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Preface

This book contains a selection of refereed papers presented at the Second Work-
shop on Machine Learning for Multimodal Interaction (MLMI 2005), held in
Edinburgh, Scotland, during 11–13 July 2005.

The workshop was organized and sponsored jointly by two European inte-
grated projects, three European Networks of Excellence and a Swiss national
research network:

– AMI, Augmented Multiparty Interaction, http://www.amiproject.org/
– CHIL, Computers in the Human Interaction Loop, http://chil.server.de/
– HUMAINE, Human–Machine Interaction Network on Emotion, http://

emotion-research.net/
– PASCAL, Pattern Analysis, Statistical Modeling and Computational Learn-

ing, http://www.pascal-network.org/
– SIMILAR, human–machine interfaces similar to human–human communica-

tion, http://www.similar.cc/
– IM2, Interactive Multimodal Information Management, http://www.im2.ch/

In addition to the main workshop, MLMI 2005 hosted the NIST (US Na-
tional Institute of Standards and Technology) Meeting Recognition Workshop.
This workshop (the third such sponsored by NIST) was centerd on the Rich
Transcription 2005 Spring Meeting Recognition (RT-05) evaluation of speech
technologies within the meeting domain. Building on the success of the RT-04
spring evaluation, the RT-05 evaluation continued the speech-to-text and speaker
diarization evaluation tasks and added two new evaluation tasks: speech activity
detection and source localization.

MLMI 2005 was thus sponsored by the European Commission (Information
Society Technologies priority of the Sixth Framework Programme), the Swiss
National Science Foundation and the US National Institute of Standards and
Technology.

Given the multiple links between the above projects and several related re-
search areas, and the success of the first MLMI 2004 workshop, it was decided
to organize once again a joint workshop bringing together researchers from the
different communities working around the common theme of advanced machine
learning algorithms for processing and structuring multimodal human interac-
tion. The motivation for creating such a forum, which could be perceived as a
number of papers from different research disciplines, evolved from an actual need
that arose from these projects and the strong motivation of their partners for
such a multidisciplinary workshop. This assessment was confirmed this year by
a significant increase in the number of sponsoring research projects, and by the
success of the workshop itself, which attracted about 170 participants.

The conference program featured invited talks, full papers (subject to careful
peer review, by at least three reviewers), and posters (accepted on the basis of
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abstracts) covering a wide range of areas related to machine learning applied to
multimodal interaction — and more specifically to multimodal meeting process-
ing, as addressed by the various sponsoring projects. These areas included:

– Human–human communication modeling
– Speech and visual processing
– Multimodal processing, fusion and fission
– Multimodal dialog modeling
– Human–human interaction modeling
– Multimodal data structuring and presentation
– Multimedia indexing and retrieval
– Meeting structure analysis
– Meeting summarizing
– Multimodal meeting annotation
– Machine learning applied to the above

Out of the submitted full papers, about 50% were accepted for publication
in the present volume, after having been invited to take review comments and
conference feedback into account.

In the present book, and following the structure of the workshop, the papers
are divided into the following sections:

1. Invited Papers
2. Multimodal Processing
3. HCI and Applications
4. Discourse and Dialog
5. Emotion
6. Visual Processing
7. Speech and Audio Processing
8. NIST Meeting Recognition Evaluation

Based on the successes of MLMI 2004 and MLMI 2005, it was decided to
organize MLMI 2006 in the USA, in collaboration with NIST (US National
Institute of Standards and Technology), again in conjunction with the NIST
meeting recognition evaluation.

Finally, we take this opportunity to thank our Program Committee members,
the sponsoring projects and funding agencies, and those responsible for the ex-
cellent management and organization of the workshop and the follow-up details
resulting in the present book.

November 2005 Steve Renals
Samy Bengio
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Gesture, Gaze, and Ground 

David McNeill 

University of Chicago 

My emphasis in this paper is on floor control in multiparty discourse: the approach is 
psycholinguistic. This perspective includes turn management, turn exchange and 
coordination; how to recognize the dominant speaker even when he or she is not 
speaking, and a theory of all this. The data to be examined comprise a multimodal 
depiction of a 5-party meeting (a US Air Force war gaming session) and derive from a 
project carried out jointly with my engineering colleagues, Francis Quek and Mary 
Harper. See the Chen et al. paper in this volume for details of the recoding session. 

Multiparty discourse can be studied in various ways, e.g., signals of turn taking 
intentions, marking the next ‘projected’ turn unit and its content, and still others.  I 
adopt a perspective that emphasizes how speakers coordinate their individual 
cognitive states as they exchange turns while acknowledging and maintaining the 
dominant speaker’s status.  My goals are similar to Pickering & Garrod’s interactive 
alignment account of dialogue (2004), but with the addition of gesture, gaze, posture, 
F-formations (Kendon 1990) and several levels of coreferential chains—all to be 
explained below. I adopt a theoretical position agreeing with their portrayal of 
dialogue as ‘alignment’ and of alignment as automatic, in the sense of not draining 
resources, but not their ‘mechanistic’ (priming) account of it (cf. Krauss et al. 2004 
for qualms).  The theory I am following is described in the next section.  Alignment in 
this theory is non-mechanistic, does not single out priming, and regards 
conversational signaling (cf. papers in Ochs et al. 1996) as providing a synchrony of 
individual cognitive states, or ‘growth points’. 

1   Theoretical Background 

The growth point. A growth point (GP) is a mental package that combines both 
linguistic categorial and imagistic components.  Combining such semiotic opposites, 
the GP is inherently multimodal, and creates a condition of instability, the resolution 
of which propels thought and speech forward.  The GP concept, while theoretical, is 
empirically grounded.  GPs are inferred from the totality of communication events 
with special focus on speech-gesture synchrony and co-expressivity (cf. McNeill 2005 
for extensive discussion). It is called a growth point because it is meant to be the 
initial pulse of thinking for and while speaking, out of which a dynamic process of 
organization emerges. Growth points are brief dynamic processes during which idea 
units take form.  If two individuals share GPs, they can be said to ‘inhabit’ the same 
state of cognitive being and this, in the theoretical picture being considered, is what 
communication aims to achieve, at least in part. The concept of inhabitance was 
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expressed by Merleau-Ponty (1962) in the following way: “Language certainly has 
inner content, but this is not self-subsistent and self-conscious thought.  What then 
does language express, if it does not express thoughts?  It presents or rather it is the 
subject’s taking up of a position in the world of his meanings” (p. 193; emphasis in 
the original). The GP is a unit of this process of ‘taking up a position in the world of 
meanings’. On this model, an analysis of conversation should bring out how 
alignments of inhabitance come about and how, as this is taking place, the overall 
conversational milieu is maintained by the participants. 

The hyperphrase. A second theoretical idea—the ‘hyperphrase’—is crucial for 
analyzing how these alignments and maintenances are attained in complex multi-party 
meetings. A hyperphrase is a nexus of converging, interweaving processes that cannot 
be totally untangled. We approach the hyperphrase through a multi-modal structure 
comprising verbal and non-verbal (gaze, gesture) data.  

To illustrate the concept, I shall examine one such phrase from a study carried out 
jointly with Francis Quek and Mary Harper (the ‘Wombats study’). This hyperphrase 
implies a communicative pulse structured on the verbal, gestural, and gaze levels 
simultaneously. The hyperphrase began part way into the verbal text (# is an audible 
breath pause, / is a silent pause, * is a self-interruption; F0 groups are indicated with 
underlining, and gaze is in italics):  

we’re gonna go over to # thirty-five ‘cause / they’re ah* / they’re  
from the neigh borhood they know what’s  going on #”. 

The critical aspect indicating a hyperphrase is that gaze turned to the listener in the 
middle of a linguistic clause and remained there over the rest of the selection. This 
stretch of speech was also accompanied by multiple occurrences of a single gesture 
type whereby the right hand with its fingers spread moved up and down over the 
deictic zero point of the spatialized content of speech. Considering the two non-verbal 
features, gaze and gesture, together with the lexical content of the speech, this stretch 
of speech is a single production pulse organized thematically around the idea unit, 
‘the people from the neighborhood in thirty-five.’ This would plausibly be a growth 
point. Such a hyperphrase brings together several linguistic clauses. It spans a self-
interruption and repair, and spans 9 F0 groups. The F0 groups subdivide the thematic 
cohesion of the hyperphrase, but the recurrence of similar gesture strokes 
compensates for the oversegmentation. For example, the F0 break between “what’s” 
and “going on” is spanned by a single gesture down stroke. It is unlikely that a topic 
shift occured within this gesture. Thus, the hyperphrase is a production domain in 
which linguistic clauses, prosody and speech repair all play out, each on its own time-
scale, and are held together as the hyperphrase nexus. 

Thus we have two major theoretical ideas with which to approach the topic of 
multiparty discourse—the growth point and the hyperphrase.  The GP is the 
theoretical unit of the speaker’s state of cognitive being.  The hyperphrase is a 
package of multimodal information that presents a GP. Through hyperphrases GPs 
can be shared. Multiple speakers can contribute to the same hyperphrases and growth 
points. Speaker 2 synchronizes growth points with Speaker 1 by utilizing various 
turn-taking ‘signals’ to achieve synchrony.  This hypothesis assumes that 
conversationalists align GPs—Speaker 2 emits signals in a hyperphrase until he/she 
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senses alignment, then allows an exchange of the speaking turn.  The signals can be 
seen as bringing one state of cognitive being into alignment with another, with the 
hyperphrase the package managing the coordination.  We do not suppose that all turn 
exchanges are so organized, but we see evidence, in multiparty discourse, that much 
of it is. 

2   The VACE Project1 

The aim of our research project under the VACE program is to understand, across a 
wide multimodal front, interpersonal interactions during meetings of c. 5~6 
individuals, US Air Force officers taking part in military gaming exercises at the Air 
Force Institute of Technology (AFIT), at the Wright Patterson Air Force Base, in 
Dayton, OH. The participants represent various military specialties.  The commanding 
officer for the gaming session is always in position E. The task of this particular 
meeting was to figure out how a captured ‘alien missile head’ (which in fact looked 
rather like a coffee thermos with fins) functioned. The session lasted approximately 
42 minutes.  The examples to be studied are extracted from the latter half of this 
period. Figure 1 shows the meeting room and camera configuration. 

 

Fig. 1. Layout of the testing room.  The participants were in positions C, D, E, F and G 
(positions A, B and H were vacant).  Illustrations in later figures are from Camera 1’s vantage 
point. 

I shall give some general statistics for gesture (pointing) and gaze during the entire 
meeting, including notes on some coding difficulties in the case of gaze, and then analyze 

                                                           
1  This research has been supported by the Advanced Research and Development Activity 

(ARDA), Video Analysis and Content Extraction VACE II grant #665661 (entitled From 
Video to Information: Cross-Modal Analysis of Planning Meetings). 
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two focus segments, concentrating on how the dominant participant (E) maintains his 
position, despite multiple shifts of speaker.  I will also analyze the unique way the sole 
female participant seizes a speaking turn (participant C, who although of the same 
military rank as the others shows traits of marginalization in the group).   

Pointing. The dominant participant, E, is the chief source of pointing but is the least 
frequent target of pointing by others. C and D are the least likely to point at anyone 
but are the most likely to be pointed at by others (D is notably passive in the group). 
So this pattern—rarely the source of pointing, often the target—may signal 
marginality, actual or felt, in a group setting. Table 1 summarizes the pointing 
patterns.2 

Table 1. Pointing Patterns in the Meeting 

 Source C Source D Source E Source F Source G Total 
Target C 3 2 17 8 10 40 
Target D 1 4 21 11 3 40 
Target E 4 0 5 2 0 11 
Target F 3 2 13 0 2 20 
Target G 4 4 8 7 0 23 
Target others 12 10 59 28 15  
Target All 0 0 5 0 0 5 
Target Some 1 2 10 2 0 15 
Target Obj 3 6 20 12 24 65 
Target Abstract 5 11 8 1 1 26 
Total 24 31 107 43 40 245 

 (Note: ‘target others’ excludes self-pointing) 

  

Fig. 2.1. E (head of table) points with right 
hand at C (left front). Participants are festoo- 
ned with motion tracking (VICON) jewelry. 
(Ronald Tuttle is in the background.) 

Fig. 2.2. F (right rear) points at G with origo 
shift toward E 

                                                           
2  Coding of pointing and other features was carried by a dedicated research team—Irene 

Kimbara, Fey Parrill, Haleema Welji, Jim Goss, Amy Franklin, and (overseeing it all) Sue 
Duncan, all of the Gesture Lab at the University of Chicago (http://mcneilllab.uchicago.edu). 
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Figures 2.1 and 2.2 illustrate two pointing events, the first showing E with his right 
hand rising from rest on the table to point minimally at C (and thereby authorizing—
weakly—her as speaker); the second is F pointing at G but in a curious way that shifts 
the origo or perspective base of the gesture to a locus in front of his own location, a 
maneuver that may unconsciously reflect the ‘gravitational pull’ of E on his right. 

Gaze. Table 2 summarizes the distribution of gazes during the entire meeting. Again, 
as in pointing, E’s dominant status is registered by an asymmetry, but now with 
reverse polarity: he is the most frequent gaze target but the least frequent gaze source.  
C, the sole female present, is unchivalrously the least frequent gaze target but the 
most frequent gaze source—a pattern also seen in a NIST interaction analyzed 
previously (unpublished data) again involving a female participant, although not the 
sole female in this case, but again seemingly the marginal participant in the group. 

However, gaze duration by E is longer—duration and shift of gaze may perform 
distinct functions in this tradeoff. Table 3 compares the frequency and duration of 
gazes by E to G vs. those of G to E. Indeed, E looks with longer durations at G than G 
does at E, but this asymmetry does not hold for gazes at neutral space, the object, or 
papers—at these targets G gazes are actually longer.  E’s fewer, longer gazes at 
people but not at objects can be explained if he uses gaze to manage the situation—
showing attentiveness (hence longer) but feeling no pressure to seek permission to 
speak (therefore fewer).  Such fewer, longer gazes at people (but not at objects) are 
recognizably properties of a dominant speaker. 

Table 2. Frequency of gaze during the meeting 

 
C 

Source 
D 

Source 
E 

Source 
F 

Source 
G 

Source 
Total 

C Target X 38 45 59 67 209 
D Target 70 X 83 112 94 359 
E Target 212 136 X 144 149 641 
F Target 150 107 98 X 116 471 
G Target 75 52 63 68 X 258 

Total 507 333 289 383 426 1938 

Table 3. Comparison of E’s gaze duration (fewest shifts) to G’s (more shifts) 

 
E’s gaze 
Number 

(fewest shifts) 
Av. Duration secs 

G’s gaze 
Number 

(more shifts) 
Av. Duration 

secs 
At C 45 5.1 67 1.1 
At D 82 4.0 93 2.6 
At E - - 149 1.9 
At F 98 3.9 116 1.6 
At G 63 3.1 - - 
Neutral space 150 1.0 292 1.5 
At object 58 1.7 42 2.8 
At papers 33 3.2 18 8.2 
Others  4 2.4 8 1.9 
Average 67 3.0 98 2.7 
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To summarize dominance and marginality. Both pointing and gaze correlate with 
the social dimension of dominance, but in opposite directions:  

In pointing, the gesture has an active function—selecting a target; it is thus 
correlated positively with dominance and negatively with marginality.  
Marginal members may frequently be pointing targets as part of recruiting 
efforts.  

In gaze, the action has a passive or perceptual function—locating the source 
of information or influence; it is accordingly correlated negatively with 
dominance and positively with marginality, especially when brief. 

But in E’s case, gaze is also active, not passive, and this is reflected in longer 
durations at people only, combined with fewer shifts of gaze overall; 
duration thus correlates with dominance positively. 

Coding issues. Inferring gaze from video poses difficulties of coding, and it is well to 
say something about this.  The following comments are based on notes by the coder 
(Haleema Welji): F and G wear glasses, making it difficult to see where their eyes are 
and even sometimes whether the eyes are open. Often it is necessary to look for a 
slight movement of the eye or eyelid, which can be hard to spot. Also, neutral space 
can coincide with the location of the object on the table and sometimes it is difficult 
to distinguish what is the target of gaze. A third difficulty is that at some orientations 
it is hard to get a good view of the eyes.  Finally, when coding in slow motion a blink 
and a short glance away may be indistinguishable.  Given the uncertainties, that no 
more than 8% of the gaze judgments for the be-glassed participants and less than 3% 
for the best participant were deemed tentative, is perhaps reassuring. 

3   Focus Segments 

Two segments were selected for detailed analysis.  Both came from the second half of 
the 42 minute session. 

Focus 1. The first focus segment highlights turn taking exchange in which 
hyperphrases carry multiple functions.  The speech is as follows: 

1.  E: "okay.  u-" 
2.  G: "So it's going to make  it a little tough." 
3.  F: "It was my understanding that the- the whole head pivoted to provide the 

aerodynamic uh moment. But uh I could be wrong on.  That uh …" 
4.  G: "that would be a different design from-" 
5.  F: "From what-" 
6.  G: "from- from the way we do it." 
7.  F: "Okay." 
8.  E: "Okay so if we-" 
9.  G: "But we can look into that." 
10. E: "If we're making that assumption ((unintel.)) as a high fidelity test" 
11. F: "Yeah." 
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Turn taking at momentary overlap of GPs. An obvious case of a GP starting with 
one speaker and passing to the next appears at 5, where F says “from what” and G, at 
6, takes over with “from- from the way we do it”.  The hyperphrase package of the 
joint inhabitance is seen in the deployment of gaze and gesture: 

F begins with a glance at E, then gestures interactively toward G, followed 
immediately by gaze at G and an iconic gesture depicting the alien coffee 
mug (see Figure 3). 

The hyperphrase here is a multimodal unit within which dimensions of gesture and 
gaze exchange places in creating the GP concerning the ‘way we do it’, related to the 
imagery component depicting the object. We also see a hyperphrase being constructed 
by F that includes social information: E’s standing as dominant speaker, in the quick 
glance at him at the start; G’s status as current speaker, in the interactive gesture to 
him; and the ongoing role of the ‘thermos’ as the discourse theme.  

 

 

Fig. 3. MacVissta screenshot of turn taking in Focus 1. Notes added on how turn taking 
correlated with gaze and gesture (see the Chen et al paper for details on MacVissta). 

Figure 4 displays how gesture was recruited at the onset of the new turn—a further 
component of the hyperphrase at this moment. 

F-formation analysis. An F-formation is discovered by tracking gaze direction in a 
social group. The concept was introduced by Adam Kendon, who said, “An  
F-formation arises when two or more people cooperate together to maintain a space  
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Fig. 4. MacVissta screenshot of gesture in Focus 1. Notes added on how gesture correlated with 
gaze and turn taking (see the Chen et al paper for details on MacVissta). 

between them to which they all have direct and exclusive [equal] access.” (Kendon 
1990, p. 209).  An F-formation, however, is not just about shared space. Crucially, it 
has an associated meaning, reveals a common ground, and helps us, the analysts, find 
the units of thematic content in the conversation.  Figure 5 shows the F-formations in 
Focus 1. Tracking the appearance of the same color (see online version, shades of 
gray here) across participants identifies each F-formation, defined as a shared focus of 
attention.  In the Focus segment, an F-formation defined by shared gaze at F (light 
green: lightest gray) is replaced by one defined by gaze at G (dark green: 4th darkest 
gray).  Interestingly, there is a brief transition or disintegration with gaze either at E or 
at non-person objects (cf. online version: object=maroon, neutral space=yellow)—
acknowledgement of E’s status as dominant.  But the main inference from the F-
formation analysis is that speaker F was recognized as the next speaker before he 
began to speak, and this recognition was timed exactly with his brief gaze at E—a 
further signal of E’s dominance.  This gaze created a short F-formation with G, since 
both then looked at E.  This in effect signaled the turn exchange, and is another 
component of the hyperphrase at this moment, ushering in a joint growth point. 

Back to momentary sharing of GPs. So, what happened here at the turn exchange 
was a synchronizing of inhabitance by F (the next speaker) with G (the current 
speaker) via their joint F-formation with E the target.  F’s hyperphrase (a bundle of 
multimodal features) encompassed all these features.  F’s GP included the idea of his 
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Person Gaze – F-Formations
= gaze to C 
= gaze to D 
= gaze to E 
= gaze to F

= gaze to G

The arrow is F’s line. The F-formation with 
F as the target (everyone else’s light green: 
lightest gray) recognizes his turn even 
before he starts to speak or gesture to G - it 
coincides with F’s gaze at E, the dominant 
speaker in the room. F then rapidly a) 
looks at neutral space (yellow), then at C. 

 

Fig. 5. MacVissta screenshot of F-formations in Focus 1. Notes added on how F-formations 
correlated with gesture, gaze and turn taking (see the Chen et al paper for details on 
MacVissta). 

collaboration with G and with this he could lock-step their current cognitive states. 
F’s first GP was in fact a continuation of G’s.  The details appear in how gaze and 
gesture deployed around the table: 

Dominant E continues to gaze at designated speaker G when G gestures at 
object and others apparently look at the object. 

G gazes at the dominant participant, and makes deictic/conduit gestures in 
his direction (cf. McNeill 1992 for these terms). G then shifts his gaze to the 
object, then quickly shifts back to E.  Nonspeaker D doesn’t shift to E when 
G shifts but keeps gaze at G—suggesting that what we see is the speaker 
affirming the dominant status of E, but the overhearers are free to respond to 
the speaker’s new turn. 

Also, when F takes turn from G he waits until G finishes his ongoing 
sentence, but first turns to look at E in the middle of the sentence, and then 
starts his turn while still looking at E (only after this shifting to G). 

The next example however displays a very different form of turn exchange, one 
based on non-joint inhabitance. 
Focus 2. For reasons not entirely clear but possibly connected to the fact that, 
although of equal military rank, C was the sole female present, this speaker does not 
create a series of moves designed to synchronize idea units with any current speaker. 
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She appears instead to wait until there is no current state of joint inhabitance, and then 
embarks on a turn. In other words, C exploits the phenomena that we have seen but in 
reverse: she waits until a break in hyperphrasing; when it appears she plunges in.  
Focus 2 begins as F signaled the end of his turn and E’s gaze briefly left the 
interaction space: C then quickly moved to speak.  The speech is the following, but to 
understand the action requires a multimodal picture: 

F: "to get it right the first time. So I appreciate that." 

F relinquishes turn—intonation declines.   

E gazes straight down table (no target?), setting stage for next step. 

C intervenes, ferret-quick: 

C: "I'm thinking graduation exercise kind of thing.  You know we might 
actually blow something up. Obviously we don't want to". 

E (not F, the previous turn-holder) acknowledges C’s turn with 
gesture and gaze, but in a manner that suggests surprise—further 
confirming that C’s strategy was to wait for a general lapse of 
inhabitance before starting to speak. 

Figure 6.1 shows the moment C spots her chance to speak (the first line above).  
Figure 6.2 depicts 9 frames (0.3 s) later. Note how all the participants, in unison, are 
shifting their gaze to C and forming in this way a multiparty F-formation and 
hyperphrase with C the focal point. 

  

Fig. 6.1. C leaps in.  Gaze around the table is 
generally unfocused. 

Fig. 6.2. 9 frames (0.3 s) later, gaze generally 
shifts to C and E points at C 

One has to ponder the effects of a strategy like C’s that avoids shared 
hyperphrasing and transitional GPs.  C’s experience of the interaction dynamics is 
seemingly quite different from the others and theirs equally from hers.  Whether this 
is due to ‘marginality’ (as evident in pointing and gaze, Tables 1 and 2) or is a 
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personal trait, is unclear. An all-female meeting would be of great interest, but we 
have not managed to assemble one to date. 

4   Comparison of Focus 1 and Focus 2 

In contrast to Focus 1, where we saw an intricate build up of a hyperphrase out of 
gaze and gesture, in Focus 2 C gazes at E (even though she is following G), and E 
provides authorizing back channels in the form of gaze and pointing, and this is the 
total exchange; there is no real hyperphrase or possibility of a shared transitional GP.  

Taking the two focus segments together, it seems clear that speaker status can be 
allotted, negotiated, or seized in very short time sequences, but dominant speaker 
status is ascribed and changes slowly if at all. 

5   Coreference, F-formations, and Gaze 

The way in which discourse coheres—how segments beyond individual utterances 
take form—can be observed in various ways, but we have found tracking coreferential 
chains in speech to be highly useful.  A ‘reference’ is an object or other meaning 
entity nominated in speech; a coreferential chain is a set (not necessarily consecutive) 
of linguistic nominations of the same referent.  As a whole, the chain comprises a 
‘topic’ in the conversation. A coreferential chain links extended text stretches and by 
its nature is interpretable on the level of meaning and can be the basis of 
hyperphrases. An important insight is that coreferential chains also can span different 
speakers, and so can tie together multiparty hyperphrases and shared growth points in 
dialogues.   

Coreferential chains thread across different levels in the structure of discourse. A 
given chain might track over each of the following: 

Object level: cohesion through references to object world; e.g., “a 
confirming design”. 
Meta level: cohesion through references to the discourse itself; e.g., “I 
propose assuming a US design”. 
Para level: cohesion through references that include individual participants; 
e.g., “I agree with the assumption”. 

In Figure 7, a hyperphrase builds up between participants over each the above 
levels.  In so doing it unites references to the alien object by tying them to the theme 
of how it is designed and what should initially be assumed about this design, each 
contribution from a different speaker and on a different level.   

Coreferences also provide an overall profile of thematic content within a 
conversation.  Figure 8 shows the cumulative distribution of coreferences over the 
total 42 minutes of the AFIT session. A small number of references account for the 
vast bulk of cohesion in this discourse.  The curve can be read from left to right as 
listing the dominant topics and then less dominant topics—‘FME people’ (those who 
work on foreign material exploitation), operators of Air Force systems, and so forth, 
with the bulk of references on the long tail of single mentions. 
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Two cross-level, cross-speaker hyperphrases 
with possible shared growth points, based on co-
reference - e.g., the left box is an idea unit 
shared by three speakers   having to do with the 
design of the tin can and the social exchange of 
the participants’. 

 

Fig. 7. MacVissta screenshot of coreference threads across multiple speakers creating F-
formations 

 

Fig. 8. Distribution of coreferences in the 42 minute session 
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Elaborations on the F-formation. In the discourse situations we observe, we see two 
types of F-formation:  

1) social, in which the elements are other individals (Kendon’s original 
version), and  

2) instrumental, in which two or more people gaze at a common event or 
object in space.   

The elaborations identify different kinds of social interactive configurations that 
can be seen in conversations that involve both participants and physical displays of 
objects (projection screens, the alien object of the AFIT session, etc.).  Social F-
formations are accompanied by significant shifts of the discourse levels of 
coreferential chains (object, meta, and para in various permutations); instrumental F-
formations tend to stay on the same level (usually but not necessarily the object level).  
Table 4 shows the difference between social and instrumental F-formations in earlier 
data (a 4-party roundtable interaction recorded at NIST). 

Table 4. Gaze and Level Shift 

 Shift Not Shift N 
Instrumental Gaze 44% 66% 32 
Social Gaze 67% 33% 15 

As hyperphrases, social F-formations thus open up a variety of trading relations 
with which to engender growth points during interactions. This richer variety is of 
course significant in itself. It makes sense in terms of the stimulus value of another 
person in a social context.  The discovery is that social gaze has an immediate effect 
on the cohesive structure of discourse with coreference shifts strapped together into 
hyperphrases by gaze. 

6   Conclusions and Application to Automatic Methods 

For communication studies, the implications of this research seem clear: a multimodal 
approach uncovers phenomena not otherwise observable. The concept of a 
hyperphrase, as a group of multimodal features in trading relationships, is particularly 
interesting from an instrumental viewpoint—you want to pick up these interacting 
features if you can. We focus currently on floor management: who is dominant, how 
are turns at speaking managed, what are the ways in which someone seizes a turn, and 
how does the alpha participant maintain control, etc.?, but the range can be broadened 
to include other aspects of meeting dynamics—the formation of coalitions, cleavages, 
and coups, etc. 

The psycholinguistic interest in these meetings lies in the apparent synchronizing 
of states of joint inhabitance that the turn taking process engages.  However, we see a 
different mode of turn taking in Officer C’s case, in which her procedure was not the 
synchronization but rather exploitation of momentary lapses of joint inhabitance. 
While a single example cannot rule out individual style as the source of a pattern, it is 



14 D. McNeill 

the case that C’s social isolation, as the sole female participant, is also a possible 
factor.  Ever since Herbert Clark’s pioneering studies of common ground (Clark 
1996), it has been an assumption that for communication to take place at normal 
speeds and feasible resource allocations speaker and hearer need to establish a 
common ground, which then need not be further communicated.  While common 
ground seems indisputable in a general sense (the officers all knew, for example, they 
were in the US Air Force, were at AFIT, were taking part in a training exercise, had 
before them an alien object—in fact, assumed all the high frequency topics seen in 
Fig. 8), C jumped in precisely when she sensed a lapse in the local common ground—
F had given up his turn, E was drifting, no one else was starting to speak, etc.  It is 
therefore worth considering that common ground has two orientations: a general one, 
which is, as Clark rightly emphasized, a precondition for all communication; and a 
local one, which is not a precondition but is a product of the interaction and is not a 
given in the conversation but is constantly unfolding.  From this viewpoint, C, by 
interjecting, created a new common ground. With the general-local common ground 
distinction, we can track the dynamics of the interaction. 

From a psycholinguistic and social psychology viewpoint, the management of turn 
taking, floor control, and speaker dominance (even if not speaking) are crucial 
variables, and the prospect of instrumentally recording clues to these kinds of things 
could be the basis for valuable interdisciplinary work. These descriptive features are 
the reality of the meeting to which instrumental recording methods need to make 
reference. The automatic or semi-automatic monitoring of meetings needs to be 
related to the actual events taking place in the meeting at the human, social level, and 
our coding is designed to provide an analytic description of these events. The coding 
emphasizes the multimodal character of the meeting, attending equally to speech, 
nonverbal behavior and the use of space, and the aim of the collaboration is to test 
which (if any) recoverable audio and video features provide clues to such events, thus 
warranting human inspection. 
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Abstract. In recent years, a new generation of multimodal systems has
emerged as a major direction within the HCI community. Multimodal
interfaces and architectures are time-critical and data-intensive to de-
velop, which poses new research challenges. The goal of the present work
is to model and adapt to users’ multimodal integration patterns, so that
faster and more robust systems can be developed with on-line adapta-
tion to individual’s multimodal temporal thresholds. In this paper, we
summarize past user-modeling results on speech and pen multimodal in-
tegration patterns, which indicate that there are two dominant types of
multimodal integration pattern among users that can be detected very
early and remain highly consistent. The empirical results also indicate
that, when interacting with a multimodal system, users intermix uni-
modal with multimodal commands. Based on these results, we present
new machine-learning results comparing three models of on-line system
adaptation to users’ integration patterns, which were based on Bayesian
Belief Networks. This work utilized data from ten adults who provided
approximately 1,000 commands while interacting with a map-based mul-
timodal system. Initial experimental results with our learning models
indicated that 85% of users’ natural mixed input could be correctly clas-
sified as either unimodal or multimodal, and 82% of users’ mulitmodal
input could be correctly classified as either sequentially or simultane-
ously integrated. The long-term goal of this research is to develop new
strategies for combining empirical user modeling with machine learning
techniques to bootstrap accelerated, generalized, and improved reliability
of information fusion in new types of multimodal system.

1 Introduction

In recent years, multimodal human-computer interaction systems have emerged
as a dominant theme within HCI. Multimodal systems combine modalities into
a whole system and provide a more usable, robust, and mobile-ready interface
for users. Two mature types of multimodal system that integrate speech and lip
movements and also speech and pen input are presented in [1] and [2], respec-
tively. Temporal synchronization of users’ input and multimodal signal fusion
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and integrated interpretation [3] [4] are major research topics of research for
these time-critical systems.

At the heart of multimodal system design is adaptive information fusion. The
goal is to model and adapt to users’ multimodal integration patterns so that
the system can develop an adaptive temporal threshold for robust fusion and
interpretation. There are some studies on the topic of unimodal adaptation. For
example, in [5], speech recognition systems are able to adapt to different speakers
and environments. speech recognition systems are able to adapt to different
speakers and environments. But research on adaptive multimodal interfaces still
is in its infancy [6]. Fortunately, quite a few studies on machine learning can shed
light on adaptive information fusion. Most of these studies use graphical models
(i.e., Hidden Markov Model, Bayesian Belief Network and its extensions) to build
the relation between different modalities and improve system task performance.
For example, [7] [8] propose an asynchronous Hidden Markov Model for audio-
visual speech recognition. Another approach is Dynamical Systems Trees [9]
which has been applied to tracking football manuevers. In other recent work,
Layered HMMs [10] [11] have been used to infer human activities in an office
environment from audio-visual input.

In this paper, we adopt graphical models (i.e., Bayesian Belief Networks) to
learn users’ multimodal integration patterns and to adapt to each individual
user. Results from a user-modeling study of multimodal integration patterns
are summarized in section 2. Then three machine-learning models are presented
and compared to demonstrate our new approach to developing user-adaptive
multimodal systems.

1.1 State-of-the-Art Multimodal Systems

In [12] [13], two myths related to multimodal integration are discussed. One myth
is that multimodal input always involves simultaneous signals. However, this as-
sumption is contrary to actual objective data. More recent empirical evidence
has clarified that multimodal input often is integrated sequentially [4]. The gen-
eration of multimodal systems should not only be able to process both unimodal
and multimdal user input, but also both simultaneously and sequentially inte-
grated multimodal constructions. Figure. 1 shows typical cases of simultaneous
and sequential multimodal input.

Another myth is that all users’ multimodal input is integrated in a uniform
way. Recent studies has revealed an unusual bimodal distribution of user integra-
tion patterns. As illustrated in Figure. 2, previous data indicate that individual
child, adult, and elderly users all adopt either a predominantly simultaneous or
sequential integration pattern during speech and pen multimodal constructions
[12] [14]. In these studies, users’ dominant integration pattern was identifiable
almost immediately, typically on the very first multimodal command, and re-
mained highly consistent throughout a session. These findings imply that future
multimodal systems that can detect and adapt to a user’s dominant integration
pattern potentially could yield substantial improvements in system robustness.
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Simultaneous

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (seconds)

Sequential

“Let’s have an evacuation route”

“Make a route”

Simultaneous

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (seconds)

Sequential

“Let’s have an evacuation route”

“Make a route”

Fig. 1. Simultaneous vs Sequential Integration Patterns: Typical Speech and Pen Con-
structions

         Children                Adults            Seniors  
User      SIM       SEQ  User      SIM       SEQ  User      SIM       SEQ  
SIM integrators:  
1            100         0  
2            100         0  
3            100         0  
4            100         0  
5            100         0  
6            100         0  
7             98          2  
8             96          4  
9             82         18  
10           65         35  
SEQ integrators:  
11           15         85  
12            9          91  
13            2          98  

SIM integrators:  
1            100         0  
2             94          6  
3             92          8  
4             86         14  
SEQ integrators:  
5             31         69  
6             25         75  
7             17         83  
8             11         89  
9              0         100  
10            0         100  
11            0         100

SIM integrators:  
1            100         0  
2            100         0  
3            100         0  
4             97          3  
5             96          4  
6             95          5  
7             95          5  
8             92          8  
9             91          9  
10           90         10  
11           89         11  
12           73         27  
SEQ integrators:  
13            1          99  
Non -dominant  
Integrators : 
14           59         41  
15           48         52

Average Consistency  
              93.5%

 Average Consistency  
                90%

Average Consistency
88.5%

Fig. 2. Percentage of simultaneously-integrated multimodal constructions (SIM) versus
sequentially-integrated constructions (SEQ) for children, adults, and seniors

Based on the above studies, it can be summarized that: 1) Previous lifespan
data on speech and pen input shows users are classifiable as either simultaneous
or sequential multimodal integrators (70% simultaneous, 30% sequential); 2)
Users’ dominant integration pattern is predictable early (i.e., 1st utterance); and
3) Their integration pattern remains highly consistent throughout an interaction
(89-97% of consistency) and over time.

1.2 New Directions for Temporal Modeling and Multimodal Fusion

Due to large individual differences, estimates indicate that user-adaptive tempo-
ral thresholds could: 1) Reduce multimodal system processing delays by 50-60%;
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2)Improve reliability of multimodal interpretation by 50% (including correct
identification of multimodal vs. unimodal input); 3) Improve synchrony of user-
system interaction [15]. As a new class of adaptive multimodal interfaces begins
to be prototyped, our goal is to develop new techniques that can automatically
learn and adapt to users’ dominant multimodal integration patterns, and provide
better assistances to users.

1.3 Why Combine Empirical User Modeling and Machine Learning
Techniques?

One direction we are exploring involves combing empirical user modeling and
machine learning techniques. The motivation for this work is that empirically-
grounded user modeling can reveal: 1) What content is fertile territory for ap-
plying learning techniques (e.g., when major individual differences are present);
2) When different learning techniques should be applied to handle different sub-
groups of users adequately; 3) Which information sources should be learned; 4)
What gains can be expected if learning techniques are applied; 5) How to apply
learning techniques so they are transparent and avoid destabilizing users’ perfor-
mance; and 6) How to guide learning techniques more effectively by incorporating
explicit, implicit, or combined forms of user feedback to the system. In addition,
in some cases actually applying new machine learning techniques (e.g., asyn-
chronous HMMs) to multimodal data can be computationally intractable unless
prior knowledge can be incorporated based on user modeling to substantially
constrain variability in the data (S. Bengio, personal communication, 10/05).

