
WSMX Process Mediation Based

on Choreographies

Emilia Cimpian and Adrian Mocan

DERI, National University of Ireland, Galway, Ireland
emilia.cimpian@deri.org, adrian.mocan@deri.org

Abstract. One of the most difficult obstacles Web Services have to over-
come in the attempt to exploit the true potential of the World Wide Web
is heterogeneity. Caused by the nature of the Web itself, heterogene-
ity problems occur both at data level as well as at behavioral level of
business logics, message exchange protocol and Web Service invocation.

Process mediation is one of the crucial points on the road towards es-
tablishing new, ad-hoc cooperation on the web between various business
partners. If semantic enhanced data enables dynamic solutions for cop-
ing with data heterogeneity, semantically enhanced Web Services can do
the same for behavioral heterogeneity. Based on Web Service Modeling
Ontology (WSMO) specifications that offers support in semantically de-
scribing Web Services, we propose a solution that acts on these semantic
descriptions and offers the means for defining of what we call a Process
Mediator. Such a mediator acts on the public processes (represented as
WSMO choreographies) of the parties involved in a communication and
adjust the bi-directional flow of messages to suit the requested/expected
behavior of each party.

1 Introduction

The advantages offered by the huge amount of information available and by the
higher and higher number of services deployed on the Web are overcame by the
inherent heterogeneity issues existing between all these resources. The informa-
tion is represented using different languages and different conceptualizations of
the same domain; similarly Web Services describe their functionalities in dif-
ferent ways and expect the clients to align with various interaction patterns in
order to consume their functionalities.

Numerous approaches are proposing various solutions to cope with data het-
erogeneity by adding semantic meaning to data, and make it machine under-
standable. Even if this area is well explored and many semi-automatic solutions
are available for this problem there is one more gap to fill: how the semantic
enriched data is interchanged by machines. That is, even if the machine can
understand the data they receive, they have to understand the communication
process it is part of, as well. As a consequence, a coherent mode of describing

C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, pp. 130–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

WSMX Process Mediation Based on Choreographies 131

the expected interaction patterns is necessary, together with means of mediating
between heterogeneous patterns.

The Web Service Modeling Ontology (WSMO) working group started an ini-
tiative for standardizing various aspects related to Semantic Web Services. The
objective of WSMO and its surrounding efforts is to define a coherent technology
for Semantic Web Services by providing means for (semi-)automatic discovery,
composition and execution of Web Services which are based on logical inference
mechanisms. Web Service Execution Environment (WSMX) [3] is a reference
implementation for WSMO, a proof of concept for this specification, aiming to
provide reference implementations for the main tasks related to Web Services as
envisioned by WSMO.

In this context we propose a solution able to cope with the differences in the
way a requester wants to consume the functionality of a Web Service and the way
this functionality is made available by the Web Service to the requester. We use
WSMO choreography to describe the expected/requested behavior of the two
parties, which is in fact a formalization of their public business processes. Using
these descriptions and the services of a data mediator (to solve data heterogeneity
problems) we introduce the process mediator, a system able to adjust the two
parties’ behavior and to enable their communication.

In this paper we will present WSMX approach for process mediation, and
the WSMX Process Mediator component. Section 2 presents the motivation for
developing such a mediator and Section 3 briefly presents WSMO and WSMX.
The WSMX Process Mediator is presented in Section 4, followed by an example
(Section 5). The final parts of this document present some related efforts in this
area (Section 6) and conclusions (Section 7).

2 Motivation

2.1 Overview

The simple scenario of invoking a (Semantic) Web Service may become extremely
complicated in a heterogeneous environment such as the existing web.

Usually the client has its own communication pattern (expressing how it
wants to communicate with a service) that in general is different from the one
used by the corresponding Web Service (which expresses how the service wants
to be invoked). As a consequence the two parties will not be able to directly
communicate, even if they can understand the same data formats. In order to
communicate they must be able either to redefine their communication patterns
(at least one of them has to) or to use an external mediation system as part of the
process. The first solution is generally a very expensive one implying changes in
the entities’ business logic, and it is not suitable in a dynamic environment since
every participant would have to readjust its pattern (through re-programming)
each time it gets involved in a new partnership. As a consequence, the role of
the mediator system will be to compensate the communication patterns in order
to obtain equivalent processes.

