
C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, pp. 89 – 101, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Framework for Automated Negotiation of Service
Level Agreements in Services Grids

André Ludwig1, Peter Braun2, Ryszard Kowalczyk2, and Bogdan Franczyk1

1 University of Leipzig, Faculty of Economics and Management,
Information Systems Institute, 04109 Leipzig, Germany
{Ludwig, Franczyk}@wifa.uni-leipzig.de

2 Swinburne University of Technology, Faculty of Information and Communication
Technologies, Hawthorn, Victoria 3122, Australia
{PBraun, RKowalczyk}@it.swin.edu.au

Abstract. An important aspect of managing service-oriented grid environments
is negotiation of service level agreements. In this paper we propose a frame-
work in which we adopt the three-layer architecture of agent-based negotiation
to the problem of service level agreement negotiation in services grids. We re-
port on the first experience with an implementation of the framework in the
context of the WS-Agreement specification provided by the Global Grid Forum
and present lessons learnt when using this framework in a simple practical
scenario.

1 Introduction

Grid computing has emerged as a new paradigm for next-generation distributed com-
puting. It supports a notion of virtual organizations that can share resources for solv-
ing large problems in science, engineering, and business.

Service-orientation in grid computing focuses on virtualization of grid resources
such as computational resources, storage resources, networks, programs, databases
and so forth, and representing them by means of an extensible set of services that may
be accessed, shared and composed in various ways [12]. The Open Grid Services
Architecture (OGSA) [13] has taken up this approach and introduced the concept of
grid services. At the same time integration and management of distributed applica-
tions by means of services is the objective of Web Services [36]. In an attempt to take
advantage of progress in these two areas, the Globus Alliance [16] in conjunction
with industry support has further developed the existing Web Service standards and
the OGSA specification, and proposed the WS-Resource Framework (WSRF) [3].
WSRF supports creation, addressing, inspection, and lifetime management of re-
sources as stateful services. It defines the semantics of WS-Resources and summa-
rizes how interoperability between components from different sources can be en-
hanced using a service-oriented resource view [5]. Rather than shared usage of com-
puter resources in computational grid infrastructures, services grids use grid para-
digms in the context of services providing service-oriented applications on demand.

90 A. Ludwig et al.

One of the most important aspects of service-oriented computing environments is
that their administration and management is driven by individual organizational goals
and application requirements. In order to support cross-enterprise dynamic composi-
tion and enactment of services, a number of fundamental issues regarding manage-
ment of service quality and regulation of service behavior must be addressed. Some of
these issues are: (a) How can the behavior of services be adjusted dynamically and
who does that? (b) If services are created dynamically based on requirements of the
consumer, how do participants find a mutually acceptable configuration? (c) How can
these agreed service configurations be stored?

The key concept in addressing these issues is service level agreement (SLA). Simi-
larly to commercial situations where “best effort” service guarantees are not suffi-
cient, the agreement documents that specify what the user receives from the offered
resources and its relevant performance guarantees are required in the form of SLA.
SLAs capture the mutual responsibilities of the provider of a service and its client
with respect to functional and non-functional parameters. For example, an agreement
may define bounds on service response time and availability, or other service level
objectives that describe the required quality of a service. Hence the main motivation
for creating SLAs between providers and consumers is to get a reasonable certainty of
the provided service behavior.

In a distributed cross-enterprise services grid numerous services interact with each
other simultaneously, taking the roles of a provider and a consumer at the same time.
The conditions of each of these relationships need to be represented in a SLA docu-
ment. Keeping track of creating such SLAs, monitoring and evaluating service per-
formance against them, and triggering appropriate actions in cases of SLA violation
and exceptions are tasks of overwhelming importance. They include analysis of which
part of SLA is violated and which party is responsible for it, what consequences arise
from the violation for the overall system, and what the monetary and legal impacts are
for the participants. Currently these tasks are performed by humans and require sub-
stantial manual effort, hindering broader adoption of services grids across enterprises
as manual connection and contract negotiation are too costly on a large scale. There-
fore, automation support for these tasks, especially for negotiating SLAs, is required.
This automation must include automated creation of SLAs (e.g. as the result of nego-
tiation), and other tasks during SLA lifecycle including their fulfillment and termina-
tion. In this context a flexible and precise SLA language, appropriate SLA templates,
and a standardized SLA terminology are needed.