1.4 Goals of the Present Research

One goal of this research is to investigate users’ speech and pen multimodal inte-
gration patterns, and to apply user modeling techniques for accurately learning
to predict their future input patterns. If predictive information based on user
modeling is sufficiently powerful, then it can be useful in bootstrapping machine
learning techniques, substantially improving the speed and accuracy of the ma-
chine processing. Another goal of this research is to develop machine learning
approaches for automatically learning users’ multimodal integration patterns
and adapting the system’s temporal thresholds in real time during fusion.

2 User Modeling Study of User’s Integration Patterns

Data was evaluated from a study that involved ten users spontaneously inter-
acting with a multimodal system [13]. Their input and multimodal integration
patterns then were analyzed empirically and also utilized for three different ma-
chine learning tests.

2.1 Methods Overview

Subjects. There were 10 adult subjects, aged 19-50, five male and five female,
all were native speakers of English.
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Application Scenario. Subjects were presented with a scenario in which they
acted as non-specialists working to coordinate emergency resources during a
major flood. To perform this task, they were given a multimodal map-based
interface on which they received textual instructions from headquarters. They
then used this interface to deliver input to the system by either speaking, inking
on the map, or interacting multimodally. For details of the interface, tasks, and
procedure, see [13].

Procedure. An experimenter was present and provided instructions, answered
questions, and offered feedback or help during a training session. Following this
orientation, the experimenter left the room and users began their session and
completed 93 tasks. Users were told to complete tasks with this map-based
system using their own words, and to use either pen input, speech input, or
both modalities in any way they wished. The system was introduced to users
as an open-microphone implementation, so they did not need to tap the pen
on the screen before speaking. Upon completion, volunteers were interviewed
about their interaction with the system, and were debriefed on the purpose of
the study. The experiment lasted about one hour per participant.

Data Capture and Transcript Coding. All sessions were videotaped, and
data were analyzed for type of input (i.e., unimodal speech or pen, versus mul-
timodal) and multimodal integration patterns (i.e., simultaneous versus sequen-
tial). Analyses also provided fine-grained temporal synchronization information
such as: 1) Absolute Intermodal Overlap/Lag, 2) Intermodal Overlap Ratio, 3)
Intermodal Onset Differential, 4) Intermodal Offset Differential, 5) Speech Dura-
tion, 6) Pen Duration, and 7) Multimodal Command Duration. Details of these
metrics have been described in [13].

2.2 Multimodal Integration Patterns for Individuals

For each subject, 93 commands total were recorded. The total available data
for analysis was 930commands. Seven users predominantly provided multimodal
input the system (i.e., over 60% of their commands), while three users pre-
dominantly provided unimodal input. In terms of individual differences in their
multimodal integration pattern, Figure 3 taken from [14] illustrates the percent-
age of all multimodal commands that involved a sequential versus simultaneous
integration pattern. There also were large individual differences among users
in the percentage of unimodal versus multimodal input, and in their ratio of
simultaneous to sequential multimodal integration. These large individual dif-
ferences indicated that user-adaptive processing of multimodal input would be
fertile territory for applying machine learning.

2.3 User Modeling Study Experimental Results

In this research, only 83 fully annotated commands for each user were used for
modeling and machine learning purposes. Columns 2 and 3 in Table 1 show
that the dominant pattern of subjects 1, 2, 3, 4, 5, 6, and 8 is multimodal
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Fig. 3. Percentage of unimodal (pen only and speech only) and multimodal (sequen-
tially integrated and simultaneously integrated) constructions for entire corpus

(60% of all commands), while the dominant pattern of subjects 7, 9 and 10
involves unimodal input to the system. The average consistency of users’ dom-
inant uni/multimodal pattern is 73.6%. Likewise, columns 4 and 5 show that
the dominant multimodal integration pattern for subjects 7 and 10 is sequential
(SEQ) when they do interact multimodally, whereas the dominant multimodal
integration pattern of the other eight subjects is simultaneous (SIM). The overall
average consistency for users’ dominant SEQ/SIM pattern is a striking 93.5%.
As this table illustrates, the dominant pattern of different subjects varies sub-
stantially, although each subject’s own patterns are extremely consistent. This
empirical result provides a basis for establishing reliable prior knowledge for
machine learning, especially for users’ multimodal integration pattern.

Since we planned to use the first 15 out of 83 commands from each sub-
ject as training samples, in Table 2 we have recalculated the percentages shown
in Table 1 just for each subject’s remaining 68 commands that our learning

Table 1. Percentage of unimodal versus multimodal commands delivered by each sub-
ject, and percentage of sequential versus simultaneous integration patterns for their
multimodal com-mands (averaged over all data)

Subject Multimodal Unimodal SIM SEQ

1 69% 31% 87% 13%
2 92% 8% 100% 0%
3 62% 38% 90% 10%
4 62% 38% 97% 3%
5 84% 16% 99% 1%
6 89% 11% 98% 2%
7 22% 78% 5% 95%
8 69% 31% 72% 28%
9 41% 59% 97% 3%
10 28% 72% 0% 100%
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Table 2. Percentage of unimodal versus multimodal commands delivered by each sub-
ject, and percentage of sequential versus simultaneous integration patterns for their
multimodal commands (averaged over commands 16-83)

Subject Multimodal Unimodal SIM SEQ

1 70% 30% 94% 6%
2 90% 10% 100% 0%
3 62% 38% 91% 9%
4 65% 35% 98% 2%
5 88% 12% 98% 2%
6 96% 4% 97% 3%
7 14% 86% 10% 90%
8 69% 31% 69% 31%
9 39% 61% 100% 0%
10 33% 67% 0% 100%

models aimed to predict. Table 2 shows that the average consistency of users’
patterns on their last 68 commands was even more stable than their grand means
(i.e., 75.3% for uni/multimodal input, and 93.6% for integration pattern). In the
present work, one major goal was to predict users’ input using as few commands
as possible. In this study, we tried to predict whether a subject’s subsequent
commands should be classified as unimodal or multimodal based on their first
5, 10, and then 15 commands. At each training step (i.e., 5, 10, 15), if the ratio
of the subject’s unimodal to total commands was larger than 60%, then they
were classified as unimodal. If less then 40%, then they were classified as multi-
modal. For example, if subject 1 had 3 unimodal commands and 2 multimodal
commands in their first 5 commands, the model would classify them as predomi-
nantly unimodal. This dominance classification also can be applied to other data
variables (e.g., next signal, sequential/simultaneous, etc).

Table 3. Prediction result of user modeling study

# of training Unimodal Multimodal SIM SEQ
samples

5 7,10 2,3,4,8 1,2,3,4,5,6,8, 9 7,10
10 7,10 2,3,4,6,8 1,2,3,4,5,6,8 7 ,9, 10
15 7,9,10 1,2,3,4,5,6, 8 1,2,3,4,5,6,8,9 7, 10

Table 3 shows the prediction accuracy of each subject’s dominant pattern fol-
lowing just 5, 10, or 15 example commands. Based on 5 commands, we can cor-
rectly classify 6 subjects with respect to their dominant uni/multimodal pattern.
With 15 commands, it is possible to classify users’ dominant uni/multimodal in-
put pattern with 100% accuracy. For classification of users’ SIM/SEQ dominant
integration pattern, the first 15 commands also are sufficient for 100% prediction
accuracy.
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It is worth noting that in principle we need a lot of training samples for
machine learning models. If we can take advantage of user modeling results as
prior knowledge to bootstrap machine learning, then substantial gains poten-
tially could be achieved both in training time and model prediction accuracy.
Furthermore, machine learning algorithms can be computationally intractable if
there is no prior knowledge, especially for data as complex as multimodal input.
Without good initialization, which can be specified by empirical results, machine
learning algorithms can have substantial difficulty converging.

3 Machine Learning Model for Multimodal Integration
Pattern Adaptation

In this section, we describe how to implement machine learning approaches to
learn and adapt to each user’s input pattern. We first introduce a general ar-
chitecture of multimodal integration pattern adaptation. Then three machine
learning models are presented with the goal of determining the best model for
the present data and task. The experimental results of all three models are out-
lined in section 3.2.

3.1 Multi-layer Learning Architecture

The multi-layer learning architecture to predict users’ multimodal integration
patterns is shown in Fig. 4. At the first level, user modeling predicts the dominant
pattern (Uni/Multmodal) of each user using a few training samples. Combing
this prior knowledge, we can improve the BBN model to learn each user’s pattern
more accurately and rapidly (level 2). A more ambitious goal is to make the
learned model adapt to new users through online learning (level 3).

In this section, we focus on adopting Bayesian Belief Network to learn users’
input pattern (level 2 in Fig. 4). A Bayesian network [16] is a graphical model
that encodes probabilistic relations among related variables. Bayesian Belief Net-
work has the following advantages: 1) It can handle situations where some data
are missing. 2) We can infer causal relations using BBN. Thus, it is possible to
gain understanding about a problem domain and to predict the consequences of
intervention. 3) It is an ideal representation for combining prior knowledge and
new training samples.

The first machine learning model for multimodal integration pattern adapta-
tion is shown in Fig. 5. We used the Matlab toolkit [17] to generate this model.
The model represents the joint probability distribution of six variables (three
inputs and three outputs). The model represents the joint probability distri-
bution of six variables (three input, three output). These include: 1) Subject
number: an input variable that denotes subject identification out of 10 total; 2)
Task difficulty: an input variable that denotes the difficulty level of the current
command out of four levels (easy, medium, difficult, very difficult); 3) Current
signal: an input variable that represents the name of the modality generating the
current signal (speech, pen, or neither/silence); 4) Uni/multimodal: an output
variable that represents whether the command is unimodal or multimodal; 5)
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Multimodal User Input Pattern Adaptation
Architecture

User Model for
Unimodal/Multimodal

classification

First level

BBN Learning Using
The Above Prior

Knowledge

Online Adaptation for
New Users

Second level

Third level

Fig. 4. Multimodal User Input Pattern Adaptation Architecture
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Ellipse: learning model input
Rectangle: learning model output

Subject
number

Fig. 5. Machine Learning Model 1 (Bayesian Belief Network) for multimodal inte-
gration pattern adaptation. [Ellipse denotes learning model input; Rectangle denotes
learning model output].

Next signal: an output variable that represents what the next signal is (i.e., If
the command is unimodal, then the next signal is silence. If multimodal, follow-
ing a first signal input, the next signal could be speech or pen.); 6) Temporal
relationship: an output variable that represents the predicted temporal relation-
ship between the current signal and next signal. (There are three possible values:
simultaneous, sequential and neither (i.e., for a unimodal command). The goal
of this model is to incorporate a group of simple related variables in order to
infer the pattern of subsequent user commands (i.e., Uni/Multi, SIM/SEQ). The
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Fig. 6. Machine Learning Model 2 (Bayesian Belief Network), with current signal du-
ration and previous command features as additional input variables

goal of the model is to predict the pattern of each new input command, which
then would be used by the system to more reliably cluster incoming signals and
interpret their meaning.

In order to compare different machine learning models, we created an alter-
native one shown in Figure 6 based on different information sources. The major
differences between Model 2 and Model 1 are: 1) Task difficulty level is omitted
because during real-time processing the system does not have access to such
information in advance; 2) Duration of current signal was added as an input
variable. This variable has two values, 1 if the duration is long (longer than av-
erage duration), and 0 if not; and 3) The last command’s input characteristics
(i.e., uni/multimodal and SIM/SEQ) were added to determine whether further
context regarding signal pattern could assist prediction.

The third model tested is a Naive Bayes model. The basic information sources
are similar to Model 2, except the input variables are independent of each other.
In other words, by removing the links between ellipses (i.e., input variables)
we derive Machine Learning Model 3. The simple assumptions of this learning
model are its advantage, especially when there are many variables. Even though
studies in psychology show that multimodal input does not involve independence
between modes, as a starting point for applying machine learning technology to
multimodal adaptive interfaces, we have implemented this model to compare its
performance with the others.



Toward Adaptive Information Fusion in Multimodal Systems 25

3.2 Machine Learning Study Experimental Results

To compare our alternative models, we used the first 15 commands from each
subject’s input to the system for training, and the remaining 68 commands
from each subject for testing. The prediction accuracy of each model is shown
in Table 4. Model 1 achieved 79% accuracy for predicting whether subsequent
user commands were unimodal or multimodal, and 72% accuracy for predicting
whether they were simultaneous or sequential in their multimodal integration
pattern. This model is very simple, and the number of training sample it uti-
lizes is very small compared with other machine learning apporaches. Moreover,
information provided by including the last command did help prediction. Using
model 2, the prediction rates improved to 85% and 82%, respectively, which is
very promising. Although model 3 was the simplest, it nonetheless also provided
good predictive information for adaptive information fusion. The Naive Bayes
model is a good candidate for online-adaptation, and the simplicity of the inde-
pendence assumption permits inclusion of more variables that can be useful in
improving prediction accuracy.

Table 4. Comparison of prediction accuracy for 3 machine learning models

Model Uni/Multi SEQ/SIM

1 79% 73%

2 85% 82%

3 80% 81%

4 Conclusions and Future Work

In this paper, we investigated user-adaptive information fusion for multimodal
systems. Our research reveals that there are large individual differences among
users in multimodal input and integration patterns, although individual users
show high internal consistency. Our user modeling results clarify that users’
dominant multimodal integration patterns can be predicted based on very few
samples. For our dataset, only 15 commands from each subject were needed
to predict a given person’s dominant input pattern (both uni/multimodal and
sim/seq) with 100% accuracy. The present results also demonstrate the value
of combining empirical user modeling with machine learning techniques in the
development of a new generation of user-adaptive interfaces.

More specifically, in the present work we implemented three machine learning
models (Bayesian Belief Networks) to predict each user’s command input pat-
tern. This is a much more difficult. This research constitutes an early attempt at
applying machine learning techniques to prediction of complex multimodal data.
With only a few training samples and relatively simple learning models, we were
able to achieve good prediction accuracy. In fact, our second model correctly
classified 85% of users’ natural mixed input as unimodal or multimodal, and
82% of users’ multimodal input as sequentially or simultaneously integrated.
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The study of adaptive information fusion for multimodal systems is still in
its infancy. Future research will investigate the performance of different learning
techniques, such as that achievable with asynchronous HMM models [8] which
previously have been applied to audio-visual speech and lip movement data. Fu-
ture work also will examine the extent to which these machine learning models
generalize to predicting users’ input in different tasks and with different input
modes. The long-term goal of this research is to develop new strategies for com-
bining empirical user modeling with machine learning techniques to bootstrap
accelerated, generalized, and improved reliability of information fusion in new
types of multimodal systems.
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Abstract. The AMI Meeting Corpus is a multi-modal data set con-
sisting of 100 hours of meeting recordings. It is being created in the
context of a project that is developing meeting browsing technology and
will eventually be released publicly. Some of the meetings it contains are
naturally occurring, and some are elicited, particularly using a scenario
in which the participants play different roles in a design team, taking
a design project from kick-off to completion over the course of a day.
The corpus is being recorded using a wide range of devices including
close-talking and far-field microphones, individual and room-view video
cameras, projection, a whiteboard, and individual pens, all of which pro-
duce output signals that are synchronized with each other. It is also
being hand-annotated for many different phenomena, including ortho-
graphic transcription, discourse properties such as named entities and
dialogue acts, summaries, emotions, and some head and hand gestures.
We describe the data set, including the rationale behind using elicited
material, and explain how the material is being recorded, transcribed
and annotated.

1 Introduction

AMI is a large, multi-site and multi-disciplinary project with the aim of devel-
oping meeting browsing technologies that improve work group effectiveness. As
part of the development process, the project is collecting a corpus of 100 hours
of meetings using instrumentation that yields high quality, synchronized multi-
modal recording, with, for technical reasons, a focus on groups of four people.
All meetings are in English, but a large proportion of the speakers are non-native
English speakers, providing a higher degree of variability in speech patterns than
in many corpora. We expect the corpus to become an invaluable resource to a
range of research communities, since it should be of interest to those working on
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speech, language, gesture, information retrieval, and tracking, as well as being
useful for organizational psychologists interested in how groups of individuals
work together as a team. We describe the data set and explain how the material
is being recorded, transcribed and annotated.

2 The Shape of the Corpus

Any study of naturally-occurring behaviour such as meetings immediately en-
counters a well-known methodological problem: if one simply observes behaviour
“in the wild”, one’s results will be difficult to generalize, since not enough will be
known about what is causing the individual (or individuals) to produce the be-
haviour. [1] identifies seven kinds of factors that affect how work groups behave,
ranging from the means they have at their disposal, such as whether they have
a way of communicating outside meetings, to aspects of organizational culture
and what pressures the external environment places on the group. The type of
task the group is trying to perform, and the particular roles and skills the group
members bring to it, play a large part in determining what the group does; for
instance, if the group members have different roles or skills that bear on the
task in different ways, that can naturally increase the importance for some con-
tributions, and it can also be a deciding factor in whether the group actually
needs to communicate at all or can leave one person to do all of the work. Vary
any of these factors and the data will change in character, but using observa-
tional techniques, it is difficult to get enough of a group history to tease out
these effects. One response to this dilemma is not to make completely natural
observations, but to standardize the data as much as possible by eliciting it in a
controlled manner for which as many as possible of the factors are known. Ex-
perimental control allows the researcher to find effects with much greater clarity
and confidence than in observational work. This approach, well-established in
psychology and familiar from some existing corpora (e.g., [2]), comes with its
own danger: results obtained in the laboratory will not necessarily occur outside
it, since people may simply behave differently when performing an artificial task
than they do in their daily lives.

Our response to this methodological difficulty is to collect our data set in
parts. The first consists of elicited material using a design task in which the
factors that [1] describe are all fixed as far as they can be. Since it constitutes
the bulk of the data, the details of how it was elicited are important, and so we
describe it below. The second consists of other, less controlled elicitations for
different tasks. For instance, in one set of five meetings, forming one coherent
set, which draws personnel from an existing work group to plan where to place
people, equipment, and furniture in a fictionalized move to a new site that sim-
plifies a real situation the group faces. These again provide more control than in
natural data, but give us a first step towards thinking about how one combines
data from disparate sources. The third contains naturally occurring meetings in
a variety of types, the purpose of which is to help us validate our findings from the
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elicitation and determine how well they generalize by seeing how badly variation
in the factors affects our models. The goal in this part of the collection was not
to constrain the type of meeting in any way apart from keeping the recording
manageable, but to allow the factors to vary freely. Taking histories that would
allow us to classify the groups by factor would be a formidable task, and so the
recorded data is included “as is”, without supplementary materials.

3 The Meeting Elicitation Scenario

In our meeting elicitation scenario [3], the participants play the roles of employees
in an electronics company that decides to develop a new type of television remote
control because the ones found in the market are not user friendly, as well as
being unattractive and old-fashioned. The participants are told they are joining
a design team whose task, over a day of individual work and group meetings, is
to develop a prototype of the new remote control. We chose design teams for this
study for several reasons. First, they have functional meetings with clear goals, so
making it easier to measure effectiveness and efficiency. Second, design is highly
relevant for society, since it is a common task in many industrial companies and
has clear economic value. Finally, for all teams, meetings are not isolated events
but just one part of the overall work cycle, but in design teams, the participants
rely more heavily on information from previous meetings than in other types of
teams, and so they produce richer possibilities for the browsing technology we
are developing.

3.1 Participants and Roles

Within this context, each participant in the elicitation is given a different role
to play. The project manager (PM) coordinates the project and is responsible
overall. His job is to guarantee that the project is carried out within time and
budget limits. He runs the meetings, produces and distributes minutes, and pro-
duces a report at the end of the trial. The marketing expert (ME) is responsible
for determining user requirements, watching market trends, and evaluating the
prototype. The user interface designer (UI) is responsible for the technical func-
tions the remote control provides and the user interface. Finally, the industrial
designer (ID) is responsible for designing how the remote control works includ-
ing the componentry. The user interface designer and industrial designer jointly
have responsibility for the look-and-feel of the design.

For this elicitation, we use participants who are neither professionally trained
for design work nor experienced in their role. It is well-known that expert de-
signers behave differently from novices. However, using professional designers for
our collection would present both economic and logistical difficulties. Moreover,
since participants will be affected by their past experience, all those playing
the same role should have the same starting point if we are to produce replica-
ble behaviour. To enable the participants to carry out their work while lacking
knowledge and experience, they are given training for their roles at the begin-
ning of the task, and are each assigned a (simulated) personal coach who gives
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sufficient hints by e-mail on how to do their job. Our past experience with elici-
tations for similar non-trivial team tasks, such as for crisis management teams,
suggests that this approach will yield results that generalize well to real groups.
We intend to validate the approach for this data collection both by the compar-
isons to other data already described and by having parts of the data assessed
by design professionals.

3.2 The Structure of the Elicited Data

[4] distinguishes the following four phases in the design process:

– Project kick-off, consisting of building a project team and getting acquainted
with both each other and the task.

– Functional design, in which the team sets the user requirements, the technical
functionality, and the working design.

– Conceptual design, in which the team determines the conceptual specification
for the components, properties, and materials to be used in the apparatus,
as well as the user interface.

– Detailed design, which finalizes the look-and-feel and user interface, and dur-
ing which the result is evaluated.

Fig. 1. The meeting paradigm: time schedule with activities of participants on top and
the variables measured below. PM: Project Manager; ID: industrial designer; UI: user
interface designer; ME: marketing expert.

We use these phases to structure our elicitation, with one meeting per design
phase. In real groups, meetings occur in a cycle where each meeting is typically
followed by production and distribution of minutes, the execution of actions that
have been agreed on, and the preparation of the next meeting. Our groups are
the same, except that for practical reasons, each design project was carried out
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in one day rather than over the usual more extended period, and we included
questionnaires that will allow us to measure process and outcomes throughout
the day. In future data collections we intend to collect further data in which
the groups have access to meeting browsing technology, and these measures
will allow us to evaluate how the technology affects what they do and their
overall effectiveness and efficiency. An overview of the group activities and the
measurements used is presented in fig. 1.

3.3 The Working Environment

Our collection simulates an office environment in which the participants share a
meeting room and have their own private offices and laptops that allow them to
send e-mail to each other, which we collect; a web browser with access to a sim-
ulated web containing pages useful for the task; and PowerPoint for information
presentation. During the trials, individual participants receive simulated e-mail
from other individuals in the wider organization, such as the account manager
or their head of department, that are intended to affect the course of the task.
These emails are the same for every group.

4 Data Capture: Instrumented Meeting Rooms

The data is being captured in three different instrumented meeting rooms that
have been built at different project sites. The rooms are broadly similar but differ
in overall shape and construction and therefore in their acoustic properties, as
well as in some recording details, such as microphone and camera placement and
the presence of extra instrumentation. All signals are synchronized by generating
a central timecode which is used to replace the timecodes produced locally on
each recording device; this ensures, for instance, that videos same frames at
exactly the same time and that we can find those times on the audio. An example
layout, taken from the IDIAP room, is shown in figure 2.

Fig. 2. Overhead Schematic View of the IDIAP Instrumented Meeting Room



The AMI Meeting Corpus: A Pre-announcement 33

4.1 Audio

The rooms are set up to record both close-talking and far-field audio. All mi-
crophone channels go through separate pre-amplification and analogue to digital
conversion before being captured on a PC using Cakewalk Sonar recording soft-
ware. For close-talking audio, we use omni-directional lapel microphones and
headset condenser microphones. Both of these are radio-based so that the par-
ticipants can move freely. For far-field audio, we use arrays of four or eight
miniature omni-directional electret microphones. The individual microphones in
the arrays are equivalent to the lapel microphones, but wired. All of the rooms
have a circular array mounted on the table in the middle of the participants,
plus one other array that is mounted on either the table or the ceiling and is
circular in two of the rooms and linear in the other. One room also contains a
binaural manikin providing two further audio channels.

4.2 Video

The rooms include capture of both videos that show individuals in detail and
ones that show what happens in the room more generally. There is one close-up
camera for each of four participants, plus for each room, either two or three
room view cameras. The room view cameras can be either mounted to capture

Closeup Corner Overhead

Fig. 3. Camera views in the Edinburgh room

the entire room, with locations in corners or on the ceiling, or to capture one side
of the meeting table. All cameras are static, with the close-up cameras trained
on the participants’ usual seating positions. In two of the rooms, output was
recorded on Mini-DV tape and then transferred to computer, but in the other,
output was recorded directly. Figure 3 shows sample output from cameras in the
Edinburgh room.

4.3 Auxiliary Data Sources

In addition to audio and video capture, the rooms are instrumented to allow
capture of what is presented during meetings, both any slides projected using
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a beamer and what is written on an electronic whiteboard. Beamer output is
recorded as a timestamped series of static images, and whiteboard activity as
timestamped x-y co-ordinates of the pen during pen strokes. In addition, indi-
vidual note-taking uses Logitech I/O digital pens, where the output is similar to
what the whiteboard produces. The latter is the one exception for our general
approach to synchronization; the recording uses timecodes produced locally on
the pen, requiring us to synchronize with the central timecode after the fact as
best we can. We intend to subject all of these data sources to further process-
ing in order to extract a more meaningful, character-based data representation
automatically [5,6].

5 Orthographic Transcription

Our first and most crucial annotation is orthographic transcription of the recor-
ded speech.

5.1 The Transcription Process

Transcribers work to a written manual, the features of which are described in
the next section. We use several steps in the transcription process in order to
ensure the quality of the results.

First pass. First pass transcribers are expected to achieve a balance between
speed and accuracy. They start not with the raw audio signals but with a blank
transcription that uses a simple energy-based technique to segment silence from
speech for each person in the meeting, a technique originally developed and
tested in [7]. Transcribers only listen to and transcribe the areas identified as
speech by the auto-segmentation, using special marks for transcription of which
they are unsure or that is unintelligible. They adjust segment boundaries where
the given ones clearly begin too late or end too early, but without care to be
accurate at this stage.

Second pass. In this step the checker reviews all segments, both speech and
silence. The first-pass transcription is verified, any missed speech is transcribed,
segment boundaries are carefully reviewed and adjusted to better fit the speech,
and any uncertainties (items in parentheses) are resolved. If a sequence remains
unintelligible, it is marked permanently as such.

Some meetings also receive a third pass from a transcription manager as a
quality control step. Each transcription is then validated using a script that
checks for spelling errors against the evolving AMI dictionary, uninterpretable
symbols, and problems with the data format before being marked as ’finished’.

It is important to manage any large transcription effort carefully in order to
avoid inconsistencies in the set of transcriptions, as well as to keep the work
flowing smoothly. We have found Wikis invaluable in this regard. We use them
to allocate work to individual transcribers, record their progress, discuss and
resolve difficulties with interpreting the manual or with the audio files, and
create official spellings for words that are not already in the dictionary used for
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spell checking. The transcriptions themselves are held in a CVS repository with
symbolic tags representing their status, to which the transcribers have access via
a simple web form.

5.2 Features of AMI Transcriptions

Speech is transcribed verbatim using British spellings, without correcting gram-
matical errors, e.g. ‘I seen him’, ‘me and him have done this’. Additionally, cer-
tain common ’nonstandard’ forms signifying linguistic reduction are employed,
such as ‘gonna’ and ‘kinda’. Normal capitalization on proper nouns and at the
beginning and end of sentences is used, along with simplified standard English
punctuation, including commas, hyphens, full stops and question marks. Other
types of punctuation are used for specific purposes. Neologisms are flagged with
an asterisk, e.g. ‘bumblebeeish*’. Where mispronunciations are simply due to
interference from the speaker’s mother tongue, and therefore could be consid-
ered how one would expect a speaker of that language to pronounce the English
word involved, they are ignored. Other mispronunciations are flagged with an
asterisk as for neologisms, with the word transcribed using its correct spelling,
not a spelling representing how it was pronounced. Discontinuity and disfluency,
at the word or the utterance level, are indicated with a hyphen, e.g. ‘I think
basi- ’; ‘I just meant—I mean . . . ’. Particular care is also taken with punctu-
ation at the end of a speech segment, where it indicates either that the turn
continues (comma or no punctuation) or does not (full stop, question mark or
hyphen). Qualitative and non-speech markers are kept to a minimum. Simple
symbols are used to denote laughing ‘$’, coughing ‘%’ and other vocal noises
‘#’, while other types of nonverbal noises are not indicated in the transcription.
Whispered or emphasized speech, for example, are not tagged in any special way.
A special category of noises, including onomatopoetic and other highly mean-
ingful sounds, are indicated with a meta-noise tag within square brackets, e.g.
‘[sound imitating beep]’.

Sample transcription given in a human-readable format is shown in figure
4. The transcribers used Channel Trans (http://www.icsi.berkeley.edu/Speech/
mr/ channeltrans.html), which adapts Transcriber (http://www.etca.fr/CTA/
gip/ Projets/Transcriber/) for multiple speakers. Transcribers worked from
headset audio except in a few instances where the lapel audio was of higher
quality.

6 Forced Alignment

Automatically generated word and phoneme level timings of the transcripts are
provided. Firstly this allowed more effective annotation of higher level infor-
mation, secondly the time-segmentation is provided with the corpus for further
processing. As the process for obtaining the time-segmentation has several impli-
cations on future processing we include a brief description of the steps involved.
The timings were generated using acoustic models of an automatic speech recog-
nition system [8]. The system was specifically developed for the transcription of
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(ID) That’s our number one prototype.
(PM) /@ like a little lightning in it.
(ID) Um do you wanna present the potato,
(ID) or shall I present the Martian?
(UI) /Okay, um -
(PM) /The little lightning bolt in it, very cute.
(UI) /What -
(UI) We call that one the rhombus, uh the rhombus.
(ME) /I could -
(PM) /The v- the rhombus rhombus?
(ID) /That’s
(ID) the rhombus, yep.
(UI) Um this one is known as the potato, uh it’s
(UI) it’s a $ how can I present it? It’s an ergonomic shape,
(ID) /$
(ME) /$
(UI) so it it fits in your hand nicely. Um,
{UI) it’s designed to be used either in your left hand or or
(UI) in your right hand.

Fig. 4. Transcription Sample

the AMI meetings using all input channels and is based on the Hidden Markov
Model Toolkit (HTK, http://htk.eng.cam.ac.uk). The time level information it-
self was obtained in a multi-step process:
Preprocessing of transcripts. Normalisation of transcripts to retain only
events that are describable by phonemes. Text normalisation to fit the following
dictionary creation.
Generation of a pronunciation dictionary. For the alignment a pronuncia-
tion for each word is required. This is either a fully automatic or a semi-automatic
process. Dictionaries are based on the UNISYN dictionary [9], pronunciations
for words not in that dictionary were created using pronunciation prediction (for
more details on this process see [8]). In the case of semi-automatic processing,
the suggested pronunciation is manually checked.
Viterbi Alignment. The acoustic recordings from the independent headset
microphones are encoded and processed using the Viterbi algorithm, and the
text and dictionaries created in the previous steps. Utterance time boundaries
are used from the previous segmentation. Two passes of alignment are necessary
to ensure a fixed silence collar for each utterance.

The acoustic models used in this process are trained on data from conver-
sational telephone speech recordings (CTS) and more than 100 hours of close-
talking microphone recordings from meetings, including the AMI corpus.
Post-processing. The output of the alignment stage includes silence within
words. This is corrected.

The output of the above process is an exact time and duration for each
pronounceable word in the corpus according to close talking microphones.
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Furthermore phoneme level output is provided, again with exact timing. In each
case times and durations are multiples of 10 milliseconds. Due to the automatic
processing errors in the times are inevitable. Word level times should be broadly
correct, however problems arise in the vicinity of overlapped speech (i.e. multi-
ple speakers talking at the same time) and non-speech sounds (like door-closing
etc). Furthermore problems can be expected where it was impossible to derive
pronunciation for human generated sounds.

Phoneme level transcripts and timings should be used with caution. Meeting
speech is conversational and spontaneous, hence similar in nature to CTS data.
Greenberg et al. [10] have shown that there are considerable differences between
human and automatic phone labelling techniques. Since the cost of manual la-
belling is prohibitive for corpora of this size one has to be aware of the properties
of automatic methods as used here: Firstly, canonical pronunciations from dic-
tionaries are used to represent arbitrary acoustic realisations of words. Secondly
acoustic models for alignments make use of phoneme context. This and general
model building strategies imply that phone boundaries can be inaccurate for
frequently occurring phone sequences.

7 Annotation

In addition to orthographic transcription, the data set is being annotated for a
wide range of properties:

– Named entities, focusing on references to people, artefacts, times, and num-
bers;

– Dialogue acts, using an act typology tailored for group decision-making and
including some limited types of relations between acts;

– Topic segmentation that allows a shallow hierarchical decomposition into
subtopics and includes labels describing the topic of the segment;

– A segmentation of the meetings by the current group activity in terms of
what they are doing to meet the task in which they are engaged;

– Extractive summaries that show which dialogue acts support material in
either the project manager’s report summarizing the remote control scenario
meetings or in third party textual summaries;

– Emotion in the style of FeelTrace [11] rated against different dimensions to
reflect the range that occurs in the meeting;

– Head and hand gestures, in the case of hands focusing on those used for
deixis;

– Location of the individual in the room and posture whilst seated;
– for some data, where on the video frames to find participant faces and

hands; and
– for some data, at which other people or artefacts the participants are looking.

These annotations are being managed by a process similar to that used by
the transcribers. For each one, reliability, or how well different annotators agree
on how to apply the schemes, is being assessed.
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Fig. 5. Screenshot of the named entity annotation tool

Creating annotations that can be used together for such a wide range of
phenomena requires careful thought about data formats, especially since the
annotations combine temporal properties with quite complex structural ones,
such as trees and referential links, and since they may contain alternate readings
for the same phenomenon created by different coders. We use the NITE XML
Toolkit for this purpose [12]. Many of the annotations are being created natively
in NXT’s data storage format using GUIs based on NXT libraries — figure 5
shows one such tool — and others require up-translation, which in most cases
is simple to perform. One advantage for our choice of storage format is that it
makes the data amenable to integrated analysis using an existing query language.

8 Release

Although at the time of submission, the data set has not yet been released,
we intend to allow public access to it via http://mmm.idiap.ch, with a mirror
site to be established at Brno University of Technology. The existing Media File
Server found there allows users to browse available recorded sessions, download
and upload data by HTTP or FTP in a variety of formats, and play media
(through RTSP streaming servers and players), as well as providing web hosting
and streaming servers for the Ferret meeting browser [13].
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Abstract. In this paper, we report on the infrastructure we have de-
veloped to support our research on multimodal cues for understanding
meetings. With our focus on multimodality, we investigate the interaction
among speech, gesture, posture, and gaze in meetings. For this purpose,
a high quality multimodal corpus is being produced.

1 Introduction

Meetings are gatherings of humans for the purpose of communication. Such
communication may have various purposes: planning, conflict resolution, negoti-
ation, collaboration, confrontation, etc. Understanding human multimodal com-
municative behavior, and how witting or unwitting visual displays (e.g., shoulder
orientations, gesture, head orientation, gaze) relate to spoken content (the words
spoken, and the prosody of the utterances) and communicative acts is critical to
the analysis of such meetings. These multimodal behaviors may reveal static and
dynamic social structuring of the meeting participants, the flow of topics being
discussed, the high level discourse units of individual speakers, the control of the
flow of the meeting, among other phenomena. The collection of rich synchronized
multimedia corpora that encompasses multiple calibrated video streams, audio
channels, motion tracking of the participants, and various rich annotations is
necessary to support research into these phenomena that occur at varying levels
of temporal resolution and conceptual abstraction.

From the perspective of the technology, meetings challenge current audio and
video processing approaches. For example, there is a higher percentage of cross-
talk among audio channels in a six party meeting than in a two party dialog,
and this could reduce the accuracy of current speech recognizers. In a meeting
setting, there may not be the ideal video image size or angle when attempt-
ing to recognize a face. Recorded meetings can push forward multimodal signal
processing technologies.
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To enable this research, we are assembling a planning meeting corpus that is
coded at multiple levels. Our research focuses not only on low level multimodal
signal processing, but also on high level meeting event interpretation. In partic-
ular, we use low-level multimodal cues to interpret the high-level events related
to meeting structure. To carry out this work, we require high quality multimodal
data to jointly support multimodal data processing, meeting analysis and cod-
ing, as well as automatic event detection algorithms. Our corpus is designed to
support research both in the understanding of the human communication and
the engineering efforts to meet the challenges of dealing with meeting audio
and video content. This collection, which is supported by the ARDA VACE-II
program, is called the VACE meeting corpus in this paper.

We describe our efforts in collecting the VACE meeting corpus, the infrastruc-
ture we have constructed to collect the data, and the tools we have developed
to facilitate the collection, annotation, and analysis of the data. In particular,
Section 2 describes the ongoing multimodal meeting corpus collection, Section
3 describes audio and video data processing algorithms needed for corpus pro-
duction, and Section 4 briefly summarizes some of the research that this corpus
enables.

