, which is not to be explicitly represented. In both goal-
governed and goal-oriented systems, goals are internal. External goals instead
refer to goals which typically belong to the social context or environment where
the agents are situated. External goals are sort of regulatory states that condi-
tion agent behaviour: a goal-governed system follows external goals by adjusting
internal ones [1].

Then, there are systems or parts of a system that are better characterised as
resources or tools that are used to achieve some goals, having neither internal
goals nor a pro-active behaviour, but more simply some kind of functionality
that can be suitably exploited, as a service. Here we refer to such basic entities
as artifacts. Artifacts are computational devices explicitly designed to embody
and provide a certain function, which can exploited by agents to achieve their
individual as well as social goals – in other words, to support the execution
of their individual as well as social tasks. By taking the human society as a
reference, the distinction between agents and artifacts mirrors the distinctions
between humans as autonomous entities and the artificial, non-autonomous tools
they exploit everyday in their activities.

So, while the notions of goal and task are central for agents, the notion of use
and function1 – which is used here, quite roughly, as a synonym of service – are
central for artifacts. As for the devices in human society, artifacts are used by
means of a basic well-defined set of operations which define artifacts’ interface.
From a philosophical and conceptual point of view, there is a neat distinction
between communication and use: more precisely, agents communicate with other
agents but not with artifacts, which are instead used though their interface.

As for artifacts in human society, external goals can be attached to an artifact
by its users, in spite of its designed function: in this case, the destination of the
artifact is different from the purposes for which it has been built.

As remarked in Activity Theory and Distributed Cognition, despite their
specific function, artifacts are always kind of mediators between agents and
their objectives, i.e. instruments to transform agent objectives in outcomes. As
discussed in next sections, such a mediation has different concrete forms: we can
e.g. have mediation of agents interaction, as in the case of coordination artifacts,
which are shared and used by multiple agents with the purpose of providing
some kind of coordination service; or we can have mediation of an agent with
respect to its organisational environment, as in the case of boundary artifacts,
which are used by a single agent with the purpose of constraining its action space
according to some organisational rules.

An important distinction characterising agents / artifacts relationships con-
cerns use and use value [1]. Use value corresponds to the evaluation of artifact

1 The term function here refers to a functionality or service, and should not be confused
with the term function as used e.g. in functional languages.

Programming MAS with Artifacts 209

Fig. 1. An abstract representation of an artifact, along with some specific instances

characteristics and function, in order to select it for a (future) use. This distinc-
tion actually corresponds to two different kinds of external goals attached to an
artifact by a user agent: (i) the use value goal, according to which the artifact
should have the power of making its user agent achieve its objective by exploit-
ing the artifact itself – such an external goal drives the agent actions concerning
the selection of the artifact –; (ii) the use goal, which directly corresponds to
the agent goal, which drives the usage of the artifact. From the agent point of
view, when an artifact is selected and used it has then a use value goal which
corresponds to its internal goal.

Finally, besides users, artifact designers and programmers play an important
role in the picture, acting as the agents (either artificial or not) with the power
of constructing, manipulating, adapting artifact behaviour, either for changing /
expanding artifact function or for improving current behaviour without changing
its function or interface.

2.1 A Model

From the conceptual framework discussed above, we can devise out a first model
for the artifact abstraction. As mentioned previously, an artifact can be defined as

a computational device populating agents’ environment, designed to pro-
vide some kind of function or service, to be used by agents –either in-
dividually or collectively—to achieve their goals and to support their
tasks.

An abstract representation of an artifact is depicted in Fig.1. We identified
four basic elements to describe an artifact: the usage interface, the operating
instructions, the function, and the structure and behaviour.

The Usage Interface (UI) is the set of the operations which agents can invoke to
use the artifact and exploit its functionality. The invocation of an operation – as
an agent external action – can result in the occurrence of events at some point(s) in
the future, typically bringing some information about the result of the operation.
Such events are perceived by the agent as external events (perceptions).

Operating instructions (OI) are a description of how to use the artifact to get
its functionality. Operating instructions describe the possible usage protocols,

210 A. Ricci, M. Viroli, and A. Omicini

i.e. sequences of operations that can be invoked on the artifact, in order to
exploit its function. Besides a syntactic information, they can embed also some
kind of semantic information that rational agents can eventually understand and
exploit in their reasoning processes, to enable and promote the cognitive use of
the artifact.

The function of an artifact is its intended purpose, i.e. the purpose estab-
lished by the designer / programmer of the artifact, in other words what are the
intended functionalities the artifact provides.

Finally, the structure and behaviour concerns the internal aspects of the ar-
tifact, that is how the artifact is implemented in order to provide its function.
Such an aspect is typically hidden to users and resides in the domain of artifact
designers and programmers.

Differently from agents, artifacts are not meant to be autonomous or exhibit a
pro-active behaviour, neither to have social capabilities. Among the main prop-
erties, that are useful according to artifacts’ purpose and nature, we have: (i)
inspectability and controllability, i.e. the capability of observing and controlling
artifacts structure (state) and behaviour at runtime, and of supporting their on-
line management, in terms of diagnosing, debugging, testing; (ii) malleability,
i.e. the capability of changing / adapting artifacts function at runtime (on-the-
fly) according to new requirements or unpredictable events occurring in the open
environment; and (iii) linkability, i.e. the capability of linking together at run-
time distinct artifacts, for scaling up with complexity of the function to provide
and as a mean to support dynamic reuse.

Also, differently from agents, artifacts can have a spatial extension, i.e. given
a MAS with a topology, the same artifact can cover different nodes: in other
words a single artifact can be both conceptually and physically distributed. For
instance, a blackboard artifact can cover different Internet nodes, where agents
use it by exploiting a local interface.

Given such a conceptual model of artifacts, three main aspects can be identi-
fied for characterising their relationships with agents: (i) use, (ii) selection and
(iii) construction and manipulation. Such aspects are quite orthogonal, and in-
volve different aspects of the artifacts on the one side, and different kinds of
abilities of the agents on the other side. The usage interface and, possibly, the
operating instructions are typically the only things an agent needs for using
the artifact. Function is important, instead, for selecting what artifacts to use.
Finally, construction and manipulation mainly touches the structure and behav-
iour of the artifacts. In Section 4 these aspects will be connected to different
kinds of abilities requested to the agents to exploit artifacts at different levels.

2.2 Examples of Artifacts

In order to make the discussion more concrete, we provide some basic examples of
artifacts which frequently recur in MAS design and programming, here classified
according to their purpose (see Fig.2). It is worth remarking that these examples
are not meant to be a rigorous taxonomy to partition artifacts: as happen for
tools in our society, the same artifact can be classified in different ways according

Programming MAS with Artifacts 211

Fig. 2. Some basic types of artifacts: boundary artifacts (B), resource artifact (R),
coordination artifacts (C)

to the point of view. However, the following list is useful for pointing out some
basic kinds of artifacts that frequently appear when engineering MAS.

Coordination artifacts – artifacts designed to provide a coordination service.
Several mechanisms introduced in other computer science fields – concur-
rent system and software engineering in particular – and in foreign fields
such as management science, can be understood as coordination artifacts.
Examples at different levels of abstraction range from artifacts with commu-
nication functions (message boxes, blackboards, event services), to artifacts
with a specific synchronisation function (schedulers, semaphores), up to gen-
eral high-level coordination capabilities (workflow engines, auction-engines,
normative systems, pheromone infrastructures). The notion of coordination
artifact is similar to the concept of coordination medium developed in the
context of coordination models and languages [17]: however, while in general
coordination media have been conceived more for processes in concurrent /
distributed systems, coordination artifacts (as kind of artifacts) have some
basic features – such as Operating Instructions – that make them suitable for
agents as a higher level of abstraction, in particular for goal-governed agents
with cognitive capabilities. Also, coordination artifacts have properties which
are not generally defined for coordination media, such as malleability, link-
ability, inspectability, controllability.
Any coordination artifact is a mediator of agent interaction, with both a
constructive and normative aim: on the one side it is an enabler of agent
interaction, as the place where the interaction occurs; on the other side, it
constrains the agent interaction space to only the subspace which is correct
according to the coordinating function it provides.
In management sciences a set of basic categories concerning coordination
problems have been identified [9], classifying them according to the depen-
dencies to be managed and then identifying for each category a set of possible
mechanisms useful for this purpose [10]. Such a handbook of coordination
knowledge can be ported to MASs, and the corresponding mechanisms im-
plemented as coordination artifacts.
It is worth noting that coordination artifacts represent an engineered ap-
proach to coordination, which basically works when it is possible and useful
to design a priori the solution to a coordination problem, and then to reify
such a knowledge in suitable artifacts. Conversely, there are cases in which

212 A. Ricci, M. Viroli, and A. Omicini

the solution cannot be established a priori by designers, but is either an out-
come of agent reasoning, or it emerges with agent interaction: in such cases
coordination artifacts can be used mainly as interaction enablers. In some
cases however, the coordination knowledge acquired during agent interac-
tion can be used to dynamically forge new coordination artifacts, typically
to improve the effectiveness and efficiency of the coordination process. This
reflects the role of artifacts in reifying the knowledge coming from agents’
experience and history.

Boundary artifacts – a particular case of organisation artifacts – with an or-
ganisation and security function. They take inspiration from the Agent Co-
ordination Context notion introduced in the context of coordination models
and infrastructures [12]. A boundary artifact (BA) is an artifact used to
characterise and control the presence (in its most abstract sense) of an agent
inside an organisation context, reifying and enacting a contract between the
agent and the organisation. In role-based environments, a BA embeds the
contract for the role(s) the agent plays inside the organisation.
A BA is released to an agent when starting a working session inside an
organisation, and then it constraints what the agent can do inside the or-
ganisation, in terms of the actions on other artifacts belonging to the the
organisation and the communications to other agents. In other words, a BA
can be conceived as the embodiment of a (boundary) ruled interface between
the agent and the environment.

Resource artifacts – artifacts designed either to mediate access to a specific
existing resource or to directly represent and embody a resource part of
the MAS environment. An example is a database. This kind of artifact is
important to bring at the agent level of abstraction all the computational
(and physical) entities which can be useful for agents, from objects (in the
OO sense) to services, such as a Web Service.
Currently, wrapper agents are typically used as a solution for this prob-
lem: such an approach, however, is useful and conceptually correct when the
resource can be suitably and effectively represented and programmed as a
goal-oriented or goal-governed system. In all the other cases, resources can
be naturally represented as artifacts, as entities providing some kind of ser-
vice that can be exploited by means of well-defined operations listed in the
artifact interface. It is worth remarking that, from an implementation point
of view, artifacts are generally much more light-weight than agents, they
more resemble objects (in the OO acceptation): they are typically passive
entities managed by the infrastructure, with no structures – for instance –
for dealing with task scheduling or reasoning. When engineering complex
systems, with many agents and artifacts, this is clearly an issue affecting
performance and scalability.

3 Programming Artifacts for MAS

In the following, we consider tuple centres as an example of an existing co-
ordination model for MAS exhibiting some of the main features described for

Programming MAS with Artifacts 213

(coordination) artifacts. Actually, the design and development of models / in-
frastructures fully supporting the conceptual framework based on the general
notion of artifact is part of our future works (Section 6).

3.1 The Tuple Centre Example

A tuple centre is a programmable tuple space, i.e. a tuple space enhanced with
the capability of programming its reacting behaviour to communication events
in order to define any kind of coordination laws shaping agent interaction space
[13]. TuCSoN is a coordination infrastructure providing tuple centres as run-
time coordination services distributed among Internet nodes [16]. In the case of
TuCSoN, the communication language adopted is based on logic tuples and the
reactive behaviour can be specified as a set of reactions – always encoded as
logic tuples – in the ReSpecT language. If the reaction specification is empty, a
tuple centre behaves like a tuple space: coordination can be realised by suitably
composing the basic coordination primitives to insert, retrieve, and read tuples.
By programming the tuple centre with a reaction specification, a specific coordi-
nating behaviour (and then the artifact function) is injected in the tuple centre.
The detailed description of tuple centres, ReSpecT and TuCSoN are beyond the
scope of the article: interested readers can read to reference articles listed in the
bibliography.

So, tuple centres can be framed here as general purpose programmable coordi-
nation artifacts, whose coordinating behaviour can be programmed dynamically
according to the coordination problem. More precisely, a tuple centre can be
framed as a coordination artifact where:

– the usage interface is composed by the coordination primitives to insert
(out), retrieve (in), read (rd) tuples, and to inspect (get spec) and set
(set spec) tuple centre coordinating behaviour;

– the coordinating behaviour is expressed as a ReSpecT program;
– the operating instructions and the function description are not explicitly sup-

ported: they are implicitly described in ReSpecT programs defining specific
artifact behaviour.

As for any other artifact operation, invocations are not blocking (the blocking
behaviour has no meaning when dealing with artifacts and agents): after invoking
an in operation on a tuple centre, the invoker agent continues to act according
to its plan (which can include of course also waiting for the completion of the
operation). When the in is satisfied, the operation completes and a completion
event is notified to the agent, as a perception.

To exemplify the approach, here we consider a classic coordination problem:
the dining philosopher [5]. The problem regards a number of philosophers eating
at the same round table, sharing chopsticks. Each philosopher alternates think-
ing with eating. In order to eat, a philosopher needs two chopsticks, which are
shared with other two philosophers, sitting one at his left and one at his right.
Coordination here is mostly needed to avoid deadlock, which can happen if each

214 A. Ricci, M. Viroli, and A. Omicini

Table 1. ReSpecT specification for coordinating dining philosophers

reaction(in(chops(C1,C2)), (pre, out r(required(C1,C2)))).
reaction(out r(required(C1,C2)),(

in r(chop(C1)),in r(chop(C2)),out r(chops(C1,C2)))).
reaction(in(chops(C1,C2)), (post, in r(required(C1,C2)))).
reaction(out(chops(C1,C2)), (out r(chop(C1)),out r(chop(C2)))).
reaction(out(chops(C1,C2)), (in r(chops(C1,C2)))).
reaction(out r(chop(C1)), (

rd r(required(C1,C)),in r(chop(C1)),in r(chop(C)),out r(chops(C1,C)))).
reaction(out r(chop(C2)), (

rd r(required(C,C2)), in r(chop(C)),in r(chop(C2)),out r(chops(C,C2)))).

philosopher has taken a chopstick and is waiting for the other one, which is in
turn taken by a waiting philosopher. In spite of its almost trivial formulation,
the dining philosophers problem is generally used as an archetype for non-trivial
resource access policies.

A solution to the problem according to our framework consists in using a
suitable coordination artifact playing the role of the table, used by the philoso-
pher agents to access the resources (chopsticks). The coordination artifact is
here implemented with a tuple centre – called table – programmed to provide
the coordinating behaviour which avoids deadlock. As an artifact, the table is
characterised by:

– a usage interface, composed by the operation acquireChops(C1,C2) and
releaseChops(C1,C2). Using a tuple centre, the former operation is realised
by an in(chops(C1,C2)), while the latter with an out(chops(C1,C2));

– a function, informally described as to dine, which matches the the dining
goal of the philosopher agent;

– operating instructions, which can be informally described as follows: “let C1
and C2 be the chopsticks you need, then first invoke acquireChops(C1,C2)
operation. When the operation is completed, dining task can be scheduled.
When the dining task finished, invoke release(C1,C2) operation”. Such
an informal description can be described more rigorously adopting a formal
framework based on operational semantics, as discussed in [20].

– a coordinating behaviour to avoid deadlock. Using a tuple centre, the be-
haviour is provided by the ReSpecT specification described in Table 1 (for
details concerning how the specification works refer to [13]).

Philosopher agents can be realised in any programming language: in Section 4
we show an implementation using 3APL. Basically, the philosopher agents’ goal
is to survive, interleaving thinking and dining behaviour. For the latter one,
following the operating instructions, they need to get the chopsticks from the
table and to give them back when dining has finished.

The main point here is that philosophers do not need to worry about how to
coordinate themselves, or how the resources are represented: they simply need
to know which chopstick pair to ask for, and then they can focus on their main
tasks (thinking and eating).