In this paper we propose a framework for automated negotiation of service level
agreements in services grids, with the focus on the agreement creation phase. The
framework adopts the three layer architecture of agent-based negotiation [21] to grid
service agreements, involving decomposition of the negotiation into the negotiation
objects, negotiation protocols and decision making models that are represented as
different services. In addition to presentation of the theoretical framework, we also
demonstrate its adaptability in a practical scenario and report on our first experiences
in implementing it in the context of the Web Service Agreement specification (WS-
Agreement) [1].

The paper is structured as follows. In the next section we briefly summarize related
work concerning service level agreements in service-oriented environments. In Sec-
tion 3 the concept of service-based representation of agreements is introduced.

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 91

Section 4 discusses techniques for negotiating service level agreements and the pro-
posed framework for automated negotiation of SLAs in services grids is described in
Section 5. In section 6 we provide more details on a prototypical framework imple-
mentation. Finally, the conclusions are presented in section 7.

2 Related Work

Research in grid service management has resulted in various approaches for grid
resource reservation [6, 8, 38, 18] and quality of service delivery at the resource level
[17]. An important part of these approaches is dedicated to the question of how to
manage a grid resource in relation to an agreement document defining the resource
consumption and provision. A standard concept of arranging and coordinating the
services on the Grid are SLAs [22]. Accordingly, different specifications for describ-
ing and managing SLAs in XML-based representations are proposed in the Web Ser-
vice Level Agreement (WSLA) [26], by SLAng [24] and in HP reports [31].

In order to realize an agreement represented by a SLA, several approaches define
general frameworks for Grid resource reservation, acquisition, task submission, and
binding [38, 18]. In contrast to these advanced reservation and balancing techniques,
the Service Negotiation and Acquisition Protocol (SNAP) introduces a protocol for
managing the process of negotiating an access to the resources and their use in a dis-
tributed system [4]. To represent these SLAs for every grid service running on behalf
of a client, the corresponding SLA service can be instantiated. It contains and vali-
dates the SLA according to the WS-Agreement specification [1].

Although most of the above work recognizes SLA negotiation as a key aspect of
SLA management, they usually provide little guidance of how negotiation (especially
automated negotiation) can be realized. In a more general context, automated negotia-
tion has been an important part of agent research (e.g. [21, 33]). They propose nego-
tiation mechanisms including different interaction protocols and decision making
models for negotiation in multi-agent systems. In this paper we adapt the agent-based
negotiation approach for dynamic automated negotiation of SLAs in service grids,
and provide a practical framework where different negotiation protocols and decision
making strategies can be realized by service-based SLAs.

3 Service-Based Representation of Agreements

This section gives a concise overview of how relationships between Grid participants
can be modeled and managed in a standardized way. As stated before, the relation-
ships between service providers and clients are represented in SLAs to express agree-
ment about the behavior of a provided grid service. In service-oriented grid environ-
ments every element is represented as a service, e.g. a WS-Resource service. Follow-
ing this notion of service orientation and virtualization of resources, SLAs can also be
represented by a WS-Resource service. Such an approach is proposed by the WS-
Agreement specification published by the Global Grid Forum (GGF) [14]. The fun-
damental idea of WS-Agreement is the representation of a SLA as WS-Resource
service in an agreement service. It describes an XML-based language for specifying

92 A. Ludwig et al.

an agreement between a service provider and a consumer, and a protocol for creation
of an agreement using agreement templates. In this way each WSRF compliant agree-
ment service represents an SLA and provides interfaces through which the provider
and customer service management applications interact with each other. As described
previously each WSRF service is capable of supporting lifecycle mechanisms.

The WS-Agreement specification consists of two basic layers (figure 1):

− the agreement layer: which provides a Web service-based interface that represents
SLAs,

− the service layer which represents the application-specific layer of the provided
business service.

The agreement layer represents a manageable interface for contacting and interacting
with a service provider. It publishes information like acceptable agreement terms and
enables the creation of agreement service instances in a factory service. The agree-
ment service facilitates the representation of an agreement, captures the agreement
terms, manages service lifetime and provides agreement composition capabilities.