132 E. Cimpian and A. Mocan

2.2 Problem Definition

A set of assumptions are made regarding the two parties to mediate between:

– Each of the parties have to make public the expected/requested way of inter-
operating with its partner. Conform to WSMO these represent choreography
descriptions and they are included in the goal’s interface and in the Web
Service’s description.

– The involved parties have to refer from their choreographies the ontologies
they used to describe their domain. Furthermore these ontologies have to be
available and the heterogeneity problems between them resolved by a Data
Mediator. This implies that a failure of the Data Mediator in solving the
data heterogeneity problems has as a direct effect the failure of the Process
Mediator.

– The messages exchanged between the two parties have to contain data rep-
resented in terms of the used ontologies, that is, ontology instances.

The scope of the Process Mediator is to make this conversation possible by the
use of different technics as message blocking, message splitting or aggregation,
acknowledgements generation and so on. The process mediator is part of WSMX
and it can make use of all the functionalities provided by WSMX regarding
message receiving and sending, keeping track of the ongoing conversation, access
various Data Mediators, resources and so on.

3 WSMO and WSMX

The Web Service Modeling Ontology (WSMO) is a formal ontology for describing
various aspects related to Semantic Web Services.

WSMO defines four main modeling elements for describing several aspects
of Semantic Web Services: ontologies, Web Services, goals and mediators. In
what follows, we will describe all these elements, insisting on their importance
in reaching a truly Semantic Web Service technology.

As defined in [6], ontologies are formal explicit specifications of shared con-
ceptualizations. In WSMO they represent key elements, having a twofold pur-
pose: firstly they define the information’s formal semantics and secondly, they
allow to link machine and human terminologies. The WSMO ontologies give
meaning to the other elements (Web Services, goals and mediators), and provide
common semantics, understandable by all the involved entities (both humans
and machines).

In WSMO, requestors of a service express their objectives as goals, which
are high level descriptions of concrete tasks. Every requestor expresses its goal
in terms of its own ontology, which, on one hand provides the means for a hu-
man user to understand the goal, and on the other hand, allows a machine to
interpret it as part of the requestor’s ontology. Another advantage of using the
goals is that the requestor only has to provide a declarative specification of what
it wants, and does not need to have a fixed relation with the Web Service or

WSMX Process Mediation Based on Choreographies 133

to browse through an UDDI registry for finding Web Services that provide the
appropriate capability.

In order for this goal to be accomplished, the requestor (by means of its
information system) has to find an appropriate Web Service which may fulfill
the required task. Similar to the way the requestor declares its goal, every Web
Service has to declare its capability (that is, what it is able to accomplish) in
terms of its own ontology. If the requestor of the service and the Web Service
that offers it use the same ontology the matching between the goal and the ca-
pability can be directly established. Unfortunately, in most of the cases they use
different ontologies, and the equivalence between the goal and the capability can
be determined only if a third party is consulted for determining the similarities
between the two ontologies. Another problem that may appear is the impossibil-
ity of the requester and of the provider of the service to communicate with each
other, the reason for this being the heterogeneity of their communication proto-
cols. For these reasons, WSMO introduces the fourth key modeling element: the
mediators, which have the task of overcoming the heterogeneity problems, both
at data level and at communication level.

The Web Service Execution Environment (WSMX) is the reference imple-
mentation for WSMO, designed to allow dynamic discovery, invocation and com-
position of Web Services. WSMX offers complete support for interacting with
Semantic Web Services. In addition, WSMX supports the interaction with non-
WSMO, but classical Web Services ensuring that a seamless interaction with
existing Web Services is possible.

By using WSMX, if two partners want to interoperate with each other, they
only have to expose their own functionality and to consume the functionality
offered by their partners. Additionally, there can be the case that one entity
wants to get involved in ad-hoc business processes without knowing its partner
beforehand. In order to accommodate this situation, WSMX offers mechanisms
and strategies for dynamic discovery of those entities that expose the desired
capability. Furthermore, it extends this search in order to find out if multiple
partners are able to fulfill the requester goal, by composing the offered sub-
functionalities.