Programming MAS with Artifacts 215

4 Impact on Agent Programming and Reasoning

An important issue of our approach concerns how artifacts could be effectively
exploited to improve agents’ ability to execute individual as well as social tasks.
Which reasoning models could be adopted by agents to use artifacts in the best
way, simplifying their job? How could operating instructions be used in agent
reasoning processes, in order to help them using artifacts and finally achieving
their goal(s)? Or rather: how could an agent reason to select which artifacts to
use? How could artifact function description be exploited for this purpose? And
finally: how could agents reason to construct or adapt artifacts behaviour in order
to be useful for their goals? All the above questions are strictly related to some
of the main foci in the research in service-oriented (agent-based) architectures,
i.e the description and discovery / brokerage of artifacts (services).

On the one side, the simplest case concerns agents directly programmed to
use specific artifacts, with usage protocols directly defined by the programmer
either as part of the procedural knowledge / plans of the agent for goal-governed
systems, or as part of agent behaviour in goal-oriented systems. In spite of its
simplicity, this case can bring several advantages for MAS engineers, exploiting
separation of concerns when programming light-weight agents, without the bur-
den – e.g. coordination burden – which is instead upon artifacts designed for this
purpose. On the other side, in the case of fully open systems, the intuition is
that operating instructions and function description can be the key for building
MAS where intelligent agents dynamically look for and select which artifacts to
use, and then exploit them accordingly, simplifying the reasoning required to
achieve the goals with respect to the case in which artifacts are not available.

Actually, the conceptual framework discussed in Section 2 makes it possible
to frame such abilities progressively, scaling with the openness and complexity
of the domain context. Some levels can be identified, involving different kinds of
artifact aspects and agents’ abilities:

– unaware use – at this level, agents and agent programmers exploit artifacts
without being aware of them. In other words, agents’ actions never refer
explicitly to the execution of operations on some kinds of artifacts.

– programmed use – at this level agents use some artifacts according to what
has been explicitly programmed by the developer. In the case of cognitive
agents, for instance, agent programmers can specify usage protocols directly
as part of the agent plan. For the agent point of view, there is no need to
understand explicitly artifacts’ operating instructions or function: the only
requirement is that the agent model adopted could be expressive enough to
model in some way the execution of external actions and the perception of
external events.

– cognitive use – at this level, the agent programmer directly specifies in the
agent program some knowledge about what artifacts to use. However, how
to exploit the artifacts is dynamically discovered by the agent, by reading
the operating instructions. So, generally speaking the agent must be able
to embed the procedural knowledge given by the operating instructions in

216 A. Ricci, M. Viroli, and A. Omicini

the procedural knowledge defined in its plans. In this case the adoption of
shared ontologies for operating instructions description / goal description is
necessary.
Focussing on this point, an interesting note comes from the studies on human
behaviour using artifacts. According to Activity Theory, a hierarchy can be
identified among activities, actions, and operations:

• Operations – Operations are defined as routinised (interactive) behaviour
of individuals, that require little conscious attention (e.g. rapid typing).
Responsive of actual conditions, operations provide an adjustment of
actions to current situations;

• Actions – Actions are defined as behaviour that is characterised by con-
scious planning. There may be many different operations capable of ful-
filling an action. Actions are directed toward goals, which are the objects
of actions. Usually, goals are functionally subordinated to other goals,
which may still subordinated to other goals and so forth. Actions must
be understood within the frame of reference created by the activity;

• Activity – Activity can be defined as the minimum meaningful context
for understanding individual actions. An activity is directed toward a
motive, which is the object which motivates the whole activity.

Such a remark can be useful in our case for exploring two different ways to
use an artifact:

• Conscious – in this case any interaction with the artifact is under the
direct control of the main reasoning process of the agent (e.g. main de-
liberation cycle), where the operating instructions have been embedded;

• Unconscious – in this case the interaction with the artifact is not gov-
erned by the deliberation cycle of the agent, but realised by some auto-
mated procedure which executes directly – on the background of agent
main reasoning – the operating instructions. Only in the case of a break-
down, the reasoning focus of the agent is shifted on the interaction with
the artifact, by properly reacting to perceptions which represent the
problems.

The last case can be very interesting in order to devise out agents that very
efficiently exploit artifacts in the background, while keeping the reasoning
focus on other issues;

– cognitive selection and use – this case extends the previous one by conceiving
agents that autonomously select artifacts to use, get operating instructions
and use them. With respect to the previous case, agents must be able both
to understand and embed the operating instructions, and also understand
artifacts function / service description, in order to possibly decide to use
the artifacts for their own goal(s). It is worth noting that such a selection
process can concern also set of cooperative agents, interested in using a
coordination artifact for their social activities. As in the previous case, shared
ontologies are necessary, in this case both for operating instructions and
function description;

– construction and manipulation – in this case the point of view is changed,
considering agents playing the role of programmers of the artifacts. At this

Programming MAS with Artifacts 217

level agents are supposed to understand how artifacts work, and to adapt
their behaviour (or build new ones from scratch) in order to make it more
effective or efficient for other agents’ goals. For its complexity, this level
generally concerns humans. However, agents can e.g. be adopted to change
artifact behaviour according to schema explicitly defined by the agent pro-
grammer.

4.1 An Example Using 3APL

In order to help the reader’s intuition, in the following we describe a first example
of MAS composed by a set of cognitive agents using a tuple centre as a simple
kind of coordination artifact. Agents are implemented in 3APL [3], which is
taken here as a reference example of agent-oriented programming language for
goal-governed agents.

Actually, the basic 3APL model is extended to support the artifact framework.
In particular the extension introduces external actions and perceptions (external
events), as in the case of dMARS [6]. The extension is a generalisation of the work
described in [4], where 3APL is extended to support communicative actions to
send and receive FIPA ACL message, and to react to external events concerning
the reception of messages. There, the authors define a message base as a new
part of a 3APL agent state: communicative actions and external events alter
the content of the message base. Practical rules with a guard are introduced for
reacting to the presence in the message base of events related to the arrival of
new messages.

Our extension consists first in modelling the execution of an operation on a
specific artifact as a 3APL (external) action. For this purpose, we extend the set
of possible 3APL goals with the action

invoke op(O,A)

where O is a term representing the signature of the operation to be invoked,
and A is a term used as identifier of the artifact. As an example, the action
invoke op(get token, synchroniser) invokes the get token operation on the
synchroniser artifact. Another case is action invoke op(in(age(’Bob’,X)),
dbase), which invokes the in operation on the tuple centre dbase in order to
retrieve a tuple matching the template age(’Bob’,X).

Second, the extension also models the perception of events generated by ar-
tifacts. To this end, the practical rule on message reception is generalised to
consider also external events concerning the completion of an operation exe-
cuted on an artifact. A new guard is introduced:

op completed(O,A,R)

where O represents the signature of an operation previously invoked, A the source
artifact, and R a result term carrying information related to the completion of
the operation. An examples of rule is:

<- op completed(get token, synchroniser,) | do critical task()

218 A. Ricci, M. Viroli, and A. Omicini

Table 2. A dining philosopher implemented in 3APL, using the tuple centre table as
a coordination artifact

1 PROGRAM "philosopher"
2
3 CAPABILITIES:
4 { not hungry } think { hungry },
5 { hungry } eat {not hungry },
6 { not holding chops } update chop belief(acquired) { holding chops },
7 { holding chops } update chop belief(released) { not holding chops },
8 { left chop(C1),right chop(C2) } invoke op(in(chops(C1,C2)),table) {},
9 { left chop(C1),right chop(C2) } invoke op(out(chops(C1,C2)),table) {}
10
11 BELIEFBASE:
12 left chop(...),
13 right chop(...)
14
15 GOALBASE:
16 survive()
17
18 RULEBASE
19 survive() <- not hungry | think,
20 survive() <- hungry | dine,
21 dine() <- not holding chops | invoke op(in(chops(C1,C2)),table),
22 dine() <- holding chops | eat ; invoke op(out(chops(C1,C2)),table),
23 <- op completed(in(chops(C1,C2)),table,) | update chop belief(acquired),
24 <- op completed(out(chops(C1,C2)),table,) | update chop belief(released)

This practical rule executes the goal do critical task() when the completion
of the operation acquire lock is perceived. The following rule executes the goal
update info when the in operation completes, retrieving a tuple from the tuple
centre dbase:

<- op completed(in(age(’Bob’,X)),dbase?in(age(,Y)))|update info(Y)

As an application example, we consider a solution to the dining philosopher
problem, using 3APL agents as philosophers and exploiting the table as a co-
ordination artifact. This is a a case of programmed use of artifacts, since the
knowledge about how to use the artifact is directly encoded by the agent pro-
grammer among the practical rules of the agent. As a coordination artifact, we
consider the tuple centre described in Section 3: in the overall we build up a
solution with 3APL agents exploiting a TuCSoN tuple centre. The source code
of the 3APL philosopher is shown in Table 2.

The agent goal is to survive. The plan to survive is described in the rule base,
and involves thinking and dining activities. If the philosopher is not hungry, he
can think: thinking activity is simplified into a simple action in the capabilities
(line 4), whose effect is to make the philosopher hungry (hungry is inserted in the
belief base). If the philosopher is hungry, then he plans to dine (line 20). In order
to dine, the philosopher needs to have the chopsticks. If he believes to hold them
(holding chops is his belief base, line 22), then he can start the eating activity,
again simplified into a simple action (line 5), whose effect is to make the agent not
hungry. Instead, if the philosopher believes not to hold the chopsticks, then he
interacts with the artifact table to get the chopsticks. In particular, he executes

Programming MAS with Artifacts 219

an external action to invoke an in operation on the tuple centre table to get
a tuple chops(C1,C2) representing the chopsticks (line 21, 8). The information
about the specific chopsticks to request are stored in the belief base in the form
of the left chop and right chop beliefs. When the philosopher perceives the
completion of the operation to get the chopsticks (line 23), the belief base is
updated by means of an internal action asserting the holding chops fact (line
6). Then, the plan of the agent is to release the chopsticks after eating. For
this purpose an external action is executed (line 22, 9), which invokes an out
operation on the same tuple centre, inserting back the tuple chops(C1,C2).
When the philosopher perceives that the operation to release the chopsticks has
completed (line 24), the belief base is updated by means of an internal action
asserting the not holding chops.

5 Related Work

This work generalises and extends previous works on coordination artifacts [15].
The artifact abstraction brings in MAS ideas and concepts that have played

a central role in other (un)related fields. From concurrent and distributed sys-
tems, coordination artifacts in particular can be considered the generalisation of
traditional coordination abstractions, from low level ones such as semaphores,
monitors, to high-level ones, such as tuple spaces and, more generally, coordi-
nation media as found in coordination models and languages [17]. Blackboards
as defined in Distributed Artificial Intelligence context can be framed and mod-
elled in MAS as coordination artifacts, toward the integration of the two differ-
ent points of view (traditional multi-agent and blackboard systems) in designing
collaborating-software engineering space [2].

Actually, artifacts can be exploited as an analytical tool for describing existing
approaches based on some form of mediated / environment-based interaction.
For instance, the environment provided by the pheromone infrastructure in [18]
supporting stigmergy coordination can be interpreted as a coordination artifact
exploited by ants to coordinate: as such, it provides operations for depositing
and sensing pheromones, and the coordinating behaviour is given by the envi-
ronmental laws ruling the diffusion, aggregation and evaporation of pheromones.

Also some coordination and organisation approaches developed in the context
of intelligent / cognitive agents can be framed in terms of artifacts. A main exam-
ple is is given by electronic institutions ([7] is an example), where agent societies
live upon an infrastructure (middleware) which governs agent interaction accord-
ing to the norms established for the specific organisation, representing both or-
ganisation and coordination rules. The institution then can be framed as a kind
of shared artifact, characterised by an interface with operations that agents use
to communicate, and providing a normative function on the overall set of agents.

6 Conclusion and Future Works

In the paper we introduced the notion of artifact as first-class abstraction for
MAS engineering. Artifacts are meant to be used as basic bricks to program

220 A. Ricci, M. Viroli, and A. Omicini

MAS working environments, supporting agents in their individual and social
activities. After providing some glances about artifact programming, in the paper
we focused on the impact on agent programming, framing some levels related to
artifact adoption.

Several directions characterise future works. An important one is devoted to
deepen the investigation on how the artifact abstraction and its basic properties
can be effective in supporting agent reasoning in achieving individual as well as
collective goals. Another direction concerns the development of infrastructures
and tools fully supporting the artifact abstraction and the basic kind of artifacts
discussed in the paper, in particular integrating such infrastructures with existing
MAS platforms for cognitive agents (3APL is an example). In particular, as
in the case of service-oriented architectures, the infrastructure should provide
services that agents can exploit for registering, discovering, locating artifacts, for
retrieving their description and operating instructions (for agent using artifacts)
and for their inspection and control (for human and agents managing artifacts).
For this purpose, existing research literature on service description and discovery
/ brokerage will be considered among the reference sources.

Finally, our intuition is that the separation of concerns obtained by intro-
ducing artifacts could be important to make more tractable the verification /
validation of formal properties of (open) MAS; accordingly, research studies will
be devoted to define formal frameworks to specify artifacts function / behaviour
semantics, and to explore how to use them for verification problems, both offline
and on-line.

References

1. R. Conte and C. Castelfranchi, editors. Cognitive and Social Action. University
College London, 1995.

2. D. D. Corkill. Collaborating software: Blackboard and multi-agent systems & the
future. In International Lisp Conference, 2003.

3. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent delibera-
tion: an approach illustrated using the 3APL language. In Proceedings of AAMAS
’03, pages 97–104. ACM Press, 2003.

4. M. Dastani, J. van der Ham, and F. Dignum. Communication for goal directed
agents. In M.-P. Huget, editor, Communication in Multiagent Systems, Agent
Communication Languages and Conversation Polocies., volume 2650 of Lecture
Notes in Computer Science, pages 239–252. Springer, 2003.

5. E. Dijkstra. Co-operating Sequential Processes. Academic Press, London, 1965.
6. M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge. The dMARS

architecture: A specification of the distributed multi-agent reasoning system. Au-
tonomous Agents and Multi-Agent Systems, 1:5–53, 2004.

7. M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An
agent-based middleware for electronic institutions. In Proceedings of AAMAS ’04,
volume 1, pages 236–243, New York, USA, 19–23 July 2004. ACM.

8. D. Kirsh. Distributed cognition, coordination and environment design. In Proceed-
ings of the European conference on Cognitive Science, pages 1–11, 1999.

9. T. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys, 26(1):87–119, 1994.

Programming MAS with Artifacts 221

10. T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for inventing organizations: Toward a handbook of organizational processes.
Management Science, 45(3):425–443, 1999.

11. B. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

12. A. Omicini. Towards a notion of agent coordination context. In D. Marinescu and
C. Lee, editors, Process Coordination and Ubiquitous Computing, pages 187–200.
CRC Press, 2002.

13. A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of Computer
Programming, 41(3):277–294, Nov. 2001.

14. A. Omicini and S. Ossowski. Objective versus subjective coordination in the engi-
neering of agent systems. In M. Klusch, S. Bergamaschi, P. Edwards, and P. Petta,
editors, Intelligent Information Agents: An AgentLink Perspective, volume 2586 of
LNAI: State-of-the-Art Survey, pages 179–202. Springer-Verlag, Mar. 2003.

15. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In Proceedings of
AAMAS ’04, volume 1, pages 286–293, New York, USA, 19–23 July 2004. ACM.

16. A. Omicini and F. Zambonelli. Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999. Special
Issue: Coordination Mechanisms for Web Agents.

17. G. A. Papadopoulos and F. Arbab. Coordination models and languages. Advances
in Computers, 46:329–400, 1998.

18. H. V. D. Parunak, S. Brueckner, and J. Sauter. Digital pheromone mechanisms for
coordination of unmanned vehicles. In Proceedings of AAMAS ’02, pages 449–450.
ACM Press, 2002.

19. A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS
coordination. In Engineering Societies in the Agents World III, volume 2577 of
LNCS, pages 96–110. Springer-Verlag, Apr. 2003.

20. M. Viroli and A. Ricci. Instructions-based semantics of agent mediated interaction.
In Proceedings of AAMAS ’04, volume 1, pages 102–109, New York, USA, 19–23
July 2004. ACM.