The WS-Agreement model covers all periods of the SLA lifecycle. It contributes
an abstract but substantial interface description for SLAs between providers and con-
sumers and encourages the approach of service-orientation in grid computing envi-
ronments. However, it does not specify how the service provider and consumer can
come to an agreement and how the agreement process can be supported.

Fig. 1. WS-Agreement service model [1]

4 Negotiating Service Level Agreements

While all phases of the agreement lifecycle involve complex processes and require
extensive investigation, the discussion in this work is restricted to the first period, i.e.

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 93

the creation of SLAs. The fundamental question of creating an agreement is: how do
participants successfully create agreements? Humans, when faced with the need to
reach an agreement on a variety of issues make use of negotiation, a process by which
a joint decision is made by two or more parties. Typically, the parties first verbalize
contradictory demands and then move towards an agreement by a process of conces-
sion making or search for new alternatives [29]. However, the scalable deployment
and open architecture of WSRF environments enable a multiplicity of services with
an unlimited number of service characteristics. Different organizational goals, service
requirements and oppositional objectives require policies and technologies to manage
the heterogeneity of a grid and make service negotiation a complex process. Currently
operations like SLA creation and negotiation are subject to manual and human influ-
ence and call for additional support, e.g. for automated negotiation. In automated
negotiations a broad range of issues have to be analyzed. That includes issues about
the necessary negotiation interactions, characteristics of the negotiated services, and
rules what decisions have to be made at what time [25].

A commonly recognized approach to automated negotiation is based on structuring
its mechanism into: negotiation objects, negotiation protocols, and decision making
models [25].

Negotiation protocols define a set of rules that prescribe the circumstances under
which the interaction between agents takes place, called the rules of encounter [25].
They cover the permissible types of participants, the negotiation states, the events that
cause negotiation states to change and the valid actions of the participants in particu-
lar states. While negotiation protocols are quite different for different categories of
negotiation, they have one thing in common: interaction protocols expand the scope
from the exchange of single messages to complete multi-step transactions (also called
conversations or dialogues).

Negotiation objects are described by the range of issues over which agreement
must be reached. The object can contain multiple attributes. These attributes can be
classified as:

− service-specific attributes, such as quality of service (QoS), service level or other
technical specifications,

− transaction attributes that are generic for the service, such as price, timings, penal-
ties and so on.

Moreover, attributes may be:

− non-negotiable (i.e. having a fixed value),
− negotiable (i.e. having multiple possible values).

Decision making models provide a computational apparatus for making negotiation
decisions according to the participants’ negotiation strategies. The negotiation strat-
egy governs the participant’s general behavior and best course of actions and policies
to achieve a goal. The sophistication of the model and the decisions that have to be
made are influenced by the negotiation protocol in place, by the nature of the negotia-
tion object, and by the range of operations that can be performed on it [23]. Examples
of decision making models used for automated negotiation are game theory based
models [27, 32], heuristic approaches [29, 30] and argumentation-based approaches
[28, 28, 33].

94 A. Ludwig et al.

5 SLA Negotiation Framework

The application of the WS-Agreement model enables the representation of SLA rela-
tionships by agreement services and provides standardized interfaces for agreement
negotiations. However, the WS-Agreement specification gives no recommendations
for how to come to these agreements and how to integrate the actual negotiation of
these agreements into one context. This work proposes a negotiation framework for
service level agreements (Fig. 2).

Fig. 2. SLA negotiation framework architecture

The underlying principle of the framework is decomposition of the negotiation
mechanism into its basic elements: negotiation object, negotiation protocol, and deci-
sion making model in the context of service level agreements and on the basis of

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 95

WSRF grid mechanisms. By modularizing and structuring the agreement negotiation
into its fundamental components it allows for dynamic adjustment of agreement poli-
cies and integrates interaction mechanisms, decision making management and dy-
namic control of service behavior. The framework is horizontally separated into the
service client and service provider sides and vertically divided into the agreement and
service layers, adopting the conceptual layered WS-Agreement service model. While
the service layer is adopted from the specification without changes, the agreement
layer extends the WS-Agreement service model. It consists of additional stand-alone
components which fulfill well-defined, autonomous tasks during SLA negotiation.
These components are:

− Agreement Provider and Initiator respectively,
− Protocol Service Provider,
− Decision Making Service Provider.