In any of the functionalities offered by WSMX (discovery, invocation and
composition) mediation can be needed at both data [8] and process level (be-
havioral level) [2]. In the following chapter we will describe the WSMX process
mediation approach.

4 Process Mediation Based on WSMO Choreographies

For addressing the problem of process mediation we have to define first what a
process means, and how we represent a WSMX process.

We adopt the standard definition of a process: collection of activities de-
signed to produce a specific output for a particular customer, based on a specific
inputs [1], an activity being a function, or a task that occurs over time and has
recognizable results.

134 E. Cimpian and A. Mocan

Fig. 1. Process consisting of multiple processes

Depending on the considered level of granularity, each process can be seen
as being composed of different, multiple processes. The smallest process possible
consists of only one activity. Figure 1 illustrates a process obtain by combining
multiple processes. The output of one process (or more processes) is considered
the input of one or many other processes.

One can distinguish between two type of processes: private processes, which
are carried out internally by an organization, and usually are not visible to
any other entity, and public processes, which are defining the behavior of the
organization in collaboration with other entities [5]. From the process mediation
point of view we are interested only in the public processes, the private process
not being visible to the exterior, can not be the object of WSMX mediation.

In what follows, we will define the WSMX public process representation,
the problems this mediator intends to solve, the Process Mediator’s interactions
with other WSMX components, and we will describe step by step the process
mediation algorithm.

4.1 Process Representation

WSMX process representation is similar with the WSMO choreography [9] defini-
tion. This dependency is a straight forward one considering that WSMX Process
Mediator is dealing with the communication patterns heterogeneity, and that the
WSMO choreography describes the behavior of the service from a user point of
view (that is, how the user should interact with the Web Service in order to
consume its functionality). In terms of WSMX, every choreography represents a
public process, which means that WSMO choreography is a subclass of WSMX
process.

In order for this paper to be self-contained we describe in the next para-
graphs the main features of WSMX processes, i.e. the main features of WSMO
choreography, as described in [9].

The representation of a WSMX business process is based on the Abstract
State Machine [7] methodology, and it inherits the core principles of ASMs:

– it is state-based;
– it represents a state by an algebra;
– it models state changes by guarded transition rules that change the values

of functions and relations defined by the signature of the algebra.

WSMX Process Mediation Based on Choreographies 135

A WSMX process consists of states and guarded transitions [9]. A state is
described by a WSMO ontology, and is obtained from the ontology used by the
owner of the process by:

– subclassifying all the concepts that the owner needs to make public in order
to enable the communication, and

– adding an additional attribute mode, which shows who has the right of mod-
ifying the instances of the concept. This attribute can take the values:

static - the extensions of the concept can not be changed;
controlled - the extensions of the concept can only be changed by

its owner;
in - the extensions of the concept can only be changed by the envi-

ronment; the environment should have write access over them;
shared - the extensions of the concept can be changed by its owner

and by the environment; the environment should have read/
write access over them;

out - the extensions of the concept can only be changed by its owner;
the environment should have read access over them.

The guarded transitions (transition rule) are used to express changes of states
by means of rules, expressible in the following form:

if Cond then Updates

Cond is an arbitrary Web Service Modeling Language (WSML) [4] axiom,
formulated in the given signature of the state.

The Updates consist of arbitrary WSMO Ontology instances.
In the Semantic Web Services context the level of granularity for representing

a certain process is strictly up to the owner of that process. Each action can be
represented as a transition, which is the most detailed level, or more actions can
be modelled using only one transition.

4.2 Addressed Problems

Usually a business communication consists of more than one exchange message,
and as a consequence, finding the equivalences between the message exchange
patterns of the two (or more) parties is not at all a trivial task. Intuitively, the
easiest way of doing this is to first determine the mismatches, and than search
for a solution of eliminating them. [5] identifies three possible cases that may
appear during the message exchange:

Precise match. The two partners have exactly the same pattern in realizing the
business process, which means that each of them sends the messages in exactly
the order the other one requests them. In this ideal case the communication can
take place without using a Process Mediator.