Programming Deliberative Agents for Mobile
Services: The 3APL-M Platform

Fernando Koch1, John-Jules C. Meyer1, Frank Dignum1, and Iyad Rahwan2

1 Institute of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands
fkoch@acm.org, {jj, dignum}@cs.uu.nl

2 Institute of Informatics, The British University in Dubai,
P.O. Box 502216, Dubai, UAE

iyad.rahwan@buid.ac.ae

Abstract. 3APL-M is a platform for building deliberative multi-agent
systems whose components execute on handheld and embedded compu-
tational devices. The solution takes advantage of the 3APL language and
definitions, delivers a methodology for building Belief-Desire-Intention
inference systems and provides an interface to integrate the applications
to the external world. The library is distributed for the Java 2 Micro
Edition (J2ME) programming platform, which is widely adopted by the
hardware manufactures and available for a myriad of mobile computing
devices. The role of agent-based computing for mobile services is ex-
plained, the architecture and programming structures are presented and
proof-of-concept applications are demonstrated.

1 Introduction

The promise of mobile technologies is to remove the bindings between a fixed
space and a person’s information and communication resources. Intelligent mo-
bile services should make use of local processing to reason about the user’s con-
text and predict user’s intents, actions and location. However, mobile computing
introduces issues of resource limitations, security, connectivity and, limited power
supply, which are inherent to the environment [26]. These characteristics call for
the optimal use of local resources, communications and connectivity. Therefore,
the problem is how to create intelligent mobile applications that execute on mobile
computing devices.

Agent-based computing [16] seems to offer a set of features that are very
closely aligned with the requirements of service delivery challenge in mobile com-
puting [18]. For the purpose of this paper, agents are computer systems capable
of flexible autonomous action in dynamic, unpredictable and open environments.

This paper presents the 3APL-M (Triple-A-P-L-M) platform for implement-
ing deliberative autonomous agents that execute on mobile computing devices.
It works as a scaled down implementation of the 3APL language interpreter [14]
re-designed for the requirements of mobile computing applications. The infer-
ence system implements the Belief-Desire-Intention paradigm [25], which intrin-
sically provides the solutions for designing systems capable to creating mental

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 222–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Programming Deliberative Agents for Mobile Services 223

models. Moreover, it supplies the programming structures to implement sensors
for context-sensitiveness [12] and actuators for pervasive content delivery.

The paper is organized as follows. Section 2 analyses the use agent-based
computing for the development of mobile service applications. Next, section 3
presents our approach for building the scaled down version of the 3APL plat-
form. Section 4 presents the solution for the 3APL-M system architecture.
Finally, section 5 presents the results, as two proof-of-concept applications im-
plemented using the platform and their running parameters. The paper concludes
by presenting the achieved results and pointing to further works.

2 Motivation and Related Work

In this section, we introduce the role of agent-based computing in delivering
mobile services and present the related works that deliver a platform to build
those applications.

The role of agents in mobile services is to provide the support to the re-
quirements of the future generation of software applications [27]. The support
provided by agents are in the realms of:

– situatedness, as the mobile service must be aware of the environmental con-
ditions surrounding the mobile user;

– openness, as the mobile service’s components must be able to integrate and
adapt to the presence of new modules being integrated to or removed from
the system’s environment;

– local interaction, as the mobile service’s applications and components must
be able to interact to other modules and interact with the environment, and;

– local control, related to the problem of implementing mobile applications
able to run autonomously.

For the sake of demonstration, let us consider the scenario shown in Figure 1:

– (I) the user enters his shopping list at home, in front of his fridge when
running out of a product.

– (II) when the user is walking by a grocery store, the location-based ser-
vice detects the user’s position and notifies the local processing application.
This application holds the user data and has the capability of negotiating

(I)
(II)

(I) user learns about the need of
purchasing more soft-drinks while
grabbing the last can from the refrigerator
at home;
(II) that information will be most useful
when passing by a food store.

Fig. 1. Mobile Commerce Scenario

224 F. Koch et al.

the stored shopping list. Several aspects of the context could be taken into
consideration during the deliberation. For example, the user’s agenda (the
negotiation should be avoided if the user has an appointment set up for the
next minutes); the user’s preferred stores (the application should be able
to collect the quote from the stores where the user normally does its shop-
ping); availability of computing resource (avoid the negotiation if the device
is running low in power supply), and connectivity.

The requirements to implement this mobile solution are: the structures for
knowledge representation (shopping list, preferred stores, calendar and device
information); the interface to a location detection system; an inference system
that cross relate the internal and context information; a negotiation system, and;
a content delivery interface.

Agent-based software engineering provides the tools to implement these require-
ments, as presented in [18]. The solutions provided by the agent-paradigm are:

– Structures for knowledge representation: existing agent systems can provide
an answer to the situadedness requirement. This ability is an intrinsic problem
in multi-agent systems, and hence inherent in agent architectures, especially
in the belief-desire-intention paradigm. In the demonstration, it provides the
structures to represent the shopping list, preferred stores, device information
and calendar.

– Responsiveness and adaptivity: as pointed out in [16], these are inherent
features provided by agent systems; agents should be able to adapt to con-
stantly changing execution environment. In the demonstration, it provides
the features to either dropping or adapting the negotiation process in answer
to the computing resource availability information.

– Sociability and locality of interaction: also described in [16], agents are able
to interact with other agents or humans when needed. In the demonstration,
this feature would provide the support for the negotiation process.

– Autonomy: as argued in [17], the agent paradigm offers mechanisms that
address varying degrees of autonomy, from basic reactive architectures based
on a set of pre-determined rules, to mechanisms for proactive behaviour
[11] considering the context and user preferences. In the demonstration,
the local processing agent must be able to act autonomously for adapt-
ing the application execution in face to possible computing or connectivity
problems.

Moreover, agent-based software engineering incorporates support for decom-
position, modularity and abstraction [15], which are essential features considering
the distributed nature of mobile computing applications.

2.1 Related Work

Here we introduce the related works that deliver platforms to build agents-
based applications in mobile computing devices. In [21] it is argued that making
agents to run in resource-constrained devices is still not an obvious task. We have

Programming Deliberative Agents for Mobile Services 225

selected a number of available platforms, which we considered to be representa-
tive of what is available.

In [8] it is presented a model of agent construction for ubiquitous computing
which is conceptually grounded and architecture neutral and makes use of a com-
ponent based approach for agent design. The project uses S.M.A.R.T. (Struc-
tural, Modular agent Relationship and Types) framework and actSMART [9] for
the implementation in a Java 2 Micro Edition [13] platform. Although the work
presents a support to generic services in ubiquitous computing environment,
it does not focus on the problem of supporting the development of intelligent
personal assistants.

The Lightweight Extensible Agent Platform (LEAP) [10],is the first attempt
to implement a FIPA [3] agent platform that runs seamlessly on both mobile
and fixed devices over both wireless and wired networks. It uses a set of profiles
that allows one to configure it for execution on various machines, OS and Java
VM. This platform has many strengths and satisfies the requirements for intel-
ligent support (B.D.I. based), collaboration and personal assistance. Although
the platform can be adapted to integrate to, e.g., context-awareness and device
interface support, this feature is not clearly defined in the product.

The MobiAgent platform [22] delivers a solution where neither the platform
nor the agents run locally in the device. In this solution, when the user wants to
delegate a task to an agent, the mobile device connects to the Agent Gateway and
downloads an interface that configures it. The agent performs its task and, later,
reports the results via the same mechanism. The shortcoming of this solution
is the dependency of a reliable connectivity mechanism between the device and
the Agent Gateway.

The kSACI platform [5] is a smaller version of the SACI platform [6]. SACI is
an infrastructure for creating agents that are able to communicate using KQML
[19][20] messages and use a mailbox structure to exchange messages. Although
kSACI platform is usable on small devices running the Java 2 Micro Edition,
the platform is not entirely situated on the small device. Moreover the kSACI is
oriented to communication aspects of multi-agent system and does not provision
for enhanced inference systems.

Finally, the AbIMA platform [23] delivers agent-based intelligent mobile assis-
tant that runs on a handheld device and assists the user through the execution
of individual tasks. It makes use of the abstract agent programming language
AgentSpeak(L) [24]. Nevertheless, AbIMA offers support to single-user environ-
ments only.

Table 1 summarises support provided by the aforementioned platforms to the
components in intelligent mobile service solutions: (i) Local Processing is the sup-
port to local execution for personal assistant applications; (ii) Context Awareness
is the support to the component for context awareness in mobile applications;
(iii) Inference is the support to the component for “enhanced deliberation” in
intelligent applications; (iv) Collaboration is the support to the component for
collaboration in multi-user environment, and; (v) Device Interface is the support
to interfacing in mobile computing.

226 F. Koch et al.

Table 1. Classification of Platforms for Agent-Based Applications in Mobile Computing

Classification of Agent-based Platforms for Mobile Computing and Mobile
Personal Assistant Solutions

Platform (i) Local
Process-
ing

(ii) Ctx.
Aware-
ness

(iii) Infer. (iv) Col-
lab.

(v) Dev.
Interface

JADE/LEAP Yes (vari-
ous)

Not Ex-
plicit

Yes (BDI) Yes (FIPA) Not Ex-
plicit

MobiAgent No No No Yes Partial
kSACI Yes

(J2ME)
No No Yes Not Ex-

plicit
AbIMA/ AgentS-
peak(L)

Yes Not Ex-
plicit

Yes (BDI) No Not Config-
urable

Hence, based on the analysis of the related work, we conclude that there is
a unaddressed opportunity to deliver a platform that supports the components
required for in intelligent mobile service solutions. In the next sections, we move
towards the specifications for a platform to build B.D.I. architecture, agent-based
applications in mobile computing devices.

3 Approach

A platform for building agents in mobile devices must provide solutions for the
problems inherent to the environment, such as computing resource availability,
networking, security, interfacing and compatibility. For example, how to execute
the deliberation cycle in the limited computing resources environment?; how
to implement the structures for context awareness and content delivery?; what
agent-oriented language to use for the development of the application knowl-
edge structures?; which programming language to choose for the application
development?

The requirements for the development of 3APL-M are to be:

– compatible with 3APL language and programming environment;
– lightweight enough to be deployed on small devices with as few as 20Mhz

CPU and 512Kb RAM.
– developed in the Java 2 Micro Edition (J2ME) [4][13] programming platform.

J2ME is a reduced version of the Java programming platform tailored to
fit in low profile mobile computing devices. It provides a programming and
runtime environment for Java coded applications. This environment is widely
adopted by the hardware manufactures and available for a myriad of mobile
computing devices;

– optimized for processing, reducing the number of operations per deliberation,
thus ensuring performance and minimum battery utilization, and;

– provide the application programming interface (API) for the integration of
the 3APL application to context-awareness and content-provider structures.

Programming Deliberative Agents for Mobile Services 227

The resulting 3APL-M implementation is fully compatible with the 3APL lan-
guage and syntax. It is a “cut down” version of 3APL, with the structures opti-
mized for the creation of mobile service applications and deployment in mobile
computing devices. Nevertheless, the platform delivers a solution as powerful as
the original 3APL implementations. In fact, when executed in the desktop envi-
ronment, this platform can be an alternative for 3APL solution implementations.

In the next sub-sections, we will introduce the 3APL programming language
and then present the system architecture for 3APL-M platform.

3.1 About 3APL

3APL is a logic-based agent programming language that provides constructs for
implementing agents’ beliefs, plans and capabilities as explicit run-time entities.
It uses practical reasoning rules in order to generate plans (i.e., sequence of
actions) for achieving the applications goals. Each 3APL program is executed
by means of an interpreter that deliberates on the cognitive attitudes of that
agent. More information about the 3APL language, syntax and logic fundament
is available at the 3APL project’s web-site at [2].

3APL Machine

Goal Base

Plan Rule Base

Capability Base

Belief Base

Deliberation
Process

Plan Base

Fig. 2. 3APL Architecture

Figure 2 presents the abstract architecture of 3APL. Each agent has the explicit
representations of its goals in the goal base. For example, the goal to finish an as-
signment may be represented with the predicate finish(assignment). In order to
achieve its goals, the agent decomposes these into sub-goals using planning rules
from the plan rule base. The sub-goals can be further decomposed until basic ac-
tions are reached (i.e., physical actions agents may execute directly in the world).

During plan generation, the agent takes into account its belief base, which
stores the contextual information in form of predicates. For example, the predi-
cate near(fernando, storeA) denotes that the agent believes Fernando is currently
located near the storeA. The capability base describes basic actions by the agent
and user. A planning rule takes the form head ← guard|body, and means that
if the agent has goal g that unifies to the head of the plan head and the con-
dition declared in guard is satisfied (i.e., it unifies to the contents of the belief
base), then goal g can be achieved by executing the sequence of actions (or set
of sub-goals) listed in body.

228 F. Koch et al.

As it will be presented in the next section, the application architecture is
influenced by the features of the 3APL language and the platform requirements.

4 System Architecture

The 3APL-M platform architecture is presented in Figure 3. The main features
are: sensor and actuator modules, which provide the interface to integrate to
context-awareness and content delivery solutions; the 3APL machinery, which
includes the infrastructures for the B.D.I. based inference systems, and; the
communicator module, which provides the support for communication in a multi-
agent system.

The modules in the 3APL-M architecture are explained below:

– the 3APL machine encapsulates the 3APL language components and pro-
vides the programming interface for the integration of the logic structures to
the Java programming language. This module provides a runtime interpreter
for the complete semantics of the 3APL language;

– the belief, capabilities, goal and plan rules modules are implementations of
the 3APL structures. These elements are part of the 3APL machinery and
provide the internal data and processing structures for the platform;

– the deliberation process is the implementation of the executive module (de-
liberation cycle);

– the plan base is the data structure that holds the list of current plans gen-
erated by the deliberation process;

– the m-prolog is an implementation of the PROLOG language engine, op-
timized to be used for the low-level inference processing in 3APL-M. The
m-prolog programming interface holds special structures to make it more
compatible to 3APL engine programming. However, it is a fully compatible
PROLOG language implementation and, in fact, PROLOG applications can
be executed in this environment.

3APL Machine

M-Prolog

Goal Base

Plan Rule Base

Capability Base

Belief Base

S
en

so
r

In
te

rf
ac

e
A

ctuator Interface

Communicator

Deliberation
Process

S
en

so
r I

S
en

so
r I

I

S
en

so
r I

II

E
nv

iro
nm

en
t

Sensor

A
ctuator III

A
ctuator II

A
ctuator I

E
nvironm

ent

Actuator

Inference

Fig. 3. 3APL-M Architecture

Programming Deliberative Agents for Mobile Services 229

– the sensor and actuator are the programming interfaces for the integration
of the 3APL-M machinery to the external world. The sensor module pro-
vides the infrastructure for the creation of context-aware application (i.e.
environmental sensors) and system input (i.e., device’s keyboard). The ac-
tuator module provides the means for content delivery (i.e., integration to
the device’s display interface) and acting upon the environment.

– the communicator module provides the is the generic interface for the data
exchange infrastructure, required for multi-agent system module integration
and communication to external services. The module provides internal sup-
port for FIPA communication [7][10], however any other protocol or data
representation can be plugged in the system through the programming in-
terface.

The 3APL-M architecture emphasizes the sensor module as the input in-
terface for data from the external world. Popular BDI models have neglected
“perceptions” as the mental state component that is the basis of communication
and interaction. In the classic BDI architecture data is collected by some inter-
face structure and inserted into the BDI belief base. In some BDI approaches,
perceptions are indeed treated as beliefs. However, this is clearly unsatisfactory,
both conceptually and technically. Conceptually, perceptions are transient, while
beliefs are persistent. Hence, the introduction of a sensor module provides the
technical support to map the perception of an event can into a corresponding
event has happened belief, thus avoiding a irrelevant perceptions that would lead
to an overflow of the belief/knowledge base of an agent.

Moreover, for the deliberation process, the 3APL-M platform provides the
Java programming class Agent, which implements the basic deliberation cycle
[14]. Due to space limitation, this work shall not discuss the deliberation process
in detail but introduce the general idea. For detailed information, we refer to
Hindriks et al [14] and Dastani et al [11].

The basic deliberation cycle is depicted in Figure 4. In this case, the agents
generate their plans by choosing the first applicable rule that matches a par-

Planner Sub-System

Basic or
Composed

Action?