All components are encapsulated in their own services and can be offered by different
parties following the service-orientation approach. The tasks of each component are
described below.

Agreement Provider. The agreement provider represents a service provider in con-
tractual matters. It provides interfaces that are necessary for interacting with a pro-
vider during service negotiation. It is responsible for describing the negotiation object
(i.e. an application service) and its attributes (e.g. functional and non-functional prop-
erties). Beside that the agreement provider creates SLA documents in the form of
agreement instances. The Agreement Provider incorporates the WS-Agreement model
and has WSRF-compliant agreement factory and agreement port types.

The agreement factory service provides a manageability interface for negotiating
with an agreement provider and is responsible for the interaction with an agreement
initiator. It includes receiving and sending messages and advertising supported agree-
ment templates. It facilitates the creation of agreement service instances and SLA
lifetime management.

The agreement service represents the result of a successful negotiation in the form
of a stable service level agreement between a service client and a service provider. It
embodies a well understood service description and captures a mutual understanding
of the expected application service behavior.

Neither the agreement factory nor the agreement service implement any negotia-
tion logic itself – they provide only negotiation interaction interfaces and the SLA
documents. Once a negotiation opponent (i.e. the agreement initiator) sends a mes-
sage to the agreement factory service it forwards this message to a protocol service
provider.

Protocol Service Provider. In order to make the agreement factory service independ-
ent from negotiation protocol-specific processing, it uses external protocol services.
The protocol service decides who can do what and when, and how to react to events
during negotiation. It enforces a coordinated behavior during a negotiation following
the normative rules of the employed protocol. This includes rules about the types of
participants, the negotiation states, events and actions that are taken on them. The
protocol service offers interfaces that are appropriate for handling the received mes-
sages for the Agreement Provider.

96 A. Ludwig et al.

Since the negotiation protocols can be different for different categories of negotia-
tion, it is essential that the negotiating parties have a common understanding of mean-
ing and order of the messages and their consequences. A convenient way to ensure
mutually coordinated negotiation behavior is to use the negotiation protocols speci-
fied by standardization institutions such as FIPA [9]. Examples of FIPA protocols
commonly used for automated negotiation between agents are FIPA’s contract net
protocol [10] and the iterated contract net protocol [11]. In the proposed framework a
protocol service provider may offer various negotiation protocols that an agreement
factory service can choose from. It also allows for multiple protocol service providers
to offer numerous negotiation protocols that can be used as needed.

Nevertheless, the protocol service does not make decisions in response to the re-
ceived messages, such as proposal assessments, evaluations or counter-offer genera-
tions. These operations are handled by an external decision making service.

Decision Making Service Provider. The decision making model of a negotiation is
encapsulated in a decision making service. Similar to the protocol services several
decision making service providers may offer various decision making models with
different levels of sophistication encapsulated in numerous services.

In this context an important question is: how does the decision making service
know the preferences and business rules (e.g. SLA parameter acceptance thresholds)
of the actual application service provider? First of all, the service provider needs to
formally define these preferences and business rules to make them available for proc-
essing by individual decision making services in a standardized way. For that purpose
this framework incorporates the syntax and semantics of the Policy-driven Automated
Negotiation Decision-Making Approach (PANDA framework) [15], which facilitates
automated decision making during negotiation.

The PANDA framework defines so called decision strategy rules in a structured
XML syntax. The basic building block of a strategy is a single rule, consisting of a
condition part and an action to be performed if the condition is satisfied. The condi-
tions are Boolean expressions and an action is a series of data sources. Each negotia-
tion object that influences the decision is represented by a rule and only if the condi-
tion of the object’s rule is fulfilled the action will be executed. The condition includes
a Boolean operator, the minimal utility acceptance threshold and the relative utility
weight. Additionally each rule encapsulates the parameters that describe the utility
function for a certain object of negotiation.