Resolvable message mismatch. This case appears when the two partners use
different exchange partners, and several transformations have to be performed in

136 E. Cimpian and A. Mocan

order to resolve the mismatches. For example when one partner sends multiple
instances in a single message, but the other one expects them separately, the
mediator can break the initial message, and send the instances one by one.

Unresolvable message mismatch. In this case, one of the partners expects
a message that the other one do not intend to send. Unless the mediator can
provide this message, the communication reaches a dead-end (one of the partners
is waiting indefinitely).

In order to communicate two partners have to either define equivalent pro-
cesses, or to use an external mediation system as part of the communication
process. The mediator’s role will be to transform the clients messages and/or
Web Services messages, in order to obtain a sequence of equivalent processes.

As illustrated above, not all the communication mismatches can be solved
by using a mediator, but only some of them. A list containing the initial set of
resolvable mismatches that our mediator intends to address is provided below.

Stopping an unexpected message (Figure 2. a)): in case one of the partners
sends a message that the other one does not want to receive, the mediator
should just retain and store it. This message can be send later, if needed, or
it will just be deleted after the communication ends.

Inversing the order of messages (Figure 2. b)): in case one of the partners
sends the messages in a different order than the one the other partner wants
to receive them. The messages that are not yet expected will be stored and
sent when needed.

Splitting a message (Figure 2. c)): in case one of the partners sends in a
single message multiple information that the other one expects to receive in
different messages.

Fig. 2. Addresses Mismatches

WSMX Process Mediation Based on Choreographies 137

Combining messages (Figure 2. d)): in case one of the partners expects a
single message, containing information sent by the other one in multiple
messages.

Sending a dummy acknowledgement (Figure 2. e)): in case one of the part-
ners expects an acknowledgement for a certain message, and the other part-
ner does not intend to send it, even if it receives the message.

4.3 WSMX Process Mediator

WSMX process mediation is concerned with determining how two public pro-
cesses can be combined in order to provide certain functionality. In other words,
how two business partners can communicate, considering their public processes.

When WSMX receives a message, either from the requestor of the service or
from a Web Service, it has to check if it is the first message in a conversation.
If it is the first, WSMX creates copies (instances) of both the sender and the
targeted business partner choreographies, and stores these instances in a repos-
itory, together with a uniquely identifier of the conversation. If it is not the first
message of a conversation, WSMX has to determine the conversation id. These
computations performed on the message are done by two WSMX components,
Communication Manager and Choreography Engine. Their descriptions are not
included in this article, since they are not relevant from the process mediation’s
point of view; more information about various WSMX components can be found
in [10].

After the id of the conversation is obtained, the Process Mediator (PM) re-
ceives it, together with the message; the message consists of instances of concepts
from the sender’s ontology. Based on the id, the PM loads the two choreography
instances from the WSMX Repository, by invoking the WSMX Resource Man-
ager. All the transformations performed by the PM will be done on this instances.
In case different ontologies have been used for modeling the two choreographies,
the PM has to invoke an external Data Mediator for transforming the message
in terms of the target ontology.

Fig. 3. Process Mediator interactions

138 E. Cimpian and A. Mocan

After various internal computations (described in the next chapter) the PM
determines if based on the incoming message it can generate any message ex-
pected by either one of the partners. The generation of any message determines
a transformation in the chorography instance of the party that receives that
message. Simultaneously with sending the message, the process mediator should
update the choreography instances and revaluate all the rules, until no further
updates are possible.

The interactions between the Process Mediator and other WSMX compo-
nents is represented in Figure 3.

4.4 Execution

The Process Mediator is triggered when it receives a message and a conversation
id. The message contains instances of concepts; the conversation id uniquely
identifies the instances of the choreographies involved in the communication.

After being invoked, the PM performs the following steps:

1. Loads the two choreography instances from the repository.
2. Adds the instances contained in the message to the corresponding chore-

ography instance (the sender’s choreography instance); this step is needed con-
sidering that the choreography instances contains the information prior to the
transmission of the current message.

3. Mediates the incoming instances in terms of the targeted partner ontol-
ogy, and checks if the targeted partner is expecting them, at any phase of the
communication. This is done by checking the value of the mode attribute, for the
mediated instances’ owner. If this attribute is set to in or shared for a certain
concept, than this concept’s instances may be needed at some point in time. The
instances expected by the targeted partner are stored in an internal repository.