Find Capabilities
matching Beliefs

Execute
Pos-Conditions

Find PlanRules
matching Beliefs

Generate PlanBase
Select Plan to

Execute

GOALBASE

Execute Plan

Basic
Action!

BELIEFBASE

PLAN-RULES PLAN BASE

Select Goal

used by used bygenerates

sub-goals get added to goal base

used by

us
ed

 b
y Environment

External actions
impact environment

Internal actions
update Belief Base

Composed
Action!

Fig. 4. Basic Deliberation Cycle

230 F. Koch et al.

ticular goal/desire. This means that an agent generates only one plan for each
achievable goal, and only generates other plans if the initial plan fails.

4.1 Programming

The 3APL-M platform works as a library loaded in the distribution package.
This library supplies the application-programming interface (API) for the 3APL
machine modules. The Java application makes calls to the library’s modules
for loading information, configuring the deliberation engine and executing the
applications. Figure 5 presents: (A) the 3APL-M programming interface for the
Agent class (simplified view), and; (B) a simple Hello World Java-3APL-M code
example.

(A) Agent class programming interface
(simplified view)

(B) HelloWorld source code

 void addBelief (String beliefStr) // Add a belief.
 void addCapability (String capabilityStr) // Add a capability
 void addGoal(String goalStr) // Add a goal
 void addPlanRule (String planRuleStr) // Add a plan
 void addProlog (String prologStr) // Add Prolog knowledge
 void addActuator (String actionStr ,

ActuatorInterface actuator) // Add actuator
 void addSensor (String id, Sensor sensor, int interval,
 boolean addGoalNotification) // Add Sensor
 void deliberate() // Starts deliberation cycle
 void destroy() // Terminate agent
 String sendMessage (String msgId , String to,
 String performative , String data) // Send a message
 void setFipaCommunication (boolean enabled)

public class HelloWorldExample {
 public void startApp () {
 Agent ag = new Agent("hello");

 // load knowledge
ag.addCapability ("{} Print(X) { GUI(print, X)}");
ag.addPlanRule (" <- TRUE | Print('hello world')");
ag.addGoal ("print");

 // add J2ME display actuator
ag.addActuator ("GUI(Type,Message)",

 new J2MEGUI(this));

 // deliberate
ag.deliberate ();

 }
}

Fig. 5. Programming with 3APL-M

Figure 5(B) presents an example for the programming steps. The code must
instantiate a new Agent object and to load the 3APL information (i.e., beliefs
capabilities, goals, plan rules) using the Agent methods (presented in Figure
5(A)). Next, sensors and actuators can be initialized and attached using the
addSensor(.) and addActuator(.) methods. Finally, the deliberation process is
started by calling the deliberate() method.

For detailed information about programming in 3APL-M, we refer to the
documentation and source code examples available at the project’s web-site [1].

5 Results

This section presents two proof-of-concept implementations using 3APL-M plat-
form. These are simple applications aiming to present the programming struc-
tures, running parameters and integration of Java and 3APL code. The source
code for these and other demonstration applications can be found at the project’s
web-site [1].

Programming Deliberative Agents for Mobile Services 231

5.1 Block World Demonstration Application

The Block world demonstration is presented to show the compatibility between
the 3APL-M and the 3APL standard specifications. This is the example provided
at the 3APL web-site [2].

The application is composed by a robot that needs to arrive to a base in a
grid world. The robot knows where are the bases and the rules for the decision
process. The knowledge representation and deliberation process is implemented
in 3APL and the GUI manipulation is done in Java. Figure 6 presents: (A) the
application running on a HP iPaq hardware; (B) the 3APL code, and; (C) the
3APL-M and Java code integration.

In this example, the Java code initializes the agent (new Agent(.)), loads
the knowledge (3APL code) from an input stream (ag.consult(.)) and attaches
the Block World interface actuator (ag.addActuator(.)). Next, the application
triggers the deliberation process (ag.deliberate()). The 3APL machinery will load
the intention from the goal base (goBase). From the deliberation, the 3APL code
will end up calling the Block world actuator passing the argument ”west”. The
Java coded BlockWorldActuator.actuator([”west”]) will be executed to update
the interface.

The test was executed using 3APL-M version 1.3. On the HP iPaq device,
this application executes using 142.7 Kbytes of RAM memory and takes approx-
imately eight seconds to find a solution (including interface update time). In

CAPABILITIES:
{ pos(X, Y)} West { NOT pos(X, Y), pos(X - 1, Y), BlockMove(west)}.
{ pos(X, Y)} East { NOT pos(X, Y), pos(X + 1, Y), BlockMove(east)}.
{ pos(X, Y)} North { NOT pos(X, Y), pos(X, Y + 1), BlockMove(north)}.
{ pos(X, Y)} South { NOT pos(X, Y), pos(X, Y - 1), BlockMove(south)}.
{} BlockMove(X) {EXTERNAL}.

RULEBASE:
goBase <- pos(X, Y) AND base(X, Y) | SKIP.
goBase <- pos(X, Y) AND base(A, B) AND X > A | West, goBase.
goBase <- pos(X, Y) AND base(A, B) AND X < A | East, goBase.
goBase <- pos(X, Y) AND base(A, B) AND Y > B | South, goBase.
goBase <- pos(X, Y) AND base(A, B) AND Y < B | North, goBase.

BELIEFBASE:
pos(9, 9).
base(0, 0).

GOALBASE:
goBase.

(A) BlockWorld on HP iPaq (B) 3APL code for robot deliberation

 /**
 * Midlet Interface
 */
 public void startApp () {
 // create agent
 Agent ag = new Agent("robot");
 // load knowledge bases

ag.consult (System.getResourceAsStream ("robotAgent.tapl "));
 // attach actuator

ag.addActuator ("BlockMove(X)", new BlockWorldActuator (this.blockWorld));
 // deliberate

ag.deliberate ();
 }

(C) 3APL-M and Java integration

Fig. 6. BlockWorld demonstration interface and code

232 F. Koch et al.

total, it process 38 deliberation steps and requires 539 unifications operations
on the PROLOG engine.

5.2 Mobile Commerce Demonstration Application

This demonstration presents the 3APL-M based implementation for the mobile
commerce problem from Figure 1. For simplicity, the demonstration will con-
centrate on the 3APL code and Java integration and overlook technical details
about the location-based service and connectivity. It is assumed that there is a
location-based service feeding the agent’s belief base with landmark proximity
information and there is stable connectivity.

The 3APL code for this solution is presented in Figure 7(B) and the screen-
shots from the running application in a mobile phone simulator are depicted in
Figure 7(A).

Basically, when a landmark proximity is detected (near grocery store), the
location service provider adds the context information to the agent’s belief base
(location(near, storeA)), the goal resolve to the goal base and starts the deliber-
ation process. The sequence of actions will be created by processing the plan rule
named resolve if there is a location(.) and shoppingList(.) available in the belief
base. The sequence of actions are: to ask the confirmation on the negotiation
process to the user (AskConfirmation(.)); in case of positive answer, to request
the quote from the store (getQuote(.)); once the quote is received, to assert that
information in the belief base (Assert(receivedQuote(.)), and; finally, to display
the received quote in the devices interface (displayQuote(.)).

(A) Screen shots

CAPABILITIES:
{ shoppingList (List)} AddItemToList (Item)
{ NOT shoppingList (List), shoppingList (List + Item)}.
{} AskConfirmation (Message) { GUI(promptYesNo , Message)}.
{} Display(Message) { GUI(promptOk , Message)}.
{} GUI(Type, Message) {EXTERNAL}.

RULEBASE:
addItemToList (Item) <- TRUE |
AddItemToList (Item).

displayQuote (Shopping, Quote) <- TRUE |
Display([Quote received from , Shopping, is $, Quote]).

getQuote (Shopping, List, Result) <- TRUE |
Send(MsgId , Shopping, query- ref , quote(List)),
Receive(MsgId , Shopping, Performative , Result, 4).

resolve <- location(near, Shopping) AND shoppingList (List) |
AskConfirmation ([Near , Shopping, . Request for quote?]),
getQuote (Shopping, List, Result),
Assert(receivedQuote (Shopping, List, Result)),
displayQuote (Shopping, Result).

BELIEFBASE:
addressBook (storeA , http:// localhost :50001).
shoppingList ([productA , productB]).
location(near, storeA).

(B) 3APL code

Fig. 7. Mobile Commerce Solution: (A) Conceptual Model and (B) 3APL code

Programming Deliberative Agents for Mobile Services 233

From the sequence of actions above, some will be decomposed in sub-goals and
added to the goal base while others will trigger capabilities. The capabilities are
executed based on the definition in the capability base, built-in capabilities (e.g.,
Assert(.), Send(.), Receive(.)) or through attached actuators (e.g., GUI(.)). For a
complete list of the built-in capabilities, we refer to the documentation available
in the project’s web-site [1].

Once again, this is a simplified demonstration application and several im-
provements are possible. The test was executed using 3APL-M version 1.3 and
run on the phone simulator supplied in the J2ME Wireless Toolkit 2.1, from
Sun Corporation. The execution utilized 163.8 Kbytes of RAM memory and
processed eight deliberation steps.

6 Conclusion

3APL-M provides the support technology to develop deliberative multi-agent
systems to be executed in mobile computing devices. The main features are
the sensor and actuator modules, which provide the interface to integrate to
context-awareness and content delivery solutions; the 3APL machinery, which
includes the infrastructures for the B.D.I. based inference systems, and; the
communicator module, which provides the support for communication in a
multi-agent system. Hence, the platform provides the infrastructures for the
technologies required by the new generation of mobile applications: context-
sensitiveness, mental modelling, local processing, and pervasive content
delivery. The B.D.I.-based inference module provides the solutions for applica-
tions capable of creating mental models and to represent the human thought
structures.

The platform delivers a development environment compatible with the 3APL
language structures. The demonstration applications proved that the result-
ing applications are small enough to be deployed on small devices with 20Mhz
CPU and less than 512Kb RAM. The platform is compatible with Java 2 Micro
Edition (J2ME) development and running environment, which has a large de-
velopment community. Consequently, several development environments, plat-
forms and programming libraries are commercially available. The strength of
J2ME is industry adoption and to be Java-compatible, thus this running en-
vironment is present in a myriad of commercially available mobile computing
devices.

There are several possible enhancements and optimizations for the platform.
A future line of work is to better position the project against FIPA standards [3]
especially for communication and community management. Moreover, security
is a major area of research to be explored by this project. While there are
limitations already imposed by the running environment – e.g., Java 2 Micro
Edition sandbox security – the high-level security must be implemented by means
of platform structures and logic operations.

For detailed information about programming in 3APL-M, downloads, demon-
stration codes and documentation, we refer to the project’s web-site [1].

234 F. Koch et al.

Acknowledgments

This work was conducted while Fernando Koch and Iyad Rahwan were working
at the Department of Information Systems, University of Melbourne. The au-
thors are thankful to the folks in that department for the discussions surrounding
the paper topic.

References

1. 3APL-M web-site, http://www.cs.uu.nl/3apl-m.
2. 3APL web-site, http://www.cs.uu.nl/3apl.
3. Foundation for Intelligent Physical Agents (FIPA) web-site, http://www.fipa.org.
4. Java 2 Micro Edition (J2ME) web-site, sun corporation, http://java.sun.com/j2me.
5. kSACI web-site, http://www.cesar.org.br/ rla2/ksaci/.
6. Simple Agent Communication Infrastructure (SACI) web-site,

http://www.lti.pcs.usp.br/.
7. M. Aparicio, L. Chiariglione, E. Mamdani, F. McCabe, R. Nicol, D. Steiner, and

H. Suguri. FIPA - intelligent agents from theory to practice. Telecom 99, October
1999.

8. R. Ashri and M. Luck. An agent construction model for ubiquitous computing
devices. In Proceedings of AAMAS Workshop in Agent Oriented Software Engi-
neering, New York, USA, 2004.

9. R. Ashri, M. Luck, and M. d’Inverno. actsmart - building a smart system. In
M. d’Inverno and M. Luck, editors, Understanding Agent Systems. Springer-Verlag,
2nd edition edition, 2003.

10. F. Bergenti, A. Poggi, B. Burg, and G. Claire. Deploying FIPA-compliant systems
on handheld devices. IEEE Internet Computing, 5(4):20–25, 2001.

11. M. Dastani, F. Dignum, and J.-J. Meyer. Autonomy and agent deliberation. In
M. Rovatsos and M. Nickles, editors, The First International Workshop on Com-
putatinal Autonomy - Potential, Risks, Solutions (Autonomous 2003), pages 23–35,
Melbourne, Australia, July 2003.

12. A. K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, November 2000.

13. E. Guigere. Java 2 Micro edition: The ultimate guide on programming handheld
and embedded devices. John Wiley and Sons, Inc., USA, 2001.

14. K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–
401, 1999.

15. N. R. Jennings. An agent-based approach for building complex software systems.
Communications ACM, 44(4):35–41, 2001.

16. N. R. Jennings and M. Wooldridge. Applications of intelligent agents. Agent
technology: foundations, applications, and markets, pages 3–28, 1998.

17. F. Koch and I. Rahwan. Classification of agents-based mobile assistants. In Pro-
ceedings of the AAMAS Workshop on Agents for Ubiquitous Computing (UbiA-
gents), New York, USA, Jul 2004.

18. F. Koch and I. Rahwan. The role of agents in mobile services. In Proceedings of the
Pacific Rim International Workshop on Multi-Agents (PRIMA2004), Auckland,
NZ, August 2004.

Programming Deliberative Agents for Mobile Services 235

19. Y. Labrou and T. Finin. A semantics approach for kqml a general purpose commu-
nication language for software agents. In Proceedings of International Conference
on Information and Knowledge Management, 1994.

20. Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The current
landscape. Intelligent Systems, 14(2):45–52, 1999.

21. Z. Maamar, W. Binder, and B. Benatallah. Agent for Ubiquitous Computing,
chapter 19, pages 395–412. Kluwer Academic Publishers, 2004.

22. Q. Mahmoud. Mobiagent: An agent-based approach to wireless information sys-
tems. In Proceeding of the 3rd International Bi-Conference Workshop on Agent-
Oriented Information Systems, Montreal,Canada, 2001.

23. T. Rahwan, T. Rahwan, I. Rahwan, and R. Ashri. Agent-based support for mobile
users using agentspeak(l). In P. Giorgini, B. Hederson-Sellers, and M. Winikoff, ed-
itors, Agent Oriented Information Systems, Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Germany, 2004.

24. A. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language. In
W. V. de Velde and J. W. Perram, editors, Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, volume 1038
of LNAI. Springer, 1996.

25. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings
of the First International Conference on Multiagent Systems, San Francisco, USA,
1995.

26. M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal
Communications, 8(4):10–17, 2001.

27. F. Zambonelli and H. V. D. Parunak. Towards a paradigm change in computer
science and software engineering: a synthesis. The Knowledge Engineering Review,
2004. (to appear).

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 236 – 251, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing Multi-agent Systems Organizations with
INGENIAS

Jorge J. Gómez-Sanz and Juan Pavón

Dep. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid

{jjgomez, jpavon}@sip.ucm.es

Abstract. In a multi-agent system, the organization determines the architecture
of the whole system, and the way and policies for agent collaboration and
interactions. Although this is a key element in the development process of this
kind of systems, existing efforts in modeling organizations have not yet been
integrated into common bodies of knowledge, neither into existing standards.
This paper provides a study of general requirements for organization modeling
during the analysis phase, and describes how this can be applied in the design
and implementation of multi-agent systems. This is illustrated with a real
example that has been developed with the INGENIAS methodology and tools,
and implemented on the JADE agent platform.

1 Introduction

The description of a Multi-Agent System (MAS) should always consider different
aspects, such as agent types, goals, tasks, interactions, environment, etc. Among
these, the organization plays a key role as it determines the general purpose of the
system, the global structure of the MAS, the context in which agents play specific
roles, the policies and interactions for collaboration among agents. Since the
beginning, many research works in the agent field have been concerned with
organizational issues, just to cite some:

• What is an organization and the elements to describe it have been formalized by
using meta-models [8]. This work is supported by the implementation of MADKIT
[18]. This work has been extended in [9] and [16].