6 Implementation Details

The proposed negotiation framework has prototypically been implemented and dem-
onstrated with a simple business scenario in a Grid service environment. All compo-
nents involved in the framework are implemented as Web services and hosted by the
WSRF.NET 2.0 platform [36, 37], an implementation of the WSRF specification
running on Microsoft’s Internet Information Server. The presented services are
developed using C# programming language in Microsoft’s Visual Studio .NET 2003
environment.

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 97

The negotiation scenario presents a business model where a financial service pro-
vider offers financial services on the basis of Web services to several clients. One of
these services that is implemented in our scenario simulates the evaluation of a per-
son’s credit history and anticipates the credit worthiness on a given taxpayer number.
The service can be provided with different configurations described by several attrib-
utes. These are the service level, i.e. gold, silver, bronze describing the comprehen-
siveness of the calculated score, a quality of service index, an abstract value that in-
cludes availability of the service and the response time dependent on a requested level
of throughput, the price per invocation and a minimal number of invocation requests.
All of these attributes - service level, QoS value, price, and minimal invocation re-
quests - are open for negotiation and form a multi-dimensional negotiation space.

After the service provider and its client allocate their extensible decision rules to
the agreement initiator service and the agreement provider service, respectively, nego-
tiation of the financial services can be initiated and executed. The demonstration inte-
grates protocol services based on FIPA’s contract net and iterated contract net proto-
cols, and simple decision making services based on heuristic negotiation strategies.
Figure 4 shows a screenshot of the user interface.

Fig. 3. Message flow during a call for proposal

98 A. Ludwig et al.

The steps occurring during a call for proposal and proposal making executed one
after another are illustrated by an arrow in Figure 3 and described below:

1. The whole negotiation process is initiated by an external enactment, i.e. manually
by the service client. During this step the client’s decision rules (XML rules I) are
provided to the agreement initiator service. Also the choice of a negotiation proto-
col can be pre-defined here. However, the agreement initiator service can also
choose a suitable negotiation protocol itself, i.e. if the agreement factory service
insists on a particular protocol. As an example the FIPA contract net protocol
(CNP) mentioned above is used.

2. The agreement initiator service sends a message to a suitable CNP protocol ser-
vice to start negotiation. As the agreement negotiator maintains no negotiation
logic, it just invokes the negotiation process. Together with this request it assigns
the extensible decision rules of the client to the protocol service.

3. The CNP initiates negotiations with a ‘call for proposal’ message (CFP) that is
sent to the service provider according to a pre-defined syntax (ACL). The protocol
service creates such a CFP message and returns the ready-for-sending message to
the agreement initiator.

4. The agreement initiator service contacts the agreement factory service and sends
the CFP message.

5. The agreement factory service, as the manageable interface for contracting with a
service provider, receives the message. As the decision rules of the contracting
parties are usually contrary and kept private, the factory service stores another set
of decision rules (XML rules II) for the service provider. This service provides
only an interface and does not implement any operations itself. It analyses the
value for the protocol suggested by the agreement initiator and assigns the mes-
sage together with the decision rules to a suitable CNP protocol service.

6. The message together with the XML rules II are send to a CNP protocol service.
7. The protocol service analyses the message and decides on the consequences when

receiving a CFP. In this example it decides to make a proposal. However, genera-
tion of a proposal is part of the negotiation strategy and is therefore encapsulated
in an external decision making service.

8. The CNP protocol service sends a call for generating a proposal to the decision
making service. It attaches the XML rules II.

9. The decision making service creates a proposal on the base of the decision rules.
10. The generated proposal is returned to the protocol service.
11. The protocol service creates a proposal message compliant with the ACL syntax

and embeds the values of the created offer.
12. Afterwards it returns the proposal message to the agreement factory service.
13. The agreement factory service creates a new instance of an agreement service and

writes the values of the received proposal message into the agreement instance.
14. The end-point reference of the agreement service instance is retuned to the agree-

ment factory service.
15. The agreement factory service sends the proposal message together with the end-

point reference locator of the created agreement service instance back to the
agreement initiator.

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 99

16. The agreement initiator triggers further actions following the sequence flow of the
CNP. In particular it is able to request the agreement service instance, i.e. for
evaluating the proposal by the client’s decision making service.

Figure 4 shows a screenshot of the messages recorded at the demonstration GUI dur-
ing a call for proposal.