2 Meeting Data Collection

To investigate meetings, several corpora have already been collected, including
the ISL audio corpus [1] from Interactive Systems Laboratory (ISL) of CMU, the
ICSI audio corpus [2], the NIST audio-visual corpus [3], and the MM4 audio-
visual corpus [4] from Multimodal Meeting (MM4) project in Europe. Using
these existing meeting data resources, a large body of research has already been
conducted, including automatic transcription of meetings [5], emotion detection
[6], attention state [7], action tracking [8, 4], speaker identification [9], speech
segmentation [10, 11], and disfluency detection [12]. Most of this research has
focused on low level processing (e.g., voice activity detection, speech recognition)
or on elementary events and states. Research on the structure of a meeting or the
dynamic interplay among participants in a meeting is only beginning to emerge.
McCowan et al. [4] have used low level audio and video information to segment
a meeting into meeting actions using an HMM approach.

Our multimodal meeting data collection effort is depicted schematically in
Figure 1. We next discuss three important aspects of this meeting data collection
effort: (1) meeting room setup, (2) elicitation experiment design, and (3) data
processing.

2.1 Multimodal Meeting Room Setup

Under this research effort, Air Force Institute of Technology (AFIT) modified a
lecture room to collect multimodal, time-synchronized audio, video, and motion
data. In the middle of the room, up to 8 participants can sit around a rect-
angular conference table. An overhead rail system permits the data acquisition



42 L. Chen et al.

Fig. 1. VACE meeting corpus production

technician to position the 10 Canon GL2 camcorders in any configuration re-
quired to capture all participants by at least two of the 10 camcorders. Using
S-video transfer, 10 Panasonic AG-DV2500 recorders capture video data from
the camcorders. The rail system also supports the 9 Vicon MCam2 near-IR cam-
eras and are driven by the Vicon V8i Data Station. The Vicon system records
temporal position data. For audio recording, we utilize a setup similar to the
ICSI and NIST meeting rooms. In particular, participants wear Countryman
ISOMAX Earset wireless microphones to record their individual sound tracks.
Table-mounted wired microphones are used to record the audio of all participants
(two to six XLR-3M connector microphones configured for the number of par-
ticipants and scenario, including two cardioid Shure MX412 D/C microphones
and several types of low-profile boundary microphones (two hemispherical polar
pattern Crown PZM-6D, one omni-directional Audio Technica AT841a, and one
four-channel cardioid Audio Technica AT854R). All audio signals are routed to
a Yamaha MG32/14FX mixing console for gain and quality control. A TASCAM
MX-2424 records the sound tracks from both the wireless and wired microphones.

There are some significant differences between our video recording setup and
those used by previous efforts. For example, in the NIST and MM4 collections,
because stereo camera views are not used to record each participant, only 2D
tracking results can be obtained. For the VACE meeting corpus, each partic-
ipant is recorded with a stereo calibrated camera pair. Ten video cameras are
placed facing different participants seated around the table as shown in Figure 1.
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To obtain the 3D tracking of 6 participants, 12 stereo camera pairs are setup
to ensure that each participant is recorded by at least 2 cameras. This is im-
portant because we wish to accurately track head, torso and hand positions in
3D. We also utilize the Vicon system to obtain more accurate tracking results
to inform subsequent coding efforts, while also providing ground truth for our
video-tracking algorithms.

2.2 Elicitation Experiment

The VACE meeting corpus involves meetings based on wargame scenarios and
military exercises. We have selected this domain because the planning activ-
ity spans multiple military functional disciplines, the mission objectives are de-
fined, the hierarchical relationships are known, and there is an underpinning
doctrine associated with the planning activity. Doctrine-based planning meet-
ings draw upon tremendous expertise in scenario construction and implemen-
tation. Wargames and military exercises provide real-world scenarios requiring
input from all functionals for plan construction and decision making. This elicits
rich multimodal behavior from participants, while permitting us to produce a
high confidence coding of the meeting behavior. Examples of scenarios include
planning a Delta II rocket launch, humanitarian assistance, foreign material ex-
ploitation, and scholarship award selection.

2.3 Multimodal Data Processing

After obtaining the audio and video recordings, we must process the data to
obtain features to assist researchers with their coding efforts or to the train and
evaluate automatic event detection algorithms. The computer vision researchers
on our team from University of Illinois and Virginia Tech focus on video-based
tracking, in particular, body torso, head, and hand tracking. The VCM tracking

Table 1. Composition of the VACE meeting corpus

Video

Audio

Vicon

Visual Tracking

Audio Processing

Prosody

Gaze

Gesture

Metadata

MPEG4 Video from 10 cameras

AIFF Audio from all microphones

3D positions of Head, Torso, Shoulders and Hands

Head pose, Torso configuration, Hand positions

Speech segments, Transcripts, Alignments

Pitch, Word & Phone duration, Energy, etc.

Gaze target estimation

Gesture phase/phrase, Semiotic gesture coding, 
e.g., deictics, iconics 

Language metadata, e.g., sentence boundaries, 
speech repairs, floor control change
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approach is to obtain 3D positions of the hands, which is important for obtain-
ing a wide variety of gesture features, such as gesture hold and velocity. The
change in position of the head, torso, and hands provide important cues for the
analysis of the meetings. Researchers on our team from Purdue handle the audio
processing of the meetings. More detail on video and audio processing appear in
the next section.

Our meeting room corpus contains time synchronized audio and video record-
ings, features derived by the visual trackers and Vicon tracker, audio features
such as pitch tracking and duration of words, and coding markups. Details on
the data types appear in an organized fashion in Table 1.

3 Multimodal Data Processing

3.1 Visual Tracking

Torso Tracking. Vision-based human body tracking is a very difficult problem.
Given that joint-angle is a natural and complete way to describe human body
motion and human joint-angles are not independent, we have been investigating
an approach to learn these latent constraints and then use them for articulated
body tracking [13] After learning the constraints as potential functions, belief
propagation is used to find the MAP of the body configuration on the Markov
Random Field (MRF) to achieve globally optimal tracking. When tested on the
VACE meeting corpus data, we have obtained tracking results that will be used
in future experiments. See Figure 2 for an example of torso tracking.

Fig. 2. Torso tracking

Head Pose Tracking. For the video analysis of human interactions, the head
pose of the person being analyzed is very important for determining gaze direc-
tion and the person being spoken to. In our meeting scenario, the resolution of a
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face is usually low. We therefore have developed a hybrid 2D/3D head pose track-
ing framework. In this framework, a 2D head position tracking algorithm [14]
tracks the head location and determines a coarse head orientation (such as the
frontal view of the face, the side view and the rear view of the head) based on
the appearance at that time. Once the frontal view of a face is detected, a 3D
head pose tracking algorithm [15] is activated to track the 3D head orientation.
For 2D head tracking, we have developed a meanshift tracking algorithm with an
online updating appearance generative mixture model. When doing meanshift
tracking, our algorithm updates the appearance histogram online based on some
key features acquired before the tracking, allowing it to be more accurate and
robust. The coarse head pose (such as frontal face) can be inferred by simply
checking the generative appearance model parameters. The 3D head pose track-
ing algorithm acquires the facial texture from the video based on the 3D face
model. The appearance likelihood is modelled by an incremental PCA subspace,
and the 3D head pose is inferred using an annealed particle filtering technique.
An example of a tracking result can be found in Figure 3.

Fig. 3. Head pose tracking

Hand Tracking. In order to interpret gestures used by participants, exact
3D hand positions are obtained using hand tracking algorithms developed by
researchers in the Vislab [16, 17]. See [18] for details on the Vector Coherence
Mapping (VCM) approach that is being used. The algorithm is currently being
ported to the Apple G5 platform with parallel processors in order to address the
challenge of tracking multiple participants in meetings. An example of a tracking
result can be found in Figure 4.

3.2 Audio Processing

A meeting involves multiple time synchronized audio channels, which increases
the workload for transcribers [19]. Our goal is to produce high quality transcrip-
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Fig. 4. VCM hand position tracking

tions that are time aligned as accurately as possible with the audio. Words, and
their components, need to be synchronized with video features to support coding
efforts and to extract prosodic and visual features used by our automatic meet-
ing event detection algorithms. To achieve this goal, we need an effective way
to transcribe all audio channels and a highly accurate forced alignment system.
As for the transcription convention, we are utilizing the Quick Transcription
(QTR) methodology developed by LDC for the 2004 NIST Meeting Recognition
Evaluations to achieve a balanced tradeoff between the accuracy and speed of
transcription. Meeting audio includes multi-channel recordings with substantial
cross-talk among the audio channels. These two aspects make the transcription
process more challenging than for monologs and dialogs. We use several tools to
improve the effectiveness and efficiency of audio processing: a tool to pre-segment
audio channels into transcribable and non-transcribable regions, tools to support
the transcription of multiple channels, and tools to enable more accurate forced
alignments. These are described in more detail below.

Automatic Pre-segmentation. Since in meetings typically one speaker is
speaking at any given time, the resulting audio files contain significant portions
of audio that do not require transcription. Hence, if each channel of audio is
automatically segmented into transcribable and non-transcribable regions, the
transcribers only need to focus on the smaller pre-identified regions of speech,
lowering the cognitive burden significantly compared with handling a large undif-
ferentiated stream of audio. We perform audio segmentation based on the close-
talking audio recordings using a novel automatic multi-step segmentation [20].
The first step involves silence detection utilizing pitch and energy, followed by
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BIC-based Viterbi segmentation and energy based clustering. Information from
each channel is employed to provide a rough preliminary segmentation. The sec-
ond step makes use of the segment information obtained in the first step to train
a Gaussian mixture model for each speech activity category, followed by decod-
ing to refine the segmentation. A final post-processing step is applied to remove
short segments and pad silence to speech segments.

Meeting Transcription Tools. For meetings, transcribers must utilize many
audio channels and often jump back and forth among the channels to support
transcription and coding efforts [19]. There are many transcription and anno-
tation tools currently available [21]; however, most were designed for monologs
and dialogs. To support multi-channel audio, researchers have either tailored
currently available tools for dialogs (e.g., the modification of Transcriber [22]
for meeting transcription by ICSI (http://www.icsi.berkeley.edu/Speech/
mr/channeltrans.html) or designed new tools specific for the meeting tran-
scription and annotation process, (e.g., iTranscriber by ICSI).

We have evaluated ICSI’s modified Transcriber and the beta version of ICSI’s
iTranscriber currently under development. Although these tools can not be used
in their current form for our transcription and annotation process, they highlight
important needs for transcribing meetings: transcibers need the ability to easily
load the multiple channels of a meeting and efficiently switch back and forth
among channels during transcription. Hence, we have developed two Praat [23]
extensions to support multi-channel audio transcription and annotation. We have
chosen to use Praat for the following reasons: 1) it is a widely used and supported
speech analysis and annotation tool available for almost any platform, 2) it is
easy to use, 3) long sound supports the quick loading of multiple audio files, and
4) it has a built-in script language for implementation of future extensions. We
have added two menu options to the Praat interface: the first supports batch
loading of all the audio files associated with a meeting, and the second enables
transcribers to switch easily among audio files based on the transcription tiers.

Improved Forced Alignment. Forced alignment is used to obtain the start-
ing and ending time of the words and phones in the audio. Since such timing
information is widely used for multimodal fusion, we have investigated factors
for achieving accurate alignments. In the first step, the forced alignment sys-
tem converts the words in the transcript to a phoneme sequence according to
the pronunciations in the dictionary. For out of vocabulary (OOV) words, the
typically used method is to use a special token, such as UNK, to replace the
OOV words. However, this approach can significantly degrade forced alignment
accuracy. Hence, we have created a script to identify all of the OOV words in the
finished transcription and have designed a Praat script to prompt the transcriber
to provide an exact pronunciation for each OOV word given its audio and then to
subsequently update the dictionary with that word and pronunciation. Although
this approach is more time consuming, it provides a more accurate alignment re-
sult important to our corpus production task. Based on a systematic study [24],
we have also found more accurate forced alignments are obtained by having
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transcribers directly transcribe pre-identified segments of speech (supported
by the presegmentation tool described previously) and by using a sufficiently
trained, genre matched speech recognizers to produce the alignments. For meet-
ing room alignments, we have been using ISIP’s ASR system with a triphone
acoustic model trained from more than 60 hours long spontaneous speech data
[25] to force align transcriptions provided for segments of speech identified in the
pre-segmentation step. Alignments produced given this setup requires little hand
fixing. We are currently evaluating SONIC [26] for future use in our system.

4 Meeting Interaction Analysis Research

The VACE meeting corpus enables the analysis of meeting interactions at a
number of different levels. Using the visualization and annotation tool Macvis-
sta, developed by researchers at Virginia Tech, the features extracted from the
recorded video and audio can be displayed to support psycholinguistic coding
efforts of researchers on our team at University of Chicago. Some annotations
of interest to our team include: F-formation [27], dominant speaker, structural
events (sentence boundary, interruption point), and floor control challenges and
change. Given the data and annotations in this corpus, we are carrying out
measurement studies to investigate how visual and verbal cues combine to pre-
dict events such as sentence or topic boundaries, interruption points in a speech
repair, or floor control changes. With the rich set of features and annotations,
we are also developing data-driven models for meeting room event detection
along the lines of our research on multimodal models for detecting sentence
boundaries [28].

Visualization of visual and verbal activities is an important first step for
developing a better understanding of how these modalities interact in human
communication. The ability to add annotations of important verbal and visual
events further enriches this data. For example, annotation of gaze and gesture
activities is important for developing a better understanding of those activities
in floor control. Hence, the availability of a high quality, flexible multimodal
visualization/annotation tool is quite important. To give a complete display of
a meeting, we need to display any of the multimodal signals and annotations
of all participants. The Vissta tool developed for multimodal dialog data has
been recently ported to the Mac OS X while being adapted for meeting room
data [29]. Currently the tool supports the display of multiple angle view videos,
as shown in Figure 5. This tool can display transcriptions and visual features,
together with the spoken transcripts and a wide variety annotations. It has been
widely used by our team and is continually being refined based on feedback.

Using MacVissta, researchers at the University of Chicago are currently focus-
ing on annotating gesture and gaze patterns in meetings. Gesture onset and offset
are coded, as well as the semiotic properties of the gesture as a whole, in relation
to the accompanying speech. Because gesture is believed to be as relevant to a per-
son’s communicative behavior as speech, by coding gesture, we are attempting to
capture this behavior in its totality. In addition, gaze is coded for each speaker
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Fig. 5. A snapshot of the MacVissta multimodal analysis tool with multiple videos
shown on the left, gaze annotations and speech mark-ups shown on the right

in terms of the object of that gaze (who or what gaze is directed at) for each mo-
ment. Instances of shared gaze (or “F-formations”) are then extractable from the
transcript, which can inform a turn-taking analysis. More fine-grained analyses
include the coding of mimicry (in both gesture and speech), and the tracking of
lexical co-reference and discourse cohesion, which permits us to capture moments
where speakers are negotiating how to refer to an object or event. These moments
appear to be correlated with shared gaze. To date, we have finished annotation
of one complete meeting, AFIT Jan 07, involving five participants lasting forty
minutes. Video and annotations can be viewed in the MacVissta tool after down-
load from the VACE site at Virginia Tech.

5 Conclusions

In this paper, we have reported on the infrastructure we have developed to
support our research on multimodal cues for understanding meetings. With our
focus on multimodality, we investigate the interaction among speech, gesture,
posture, and gaze in meetings. For this purpose, a high quality multimodal corpus
is being produced. Each participant is recorded with a pair of stereo calibrated
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camera pairs so that 3D body tracking can be done. Also an advanced motion
tracking system is utilized to provide ground truth. From recorded audio and
video, research on audio processing and video tracking focus on improving quality
of low features that support higher level annotation and modeling efforts.
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Abstract. We address the problem of segmentation and recognition of sequences
of multimodal human interactions in meetings. These interactions can be seen as
a rough structure of a meeting, and can be used either as input for a meeting
browser or as a first step towards a higher semantic analysis of the meeting. A
common lexicon of multimodal group meeting actions, a shared meeting data
set, and a common evaluation procedure enable us to compare the different ap-
proaches. We compare three different multimodal feature sets and our modelling
infrastructures: a higher semantic feature approach, multi-layer HMMs, a multi-
stream DBN, as well as a multi-stream mixed-state DBN for disturbed data.

1 Introduction

Recordings of multi-party meetings are useful to recall important pieces of information
(decisions, key-points, etc.), and eventually share it with people who were not able to
attend those meetings. Unfortunately, watching raw audio-video recordings is tedious.
An automatic approach to extract high-level information could facilitate this task.

In this paper we address the problem of recognising sequences of human interaction
patterns in meetings, with the goal of structuring them in semantic terms. Our aim is
to discover repetitive patterns into natural group interactions and associate them with a
lexicon of meeting actions or phases (such as discussions or monologues). The detected
sequence of meeting actions will provide a relevant summary of the meeting structure.
The investigated patterns are inherently group-based (involving multiple simultaneous
participants), and multimodal (as captured by cameras and microphones).

Automatic modelling of human interactions from low-level multimodal signals is
an interesting topic for both theoretical and practical reasons. First, from the theoreti-
cal point of view, modelling multichannel multimodal sequences provides a particular
challenging task for machine learning techniques. Secondly, from the application point
of view, automatic meeting analysis could add value to the raw data for browsing and
retrieval purposes.
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Starting from a common lexicon of meeting actions (section 2) and sharing the same
meeting data-set (section 3), each site (TUM, IDIAP and UEDIN) has selected a spe-
cific feature set (section 4) and proposed relevant models (section 5). Then a common
evaluation metric (section 6) has been adopted in order to compare several experimental
setups (section 7).

2 Action Lexicon

Two sets of meeting actions have been defined. The first set (lexicon 1, defined in [8])
includes eight meeting actions, like discussion, monologue, or presentation. The mono-
logue action is further distinguished by the person actually holding the monologue (e.g.
monologue 1 is meeting participant one speaking). The second set (lexicon 2, defined
in [15]) comprehends the full first set, but also has combinations of two parallel actions
(like a presentation and note-taking). The second set includes fourteen group actions.
Both sets and a brief description are shown in table 1.

Table 1. Group action lexicon 1 and 2

Action Lexicon Description
Discussion lexicon 1 and 2 most participants engaged in conversations

one participant speaking
Monologue lexicon 1 and 2

continuously without interruption
Monologue+ contained only one participant speaking continuously
Note-taking in lexicon 2 others taking notes
Note-taking lexicon 1 and 2 most participants taking notes

one participant presenting
Presentation lexicon 1 and 2

using the projector screen
Presentation+ contained only one participant presenting using
Note-taking in lexicon 2 projector screen, others taking notes

one participant speaking
White-board lexicon 1 and 2

using the white-board
White-board+ contained only one participant speaking using
Note-taking in lexicon 2 white-board, others taking notes

3 Meeting Data Set

We used a public corpus of 59 five-minute, four-participant scripted meetings [8]. The
recordings took place at IDIAP in an instrumented meeting room equipped with cam-
eras and microphones1. Video has been recorded using 3 fixed cameras. Two cameras
capture a frontal view of the meeting participants, and the third camera captures the
white-board and the projector screen. Audio was recorded using lapel microphones at-
tached to participants, and an eight-microphone array placed in the centre of the table.

1 This corpus is publicly available from http://mmm.idiap.ch/
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4 Features

The investigated individual actions are multimodal, we therefore use different audio-
visual features. They are distinguished between person-specific AV features and group-
level AV features. The former are extracted from individual participants. The latter are
extracted from the white-board and projector screen regions. Furthermore we use a
small set of lexical features. The features are described in the next sections, for details
please refer to the indicated literature.

From the large number of available features each site has chosen a set, used to train
and evaluate their models. The complete list of features, and the three different sets
IDIAP, TUM, UEDIN are listed in table 2.

Table 2. Audio, visual and semantic features, and the resulting three feature sets

Description IDIAP TUM UEDIN
head vertical centroid X

head eccentricity X
right hand horizontal centroid X

Visual right hand angle X
right hand eccentricity X
head and hand motion X

Person- global motion features from each seat X
Specific SRP-PHAT from each seat X
Features speech relative pitch X X

speech energy X X X
Audio speech rate X X

4 MFCC coefficients X
binary speech and silence segmentation X

individual gestures X
Semantic talking activity X

mean difference from white-board X
mean difference from projector screen X

Visual
global motion features from whiteboard X

global motion features from projector screen X
Group SRP-PHAT from white-board X

Features SRP-PHAT from projector screen X
Audio speaker activity features X

binary speech from white-board X
binary speech from projector screen X

4.1 Audio Features

MFCC: For each of the speakers four MFC coefficients and the energy were extracted
from the lapel-microphones. This results in a 20-dimensional vector xS(t) containing
speaker-dependent information.
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A binary speech and silence segmentation (BSP) for each of the six locations in the
meeting room was extracted with the SRP-PHAT measure [8] from the microphone
array. This results in a six-dimensional discrete vector xBSP(t) containing position de-
pendent information.

Prosodic features are based on a denoised and stylised version of the intonation con-
tour, an estimate of the syllabic rate of speech and the energy [5]. These acoustic fea-
tures comprise a 12 dimensional feature vector (3 features for each of the 4 speakers).

Speaker activity features rely on the active speaker locations evaluated using a sound
source localisation process based on a microphone array [8]. A 216 element feature
vector resulted from all the 63 possible products of the 6 most probable speaker loca-
tions (four seats and two presentation positions) during the most recent three frames
[5]. A speaker activity feature vector at time t thus gives a local sample of the speaker
interaction pattern in the meeting at around time t.

Further audio features: From the microphone array signals, we first compute a speech
activity measure (SRP-PHAT). Three acoustic features, namely energy, pitch and speak-
ing rate, were estimated on speech segments, zeroing silence segments. We used the SIFT
algorithm to extract pitch, and a combination of estimators to extract speaking rate [8].

4.2 Global Motion Visual Features

In the meeting room the four persons are expected to be at one of six different locations:
one of four chairs, the whiteboard, or at a presentation position. For each location L in
the meeting room a difference image sequence IL

d (x,y) is calculated by subtracting the
pixel values of two subsequent frames from the video stream. Then seven global motion
features [16] are derived from the image sequence: The centre of motion is calculated
for the x- and y-direction, the changes in motion are used to express the dynamics of
movements. Furthermore the mean absolute deviation of the pixels relative to the centre
of motion is computed. Finally the intensity of motion is calculated from the average
absolute value of the motion distribution. These seven features are concatenated for
each time step in the location dependent motion vector. Concatenating the motion vec-
tors from each of the six positions leads to the final visual feature vector that describes
the overall motion in the meeting room with 42 features.

4.3 Skin-Colour Blob Visual Features

Visual features derived from head and hands skin-colour blobs were extracted from the
three cameras. For the two cameras looking at people, visual features extracted consist
of head vertical centroid position and eccentricity, hand horizontal centroid position,
eccentricity, and angle. The motion magnitude for head and hand blobs were also ex-
tracted. The average intensity of difference images computed by background subtrac-
tion was extracted from the third camera. All features were extracted at 5 frames per
second, and the complete set of features is listed in table 2. For details refer to [15].
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4.4 Semantic Features

Originating from the low level features also features on a higher level have been ex-
tracted. For each of the six locations in the meeting room the talking activity has been
detected using results from [7]. Further individual gestures of each participant have
been detected using the gesture recogniser from [16]. The possible features were all
normalised to the length of the meeting event to provide the relative duration of this
particular feature. From all available events only those that are highly discriminative
were chosen which resulted in a nine dimensional feature vector.

5 Models for Group Action Segmentation and Recognition

5.1 Meeting Segmentation Using Semantic Features

This approach combines the detection of the boundaries and classification of the seg-
ments in one step. The strategy is similar to that one used in the BIC-Algorithm [14].
Two connected windows with variable length are shifted over the time scale. Thereby
the inner border is shifted from the left to the right in steps of one second and in each
window the feature vector is classified by a low-level classifier. If there is a different
result in the two windows, the inner border is considered a boundary of a meeting event.
If no boundary is detected in the actual window, the whole window is enlarged and the
inner border is again shifted from left to the right. Details can be found in [13].

5.2 Multi-stream Mixed-State DBN for Disturbed Data

In real meetings the data can be disturbed in various ways: events like slamming of a
door may mask the audio channel or background babble may appear; the visual channel
can be (partly) masked by persons standing or walking in front of a camera. We there-
fore developed a novel approach for meeting event recognition, based on mixed-state
DBNs, that can handle noise and occlusions in all channels [1, 2]. Mixed-state DBNs
are an HMM coupled with a LDS, they have been applied to recognising human ges-
tures in [10]. Here, this approach has been extended to a novel multi-stream DBN for
meeting event recognition.

Each of the three observed features: microphone array (BSP), lapel microphone
(MFCC) and the visual global motion stream (GM) is modelled in a separate stream.
The streams correspond to a multi-stream HMM, where each stream has a separate rep-
resentation for the features. However, the visual stream is connected to a LDS, result-
ing in a mixed-state DBN. Here the LDS is a Kalman filter, using information from all
streams as driving input, to smooth the visual stream. With this filtering, movements
are predicted based on the previous time-slice and on the state of the multi-stream
HMM at the current time. Thus occlusions can be compensated with the information
from all channels. Given an observation O and the model parameters E j for the mixed-
state DBN, the joint probability of the model is the product of the stream probabilities:
P(O,E j) = PB · PM · PG. The model parameters are learned for each of the eight event
classes j with a variational learning EM-algorithm during the training phase. During the
classification an unknown observation O is presented to all models E j. Then P(O|E j)
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is calculated for each model and O is assigned to the class with the highest likelihood:
argmaxE j∈E P(O|E j). Applying the Viterbi-algorithm to the model, leads to a meeting
event segmentation framework. The mixed-state DBN can therefore easily be combined
with other models presented in this work.

5.3 Multi-layer Hidden Markov Model

In this section we summarise the multi-layer HMM applied to group action recognition.
For a detailed discussion, please refer to [15].

In the multi-layer HMM framework, we distinguish group actions (which belong
to the whole set of participants, such as discussion and presentation) from individual
actions (belonging to specific persons, such as writing and speaking). To recognise
group actions, individual actions act as the bridge between group actions and low-level
features, thus decomposing the problem in stages, and simplifying the complexity of
the task.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM de-
note the upper layer (group action). I-HMM receives as input audio-visual (AV) features
extracted from each participant, and outputs posterior probabilities of the individual ac-
tions given the current observations. In turn, G-HMM receives as input the output from
I-HMM, and a set of group features, directly extracted from the raw streams, which are
not associated to any particular individual. In the multi-layer HMM framework, each
layer is trained independently, and can be substituted by any of the HMM variants that
might capture better the characteristics of the data, more specifically asynchrony [3],
or different noise conditions between the audio and visual streams [6]. The multi-layer
HMM framework is summarised in figure 1.

Microphones

Cameras

Person 1 AV Features

Person N AV Features

Group AV Features

Person 2 AV Features

I-HMM 1

I-HMM 2

I-HMM N

G-HMM

Fig. 1. Multi-layer HMM on group action recognition

Compared with a single-layer HMM, the layered approach has the following advan-
tages, some of which were previously pointed out by [9]: (1) a single-layer HMM is
defined on a possibly large observation space, which might face the problem of over-
fitting with limited training data. It is important to notice that the amount of training
data becomes an issue in meetings where data labelling is not a cheap task. In contrast,
the layers in our approach are defined over small-dimensional observation spaces, re-
sulting in more stable performance in cases of limited amount of training data. (2) The
I-HMMs are person-independent, and in practice can be trained with much more data
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Fig. 2. Multistream DBN model (a) enhanced with a “counter structure” (b); square nodes repre-
sent discrete hidden variables and circles must be intend as continuous observations

from different persons, as each meeting provides multiple individual streams of training
data. Better generalisation performance can then be expected. (3) The G-HMMs are less
sensitive to slight changes in the low-level features because their observations are the
outputs of the individual action recognisers, which are expected to be well trained. (4)
The two layers are trained independently. Thus, we can explore different HMM com-
bination systems. In particular, we can replace the baseline I-HMMs with models that
are more suitable for multi-modal asynchronous data sequences. The framework thus
becomes simpler to understand, and amenable to improvements at each separate level.

5.4 Multistream DBN Model

The DBN formalism allows the construction and development of a variety of models,
starting from a simple HMM and extending to more sophisticated models (hierarchical
HMMs, coupled HMMs, etc). With a small effort, DBNs are able to factorise the inter-
nal state space, organising it in a set of interconnected and specialised hidden variables.

Our multi-stream model (bottom of figure 2) exploits this principle in two ways:
decomposing meeting actions into smaller logical units, and modelling parallel feature
streams independently. We assume that a meeting action can be decomposed into a
sequence of small units: meeting subactions. In accordance with this assumption the
state space is decomposed into two levels of resolution: meeting actions (nodes A) and
meeting subactions (nodes SF ). Note that the decomposition of meeting actions into
meeting subactions is done automatically through the training process.

Feature sets derived from different modalities are usually governed by different laws,
have different characteristic time-scales and highlight different aspects of the commu-
nicative process. Starting from this hypothesis we further subdivided the model state
space according to the nature of features that are processed, modelling each feature
stream independently (multistream approach). The resulting model has an indepen-
dent substate node SF for each feature class F , and integrates the information car-
ried by each feature stream at a ‘higher level’ of the model structure (arcs between A
and SF ,F = [1,n]). Since the adopted lexicon 1 (section 2) is composed by 8 meeting
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actions, the action node A has a cardinality of 8. The cardinalities of the sub-action
nodes S are part of parameter set, and in our experiments we have chosen a value of 6
or 7.

The probability to remain in an HMM state corresponds to an inverse exponential
[11]: a similar behaviour is displayed by the proposed model. This distribution is not
well-matched to the behaviour of meeting action durations. Rather than adopting ad
hoc solutions, such as action transition penalties, we preferred to improve the flexibility
of state duration modelling, by enhancing the existing model with a counter structure
(top of figure 2). The counter variable C, which is ideally incremented during each
action transition, attempts to model the expected number of recognised actions. Action
variables A now also generate the hidden sequence of counter nodes C, together with
the sequence of sub-action nodes S. Binary enabler variables E have an interface role
between action variables A and counter nodes C.

This model presents several advantages over a simpler HMM in which features are
“early integrated” into a single feature vector: feature classes are processed indepen-
dently according to their nature; more freedom is allowed in the state space partitioning
and in the optimisation of the sub-state space assigned to each feature class; knowledge
from different streams is integrated together at an higher level of the model structure;
etc. Unfortunately all these advantages, and the improved accuracy that can be achieved,
are balanced by an increased model size, and therefore by an increased computational
complexity.

6 Performance Measures

Since group meeting actions are high level symbols and their boundaries are extremely
vague. In order to evaluate results of the segmentation and recognition task we used
the Action Error Rate, a metric that privileges the recognition of the correct action
sequence, rather than the precise temporal boundaries. AER is defined as the sum of in-
sertion (Ins), deletion (Del), and substitution (Subs) errors, divided by the total number
of actions in the ground-truth:

AER =
Subs+ Del+ Ins

Total Actions
× 100% (1)

Measures based on deletion (Del) and insertion (Ins) and substitution (Subs) are also
used to evaluate action recognition results.

7 Experiments and Discussions

7.1 Higher Semantic Feature Approach

The results of the segmentation are shown in table 3 (BN: Bayesian Network, GMM:
Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis
Network, SVM: Support Vector Machines). Each row denotes the classifier that was
used. The columns show the insertion rate (number of insertions in respect to all meet-
ing events), the deletion rate (number of deletions in respect to all meeting events), the
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Table 3. Segmentation results using the higher semantic feature approach (BN: Bayesian Net-
work, GMM: Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial
Basis Network, SVM: Support Vector Machines). The columns denote the insertion rate, the
deletion rate, the accuracy in seconds and the classification error rate (using lexicon 1 in Table 1).

Classifier Insertion (%) Deletion (%) Accuracy Error (%)

BN 14.7 6.22 7.93 39.0
GMM 24.7 2.33 10.8 41.4
MLP 8.61 1.67 6.33 32.4
RBF 6.89 3.00 5.66 31.6
SVM 17.7 0.83 9.08 35.7

accuracy (mean absolute error) of the found segment boundaries in seconds and the
recognition error rate. In all columns lower numbers denote better results. As can be
seen from the tables, the results are quite variable and heavily depend on the used clas-
sifier. These results are comparable to the ones presented in [12]. With the integrated
approach the best outcome is achieved by the radial basis network. Here the insertion
rate is the lowest. The detected segment boundaries match pretty well with a deviation
of only about five seconds to the original defined boundaries.

7.2 Multi-stream Mixed-State DBN for Disturbed Data

To investigate the influence of disturbance to the recognition performance, the evalua-
tion data was cluttered: the video data was occluded with a black bar covering one third
of the image at different positions. The audio data from the lapel microphones and the
microphone array was disturbed with a background-babble with 10dB SNR. 30 undis-
turbed videos were used for the training of the models. The remaining 30 unknown
videos have been cluttered for the evaluation.

The novel DBN was compared to single-modal (audio and visual) HMMs, an early
fusion HMM, and a multi-stream HMM. The DBN showed a significant improvement
of the recognition rate for disturbed data. Compared to the baseline HMMs, the DBN
reduced the recognition error by more than 1.5% (9% relative error reduction) for dis-
turbed data. It may therefore be useful to combine this approach with the other models
presented in this work, to improve the noise robustness. Please refer to [1, 2] for detailed
recognition results, as well as a comprehensive description of the model.

7.3 Multi-layer Hidden Markov Model

Table 4 reports the performance in terms of action error rate (AER) for both multi-layer
HMM and the single-layer HMM methods. Several configurations were compared, in-
cluding audio-only, visual-only, early integration, multi-stream [6] and asynchronous
HMMs [3]. We can see that (1) the multi-layer HMM approach always outperforms
the single-layer one, (2) the use of AV features always outperforms the use of single
modalities for both single-layer and multi-layer HMM, supporting the hypothesis that
the group actions we defined are inherently multimodel, (3) the best I-HMM model is
the asynchronous HMM, which suggests that some asynchrony exists for our task of
group action recognition, and is actually well captured by the asynchronous HMM.
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Table 4. AER (%) for single-layer and multi-layer HMM (using lexicon 2 in Table 1)

Method AER (%)

Visual only 48.2
Audio only 36.7

Single-layer HMM Early Integration 23.7
Mutli-stream 23.1

Asynchronous 22.2

Visual only 42.4
Audio only 32.3

Multi-layer HMM Early Integration 16.5
Multi-stream 15.8

Asynchronous 15.1

7.4 Multistream DBN Model

All the experiments depicted in this section were conducted on 53 meetings (subset of
the meeting corpus depicted in section 3) using the lexicon 1 of eight group actions. We
implemented the proposed DBN models using the Graphical Models Toolkit (GMTK)
[4], and the evaluation is performed using a leave-one-out cross-validation procedure.

Table 5 shows experimental results achieved using: an ergodic 11-states HMM, a
multi-stream approach (section 5.4) with two feature streams, and the full counter en-
hanced multi-stream model. The base 2-stream approach has been tested in two different
sub-action configurations: imposing

∣∣S1
∣∣= ∣∣S2

∣∣= {6 or 7}. Therefore four experimen-
tal setups were investigated; and each setup has been tested with 3 different feature sets,
leading to 12 independent experiments. The first feature configuration (“UEDIN”) as-
sociates prosodic features and speaker activity features (section 4.1) respectively to the
stream S1 and to S2. The feature configuration labelled as “IDIAP” makes use of the
multimodal features extracted at IDIAP, representing audio related features (prosodic
data and speaker localisation) through the observable node Y 1 and video related mea-
sures through Y 2. The last setup (“TUM”) relies on two feature families extracted at the
Technische Universität München: binary speech profiles derived from IDIAP speaker
locations and video related global motion features; each of those has been assigned
to an independent sub-action node. Note that in the HMM based experiment the only
observable feature stream Y has been obtained by merging together both the feature
vectors Y 1 and Y 2. Considering only the results (of table 5) obtained within the UEDIN
feature setup, it is clear that the simple HMM shows much higher error than any other
multi-stream configuration. The adoption of a multistream based approach reduces the
AER to less than 20%, providing the lowest AER (11%) when sub-action cardinalities
are fixed to 7. UEDIN features seem to provide a higher accuracy if compared with
IDIAP and TUM setups, but it is essential to remember that our DBN models have been
optimised for the UEDIN features. In particular sub-action cardinalities have been in-
tensively studied with our features, but it will be interesting to discover optimal values
for IDIAP and TUM features too. Moreover overall performances achieved with the
multistream approach are very similar (AER are always in the range from 26.7% to
11.0%), and all my be considered promising. The TUM setup seems to be the configu-
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Table 5. AER (%) for an HMM, and for a multi-stream (2 streams) approach with and without the
“counter structure”; the models have been tested with the 3 different feature sets (using lexicon 1)

Model Feature Set Corr. Sub. Del. Ins. AER
UEDIN 63.3 13.2 23.5 11.7 48.4

HMM IDIAP 62.6 19.9 17.4 24.2 61.6
TUM 60.9 25.6 13.5 53.7 92.9
UEDIN 86.1 5.7 8.2 3.2 17.1

2 streams
(∣∣SF
∣∣= 6

)
IDIAP 77.9 8.9 13.2 4.6 26.7
TUM 85.4 9.3 5.3 6.8 21.4
UEDIN 85.8 7.5 6.8 4.6 18.9

2 streams
(∣∣SF
∣∣= 6

)
+ counter IDIAP 79.4 10.0 10.7 4.3 24.9

TUM 85.1 5.7 9.3 6.4 21.4
UEDIN 90.7 2.8 6.4 1.8 11.0

2 streams
(∣∣SF
∣∣= 7

)
IDIAP 86.5 7.8 5.7 3.2 16.7
TUM 82.9 7.1 10.0 4.3 21.4

ration for which switching from a HMM to a multistream DBN approach provides the
greatest improvement in performance: the error rate decreases from 92.9% to 21.4%. If
with the UEDIN feature set the adoption of a counter structure is not particularly effec-
tive, with IDIAP features the counter provides a significant AER reduction (from 26.7%
to 24.9%). We are confident that further improvements with IDIAP features could be
obtained by using more than 2 streams (such as the 3 multistream model adopted in [5]).
Independently of the feature configuration, the best overall results are achieved with the
multistream approach and a state space of 7 by 7 substates.