4. For all the instances from the repository, the PM has to check if they are
expected at this phase of the communication, which is done by evaluating the
transition rules. The evaluation of a rule will return the first condition that can
not be fulfilled, that is, the next expected instance for that rule. This means
that an instance is expected if it can trigger an action (not necessary to change
a state, but to eliminate one condition for changing a state).

The possibility that various instances from this repository can be combined
in order to obtain a single instance, is also considered.

5. Each time the PM determines that one instance is expected, it sends
it, deletes it it from the repository, updates the targeted partner choreography
instance, and restarts the evaluation process (step 4). When a transition rule
can be executed, it is marked as such and not re-evaluated at further iterations.
The PM only checks if a transition rule can be executed since it can not update
any of the two choreography instances without receiving input from one of the
communication partner. By evaluating a rule, the PM determines that one of
the business partner can execute it, without expecting any other inputs.

This process stops when, after performing these checkings for all the instances
from the repository, no new message is generated.

WSMX Process Mediation Based on Choreographies 139

6. For each instance forwarded to the targeted partner, the PM has to check
if the sender is expecting an acknowledgement. If the sender expects an acknowl-
edgement, but the targeted partner does not intend to send it, the PM generate
a dummy acknowledgement and sends it. Simultaneously, it updates the sender’s
choreography instance.

7. The PM checks all the sender’s rules and marks the ones that can be
executed.

8. The PM checks the requestor’s rule, to see if all of them are marked; when
all are marked, the communication is over and PM deletes all the data regarding
this conversation, from both its internal repository and WSMX repository.

This algorithm is implemented by the PM in order to solve the communica-
tion heterogeneity problem.

5 Examples

We consider a Virtual Travel Agency (VTA) service, able to provide on-line
tickets for certain routes, and a client who wants to invoke this service. For
keeping this example as simple as possible, we will present only parts of the
two choreographies, but these parts are conclusive enough to illustrate how the
Process Mediator works. Additionally, we will consider that some of the concepts
have exactly the same semantic for both the service and the client.

5.1 Requestor and Provider’s Choreographies

We consider that the two participants have the following concepts in their inter-
nal ontologies:

– station - the concept of a station, whose instances can be the starting point
or the destination of a trip;

– date - the instance of this concept represents the date the trip should begun;
– time - an instance of this concept represents the departure time;
– price - the price of a certain trip.

Additionally, the requestor’s ontology contains the concept myRoute, with
the following signature1:

concept myRoute
nonFunctionalProperties

dc#description hasValue "concept of myRoute, containing the source
and the destination locations, and the date of the trip"

mode hasValue out
endNonFunctionalProperties
sourceLocation ofType station
destinationLocation ofType station
onDate ofType date

1 All the concepts described in this section are WSMO concepts and they are modelled
using Web Service Modeling Language (www.wsml.org).

140 E. Cimpian and A. Mocan

The choreography of the requestor states that the attribute mode has the
value out for the concept myRoute, which means that the client will send the
instance of this concept to the environment. mode has the value in for time and
price, since the client expects to receive information about the departure time
and the price of the trip from the service, and controlled for station and date
(only the client can decide the starting and the destination point of his trip, as
well as the date he wants to travel).

Additionally, it’s choreography includes the following rules:
?x [sourceLocation hasValue ?sourceLocation_,

destinationLocation hasValue ?destinationLocation_, onDate hasValue ?onDate_]
memberOf myRoute <- ?sourceLocation memberOf station and

?endLocation memberOf station and ?onDate memberOf date.

The above rule creates an instance of myRoute, assuming that two instances
of station and an instance of date are already created; since both station and
date have the value of mode set to controlled, the requestor does not expect
any input in order to create the instance of myRoute.
?x memberOf time <- ?myRoute memberOf myRoute.

An instance of time is expected, after the instance of myRoute was sent to
the service.
?x memberOf price <- ?myRoute memberOf myRoute.

An instance of price is expected, after the instance of myRoute was sent to
the service.

As shown by these rules, the client will first send an instance of myRoute, and
then expects to receive an instance of time and price. There are no restrictions
regarding the order of receiving the time and price instances.