• Organization related concepts such as dependence and resource in order to enable
social reasoning [24]. This work has been implemented in the DEPINT [23] and
DEPNET [4] frameworks.

• Electronic institutions [7] focus on the definition of norms accepted by a set of
agents. This work has been the basis for the EIDE integrated environment [6].

These works represent some of many contributions to the concept of organization.
However, these approaches do not address all the problems that concern the
organization in the development of a MAS. Developers need to know how an
organization influences different MAS aspects, for instance, which elements are
required in an agent architecture to deal with its role in an organization, special
behaviors demanded in order to successfully participate in organizations, mandatory
changes in the agents internal state due to the participation in a organization, and so

 Implementing Multi-agent Systems Organizations with INGENIAS 237

on. These questions are answered partially by previous works, but still, a global
approach is needed.

Agent oriented methodologies provide a suitable framework where the complete
MAS is described, and, in this way, the influence of an organization in the whole MAS
can be described more precisely. There are efforts in this sense in most agent oriented
methodologies, such as GAIA [25], Vowel Engineering[5], or MESSAGE [3].
However, these methodologies have not yet answered the questions presented before,
since they do not describe agent architectures and they address the organization design
with ad-hoc concepts whose implementation is not further described. SODA [20] is
closer to what this proposal intends. It bases on the concept of coordination model and
specifies the MAS in terms of tasks, roles, resources, interaction protocols, and
interaction rules. The Group concept is part of SODA and it represents the result of
grouping social tasks, permission to access resources, involved roles, and interaction
rules. Besides, SODA is oriented towards an implementation based on artefacts, which
are objects and tools agents use to achieve their purpose [19]. The main difference of
SODA and this proposal can be summarised in three points: this proposal provides finer
grain descriptions of agents including their mental state, a higher specific concept for
the management of MAS (i.e., the organization concept), and a generic implementation
procedure by means of code generation techniques.

With respect to standards, FIPA [10] does not propose a special infrastructure
towards organization implementation nor organization modeling. It could be said that
protocols and services described by FIPA induce organizational structures. Perhaps, if
a MAS would respect strictly the semantics of speech acts [11], which are specified
using modal logic, their behavior would be closer to the ideal of many researchers and
would show many of the features associated with organizations. However, the
semantics of ACL speech acts does not appear into existing FIPA implementations.
So organizations do not appear explicitly nor implicitly.

This paper contributes with a generic description of concepts and components that
are needed to explicitly describe organizations in FIPA compliant platforms, and this
is applied to design and implementation on a popular FIPA compliant platform, JADE
[2]. It is a preliminary work in the sense that it does not integrate all of the research
works mentioned here, only a part, but provides hints about how organizational
concepts influence agents. Our starting point is Ferber's work [8] and the goal is to
integrate gradually other approaches. To do so, we needed a generic way of
incorporating the different elements needed to implement the dynamics of an
organization. The work can be seen from an analysis and from a design point of view.

In the analysis, we will use explicit organizational concepts in order to better
understand the MAS. In the design, all the organization dynamics will be captured
within three elements: goals, tasks and protocols. Hence, we reduce the organization
problem to an interaction problem and the satisfaction of a set of goals. We will see
along the paper what resources are needed in order to execute each task and what
consequences do result. At the end, the organization concept will reify into agents
playing organizational roles.

Results presented here are illustrated with an extensive case study about business
processes that appear in the modeling of a bookstore company. This case study has
been used to validate our approach for the definition and implementation of

238 J.J. Gómez-Sanz and J. Pavón

organizations. The notation and tools used for modeling and code generation are those
provided by the INGENIAS Development Kit (IDK, available as free software [17]).

Section 2 presents the case study that will illustrate how to implement organization
management functionality. After a brief review of this example, Section 3 analyzes
the requirements, from the case study, that an organization implementation should
meet. Section 4 shows how to satisfy these requirements by sketching organization
dynamics, which would be the design part. Section 5 provides further details about
one of the dynamic aspects of the organization: how to subscribe new agents.
Afterwards, section 6 presents implementation details of the dynamics, including
modeling and implementation on the JADE platform. The last section presents the
conclusions, pointing out open issues.

2 The Bookstore Case Study

We have selected as case study the Juul Møller Bokhandel A/S problem which is
described in [1]. It deals with some interesting agent research areas, such as supply
chain management, workflows, enterprise modeling, and user modeling. It describes a

Fig. 1. Bookstore organization. This figure uses INGENIAS notation to represent organizations
(rectangles with three circles above), groups (rectangles with two circles), goals (circles),
workflows (linked ovals) and roles (the hollowed squares). In this example, the organization,
JuulMoller enterprise, pursues two goals: SellBoooks and ObtainBenefits. This organization is
structured in two groups, the Esales and Logistics departments, each one with a structured set
of roles. Some worflows (e.g., SellBooksThroughInternet, ProvideListOfBooks, and
ObtainBooksFromPublishers) are defined in the context of the organization.

 Implementing Multi-agent Systems Organizations with INGENIAS 239

bookstore that sells books to, mainly, the students of one university. The bookstore
has an agreement with professors and students to obtain a list of the books that will be
used in their courses and to sell them at special prices. The bookstore is considered an
organization in which there are departments in charge of sales and departments in
charge of logistics. This organization has to negotiate with other organizations, the
publishers, for acquiring books at the best prices and with specific timing constraints.
It can also negotiate for special arrangements for certain books that are demanded in
concrete courses. Sales can be conventional or via web.

In this case study, the goal is to define an electronic sales system. Fig. 1 shows a
draft of the initial organization for the bookstore. The Juul Møller bookstore is
initially structured in two departments: Logistics and ESales. The first is responsible
of delivering goods to customers and from publishers. The second is responsible of
interacting with customers and providing representatives that interact with other
editorials.

3 Studying General Requirements

This initial presentation of the main organization for the case study is rather simple. It is
expressed with a language whose semantics are basically an extension of Ferber’s work
[8]. This extension was published first in [12] and then reviewed in [13]. The extension
integrates the organization and group concepts into a more detailed model of MAS.
Organization here is considered as a first order entity that pursues goals and cannot exist
by itself. It depends on a set of agents that perform the tasks that will satisfy
organizational goals. Internals of organizations are detailed using goals, workflows,
group structures, and resources.

A developer may realize that this concept is not useful unless some additional
concepts are added. Since agents are autonomous, they may not always execute the
tasks required by the organization. Also, agents are adaptative and they may
potentially change its behavior. Therefore, an organization should be aware that
agents that fulfilled compromises in the past, may not in the future.

Organizational goals require agents to execute tasks and produce results. In an
open environment, an organization may find different agents that are able to perform
similar tasks. The quality of results, in some cases, depends on many variables, like
CPU time or available memory. This is the case of automatic document clustering
tasks or planning tasks. Also, in that environment, an agent may disappear and appear
several times during the lifetime of the organization. An organization should keep a
record of agents so that it always incorporates the most effective.

We could model these requirements by means of trust and effectivity. Both
concepts can be modeled, in part, with INGENIAS:

• Trust. Trust can be represented with a history of the activity of an agent and a
utility function. This function would generate an estimation of the trust that
deserves an agent according to its past history. The history would contain records
about whether an agent satisfies all of its compromises or not. For instance, if an
agent was responsible of executing a concrete critical task and it failed to execute it
on time, a wise action would be to remember this failure and locate another agent
with better statistics, to reassign responsibilities.

240 J.J. Gómez-Sanz and J. Pavón

• Effectivity. Effectivity could be represented in terms of the account of performed
tasks, quality of results produced, and execution conditions. Quality would be
computed with another utility function. Execution conditions should be determined
when defining the organization in order to consider parameters related with its
goals. This way, the organization executes tasks adapted to each situation.

These are the concepts we want to incorporate in order to complement the static
definition of the organization we gave in Fig. 1, but, first, they need to be translated into
some modeling constructs. Following INGENIAS, at the modeling level, these aspects
are synthesized in the form of a single goal: organizational health (see figure 2).
Satisfying this goal means having agents that deserve trustiness and execute the required
tasks with certain effectivity. At the end, the organization, in order to achieve this goal,
has to ensure that:

• There are no members that do not collaborate when requested.
• There are no members with low productivity.
• Existing members do not abuse organizational resources, avoiding other agents

to perform other tasks.
• Conflictive agents are expulsed and never admitted again.

So it could be said that achieving organizational health implies defining
management functions for adding, removing, and monitoring agents in a organization.
The situation is similar to a previous work published in [14][15] about community
based collaborative filtering. In that system, agents were admitted in communities
provided that they suggested good information to other agents. The goodness of a
piece of information was measured with a voting scheme and a comparison with
previous known interesting documents. Here, the situation is similar in the sense that
the members of the organizations help to detect these annoying agents with a low
computational cost.

Fig. 2. The intention of achieving organizational health in the organizations involved in the
case study is represented as a goal that is pursued by the organizations

 Implementing Multi-agent Systems Organizations with INGENIAS 241

This solution is adapted to this case study in the form of Organizational Health,
that stands for: everything goes fine if most of its members think it goes fine. As a
first step towards including organization management capabilities into the case study,
the original specification is modified to associate this new goal to current
organizations (see Fig. 2). In order to implement this goal, new roles (functionality)
appear for organization management, as it is described in figure 3.

Fig. 3. Organizational Roles required to manage an organization

4 Designing the Dynamics of the Organization

Trust and effectivity can be used as criteria for deciding whether an organization
benefits when an agent belongs to it. But, it should be also established under which
criteria an organization should decide to find a new member or accepting a new one.
Altogether, these aspects define the organization management framework. This is
represented here as four basic workflows:

1. Subscribing into an organization. Deciding to admit a new member into the
organization depends on two factors:
• Organizational needs. If existing goals can be satisfied in many ways, the

organization may accept agents with new skills or new implementations for
existing tasks that increase performance.

• Trust and effectivity. Admitting an agent that belonged to the organization in
the past is safe whenever this agent behaved satisfactorily. For instance, if an
agent has demonstrated that it does not fulfill a compromise, it should not be
admitted anymore. If it is an unknown agent, the organization should evaluate
the benefits of introducing this new agent against the benefits that have being
obtained up to the moment.

2. Leaving an organization. This process is started by a member of the organization.
This member, first, finishes compromises acquired with other members of the

242 J.J. Gómez-Sanz and J. Pavón

organization. Once its compromises are carried out, it can leave the organization
safely.

3. Expulsion. The organization expels those members whose behaviour does not stick
to what was expected. Deciding whether a member has to be rejected or not is based
on a set of reports collected during the life of the agent within the organization.

4. Monitoring the organization. Monitoring means asking each member of the
organization about other members of the organization. This serves for two
purposes: detecting if agents are still alive and detecting if other agents satisfy their
compromises. Collected reports are stored and used for deciding if an agent should
be expelled and if, in the future, this agent should be admitted again.

These protocols aim at keeping the Organizational Health. The goal is achieved
whenever conflicting agents are expulsed from the community and collaborative and
effective agents are maintained. The chosen representation of the protocol may have
been a different one, instead of the notation of the Fig. 3. For instance, we may have
chosen an AUML notation, as Fig. 5 shows. The only difference is that, by now, our
code generation facilities only understand diagrams like Fig. 3 and we cannot do the
same with those of Fig. 5.

Fig. 4. Subscribing Interaction between a subscriber and a subscription manager. Squares with
arrows represent interaction units. An interaction unit stands for a message passing, a shared
tuple space writing/reading, or any other communicative act. UIInitiates means that a role sends
a message. UIColaborates means that a role receives a message. UIPrecedes means that a
communication act precedes in time another.

 Implementing Multi-agent Systems Organizations with INGENIAS 243

5 Designing Subscription Interactions

As an example of what detail level to achieve, this example considers detailed design
elements for a concrete interaction, the one responsible of subscribing new agents to
the organization which was introduced in Fig. 4.

Fig. 5. Representation in AUML of the protocol presented in Fig. 4

This is an important part of the dynamics of an organization, since it gathers elements
from subscription and reuses results from the monitoring stage. The roles depicted in
Fig. 3 are involved in the functionality required from an organization. Agents that want
to become members of an organization have to play Subscriber and Monitored roles.
Agents in charge of managing the organization will play Monitor and Subscription
Manager roles. One of these protocols is the subscription protocol, shown in Fig. 4. In
this protocol, the subscription manager executes the task evaluate agent capabilities
if it decides to participate in the interaction. In response, the subscriber will execute
internal changes to register that now it belongs to the organization (task process
positive answer), or to register that it has been removed (task process negative
answer). These tasks are associated within the interaction in the initiator or
collaborator of each interaction unit.

The initiator of the protocol knows that it must start then interaction when the
condition from Fig. 6 is satisfied. This condition means that a running instance of
an agent has an Organization Compatible fact pointing at an organization, and that
an agent subscribes to a concrete organization. This fact is produced by an internal
task of the agent that plays the role subscriber. The task is shown in Fig. 7.

244 J.J. Gómez-Sanz and J. Pavón

Fig. 6. Conditions to be met in order to decide which organization a requester should subscribe
to. The box with an F denotes a Fact. The figure between brackets represents an instance of an
agent in runtime. The remaining symbol is a description of requirements for its mental state.
The requirement is that the fact contains the name of the organization selected (!=null).

Deciding what organization to subscribe to implies that there exists some registry
of existing organizations and a description of what they do. In Fig. 7., this is
represented with the component Organization Yellow Pages. Also, this figure
explains that an agent would execute this task in order to satisfy the goal belong to
an organization. As a result of the task, two facts are produced, one that points at
the organization and another that contains a request for subscribing in the
organization.

On the other hand, to decide if the requester should be accepted, the subscription
manager should consult its internal state and some resources to decide whether if the
subscription is accepted or not, see Fig. 8.

To decide if an agent should be accepted within an organization, the subscription
manager should consult the trust and efficiency information stored within its mental
state. Also, it should check current organizational needs to verify if the agent would
be needed at all. As a product of the task, the agent produces a negative or positive
evaluation. And why the subscription manager would like to execute this task,
because it wants to achieve a good level of organizational health.

Fig. 7. Task that decides what organization an agent should subscribe to. The oval denote a
task. Boxes with an F denote a Fact. Boxes with an E denote applications that already exists in
the environment.

 Implementing Multi-agent Systems Organizations with INGENIAS 245

Fig. 8. Description of the task responsible of deciding whether a requester is accepted or not

6 Linking the Case Study with Organization Management and
Implementation Issues

Using the models shown in Fig.4, Fig. 6, Fig. 7, and Fig. 8 the developer identifies
components that have to be present in the design of the MAS. Concretely, these
elements are:

 A responsible of managing the organization (Fig. 4)
 Elements for storing information about trust and efficiency as described in

section 3.
 Implementation of the protocols from section 4.

So far, what we have are models that specify these elements within a BDI
framework. These models explain what changes are expected in an agent by detailing
which are the outputs of the tasks it performs. In figure 6, the diagram establishes
that there is a procedure to select an organization to subscribe to, that there should
exist a yellow pages service for organizations, and that the mental state of the agent
should be changed to incorporate two new facts after the task execution.

Original case study is modified to take into account these aspects, but the
modifications are simple. First, the goal keep organizational health is associated with
existing organizations (Fig. 2 (A)). Then, organizational roles from Fig. 2 (B) are
associated with existing agents in the original case study. With these slight
modifications, the case study would incorporate functionality able to behave as it has
been specified here.

There is one open issue, yet: how it is possible to ensure that this new functionality
appears in the final development. Modeling is not enough. Diagrams presented before
are useful only to indicate what entities exist and what relationships connect them.
So far, what we have is an analysis and design work, but in the detailed design and
implementation these entities should map to computational entities and code. This
goal is achieved by defining methods to map the specifications (see Table 1),
diagrams in this case, to code. This is addressed following. To perform this task, this

246 J.J. Gómez-Sanz and J. Pavón

paper uses the set of code generation tools provided by the INGENIAS Development
Kit (IDK) [17]. Table 1 shows the mappings applied so far. It is generic since we
intend to consider organization management tasks just as any other kind of tasks.

Table 1. On the left, the table shows which specification elements will be taken into account.
On the right, some indications about how they will be present in the implementation.

Model entity Implementation elements
Interaction Data structures associated to the agent. It incorporates

state machines implementing protocols, debugging
facilities, and

Protocol specification Several state machines distributed among different
participants. Each participant only knows the states in
which it collaborates

Agent A JADE agent with infrastructure for conversation
management.