8 Conclusions

In this work, we have presented the joint efforts of the three institutes (TUM, IDIAP
and UEDIN) towards structuring meetings into sequences of multimodal human inter-
actions. A large number of different audio-visual features have been extracted from
a common meeting data corpus. From this features, three multimodal sets have been
chosen. Four different approaches towards automatic segmentation and classification of
meetings into action units haven been proposed. We then deeply investigated the three
feature sets, as well as the four different group action modelling frameworks:

The first approach from TUM exploits higher semantic features for structuring a
meeting into group actions. It thereby uses an algorithm that is based on the idea of the
Bayesian-Information-Criterion. The mixed-state DBN approach developed by TUM
compensates for disturbances in both the visual and the audio channel. It is not a seg-
mentation framework but can be integrated into the other approaches presented in this
work to improve their robustness. The multi-layer Hidden Markov Model developed
by IDIAP decomposes group actions as a two-layer process, one that models basic in-
dividual activities from low-level audio-visual features, and another one that models
the group action (belonging to the whole set of participants). The multi-stream DBN
model proposed by UEDIN operates an unsupervised subdivision of meeting actions
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into sequences of group sub-actions, processing multiple asynchronous feature streams
independently, introducing also a model extension to improve state duration modelling.

All presented approaches have provided comparable good performances. The AER
are already promising, but there is still space for further improvements both in the fea-
ture domain (i.e.: exploit more modalities) and in the model infrastructure. Therefore in
the near future we are going to investigate combinations of the proposed systems to im-
prove the AER and to exploit the complementary strengths of the different approaches.

Acknowledgement. This work was partly supported by the European project M4
(MultiModal Meeting Manager) and European Union 6th FWP IST Integrated Project
AMI (Augmented Multi-party Interaction, FP6-506811, publication AMI-87).
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Abstract. This article describes a method for document/speech align-
ment based on explicit verbal references to documents and parts of doc-
uments, in the context of multimodal meetings. The article focuses on
the two main stages of dialogue processing for alignment: the detection
of the expressions referring to documents in transcribed speech, and the
recognition of the documents and document elements that they refer to.
The detailed evaluation of the implemented modules, first separately and
then in a pipeline, shows that results are well above baseline values. The
integration of this method with other techniques for document/speech
alignment is finally discussed.

1 Introduction

Documents are often the main support for communication in group meetings.
For instance, slides are used for talks, and are generally displayed in sequence,
being thus naturally aligned with the presenter’s utterances. This is not the case,
however, when the supporting documents are not so obviously set into focus, for
instance when reports or articles are discussed during a meeting.

When meetings are recorded and stored in a database that can be accessed
by a meeting browser, it is necessary to detect the temporal alignment between
speech and documents or sub-document elements. This kind of alignment has to
be derived from the linguistic content of speech and documents, and from clues
in other modalities.

We study in this paper the alignment of transcribed speech and electronic
documents, based on the references that are made explicitly in speech, such as
“the title of our latest report” or “the article about . . . ”. A number of processing
modules required to carry out this task are described in Section 2, and techniques
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for document structuring are briefly outlined (2.2). Section 3 defines reference-
based document/speech alignment, then describes the proposed methods for the
detection of expressions referring to documents and the recognition of the docu-
ment elements they refer to. The press-review meetings used in this experiment
and the evaluation methods that we designed are described in Section 4. Results
appear in Section 5. Finally, the place of reference-based alignment among other
document/speech alignment techniques is discussed in Section 6.

2 Document/Speech Alignment for Meeting Browsing

Meeting processing and retrieval applications target several types of users. For
instance, a professional who missed a meeting could use such an application
to browse through the meeting’s content directly to the most relevant points,
without viewing or listening to the entire recording. Likewise, someone who at-
tended a meeting but who would like to review some points, such as the decisions
that were made, could benefit from a meeting browser, as well as someone who
would like to track the progress of issues over several meetings. Once an episode
of interest has been spotted in a meeting, a meeting browser should allow the
user to explore the transcript, or to watch/listen to the episode, or to check the
documents that were discussed.

2.1 Importance of References to Documents for Meeting Browsing

When meetings deal with one or several documents, it becomes important to align
in a precise manner each episode of the meeting to the sections of the documents
that are discussed in it, and vice-versa. This allows a meeting browser to retrieve
the episodes of a meeting in which a particular section of a documentwas discussed,
so that the user can find out what was said about it. Conversely, the application
can also display the documents relevant to a given episode of a meeting, while the
user browses through that episode. A study of user requirements has shown that
queries frequently involve information related to meeting documents [1].

The references made in speech to the meeting documents are a fined-grained
type of information that allows document/speech alignment. Using these refer-
ences, the multimodal rendering of the meeting can be enhanced as shown in
Fig. 1. The expressions that refer to documents are coded, in this implementa-
tion, as hyperlinks towards the right part of the window: clicking on such a link
highlights the article referred to by that expression. This approach can of course
be integrated to larger, more complex browsers.

The resolution of references to documents is a cross-channel task that
enhances dialogue and document browsing. The task requires significant pre-
processing of data (Fig. 2). The most significant tasks are: the generation of
a transcript of the utterances produced by each speaker; the generation of an
abstract representation of each document structure; the detection of the expres-
sions from the transcripts that refer to meeting documents; and the identification
of the document element each of these expressions refers to. The latter two tasks
are the main object of this chapter.
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Fig. 1. Aligned browsing of meeting transcript and documents. Clicking on a referring
expression (underlined) highlights the corresponding document element.
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Fig. 2. Components of an application for the resolution of references to documents

2.2 Construction of the Logical Structure of Documents

The PDF format has become very common for disseminating nearly any kind of
printable documents, since it can be easily generated from almost every other
document format. However, because its use is limited to displaying and printing,
its value for retrieval and extraction is considerably reduced. Our experience
has shown that the reading order of a text is often not preserved, especially in
documents having a complex multi-column layout, such as newspapers. Even
recent tools that extract the textual content of PDF documents do not reveal
the physical and logical structures of documents. To overcome these limitations,
we designed and implemented Xed, a tool that reverse engineers electronic doc-
uments and extracts their layout structure [2]. This approach merges low-level
text extraction methods with layout analysis performed on synthetically gener-
ated TIFF images. Xed has been tested with success on various document classes
with complex layouts, including newspapers.

In the present study, we consider that newspaper front pages have a hi-
erarchical structure. The following elements (in Typewriter font) are used.
A Newspaper front page bears the newspaper’s Name, the Date, one Master
Article, zero, one or more Highlights, one or more Articles, etc. Each con-
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tent element has an ID attribute bearing a unique index. An Article is composed
of a Title, a Subtitle, a Source, the Content (mandatory), and one or more
Authors and References.

To obtain data with 100% correct document structure for the application
to document/speech alignment, the XML document segmentations have been
validated manually according to the structure mentioned above, encoded in a
DTD. Information about the layout structure, i.e. the bounding boxes of each
logical block, topological positions, fonts, etc., was stored in separate annotation
files, using pointers to the ID attributes of the logical blocks.

3 Reference-Based Document/Speech Alignment

3.1 What Are References to Documents?

From a cognitive point of view, speakers use referring expressions (REs) to
specify the entities about which they talk, or more accurately the representations
of entities in the speaker’s mind. When speakers discuss one or more documents,
as in press-review meetings, they often refer explicitly to documents or various
parts of documents (e.g. ‘the title’, ‘the next article’, etc.).

Reference resolution amounts to the construction of links between each RE
and the corresponding document element. For example, if a speaker says: “I do
not agree with the title of our latest report”, then ‘our latest report’ refers to a
paper or electronic document, and ‘the title of our latest report’ refers precisely
to its title, an element that can be retrieved from the document structure.

Two important notions are coreference and anaphora. RE1 and RE2 are co-
referent if they refer to the same entity, here a document element. RE2 is an
anaphor with respect to RE1 if the element it refers to cannot be identified
without making use of RE1, then called the antecedent of RE2. In the following
example, ‘the first article’ is the antecedent and the pronoun ‘it’ is the anaphor:
“The first article is particularly relevant to our company. It discusses . . . ”. Note
that anaphora may occur without coreference, as is the case with ‘the first chap-
ter’ and ‘the title’ in this example: “The first chapter is nicely written. The title
suggests that . . . ”. The resolution of references to documents offers the advan-
tage of a restricted set of candidate entities, when compared to anaphora or
coreference resolution [3–6].

3.2 The Detection of REs

The reference resolution process has in our view two main stages: (1) the detec-
tion of the REs that refer to documents; (2) the identification of the document
and document element that each RE refers to. In a preliminary study [7], only
the second stage could be automated: no results were available for the entire
process. We present here an automated solution for the first stage as well, and
evaluate the accuracy of the two combined stages.

We designed a grammar-based component that spots the REs referring to doc-
uments in the transcript of meeting dialogues (in French). We chose to consider



68 A. Popescu-Belis and D. Lalanne

a manual speech transcript because an automatic one would contain too many
recognition errors, which would make the evaluation of our alignment impossi-
ble. Each channel is segmented into utterances following the SDA.XML format
used in our project [8]. We used the CLaRK XML environment [9]1 to write a
tokenizer and a grammar.

In order to detect REs that refer to documents, we created a set of pattern
matching rules applying to the words of the utterances, with sometimes a left or
a right context. The challenge in writing the detection grammar was to combine a
priori linguistic knowledge about the form of REs with the empirical observations
on our corpus2, summarized elsewhere [7]. The resulting grammar has about
25 pattern matching rules, but since most of them contain one or more logical
disjunctions and optional tokens, they are equivalent to several hundred possible
REs. Another challenge was to tune the coverage of the grammar to avoid too
many false positives or true negatives, corresponding respectively to precision
and recall errors for the RE detection task (see 4.2).

The main improvement that should be made to this method – apart from
increasing the coverage and accuracy of the grammar – is the intrinsic ambiguity
of certain REs, which may or may not refer to documents, depending on their
context. A typical example are pronouns such as ‘it’ and indexicals such as ‘this’
or ‘this one’, which seem to require some knowledge of their antecedent in order
to be tagged as referring to documents or not. A possible solution would be to
develop a classifier for this task, based on surface features present in the left
and right contexts and surrounding REs, or to extend the above grammar to
filter out pronouns that cannot refer to documents. In the meanwhile, we tested
several pattern matching rules, and kept the ones that increased recall without
reducing precision too much. The failure to detect the pronouns is, however,
quite penalizing for the document/speech alignment task, shown in Section 5.3.

3.3 The Recognition of References to Documents

Once the REs are detected, the second task is to recognize to which document
and document element each RE refers, among the set of potential referents that is
derived from the document structure. A first idea is to consider co-occurrences of
words between the RE and the documents. For each RE, its words and the words
surrounding it are matched using the cosine metric with the bag of words of each
document element: Title, Author, Content, etc. The most similar document
element could be considered as the referent of the RE, provided the similarity
value exceeds a fixed threshold.

The theories of reference resolution emphasize, however, the importance of
keeping track of the referents that were mentioned, in particular of the “current”
referent [10]. We integrated therefore this important feature and the word-based
1 Available at: http://www.bultreebank.org/clark/.
2 For instance, most of the references are made to entire articles, using REs such as

‘the article’, ‘the [first/last] article’, ‘a short article about . . . ’, or ‘the front page of
Le Monde’. These examples are translated from French; ‘Le Monde’ is the name of
a French newspaper.
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comparison into a more complex algorithm which processes anaphoric and non-
anaphoric REs differently.

The resulting algorithm processes the REs in sequence. First, it determines
the document referred to by each RE, among the list of documents associated
to the meeting. The criterion is that REs that make use of a newspaper’s name
are considered to refer to the respective newspaper, while all the other ones are
supposed to refer to the current newspaper3.

The algorithm then attempts to determine the document element that the
current RE refers to. It first decides whether the RE is anaphoric or not by
matching it against a list of typical anaphors for document elements (e.g. ‘the
article’ or ‘it’). If the RE is anaphoric (and not the first RE of the meeting), then
its referent is the current document element. If the RE is not anaphoric, then
co-occurrences of words are used as above to find the document element it refers
to: the words of the RE and the surrounding ones are matched with document
elements; the one that scores the most matches is considered to be the referent
of the RE. Then, the ‘current document’ and the ‘current document element’ (a
single-level focus stack [10]) are updated, before processing the next RE.

Several parameters govern the algorithm, in particular the relative importance
of the various matches between words of the RE and of its left/right context, with
the words from document elements. Another parameter is the span of the left and
right contexts, that is, the number of preceding and following words and utterances
considered for matching. These parameters are tuned empirically in Section 5.2.

4 Data and Evaluation

The data was recorded in the document-centric meeting room set up at the
University of Fribourg. Several modalities related to documents were recorded,
thanks to a dozen cameras and eight microphones. These devices are controlled
and synchronized by a meeting capture and archiving application, which also
helps the users to organize the numerous data files [11].

In this study, we use 22 press-review meetings of ca. 15 minutes each, recorded
between March and November 2003, in which participants discuss the front pages
of one or more newspapers of the day, in French4. Each participant introduces
one or more articles. For each article, a short monologue is followed by a brief
discussion. The meetings were manually transcribed using the Transcriber tool5

and exported as XML files. The structure of the 30 documents (front pages, cf.
Section 2.2) was also encoded into XML files.

4.1 Annotation of Ground Truth REs and References

The annotation model for the references to documents was described in an earlier
paper [7]. The main idea is to separate the annotation of REs from the anno-
tation of the references to documents. REs are tagged on the XML transcript
3 This method does not handle complex references such as ‘the other newspaper’.
4 Available at: http://diuf.unifr.ch/im2/data.html.
5 Available at: http://www.etca.fr/CTA/gip/Projets/Transcriber.
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using an opening <re ID="..."> and a closing </re> tag. The documents
and elements they refer to are encoded in a separate block at the end of the
XML transcript, as links between the index of the RE (ID attribute), a docu-
ment filename, and an XPath designation of the document element referred to,
in the XML representation of the document structure.

In a first pass, the annotators marked the REs using their own understanding
of references to documents. The most litigious cases were the impersonal refer-
ences to the creator of an article, such as (in English) “they say that . . . ”. We
assumed this was a reference to the author of the article, or at least to the entire
article (the actual scoring procedure allows this flexibility). REs that correspond
only to quotations of an article’s sentences were not annotated, since they refer
to entities mentioned by the documents, rather than to the document elements.

A total of 437 REs were annotated in the 22 meetings of the corpus. This num-
ber is not due to the subjects being instructed to refer more often to documents,
but is due to the document-centric meeting genre.

In a second pass, the annotators were instructed to code, for each RE, the
name of the document and the XPath to the respective document element, using
the templates that were generated automatically after the first pass. Examples
of XPath expressions were provided. When in doubt, annotators were instructed
to link the RE to the most general element, that is, the article or front page.

Inter-annotator agreement for the second pass [7], with three annotators on
25% of the data, is 96% for document assignment and 90% for document element
assignment (see evaluation metric below). After discussion among annotators,
we reached 100% agreement on documents, and 97% agreement on elements.

4.2 Evaluation of RE Detection

The evaluation of the first processing stage, RE detection, is done by comparing
the correct REs with those found automatically, using precision and recall. To
apply these metrics, two problems must be solved. First, to what extent is some
variability on the RE boundaries tolerated? And second, how are embedded REs
processed?

We consider here that the detection of only a fragment of an RE counts
the same as the detection of the entire RE, i.e. a correct hit is counted if the
<re> and </re> tags found by the RE detector are identical to, or comprised
within the correct ones. This is somewhat similar to the MUC-7 guidelines [4],
with the difference that here, no minimal fragment is required for an RE. This
indulgent scoring procedure is due to the nature of our application: detecting
only a fragment of an RE is indeed sufficient for document/speech alignment, if
the fragment is correctly linked to a document.

Embedded REs correspond in general to embedded NPs, such as “[the title of
[the next article]]” (non-embedded but intersecting REs seem to be ruled out by
the recursive nature of syntax). The difficulty in scoring embedded REs is related
to the above decision to score RE fragments. If only exact matches counted as cor-
rect, there would be no risk of confusion between embedded REs. But because RE
fragments count as well, one should avoid counting them more than once. For in-
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stance, if the RE detector generates the following markup: “the title of the first
</re>chapter</re>”, then “chapter” should count either as a match for “the
first chapter” or for “the title of the first chapter”, but not for both REs.

We propose therefore the following error counting algorithm, which loops
through all the correct REs in sequence (for embedded REs, it starts with the
deepest one). For each correct RE, if the system has tagged it, or has tagged an
RE included it, then no error is counted, and this RE is removed from the set
of system REs; if it hasn’t, count one recall error. When all correct REs have
been thus tested, recall error is the number of recall errors that were counted,
divided by the total number of correct REs. Precision error is the number of
system REs remaining in the list (that is, not matching correct ones), divided
by the total number of REs tagged by the system.

4.3 Evaluation of RE Resolution

If the resolution of REs is attempted on the correct set of REs, then its evaluation
is done simply in terms of correctness or accuracy [7]. For each RE the referent
found by the system is compared with the correct one using three criteria, and
then three global scores are computed. The first one is the number of times
the document is correctly identified. The second one is the number of times the
document element at the Article level (characterized by its ID attribute) is
correctly identified. The third one is the number of times the exact document
element (characterized by its full XPath) is correctly identified. These values are
normalized by the total number of REs to obtain scores between 0 and 1. The
third metric is the most demanding one. However, we will use only the first two,
since our resolution algorithms do not target sub-article elements yet.

When the resolution of REs is combined with their recognition, the evalua-
tion method must be altered so that it does not count wrongly-detected REs,
which are necessarily linked to erroneous document elements, since these are
evaluated by the precision score at the level of RE detection. The method must
however count the REs that were not detected (to count the missing links) and
examine the detected RE fragments, which may or may not be correctly linked
to documents.

We used the algorithm that scores RE detection (Section 4.2) to synchronize
the indexes of the detected REs with the correct ones. This allows us to compute
the three accuracy scores as defined above. These adapted metrics of the accuracy
of RE resolution thus take partially into account the imperfect RE detection, but
they are not influenced by detection “noise”. Therefore, to evaluate the combined
process of detection and resolution, the scores for RE detection are still required.

5 Results

5.1 Scores for the Detection of REs

The grammar for the detection of REs is evaluated in terms of recall (R), preci-
sion (P ) and f-measure (f). The initial grammar based on prior knowledge and
on corpus observation reaches R = 0.65, P = 0.85 and f = 0.74.
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Experimental analysis can help to assess the value of certain rules. For in-
stance, when adding a rule that marks all third person pronouns as referring to
documents, precision decreases dramatically, with insufficient increase in recall:
R = 0.71, P = 0.52 and f = 0.60. Similarly, adding a rule that marks all index-
icals as referring to documents produces an even lower performance: R = 0.70,
P = 0.46 and f = 0.56. It appears however that in for the present meeting
genre, the indexicals ‘celui-ci’ and ‘celui-là’ (‘this one’ and ‘that one’, masculine
forms) are almost always used to refer to articles. Therefore, the best scores are
obtained after tuning and adding the previous rule: R = 0.68, P = 0.88 and
f = 0.76. However, even without this particular rule, f-measure after tuning the
grammar is only 1% lower.

5.2 Scores for the Resolution of REs

Several baseline scores can be proposed for comparison purposes, depending on
the choice of a “minimal” algorithm. For the RE/document association metric,
always choosing the most frequent newspaper leads to ca. 80% baseline accuracy.
However, when considering meetings with at least two newspapers, the score
of this random procedure is 50%, a much more realistic, and lower, baseline.
Regarding the RE/element association metric, if the referent is always the front
page as a whole, then accuracy is 16%. If the referent is always the main article,
then accuracy is 18% – in both cases quite a low baseline.

The RE resolution algorithm applied on the set of correct REs reaches 97%
accuracy for the identification of documents referred to by REs, i.e., 428 REs out
of 437 are correctly resolved. The accuracy is 93% if only meetings with several
documents are considered. This is a very high score which proves the relevance
of the word co-occurrence and anaphora tracking techniques.

The accuracy for document element identification is 67%, that is, 303 REs out
of 437 are correctly resolved at the level of document elements. If we consider
only REs for which the correct document was previously identified, the accuracy
is 68% (301 REs out of 428). This figure is basically the same since most of the
RE/document associations are correctly resolved.

The best scores are obtained when only the right context of the RE is con-
sidered for matching, i.e. only the words after the RE, and not the ones before
it. Empirically, the optimal number of words to look for in the right context is
about ten. Regarding the other optimal parameters, a match between the RE
and the title of an article appears to be more important than one involving the
right context of the RE and the title, and much more important than matches
with the content of the article: optimal weights are about 15 vs. 10 vs. 1. If
anaphor tracking is disabled, the accuracy of document element identification
drops to ca. 60%. The observation of systematic error patterns could help us
improve the algorithm.

5.3 Combination of RE Detection and Resolution

When the two modules are combined in a pipeline, their errors cumulate in a
way that is a priori unpredictable, but which can be assessed empirically as
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follows. The best configurations were selected for the two modules and, on a
perfect transcript, the obtained results were: 60% document accuracy (265 REs
out of 437) and 32% document element accuracy (141 REs out of 437). If we
compute document element accuracy only on the REs which have the correct
document attached, the score increases to 46% (123 REs out of 265). It appears
thus that the error rates do not combine linearly: if they did, the scores would
have been, respectively, ca. 73% and ca. 50%.

The reason for the lower than expected scores lies probably in the context-
based algorithm used for RE resolution, in which each RE depends on the correct
resolution of the previous one, through the monitoring of the “current document
element”. This is a pertinent feature when REs are correctly detected, but when
too many REs are missing (here recall is only 67%), and especially when most
of the pronouns are missing, the algorithm loses track of the current document
element. Therefore, an improvement of the RE detector should considerably
increase the overall detection-plus-resolution accuracy.

6 Other Document/Speech Alignment Techniques

The resolution of references to documents is not the only method for the cross-
channel alignment of meeting dialogues with meeting documents. We have imple-
mented and evaluated two other methods: citation-based alignment, a pure lexical
match between terms in documents and in speech transcription, and thematic
alignment, a semantic match between sections of documents (sentences, para-
graphs, logical blocks, etc.) and units of dialogue structure (utterances, turns,
and thematic episodes).

The robust thematic alignment method uses various state-of-the-art met-
rics (cosine, Jaccard, Dice), considering document and speech units as bags of
weighted words [11]. After suppression of stop-words, proper stemming, and after
calculation of terms frequency in their section relative to their frequency in the
whole document (TF.IDF), the content of various types of document elements
is compared with the content of various speech transcript units.

When matching spoken utterances with document logical blocks, using cosine
metric, recall is 84%, and precision is 77%, which are encouraging results. And
when matching speech turns with logical blocks, recall stays at 84% and precision
rises to 85%. On the other hand, alignment of spoken utterances to document
sentences is less precise but is more promising since it relies on less processing.
Using Jaccard metric, recall is 83%, and precision is 76% [11]. Furthermore,
thematic alignment of spoken utterances to document sentences has been used for
joint thematic segmentation of documents and speech transcripts. The evaluation
of this method shows that this bi-modal thematic segmentation outperforms
standard mono-modal segmentation methods, which tends to prove that the
combination of modalities considerably improves segmentation scores [12].

In another recent, integrative evaluation, we measured the effect of combining
the various document/speech alignments (reference-based, citation-based, and
thematic) on the general document/speech alignment performance [13]. Eight
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meetings were tested, with a total of 927 utterances, and 116 document logical
blocks. After combination of the three methods, the values of recall, precision,
and f-measure were respectively 67%, 72% and 68%, whereas their independent
use reaches at best, respectively, 55%, 75% and 63%. These results tend to prove
the benefit of combining the various methods of document/speech alignment.

7 Conclusion

Printed documents and spoken interaction are two important modalities in com-
munication. This article presented an attempt to align these modalities based
on their semantic content, in the context of a meeting browser that makes use
of the mentions of documents in the dialogue.

The results presented here demonstrate the feasibility of a reference-based
alignment technique using a grammar-based module for RE detection, followed
by a module implementing word co-occurrence and anaphora tracking for RE
resolution. The two modules were evaluated separately, then in sequence: the
scores for the overall task remain still above the baseline when the two mod-
ules are combined. Future feasibility studies could also evaluate the degradation
induced in a pipelined alignment process by other automated modules, such as
speech recognition or document structuring. Together with other alignment tech-
niques, we believe that our approach will contribute to the design of a robust
multi-modal meeting browser.
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Abstract. We show that, using a Support Vector Machine classifier,
it is possible to determine with a 75% success rate who dominated a
particular meeting on the basis of a few basic features. We discuss the
corpus we have used, the way we had people judge dominance and the
features that were used.

1 Introduction

In many cases it is beneficial for the effectiveness of a meeting if people assume
a cooperative stance. Grice [1975] formulated four maxims that hold for coop-
erative conversations. The maxims of quantity, quality, relevance and manner
state that one should say nothing more or less than is required, speak the truth
or say only things for which one has enough evidence, only say things that are
relevant for the discussion at hand and formulate the contribution such that it
can be easily heart and understood by the interlocutors. These maxims are all
formulated from the perspective of producing utterances in a conversation. One
could define similar maxims for cooperative behavior, more generally. One can
also think of several tasks of chairpersons in meetings as being guided by such
maxims. The chair should facilitate the participants to have their say, to cut off
people who make their contribution too long or to intervene when contributions
are not relevant to the discussion at hand. Discussions should be properly orga-
nized to have arguments develop, so that all positions are put to the fore, and
all relevant pros and cons are raised. People that are too dominant in meetings
may violate one or more of the cooperative maxims and thereby frustrate the
process of collective decision making for which many meetings are intended. The
chair of the meeting should avoid this from happening or intervene when it does.

Nowadays, in order to maximize the efficiency, meetings can be assisted with a
variety of tools and supporting technologies [Rienks et al., 2005]. These tools can
be passive objects such as microphones facilitating better understanding or semi-
intelligent software systems that automatically adjust the lighting conditions. In
the near future, meetings will be assisted with various similar sorts of active,
and perhaps even autonomous, software agents that can make sense of what is
happening in the meeting and make certain interventions [Ellis and Barthelmess,
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2003]. An example of such meeting assisting agents could be an agent that signals
possible violations of cooperative maxims in the decision making process to the
chairperson. One of the major issues to be addressed in this case is how the
agent can detect that there is such a disturbance. In the research described in
the following sections we looked at a way to automatically detect the relative
level of dominance of meeting participants on the basis of a set of simple features.
We start with introducing the concept of dominance (Section 2). To establish a
corpus, we asked several people to rank a collection of meetings. We investigated
whether the rankings by different people were similar (Section 3). Next, we
describe the features we used for our classifier (Section 4), how we obtained the
feature values from our corpus (Section 5) and what the performance of our
classifier was when using the best features (Section 6).

The only work that we are aware of which is in some sense comparable is
described in Zhang et al. [2005] who created a two-level influence model. A dy-
namic Bayesian network (DBN) was proposed to learn the influence of each
participant in meetings using both acoustic and language features. As ‘ground
truth’ input for their model, a set of thirty meetings of about five minutes each
was used together with the averaged results of three annotators.

2 Dominance

According to Hoffmann [1979], there are three types of behavioral roles that can
be identified in groups or teams. These roles can be classified as task-oriented,
relation-oriented and self-oriented. Each group member has the potential of per-
forming all of these roles over time. Initiators, Coordinators and Information
Givers are task-oriented roles that facilitate and coordinate the decision making
tasks. The Relations-Oriented role of members deals with team-centered tasks,
sentiments and viewpoints. Typical examples are : Harmonizers, Gatekeepers
and Followers. The Self-Oriented role of members focusses on the members’ in-
dividual needs, possibly at expense of the team or group. Examples here are
Blockers, Recognition Seekers and Dominators. The Dominator is a group mem-
ber trying to assert authority by manipulating the group or certain individuals in
the group. Dominators may use flattery or proclaim their superior status to gain
attention and interrupt contributions of others. According to Hellriegel et al.
[1995], a group dominated by individuals who are performing self-oriented sub-
roles is likely to be ineffective.

In psychology, dominance refers to a social control aspect of interaction. It
involves the ability to influence others. One can refer to it as a personality char-
acteristic - the predisposition to attempt to influence others - or one can use
the term to describe relationships within a group. Dominance is a hypothetical
construct that is not directly observable. However, there appear to be certain
behavioral features displayed by people that behave dominantly that make it
possible for observers of these behaviors to agree on judgments of dominance. In
Ellyson and Dovidio [1985] the nonverbal behaviors that are typically associated
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with dominance and power are investigated. In several of the papers in that
volume, human perceptions of dominance are discussed as well. Behaviors such
as proxemic relations, facial expressions and gaze were investigated.

In ‘A System for Multiple Level Observation of Groups’ (SYMLOG),
[Bales and Cohen, 1979], Bales distinguishes three structural dimensions in
group interactions: status, attraction and goal orientation. Goal orientation
refers to the question whether people are involved with the task or rather with
socio-emotional behaviours. This dimension was already present in Bales’ earlier
work on Interaction Process Analysis [Bales, 1951]. The attraction dimension
refers to friendly versus unfriendly behaviours. The status dimension has to do
with dominant versus submissive behaviours. Bales developed a checklist that
observers can use to structure their observations of groups. He has also developed
a number of self-report scales that group members can use to rate themselves
(and other group members) on these three dimensions. SYMLOG presents a
questionnaire containing 26 questions from which 18 relate to the concept of
dominance. The factors involved in these questions provide a way to explicate
the concept. An overview of these factors in their most general form are shown
in Table 1.

Table 1. Aspects of dominance according to SYMLOG

Positive contributions Negative contributions

active, dominant, talks a lot passive, introverted, said little
extraverted, outgoing, positive gentle, willing to accept responsibility
purposeful, democratic task-leader obedient, worked submissively
assertive, business-like, manager self-punishing, worked too hard
authority, controlling, critical depressed, sad, resentful, rejecting
domineering, tough-minded, powerful alienated, quit, withdrawn
provocative, egocentric, showed-off afraid to try, doubts own ability
joked around, expressive, dramatic quietly happy just to be in group
entertaining, sociable, smiled, warm looked up to others, appreciative

When we look at these factors we see that most of them are very hard to oper-
ationalize. For example to automatically determine when someone is ‘purposeful’
or ‘alienated’ is quite complex and highly dependent on human interpretative
skills. For the automatic classification task, we need easy to extract and auto-
matically detectable features that can be quantified and transformed as a series
of digits into our system.

To train a classifier that can determine who is the person that dominated
a meeting, we need a corpus of meeting recordings with the relevant features
that the classifier is using either extracted or annotated and also we need to
know how the participants of the various meetings scored on the dimension of
dominance. We will provide more details on the corpus and the features used
by the classifier in Section 4. Now, we will first describe how we established the
dominance ranking for the meetings we used.
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3 Dominance Judgements

For our study, We used a corpus of eight four-person meetings1. The meetings
varied in length between 5 and 35 minutes. We collected 95 minutes in total.
We used different kinds of meetings, including group discussions where topics
had to be debated, discussions about the design of a remote control, book club
meetings and PhD. evaluation sessions.

We asked ten people to rank the participants of the meetings with respect to
their perceived dominance. Each person ranked four, i.e. half of, the meetings. We
thus had a total of five rankings for every meeting. We simply told people to rate the
four people involved in the meeting on a dominance scale.We did not tell the judges
anything more about what we meant by that term. The results are shown in Table
2. The first cell shows that in the first meeting (M1), judge A1 thought that the
most dominant person was the one corresponding to the fourth position in this list,
second was the first person in this list, third the second person in the list and least
dominant was the third person in the list: 2,3,4,1. If one looks at the judgements by
the other judges for this meeting (A2 to A5), by comparing the different columns
for this first row, one can see that A3’s judgments are identical to A1’s. All but A4
agree that the fourth person on the list was most dominant. All but A5 agree that
the third person was least dominant. All but A2 agree that the first person was the
second dominant person. This seems to suggest that on the whole judgements were
largely consistent across judges at first sight.

Table 2. Rating of meeting participants for all the annotators per meeting

A1 A2 A3 A4 A5 ‘Average’ ‘Variance’

M1 2,3,4,1 3,2,4,1 2,3,4,1 2,1,4,3 2,4,3,1 2,3,4,1 8
M2 2,3,4,1 2,3,4,1 2,3,4,1 2,3,1,4 3,2,4,1 2,3,4,1 8
M3 2,1,3,4 3,1,2,4 2,1,4,3 3,1,2,4 1,2,3,4 2,1,3,4 8
M4 2,4,3,1 2,4,3,1 1,4,2,3 2,3,4,1 1,4,3,2 1,4,3,1 4

A6 A7 A8 A9 A10 ‘Average’ ‘Variance’

M5 4,3,2,1 4,3,1,2 3,4,1,2 4,3,1,2 3,4,1,2 4,3,1,2 6
M6 1,3,2,4 1,4,3,2 3,1,4,2 3,1,4,2 1,3,4,2 1,3,4,2 12
M7 1,4,3,2 2,4,3,1 3,2,1,4 2,4,1,3 1,4,3,2 1,4,2,3 14
M8 1,2,4,3 1,4,2,3 2,1,3,4 2,1,3,4 1,2,4,3 1,2,3,4 12

To establish the degree of agreement, we compared the variance of the judge-
ments with the variance of random rankings. If the variance of the annotators is
smaller than the variance of the random rankings, we have a strong indication
that people agree on how to create a dominance ranking.

1 The first three meetings are meetings from for the AMI project (cf.
http://www.amiproject.org), M1 and M2 are the AMI pilot meetings AMI-Pilot-2
and AMI-Pilot-4, M3 is a meeting from the AMI spokes corpus (AMI-FOB 6). The
last five are meetings recorded for the M4 project (cf. http://www.m4project.org:
M4TRN1, M4TRN2, M4TRN6, M4TRN7 and M4TRN12).
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If we add up the dominance scores for each person in the meeting, this results
for the first meeting in scores 11, 13, 19 and 7, with results in an overall ranking
of 2, 3, 4, 1. We call this the ‘average’ ranking. In case of similar scores, we
scored them an equal rank by giving them both the highest value. The next one
highest in the ranking was ranked with a gap of two. Example: if the sum of the
total scores ended up 8, 10, 12, 10 the resulting ranking became 1,2,4,2. For each
of the judges we compare how they differ for each person from this average.

As a measure for the variance we calculated the sum of all the (absolute)
differences of each of the annotators judgments (Ai) with their corresponding
average. The difference with the average was calculated as the sum of the pairwise
absolute differences for all the annotators values of the meeting participants Ap

with their corresponding average value Averagep. See Table 2 for the results.

‘V ariance’=
∑5

i=1
∑4

p=1 |Ai
p − Averagep|

In this case A1 and A3 judgments are identical to the average. A2 made
different judgments for the first person (scoring him as 3 instead of 2) and the
second person (scoring him as 2 instead of 3). So this results in a variance of 2
adding up the variance 4 and 2 of judges A4 and A5 respectively this ends up
in an overall variance of 8 for judgements on the first meeting.

When comparing the variance of the judges with the variance resulting from
randomly generated rankings, the distribution of the variance of the annotators
(μ = 9, σ = 3.38, n = 8) lies far more left of the distribution coming from
randomly generated rankings. (μ = 17.8, σ = 3.49, n = 1.0 ∗ 106). The two
distributions appeared to be statistically significant (p < 0.001) according to
the 2-sided Kolmogorov Smirnov test. It thus appears that judges agree very
well on dominance rankings. We may have to be conservative to generalize this
though as we have only a small (n=8) amount of real samples.

These results support our initial thoughts, where we expected humans to
agree (to a reasonable extent) on the ranking of meeting participants according
to their conveyed dominance level.

4 Features Used by the Classifier

Dominance can be regarded as a higher level concept that might be deduced
automatically from a subset of lower level observations [Reidsma et al., 2004],
similar to the assignment of the value for dominance by humans on the basis of
the perception and interpretation of certain behaviours.

For our classifier we considered some easily obtainable common sense features
that possibly could tell us something about the dominance of a person in relation
to other persons in meetings. We deliberately did not use semantically oriented
features. For each person in the meeting we calculated scores for the following
features.

– The person’s influence diffusion (IDM)
– The speaking time in seconds (STS)
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– The number of turns in a meeting (NOT)
– The number of times addressed (NTA)
– The number of successful interruptions (NSI)
– The number of times the person grabbed the floor (NOF)
– The number of questions asked (NQA)
– The number of times interrupted (NTI)
– The ratio of NSI/NTI (TIR)
– Normalised IDM by the amount of words spoken. (NIDF)
– The number of words spoken in the whole meeting (NOW)
– The number of times privately addressed (NPA)

The Influence diffusion model [Ohsawa et al., 2002] generates a ranking of
the participants by counting the number of terms, reused by the next speaker
from the current speaker. The person who’s terms are re-used the most is called
the most influential.