The service also has some additional concepts in its choreography: route and
routeOnDate, with the following signatures:

concept route
nonFunctionalProperties

dc#description hasValue "concept of route, having two attributes of type
station which show the starting and the ending point of the route"

mode hasValue out
endNonFunctionalProperties
sourceLocation ofType station
destinationLocation ofType station

concept routeOnDate
nonFunctionalProperties

dc#description hasValue "concept of route on a certain date, containing the
containing the route, the date, the departure time and the price of a ticket"

mode hasValue out
endNonFunctionalProperties
forRoute ofType route
onDate ofType date
onTime ofType time
forPrice ofType price

From the service’s concepts, the attribute mode has the value in only for
station and date, and the value out for route and routeOndate. The other
concepts have the mode set to static, which means that their instances’ values
can not be changed during the communication process.

WSMX Process Mediation Based on Choreographies 141

The service’s choreography includes the following rules:
?x [startLocation hasValue ?startLocation_, endLocation hasValue ?endLocation_]

memberOf route <- ?startLocation_ memberOf station and ?endLocation_ memberOf station.

The above rule states that an instance of route can be created only after
two instances of station exists; since the concept station has the mode set to
in, this instances need to be provided by the environment; the instance of route
will be sent to the requestor of the service.
?x [forRoute hasValue ?forRoute_, onDate hasValue onDate_,

onTime hasValue ?onTime_, forPrice hasValue ?forPrice_]
memberOf routeOnDate<- ?forRoute_ memberOf vtasc#route and ?onDate_ memberOf vtasc#date and

?onTime_ memberOf vtasc#time and ?forPrice memberOf xsd#integer.

This rule expresses the fact that an instance of routeOnDate is created,
assuming that instances of route, date,time and price already exist; since
only date has the mode set to in, it is the only instance expected from the
environment.

5.2 Communication Process

In this chapter we illustrate step by step the communication process between
the VTA service provider and requestor:

1. The requestor initiates the communication by sending an instance of my
Route.

2. PM translates this instance in terms of the service’s ontology, obtaining two
instances of station and one of date, which it stores in its internal repository.

3. Conform to the provider’s choreography, all these three instances are ex-
pected, but the guarded transitions show that only one of them (one instance
of station) is expected at this phase. Since the targeted choreography does
not specify which one of the station’s instances is expected, the PM randomly
sends one of them, and deletes it from the repository.

The evaluation of the transition rules starts again for the rest of the instances
from the repository, and the second instance of station is sent and deleted.

4. PM evaluates the requestor’s rules, and marks the first of them, which
means it will not be reevaluated during further iterations.

5. Internally, the provider creates the instance of route, which is sent to
WSMX.

6. After translating the route’s instance in terms of the requestor’s ontology,
and analyzing the two choreographies, the PM discards the instance of route
(nobody is expecting any information contained by that instance) and the me-
diated instances. By evaluating the transition rules PM determines that the
provider expects the previously stored instance of date; it sends it and deletes
it from its internal repository.

PM marks the first rule from the service’s choreography, which means it will
not reevaluate it at further iterations.

7. PM marks the first rule from the requestor’s choreography.
8. PM checks if all requestor’s rules are marked; since there are still unmarked

rules, the communication is not over yet.

142 E. Cimpian and A. Mocan

9. The provider creates an instance of routeOnDate and sends it to WSMX.
10. PM translates the routeOnDate in terms of the requestor’s ontology in

two instances of station, an instance of time and one of price. Nobody is
expecting instances of station anymore, so these two can be deleted. The price
and time instances are sent to the requestor; the order of sending them is not
specified in the requestor’s choreography, so the PM randomly selects one, sends
it to the requestor, and deletes it from the repository; the corresponding rule is
marked.

The second instance is sent and deleted at the second evaluation of the in-
stances contained by the repository. The rule triggered by sending this instance
is marked.

11. PM evaluates the service’s rules and mark the second one.
12. PM checks if all requestor’s rules are marked; since they are, the commu-

nication is over.
13. PM deletes the two choreography instances (it should also delete any

instances from its internal repository, but in this case there are none).