Role An entry in the yellow pages of JADE. Functionality
associated to the role is directly migrated to each
agent playing it.

Organization Information within data structures of agents
Organization Group Information within data structures of agents

Tasks Components encapsulating agent actions
Goals Information within data structures of agents

OrganizationYellowPages A specialized use of the yellow pages of JADE. We
represent each organization by special roles in the
yellow pages directory

Effectivity A fact in the mental state of the agent playing the
Monitor role

Trust A fact in the mental state of the agent playing the
Monitor role

As an example of how it works, we will centre in the implementation of the
interactions needed to implement the protocols from section 4 as well as tasks and the
role of facts in the final prototype. The target platform is JADE, which, in principle,
does not provide facilities for representing organization management functionality.
The basic JADE agent is extended by associating it a mental state and methods to
handle different conversations on demand. An agent in this initial prototype has a
mental state implemented as a blackboard. The agent runs different instances of state
machines, each one representing a concrete conversation. Each state machine has a
control that decides which state is next. Next state is decided by reading the
blackboard and checking if certain conditions hold.

We have built these elements with the help of IDK libraries and frameworks. These
elements are described within templates which are linked with the specification. The
prototype is the result of instantiating these templates with the specification data. The
role of the IDK is to instantiate a framework made up with templates and
conventional source code with pieces of information extracted from the specification.

 Implementing Multi-agent Systems Organizations with INGENIAS 247

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT file (#PCDATA | v)*>
<!ATTLIST file
 overwrite (yes|no) #REQUIRED>
<!ELEMENT program
(#PCDATA|repeat|saveto|v)*>
<!ELEMENT repeat (#PCDATA | saveto | v)*>
<!ATTLIST repeat
 id CDATA #REQUIRED>
<!ELEMENT saveto (file, text)>
<!ELEMENT text (#PCDATA | repeat | v |
saveto)*>
<!ELEMENT v (#PCDATA)>

Fig. 9. DTD for templates to be filled with the information extracted from the specification

 …
 @repeat id="condfacts"@
 Fact @v@label@/v@=
 getAgent().getFact("@v@type@/v@");
 @/repeat@
 if (@v@condition@/v@){
 sb.setState(options[0]);
 }
 …

(A)

 …

 Fact
fact=getAgent().getFact("Request_for_organizat
ion_subscription");
 if (fact.get("orgName")!=null){
 sb.setState(options[0]);
 }
 …

(B)

Fig. 10. (A)Excerpt of a template of code that represents a change of state according to the
presence of some facts in the mental state of an agent and the satisfaction of a boolean
expression. (B) Result of instantiating the previous template with information from the diagram
of Fig. 6.

Templates are described in XML with a custom language based on a simple set of
tags which are presented in Fig. 9. These tags are used to describe where the
specification data is going to be inserted. Informally, the different entities of the
template language could be defined as follows:

 Program. The root node of the document. It declares a template of a
program.

 Saveto. It says that some text has to be saved into a file determined by the
file tag. Text to be saved is the one wrapped by the text tag.

 Repeat. It declares that the enclosing text should be repeated as many times
as needed. Repeating a text means creating duplicates and placing them one
after another. The number of duplicates depends on the data extracted from
the specification

 V. It represents a single piece of data and it is supposed to be replaced by
data coming from a data source.

248 J.J. Gómez-Sanz and J. Pavón

More information about templates in the IDK and how to produce code can be
found in [17]. As an example of the kind of templates a developer could find, and to
give an idea of how it works, readers can check Fig. 10. That figure shows part of
more complex templates which are used for this case study.

 …
Fact expectedInput=null;
Fact expectedOutput=null;
Resource expectedResource=null;

@repeat id="expectedInput"@
expectedInput=(Fact)this.getFact("@v@factName@/v@");
tobject.addExpectedInput(new ExpectedItem("@v@factName@/v@",expectedInput));
@/repeat@

@repeat id="expectedResource"@
expectedResource=(Fact)this.getFact("@v@resourceName@/v@");
tobject.addExpectedResource(new
ExpectedItem("@v@resourceName@/v@",expectedResource));
@/repeat@

tobject.execute();

@repeat id="expectedOutput"@
expectedOutput = (Fact)tobject.getOutput("@v@factName@/v@").getValue();
this.addFact(expectedOutput); //Adds a new fact to the agent mental state
/repeat@
…

Fig. 11. Part of the template of code that represents the execution of a task

Some templates are simple, like the one shown in Fig. 10 (A). Parts of the original
prototype that relate with diagrams are marked up with XML tags like the ones shown
in Fig. 10 (A). That piece of code is part of the control code of the state machine. It is
supposed to depend on the information of diagrams like the one from Fig. 6. To
facilitate codification of programming constructs in templates, the < and > symbols of
XML tags were replaced by the @ symbol. This way, a developer can edit the source of
the template and codify with characters proper of a programming language (like the
greater than symbol or the ampersand) without converting these symbols to their
corresponding codes in XML. Afterwards, a conversion program will transform all the
compromising symbols to a valid XML representation, and the @ symbols to their
original form (< and >). Taking the piece of code from figure 8 and replacing the bold
text with the data from Fig. 6, it results a piece of code such as the one shown in Fig. 10
(B). The process is performed automatically by the IDK.

The implementation of other aspects such as task execution, modification of
mental state, initial mental state of the agents, initial organizations, and others, are
translated in a similar way. Fig. 11 shows another piece of code that shows how
task execution is translated taking into account its inputs, outputs, and required
resources.

 Implementing Multi-agent Systems Organizations with INGENIAS 249

 public class @v@agentid@/v@JADEAgent
 extends JADEAgent {
...
 /**
 * Agent initialization
 */
 public void setup() {
 super.setup();
 @repeat id="interactions"@
 knownProtocols.add("@v@interactionid@/v@");
 @/repeat@
 boolean continueInit=false;
 @repeat id="interactionsColaborated"@
 knownProtocols.add("@v@interactionid@/v@");
 @/repeat@
...

Fig. 12. Piece of code of the template that implements the JADE agent. Shown code is the
responsible of assigning an agent the interactions it knows in the specification.

Note that in the code template, after the task execution, task results are added to the
mental state of the agent. There is also code to deal with task failures and more
templates that define what is a task, a goal, a resource, and other implicated elements,
but they have been omitted here. Anyway, readers can see that this way the IDK is
forcing the analyst to define inputs and outputs of tasks and the developer to take into
account these aspects.

Finally, Fig. 12 presents part of the code of the JADE Agents that we use. The
code shown is part of the standard JADE initialization method. In this method, the
agent is assigned the different behaviors detailed in the specification. The repeat
id="interactions" refers to the interactions initiated by the agent. The repeat
id="interactionsColaborated" refers to the interactions where the agent participates
as collaborator, following the terminology of FIPA. There are similar sections for
tasks, roles, registration into JADE directory facilities, and mental state initialization.

7 Conclusions

This paper has presented an example of how to model an organization using the IDK
and how a part of the generated specification is realized into generic computational
elements using a deterministic method. Organization elements have been first
modeled using INGENIAS notation. Organizational concepts have been added to the
original case study by linking case study entities with roles and goals required by the
organization management elements.

Their implementation has been introduced by means of the IDK code generation
framework and simple components. Concretely, the paper has introduced briefly the
elements required for the implementation, and presented details about the
implementation of protocols and tasks.

The interest of this work is that we success in defining dynamics in terms of simple
elements. The paper works at two levels, an analysis high level which deals with
theoretical concepts, and a design level, where these concepts are translated into more
simple elements: tasks, interactions, and mental entities, such as goals and facts.

250 J.J. Gómez-Sanz and J. Pavón

Organizational health goal concept, protocols, and tasks proposed in this paper
should be applicable into other kinds of organizations where membership is not
predetermined. In those systems, there has to be a registration mechanism and criteria to
decide if expulsion makes sense or not. We defined these criteria for a concrete
development in terms of the opinion that each agent had about other agents in the same
organization. Nevertheless, other domain problems would find other different criteria.

In this line of research, there are pending tasks, like providing concrete algorithms
for selecting which agent to admit and to expulse. The criteria will determine the
dynamics of the population within the organization and designers should be aware of
their effect.
 This work has used tools that are available to the research community on [17].
Researchers can download the tool and the initial specification of the case study,
included in the distribution, though the final version of the templates presented here
are not part of it. However, there are other functional versions of protocol code
generators for JADE and JADE Leap, which has been the main topic considered in
the implementation. It is possible to make experiments with these, and others, code
generation facilities. Also, readers are invited to try the JADE Leap code generation
module which is able to execute tasks appearing in the specification diagrams. Details
about how to run these use cases are available in the INGENIAS Development
Manual, which can be downloaded also from [17].

Acknowledgements

This work has been developed in the project INGENIAS, which is funded by the
Spanish Council for Science and Technology, reference TIC2002-04516-C03-03.

References

[1] Andersen, E (2005). Juul Møller Bokhandel A/S case study. http://www.espen.com
[2] Bellifemine, F., Poggi, A., and Rimassa, G. (2001). JADE: a FIPA2000 compliant agent

development environment. In Proceedings of the Fifth international Conference on
Autonomous Agents. ACM Press, pp. 216-217.

[3] Caire, G., Coulier, W., Garijo, F. J., Gomez, J., Pavón, J., Leal, F., Chainho, P., Kearney,
P. E., Stark, J., Evans, R., and Massonet, P. (2002). Agent Oriented Analysis Using
Message/UML. In Proceedings of the Second international Workshop on Agent-Oriented
Software Engineerins. Lecture Notes In Computer Science, vol. 2222. Springer-Verlag,
pp. 119-135.

[4] Conte, R, Sichman, J S. DEPNET: How to benefit from social dependence. Journal of
Mathematical Sociology, 1995

[5] Demazeau, Y. (1996). Vowels. Invited lecture, In the First Ibero-American Workshop on
Distributed AI and Multi-Agent Systems (IWDAIMAS`96), Xalapa, Mexico.

[6] EIDE (2005). Electronic Institutions Development Environment (EIDE). http://e-
institutor.iiia.csic.es/islander/pub/

[7] Esteva, M, de la Cruz, D, and Sierra, C (2003). ISLANDER: an electronic institutions
editor. In Proceedings of the First international Joint Conference on Autonomous Agents
and Multiagent Systems. ACM Press, pp. 1045-1052

 Implementing Multi-agent Systems Organizations with INGENIAS 251

[8] Ferber, J, Gutknecht. O (1998). A Meta-Model for the Analysis and Design of
Organizations in Multi-Agent Systems. In Proceedings of Third International Conference
on Multi Agent Systems (ICMAS'98), 1998

[9] Ferber, J (1999). Multi-Agent Systems. Addison-Wesley
[10] FIPA (2002). FIPA Abstract Architecture Specification. http://www.fipa.org/specs/

fipa00001
[11] FIPA (2002). FIPA ACL Message Structure Specification, http://www.fipa.org/specs/

fipa00061/index.html
[12] Garijo, F, Gómez-Sanz, J J, Pavón, J, Massonet, P (2001). Multi-Agent System

Organization. An Engineering Perspective. In Proceedings of Modelling Autonomous
Agents in a Multi-Agent World.

[13] Gómez-Sanz, J J, Pavón, J, and Garijo, F (2002). Meta-models for building multi-agent
systems. In Proceedings of the 2002 ACM Symposium on Applied Computing. ACM
Press, pp. 37-41.

[14] Gómez-Sanz, J J, Pavón, J (2003). Personalized Information Dissemination using Agent
Organizations. In Proceedings of the Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems. IEEE Press, pp. 38-44 .

[15] Gómez-Sanz, J J, Pavón, P, Díaz, A (2003). The PSI3 Agent Recommender System. I
Proceedings of the Third International Conference on Web Engineering, Lecture Notes in
Computer Science, Volume 2722, pp. 30 - 39

[16] Gutknecht, F, Ferber, O, Michel, J (2001). Integrating Tools and Infrastructures for
Generic Multi-Agent Systems. In Proceedings of the Fifth international conference on
Autonomous agents. ACM Press, pp. 441 - 448

[17] INGENIAS Development Kit (IDK). http://ingenias.sourceforge.net
[18] MADKIT (2005). Multi-Agent Development KIT, http://www.madkit.org
[19] Molesini, A, Omicini, A, Denti, E, Ricci, A (2005). SODA: A Roadmap to Artefacts. In

Proceedings of the Sixth International Workshop Engineering Societies in the Agents
World.

[20] Omicini, A. (2001). SODA: Societies and Infrastructures in the Analysis and Design of
Agent-Based Systems. In Proceedings of the First Agent Oriented Software Engineering
workshop, Lecture Notes in Computer Science, Volume 1957, pp. 185-193

[21] Pavón, J, Gómez-Sanz, J (2003). Agent Oriented Software Engineering with INGENIAS.
In Multi-Agent Systems and Applications III, Lecture Notes in Computer Science,
Volume 2691, pp. 394-403

[22] Picard, G, Bernon, C, Gleizes, M, Peyruqueou, S (2003). ADELFE: A Methodology for
Adaptive Multi-agent Systems Engineering, Lecture Notes in Computer Science, Volume
2577, 2003, pp. 156 – 169

[23] Sichman, J S (1998). DEPINT: Dependence-Based Coalition Formation in an Open
Multi-Agent Scenario. Journal of Artificial Societies and Social Simulation, volume 8

[24] Sichman, J S, and Demazeau Y (2001). On Social Reasoning in Multi-Agent Systems.
Inteligencia Artificial. Volume 13, pp. 68-84

[25] Zambonelli, F, Jennings, N R, and Wooldridge, M (2003). Developing multiagent
systems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology, 12 (3), 317-370.

Declarative Agent Programming Support for a
FIPA-Compliant Agent Platform

Mengqiu Wang, Mariusz Nowostawski, and Martin Purvis

University of Otago, Dunedin, New Zealand
{mwang, mnowostawski, mpurvis}@infoscience.otago.ac.nz

Abstract. Multi-agent system(MAS) is a blooming research area, which
exhibits a new paradigm for the design, modeling and implementation
of complex systems. A significant amount of effort has been made in es-
tablishing standards for agent communication and MAS platforms. How-
ever, communication is not the only difficulty faced by agent researchers.
Research is also directed towards the formal aspects of agents and declar-
ative approaches to model agents. This paper explores the bonding be-
tween high-level reasoning engines and low-level agent platforms in the
practical setting of using three formal agent reasoning implementations
together with an existing agent platform, OPAL, that supports the FIPA
standards. We focus our discussion in this paper on our approach to
provide declarative agent programming support in connection with the
OPAL platform, and show how declarative goals can be used to glue the
internal micro agents together to form the hierarchical architecture of
the platform.

1 Introduction

Multi-agent system(MAS) research is an important and rapidly growing area in
distributed systems and artificial intelligence. The agent notion has evolved from
a monolithic artifact of software to a new and exciting computing paradigm, and
it is now recognized that MAS, as a conceptual model, has the advantages of
high flexibility, modularity, scalability and robustness [16]. Proprietary MASs
have existed for years, but the lack of agent communication standards hindered
the convergence of individual research efforts and restricted further growth until
the emergence of the current set of standards, the FIPA1 specifications and the
JAS2 standards, which afford agents the ability to communicate with each other
without requiring them to gain inside knowledge of each other.

However, communication is not the only difficulty faced by agent researchers.
There exists a gap between the semantics of an agent and its practical implemen-
tation. For example, if an agent is specified to have a BDI3[19] architecture but is
1 FIPA, Foundation for Intelligent Physical Agents, has developed specifications sup-

porting interoperability among agents and agent-based applications[3].
2 The Java Agent Services (JAS) project defines a standard specification for an imple-

mentation of the FIPA Abstract Architecture within the Java Community Process
initiative[10].

3 BDI stands for Belief, Desire and Intention.

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 252–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 253

implemented with a conventional programming language, it is difficult to verify
whether the agent satisfies the specifications [1,18]. This problem has been ad-
dressed by various research groups around the world, and the result is a set of
agent programming languages, e.g. 3APL, Agent-0, AgentSpeak. [7,15,17]. We are
particularly interested in the 3APL language developed at University of Utrecht,
which allows the programmer to design an agent in a declarative way, by specify-
ing the rules, goals, beliefs and capabilities of the agent. The declarative nature of
3APL helps bridge the semantic gap, and allows flexibility in agent development.