Most of the features appear as simple metrics with variations that measure the
amount to which someone is involved in the conversation and how others allow
him/her to be involved. These are all measures that are easy to calculate given a
corpus with appropriate transcriptions and annotations provided. Metrics used
in the literature, as in SYMLOG, depend on the interpretation of an observer.

We defined a successful interruption in line with Leffler et al. [1982]. We
counted as a successful interruption any occurrence where a speaker A starts
talking while another speaker B is talking and speaker B finishes his turn before
speaker A. So we did not make a distinction between overlap and interruption.
A floorgrab was defined each time a participant started speaking after a silence
larger than 1.5 seconds.

After the judges that rated our corpus had finished their ratings, we asked
them to write down a list of at least five aspects which they thought they had
based their rankings on. The following features were mentioned.

Dominant is the person: who speaks for the longest time, who speaks the
most, who is addressed the most, who interrupts the others the most,
who grabs the floor the most, who asks the most questions, who speaks
the loudest, whose posture is dominant, who has the biggest impact on
the discussion, who appears to be most certain of himself, who shows
charisma, who seems most confident.

From the features identified by the annotators we can see that e.g. charisma
and confidence are again typical examples of features that are very hard to
measure and to operationalize. Most of this is again due to the fact that a
proper scale does not exist, and as a result the valuation becomes too subjective
and values from one annotator might not correlate with the values from another
annotator. Several of the other features are similar to the ones we are exploring
for their predictive power in our classifier.
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5 Acquiring and Preprocessing the Data

For each of the eight meetings ranked by our annotators, we calculated the values
for the measures identified in the previous section. This was done on the basis
of simple calculations on manual annotations and on the results of some scripts
processing the transcriptions2. With respect to addressee annotation 25% of the
data was not annotated due to the cost involved3.

In order to make the values for the same feature comparable, we first made
the feature values relative with respect to the meeting length. This was done in
two steps. First the fraction, or share, of a feature value was calculated given all
the values for that feature in a meeting.

The share of a feature value (F
′
Pn) = FP n

FP1..FP4

Then, according to the value of the fraction, the results were binned in three
different bins. As we are dealing with four person meetings the average value
after step 1 is 0.25 (=25% share). The features were grouped using the labels
‘High’ ( F

′
Pn > 35% ), ‘Normal’ (15% < F

′
Pn < 35%), and ‘Low’ (F

′
Pn < 15%).

As a consequence, apart from the fact that features were now comparable
between meetings, the feature values that originally had ‘approximately’ the
same value now also ended up in the same bin. This seemed intuitively the
right thing to do. Table 3 shows the value of the NOW feature (‘The number of
words used’ per participant per meeting) before and after applying the process.
If we look at the number of words used for person 2 (P2) and person 4 (P4)
we see that they both end up labelled as ‘High’. Although they did not speak
the same amount of words, they both used more than 90000 words, which is a
lot in comparison with P1 (38914) and P3 (26310), both ending up classified as
‘Low’.

Now, as the feature values were made comparable, we were almost ready to
train our model. The only step left was to define the class labels determining
the dominance level. For this we decided to use the same technique as for the
features, labelling them also as ‘High’, ‘Normal’ and ‘Low’. We calculated the
shares of each of the participants by dividing the sum of the valuations of all
judges for this participant by the total amount of points the judges could spend
(5 ∗ (1 + 2 + 3 + 4) = 50).

The results were then again binned using the same borders of 15 and 35
percent. When a share was smaller than 15% the dominance level was labelled
as ‘High’; if the share lay between 15% and 35% the dominance level was labelled
‘Normal’ and when it was higher than 35 % the label ‘Low’ was used. This way,
also the persons who received more or less similar scores ended up in the same
bin.

2 All transcriptions used were created using the official AMI and M4 transcription
guidelines of those meetings [Moore et al., 2005, Edwards, 2001].

3 Addressee information takes over 15 times real time to annotate [Jovanovic et al.,
2005].
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Table 3. The feature ‘Number of Words’ before and after preprocessing for person
1,2,3 and 4 respectively for each meeting

NOW before NOW after
preprocessing preprocessing

P1 P2 P3 P4 P1 P2 P3 P4

M1 38914 93716 26310 98612 low high low high
M2 33458 11602 14556 37986 high low low high
M3 3496 7202 8732 2774 low high high low
M4 2240 1956 4286 7642 low low normal high
M5 4470 1126 9148 1974 normal low high low
M6 2046 17476 1828 4058 low high low high
M7 4296 6812 8258 1318 normal high high low
M8 1586 13750 1786 1540 low high low low

This resulted in a data-set of 32 samples with twelve samples receiving the
class label ‘High’, ten ‘Normal’ and ten ‘Low’. We define our baseline perfor-
mance as the share of the most frequent class label (‘High’) having a share of
37.5% of all labels.

6 Detecting Dominance

We wanted to predict the dominance level of the meeting participants with the
least possible features, in accordance with Occam’s razor [Blumer et al., 1987],
trying to explain as much as possible with as little as possible. The fewer features
we required, the easier it would be to eventually provide all information to the
system. This way we reduced the risk of over fitting our model to the data
as well. To decrease the amount of features we evaluated the features on their
discriminative force using WEKA’s Support Vector Machine (SVM) attribute
evaluator.

The top five of most discriminative features appeared to be (in order of im-
portance) NOF, NOT, NSI, NOW, and NOQ. We obtained the best performance
by training a SVM using the two most discriminative features: NOF and NOT.
Ten-fold cross validation resulted in a performance of 75%, much higher than
our 37.5% baseline. This means, that given the number of times the meeting
participants grab the floor after a silence together with the number of turns a
participant has, our classifier is in 75 % of the cases able to correctly classify the
behavior of the participants as being ‘Low’, ‘Normal’ or ‘High’on dominance.
The confusion matrix is shown in Table 4.

From the confusion matrix it can be seen that our classifier performs better
on the classes ‘Low’ and ‘High’ than on the class ‘Normal’. This seems in line
with our intuition that people showing more extreme behavior are easier to
classify. To test the significance it appeared that the 90% confidence interval for
our classifier lies between a performance of 62% and 88%, having a lower bound
much higher than the 37.5% baseline. This confidence interval is important due
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Table 4. Confusion matrix using the features NOF and NOT. The rows are showing
the actual labels and the columns the labels resulting from the classifier.

Low Normal High

Low 8 1 1
Normal 2 7 1
High 0 3 9

to the relatively small number of data samples. The fact that we would over fit
our classifier when using all the features appeared when we trained on all the
features. Ten fold cross validation resulted in that case in a performance of 50%.

It is interesting to see that the number of successful interruptions as a feature
on its own results in a performance of 59% which, although not significant,
implies a correlation with the concept of dominance. This is in line with the
claim of West and Zimmerman [1983] calling interruption ‘a device for exercising
power and control in conversation’. Tannen [1993] on the other hand claims that
interruptions not necessarily need to be a display of dominance as people can
interrupt each other to show enthusiastic listenership and participation as well.

7 Applying the Model

Aware of the fact that our sample size is relatively small and that not all meetings
follow the same format, we do think that our results suggest that it is possible
to have a system analyzing the level of dominance of the meeting participants. If
we look at the features used by our model, and the fact that their values should
be just as informative during the meeting as after the meeting, we expect these
systems not to function just after the meeting, but just as well in real time.

We crafted a very simplistic model based on the top three features: NOF,
NOT and NSI. The model grants one point for each turn a participant takes
in a meeting and if the turn is acquired, either after a silence greater than 1.5
seconds, or by an interruption, another extra point is given. This model enabled

Fig. 1. Graphical outputs of the simplistic dominance model applied to M3 for a 100
seconds window (a) and for a window spanning the whole meeting (b)
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us to produce figures similar to Figure 1, where we counted the points for all
the participants of the AMI-FOB6 meeting in a time window of 100 seconds for
each participant (a) and cumulatively counted the points for each participant
over a whole meeting (b). It should be noted that the resulting heights of the
participants levels correspond to the averaged annotator value of meeting M3 in
Table 2.

8 Conclusions and Future Work

We have shown that in the future systems might be extended with modules able
to determine the relative dominance level of individual meeting participants. We
were able to reach an accuracy of 75% using just two easily obtainable features.
The concept dominance appears in the meeting domain to be mainly reflected
by the number of floorgrabs and the number of turns someone takes. As all the
features are made relative to the total value of all participants, one is able to
apply the model both during as well as after the meeting.

Possible directions for opportunities to improve our model could be to extend
the feature set with more semantically oriented features, such as ‘Who is using
the strongest language?’, or ‘Who gets most suggestions accepted?’. Although
these features seem very intuitive and might increase the performance, one does
have to realize that being able to measure these, costly and complex inferencing
systems have to be developed.

Another possible thing to look at is to use more samples, this will be more
expensive on one side, but also decreases the confidence interval and thus further
increase the reliability of the performance on the other side.

Typical applications of systems that track the dominance levels of partici-
pants are other systems using the dominance information in order to inform the
meeting participants or a meeting chairman about this. With this information
a chairman could alter his style of leadership in order to increase the meeting
productivity. Combined with other information, recommender systems could be
created that directly suggest how to change the leadership style. The next thing
one could think of is a virtual chairman as mentioned in Rienks et al. [2005]
which is able to lead a meeting all by itself, giving turns, keeping track of a
time-line and most important: keeping the meeting as effective and efficient as
possible.
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Abstract. Combining multiple information sources, typically from several data
streams is a very promising approach, both in experiments and to some extents in
various real-life applications. A system that uses more than one behavioral and
physiological characteristics to verify whether a person is who he/she claims to
be is called a multimodal biometric authentication system. Due to lack of large
true multimodal biometric datasets, the biometric trait of a user from a database
is often combined with another different biometric trait of yet another user, thus
creating a so-called a chimeric user. In the literature, this practice is justified
based on the fact that the underlying biometric traits to be combined are assumed
to be independent of each other given the user. To the best of our knowledge,
there is no literature that approves or disapproves such practice. We study this
topic from two aspects: 1) by clarifying the mentioned independence assumption
and 2) by constructing a pool of chimeric users from a pool of true modality
matched users (or simply “true users”) taken from a bimodal database, such that
the performance variability due to chimeric user can be compared with that due
to true users. The experimental results suggest that for a large proportion of the
experiments, such practice is indeed questionable.

1 Introduction

Biometric authentication (BA) is a problem of verifying an identity claim using a per-
son’s behavioral and physiological characteristics. BA is becoming an important alter-
native to traditional authentication methods such as keys (“something one has”, i.e.,
by possession) or PIN numbers (“something one knows”, i.e., by knowledge) because
it essentially verifies “who one is”, i.e., by biometric information. Therefore, it is not
susceptible to misplacement or forgetfulness. Examples of biometric modalities are fin-
gerprints, faces, voice, hand-geometry and retina scans [1].

Due to inherent properties in each biometric and external manufacturing constraints
in the sensing technologies, no single biometric trait can achieve 100% authentication
performance. This problem can be alleviated by combining two or more biometric traits,
also known as the field of multimodal biometric authentication. In the literature, there
are several approaches towards studying fusion of modalities. One practice is to con-
struct a large database containing several biometric traits for each user. This, however,
can be very time-consuming and expensive. Another practice is to combine biometric
modalities of a database with biometric modalities of another biometric database. Since
both databases do not necessarily contain the same users, such combination results in

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 87–100, 2006.
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chimeric users. From the experiment point of view, these biometric modalities belong
to the same person. While this practice is commonly used in the multimodal litera-
ture, e.g., [2,3] among others, it was questioned whether this was a right thing to do
or not during the 2003 Workshop on Multimodal User Authentication [4]. To the best
of our knowledge, there is no work in the literature that approves or disapproves such
assumption.

There are at least two arguments that justify the use of chimeric users, i.e., i) modal-
ity independence assumption – that two or more biometric traits of a single person are
independent of each other; and ii) privacy issue – participants in the multimodal biomet-
ric experiments are not ready to let institutes keep record of too much of their personal
information (raw biometric data) at the same place. If such information is misused, it
could be dangerous, e.g., identity theft. It is for this same reason that processed bio-
metric features are preferred for storage rather than raw biometric data. Note that the
first argument is technical while the second one is ethical. Although both arguments are
equally important, the second one is beyond an experimenter’s control and is related to
the policy related to a database. For instance the policy should address who can use the
database and how it should be used. When a database is carefully designed to protect
the participants’ privacy right, this issue should be resolved. For this reason, this paper
focuses on the first argument.

We set out to investigate the validity of the modality independence assumption by
using two approaches, namely : 1) by pinning down the concept of independence and
2) by simulating the effect of chimeric users experimentally and measuring the discrep-
ancy in terms of performance between the use of chimeric users and the use of true
users. Note that these two approaches represent two different ways of thinking about
the problem: one theoretical and the other experimental. To verify this hypothesis, we
limit our scope to studying such effect to bimodal as generalization to more than two
modalities is direct. It should be emphasized that the use of chimeric users is not lim-
ited to biometric authentication, but may be in general applicable to problems involving
multimodal streams. Hence, this study is of interest to researchers studying multimodal
fusion.

This paper is organized as follows: Section 2 underpins the concept of independence
between biometric traits (the first approach of studying the validity of chimeric users);
Section 3 describes the database to be used; Section 4 details the experimental pro-
cedure and presents the results (the second approach); and finally this is followed by
conclusions in Section 5.

2 On the Independence Assumption

2.1 Preliminary

Suppose that each authorized person is identified by a unique identity claim j ∈ J ≡
{1, . . . , J} and there are J identities. We sometimes call these users as clients to oppose
a set of other unauthorized persons known as impostors. Hence, a biometric authentica-
tion system is aimed at distinguishing clients from impostors, which is an aggregated
two-class problem, i.e., a two-class problem with J distinctive users. In this problem, it
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is common to represent a user by his/her feature template or model, i.e, a set of param-
eters derived from the features. Suppose that the output due to comparing a user model
Cj to a feature X is y(j). For each client or user model Cj , there is a corresponding
impostor model Ij . Lacking a proper definition1, the impostor model is often naively
defined as the model of other finite users ∀j′ |j′ ∈ J − j. We the purpose of clarity, we
will drop the client index j such that writing C is equivalent to writing Cj and writing
y is equivalent to writing y(j). To decide whether to accept or reject the access request
represented by feature X claiming identity j, previous theoretical studies such as [5,6]
often use the following decision function:

decision(P (C|X)) =
{

accept if P (C|X) > 0.5
reject otherwise,

(1)

where by the probability law, P (C|X) + P (I|X) = 1. Although this decision rule is
correct, such formulation does not allow the interpretation of a threshold-based decision
function such as:

decision(y) =
{

accept if y > Δ
reject otherwise,

(2)

where Δ is the user-independent decision threshold. It can be easily seen that y =
P (C|X) and Δ = 0.5 when comparing both decision functions. The decision func-
tion in Eqn. (2) is found in most biometric authentication systems. For instance, if the
matching score y is based on a distance between a user template Xtmplt and the sub-
mitted feature X , i.e., y ≡ dist(Xtmplt, X), where dist is a distance measure, the
decision function in Eqn. (1) cannot reflect such measure since it applies to probability
outcome only. To allow the interpretation of threshold in the case of a distance measure,
we propose that the classification be carried out such that:

decision(LPR) =
{

accept if LPR > 0
reject otherwise,

(3)

where LPR is logarithmic posterior ratio. It is defined as:

LPR ≡ log
(

P (C|X)
P (I|X)

)
= log

(
P (X |C)P (C)
P (y|I)P (I)

)
= log

P (X |C)
P (X |I)︸ ︷︷ ︸+ log

P (C)
P (I)︸ ︷︷ ︸ ≡ LLR − Δ, (4)

where we introduced the two terms: y ≡ LLR or Log-Likelihood Ratio and a threshold
Δ. The first term corresponds to the interpretation of score y as an LLR. The second
term is a constant. It handles the case of different priors (hence fixed a priori), i.e., it
reflects the different costs of false acceptance and false rejection. Note that y is a direct
function of X and the model variable associated to it (say θ), i.e., y = fθ(X). We

1 Ideally, this impostor model should be the world population minus the user j. In terms of
computation and data collection effort, this is not feasible and in practice not necessary.
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use the function f with parameter θ to explicitly represent the functional relationship
between the variables y and X .

Although y is interpreted as an LLR here, many different machine-learning algo-
rithms (e.g., Gaussian Mixture Models, Multi-Layer Perceptrons, Support Vector Ma-
chines) can be viewed as an approximation to this relationship, without necessarily
giving it a probabilistic interpretation, i.e., y being a probability. Suppose that y is an
instance of the variable Y and is drawn from the distribution Y . The decision function
in Eqn. (2) then implies that EY|C [Y ] > EY|I [Y )], where EZ [Z] is the expectation of
Z under the law Z . In words, this means that the expected client score has to be greater
than that of impostor. To allow interpretation of a distance measure, one can simply
interchange between C and I , such that EY|C [Y ] < EY|I [Y ].

Depending on the outcome of the decision (as a function of the threshold Δ), a bio-
metric authentication system can commit two types of errors, namely, False Acceptance
(FA) and False Rejection (FR). The error rates of FA and FR are defined as:

FAR(Δ) = 1 − P (Y |I ≤ Δ)
FRR(Δ) = P (Y |C ≤ Δ),

where P (Y |k ≤ Δ) is the cumulative density function of conditional variable Y
within the range [−∞, Δ] for each class k. Note that a unique point with Δ∗ where
FAR(Δ∗) = FRR(Δ∗) is called Equal Error Rate (EER). EER is often used to char-
acterize a system’s performance. Another useful performance evaluation point for any
given threshold Δ (not necessarily Δ∗) is called Half Total Error Rate (HTER) and is
defined as the average of FAR and FRR, i.e.,:

HTER(Δ) =
1
2
(FAR(Δ) + FRR(Δ)).

The discussion until here concerns only a particular client. In reality, one has ex-
tremely few examples of genuine accesses y|C and relatively large impostor accesses
y|I , as mentioned earlier. As a result, the estimation of user-specific threshold is ex-
tremely unreliable. For this reason, the user-independent versions of FAR, FRR and
EER, as well as the threshold are often used. Although there exists abundant literature
to estimate user-specific threshold (see for instance a survey in [7,8]), common thresh-
old is by far a standard practice.

2.2 Different Levels of Dependency Assumption

There are a number of different assumptions that can be made about the levels of de-
pendency when one considers combining multimodal information sources. These de-
pendencies have implications for the mathematical modeling and classifier used. Two
notions of dependencies can be distinguished here, i.e, feature-oriented dependency and
score-oriented dependency. The former assumes dependency at the feature-level while
not considering the dependency at the score level. The latter, on the other hand, assumes
independence at the feature level but handles dependency uniquely at the score level.
These two dichotomies thus give rise to four types of dependencies in decreasing order:
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– Strict Feature Dependence. It is characterized uniquely by the feature-oriented
dependence assumption.

– Loose Feature Dependence. It is characterized by feature-oriented independence
but score-oriented dependence

– Loose Feature Independence. It is characterized by both feature-oriented and
score-oriented independence.

– Strict Feature Independence. It is characterized uniquely by the feature-oriented
independence assumption.

Suppose that X1 and X2 are features of two different biometric modalities. Using
the same Bayesian formulation (with focus on LLR) as in the previous Section, the four
categories can be formally stated as follows:

– Strict Feature Dependence:

ySD(j) = log
p(X1, X2|Cj)
p(X1, X2|Ij)

(5)

≡ fθj (X1, X2), (6)

where the function f explicitly represents any classifier with the associated param-
eter θj . By so doing, we actually provide a Bayesian interpretation of the classifier
f . One possible weakness of this approach is known as the “curse of dimensional-
ity”, whereby modeling the joint features in higher dimension can cause a degraded
performance compared to methods resulting from the other assumptions (to be dis-
cussed below).

– Strict Feature Independence:

ySI(j) = log
p(X1|Cj)p(X2|Cj)
p(X1|Ij)p(X2|Ij)

(7)

= log
p(X1|Cj)
p(X1|Ij)

+ log
p(X2|Cj)
p(X2|Ij)

(8)

= y1(j) + y2(j) (9)

≡ fθ1
j
(X1) + fθ2

j
(X2) (10)

where yi(j) ≡ log p(Xi|Cj)
p(Xi|Ij) and θi

j is the model parameter associated to modality

i and user j. Note that in theory the two classifiers involved, fθi
j
|i = {1, 2}, do

not have to be homogeneous (the same type). In practice, however, some form of
normalization may be needed if they are not homogeneous, e.g., from different
vendors or based on different algorithms. It can be seen that using this Bayesian
framework, the independence assumption leads to the well-known sum rule. On the
other hand, using the probabilistic framework y(j) ≡ p(Cj |X), this dependency
would have led to the well-known product rule (proof not shown here).

– Loose Feature Dependence:

yLD(j) = log
p(y1(j), y2(j)|Cj)
p(y1(j), y2(j)|Ij)

(11)

≡ fθCOM
j

(y1(j), y2(j)) (12)
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= fθCOM
j

(
fθ1

j
(X1), fθ2

j
(X2)

)
, (13)

where fθCOM
j

can be considered as a second-level classifier, also called a fusion
classifier. The loose feature dependence is a result of committing to the feature inde-
pendence assumption – which means that the scores y1(j) and y2(j) can be derived
separately – and score-oriented dependence assumption – implying that the depen-
dency at the score level should be modeled. This formulation actually motivates the
use of trainable classifiers in fusion. Suppose that y(j) = [y1(j), y2(j)]T is a vec-
tor and an instance of the variable Y (j). If Y (j) is drawn from a class-conditional
Gaussian distributions and that both the client and impostor distributions share a
common covariance matrix Σ, it is possible to show that:

fθCOM
j

= w1(j)y1(j) + w2(j)y2(j), (14)

where w(j) = [w1(j), w2(j)]T has the following solution:

w(j) ∝ Σ−1 (E[Y (j)|Cj ] − E[Y (j)|Ij ]) . (15)

The linear opinion pool (or weighted sum) shown here is a typical solution given
by Fisher’s linear discriminant [9, Sec. 3.6]. Other solutions using the same lin-
ear discriminant function (but possibly more powerful since they do not make the
class-conditional Gaussian assumption) includes Support Vector Machines with a
linear kernel [10] and the perceptron algorithm [9, Chap. 6], the latter of which
generalizes to the least square and the logistic discrimination/regression solutions
(depending on the error criterion). It can thus be seen that the loose feature depen-
dence assumption motivates the use of a fusion classifier. It should be noted that
the Bayesian framework using Eqn. (11) as a departure point does not dictate that
a linear classifier has to be used. In practice, however, to the best of our knowl-
edge, non-linear classifiers have not been reported to provide significantly better
results over their linear counterparts in this application. Often, due to small training
sample size on a per user basis, the classifier at this level is trained across all users.
Although user-specific fusion classifiers have been proposed, e.g., [3], global fusion
classifier is by far the most commonly used approach. We will study this case here.
Hence, as long as fusion is concerned, the index j in the term fθCOM

j
of Eqn. (12)

can be dropped, so as the weights in Eqn. (14).

– Loose Feature Independence:

yLI(j) = log
p(y1(j)|Cj)p(y2(j)|Cj)
p(y1(j)|Ij)p(y2(j)|Ij)

(16)

= log
p(y1(j)|Cj)
p(y1(j)|Ij)

+ log
p(y2(j)|Cj)
p(y2(j)|Ij)

(17)

≡ fθ1
j
(y1(j)) + fθ2

j
(y2(j)) (18)

= fθ1
j

(
f ′

θ1
j
(X1)

)
+ fθ2

j

(
f ′

θ2
j
(X2)

)
, (19)

where f ′
θi

j
is a classifier taking features Xi and fθi

j
is another classifier taking the

score yi(j), for all i ∈ {1, 2}. Since fθi
j

is a one-input one-output function, this
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procedure is also called score normalization [11]. Among the score normalization
techniques, user-specific Z-score normalization is perhaps the most representative
one. Z-norm and other techniques are surveyed in [7]. It turns out that the fusion
classifier is a sum rule. Again, due to lack of user-specific data, the score normal-
ization is treated the same across users. Hence, we can replace fθi

j
by fθi (without

the subscript j) in Eqns. (18) and (19), for all i = {1, 2}.

The above four types of architecture as a result of different levels of dependence as-
sumption are certainly not exhaustive. It is possible to combine say strict feature depen-
dence and strict feature independence assumption such that the resultant architecture
compensates for both assumption (see for instance [12]).

As can be seen, depending on the level of dependency between X1 and X2 that
one is willing to commit to, one arrives at any of the four choices of architectures. In
multimodal biometrics, where two (or more) biometric modalities are captured using
different sensors, it is well accepted that the strict feature dependence assumption (the
first one) is in general not true [2]. Hence, as long as the use of chimeric users is
concerned, only the last three levels of dependency are relevant. In the experimental
setting with chimeric users, one simply uses the concatenated score with modalities of
other users , i.e.,

ychimeric = [y1(j), y2(j′)]T where j 
= j′.

and combines the concatenated score by using classifiers such as Eqns. (9), (12) and
(18), respectively for the last three levels of dependency.

Thus we arrive at the crucial question: “Do the different levels of dependency allow
one to switch the identities?”. If one follows strictly (and agrees with) the Bayesian
framework presented so far, none of these assumptions provide any hint about the
use of chimeric users in practice. They merely guide how one should model the final
score y just before making the accept/reject decision. Lacking any plausible justifica-
tion and theoretical explanation, we resolve to an experiment-driven approach to study
the effects of switching identities. Before presenting the experimental approach, we first
present the database used in the next section.

3 The XM2VTS Database

There exists several bimodal biometric authentication databases for this purpose, e.g.,
M2VTS, XM2VTS and BANCA databases. We will use the XM2VTS for two reasons:
it has among the largest number of users, i.e., 200 clients and 95 casual impostors; and
the results of many single modal experiments (in scores) are available for fusion. These
scores are also publicly available2 and are reported in [13].

The XM2VTS database [14] contains synchronised video and speech data from 295
subjects, recorded during four sessions taken at one month intervals. On each session,
two recordings were made, each consisting of a speech shot and a head shot. The speech
shot consisted of frontal face and speech recordings of each subject during the recital
of a sentence. The database is divided into three sets: a training set, an evaluation set

2 http://www.idiap.ch/∼norman/fusion
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Table 1. The Lausanne Protocols as well as the fusion protocol of XM2VTS database

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols

LP Train client accesses 3 4 NIL
LP Eval client accesses 600 (3 × 200) 400 (2 × 200) Fusion dev
LP Eval impostor accesses 40,000 (25 × 8 × 200) Fusion dev
LP Test client accesses 400 (2 × 200) Fusion eva
LP Test impostor accesses 112,000† (70 × 8 × 200) Fusion eva

†: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted,
resulting in 200 less of impostor scores, or a total of 111,800 impostor scores.

and a test set. The training set (LP Train) was used to build client models, while the
evaluation set (LP Eval) was used to compute the decision thresholds (as well as other
hyper-parameters) used by classifiers. Finally, the test set (LP Test) was used to estimate
the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors
and 70 test impostors. There exists two configurations or two different partitioning ap-
proaches of the training and evaluation sets. They are called Lausanne Protocol I and II,
denoted as LP1 and LP2 in this paper. In both configurations, the test set remains the
same. Their difference is that there are three training shots per client for LP1 and four
training shots per client for LP2. Table 1 is the summary of the data. More details can
be found in [15]. The first column shows the data set, divided into training, evaluation
and test sets. Columns two and three show the the partition of the data according to
LP1 and LP2 whereas column four shows the partition of data for the fusion protocols
that are consistent with the Lausanne Protocols. As far as fusion is concerned, there are
only two data sets, labeled as “Fusion dev” (for development) and “Fusion eva” (for
evaluation), since the data used in LP training sets are reserved to construct the base
systems3. Note that the fusion development set is used to calculate the parameters of
fusion classifier as well as the optimal global threshold. They are then applied to the
fusion evaluation set. Since the threshold is calculated from the development set, the
reported HTER obtained from the evaluation set is thus called an a priori HTER.

4 An Experimentally Driven Approach

This Section aims at answering the following question: “Is an experiment carried out
using chimeric users equivalent to the one carried out using true users in terms of a
given performance measure?”. Suppose that the performance measure of interest is a
priori HTER. The above question can then be rephrased as: “Is the a priori HTER
obtained using chimeric users similar to (or not significantly different from) the one
obtained using the true users?”. We can formally specify the null hypothesis and its
corresponding alternative hypothesis as follows:

3 Given the naming conventions of the XM2VTS corpus which are admitably rather confusing,
we consistently use the term “developemnt set” to mean training set and “evaluation set” to
mean test set.
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– H0: The a priori HTER obtained from chimeric users is equivalent to the one ob-
tained from true users.

– H1: The a priori HTER obtained from chimeric users is different from the one
obtained from true users.

Suppose that the HTER value due to chimeric users, v, is an instance of a random
variable V which follows an unknown distribution. We are interested in:

p(v ∈ c[a, b]|H0) = α, (20)

where c[a, b] is the complementary of [a, b] – or the critical region, i.e., the set of values
for which we will reject H0 – and α is the level of the test – or the Type I error, i.e.,
the probability of selecting H1 when H0 is true. By convention, α is usually set to
1% or 5%. Note that the critical region is computed such that the Type I error is only
meaningful for a given α level.

Since the distribution of HTER due to chimeric users is unknown, we need to es-
timate it using a random permutation procedure such that in each permutation, a bio-
metric modality of one user is paired with another biometric modality of yet another
user. This procedure is somewhat similar to the bootstrap-based non-parametric statis-
tical test [16,17] but different in two aspects: a bootstrap manipulates samples whereas
the permutation process here manipulates user identities; and a bootstrap draws sam-
ples with replacement whereas the permutation process, as its name implies, permutes
identities, which means it draws identity without replacement. Since each permutation
creates a “new” set of fusion scores, a fusion classifier has to be constructed before the
HTER value can be computed. By repeatedly applying the random permutation proce-
dure, we can then obtain a set of HTER values, which represents our non-parametric
estimate of the distribution V . Evaluating Eqn. (20) is simply a matter of determining if
the HTER due to true users is in [a, b] (hence in favor of H0) or in its complement c[a, b]
(hence in favor of H1). The values a and b are chosen such that p(v ∈ [a, b]) = 1 − α
for a given α and p(v < a) = p(v > b). Under such constraints, it is obvious to see
that p(v < a) = p(v > b) = α/2. To illustrate this idea, we took an experiment from
the XM2VTS score-level fusion benchmark database, and applied the hypothesis test
procedure mentioned. The results are plotted in Figure 1.

Two fusion classifiers are used in the experiments, namely the mean operator and
the Gaussian Mixture Model (GMM). Both of these fusion classifiers are representa-
tive approaches of the loose feature independence assumption and the loose feature
dependence assumption, respectively. For the mean operator, prior to fusion, scores are
normalized to zero mean and unit variance such that none of the two expert scores domi-
nate just because of a larger variance. The normalization parameters are calculated from
the development set. For the GMM, the number of Gaussian components is tuned by
simple validation.

According to the fusion protocol, there are 21 multimodal data sets available. The
HTER distribution due to random identity match is sampled 1000 times and there are

200 users. This means that the 1000 samples are a sheer portion of 1000
(

2002

200

)−1

≈
10−542 (since we can have as many as 200 × 199 chimeric users in addition to the
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Fig. 1. The distribution of a priori HTER (thin curve) estimated from 1000 random samplings of
chimeric users versus the HTER of true users (bold vertical line). All thresholds were calculated
to minimize HTER on the development set. The HTER of the true users is in the 87.7 percentile
(or 1.42% HTER) and is within the 2.5 (dashed vertical line) percentile (or 0.69% HTER) and
97.5 percentile (dotted vertical line) (or 1.62% HTER). Hence, this experiment supports the null
hypothesis.

original 200 users and from these users we sample 200 users each time), i.e., one cannot
possibly evaluate all the possible permutations. Table 2 lists the HTER range at 95%
of confidence due to 1000 samples of random identity match (chimeric-user effect) and
the corresponding HTER of true identity match. The first 15 are fusion datasets taken
from LP1 while the rest are from LP2. For the values of HTER of true identity match
falling outside the confidence range, a ∗ sign is marked. There are two ∗’s for the mean
operator and three for the GMM.

Since Table 2 is limited to the criterion of EER only, we also plot the whole spec-
trum of the so-called Expected Performance Curve (EPC) [18], which selects different
thresholds for different criteria, on a separate validation set, as follows:

Δ∗ = arg min
Δ

ωFAR(Δ) + (1 − ω)FRR(Δ) (21)

where ω ranges from 0 to 1. Using this threshold, the EPC then plots the corresponding
HTER on the test set, with respect to ω, i.e., HTER(Δ∗, ω). This enables us to obtain
unbiased estimates of the HTER since all hyper-parameters, including the threshold, are
selected on some separate validation set.

Figures 2 and 3 show EPC curves of the distribution due to random identity match
(with a 95% confidence interval) and the EPC curve of true identity match, for the
mean operator and the GMM, respectively. As can be observed, there are much more
points where the HTER of true identity match falls out of the 95% confidence range.
Precisely, exactly 8/21 of experiments for the mean operator and 7/21 of experiments
for the GMM. Hence, based on the available fusion datasets, about one third of them
shows that the experiments with chimeric users are inconsistent with those carried out
with the true identity match setting. Considering the fact that the mean operator has
no parameters to be estimated and that the GMM has some, the free parameters in the
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Table 2. The a priori HTER range (whose confidence falls between 2.5% and 97.5% quantiles,
corresponding to the usual middle 95% confidence bound) of 1000 samples of random identity
match (chimeric-user effect) versus the a priori HTER of true identity match for both the mean
operator and the GMM fusion classifiers, for each of the 21 fusion datasets. For each experiment,
the threshold is calculated to fulfill the EER criterion on the training set. For the values of a priori
HTER of true identity match falling outside the confidence range, a “∗” sign is marked.

HTER (%)
No. LP Data set Mean GMM

(Face) (Speech) experts chimeric true chimeric true
1 1 (FH,MLP)(LFCC,GMM) [0.36, 1.02] 0.79 [0.10, 0.60] 0.35
2 1 (FH,MLP)(PAC,GMM) [0.70, 1.36] 1.13 [0.38, 1.13] 1.08
3 1 (FH,MLP)(SSC,GMM) [0.54, 1.24] 0.87 [0.32, 1.03] 0.72
4 1 (DCTs,GMM)(LFCC,GMM) [0.16, 0.68] 0.53 [0.11, 0.58] 0.44
5 1 (DCTs,GMM)(PAC,GMM) [0.71, 1.59] 1.44 [0.69, 1.62] 1.42
6 1 (DCTs,GMM)(SSC,GMM) [0.60, 1.38] 1.14 [0.55, 1.39] 1.21
7 1 (DCTb,GMM)(LFCC,GMM) [0.13, 0.47] ∗ 0.55 [0.04, 0.51] 0.47
8 1 (DCTb,GMM)(PAC,GMM) [0.30, 0.93] ∗ 1.13 [0.29, 0.97] ∗ 1.06
9 1 (DCTb,GMM)(SSC,GMM) [0.27, 0.82] 0.75 [0.22, 0.82] ∗ 0.86

10 1 (DCTs,MLP)(LFCC,GMM) [0.52, 1.16] 0.84 [0.09, 0.58] 0.50
11 1 (DCTs,MLP)(PAC,GMM) [0.95, 1.77] 1.12 [0.54, 1.40] 0.86
12 1 (DCTs,MLP)(SSC,GMM) [0.84, 1.64] 1.37 [0.45, 1.19] 1.02
13 1 (DCTb,MLP)(LFCC,GMM) [1.31, 2.62] 1.62 [0.23, 1.08] 0.58
14 1 (DCTb,MLP)(PAC,GMM) [2.42, 3.84] 3.65 [1.41, 2.91] 2.60
15 1 (DCTb,MLP)(SSC,GMM) [2.07, 3.43] 2.88 [1.00, 2.22] 1.55
16 2 (FH,MLP)(LFCC,GMM) [0.34, 0.91] 0.69 [0.01, 0.64] 0.13
17 2 (FH,MLP)(PAC,GMM) [0.53, 1.21] 1.14 [0.27, 0.98] 0.73
18 2 (FH,MLP)(SSC,GMM) [0.50, 1.10] 0.98 [0.17, 0.83] ∗ 0.89
19 2 (DCTb,GMM)(LFCC,GMM) [0.00, 0.33] 0.13 [0.00, 0.38] 0.38
20 2 (DCTb,GMM)(PAC,GMM) [0.04, 0.46] 0.18 [0.03, 0.51] 0.16
21 2 (DCTb,GMM)(SSC,GMM) [0.01, 0.38] 0.18 [0.01, 0.51] 0.17

fusion classifier does, to some extents, contribute to the variability observed by HTER
due to the chimeric-user effect. Note that in both experiments, the 1000 random identity
permutations were constrained to be the same. This is essential to keep the possible
experiment-induced variation to be minimal.