Fig. 4. Recorded messages on the SC GUI

7 Conclusions

This paper proposed a framework for dynamic creation of service level agreements
based on automated negotiations between service providers and consumers. It pro-
vides several advantages over the existing approaches. The separation of the agree-
ment and service layers as adopted from the WS-Agreement specification allows for a
distinct encapsulation of the negotiation and application logics. It enables flexible
relationships between the application and agreement service providers, and scenarios
in which a number of application service providers can use various agreement provid-
ers to negotiate contracts with their clients. As described above, for that reason the
service providers can leave their individual negotiation pre-configurations (e.g. sup-
ported contract types, acceptable agreements and negotiation constraints) encapsu-
lated in the decision rules at the agreement provider side. Accordingly, the service
clients can leave their decision rules at the agreement initiator component.

The second advantage comes from the modularization of the agreement layer. The
participants – the agreement factory service in particular – have the flexibility to
choose a suitable protocol depending on parameters such as the characteristics of the
negotiation object or certain negotiation requirements of the client, e.g. if the client
insists on negotiating on the basis of a particular protocol. In the same way it supports
a flexible and dynamic choice of decision making models. It is possible to choose
different levels of sophistication when making a decision and even changing the deci-
sion making model during a conversation is feasible.

The third advantage concerns the scalability and extensibility of the framework and
its used components. Due to its modular architecture, additional protocol services or
decision making models can easily be integrated to change the negotiation behavior of

100 A. Ludwig et al.

the participant. We expect that this can significantly reduce the time necessary to
reach an agreement and that it can allow making a large number of transactions within
a small amount of time automatically.

 Acknowledgments. This work has been partly supported by the EU FP6 Integrated
Project on Adaptive Services Grid (EU-IST-004617) and the Adaptive Service
Agreement and Process Management (ASAPM) in Services Grid project (AU-DEST-
CG060081). The ASAPM project is proudly supported by the Innovation Access
Programme - International Science and Technology established under the Australian
Government’s innovation statement, Backing Australia's Ability.

References

[1] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J. Rofrano, J.,
Tuecke, S., Xu, M.: Web Service Agreement Specification (WS-Agreement) 1.1 (2004)

[2] Chinnici, R., M. Gudgin, J.-J. Moreau, et al.: Web Services Description Language
(WSDL) Version 1.2 (2003)

[3] Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling,
D., Tuecke, S.,Vambenepe, W.: The WS-Resource Framework (2004)

[4] Czajkowski, K., Foster, I., Kesselman, C., Sander, V. and Tuecke, S.: SNAP: A Protocol
for Negotiation of Service Level Agreements and Coordinated Resource Management in
Distributed Systems. Job Scheduling Strategies for Parallel Processing: 8th International
Workshop (JSSPP 2002), Edinburgh (2002)

[5] Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Snelling, D., Tuecke, S.,
From Open Grid Services Infrastructure to Web Services Resource Framework: Refactor-
ing and Evolution (2004)

[6] Degermark, M., Kohler, T., Pink, S. and Schelen, O.: Advance reservations for predictive
service in the internet. ACM/Springer Verlag, Journal on Multimedia Systems, 5(3)
(1997)

[7] Emorphia: FIPA-OS; Available at: http://www.emorphia.com/research
[8] Ferrari, D., Gupta, A. and Ventre, G.: Distributed advance reservation of real-time con-

nections. ACM/Springer Verlag, Journal on Multimedia Systems, 5(3) (1997)
[9] FIPA: Foundation for Intelligent Physical Agents (FIPA); http://www.fipa.org

[10] FIPA-CNP: FIPA Contract Net Interaction Protocol Specification; http://www.fipa.org/
specs/fipa00029/SC00029H.html

[11] FIPA-ICNP: Iterated Contract Net Interaction Protocol Specification; http://www.fipa.
org/specs/fipa00030/SC00030H.html

[12] Foster, I., Kesselman, C. and Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. In: International Journal of High Performance Computing Applica-
tions. 15 (2001) 3, pp. 200-222.

[13] Foster, I., Kesselman, C., Nick, J. and Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. In: Open Grid Service In-
frastructure WG, Global Grid Forum (2002), pp. 5-25.