As the number of agent platforms grows, a gap remains in-between these two
building blocks. That is, though an intelligent agent can be built in isolation, one
may find it difficult to migrate such an agent onto a platform which hosts other
types of agents that it needs to cooperate with. On the other hand, only few agent
platforms provide facilities to ease the development of complex agents, or provide
a unified approach for integrating such agents onto the platform [16]. Many plat-
forms that exist today only provide the basic services that are required by the
standard, such as agent management, directory service, and naming service. [4]
Agents on such platforms are developed primarily in some arbitrary imperative
programming language, such as Java, but the semantic gap remains.

One of the few platforms that do attempt to treat this problem and provide
declarative support is the 3APL Platform developed at the University of Utrecht
[8], the same group that invented the 3APL language. But the 3APL Platform has
a few limitations. In particular, it has a closed architecture as opposed to an open
architecture: only 3APL agents can be hosted on the platform. Consequently, the
platform is subject to whatever drawbacks the language itself may have.

This paper explores the bonding between high-level reasoning engines and low-
level agent platforms in the practical setting of using the 3APL language, the
OPAL platform[12], the ROK system and the ROK scripting language[11] and
the JPRS reasoning engines[11]. We focus our interest in this paper on our ap-
proach to provide declarative agent programming support in the OPAL platform,
and show how declarative goals can be used to glue the internal micro agents in
OPAL to form the hierarchical architecture of the platform.

The theoretical extension discussed in this paper is accompanied by a practical
implementation. The extended OPAL platform is now equipped with three pow-
erful high-level declarative agent language and reasoning engines, as well as with
a graphical IDE for constructing complex agents with a hierarchical structure.

2 The 3APL Language

3APL4 is a programming language for implementing cognitive agents, and was
developed at the University of Utrecht, the Netherlands. The 3APL language
incorporates the classical elements of BDI logic and also embraces first-order
logic features. It provides programming constructs for implementing agent be-
liefs, declarative goals, basic capabilities, such as belief updates or motor actions,
4 3APL stands for An Abstract Agent Programming Language, and is pronounced

“triple A P L”.

254 M. Wang, M. Nowostawski, and M. Purvis

and practical reasoning rules through which an agent’s goals can be updated or
revised [1]. In this section we give a very brief introduction to the main constructs
of the language; the formal syntax and the semantics of the 3APL language can
be found in Dastani et al. [1].

2.1 Beliefs

An agent’s beliefs are represented in 3APL as prolog-like well-formed-formula
(wff). An example of using beliefs to represent information about the environ-
ment is an agent with the task of going to a lecture class at a certain time. The
agent will have beliefs such as class starts at(X) and NOT in class(self). If the
agent attends the class, the agent’s mental state and the state of the environment
change. The belief NOT in class(self) denotes that the agent believes he is not
attending a class, so this has to be updated to be in class(self). The beliefs NOT
in class(self) need to be removed from the belief-base(knowledge database) in
order to make sure the agent’s view of the world is consistent.

2.2 Actions

The most primitive action that an agent is capable of performing is called a basic
action, which is also referred to as a capability. In general, an agent uses basic
actions to manipulate its mental state and the environment. Before performing
a basic action, certain beliefs should hold and after the execution of the action
the beliefs of the agent will be updated. Basic actions are the only constructs in
3APL that can be used to update the beliefs of an agent.

An action can only be performed if certain beliefs hold. These are called the
pre-conditions of an action. Take for example an agent that wants to attend a
meeting, using the basic action AttendMeeting(Room1). Before this action can
be executed, there should be a meeting pending at room (Room1), and the agent
should also be at another location but not already engaged in a meeting. The
precondition of AttendingMeeting(Room1) is represented as:

{ meeting(Room1), position(Room2), NOT in a meeting(self) }

After performing the action, the post-condition will become true, and the
agent’s beliefs will be updated. For example, after the AttendingMeeting action
took place, the following beliefs will hold:

{in a meeting(self), position(Room1) }
2.3 Goals

A 3APL agent has basic and composite goals. There are three different types
of basic goals: basic action, test goal, and the predicate goal. A test goal allows
the agent to evaluate its beliefs (a test goal checks whether a belief formula
is true of false). For example, a test goal for testing if the agent is carrying a
box looks like carrybox(self)? This type of goal is also used to bind values to

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 255

variables, like variable assignment in ordinary programming languages. When
a test goal is used with a variable as a parameter, the variable is instantiated
with a value from a belief formula in the belief-base. The third type of goal is a
predicate goal. It can be used as a label for a procedure call. The procedure itself
is defined by a practical reasoning rule (practical reasoning rules are introduced
in the next subsection). From these three types of basic goals, we can construct
composite goals by using the sequence operator, the conditional choice operator
and the ’while’ operator. A special type of goal that has been recently added is
JavaGoal. This type of goal enables the programmer to load an external Java
class and invoke method calls on it. Each method is assumed to return a list
(possibly empty) of well formed formula.

2.4 Practical Reasoning Rules

Practical reasoning rules are at the heart of the way 3PAL agents operate. They
can be used to generate reactive behavior, to optimize the agent’s goals, or
to revise the agent’s goals to get rid of unreachable goals or blocked basic-
actions. They can also be used to define predicate goals (i.e. procedure calls). To
allow for the dynamic matching of rules, goal variables are used as place-holders.
Unification mechanisms are used when performing goal-matching.

3 Rule-Driven Object-Oriented Knowledgebase System

ROK, Rule-driven Object-oriented Knowledge base system, is a forward chain-
ing production rule system derived from JEOPS. JEOPS was developed by Car-
los Figueira Filho and Carlos Cordeiro [2]. ROK provides a library and API
written in Java, with a mechanism for embedding first-order, forward-chaining
production rules into Java applications. It was created to provide the declarative
expressiveness of production rules, which is useful for the development of large
or complex systems [11]. ROK production rules can be described as condition-
action patterns. Any Java object can be matched in a ROK rule, and any Java
expression can be used in the condition and action part of ROK rules. There
are two major modes of operation for a ROK system: native and interpreted.
In the native mode the programmer declares the rules using the provided Java
API. In the interpreted mode, users prepare the rules as a text script file to be
parsed and interpreted by the ROK interpreter. In the interpreted mode, the
programmer is freed from writing Java code and only has to write declarative
pseudo-Java scripts. But there is a performance trade-off: native mode is faster
in execution and is the optimal method of operation.

3.1 An Example ROK Program

Here we present a simple ROK program as an example. The rules in this program
say that ”If a salesman is selling a product the customer needs, for a price the
customer can afford, then the deal is made”. Supposing that Salesman, Customer
and Product are Java classes, previously defined by the programmer (or even by
third-parties), the rule should be stated as the following:

256 M. Wang, M. Nowostawski, and M. Purvis

import example.Salesman;
import example.Customer;
import example.Product;
rule: trade {
declarations:
Salesman s;
Customer c;
Product p;

conditions:
c.needs(p);
s.owns(p);
s.priceAskedFor(p) <= c.getMoney();

actions:
s.sell(p);
c.buy(p);

}

In this example, if there is an object for each of the Salesman, Customer and
Product classes, and all the expressions in the condition part evaluate to be true,
then the action part of the rule will be executed. The formal syntax description
of ROK and more examples can be found in [11].

3.2 Internal Structure of ROK

The heart of the ROK system is the knowledge-base. It is composed primarily
of three main blocks: the object-base, the rule-base and the conflict set. The
object-base is the working memory, where the facts that the agent knows are
stored. The rules written by the programmer or compiled from rule scripts are
placed (installed) inside the rule-base. The rule-base is the place where all the
information about the rules is stored, such as their declarations, conditions,
actions, and several other items of control information. The RETE network [6]is
used to store the partial matches between rules and objects, and to increase the
performance of the matching process. Finally, the conflict set is the component
in which the rules that can be fired at a certain moment are stored, as well as
the objects that have been matched to the rule declarations.

The object-base is simply a collection of objects. It could be simply imple-
mented as a Java vector, but we decided to store the objects in a structure
from where we could retrieve the objects of a given class in a more efficient
way. Hence, the object base is implemented with a hashtable that maps fully-
qualified names of the classes to the set of objects belonging to that class. With
that arrangement, we can efficiently retrieve all objects that belong to a given
class, which is a necessary operation in the matching stage of the inference en-
gine. The object-base is also responsible for storing the inheritance relationships
between the class of the objects stored in it, so that when the inference engine
asks for all objects of some class, it will return both the direct instances of this
class and the instances of its subclasses (i.e., its indirect instances).

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 257

RETE is a classical algorithm used in production systems to minimize the
number of tests required in the matching process [6]. Partial matchings are stored
in a RETE, and they do not have to be re-tested. New objects that arrive in the
network are tested only where necessary.

The conflict set of the knowledge-base is the area where rules ready to be fired
are stored. The user has the ability of choosing the conflict resolution policy to
be used in the knowledge-base. In most of the cases, the user will not need to
use any complex policy, and the predefined classes will be sufficient. ROK has
some predefined classes that implement different policies for choosing which rule
is to be fired at any given moment. The predefined classes are the following:

1. DefaultConflictSet: The conflict set used when none is specified. Its conflict
resolution policy is not specified. In other words, any of the instantiations
can be returned, and it was implemented to be as efficient as possible.

2. LRUConflictSet: A conflict set that will choose the least recently used rule.
If there is more than one rule in the conflict set, it will choose one that was
fired before the remaining ones.

3. MRUConflictSet: A conflict set that will choose the most recently used rule.
If there is more than one rule in the conflict set, it will choose one that was
fired after the remaining ones.

4. NaturalConflictSet: A conflict set that will not allow a rule to be fired more
than once with the same objects. This conflict set requires a large amount
of memory to store the history of rule firing, so it must be used with care.
It also tends to get inefficient when the history grows.

5. OneShotConflictSet: A conflict set that will not allow a rule to be fired more
than once.

6. PriorityConflictSet: A conflict set that will give priorities to the rules. Rules
defined first in the rule base file will have higher priorities than rules defined
later.

3.3 The Reasoning

The current implementation of ROK enables the user to operate in two modes
on the knowledge-base: one-shot mode and continuous mode. When the user
calls the run() method on the knowledge-base, the inference engine is triggered
to operate. It will perform reasoning on the objects of its working memory un-
til the conflict set is empty. Then it will return the control (return from the
method call). Another possible method is to call runInLoop() method. This
method will block the current thread and perform reasoning of the knowledge-
base continuously, i.e. until the halt() method is called. In the continuous mode,
the reasoning will not stop when the conflict set is empty, but will be triggered
on every change of the knowledge-base state, i.e. on addition/removal of rules
or facts. To get information from the knowledge-base, the agent (user) can use
the objects() methods to retrieve all the objects of a given class that are stored
there. Another way of retrieving the information gathered during the execution
of the run() method is to store the information needed in the internal state of
some fact object.

258 M. Wang, M. Nowostawski, and M. Purvis

4 The Java Procedural Reasoning System

JPRS, Java Procedural Reasoning System, is a Java library and API written for
performing goal-driven procedural reasoning. Its ancestors can be traced back to
the architecture of the PRS system proposed by Georgeff [5], as well as UMPRS
and JAM [9]. The notion of procedural reasoning is derived from the idea that
some of human knowledge can be best represented as a set of procedure/steps
performed in order to achieve a particular goal. A simple example of procedural
reasoning can be the planning of a trip from Dunedin to Beijing. The goal is
to start off from an apartment in Dunedin, and end up in Beijing International
Airport. One of the possible plans is: make a booking, then pay for a economic
class ticket from Dunedin to Beijing, take a shuttle to the Dunedin Airport,
transit at Sydney Airport, and finally get off the plane at Beijing Airport. An
alternative plan would be to take a taxi to Dunedin Airport, pay for a first class
direct flight, and then get off at Beijing Airport. We may decide to choose a plan
based on how much money or time we have, or the level of service we are seeking.
Those represent part of our knowledge about the external world, in other words,
our beliefs. Each JPRS agent is composed of four primary components: a world
model, a plan library, a plan executor, and a set of goals. The world model is a
database that represents the beliefs of the agent. In the previous example, the
agent may store information, such as a bank balance, travel departure date, etc.
The plan library is a collection of plans that the agent can use to achieve its
goals. The plan executor is the agent’s “brain” that reasons about what the agent
should do and when it should do it. An agent finishes its tasks when there are
no more goals to be achieved. JPRS uses a framework-like model for declaring
the plans and goals, which provides the specific conventions for declaring goals
and plans. The formal syntax and semantics of JPRS are available at [11].

5 Hierarchical Agent Architecture Using Micro-agents

Before we discuss how the reasoning engines are incorporated into OPAL, it is
necessary to describe the system architecture. The notion of agency is used at
all abstraction levels in modeling OPAL agent systems. At the lowest abstraction
level micro agents, which are the closest agent entities to the machine platform,
are used. In order to be efficient at this fine-grained level, they do not have all of
the qualities often attributed to typical, more coarsely-grained agents. In contrast
to higher abstraction level agents, such as those based on FIPA specifications [3],
micro agents are more concerned with efficiency and thus do not have all of the
qualities and flexibility of FIPA-compliant agents. For instance, micro agents em-
ploy a simpler form of agent communication (they communicate via method calls)
and are implemented by extending predefined Java classes and interfaces [13].

There are two kinds of micro-agent: primitive and non-primitive. Primitive
agents use native services, in particular native micro-kernel libraries, and di-
rectly interact with the underlying virtual machine (in our case the Java Virtual
Machine). Non-primitive micro-agents, which are typically more sophisticated

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 259

and exist at a higher abstraction level, are composed only of micro-agents and
do not use any native services.

Because the smallest building block in OPAL is an agent, the system de-
signer can apply agent-oriented modeling approaches throughout the develop-
ment process. There are two basic constructs in the micro agent system, namely
agents and roles. Agents represent actors in a system that can play one or more
roles. A role represents a cohesive set of services that may be provided by some
agent. Agents that perform the same role are not restricted in the way that they
provide the services as prescribed by the role.

There is a special type of role called a group role. When an agent performs a
group role, it acts as the group owner and creates a group environment in which
other agents could register as group members. By registering with a group, an
agent is associated with the group owner and can collaborate with the owner
agent. For example, upon receiving a task to solve or a goal to achieve, the group
owner can choose to disseminate the goal to its group members and request the
members to achieve the goal. And alternatively, if a group member performs a
role that the owner, itself, doesn’t perform, the owner may still advertise itself
as an actor of the role. When the set of services of the role are subsequently
requested, it can request its group members to provide the services for him.
The group membership can be dynamically modified according to the needs of
individual agents. For example, if an agent is managing a group with too many
members, and the action for searching for the right member becomes a lengthy
operation, it may decide to get rid of some not frequently used group members.
Also, an agent may decide to deregister itself from a group because it is more
often needed in another agent group.

Although the group concept can be effectively used for organizing agents into
hierarchies, one is still faced with the problem of providing ways for the agents
to exchange information and cooperate at semantics level. One way for micro
agents to talk to each other and share their capability is to use role-matching.
When an agent needs other agents to perform certain services for it, it will
need to know what type of role provides such services and then will need to
recursively search through other agents and their groups for that role. If roles and
services could be specified declaratively, this approach would suffice for systems
in which agents would be requesting new services dynamically. But because
roles and services are such generic concepts, difficulties arise in defining formal
semantics specifying the services. And also, since OPAL is written in Java, a
complete high level language built on top of Java is needed to support specifying
services declaratively at runtime . In the current OPAL implementation, roles
and services are not declarative constructs. The role-matching approach would
only be suitable for systems in which all services are known before runtime. This
poses potential restrictions on the dynamism of the systems.