5 Conclusions

In this paper, the following issue was addressed: “Can chimeric persons be used in
multimodal biometric authentication experiments?”. This topic was tackled by 1) iden-
tifying the different levels of dependency assumptions as a result of two dichotomies:
feature-oriented dependence and score-oriented dependence; and 2) by experimentally
comparing the effects due to using chimeric users with those using the original true
modalities of same users (or simply “true users”). One major conclusion from the first
approach is that the independence assumption does not imply that one can use the
chimeric users in experiments. Instead, such assumption only guides how one should
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Fig. 2. The EPC curve range, whose X-axis is the cost ω and whose Y-axis is HTER in %, due
to 1000 samples of random identity match, at 95% of confidence versus the EPC curve (dashed
line) of true identity match, for each of the 21 experiments, using the mean operator as the fusion
classifier. They are labeled accordingly from 1 to 21 corresponding to the experiment numbers in
Table 2. A ∗ sign is marked for the experiments whose one or more HTERs of true identity match
fall outside the confidence range. For these points, circles are plotted on the corresponding EPC
curve.

construct a classifier to combine information from different modalities. Neither does
the second more empirical approach support the use of chimeric users. Indeed based on
21 fusion datasets and two fusion classifiers, only about two thirds of the data indicate
that chimeric users can be used, or in other words, the use of true users does not vary
significantly, at 95% of confidence, compared to the case when chimeric users are used
in experiments. The rest of the rather large one-third of datasets suggest that the use
of chimeric users cannot appropriately replace the dataset of the true modality matched
dataset. Considering the high variability of HTER due to the effect of chimeric users,
several runs of fusion experiments with different identity match are strongly recom-
mended. Although such remedial procedure does not necessarily reflect the case when
true modality matched identity is used, it at least gives a more accurate figure about
the possible range of HTER values when the true identities are used. If the 21 fusion
datasets are representative of this scenario, then, one might have a 2/3 chance of better
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Fig. 3. As per Figure 2, except that a Gaussian Mixture Model fusion classifier is used in place of
the mean operator. There are 7 data sets reporting that the EER due to true identity match is sig-
nificantly different from the EER distribution due to random identity match at 95% of confidence,
contrary to 8 in Figure 2.

reflecting the real HTER, after performing a large number of fusion experiments (1000
in our case!). However, one should probably not use the obtained HTER as a claim that
the performance reflects the actual case where the real multimodal datasets are used.
The current experimental approach adopted here is somewhat preliminary and in some
ways limited in scope. It does not answer for instance, “how far the score distribution
estimated with the independence assumption is from the one estimated with the depen-
dence assumption?”. Secondly, it does not yet answer the question: “Are the relative
HTER values, in contrast to absolute values as done here (e.g., in comparing two fu-
sion methods) consistent between experiments with chimeric users and those with true
users?” These issues will be dealt with in the near future.
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Abstract. Whilst there has been substantial research into the support of 
meetings, there has been relatively little study of how meeting participants 
currently make records and how these records are used to direct collective and 
individual actions outside the meeting. This paper empirically investigates 
current meeting recording practices in order to both understand fundamental 
collaboration processes and to determine how these might be better supported 
by technology. Our main findings were that participants create two types of 
meeting record. Public records are a collectively negotiated contract of 
decisions and commitments. Personal records, in contrast, are a highly 
personalised reminding tool, recording both actions and the context surrounding 
these actions. These observations are then used to informally evaluate current 
meeting support technology and to suggest new directions for research.  

1   Introduction  

Despite their importance and prevalence there is a general perception that meetings 
are not as efficient as they might be. Self-estimates of meeting productivity for many 
different types of managers range from 33-47% [1]. Early psychological studies of 
meeting processes identified problems such as process loss and free riding -
documenting how individual efforts are dissipated by collective group processes. 
However, another inefficiency is information loss, i.e. the failure to record important 
information, decisions and actions and how this affects future actions. Here, we are 
interested in information capture and use: how people record different types of 
meeting information and how this affects future individual and collaborative work. 
Further to this we are interested in how well current technology addresses these needs 
and what is required to enhance the technological support available to meetings.  

Studies of meeting practices examined information capture, documenting the 
importance of recording semi-structured information such as dates, announcements, 
phone numbers and names. They have observed a conflict for participants between 
taking adequate notes and contributing to meetings [2,3,14]. However with some 
exceptions [2] these studies did not investigate how the captured information was 
used to direct future individual and collective activities. The same work also explored 
technologies for capturing discussions. Many of these techniques were invented over 
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10 years ago, but despite their promise, there is still little sign of their being used in 
meetings. And despite the interest in yet more powerful capture tools [5,6], the 
predominant 'technologies' used today are pen, paper and whiteboards, and 
nontraditional technologies such as laptops tend to be used only for private note-
taking.  

Our study therefore addresses this paradox. We revisit the issue of capture, looking 
at current recording practices and exploring how they support collective action. We 
carried out an ethnographic study of two organisations investigating both individual 
and group practices for recording and representing meeting information. We 
investigate both the types of records groups and individuals make and what the 
benefits and problems associated with these records are. We then use these 
observations to critique current meeting access technology.  

2   Participants and Study Context  

The setting for our fieldwork was two UK service firms, one responsible for national 
and international mail deliveries and the other for supplying software services. In each 
firm we studied a core team through a sequence of multiple meetings. We chose to 
follow two teams in repeated interactions, rather than a large set of individual 
meetings, as an important issue concerned how information in earlier meetings was 
invoked and followed up on in later meetings.  

The core teams had 5 and 7 members, and the target meetings had between 3 and 
16 participants. This discrepancy arose because not all team members were able to 
attend all team meetings, and in the software company some meetings included 
customers from outside the organisation. In the delivery company the meetings were 
held on a weekly basis and their main objective was reporting and team co-ordination, 
as the team worked through issues arising during the previous week. In the software 
services company, meetings were between customers and suppliers. The main 
objective was to iron out difficulties associated with supply and delivery of services. 
Both sets of meetings were task-oriented rather than being about idea generation and 
they tended to be structured around written agendas. In both cases participants were 
familiar with each other, having worked together for over 6 months.  

We collected many different types of data, including observations of participants' 
behaviour during meetings - when they took notes, when they talked and what they 
noted down. We carried out interviews with participants before and after meetings, 
and we analysed private notes and public minutes of the meetings. Overall we 
observed 7 separate one-hour meetings, generating 12 hours of observation, along 
with 25 hours of interviews over the course of a three-month period. We also made 
audio recordings of a subset of 3 meetings and then transcribed these recordings. Our 
principal observer had previously worked at the delivery company and had also dealt 
with the software company and was therefore familiar with both companies, allowing 
her to gain access to employees.  

One issue that required careful negotiation was confidentiality. At the outset, we 
asked all participants whether they were comfortable being observed and recorded. 
All transcripts were anonymized by removing all identifying information such as 
participant, supplier and dealer names. All participants were informed that they could 
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stop recordings being made at any point. They were also given copies of the meeting 
transcripts and asked whether they wanted information to be excised from the 
transcript and the original record.  

We begin by describing the nature and functions of public records of meetings 
such as minutes. We identify the limitations of minutes, and how participants respond 
to these problems by taking their own notes in meetings. Next we describe the nature 
and functions of personal notes, as well as the problems users experience with these.  

3   Results  

3.1   The Nature and Function of Public Meeting Records  

Our participant observations, analysis of minutes and interviews revealed that public 
records such as minutes had four main functions:  

• To track group progress.  
• To serve as a public record of past actions and decisions.  
• To remind people about their commitments.  
• To resolve disputes about commitments.  

 
Minutes are an abstract record of attendees, group decisions, past actions and 

future commitments. They also document whether previous commitments and actions 
by group members have been carried out. On some occasions, they might include 
background information relating to a decision or action, but this tends to be the 
exception rather than the rule. Minutes are also general: they document all major 
decisions and actions, rather than focusing on specific aspects of the meeting.  

Minutes were used in a variety of ways. People firstly used them as a public record 
against which to track group progress in order to determine whether recent actions or 
commitments had been carried out. Meetings often began with a run through the 
previous meeting's minutes. Participants would quickly review the main items 
minuted from prior meetings, check whether actions had been carried out, and explore 
whether there were follow up items resulting from those actions. In this sense minutes 
help individuals co-ordinate their own actions with each other and with what was 
publicly agreed. One manager commented:  

It is like a checkpoint for me, just to make sure what we are doing is what we agreed 
we'd do at the last meeting. Are we still on track with what we said we'd do?  

Minutes also serve as a long-term archive of the group's commitments and actions. 
Very occasionally teams would be asked about past events or commitments, and here 
the minutes were used as the document of record, stating what had been decided or 
what had been done about a particular issue.  

A slightly different function of minutes was to remind people about their 
commitments. Here minutes serve as a 'todo' list for the various group members 
detailing their individual commitments. If those commitments have not been met, then 
other team members or the manager will invoke the minutes as way of enforcing that 
the action is carried out.  
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Minutes are an important record of what we said we'd do and when we said we'd do it. 
I go back to them when people aren't happy that a particular situation has occurred 
because someone hasn't done something they said they'd do.  

This highlights a critical aspect of minutes - their use as an implicit contract 
between the different group members about the actions they each agreed to carry out. 
Managers or other team members will refer to the minutes as a way of questioning 
individuals about the status of one of their commitments.  

It is generally where something has not happened or something has not gone to plan. 
Probably the key thing from my point of view is say two or three weeks after a meeting 
has taken place if somebody had agreed to take an action or do something and the 
situation has not improved or someone has escalated a problem I'll refer back to the 
meeting minutes to find out what was agreed and therefore what somebody should have 
done.  

The contractual nature of the minutes is further underlined by the practice we 
observed of having people 'sign off' on the minutes. Participants were encouraged to 
review the minutes of the prior meeting to correct discrepancies between what was 
written in the minutes and what participants recalled being discussed. These 
discrepancies need to be resolved before the minutes can become the official 
document of record. One manager semi-jokingly used quasi-legal language when 
giving team members the opportunity to approve or challenge the minutes: 'are these 
minutes a true and fair record of what happened on 24/11?'  

In a similar contractual way, minutes are used as the document of record to resolve 
group disputes. There were occasional disagreements between team members about 
what had been decided. Usually the disputes focused on who had agreed to undertake 
an action item. When this happened, rather than relying on memory, the minutes were 
used to determine what was agreed:  

I think you find over time that some people are generally more honourable about what 
they have said than other people, so some people you can trust what they have said and 
that they'll do things, other people will change there mind over time about what they 
said they would do and I think perhaps where I have felt in the past that someone has 
said something in a meeting and then backed away from it or not done what they have 
said then I'll generally capture what they have said or done and I'll make sure it is 
minuted.  

3.2   The Limitations of Public Records  

Although minutes had clear benefits in serving as a group contract and memory aid, 
they nevertheless had several critical failings, including:  

• Not all meetings had minutes taken.  
• The minutes are occasionally inaccurate.  
• The minutes lack sufficient detail to allow participants to carry out personal  

actions or to allow non-attendees to determine what went on in the meeting.  
• They are selective sometimes omitting politically sensitive information.  
• They are not timely.  
• They are laborious to produce.  
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• They don't capture the experience of being in the meeting.  
• They don't capture more peripheral aspects of the meeting such as 'awareness' 

information that is relevant to the group's functioning but not directly related to 
a decision or action.  

Only 56% of the meetings that we observed had minutes taken. This seemed to 
depend on factors such as importance, meeting context and meeting type. Minutes 
were taken more often in the software than the delivery company. A possible reason 
for this was that the software meetings were contractual in nature involving 
discussions between customers and suppliers, where various promises were being 
made about what services would be delivered. Both parties felt that it was 
advantageous for decisions and commitments to be a matter of record. When there 
were no minutes participants relied on the manager's notes if these were available, or 
a combination of different team members' personal notes.  

However, even when minutes were taken, participants complained that they had 
significant limitations. They pointed out that minutes were sometimes inaccurate. All 
participants routinely checked meeting minutes against what they had personally 
noted or remembered. They stated this was because important information was 
occasionally misstated or misrepresented in the minutes. These inaccuracies could 
arise because a discussion was complex, or poorly structured, or when the official 
minute-taker was not an expert in the topic under discussion. Inaccuracy is clearly a 
serious problem if minutes are being used both as a group archive and a contract 
between members about what they have agreed to do.  

if someone else had taken a key action in a meeting I would make a note of that 
possibly, mainly to compare with the minutes of the meeting when they come out to 
check whether the meeting minutes were accurate particularly when I think something 
important or significant has been agreed.  

Another major problem was that public minutes often did not provide enough 
information to allow participants to carry out their individual commitments. Bare 
statements of action items and who was responsible for each, often did not provide 
enough background contextual information, making it hard for participants to carry 
out their action items.  

I take notes because the minutes sometimes don't tell me everything I need to know 
about my own actions.  

Lack of detail also meant that it wasn't always clear even to attendees exactly what 
had happened in the meeting:  

if you don't have a more detailed record of the meeting that sometimes you lose the 
meaning, you lose a lot of the richness about what happened so if you just see actions it 
doesn't always give you a clear view of what was discussed.  

This lack of detail made it even harder for non-attendees to use the minutes to 
discover what went on at a meeting.  

Well normally minutes aren't enough, you need someone to giveyou a briefing 
afterwards, because the minutes don't tell you everything that has gone on and the 
discussions that took place.  



106 S. Whittaker, R. Laban, and S. Tucker 

The minimal nature of minutes also made it hard to revisit prior decisions or reuse 
prior work. We asked participants whether they ever referred to past minutes when a 
related issue had occurred in a prior meeting. Again the minutes were felt to be too 
cursory - providing insufficient context about what had been discussed to make them 
useful.  

Another limitation is that minutes can be selective, containing deliberate omissions 
such as when there is a politically sensitive discussion. We noted several such 'off 
record' discussions which were sometimes prefaced by instructing the minute-taker 
not to minute subsequent comments. Though these off-record comments often 
contained significant information (on one occasion, unofficial confirmation of a £3.6 
million contract was discussed), this was not recorded and was therefore unavailable 
to non-attendees.    

Another factor that undermined the utility of minutes as a group 'todo' list was that 
they were not timely, often taking several days to produce. If individuals relied on the 
minutes as a reminder about their outstanding actions, then several days might elapse 
before they can begin those actions. This not only left them with less time to execute 
actions before the next meeting, and but also increased the likelihood that they might 
forget important details associated with those items, especially as minutes tended to 
record minimal information about each action.  

A further problem with minutes is that they are laborious to produce. A meeting 
participant has to be delegated to take highly detailed notes, reducing their ability to 
contribute. In addition, transposing these detailed notes, possibly checking their 
accuracy with various stake-holders, all means additional work.  

A less frequently mentioned limit of minutes was they didn't recreate the feeling of 
being in the meeting. Two participants mentioned wanting records that were richer 
than descriptions of decisions and actions, saying they wanted to be able to 
reconstruct the meeting context and what it felt like to be at it:  

it's just not remembering a list of some key points from a meeting but being able to 
transport yourself back in some instances if you are discussing what happened, so it is 
more of a transporting your memory back into the actual situation to remember the 
actual discussion to remember what actually happened.  

Another limitation of minutes related to their focus on decisions, actions and 
commitments. Participants pointed out that a key part of meetings is to provide 
awareness information, unrelated to specific actions or decisions but which provides a 
backdrop to the group's activities. Examples here included personnel changes in other 
groups or high level management. A related point was that an important function of 
meetings was to establish a culture or modus operandi for the group and that this type 
of information never appeared in the minutes.  

3.3   The Nature and Function of Personal Meeting Records  

Participants addressed some of the limitations of public records by taking their own 
personal notes. 63% of our informants reported that they 'always' took personal notes. 
The remaining 37% said that they 'sometimes' did so, and pointed to various factors 
such as chairing meetings - which prevented them from taking their own notes.  
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It was clear that personal records were highly valued. Most participants routinely 
took personal notes, which were always accessed, often multiple times. All 
informants reported referring back to meeting records at least once -with 75% of 
doing this 'frequently'. Another sign of their importance was that informants took 
great care to ensure that they were accurate. Half of them 'occasionally' rewrote their 
notes. Others stated a desire to rewrite their own notes but lacked the time to do this. 
They also took care to preserve their notes; 75% filed meeting records, keeping these 
records for a year on average.  

Personal notes generally had a less predictable structure than minutes. Like 
minutes, personal notes mentioned important decisions, names, dates and actions. 
However one major difference was that personal notes reflected the note-taker's 
personal perspective, unlike the minutes - which were a general and often formulaic 
record of what transpired in the meeting.  

I think my notes are a reflection of the things that interest me, the things that are of a 
particular interest to me in the meeting. When people are talking but I'm not interested 
that I don't note anything. My notes are subjective.  

These comments were also supported by our observations, where it was clear  
that different participants took personal notes at different times and about different 
agenda items.  

In their personal notes, participants often supplemented information about group 
decisions and actions with detailed factual information they thought they might 
forget, or which was relevant to the execution of their own personal actions. For 
example, participants might note personal actions on the right of the page with 
supporting information on the left. People might also note down actions associated 
with others if these had relevance for their own activities.  

We analysed the content of people's notes. We classified each note depending on 
whether it concerned decisions, actions, or contextual information. Consistent with 
minutes, we found that a significant proportion of personal notes concerned decisions 
(19%) and actions (48%). However in contrast to minutes, we found that 30% of 
personal notes concerned comments supplying context for actions.  

Another characteristic of personal notes is that they could be cryptic, often 
consisting of a few words about a topic. There are two main reasons for this. Firstly 
participants are aware that taking detailed notes detracts from their ability to 
contribute to the discussion, so they write as little as possible. Secondly personal 
notes are intended to be associative triggers or reminders for the note-taker, rather 
than verbatim transcripts of exactly what was said. If a participant is highly familiar 
with a given topic, or if a discussion outcome is exactly what they anticipated, then 
there is no need to record detailed information, if one or two carefully chosen words 
will suffice.  

I don't usually write in sentences sometimes I just write one word that will be enough 
for me to remember what it was about.  

People's roles also had an important effect on their note-taking. Managers tended to 
be involved in discussions around most agenda points which meant that they had 
fewer opportunities to take detailed notes. Note taking strategies were also influenced 
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by whether or not the meeting was being minuted. Specifically, if participants knew 
that public notes were being taken they tended to take fewer notes.   

these days I probably tend to take very few notes from meetings generally just things 
that are of importance to me or actions that I have taken out of a meeting, generally 
most important meetings would tend to be minuted anyway so I tend to rely on the 
minutes of the meeting.  

We identified four main reasons why personal records were important to meeting 
participants:  

• As personal reminders.  
• To provide enough contextual information to carry out personal actions.  
• To check the accuracy of the minutes.  
• To brief others about what went on. 

 
We have already seen that a major function of meetings is to agree on various 

actions that participants will carry out. People therefore take notes to remind 
themselves about what actions they have committed to. We have seen too, however, 
that the official minutes may contain insufficient contextual information to allow 
participants to carry out their actions. The need for context about personal actions 
explains why personal notes tend to be esoteric and personalised; notes are intended 
to help participants carry out their own jobs rather than serving as a general public 
record. In other words, personal notes serve to record personal 'todo' items and their 
context, which participants fear they may otherwise forget:  

if I failed to [carry out the action] immediately as time goes on it would start to slip 
out, there could be key points that I forget, or key actions that I forget to take. With a 
recorded note I can always check and make sure I've done them, or check what I have 
to do.  

When no official minutes were taken of the meeting, then personal notes were 
sometimes shared among attendees to ensure that commitments were not forgotten:  

I have so many meetings I would forget what happened if I didn't write them down. It is 
a memory aid for me and quite often it is a memory aid for other people at meetings so 
quite often other people will come to me and ask me what happened and I'll check my 
notes and see what I have written down.  

Another important function of personal notes is to check the accuracy of the 
meeting minutes. All our participants reported using personal notes for this purpose. 
As the minutes are used both as the document of record and also as a group 'todo' list, 
participants were keen to ensure that they were accurate, particularly about issues 
relating to themselves. For 25% of participants checking the minutes was the main 
function of their notes; after checking the minutes they discarded their own notes.  

Finally, personal notes were sometimes used to report what went on in a meeting to 
non-attendees. However, when personal notes were taken to brief non-attendees, they 
tended to be less cryptic or personalised. Here note-takers felt they had to provide 
greater details of all aspects of the meeting that were thought to be relevant to the 
group being briefed.  
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3.4   The Limitations of Personal Records  

Despite the value of personal notes, participants also complained about their 
limitations:  

• Taking notes reduces one's ability to contribute to discussion  
• Personal notes sometimes lack both accuracy and comprehensibility  
• Their esoteric nature made them difficult for non-attendees to understand  

 
One major problem was that taking accurate personal notes reduced participants' 

ability to participate in discussion. Participants' estimates of the time they took note-
taking in meetings ranged from 5-40%, and all felt that this compromised their 
contributions:  

if you are writing things down you are not listening to what is being said and it is 
probably more important to listen to what is being said rather than writing your own 
notes about things that have been discussed previously. 

Indeed one of our informants pointed out that when he was chairing a meeting, he 
was so focused on the conversation and management of the meeting that he found it 
impossible to take notes.  

This view is supported by our observations of informants. We noted down the 
frequency of note-taking and contributions to the meeting, and confirmed the 
expected negative impact of note-taking on people's contributions, with those taking 
detailed notes contributing least to the conversation  

A second limitation of personal notes was that they were sometimes inaccurate or 
hard to interpret - even for those who had created them. One reason for this was the 
difficulty of simultaneously taking notes while listening to what is currently being 
said. Participants found themselves unable to process new information while writing 
detailed notes about an important prior point. The result was that personal notes could 
be cursory, disjointed and incomplete.  

I can't understand my notes all the time probably because I have started to write down 
what I think I need to capture but then I have heard something else that has stopped me 
in my tracks, so what I have already written isn't joined up enough to understand what I 
was supposed to be capturing in the first place.  

Others focused on trying to take fairly minimal notes, allowing them to contribute 
to and track the conversation, relying on their memories to reconstruct what went on. 
Again however there are limits to this strategy as such notes often weren't detailed or 
accurate enough to determine what went on in the meeting or what actions to 
undertake as follow up.  

4   Technological Implications  

The observations detailed above have shown that there are clear problems associated 
with current techniques for the production and use of public and personal meeting 
records. In a previous paper [7], the state of the art of technology designed to review 
automatically produced meeting records was examined. Briefly, such systems 
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primarily make audio and video recordings of meetings (although participant notes 
taken, projected slides, and whiteboard annotations are also often recorded) and then 
construct indices using raw data which allow users of meeting browsers to access and 
navigate the meeting record.  

As a result of the analysis of current meeting records we are now in a position to 
critique current meeting browsers with regard to their support for public and personal 
recordings. It is clear that, in order to be beneficial, browsers should support current 
record taking practices while addressing their main problems. Below, current meeting 
browsers are assessed with regard to public and personal meeting records in turn.  

4.1   Public Meeting Records  

Current meeting browsers are highly focused on single meetings and are, therefore, 
poorly placed to support the collection of data from a long-term series of meetings. In 
cases where browsers make use of multiple meetings as a raw data set (e.g. [9]) the 
user is required to search the meeting set in order to identify a point of interest. There 
is little opportunity to perform a high level analysis on the meeting series; for 
example, tracking the progress of a task assigned in one meeting over a series of 
meetings.  

Equally, the use of public meeting records as a record of past actions and decisions 
is not well supported by current meeting browsers. The core of the problem in this 
area is that there is no associated abstraction over each meeting, similar to the abstract 
representation of actions and decisions seen in the meeting minutes. There is a further 
question regarding the formality of the meeting record. Recall that one of the uses of 
public records was as a contractual record of the events of a meeting. It is unlikely, 
due to the errorful nature of automatically recognised speech, whether such a formal 
summary of the meeting could be produced. It is unclear, too, whether the verbatim 
record is too fine grained to perform the same function. It is also unclear whether 
hybrid access to the meeting record (e.g. [8]) would prove effective. If a more 
concrete abstract record is required, however, it is likely that browsers could be 
employed as a tool to clarify and identify key points.  

Although current meeting browsers have difficulty in matching the benefits of 
current public meeting records they are able to overcome some of the problems 
associated with such records. Most notably since the meeting record is automatically 
produced public records are no longer laborious to produce, selective, or untimely 
(although there is some delay in constructing the indices; for example, the transcript is 
generally produced off line). Furthermore, although there may be errors in the 
automatically generated annotations, the underlying recording is accurate; any 
inaccuracies in the annotations can be resolved by reverting to the original recording. 
It is also possible to determine contextual information, if it is assumed that the indices 
provided are suitable for locating the relevant points in the meeting.  

It is also easier to generate automatic records for all meetings, since a chosen 
minute taker is no longer required; this also means that the minuter can increase their 
contribution to the meeting. Most meeting recording systems are, however, designed 
for a specific room where the setup and calibration of the recording equipment is 
relatively straightforward to maintain. There is, therefore, a requirement that, to be 
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recorded, meetings take place in this specific room. This precludes spontaneous 
meetings which research has shown are prevalent [4]. A novel approach to addressing 
this problem is outlined in [10], with the use of a portable recording device which 
allows for audio and video recording; whiteboard annotations, notes etc. are not 
included in this recording.  

Finally, it is difficult to say whether browsing a meeting will account for the more 
peripheral experiences in which the public records were described to be lacking. It is 
clear that the inclusion of audio-visual recordings should increase the experience of 
attending the meeting compared with a textual record and, since a verbatim record is 
produced, no information is lost in the meeting record. Novel browsers which aim to 
construct virtual meeting spaces (e.g. [11]) may be required to fully present an 
immersive meeting review environment.  

4.2   Personal Meeting Records  

Personal meeting records are less concerned with providing information for long-term 
analysis and so the supplementation of these records is less problematic for current 
meeting browsers. The personalised nature of such records are not often reflected in 
meeting browsers, however mappings between personal notes and meeting records 
are well described in the literature (e.g. [2]). Filochat [14], for example, allows  
the user to take notes as they normally would, these notes then acting as an index into 
a recording of the meeting. Whilst such systems are typically successful, current 
media rich meeting browsers (e.g. [13,6,13]) do not yet leverage the use of this 
functionality - although it is likely that personal notes could form an index which 
could be used by such browsers.  

Most of the benefits of personal notes such as providing contextual information, to 
check the accuracy of public records and to brief others about the meeting are 
addressed by current meeting browsers. However, current meeting browsers are built 
around low level annotations (e.g. speaker turns, presented slides etc.) and do not 
support the extraction of personal actions. Browsers which index personal notes taken 
during the meeting can support this process but the support is inherently indirect. In 
Filochat, for example, there is no explicit way of qualifying the purpose of the each 
note -the user must generate their own notation to achieve this. It is possible that, in 
the future, text processing techniques can be used to determine the purpose of each 
note and can supplement these indices  

Personal records are no longer required to brief others about the meeting since non-
attendees can now just have access the meeting record. Again, however, the problem 
of abstraction is raised since a non-attendee has no means of quickly determining the 
salient points of a meeting; for example, there is no means of identifying the actions 
that were assigned to them. The problem of personal notes being too esoteric for 
sharing no longer applies and, furthermore, there is arguably considerable information 
to be gathered from a group analysis of note taking practices of the meeting 
participants [14] that would not be possible without the automatic processing.  

A significant problem with personal notes, as noted in our observations, was that 
taking notes reduces the ability to participate in the meeting. Whilst meeting browsers 
do not necessarily negate the need to take notes, it can be seen that the time required 
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to note something is significantly reduced if personal notes are being used to construct 
an index into the meeting since the note need not include all the contextual 
information required [2,4].  

4.3   Summary  

Due to the reciprocal nature of public and personal meeting records, the current 
generation of meeting browsers are largely able to both address the limitations of 
public records and replicate the benefits of personal records. The main failings of 
meeting browsers seem to be that they are largely only able to offer a view of a single 
meeting, that there is not layer of abstraction between the user and the underlying data 
and annotations and finally that data collected from personal notes are not exploited in 
media rich meeting browsers. Furthermore, an unanswered question is whether a 
formal set of minutes are required now that users have access to the verbatim record.  

5   Conclusion  

Our study shows how two types of public and personal record are used together to co-
ordinate different aspects of collaborative activity. Minutes are a minimal description 
of collectively agreed actions and decisions serving as a contract and group archive. 
However individuals supplement these with personal notes that are customised, 
providing themselves with information that allows them to carry out their personal 
objectives, as well as to check the veracity of the official minutes. Our analysis of 
new technical opportunities indicates that current browsers lack abstractions but there 
is much leverage to be gained by exploiting more data sources.  
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Abstract. This article proposes to consider all the links existing between docu-
ments, as a new artifact for browsing through multimedia archives. In particu-
lar, links between static documents and other media are presented in this article 
through Inquisitor, FriDoc and FaericWorld, i.e. three distinct document-centric 
systems, which allow (a) browsing (b) validation of annotations, and (c) edition 
of annotations or documents. Inquisitor illustrates the intra-document links be-
tween a raw document and its abstract representations. It is the base level, i.e. 
the closest to the raw media. FriDoc illustrates the cross-documents links, in 
particular temporal ones, between documents at the event level, which strictly 
connect documents captured at the same occasion (e.g. a meeting, a conference, 
etc.). Finally, FaericWorld proposes cross-documents linking as a novel artifact 
for browsing and searching through a cross-event multimedia library. This arti-
cle describes those three systemvs and the various types of links that can be 
built between documents. Finally, the paper presents the result of a user evalua-
tion of FriDoc and briefly discusses the usefulness of cross-documents linking, 
and in particular document alignments, for browsing through multimedia  
archives. 

1   Introduction 

Graphical user interfaces to textual-document libraries are good and getting better, but 
search and browsing interfaces in multimedia-document libraries are still in their early 
stages of development [13]. Most existing systems are mono-modal and allow search-
ing for images, videos, sound, etc. For this reason, current researches in image and 
video analysis target to automatically create indexes and pictorial video summaries to 
help users browse through multimedia corpuses. However, those methods are often 
based on low-level visual features and lack of semantic information. High-level index 
carrying semantic information are hard to extract through a complete automatic rec-
ognition and human manual annotation is too costly to be considered. Even though 
high-level index are missing, few mono-modal systems succeed to provide browsing 
artifacts for filtering information and displaying the relevant one. For image search 
and browsing, Janecek [3] proposed an interface based on semantic fisheye views, 
which uses alternatively similarity- or semantic-guided browsing for exploring a 
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manually and professionally labeled collection. Another remarkable system dealing 
with images is Flamenco [16] that uses hierarchical faceted metadata to navigate. 
Videos management and retrieval is the aim of ViCoDe project [10], which uses simi-
larity between various features to sort the collection. Finally, Hu and Dannenberg [2] 
proposed a system for retrieving music information using sung queries. However, a 
good example of successful multimedia browsing system is harder to find. 

There is a recent significant research trend on recording and analyzing meetings 
[7], mostly in order to advance the research on multimodal content analysis and on 
multimedia information retrieval, which are key features for designing future commu-
nication systems, dealing with multi-modal archives. Many research projects aim at 
archiving meeting recordings in suitable forms for later browsing and retrieval. Ferret 
[17] is a framework for prototyping and testing meeting browsers into an event-based 
context, where instances of different media coexist within a specific meeting. Archi-
vus [9] extends the concept of intra-event navigation, and uses constraint-based 
searching mechanisms to browse a collection of meetings through a library metaphor 
where books represent meetings. Various taxonomies of meeting browsers have been 
already proposed; Tucker and Whittaker organized meeting browsers according to the 
type of control stream they use: video, audio and artifact browsers [15]. Lalanne and 
Sire [5] proposed earlier a complete taxonomy based on the type of streams handled, 
control streams, derived streams and finally higher-level annotations available. How-
ever, most of these projects do not take into account the printed documents that are 
often parts of the information available during a meeting and in our daily lives. We 
believe printable documents could provide a natural and thematic mean for browsing 
and searching through large multimedia repository. 

2   Using Links as a Browsing Artifact 

Even though search engines like Google are nowadays very powerful, defining the 
proper query is not a one-step process and requires several trials. Browsing thus re-
mains very useful when users do not have enough knowledge of the domain in order 
to know how and what to look for. Furthermore, searching through multimedia ar-
chives is often limited due to the difficulty to produce automatically high-level se-
mantic annotations from audio, image and video streams.   

Document linking has been recently used as a way to structure information and to 
bypass searching lacks [5, 6]. For instance, citeseer [1] uses various mechanisms in 
order to connect scientific publications through citation links mainly, i.e. biblio-
graphical references, but also through similarity calculations, or simply by linking 
documents having the same author or belonging to the same website. In this case, 
links become the main browsing artifact and users can access similar documents, 
related documents, or even use the most linked publications as entry points to a novel 
domain. Kartoo and Alice in Wonderland also use similarity and hyper links as an 
artifact for browsing [4, 14]. Finally, LinkedIn uses the social links between persons 
as a way to create thematic communities [8]. 
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This article proposes to design and implement link-based systems for navigating, edit-
ing and validating a multimedia world composed of documents. Those documents can be 
raw media, combination of media and annotations, or even clusters of documents. Our 
main hypothesis is that cross-documents linking mechanisms is a way to connect inde-
pendent multimedia documents and de facto a powerful artifact for browsing through 
multimedia archives. Inquisitor and FriDoc are two document-centric systems we im-
plemented, which operate at different levels of granularity in a multimedia archive and 
offer complementary functionalities. FaericWorld build upon these experiences to create 
a linked multimedia world. First, this paper presents Inquisitor, a system specialized for 
validating static documents analysis and recognition tools. This system will illustrate the 
creation of a new annotation and its linking with the media stream, i.e. the raw document. 
In the rest of this paper, a link between raw data and its annotations is called an intra-
document link. The next system presented is FriDoc, a system implemented and evalu-
ated for replaying and browsing through meeting recordings. A user evaluation of FriDoc 
is presented that shows that document-centric alignment allows using static documents as 
structured and thematic vectors towards multimedia meeting archives. The multimodal 
relationships in FriDoc illustrate cross-documents links. Finally, FaericWorld will pre-
sent a multimedia document world composed of heterogeneous media and multimodal 
cross-documents links. All the links and media used in these three complementary sys-
tems are summarized respectively in table 1 and 2. 

Table 1. Links supported by the systems. The top of the table represents links hierarchie. 

  link 
  cross-document 
  thematic strict (un-weighted) 
 

 

ty
pe

 

intra-document (weighted) temporal reference hyperlink 

Inquisitor      

FriDoc      

sy
st

em
 

FaericWorld      

Table 1 classifies cross-documents links according to two main sub-categories: 
thematic and strict relationships. Thematic links are weighted (0 < w < 1), in order to 
characterize the similarities between two documents content. At opposite, strict links 
are un-weighted links, i.e. with distance w = 1, and can represent different relation-
ships such as: 

1. A temporal coexistence of media (e.g. within a meeting, a video recorded at 
time t coexists with a static document discussed at the same time t); 

2. Bibliographic references, citations, authors’ name, etc. are implicit reference to 
other related documents; 

3. Hyperlinks are explicit references.  
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Table 2. Relationship between systems and documents 

  Document 
  Media Multimedia People Events 

Inquisitor     

FriDoc     

sy
st

em
 

FaericWorld     

Table 2 presents the document types supported by Inquisitor, FriDoc and Faeric-
World. Media are either instances of static documents (i.e. newspapers, articles, etc.), 
images, videos, or audio recordings. Multimedia documents are composed of various 
types of media (e.g. slideshows or websites containing textual part, images and vid-
eos). People consist in the information related to single person or groups (i.e. person 
name, its publications, etc.). Finally, events are clusters of independent media, multi-
media documents and people, which coexist within a particular time interval, context 
and geographical area. Conferences and meetings are good example of events.  

Table 3. Functionalities offered by the systems 

  Document 
  Navigation Edition Validation 

Inquisitor    

FriDoc    

sy
st

em
 

FaericWorld    

Table 3 shows the different tasks supported by the systems: the navigation consists 
in browsing through archives, in order to retrieve or look for specific information; the 
edition allows end-users to modify, delete or create documents, annotations and links 
in the world; finally, the validation is an edition sub-task provided to interact with 
incremental systems that exploits users feedbacks for learning. For instance, the vali-
dation of logical structures could consist in accepting or refusing a logical label.  

To wrap it up, Inquisitor is handling relationships within static documents; FriDoc 
is cross-documents and uses document alignment for browsing through meeting re-
cordings; finally, FaericWorld is also a cross-documents system, using static docu-
ments as a way to connect all types of media. 

3   Inquisitor: Editing and Validating Documents’ Annotations for 
     Further Multimodal Cross-Documents Linking 

Inquisitor focuses on printable electronic documents, e.g. books, articles, newspapers, 
which are defined as static documents. Inquisitor is therefore a system, which is used to 
(a) visualize a single static document, its annotations and the existing intra-document 
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links, (b) validate annotations and links and finally (c) edit them. Since static documents 
are considered being a meaningful entry point for cross-media navigation in FriDoc and 
FaericWorld, the main conceptual task of Inquisitor is to prepare these static documents 
and ensure the consistency of annotations. 