[14] GGF: Global Grid Forum; http://www.ggf.org
[15] Gimpel, H., Ludwig, H., Dan, A. and Kearney, B. D.: PANDA: Specifying Policies for

Automated Negotiations of Service Contracts. In: IBM Research Report RC22844 (2003)
[16] Globus: The Globus Alliance; http://www.globus.org

A Framework for Automated Negotiation of Service Level Agreements in Services Grids 101

[17] Guerin, R. and Schulzrinne, H.: Network quality of service. In Foster, I. and Kesselman,
C. (editors). The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kauf-
mann Publishers (1999), pp. 479-503

[18] Hafid, A., Bochmann, G. and Dssouli, R.: A quality of service negotiation approach with
future reservations (nafur): A detailed study. Computer Networks and ISDN Systems,
30(8) (1998)

[19] IBM, BEA, and Microsoft: WS-Addressing (2004)
[20] Jade: Java Agent Development Framework; http://sharon.cselt.it/projects/jade/index.html
[21] Jennings, N. R., Parsons, S., Sierra, C. and Faratin, P.: Automated Negotiation. Proc. 5th

International Conference on Practical Application of Intelligent Agents and Multi-Agent
Systems (PAAM-2000), Manchester, UK (2000) pp. 23-30

[22] Keller, A., Kar, G., Ludwig, H., Dan, A. and Hellerstein, J. L.: Managing Dynamic Ser-
vices: A Contract Based Approach to a Conceptual Architecture. Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium (NOMS 2002) (2002) pp.
513–528.

[23] Laasri, B., Laasri, H., Lander, S. and Lesser, V.: A Generic Model for Negotiating
Agents. In: International Journal on Intelligent and Cooperative Information Systems. 1
(1992) 2, pp. 291-317.

[24] Lamanna, D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service Level
Agreements In Proc. of The International Workshop on Future Trends of Distributed
Computing Systems (FTDCS'2003), San Juan, IEEE Computer Society Press (2003)

[25] Lomuscio, A. R., Wooldridge, M. and Jennings, N. R.: A classification scheme for nego-
tiation in electronic commerce (eds. F. Dignum and C. Sierra). In: Lecture Notes in Com-
puter Science. 1991 (2001), pp. 19-33.

[26] Ludwig, H., Keller, A., Dan, A., and King, R.: A Service Level Agreement Language for
Dynamic Electronic Services. Proceedings of the 4th IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS 2002)
(2002), pp. 25–32.

[27] Neumann, J. V. and Morgenstern, O.: The Theory of Games and Economic Behaviour.
Princeton University Press, Princeton, US (1944)

[28] Parsons, S., Sierra, C. and Jennings, N.: Agents that reason and negotiate by arguing. In:
Journal of Logic and Computation. 8 (1998) 3, pp. 261-292.

[29] Pruitt, D. G.: Negotiation Behaviour. Academic Press, New York (1981)
[30] Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Harvard, US

(1982)
[31] Sahai, A., Durante, A., Machiraju V.: Towards Automated SLA Management for Web

Services, HPL-2001-130 (2002)
[32] Sandholm, T. W.: Distributed Rational Decision Making. In: G. Weiss (ed.) Multiagent

Systems, MIT Press, Cambridge, US (1999) pp. 201-258.
[33] Sierra, C., Jennings, N. R., Noriega, P. and Parsons, S.: A Framework for Argumentation-

Based Negotiation. Proc. 4th International Workshop on Agent Theories, Architectures
and Languages, Rode Island, USA, pp. 177-192

[34] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Snelling, D.
and Vanderbilt, P.: Open Grid Services Infrastructure (OGSI) 1.0. (2003), pp. 7-12.

[35] University of Virginia, Grid Computing Group: WSRF.net (2004)
[36] W3C: Web Services (2004). http://www.w3.org/2002/ws/
[37] Wasson, G.: WSRF.NET Programmer’s Reference (2005)
[38] Wolf, L. and Steinmetz, R.: Concepts for reservation in advance. Kluwer Journal on Mul-

timedia Tools and Applications, 4(3) (1997)

	Introduction
	Related Work
	Service-Based Representation of Agreements
	Negotiating Service Level Agreements
	SLA Negotiation Framework
	Implementation Details
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