A second approach, which is the one we are currently taking, relies on using
declarative goals to aid in the cooperation among micro agents. The meaning of
a goal in OPAL is similar to the meaning of a goal in 3APL. It typically specifies
some post-conditions that represent the states after the goal has been achieved,

260 M. Wang, M. Nowostawski, and M. Purvis

but doesn’t enforce how these post-conditions are to be realized. In other words,
a goal carries some declarative information of some state, but not the procedural
information on how to reach that state. Agents collaborate through goal exchang-
ing. For example, an agent may decide according to its own internal state, what
its next goal to be achieved is. And if the agent, itself, is not capable of achieving
the goal, or if it wants other agents to provide alternative solutions to achieve
the goal, it can send the goal to other agents. Goals in OPAL are self-descriptive,
other agents can evaluate the goals and try their own way of achieving the goal.
At the end it will inform the initiating agent whether it succeed in achieving
the goal or not. Similar to the role-matching approach, the goals can be recur-
sively passed down through the agent hierarchy, or even from the bottom-up.
The advantage of using goals instead of roles becomes evident when the system
designer can only describe the states of the system declaratively but does not
know exactly how the transitions between states take place. In contrast to a ser-
vice, a goal is a simpler concept and can be formally specified as pre-condition
and post-condition clauses, which makes the implementation easier. It allows
more dynamic interactions among agents. For example, if the semantics of the
pre and post-conditions of the declared goals is commonly understood among
agents, an agent can creating a new goal on the spot.

This hierarchical structure of agents allows us to construct more complex
agents. And since the agents, even at the lowest level, are completely autonomous,
not only systems that operate in dynamic environments can be modeled us-
ing this architecture, we can even model intrinsically dynamic systems that are
changing or evolving over time.

The hierarchical agent architecture is also highly modular and open. Since
micro agents communicate with each other through declarative goals, their in-
ternal structure or state is hidden from each other. This important feature allows
us to introduce new components into the platform easily. In the next section we
describe how we integrate the high level reasoning engines and programming
languages into OPAL.

6 Integrating 3APL, ROK and JPRS into OPAL

To integrate the three high level reasoning engines into OPAL, our idea is to
introduce them as special micro agent components. It means that apart from
having the original Java primitive micro agents, we also have three special kinds
of micro agents — 3APL micro agent, ROK micro agent, and JPRS micro agent.
The integrating process for the three components are the same in principle,
and only differ slightly in implementation. The 3APL micro agent class has
a 3APL interpreter and a 3APL engine as its core. It inherits the role play-
ing and group behavior from the primitive micro agent class. The 3APL micro
agent loads its source from a prepared 3APL program script and compiles the
source using the interpreter. Recall that in Section 2.3, we mentioned a special
kind of goal in 3APL language called JavaGoal, which represents a simple Java
method invocation. In our implementation, we have modified the JavaGoal con-
struct so that when the 3APL program produces a JavaGoal, an OPAL goal is

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 261

created to wrap up the contents of the JavaGoal. The 3APL micro agent can
then treat it as a normal OPAL goal and decide whether it has the ability to
solve this goal using its local capability or not; and in the latter case, it can
distribute this goal to other micro agents for assistance. When external infor-
mation arrives at the 3APL micro agent, whether it is a message or a goal, the
3APL micro agent will insert the information into its belief-base, in the following
format:

– if the arriving data is a message, the belief message(content) will be added
to the belief-base.

– if the arriving data is a goal(which represents a service request), the belief
goal(precondition, postcondition) will be added to the belief-base.

In both cases, the belief-base is treated as a knowledge-base for holding infor-
mation. It would be more straightforward to insert the incoming OPAL goal as
a 3APL goal instead of inserting it into the belief-base as a belief item. But the
problem is that there is a set of eight programming constructs for 3APL goals
(BactionGoal, PredGoal, TestGoal, SkipGoal, SequenceGoal, IfGoal, WhileGoal,
JavaGoal), and in order to do the goal transformation, one is faced with the prob-
lem of interpreting the content of the OPAL goal, and deciding which one of the
eight types of 3APL goal to transform to. By inserting the OPAL goal as a belief,
we leave the handling of the goal to the programmer. The programmer can write
rules coping with the belief change caused by receiving goals. This implemen-
tation restricts the dynamism and flexibility we gained from having declarative
OPAL goals, because the 3APL programmer needs to know what kind of OPAL
goal the program will receive in order to prepare sensible rules for it. But on the
other hand, even with 3APL goals, true dynamism is not possible. The 3APL
programmer can only specify the plan of achieving goals knowing what goals to
expect. In this sense, this implementation compromise is not too severe. Never-
theless, to provide better bridge of this existing semantic gap remains as a future
goal for OPAL development.

We take almost identical approaches for integrating ROK and JPRS micro
agents. Upon receiving messages or goals, the information is wrapped up as an
item of belief and inserted into the knowledge-base of ROK and JPRS agents,
respectively.

7 Performance Comparison of the Three Reasoning
Engines

The absolute speeds of these reasoning engines are difficult to measure, because
implementation bias in the test programs is inevitable. And also in a multi-
agent environment, agents that are powered with these reasoning engines spend
their processing time not just on local computation, but also on communication.
Although precise quantitative figures are difficult to obtain, we believe some
computationally intensive test could still give us suggestive evidences on the
relative speed of the reasoning engines. We choose to implement mergesort tests

262 M. Wang, M. Nowostawski, and M. Purvis

using all three engines, because mergesort is a standardized algorithm, which
helps to minimize the amount of implementation error or bias introduced.

The tests were run on an Acer machine with a Celeron 2.4 GHz processor and
240MB RAM. We wrote a 3APL program, a ROK program running in native
mode, a ROK program running in scripting mode, and a JPRS program, all
running mergesort on integer arrays containing random integers.

The average times each program took to sort the arrays are given in Table 1
and are plotted in Figure 1 and Figure 2. When the length of the array to be
sorted became larger than 1000, the 3APL program took too long (longer than
15 minutes) to compute and thus the results are omitted.

We plotted the results of the 3APL program separately from the other results,
because the scale of the 3APL program’s execution time is too large for visual
comparison with the other reasoning engines. From Figure 2 we can see that
ROK in native mode is the fastest. It is about twice as fast as ROK in scripting
mode, and many times faster than JPRS, especially when the the array size
becomes greater than 1000. We also observed that both ROK and JPRS are

Table 1. Mergesort Time (in ms.)

No. of int to sort 3APL ROK Native ROK Scripting JPRS
50 12078 361 110 40
100 28632 661 141 80
200 83040 801 200 350
300 178797 841 360 841
400 318919 1072 341 1773
500 519127 1312 390 3265
600 761235 1472 441 6319
1000 ... 3565 1402 3004
2000 ... 6920 2924 20250
3000 ... 10836 4737 68318
4000 ... 16854 9374 168853
5000 ... 21892 10495 314111

Fig. 1. 3APL Mergesort Program Runtime Plot

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 263

Fig. 2. ROK and JPRS Mergesort Program Runtime Plot

much faster than 3APL. This result is not surprising, because JPRS and ROK
are built closely to primitive Java, and the goal-plan matching algorithm is
not computationally expensive. On the other hand, 3APL has a more complex
internal structure. It uses a JIProlog engine internally to process prolog-like wffs,
and its first order logic features (variables) makes the reification process much
more complicated than ROK or JPRS. The slower speed of 3APL is a trade-off
against its declarative expressiveness, and its first order logic features.

8 The Master MindTMGames

We developed a system for benchmarking, the Master MindTMGame[14], to ver-
ify the integration of the high level reasoning engines, and also to demonstrate
the two different approaches of agent development in OPAL – declarative and
procedural. In the game, the master mind holds a key of 4 pegs, each has one
of six colors. The code breaker tries to deduce the answer by making guesses at
it. master mind will mark each guess with a black or a white marker. A black
marker means one of your pegs is the correct colour and in the correct position.
A white marker tells you that one of the pegs in the guess is of a colour which
is in the solution, but not in the correct position. A full description of the Mas-
ter Mind game can be found in Nelson [14]. In our implementation, three high
level OPAL agents were developed. Each high level agent is composed of two
lower-level micro agents. One of them is in charge of FIPA-compliant messag-
ing services, and the other micro agent is the reasoning agent that implements
the game logic. The three reasoning micro agents were a 3APL micro agent,
a ROK micro agent, and a JPRS micro agent. The high level agents represent
code breakers and have a common goal of winning the game using as few guesses
as possible. They share information and cooperate through exchanging FIPA
messages. The real-world Master Mind game is not a multi-player game and
therefore adopting it and setting it into a multi-agent scenario is not naturally
suited for multi-agent system applications. But our purpose is to demonstrate
the usability of the extended OPAL platform by showing an example of how

264 M. Wang, M. Nowostawski, and M. Purvis

one could use all the high-level components in OPAL. The reasoning power of
the high-level engines, albeit under-utilized, are still well-demonstrated in this
example system. Future work is expected to involve the development of more
sophisticated and complex multi-agent systems in OPAL, using the reasoning
engines and the declarative programming feature.

9 OPAL IDE

Recently, a graphical IDE has been added to OPAL. The IDE facilitates the
design, development and testing phases of agent software development, without
having to reboot the platform. Based on the concepts of micro agents and agent-
oriented software development, the IDE provides support for:

– creation of new micro-agents by simply dragging icons and plugging them
into the existing hierarchy (currently we support the graphical instantia-
tion of 3APL agents, ROK agents, primitive Java agents, OPAL agents and
primitive Java roles);

– grouping and regrouping of agents (we currently support moving, regrouping,
copying and deleting micro-agents in a drag-n-drop fashion).

The intuitive graphical operations on agents in the IDE are enabled by the
underlying more complex interactions with the platform. For example, when a

Fig. 3. OPAL Agent Composition Panel Screen-shot

Declarative Agent Programming Support for a FIPA-Compliant Agent Platform 265

new micro-agent is created, we first determine the agent type and its creator
in the agent hierarchy, then we make an instance of the agent, and handle all
the necessary registration and association with other agents. Also we show such
associations to the developer in the GUI. A full scripting interface is implemented
for 3APL micro-agents. The user can load a source file, modify and compile the
source file, or create the source file on-the-fly in the text area provided. The IDE
is still in the prototyping phase and not yet released. To allow the IDE to support
dynamic scripting of general Java agents, we are currently evaluating different
approaches of either using our own scripting engine, or relying on customized
Java classloaders. This is the next phase of OPAL development. The screen-shots
of the IDE are shown in Figure 3.

10 Conclusion

As discussed at the beginning of this paper, declarative agent programming lan-
guages and techniques bridge the semantic gap that exists between agent
specification and practical implementation. We have presented our approach of
incorporating declarative agent programming support into the OPAL multi-agent
platform. In particular, we have described in detail how the agent-oriented hierar-
chical architecture of OPAL can facilitate the easy integration of high-level agent
programming languages such as 3APL and ROK. The extended OPAL platform
allows developers to use the powerful features of declarative languages in devel-
oping complex agent systems, while maintaining agent-oriented architecture.

References

1. Dastani, M., Riemsdijk, B. V., Dignum, F. and Meyer, J. J. C. (2004). “A Pro-
gramming Language for Cognitive Agents Goal Directed 3APL”, In Proceedings of
the First Workshop on Programming Multi-agent Systems: Languages, frameworks,
techniques, and tools (ProMAS03), Springer-Verlag, Berlin, 2004.

2. Figueira, C. and Ramalho, G. (2000). “JEOPS - The Java Embedded Object Pro-
duction System”, In M. Monard, J. Sichman (eds.). Proc. of 7th Ibero-American
Conference on AI (Atibaia, November 19–22, 2000). Lecture Notes in Artificial
Intelligence, pp.53-62, Vol. 1952. Springer-Verlag, Berlin, 2000.

3. FIPA Organization. http://www.fipa.org
4. FIPA. “FIPA Agent Management Specification”,

http://www.fipa.org/specs/fipa00023/sc00023j.html
5. Georgeff, M. P. and Lansky, A. L. (1986). “Procedural Knowledge”, Proceedings of

the IEEE Special Issue on Knowledge Representation, 74(10):1383-1398, October
1986.

6. Forgy, C. (1982). “ Rete: a Fast Algorithm for the Many Pattern/Many Objects
Pattern Match Problem”, Artificial Intelligence, 19:177, 1982

7. Hindriks, K., De Boer, F., Van der Hoek, W. and Meyer, J. J. (1999). “Agent pro-
gramming in 3APL”, Autonomous Agents and Multi-Agent Systems, 2(4): pp.357-
401, 1999.

8. Hoeve, E. C. ten (2003). “3APL Platform”, Master’s Thesis, University of Utrecht,
The Netherlands, Oct 2003.

266 M. Wang, M. Nowostawski, and M. Purvis

9. Huber, M. J. (2001). “JAM agents in a nutshell”, Nov 2001.
10. Java Agent Service. http://www.java-agent.org
11. Nowostawski, M. (2001). “Kea Enterprise Agents Documentation”, Aug, 2001.
12. Nowostawski, M. (2004). “Otago Agent Platform Developer’s Guide”, Feb 2004.
13. Nowostawski, M., Purvis, M., and Cranefield, S. (2001). “KEA - Multi-level Agent

Infrastructure”, In Proceedings of the Second International Workshop of Central
and Eastern Europe on Multi-Agent Systems (CEEMAS 2001), pp.355-362, Depart-
ment of Computer Science, University of Mining and Metallurgy, Krakow, Poland
2001.

14. Nelson, T. (1999). “Investigations into the Master MindTMBoard Game”,
http://www.tnelson.demon.co.uk/mastermind/, 1999.

15. Rao, A. S. (1996). “AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language”, In W. van der Velde and J.W. Perram, editors, Agents Beaking
Away (LNAI 1038), pp.42-55, Springer-Verlag, 1996.

16. Ricordel, P. M., and Demazeau, Y. (2000). “From Analysis to Deployment: A
Multi-agent Platform Survey”, ESAW : pp.93-105, 2000.

17. Shoham, Y. (1993). “Agent-oriented Programming”, Artificial Intelligence, 60:
pp.51-92, 1993.

18. Wooldridge, M. J., and Jennings, N. R. (1995). “Intelligent agents: Theory and
practice”, Knowledge Engineering Review, 10(2), 1995.

19. Wooldridge, M. J. (2002). An Introduction to MultiAgent Systems, West Sussex,
England: Wiley, 2002.

Author Index

Baldoni, Matteo 57
Barrett, Anthony 156
Boella, Guido 57
Braubach, Lars 139

Cheong, Christopher 168
Chopinaud, Caroline 41

Dignum, Frank 222

Fisher, Michael 3

Gómez-Sanz, Jorge J. 236
Gonzalez-Palacios, Jorge 23

Koch, Fernando 222

Lamersdorf, Winfried 139
Luck, Michael 23

Maheswaran, Rajiv 76
McBurney, Peter 23
Meyer, John-Jules C. 222

Nowostawski, Mariusz 252

Obst, Oliver 90
Omicini, Andrea 206
Ossowski, Sascha 101

Pavón, Juan 236
Pokahr, Alexander 139
Purvis, Martin 252

Rahwan, Iyad 222
Ricci, Alessandro 206

Satoh, Ichiro 187
Saugar, Sergio 101
Seghrouchni, Amal El Fallah 41
Serrano, Juan M. 101

Taillibert, Patrick 41
Tambe, Milind 76

van der Torre, Leendert 57
Varakantham, Pradeep 76
Viroli, Mirko 206

Wang, Mengqiu 252
Winikoff, Michael 123, 168

	Frontmatter
	Invited Papers
	{\sc MetateM}: The Story so Far
	Agent-Based Computing and Programming of Agent Systems

	Multi-agent Techniques and Issues
	Dynamic Self-control of Autonomous Agents
	Bridging Agent Theory and Object Orientation: Importing Social Roles in Object Oriented Languages
	Implementation Techniques for Solving POMDPs in Personal Assistant Agents
	Using a Planner for Coordination of Multiagent Team Behavior
	Reusable Components for Implementing Agent Interactions

	Multi-agent Programming
	An AgentSpeak Meta-interpreter and Its Applications
	Extending the Capability Concept for Flexible BDI Agent Modularization
	A Model-Based Executive for Commanding Robot Teams
	Hermes: Implementing Goal-Oriented Agent Interactions

	Multi-agent Platforms and Organisation
	Organization and Mobility in Mobile Agent Computing
	Programming MAS with Artifacts
	Programming Deliberative Agents for Mobile Services: The 3APL-M Platform
	Implementing Multi-agent Systems Organizations with INGENIAS
	Declarative Agent Programming Support for a FIPA-Compliant Agent Platform

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