In the context of static documents, the physical structure is the base annotation, 
which is directly derived from the raw media, i.e. a PDF document, and can be ex-
tracted automatically using classical methods of document analysis. Other annotations 
include the reading order, the logical structure, the table of content, the thumbnail 
view, etc. Those derived annotations can be computed either automatically using 
recognizers or manually by the user. Physical structures are composed of clusters 
grouping homogenous document primitives (text, graphics and images), which respect 
topologic, stylistic and typographic proximity. Fig. 1 shows an example of (a) a news-
paper page and (b) its physical structure. The logical structure regroups the physical 
blocks, logically labeled, in a logical hierarchy. For instance, physical blocks of a 
newspaper belong to articles, which are composed of titles, authors, body, etc. Fig.1 
(c) represents the newspaper segmented into articles. In general, physical structures 
can be represented in a universal form for all types of documents whereas logical 
structures depend on a specific class of document. Finally, other document annota-
tions will be derived from already existing ones. For instance, a table of content will 
be represented as a list of links on the title of all the articles delimited by the logical 
structure. 

  

 

Fig. 1. An example of document (a) enriched with physical (b) and logical structures (c) 

There are two levels of links in Inquisitor. The first level of links connects the base 
annotation to the raw data; in our case, it is the document physical structure. The 
second level of links is cross-annotations and connects various document annotations. 
For instance, the previous table of content is linked with the document logical struc-
ture, which is itself linked with the document physical structure.   

Fig. 2 illustrates the visualization paradigm of Inquisitor: the document itself is 
represented as an image; physical structures are drawn as rectangles superposed on 
the image, reinforcing the strict relationship between this base annotation and the raw 
data; successive annotations, such as the logical structure, are represented with 
rhombs, in order to clearly separate first level annotations, i.e. based directly on raw-
data, from the derived ones.  
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Fig. 2. The logical structure is linked with the physical structure, and the physical structure is 
itself linked with the document image using rectangles superposed to document image 

Inquisitor supports users through three different tasks, i.e. 1) mono-modal naviga-
tion, 2) validation of annotations and links and finally 3) their edition. 

The validation task is inherited from systems for supervised analysis of documents 
[13]. In fact, the content of the documents handled by Inquisitor is first extracted from 
PDF files and structured in a canonical XML format [12]. Further, the physical struc-
ture can be automatically labeled and structured in a logical hierarchy. Concerning the 
validation of the physical structure, Inquisitor major functionalities are merging, split-
ting, resizing and moving of blocks, in order to correct over- and under-segmentation 
errors of extraction. On the other hand, validation of others annotations consist either 
in correcting wrong logical labels, either in modifying, destroying and creating intra- 
or cross-annotations links. Fig. 3 shows (a) a menu for labeling text blocks and (b) the 
fusion of an over-segmented text block. Actually, validation guarantees annotations 
consistency and consequently allows a valid mono-modal navigation.  

a)       b)  

Fig. 3. Inquisitor supports (a) the labeling of physical text blocks and (b) the fusion of blocks. 
The arrow is a graphical artifact for defining the source and destination implied in the merging 
operation. 
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The creation of new annotations fully uses the link metaphor. Users firstly create a 
novel abstraction (i.e. a cluster of rhombs and links such as in fig. 2) and, secondly, 
connect the latter and the already existing ones through intra-document links. For 
instance, creating a table of content consist in 1) building a new annotation that con-
tains a hierarchical structure composed of table entities and 2) link the latter with 
document logical blocks (titles, figures, etc.).  

Finally, Inquisitor’s last task is the navigation, which fully takes benefit from the 
validated annotations and links. The physical structure highlights the different regions 
of the original document whereas the logical structure and other similar annotations 
are interfaces to access the structured document content. For instance, users clicking 
on the title of the document table-of-content will access the related document zone. 

4   FriDoc: Document-Centric Multimedia Meeting Browsing 

FriDoc [6] is a multimedia meeting browser that plays synchronously meeting docu-
ments using cross-documents links. Users can first search at a cross-meeting level 
(Fig. 4.a), by typing a combination of keywords, in order to retrieve all the relevant 
static documents. In fact, the navigation paradigm is first of all document-centric; 
Clicking on a chosen static document open all the linked multimedia data in the intra-
meeting navigator (Fig. 4.b), in which all the components (static documents, au-
dio/video, transcription, and annotations) are fully synchronized through the meeting 
time, thanks to the document alignments; clicking on one of them causes all the com-
ponents to visualize their content at the same time. For instance, clicking on a journal 
article positions audio/video clips at the time when it was discussed, scrolls the 
speech transcription at the same time, and displays the document that was projected. 

 

                                         

Fig. 4. In FriDoc, both cross (a) and intra-meeting navigation are available (b) 
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The TileBar visualization at the bottom of the interface represents the complete 
meeting's duration. It is a visual overview of the overall meeting and can serve as a 
control bar. Each layer stands for a different temporal annotation: speaker turns, utter-
ances, document logical blocks and slides projected. Those temporal annotations hold 
timestamps for each state change (i.e. new speaker, new topic, slide change, etc.) and 
spatial information for documents. For example, the speech transcript contains 
speaker turns, divided in speech utterances, with their corresponding start and end 
times. The TileBar reveals the temporal links and semantic relationships between 
meeting annotations and can potentially bring to light synergies or conflicts, and new 
methods in order to improve the automatic generation of annotations. 

About 30 meetings, i.e. roughly eight hours of multimedia meeting recordings, 
have been integrated in FriDoc. Based on those data, a user evaluation has been per-
formed on 8 users. The goal was to measure the usefulness of document alignments 
for browsing and searching through a multimedia meeting archive. Users’ perform-
ance in answering questions, both mono-modal and multimodal has been measured on 
both qualitative and quantitative basis (e.g. task duration, number of clicks, satisfac-
tion, etc.). Mono-modal questions involve looking through one modality to answer 
(“What did Florian say about Iraq?”), whereas multi-modal questions require inspect-
ing at least two modalities. For instance, “Which articles of the Herald Tribune’s front 
page have not been discussed during the press review meeting?” requires both looking 
at the speech transcript to know which articles have been discussed and consulting the 
newspaper’s content to have the complete list of articles. The 8 users, mostly students 
in computer science among which several women, had to answer in total to 8 ques-
tions (4 mono-modals and 4 multi), with a limited time for answering of 5 minutes per 
question, using two exact similar prototypes in order to avoid measuring their usabil-
ity instead of the document alignments usefulness. One prototype had the document 
alignments enabled, and the other one not. Questions have been prepared so that their 
complexities were balanced over the 2 meetings used for the evaluation and over the 2 
prototypes tested. 

76% of the questions have been solved when users disposed of the document 
alignments, whereas 66% without. The performance difference becomes particularly 
significant for multi-modal questions, i.e. requiring information from at least two 
modalities, where around 70% of the questions were solved when users were benefit-
ing from the alignments and 50% of the questions were solved without. This user 
evaluation shows that static documents are good vectors to access other media and 
that document multimodal alignments improve user performances in browsing and 
searching through multimedia meeting recordings. 

5   FaericWorld: Multimedia Archives Management 

Currently, FaericWorld is at its early development and intends to visualize at a glance 
a large collection of heterogeneous multimedia documents, which belong to all the 
categories presented in section 2 (media, multimedia, people and events). The collec-
tion is considered as being a world, where documents are connected through cross-
documents links and in which clusters are developed around static documents: media 
exist in the world only if linked with static documents. 
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Figure 5 shows an image of a low fidelity prototype of FaericWorld, which is com-
posed of the following parts: 

1. On the background, static documents in the world are connected by cross-
documents links, i.e. thematic similarities, implicit references and hyperlinks; 

2. On the foreground, the currently selected static document is used as an hyper-mark 
to access a cluster of linked media; 

3. On the left, the navigation artifacts, dynamic queries and filtering criteria can be 
defined such as media types, links layers, and annotations to take into account. 

The major tasks targeted by FaericWorld are: 1) the cross-media navigation, 2) the 
validation of annotations and links and 3) the annotation and creation of new docu-
ments, hyper-linking regions of the world. 

 

 

Fig. 5. An overview of FaericWorld built around static documents and events 

The navigation allows users to consult and retrieve documents. Static documents 
and links are the main artifact for browsing into FaericWorld. In fact, queries and 
filter criteria create a focused view of the world, where only linked clusters of static 
documents are visualized. Selecting a static document allows accessing to all the other 
media, connected through cross-documents links. Moreover, each category of docu-
ment and each link discovered during the navigation can be used as filters for refining 
the users query. 

The documents world can be organized for navigation using quantity of links per 
document, category of connected media and other basic criteria. An alternative or-
ganization consists in creating a different world representation through layers, which 
filter the media to display in function of link types selected by the user. These filter-
ing features not only take into account the existing cross-documents links such as 
citation or thematic distance, but also create dynamic links between documents thanks 
to annotations such as the logical structure or the thematic relationships between 
documents. Fig. 6 illustrates the various phases necessary for organizing the world, 
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using an inverse sunburst-menu as a hierarchical representation of the world, where 
each level of the tree corresponds to a filtering feature, e.g. the date, type of docu-
ment, theme, etc.  

Another mechanism envisioned for pre-structuring the world for browsing is based 
on textual queries. A research is launched on static documents content, fulfilling the 
query when the searched words belong to content linked with at least an annotation. 
For instance, a collection of results is restituted because logical or physical structures 
contain the word sequence in a unique textual block.  

 

 

Fig. 6. A possible entry point to our FaericWorld based on (a) criteria definition, (b) the corre-
sponding hierarchical view of the world, where first criterion belongs to external circle and last 
one to second from center and finally (c) the selection of a portion of the world 

The validation task ensures the consistency of the world and allows refining auto-
matic indexing systems. In fact, this task consists in validating annotations, i.e. creat-
ing or destroying links established between documents. For instance, we currently 
compute annotations and links automatically using our tools specialized for static 
documents. Currently, mono-modal extraction of PDF document physical structure is 
almost perfect and document alignment is robust. Future works will provide auto-
matically annotations such as logical structures and category of static documents. 
FaericWorld is a validation platform and will help evaluating and correcting multi-
modal indexing systems. 

Finally, the edition task consists in creating completely new documents and anno-
tations linking on existing information. For instance, this edition task will allow the 
creation of meeting minutes, table of content, etc. and in general views of the world. 

To wrap it up, the following use-case illustrates how to browse a collection of 
documents with FaericWorld in order to find the image of a painting discussed during 
a meeting. The user remembers an article of newspapers discussed during the same 
meeting, or a meeting participant name, or any piece of information. Browsing works 
by association. For example the user types the name of the newspaper, then selects the 
time interval corresponding to the meeting and asks the system to retrieve all the 
related images and filters them according to the color feature that he remembers well 
being yellow. The user finally finds the painting and depending on the filter or linker 
selected can find by association all the related information, e.g. the biography of the 
painter, all the audio/video recording in which a speaker talked about it, other painting 
by the same artist, etc.  
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6   Conclusion 

Nowadays, browsing is well supported when dealing with large databases of textual 
documents. Various research projects have investigated novel retrieval strategies to 
search and browse through multimedia libraries containing either images, videos or audio 
data, with successful and interesting results, but highlighting the difficulty of indexing 
automatically those media. Other recent projects have explored novel interaction para-
digms for browsing through multi-modal event recordings, such as meetings, lectures or 
conferences. However, most of those browsers ignore static documents, from which it is 
possible to extract robustly high-level indexes. Because of their intrinsic structures and 
textual content, static documents constitute good thematic and structured vectors to mul-
timedia archives, when linked with other media. We have shown in this paper that using 
static documents structures together with multimodal document linking methods can 
greatly improve search and browsing in multimedia meeting archives. In particular, this 
paper presents two main categories of links: intra- and cross-documents links. On one 
hand, intra-document links connect annotations to raw-data and allow creating incremen-
tally other annotations on the document; on the other hand, cross-documents links cluster 
multimedia data together and enrich mutually connected documents. Links between 
documents can be easily created using basic techniques and as such can be good vectors 
for transmitting information from automatically richly-annotated documents to weakly-
annotated ones such as videos, images or sound.  

In this paper we presented three complementary document-centric systems, fully 
implementing this idea of intra-document links and multimodal cross-documents links 
for browsing in large multimedia collections. Inquisitor is the first system, the base 
system, which allows validating and editing static documents’ annotations such as 
physical and logical structures, which are interconnected by the way of intra-
documents links. The validation in Inquisitor ensures the consistency of the derived 
data and further can be used for indexing other media. FriDoc is a document-centric 
multimedia meeting browser. It uses static documents structures to access to linked 
multimedia data and annotations. All the meeting multimedia data are synchronized 
on the meeting time through document alignment techniques. A preliminary evalua-
tion of FriDoc demonstrated that document alignments, i.e. cross-documents links, 
improve user performances in browsing multimedia archives. Finally, FaericWorld 
allows browsing in a large cross-media library. The main motivation of FaericWorld 
is to fully use multimodal cross-documents links, at first between static documents 
and other media, for creating thematic and strictly related clusters.  

Future works include 1) assessing Inquisitor usability with a user evaluation, 2) 
implementing the first FaericWorld prototype along with a preliminary evaluation, 3) 
developing of rapid means for extracting other annotations that can be useful for 
browsing and finally 4) integrating in a common framework the three systems pre-
sented in this paper. 

References 

1. Bollacker, K. D., Lawrence, S.,  Lee Giles, C.: CiteSeer: an autonomous web agent for 
automatic retrieval and identification of interesting publications. 2nd International Confer-
ence on Autonomous Agents, ACM Press, New York, USA (1998) 116-123 



Browsing Multimedia Archives Through Intra- and Multimodal Cross-Documents Links 125 

2. Hu, N., Dannenberg, R. B.: A comparison of Melodic Database Retrieval Techniques Us-
ing Sung Queries. International Conference on Digital Libraries, Proceedings of the 2nd 
ACM/IEEE-CS joint conference on Digital libraries, Portland, USA (2002) 301-307 

3. Janecek, P., Pu, P.: An Evaluation of Semantic Fisheye Views for Opportunistic Search in 
an Annotated Image Collection, Journal of Digital Libraries, 5 (1). Special Issue on Infor-
mation Visualization Interfaces for Retrieval and Analysis, (2005) 42-56 

4. Kartoo, http://www.kartoo.com 
5. Lalanne, D., Sire, Ingold, R., Behera, A., Mekhaldi, D., von Rotz, D.: A research agenda 

for assessing the utility of document annotations in multimedia databases of meeting re-
cordings. 3rd International Workshop on Multimedia Data and Document Engineering, in 
conjunction with VLDB-2003, Berlin, Germany (2003) 47-55 

6. Lalanne, D., Ingold, R., von Rotz, D., Behera, A., Mekhaldi, D., Popescu-Belis, A.:Using 
static documents as structured and thematic interfaces to multimedia meeting archives. In 
Bourlard, H., Bengio S. (eds.), LNCS:, Multimodal Interaction and Related Machine 
Learning Algorithms,  Springer-Verlag, Berlin Germany (2004)  87-100. 

7. Lalanne, D., Lisowska, A., Bruno, E., Flynn, M., Georgescul, M., Guillemot, M., Janvier, 
B., Marchand-Maillet, S., Melichar, M., Moenne-Loccoz, N. Popescu-Belis, A., Rajman, 
M., Rigamonti, M., von Rotz, D., Wellner, P.: The IM2 Multimodal Meeting Browser 
Family, IM2 technical report, (2005) 

8. LinkedIn,  https://www.linkedin.com 
9. Lisowska, A., Rajman, M., Bui, T.H.: ARCHIVUS: A System for Accessing the Content 

of Recorded Multimodal Meetings. Proceedings of the Joint AMI/PASCAL/IM2/M4 
Workshop on Multimodal Interaction and Related Machine Learning Algorithms, Mar-
tigny, Switzerland, (2004) 291-304 

10. Marchand-Maillet, S., Bruno, E.: Collection Guiding: A new framework for handling large 
multimedia collections. First Workshop on Audio-visual Content and Information Visuali-
zation In Digital Libraries, AVIVDiLib05, Cortona, Italy, (2005)  

11. Rigamonti, M., Bloechle, J.-L., Hadjar, K., Lalanne, D., Ingold, R.: Towards a Canonical 
and Structured Representation of PDF Documents through Reverse Engineering, ICDAR 
2005, Seoul, Korea (2005) 1050-1054 

12. Rigamonti, M., Hitz, O., Ingold, R.: A Framework for Cooperative and Interactive Analy-
sis of Technical Documents. Fifth IAPR International Workshop on Graphics Recognition, 
Barcelona, Spain (2003) 407-414 

13. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Hu-
man-Computer Interaction (4th Edition), Addison-Wesley, Hardcover, 4th edition, Pub-
lished March 2004, 652 pages 

14. Alice in Wonderland, TextArc, http://www.textarc.org/ 
15. Tucker, S., Whittaker, S.: Accessing Multimodal Meeting Data: Systems, Problems and 

Possibilities. LNCS 3361, Machine Learning for Multimodal Interaction, Springer, New 
York, USA (2004) 1-11 

16. Yee, K.-P., Swearingen, K., Li, K., Hearst, M.: Faceted Metadata for Image Search and 
Browsing. Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, Ft. Lauderdale, USA (2003) 401-408 

17. Wellner, P., Flynn, M., Tucker, S., Whittaker, S.: A Meeting Browser Evaluation Test, 
Presented at the Conference on Human Factors in Computing Systems), Portand, Oregon, 
USA (2005) 2021-2024 



The “FAME” Interactive Space

F. Metze1, P. Gieselmann1, H. Holzapfel1, T. Kluge1, I. Rogina1, A. Waibel1,
M. Wölfel1, J. Crowley2, P. Reignier2, D. Vaufreydaz2, F. Bérard3, B. Cohen3,

J. Coutaz3, S. Rouillard3, V. Arranz4, M. Bertrán4, and H. Rodriguez4

1 Universität Karlsruhe (TH)
2 Institut National Polytechnique de Grenoble (INPG)
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Abstract. This paper describes the “FAME” multi-modal demonstrator, which
integrates multiple communication modes – vision, speech and object manip-
ulation – by combining the physical and virtual worlds to provide support for
multi-cultural or multi-lingual communication and problem solving.

The major challenges are automatic perception of human actions and under-
standing of dialogs between people from different cultural or linguistic back-
grounds. The system acts as an information butler, which demonstrates context
awareness using computer vision, speech and dialog modeling. The integrated
computer-enhanced human-to-human communication has been publicly demon-
strated at the FORUM2004 in Barcelona and at IST2004 in The Hague.

Specifically, the “Interactive Space” described features an “Augmented Table”
for multi-cultural interaction, which allows several users at the same time to per-
form multi-modal, cross-lingual document retrieval of audio-visual documents
previously recorded by an “Intelligent Cameraman” during a week-long seminar.

1 Introduction

Current advances in language and vision technology as well as user interface design are
making possible new tools for human-human communication. Integration of speech,
vision, dialog, and object manipulation offers the possibility of a new class of tools to
aid communication between people from different cultures using different languages.

The “FAME” project (EU FP5 IST-2000-28323) develops a new vision for computer
interfaces, which replaces and extends conventional human-computer interaction by
computer-enhanced human-to-human (CEHH) interaction. The crucial difference lies
in the role that the computer plays and the demands it makes on the human user’s
attention in a living and working environment.

Like an invisible information butler, such systems observe and learn their users’
ways and preferences, and “understand” enough about the context and purpose of their
activity, to be able to provide helpful and supportive services that are informed by,
and appropriate for that context. A broad range of applications can profit from CEHH
interfaces, including office work, communication, entertainment and many more. What

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 126–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is common in most of these settings is that the goal and preoccupation of visitors is to
interact with other humans and not with machines.

The work presented here demonstrates an interactive space using intelligent agents
to facilitate communication among researchers from different linguistic backgrounds,
who discuss several scientific topics, which have been presented at a seminar series.
The agents provide three services:

1. Provide information relevant to context, i.e. make users aware of existing informa-
tion in an audio-visual database, then retrieve and present it appropriately

2. Facilitate human to human communication through multi-modal interaction as well
as presentation of speech and text in multiple languages

3. Make possible the production and manipulation of information, blending both elec-
tronic and physical representations

The agents therefore do not explicitely intervene, but remain in the background to
provide appropriate support (this mode is known as implicit interaction), unless ex-
plicitely called for to provide a particular service, such as playing a video.

The remainder of Section 1 will formulate the concepts behind “FAME” and in-
troduce the functions our “intelligent room” [1] can perform. Section 2 will present
the individual components and evaluate their performance individually, while Section 3
will present an overall evaluation of the integrated system from the user’s point of view.

1.1 The Functions of the “FAME” Demonstrator

The functions of the “FAME – Facilitating Agents for Multi-Cultural Exchange” multi-
modal demonstrator are split into an off-line and on-line part, as shown in Fig. 1:

Fig. 1. Components of the “FAME” demonstrator: the database connects the off-line “Intelligent
Cameraman” and indexing to the left, the and on-line multi-modal document retrieval using the
“Augmented Table” on the right
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Off-line Part. To provide audio-visual documents, an “Intelligent Cameraman” [2]
recorded a four day seminar on Language Technology and Language, Cognition, and
Evolution [3], which were held on the premises of the FORUM2004 [4] in Barcelona.
The cameraman runs fully automatically and does not interfere with the lecture or its
visitors.

The resulting videos, which contain audio from the presenter, the translator, and
the audience, are then segmented, automatically transcribed and processed by a topic
detection system, which assigns one topic to every segment. The videos can then be
retrieved during the on-line use of the system in different ways.

On-line Part. The goal of the “Augmented Table” is to aid and support multi-cultural
interaction and multi-modal document retrieval [5]. Students and researchers can come
to the table and discuss with each other, retrieve information about the seminar as well
as see recordings or automatically generated transcriptions of the lectures themselves,
or see or give “testimonies”.

The Database. The database is the interface between the off-line and on-line parts. In
addition to the videos, their transcription and topic segmentation, it contains speakers’
CVs, a picture, and contact information. For every lecture, we also added information
on time and place as well as course material (slides) and other meta information.

1.2 The “Interactive Space”

At a conference, attendees usually use the physical conference program organized as
a time-schedule and they ask other attendees what’s interesting to attend. Therefore,
the design of our showcase must maintain these two forms of interaction (browsing a
time-schedule and chatting with colleagues for reporting their experience and asking
for advice) in a seamless and complementary way.

Preliminary Analysis. In a user-centered approach, domain concepts that users ma-
nipulate are classified to provide guidelines for the design of the user interface. In
particular, 1st-class concepts should be observable at all time, and 2nd-class concepts
should be browsable at all time, i.e. they are not necessarily observable but accessible
through additional user’s actions such as scrolling, selecting a navigation button such
as “next-previous-top”, “show details”. After analysis of 15 CHI (Computer Human
Interaction) conference programs, our demonstrator ranks 1st-class domain concepts as
follows: Lecture (in terms of: Title, Place, Date, BeginHour, EndHour), Speakers and
Topics; while we use the 2nd-class domain concepts Documents (papers, slides, video,
audio) and Testimonies (recorded audio-visual “opinions” about lectures).

Design Solution. Given the current state-of-the-art in automatic speech recognition
without close-talking microphones [6], our design is based on the hypothesis that there
should be two types of users: one manager and up to five users:

Users are researchers knowledgeable in the task domain, i.e. they are skilled at manip-
ulating the notions of session, lecture, topics; they are familiar with the lectures’
topic, but not with augmented reality. To ensure a reliable functioning of the sys-
tem, the users do not issue spoken commands to the system, but the topic spotter
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component of the system recognizes their speech and acts upon it. Visitors to the
demonstration can be “users”.

A manager is skilled both in the task domain and in the interaction techniques. His
spoken requests are recognized by the system, so there is no need for extra explicit
interaction with the system. He can conduct a rich dialog with the system using
speech and direct manipulation, he acts as a “moderator”.

The manager and several users can interact with the system at the same time, i.e.
they can speak between themselves, move tokens or select items etc. As shown in Fig.
2, the overall setting includes:

– A shared horizontal surface (the “Augmented Table”) for exploring information
about the conference and recording testimonies

– A microphone in the middle for acquiring user’s utterances and detecting informa-
tion of interests (i.e. topics and/ or speakers’ names) as well as a loud-speaker, so
that the system can talk back to users

– A shared vertical surface (the “Wall”) for peripheral activities, such as a presenta-
tion of the detected topics, lecture slides, or other text information from the database

– A second vertical surface for video projections from the database
– A camera to record testimonies

Compared to the “un-augmented” setting (i.e. browsing a paper brochure or asking
colleagues in the hallway), the added value of FAME comes from (see Fig. 2):

Fig. 2. The overall setting of the “interactive space”: table for focused search activity and walls
for peripheral activities and information. The Feedback loop made possible by the FAME room
improves engagement within communities.
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– The interaction itself (manipulating tokens and chatting at the same time),
– The nature of the information that can be retrieved (lecture videos, presentation

slides, testimonies, biographical or contact information, etc.),
– The capacity to produce feedback (e.g. reporting a testimony, which is added to the

database), which improves the feeling of engagement in the event.

2 Components of the FAME Demonstrator

The components of the FAME demonstrator were developed in parallel by the FAME
partners, each using their own software and tools. Integration of the individual compo-
nents into one system was achieved during two integration workshops held at different
sites using different hardware to provide backup and to ensure that the demonstrator
would not depend on specifics of either location, so as to avoid problems during several
days of public exhibits at the FORUM2004 in Barcelona and IST2004 in The Hague.

Communication between components is assured through Open Agent Architecture
(OAA) [7], which allows agents running on several machines with different operat-
ing systems to communicate and also access the database. In total, the on-line part of
the FAME demonstrator requires six PCs in a mixed configuration of Linux and Win-
dows, which supported three speech recognizers, speech synthesis, video processing
for the “Augmented Table”, projection of the table itself and the walls, video player and
recorder, room control, and database/ communication server.

2.1 Cameraman and Speech Activity Detection

The automatic cameraman is a context aware system designed to record lectures or
meetings. It creates movies by dynamically selecting camera views based on context
analysis using a speech activity detection system running on several microphones.

The Context Aware Framework. This is based on the concept of entities, roles, rela-
tions, situations and a graph of situations [8]. An entity is a group of observable prop-
erties detected by perceptual components. For instance, a person (an entity with (x, y)
properties) can be detected by a video tracker. A role is an acceptance test which selects
entities based on their properties. For instance, a long and thin object can play the role
of a pointer. A relation is a predicate over entities: person 1 is near person 2. A situation
is defined as a set of roles and relations between entities.

Context is described as a graph. Nodes are situations, arcs are temporal constraints
between the situations. They are decorated using Allen’s temporal operators [9]. For
each Allen temporal operator we composed a corresponding Petri Net pattern. By ap-
plying those patterns, the context graph can be transformed in an equivalent synchro-
nized Petri Net. The Petri Net is then compiled in a set of forward production rules
(Jess) that will check the situation activation sequence.

The Cameraman. The room is equipped with four cameras: one wide-angle view of
the scene, one for the audience, one for the lecturer, and one filming the slides. The
lecturer has a lapel microphone, there are ambient microphones for the audience. The
perceptual components, a video tracker [10] for the lecturer, a “new slide” detector
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based on image difference, and a speech activity detector, model four situations, each
with an associated camera: lecturer speaks, audience asks a question, new slide, and
unspecified.

Speech Activity Detection (SAD). The SAD system is composed of an energy detec-
tor, a basic classifier and a neural net trained to recognize voiced segments. The energy
detector uses pseudo energy (sum of absolute sample values) to determine if a signal
is speech or not. The basic classifier works in frequency bands and tags specific sound
classes: fricatives, low frequency sounds like fans, and other sounds. The neural net is
a multi-layer perceptron with 2 hidden layers. Input consists of band crossing, energy
and 16 LPC coefficients. This module is the only sub-system that needs to be trained.
Training was done on 1h of speech extracted from the BREF [11] corpus. A rule based
automaton determines the final result using the three sub-system’s decision as input.

The results from the evaluation conditions, one dealing with close-talking data from
the lecturer’s lapel microphone, the other dealing with far-field microphone audio, and
from field experiments suggest that the SAD system accuracy is satisfying for the pur-
pose of the context analysis. Results in terms of Mismatch Rate (MR), Speech Detection
Error Rate (SDER), and Non-speech Detection Error Rate (NDER) are as follows [12]:

MR SDER NDER
Close-Talking 10.8% 5.8% 27.9%
Far-Field 13.4% 12.9% 15.4%

2.2 Information Retrieval and Topic Detection

Information Retrieval (IR). Conventional IR allows a user to type a query, the system
performs a search on a previously indexed single collection of information sources and
then provides the results. FAME needs to go beyond this scheme, because it deals with
on-line access to documents from a set of different collections triggered by explicit or
implicit interaction [13].

Indexing is done using textual features (words, stems, lemmas, multiword terms,
phrases, etc.). These can also include morphological, syntactic or semantic informa-
tion. Textual features can be automatically extracted from multimedia documents or
manually attached to them.

Querying can be done using text or speech. The system allows cross-lingual and
conceptual-based query expansion using EuroWordNet [14] as lexical resource (both
queries and indexed documents ara allowed to be in Catalan, English and Spanish,
conceptual-based query expansion is performed using the synonymy relations present in
EuroWordNet, no attempt to word sense disambiguation has been done because several
experiments regarding this issue have not resulted on improving the global accuracy of
the system) . Cross-lingual IR is useful, as a speaker’s ability to understand a document
in a foreign language is usually higher than his active command of that language.

Topic Detection (TD). Detection of topics consists of assigning topics to lecture seg-
ments, or detecting that no in-domain topic is currently being discussed.
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In order to perform (on-line) TD, topics first need to be described during a prepa-
ration phase. We refer to this off-line and highly time-consuming task as Topic Char-
acterization (TC). The most widely used form of performing TC consists in attaching
a collection of units to each topic. The problems which need to be addressed here are
selecting the appropriate type of unit, choosing the criteria for selecting the appropriate
units to describe each topic, and choosing a representation schema for the collection of
units describing the set of topics.

Topic Signatures (TS) are used to represent topics. TS are lists of weighted units or
terms. Building a TS for a collection of topics was done semi-automatically. Different
TS for a topic collection depend on each other.

With the set of “topics” pre-defined and each topic being described by its TS, the
input stream is examined sequentially and its features are extracted and compared with
the features (TS) of the different topics. If there is enough evidence, the presence of a
new topic (a change of topic) is detected and communicated [15].

2.3 The Augmented Table and Token Tracker

The token tracker component of the “Augmented Table” analyzes in real time the video
stream coming from the camera located above the table. The positions of all tokens
(red disks) are extracted from the video stream and converted into a stream of APPEAR,
MOTION and DISAPPEAR events with associated positions (x, y). The FAME token
tracker will be evaluated in terms of its resolution and latency.

Resolution. The smallest motion that will be detected and reported by the tracker de-
pends on the video stream, which is processed at 388 x 284 pixels in order to maintain
full video frame rate and low latency. Setting a 2 pixel motion threshold for static sta-
bility before reporting a motion event because of the instability of the video signal,
the actual resolution on the surface depends on the geometry of the setup. Typically,
an accuracy of 0.5 cm or 5 pixels for the projection, is reached, which is sufficient for
the task.

Latency. The time lag between the moment a user moves a token and the moment the as-
sociated feedback is moved accordingly has a strong effect on human performance with
interactive systems. [16] recommends that devices should not have more than 50 ms
latency. As shown in [17], it is not necessary for latency to be very stable: no effect on
human performance is detected with standard deviation of latency at or below 82 ms.

Following the approach reported in [18], we designed a latency measuring device
for the token tracker: on a 1.4 Ghz PowerPC G4 machine, the resulting latency value
is distributed between 61 ms and 141 ms, with an average at 81 ms, which is tolerable
given a standard variation on latency of 16 ms in our system, which means FAME is
well within the 82 ms requirement expressed in [17]. We mainly attribute the latency
variation to the difference in camera delay (25 Hz frame rate) and projector refresh rate
(60 Hz).

2.4 Dialog Manager

The dialog manager is the central on-line component that mediates and executes mes-
sages of the various components, maintaining a shared multi-modal context with the
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“Augmented Table”. In this function, the dialog manager interprets speech input from
the manager (explicit interaction), input from the topic spotter using distant speech
recognition (implicit interaction) and events stemming from users’ actions on the table
(explicit interaction). The dialog manager will call requested services as dictated by the
context, for example IR queries, highlighting information on the table, playing video
segments, showing slides or pieces of information on the information wall, controlling
testimony recording, controlling room devices (lamps) and generating spoken output.

If the dialog manager detects clarification needs, or information is missing to execute
a command, it requests further information from the speaker or calls on other services,
such as IR, to obtain the information required to execute the command.

For dialog management and multi-modal integration we use the TAPAS dialog man-
agement framework, which is based on ARIADNE dialog algorithms [19] with exten-
sions to support multilingual input and output [20]. The dialog manager can restrict the
search space of the close-talking speech recognizers to the given context. Performance
numbers for these recognizers and the dialog manager are summarized here:

Performance on Spanish English
Overall Number of Turns 597 1029
Word Error Rate 18.6% 17.2%
Sentence Error Rate 21.3% 20.7%
Turn Error Rate 20.7% 17.5%
Finalized Goal Rate 75.2% 71.5%

2.5 Speech Recognition

Apart from the close-talking recognizers for the managers, the augmented table uses
two other speech recognition systems:

Lecture Transcription. To automatically segment and transcribe the lectures given at
the seminar and make them accessible to indexing, transcriptions were generated by
ITC-irst [21]; here we describe a smaller backup system developed by UKA, which was
run during pauses between demonstrations. Development of lecture transcription com-
ponents used the TED [22] corpus, because of its similarity to the Barcelona seminar
presentations. The acoustic model has been trained on 180 h Broadcast News (BN) and
close-talking “Meeting” data [6], summing up to a total of 300 h of training material.
Models were first trained on Meeting and BN, then adapted to TED by MAP and MLLR.

To generate language models (LMs), we used corpora consisting of BN (160 M
words), proceedings (17 M words) of conferences such as ICSLP, Eurospeech, ICASSP
or ASRU and talks (60 k words) by the TED adaptation speakers. The baseline LM is
based on BN. Our final LM was generated by interpolating a 3-gram LM based on BN
and proceedings, a class based 5-gram LM based on BN and proceedings and a 3-gram
LM based on the talks. The overall out-of-vocabulary rate is 0.3% on a 25 k vocabulary
including multi-words and pronunciation variants.

The TED decoding and perplexity results using the acoustic and language models
described above are shown below. The first run did not use TED model adaptation, while
the last run used MLLR model adaptation on the hypothesis of the “TED-Adapted” run.
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Performance on Native Non-native
TED database WER PP WER PP

First run 42.8% 300 53.9% 160
TED Adapted, Baseline LM 36.7% 300 35.2% 160
Adapted to Speaker, Final LM 28.5% 171 31.0% 142

Comparing the first runs between the native vs. the non-native test data sets we see
a big gap in performance which is due to the fact that the acoustic model was trained
on mostly native speech. The gain of acoustic adaptation was higher for the non-native
test set as for the native test set, which may be explained by the fact that the amount
of adaptation material was four times smaller for the native speakers than for the non-
native speakers. Word error rates of transcriptions of the Barcelona lectures are about
the same as those of the TED development set.

Topic Spotting using Room Microphones. A real-time speech recognition system
derived from the ISL “Meeting” system [6], running on a single microphone placed
in the middle of the “Augmented Table” is used to detect topics from the conversation
between visitors to FAME.

The initial system using a BN LM interpolated with data collected from the Internet
had a topic error rate of 41% at a speech recognition accuracy of 17%. Re-weighting
the keywords for topic spotting and taking confidence scores into account reduced the
topic spotting error rate to 38%.

2.6 Component Integration

We have conducted an evaluation to measure response time over a distributed OAA
system including different components. OAA offers two kinds of method calls: asyn-
chronous calls (messages without response) and synchronous calls (response is returned
to the caller). We have evaluated both message types with sequential calls and parallel
calls for maximum throughput.

We found that the first call to OAA of an agent plus registration time was quite large
with an average of 667 ms. All following calls are much faster. The average delay in our
distributed system for a single synchronous method call (including request and reply)
ranges between 20 ms and 25 ms. The numbers have been evaluated for an agent calling
himself (routed over the OAA facilitator), chained calls (a call stack of depth 10), and
a single agent calling another agent. The same setting has been used to create parallel
tests, where 10 agents send a message concurrently. The average response time was
157 ms. The delay from sending the first request and receiving the last response was
207 ms. Divided by 10, this corresponds to an average processing time of 21 ms per
message. We thus assume the total message throughput to be 47 messages (including
responses) per second. The results of the sequential tests and sequential chained calls
correspond to the final setting of the demonstrator and provide realistic numbers of the
expected delay of messages. In the demonstration setup, the delays of the messages are
small enough. However, the tested setup can not be applied to a larger system or one
that needs a significantly higher message throughput.
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3 The FAME Demonstrator and User Study

Over 150 persons used FAME during the Barcelona demonstration. We randomly se-
lected 5 groups of 3 users among them for a user study [23]. After a brief introduction to
the system, users were asked to perform predefined tasks, such as “Can you retrieve Mr.
Harold Somer’s lecture?” or “What topics are being addressed in the lecture about Ma-
chine Translation?”, etc. We observed their behavior while interacting within the FAME
interactive space and finally, the users answered some questions about their impression
of the system.