6 Related Work

Processes mediation is still a poorly explored research field, in the context of
Semantic Web Services. The existing work represents only visions of mediator
systems able to resolve in a (semi-) automatic manner the processes hetero-
geneity problems, without presenting sufficient details about their architectural
elements. Still, these visions represent the starting points and valuable references
for the future concrete implementations.

Two integration tools, Contivo2 and CrossWorlds3 seemed to be the most
advanced ones in this field.

Contivo is an integration framework which uses metadata representing mes-
sages organized by semantically defined relationships. One of its functionalities
is that it is able to generate transform code based on the semantic of the re-
lationships between data elements, and to use this code for transforming the
exchange messages. However, Contivo is limited by the use of a purpose-built
vocabulary and of pre-configured data models and formats.

CrossWorlds is an IBM integration tool, meant to facilitate the B2B col-
laboration through business processes integration. It may be used to implement
various e-business models, including enhanced intranets (improving operational
efficiency within a business enterprise), extranets (for facilitating electronic trad-
ing between a business and its suppliers) and virtual enterprises (allowing enter-
prises to link to outsourced parts of its organization). The disadvantage of this
tool is that different applications need to implement different collaboration and
connection modules, in order to interact. As a consequence, the integration of a
new application can be done only with additional effort.

2 http://www.contivo.com/
3 http://www.sars.ws/hl4/ibm-crossworlds.html

WSMX Process Mediation Based on Choreographies 143

Through our approach we aim to provide dynamic mediation between various
parties using WSMO for describing goals and Web Services. As described in this
paper this is possible without introducing any hard-coded transformations.

7 Conclusions

In this document we proposed an approach and a mechanism for coping with the
processes heterogeneity problem. The processes we are addressing in this paper
are the public processes of business entities (services or a requestors of services),
which express their public processes as WSMO choreographies.

The proposed approach is based on the semantic description of the Web
Services and of their behavior, as well as on how a requestor that wants to
interact with a Web Service express the expected behaviour of the Web Service.

We showed that an algorithm that considers the concepts’ definitions and
evaluates the transition rules from the two choreographies can resolve (some of
the) heterogeneity problems of the collaborating parties.

References

1. Business Process Trends Glossary. http://www.bptrends.com/resources_

glossary.cfm, 2003.
2. E. Cimpian and A. Mocan. Process Mediation in WSMX. Technical report, WSMX

Working Draft, http://www.wsmo.org/TR/d13/d13.7/v0.1/, March 2005.
3. E. Cimpian, M. Moran, E. Oren, T. Vitvar, and M. Zaremba. Overview and Scope

of WSMX. Technical report, WSMX Working Draft, http://www.wsmo.org/TR/
d13/d13.0/v0.2/, February 2005.

4. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and
D. Fensel. The Web Service Modeling Language WSML. Technical report, WSML
Working Draft, http://www.wsmo.org/TR/d16/d16.1/v0.2/, March 2005.

5. D. Fensel and C. Bussler. The web service modeling framework WSMF. Electronic
Commerce Research and Applications, 1(2), 2002.

6. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition, 5(2):199–229, 1993.

7. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In Egon Börger, editor, Spec-
ification and Validation Methods, pages 9–37. Oxford University Press, 1994.

8. A. Mocan and E. Cimpian. WSMX Data Mediation. Technical report, WSMX
Working Draft, http://www.wsmo.org/TR/d13/d13.3/v0.2/, March 2005.

9. D. Roman, J. Scicluna, C. Feier, M. Stollberg, and D. Fensel. Ontology-based
Choreography and Orchestration of WSMO Services. Technical report, WSMO
Working Draft, http://www.wsmo.org/TR/d14/v0.1/, March 2005.

10. M. Zaremba, M. Moran, and T. Haselwanter. WSMX Architecture. Technical re-
port, WSMX Working Draft, http://www.wsmo.org/TR/d13/d13.4/v0.2/, March
2005.

	Introduction
	Motivation
	Overview
	Problem Definition

	WSMO and WSMX
	Process Mediation Based on WSMO Choreographies
	Process Representation
	Addressed Problems
	WSMX Process Mediator
	Execution

	Examples
	Requestor and Provider's Choreographies
	Communication Process

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