We observed two general kinds of behavior: actors who wanted to experiment with
the system, and spectators who enjoyed observing the scene. People felt confident with
the system in less then one minute. They were more interested in playing with it than
learning from the content: unfortunately, the social context did not favor a “learning”
experience, although most visitors had a “science” background. We summarize the re-
sults in two categories:

General Impression. The function and the manipulation of tokens are easy to learn
and to understand. The existence of multiple tokens brings a playful note to the system.
We observed users dropping multiple tokens randomly on the table to see what happens.
The multiplicity of tokens supports simultaneous actions but does not necessarily favor
collaboration. In turn, this lack of collaboration between users may lead to confusion,
because, as a result of the quasi-simultaneity of different output modalities, users did
not know whether the replies of the system corresponded to their own or someone else’s
request.

Most users would have preferred to be able to ask IR requests directly, instead of
asking the manager to do it for them. Most users did not pay attention to the fountain of
words (on the wall) that correspond to the topics recognized by the topic spotter as users
were talking freely around the table. From the social perspective, the testimony function
was a big success. At first, some users were shy at recording themselves. Others enjoyed
it for the possibility to watch themselves through the replay function.

General Impression YesSometimesNoNo Answer
Is it useful to have multiple places to look for information? 5 8 1 1
Is it fun to have multiple places to look for information? 7 6 0 2
Is it useful to be able to play with the system with other people? 9 5 0 1
Is it fun to be able to play with the system with other people? 11 3 0 1
Would you prefer to issue speech commands yourself? 7 4 2 2
Is the system reliable? 12 0 2 1
Would you be interested in using it? 12 1 0 2

User Ratings For Different Parts of the System. In general, users’ opinions are quite
enthusiastic, but overall, the system is viewed as a prototype. Some users judged the
quantity of information insufficient to really test the system. Some videos were per-
ceived as too short but the content was supposed to be relevant. The icons and numbers
denoting video clips in the flower menus should be replaced by a representative image
of the video content and a textual title. Multi-surface and multi-user interaction were
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Rating on Very EasyEasyDifficultVery HardNo Answer
Working with the tokens 1 13 0 0 1
Understanding organization of the seminar, 0 13 1 0 1

topics and speakers
Choosing lectures to visit, 2 11 1 0 1

discovering topics and speakers
Retrieving audio-visual content from lectures 1 13 0 0 1
Retrieving course materials 2 11 1 0 1
Giving a testimony 3 10 0 1 1

considered useful and fun but sometimes confusing. In addition, users would like to
navigate within a video clip. Some users complained about the speed of the system
reactions.

In summary, the overall design and technical integration of the FAME interactive
space were very well perceived, fun to use, and provided a special experience. However,
at the detail level, there is room for both design and technical improvements, such as
speeding up the response time, allowing easier navigation within videos and slides, and
better spatial arrangements for projection walls and augmented table, etc.

4 Conclusions

From the interaction perspective, the system is easy to learn and provides people with
an enjoyable experience based on the tangibility of the tokens, the table, the walls and
spoken interaction. The novelty of the interaction style and the fact that it is fun, draw
users’ attention away from the content itself. The “testimony” feedback service provides
a new social experience, although, in our experiment, users exploited this facility more
to look at themselves and not to produce information for others.

We have not been able to demonstrate the benefit of implicit interaction supported
by the topic spotter. We believe that implicit interaction cannot be tested in sessions of
short duration, but can only be appreciated over a long period of use, which was not
possible in our setting.

The experiment also showed the necessity for systems to automatically adapt to the
physical environment: spatial relationships between surfaces, distance from the actua-
tors, background color of surfaces, etc. For example, one third of the users were wearing
the same color as that of the tokens, which could be a problem in bad lightning condi-
tions. Our continuing work on context modeling and adaptation is an attempt to solve
this problem.
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Abstract. In this paper we describe a service that provides peripheral feedback 
on participation level of the audience in lectures and seminars to presenters. The 
peripheral display makes the lecturer aware of the attention level as well as the 
interest level of their students. We hypothesise that providing this kind of feed-
back can help lecturers or presenters to adjust their behaviour to the cognitive 
demands of the audience. In this paper we report on the results obtained from a 
focus group and two surveys that were carried out. Following that we describe 
the development of peripheral displays focusing on the design considerations 
and process of the teacher support service. We describe the service by address-
ing its technological components and visualisations. Finally we briefly discuss 
the issues to be considered for the evaluation of such an unobtrusive service.  

1   Introduction 

We are moving away from traditional desktop computing towards ubiquitous comput-
ing, where people and environments are augmented with computational resources that 
provide information and services unobtrusively, wherever and whenever required. 
One of the prime features of ubiquitous computing and calm technology is to provide 
information in the periphery of attention [1]. The term ‘periphery’ describes what we 
are attuned to without attending to consciously. In this way, peripheral displays por-
tray non-critical information without distracting or burdening the user. The informa-
tion in the periphery can be provided in a multimodal way, for example by video and 
audio or a dedicated device acting as a truly peripheral display. Within the framework 
of the EU-funded CHIL project (http://chil.server.de), we are developing a peripheral 
display to support the lecturer in a classroom where students are allowed to use lap-
tops during the lecture. This service will make the lecturer aware of the students’ 
attention level as well as their interest level, which may help the teacher to decide 
when and how to continue the lecture.  

Technological progress is increasingly changing the traditional classrooms into a 
ubiquitous environment. Such an environment is equipped with a variety of applica-
tions including note taking tools that can facilitate students as well as lecturers [2, 3, 
4, 5, 6, 7]. Many teachers already make use of notebooks to deliver their lectures and 
or to post their slides to students in real time. Similarly, students also bring their lap-
tops to the classroom. The usage of laptops with internet or intranet facilities in class-
rooms has many advantages, but it also bears the risk of students doing other things 
than attending to the lecture and taking notes, such as playing games, browsing the 
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internet, chatting, e-mailing. Now imagine the following scenario. A teacher is pre-
senting complex content using slides, and cognitive load for the students is high, since 
they need to simultaneously take notes of what was said and listen to new input (in 
fact, this situation easily results in both incomplete notes and lack of understanding 
for the new input). Therefore, the teacher might want to reduce cognitive load by 
waiting until most students finished writing their notes before moving on to the next 
slide. However, now that students may use their laptops for other things than taking 
notes, it is unclear to the teacher how to interpret the observable activities of the stu-
dents: if the teacher would know that most students who are typing are in fact chatting 
rather than taking notes, it makes no sense to wait until they finished before moving 
on to the next slide. Moreover, the teacher might want to know whether the attending 
students are still paying attention or whether they are losing their interest. This sug-
gests that it would be useful for teachers to get feedback of the students’ attention and 
interest levels. In this paper, we present a service that was developed within CHIL. 
Using this service, teachers receive real-time feedback about the activities and atten-
tion level of the audience in the lecture. We hypothesize that providing this kind of 
feedback in an unobtrusive manner may help lecturers to adjust their behaviour to the 
demands of the lecture without disrupting them unduly from their primary activities.  

The remainder of the paper is organized as follows. Section 2 describes two user 
studies that were carried out to get a view of user behaviour and needs in relation to 
taking notes and using electronic equipment in lecture rooms. Section 3 provides a 
description of the development of a peripheral display providing feedback on student 
activity and interest to the lecturer. In Section 4 we draw conclusions and outline 
some points for future research.  

2   User Studies 

2.1   Focus Group  

As a first step towards the development of an unobtrusive service providing feedback 
about the participation level of students in a classroom we conducted a focus group 
study aiming at collecting teachers’ opinions concerning the use of electronic devices 
during their lectures. The main questions were whether they make use of electronic 
devices during their lectures, either for students or for themselves, and what types of 
services they would consider to be useful. The focus group consisted of five experi-
enced teachers and professors at Eindhoven University of Technology. It took place in 
a friendly environment and was led by a facilitator. One person was appointed to take 
notes of the most important remarks and the whole discussion was recorded on tape 
for back-up purposes. The duration of the focus group was about 90 minutes.  

The main conclusions of the focus group substantiate the general merits and de-
merits of services. Teachers appreciated the use of electronic devices for asking ques-
tions to intermittently test the understanding of the students, to make the lectures 
more appealing, etc. Some teachers preferred to use blackboard and chalk, rather than 
static slide presentations, because they actually create their story on the spot. Teachers 
did see the advantages for students to use laptops during class, for example to get 
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access to electronic summaries, to get relevant documents, to follow along with the 
online lecture notes provided by the teacher, or to take electronic notes. Most teachers 
agreed that electronic note-taking should be done with a pen rather than using a key-
board for input, because typed input would reduce flexibility and increase cognitive 
load for the students. However, it worried the teachers a lot that they will lose eye 
contact with the students when the students are sitting behind their laptops and that 
they will not be able to see what students are doing: whether they are attending the 
lecture and taking notes, or misusing the notebook for gaming, e-mailing, web brows-
ing, etc. They believe that students need to be taught how to use the laptop during 
class, but teaching them rules of laptop etiquette, such as those mentioned by Camp-
bell and Pargas, may well be infeasible [8].  

2.2   Teacher and Student Survey 

In addition to the focus group, we conducted a survey through the Internet among 
teachers and students, addressing the way they deliver and participate in lectures. The 
survey is an adapted version of a similar survey that was carried out within the CHIL 
project by AIT, but which was tuned to presentations in small-group meetings rather 
than lectures [9]. The survey covers important aspects of both delivering and attend-
ing lectures, such as how, and how often do students take notes, what students do if 
they find a lecture boring, how teachers gauge the understanding and interest of their 
audience, etc. The survey has given us a better understanding of the possible impact 
of the service we propose. The most signification results are presented below. 

2.2.1   Student Survey 
In addition to several general questions, such as age and sex, the student questionnaire 
contained 13 questions that are related to the way students behave during lectures. In 
total 319 students (233 male, 86 female) filled out the questionnaire. Most respon-
dents are between 19 and 25 years of age. The lion’s share of students is related to the 
TU/e, a small part to other universities or colleges.  

 
General: The following aspects were considered important to finish a course success-
fully: the lecture itself, related literature, homework assignments, notes, and discus-
sions both with students and the teacher. Especially the lecture itself, literature and 
homework were considered to be important or very important by most students.  

 
Activities during lecture: As described in Table 1, listening to the lecture and taking 
notes are the main activities of students during the lecture. Interestingly, 4% of the 
students indicate that they never or almost never listen to a lecture. From Table 1 it 
can also be seen that 92% of the students take notes during the lecture. Only 8% never 
take notes. Activities that are less related to the lecture, such as talking to fellow stu-
dents and thinking about irrelevant things, also happen quite often (around 95% do 
this at least sometimes). Sleeping and doing other things (either with or without using 
a laptop) are done only rarely.  
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Table 1. What do you do during a lecture? (in %1) 

 Never Sometimes Often Always 
Listen 1 5 61 34 
Take notes 8 27 47 17 
Come up with questions 26 55 17 2 
Talk to other students 4 59 29 8 
Think about irrelevant things 6 63 27 4 
Sleep 74 23 3 0 
Do other things 46 50 3 1 
Do other things on laptop 84 15 0 0 

Note-taking: Despite the fact that all students at our university possess a laptop, half 
of the students never bring their laptop to lectures. Only 14% of the students often or 
always bring their laptops to class. 65% of the students often or always take notes 
during a lecture. As mentioned previously, a minority of 8% of the students never 
takes notes. 

As can be seen in Table 2 most students usually take notes on paper. 26% of the 
students say that they usually or always take notes on hand-outs, whereas 18% of the 
students indicate that they never use hand-outs for taking notes. The explanation for 
the fact that only a few students use handouts for taking notes may be twofold. Either 
the students prefer to use normal paper, or the students never receive any hand-outs. 
The majority of the students never use the laptop for taking notes. Only 9% of the 
students use the laptop sometimes or often.  

Table 2. What do you use to take notes? (in %) 

 Never Sometimes Often Always 
Paper 0 6 34 60 
Hand-outs 18 55 23 3 
Laptop 92 8 1 0 

When taking notes, catch words, summaries, explanations, figures, and formulas 
all are used sometimes or often by the majority of the students (see Table 3). How-
ever, almost none of the students use short-hand to take notes.  

Notes are most often used to prepare for an exam and for later reference to interest-
ing topics. Only a few students use their notes to prepare for the next lecture. 24% of 
the students indicate that they usually do not use their notes after the lecture.  

If handouts are distributed before the lecture, they are most often used for later ref-
erence. 80% of the students indicate that they (sometimes or often) use the handouts 
to read along with the lecture and to take notes on (76%). This suggests that the sec-
ond explanation for the observation that only a few students use handouts for taking 
notes must be true: students do not receive handouts very often. 

 

                                                           
1 Due to truncation some rows in the tables throughout this paper may not add up to 100%.  
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Table 3. What do you write down? (in %) 

 Never Sometimes Often Always 
Bullet points 7 40 44 9 
Summary 21 41 35 3 
Explanation 4 25 60 11 
Short hand 76 17 7 0 
Figures 8 36 47 9 
Formulas 1 17 59 23 

Questions: 33% of the students never ask questions during or after a lecture, whereas 
60% sometimes ask questions.  

Table 4. At which moment do you ask a question? (in %) 

 Never Sometimes Often Always 
Interrupt teacher 66 26 3 0 
When teacher pauses 24 37 30 7 
Lift hand 4 27 40 28 
At designated points 30 49 17 2 

End of the lecture 34 49 15 2 

If students do want to ask a question, most of them do not interrupt the teacher; 
they usually raise their hand or else they wait until the teacher pauses (see Table 4). 

 
Understanding and interest: In case students do not understand what is being told, 
most of them (71%) will usually try to keep paying attention. Students never or rarely 
walk out of the classroom or fall asleep. 76% sometimes or often “switch off”. Only 
54% of the students sometimes or often ask for additional explanation, 46% never 
does so (see Table 5 below).  

Table 5. What do you do when you do not understand the teacher? (in %) 

 Never Sometimes Often Always 
Stay alert 2 26 57 14 
Ask for explanation 46 44 9 1 
Switch off 34 54 12 0 
Sleep 76 20 4 0 
Walk out 78 20 1 0 

 
If students lose their interest in the lecture, most of them (64%) will usually try to 

keep paying attention anyway (see table 5). Many students say they sometimes 
“switch off” and start thinking about irrelevant things. 38 % of the students occasion-
ally start to do other things (e.g. SMS or talk to fellow students) and 32% sometimes 
leave the lecture.  
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Finally, aspects of speaker volume, knowledge, explanations and environmental 
factors are all considered to be important for keeping a high level of attention by the 
majority of the students. Only accent is considered to be less important by many stu-
dents.  

Table 6.  What do you do when you lose interest? (in %) 

 Never Sometimes Often Always 
Stay alert 3 32 57 7 
Switch off 22 59 18 2 

Do other things 49 38 13 0 
Do other things on laptop 85 10 5 0 
Sleep 74 23 4 0 
Walk out 62 32 6 0 

2.2.2   Teacher Survey 
In addition to several general questions addressing e.g. age and sex of the participant, 
the teacher survey consists of 13 questions concerning the way teachers prepare and 
deliver their lectures. 13 teachers (12 male, 1 female) filled out the questionnaire. 
They are between 21 and 65 years of age and have different amounts of teaching 
experience. All teachers are currently related to TU/e. 

 
Preparation of lecture: Almost 80% of the teachers often or always prepare trans-
parencies or electronic slides and use those as a guide through the lecture.  

 
Delivering a lecture: Most teachers use either chalk and blackboard or transparencies 
or electronic slides as tools during their lecture. A flip-over is used only rarely. If they 
use transparencies or electronic slides, only 25% of the teachers never use hand outs. 
42% of the teachers always use hand outs in this case.  

The majority of the teachers (62%) always use their laptop during lectures, whereas 
only 2 teachers (15%) never use one. The teachers mainly use their laptops for pre-
senting electronic slides, but about half of the teachers sometimes use the laptop for 
looking up information from previous lectures and as a memory aid.  

About half of the teachers never allow their students to use a laptop during the lec-
ture. Those who do allow the use of laptops (see Table 7) most often allow students to 
take notes on their laptops or make exercises.  

Table 7. What are students allowed to use their laptop for? (in %) 

 Never Sometimes Often Always 
Reading along 38 38 0 25 
Taking notes 29 29 0 43 
Lookup information 43 57 0 0 
Exercises 0 38 25 38 
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Understanding and interest: To find out whether students understand the contents of 
the lecture (See Table 8), cues like eye-contact, facial expression, body posture and 
active participation are used by all teachers. For gauging interest level (Table 9), eye-
contact, facial expression and body posture are used often by most teachers as an 
indication of students’ interest. Body posture is used less often.  

Table 8. How do you gauge whether students understand the lecture? (in%) 

  Never Sometimes Often Always 
Eye contact 0 8 62 31 
Body posture 0 15 69 15 
Facial expression 0 8 69 23 
Active participation 0 23 62 15 

Table 9. How do you gauge whether students are interested? (in %) 

  Never Sometimes Often Always 
Eye contact 0 23 54 23 
Body posture 8 62 23 8 
Facial expression 0 15 77 8 
Active participation 0 23 54 23 

Teachers never walk out of their own lecture neither when students don’t under-
stand the lecture nor when they are just not interested (see Table 10 and Table 11). 
Speeding up the lecture is also only rarely used in these situations. If students appear 
not to understand the lecture, most teachers explain more and ask more questions. The 
most common solution when students are not interested in the lecture is to ask more 
questions and to use humour. Many teachers also (sometimes or often) continue as 
planned.  

Table 10. What do you do when students are not interested in the lecture? (in %) 

 Never Sometimes Often Always 
Continue as planned 23 38 38 0 
Ask more questions 0 54 38 8 
More humour 0 54 23 23 
Next topic 50 50 0 0 
Go faster 85 15 0 0 
Short break 31 69 0 0 

Leave lecture 100 0 0 0 
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Table 11. What do you do when students do not understand? (in %) 

 Never Sometimes Often Always 
Continue as planned 33 58 8 0 
Ask more questions 0 38 54 8 
More humour 31 54 15 0 
Go faster 100 0 0 0 
Explanation 0 15 54 31 
Leave lecture 100 0 0 0 
 
Summarising, the user studies provided the following insights: 

• The use of electronic tools in the lecture room is still uncommon. Students 
mostly use conventional means for taking notes, also because many lecturers 
prohibit use of electronic means. 

• Lecturers see advantages for the use of laptops by students, but are concerned 
about unintended use and about losing eye contact. 

• Lecturers use nonverbal cues to estimate students’ understanding and interest. 

So, we conclude that there are opportunities for the use of electronic equipment by 
students, provided that we provide lecturers with feedback about what the students are 
actually doing and about their interest level. 

3   Development of Peripheral Display 

3.1   Teacher Support Service 

Following the main findings from the user studies, we propose a service that supports 
the teacher by providing information about students’ attention and interest levels 
during the lecture. As an indication of the level of attention, the service shows how 
many students are actively taking notes, as opposed to playing games, chatting, or 
browsing the web. Interest level represents the interest of the students who attend to 
the lecture (either taking notes or not). We assume that students who are doing other 
things have low interest in the lecture and therefore we do not include these students 
in the calculation of interest level.  

Although it is generally assumed that a teacher should intuitively know whether 
students can still keep pace with the lecture or not, the information may be ambiguous 
and with larger groups of students it may be difficult. Our intention is to substantiate 
the teacher’s subjective feeling with quantitative data about the attention and interest 
level of the students. The benefit of such a service is that the teacher can concentrate 
on tailoring the lecture to the students, rather than being occupied with guessing the 
attention and interest levels of the audience.  

Students’ laptops will be equipped with a digital note-taking application (Agilix 
GoBinderTM) as shown in Figure 1. The application allows students to take electronic 
notes that are handwritten or drawn by means of a pen mouse or typed using the key-
board. Different styluses and colors are available and notes can easily be selected and 
moved or deleted. Figure 1 shows a screen shot of this application. 
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In contrast with traditional pen and paper notes, students can draw digital notes on 
a local copy of the teacher’s slides without requiring the teacher to hand out printed 
copies. Moreover, digital notes can be saved electronically and they can be selected, 
moved and resized or highlighted easily. If used on a Tablet PC, handwritten digital 
notes can be converted into text through handwriting recognition, allowing for easy 
indexing and searching. At a later stage, we intend to make audio and video re-
cordings of the lecture and link those recordings to the time-stamped electronic notes, 
to facilitate access to the lecture content (cf. [2]).  

3.2   Peripheral Displays 

In order to shield the teacher from information overload, it is important that the stu-
dent monitoring service be as little interruptive for the teacher as possible. Therefore, 
the information should be presented in the periphery of the teacher’s attention, so that 
it can be viewed whenever required, and ignored when the teacher is not interested. 
Moreover, in order to minimize the additional cognitive load for the teacher, the visu-
alizations should be easy to interpret. There are numerous ways in which this infor-
mation can be presented to the teacher, using for example video or audio or a truly 
peripheral display such as a set of lamps on the desk. For the moment we choose to 
show the relevant information in graphical form in a separate window in the margin 
of the teacher’s notebook screen. For attention level and interest level we propose the 
visualizations as depicted in Figure 2.  

Attention level is depicted in the form of a pie chart, showing the percentage of 
students that are actively using the note-taking application in red (“BUSY”) and the 
 

 

Fig. 1. Screenshot of note-taking application 
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Fig. 2. Visualization of attention level (left) and interest level (right) 
 
percentage of students that have the application as the active window, but are not 
actually using it in green (“READY”). Green in this case means that the teacher may 
move on, whereas red denotes students who are not yet ready to move on. The idea is 
that, if the BUSY area is small relative to the READY area, the teacher may move on, 
but if the BUSY area is large relative to the READY area, s/he might wait a moment 
before moving on until more students finished their notes. The grey area (or “OTHER”) 
indicates students who are doing other things on their notebooks, such as chatting or 
browsing the web. This category is assumed to be irrelevant to the teacher’s decision 
to move on or wait. The current Interest level is represented as a scale, with red indi-
cating a low interest level and green indicating a high interest level and is calculated 
across BUSY and READY students (as said before, students doing other things are con-
sidered by definition not to be interested in the lecture). The horizontal line indicates 
the average interest level since the start of the lecture. Both visualizations are updated 
dynamically in real-time. The update rate of the information will be optimized by 
experimentation, so as to make sure that the information accurately and meaningfully 
reflects the current situation, but is not too distracting for the teacher. 

3.3   Technology 

As mentioned before, for measuring attention level we distinguish three groups of 
students: students who are actively taking notes using the Agilix GoBinderTM applica-
tion, students who have the note-taking application as the active window, but are not 
actively using it and students who are using other applications on their laptop. To 
collect this information, monitoring software will be installed on the students’ note-
books, which provides information about the application which is currently active or 
has been used most recently. The individual information is sent to a central server in 
real-time; the server collects the information and changes it into a graphical represen-
tation that is sent to the teacher’s laptop.  

Interest level can be measured in many different ways. Initially, we will ask the 
students to actively provide information about their own level of interest by means of 
a slider bar that they can adjust using their laptops (such as in [10]). In the future, we 
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hope to be able to detect level of interest automatically on the basis of the students’ 
nonverbal behaviour (eye gaze, posture, etc.). In this way, the information provided 
will be more objective and reliable and it will be less disruptive for the students. Mota 
et al. have shown automatic detection of interest level to be feasible for a single stu-
dent / single application situation [11]. We are interested in finding out whether such 
a set-up would also be feasible in a classroom situation.  

4   Conclusions and Future Work 

We have presented an unobtrusive service providing feedback to lecturers about the 
attention and interest level of the audience. The service intends to support human-
human communication by providing peripheral feedback on participation level. In the 
near future we plan a formative user evaluation of a first implementation of the ser-
vice. With this evaluation we want to find out whether the visualizations are clear, 
what teacher and students’ attitudes are towards the service and in what way using the 
service influences the lecture. In this user test, the service will be made available 
during a series of lectures. After the first evaluation and depending on its outcomes, 
we will optimise the visualizations and further develop the service. One aspect that 
we may need to address in the future is the possibility to provide the teacher with 
support on how to improve the lecture in case attention and interest are decreasing, 
e.g. by telling him/her when to slow down, rather than only signalling what is going 
on. Furthermore, we may extend the note-taking facilities for the students with the 
possibility to link keywords that were taken down during the class to recorded audio 
or video streams, for easy access to the lecture content afterwards. 

We believe that services like the one described here may overcome some of the 
concerns associated with the use of electronic equipment in classrooms and that the 
feedback provided to lecturers will help the lecturers to reduce the cognitive load for 
the students. Obviously, these beliefs need to be substantiated by further research. 
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Abstract. We present a service providing real-time feedback to participants of 
small group meetings on the social dynamics of the meeting. The service 
visualizes non-verbal properties of people’s behaviour that are relevant to the 
social dynamics: speaking time and gaze behaviour. The service was evaluated 
in two studies, in order to test whether the feedback influences the participants’ 
visual attention and speaking time and enhances the satisfaction with the group 
interaction process. In a qualitative evaluation it was found that groups in 
general perceive the social feedback during the meeting as a useful and positive 
experience, which makes them aware of their group dynamics. In a second 
study, aiming at a more quantitative analysis, we obtained preliminary evidence 
that the feedback service affected participants’ behaviour and resulted in more 
balanced participation and gaze behaviour. We conclude that services providing 
automatic feedback about relatively low-level behavioural characteristics can 
enable groups to adjust the social dynamics in group meetings. 

1   Introduction 

Current technology supports mainly content and information exchange during 
meetings, whereas social aspects have been addressed only recently. The use of 
technology to support group meetings has appeared as early as 1971 [8]. Tools like 
electronic whiteboard, projector, video and audio recorders, and electronic minutes 
have been used for brainstorming, idea organizing and voting, and the associated 
methods for working with these tools have been refined over the last two decades. 
The methods focused on the content and information exchange and productivity in 
meetings. 

Technologies to support group cohesion and satisfaction of meeting members have 
received much less attention [9]. Cohesiveness is the descriptive term that 
psychologists use to refer to an important property of groups. It is captured in 
common usage by a wider range of terms like solidarity, cohesion, team spirit, group 
atmosphere, unity, ‘groupness’ [5]. It is known from psychological studies that 
cohesive groups can achieve goals more efficiently and with higher satisfaction [16].  

In this paper we focus on social dynamics. In this context, we define social 
dynamics as the way verbal and nonverbal communicative signals of the participants 
in a meeting regulate the flow of the conversation [1], [14]. Analyses of conversations 
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in meetings have shown that there are two mechanisms governing the flow of 
conversation [14]. Either the current speaker selects the next speaker, by a 
combination of verbal and nonverbal signals, e.g., by addressing a participant 
explicitly and/or by gaze behaviour and additional cues. Or the next speaker selects 
him/herself: if the current speaker has finished, one of the other participants may take 
the turn (possibly after a brief transition phase where several participants try to get the 
floor simultaneously). The first mechanism has prevalence over the second one. From 
these observations it follows that the nonverbal behaviour of the participants 
influences the flow of the conversation. Here, we summarize the most important 
mechanisms. 

• Plain speaking time is a first determinant of social dynamics. Since interrupting 
the speaker is bound to social conventions, within certain limits the current 
speaker determines how long s/he remains speaking. Speaking means having the 
opportunity to control the flow of conversation and influence the other 
participants. Depending on personality, speakers may try to monopolize the 
discussion, with the risk that not all arguments relevant to the topic of discussion 
come to the surface, which may ultimately lead to a “groupthink” situation, when 
a member of the group attempts to conform his or her opinion to what s/he 
believes to be the consensus of the group [6].  

• Speaker eye gaze is a second determinant of the social dynamics, in two ways. 
The current speaker controls the flow of conversation by having the privilege of 
selecting the next speaker. Often, this is indicated by non-verbal means such as 
eye gaze [2], [7], [19]. In addition, when addressing all participants, the speaker 
should take care to look at all participants in due time to avoid giving the 
impression that s/he is neglecting particular participants. However, due to the 
nature of conversation, it is highly likely that the next speaker reacts to what the 
current speaker said. As a result, the respondent will look at the previous speaker, 
and interactive sequences involving two speakers may arise [11], leaving little 
opportunity for the other members of the group to participate in the discussion.  

• Listener eye gaze is a third determinant of the social dynamics. The participant 
who is speaking is being looked at by the other participants, indicating that s/he is 
in the focus of attention [20], [17]. However, when the speaker is speaking for a 
long time, other participants may lose interest, which is signalled by gazing 
elsewhere. 

Recently, researchers have taken inspiration from the observation that socially 
inappropriate behavior such as imposing one’s own views instead of giving the others 
the opportunity to contribute may rezsult in suboptimal group performance, and they 
have developed systems that monitor and give feedback on social dynamics [3], [4]. 
Research has mostly focused on group decision-making tasks where balanced 
participation is essential to solving the task at hand. The systems capture observable 
properties like speaking time, posture and gestures of the meeting participants, 
analyze the interaction of people and give feedback through offering visualizations of 
the social data. For instance, DiMicco offered feedback about the speaking time of 
different participants visualized through a histogram presented on a public display. 
Evaluations showed that real-time feedback on speaking activity can result in more 
equal participation of all meeting members [4]. 
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These findings and observations lead us to believe that audio-visual cues of human 
behaviour, namely eye-gaze and speaking time, directly relate to the dynamics of the 
meeting at the social level. In the framework of the EU-funded CHIL project, we 
designed a service that generates an unobtrusive feedback to participants about the 
social dynamics during the meeting, on the basis of captured audio-visual cues. Our 
goal is to make the members aware of their own and others behaviour, and in this way 
influence the group’s social dynamics. It is assumed that such feedback may influence 
the participants’ behaviour to create more appropriate social dynamics in a group, and 
therewith increase the satisfaction of the group members with the discussion process.  

In the remainder of the paper, we first describe a focus group study, aiming at 
getting feedback on our ideas. We proceed with the design concept, which presents 
information on current and cumulated speaking activity in combination with the 
visual focus of attention of speakers and listeners. We then present the outcomes of 
two evaluations, one qualitative study to inform the design, and one quantitative 
evaluation, to assess the effects of the service on participants’ behaviour in meetings. 
We conclude with a discussion of our findings and future prospects. 

2   Focus Group 

A focus group meeting was arranged to get insight into social dynamics problems that 
group members encounter during meetings. Our interest was whether information on 
the social dynamics of a meeting to be useful for them. The focus group addressed the 
following five main questions: 

1. Do you remember any problematic situations during meetings? 
2. To what extent do you feel social dynamics was the cause of the problem?  
3. Do you think feedback about social dynamics can be useful? If so, at what 

moment, how and where?  
4. Do you think this type of visualized feedback (examples as demonstrated on slides) 

would be useful during the meeting? 
5. Do you have any ideas about other solutions for solving problems related to social 

dynamics in meetings? 

The focus group consisted of 8 participants (two project teams of a post-graduate 
curriculum at the Technische Universiteit Eindhoven) and lasted about 90 minutes. 
Before the focus session we recorded 2 real meetings on video to obtain illustrative 
materials for the focus group session. The focus discussion was led by a facilitator 
and one participant was appointed to take notes. After each question the participants 
were asked to note down their answers for our later reference.  

The most important outcome was that participants considered the social dynamics 
feedback during the meeting potentially useful, as it might improve the efficiency of 
the meetings. It was also considered useful for people who want to participate more in 
a meeting but do not manage to do so: participants indicated that it is important to 
make the group aware of the degree to which individual group members participate in 
the discussion. They all had experience with problems during the meetings related to 
the social dynamics, such as: two people discussing for a long time in a subgroup; one 
person talking for a long time and behaving like a chair of the meeting without being 
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appointed as such, etc. The fact that one person speaks for a long time, neglecting the 
others, can cause a bad mood and annoyance.  

Participants agreed that feedback, such as a notification to the speaker that the 
audience is bored, should be provided during the meeting rather than afterwards. 
Furthermore, feedback should be objective, positive, general, and public. In addition 
to public feedback, private feedback providing more details might be useful as well.  

3   Design  

We applied an iterative design process: we worked out a first concept, set up a series 
of group meetings in which the initial concept was applied and then adjusted the 
concept on the basis of the remarks by the meeting participants and ran a further 
evaluation.  

 
Design concept. Concept development was guided by the literature, the results from 
the focus group, the group meetings, a CHIL deliverable on user requirements for the 
various CHIL services [13], unpublished ethnographical studies of meetings 
conducted at TUE and general usability considerations. The concept emerged from 
discussions within the design team and with an expert in information visualization 
and interaction design. The resulting concept consisted of a visualization of the 
ongoing social dynamics on a shared display, showing the following aspects of social 
dynamics:  

• Cumulative speaking time of each participant. 
• Duration of the current turn. 
• Cumulative and current visual attention for speakers.  
• Cumulative and current visual attention for listeners. 

The visualization is projected in the centre of a table, as shown in Figure 1 for a 
four meeting participants setting.  

 

 

 

 
 

Fig. 1. Left: Visualization of current and cumulative speaking activity and visual attention for 
each participant P#, with P2 as the current speaker. Right: Snapshot from experimental session. 
Further explanation in text. 
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The four “wind directions” (corresponding to four sides of the meeting table) 
represent participants P1, P2, P3 and P4, respectively. The visualization contains the 
following components: (1) The right-hand circle (coded Sa) represents how much 
attention a participant received while speaking from the other participants since the 
beginning of the meeting. (2) For the current speaker, this circle is surrounded by an 
outer, lighter-coloured ring representing how much visual attention s/he receives from 
the other participants. (3) The middle circle (coded S) represents the participant’s 
cumulative speaking time since the beginning of the meeting. (4) Again, for the 
current speaker, this circle is surrounded by an outer, lighter-coloured ring, the size of 
which represents the duration of the ongoing turn. (5) The left-most circle (coded A) 
indicates how much visual attention the participant – as a listener - has received from 
the other participants while they were speaking (added up across all other 
participants). The different circles are distinguished by different colours (the codes 
are not included in the visualization). The information is updated dynamically in real-
time.  Visual attention is derived from eye gaze. In order to facilitate users’ memory 
of the meaning of the different circles, we designed icons serving as mnemonics 
which are displayed underneath the circles (see Figure 2). 

 
Fig. 2. Icons explaining the meaning of each circle 

The visualization is generated on the basis of combined audio (speech) and visual 
(focus of attention) cues, captured in real-time during the meeting. In order to implement 
the concept, different technologies might be applied (some of which are being developed 
in the CHIL project). In order to determine speaking time for individual participants, it 
suffices to equip individual participants with close-talking microphones and to detect 
onset and offset of voice activity from the separate microphone signals. In order to 
determine visual focus of attention, eye gaze might be determined from a panoramic 
camera in combination with a context model. Or, depending on the spatial arrangement 
of participants, eye gaze might be inferred from head orientation, determined from a 
panoramic camera, as in [17], or from special devices mounted to the heads of the 
participants that can be tracked with an Infrared camera. 

4   Qualitative Evaluation 

In order to get a first impression of whether the concepts under development make 
sense and to identify problems, we conducted a formative evaluation. Several groups 
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consisting of 4 people engaged in discussion sessions during which feedback was 
provided on the social dynamics by means of the visualization concept. We invited 
both pre-existing teams and ad-hoc groups. Pre-existing teams may be expected to 
behave differently from ad-hoc teams as they have already an established social 
structure. The discussion was followed by a semi-structured interview with a focus on 
identifying usability problems and soliciting suggestions for improvement, alternative 
solutions, and preferences for design options.  

Since the purpose of the current experiments was to evaluate the visualization 
concept, rather than implementing the technologies we applied a Wizard of Oz 
approach. A simple web interface was developed to enable 4 wizards to simulate the 
perceptual components of visual attention tracking and speech activity detection for 
meetings of four participants, where each wizard monitored the speaking activity and 
the eye gaze of one participant. The four wizards monitored the meeting through one-
sided mirrors and/or tv-screens. During the meeting, wizards indicated the state of the 
eye-gaze and speaking activity whenever there was a change in the behaviour of the 
participant. All the wizards’ codings were recorded by the central server. Obviously, 
such a set-up requires that we calculate the inter-wizard reliability and the reliability 
of the wizard codings vis-a-vis the actual events. These checks are still in progress 
and will be reported in later publications. 

The results of the experiment were encouraging: groups in general perceived the 
social feedback during their meeting as a useful and positive experience which made 
them aware of their group dynamics. Importantly, most of the group members expressed 
their satisfaction with the visualisation feedback and indicated that the changes in the 
feedback were noticeable, even though the feedback was provided in the periphery of the 
visual field. A few participants indicated that they were distracted at the beginning and 
this was mainly because they wanted to see explicitly how the patterns of verbal and non-
verbal communication were reflected in the display. Some of the participants said that the 
visualised feedback influenced their behaviour and as a result the participants were 
enthusiastic and motivated to establish balanced participation in the meeting. Ultimately, 
they tried to provide others with the opportunity to speak. 

5   Quantitative Evaluation 

Hypotheses and setup. Small adjustments were made to the visualization on the basis 
of the formative evaluation, mainly concerning the increment reflecting changes over 
time for the different visualization components. Next, a comparative evaluation was 
conducted to assess the influence of the feedback on the social dynamics during the 
meeting both qualitatively and quantitatively, comparing meetings without and with 
feedback. With the second evaluation we aimed to validate the following hypothesis:  

1. Speaking time will be balanced more equally in sessions with feedback than in 
sessions without feedback. Concretely, participants who under-participate in 
NoFeedback conditions will participate more in Feedback conditions and 
participants who over-participate in NoFeedback conditions will participate less 
in Feedback conditions.  
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2. Attention from the speaker will be divided more equally between listeners in 
Feedback conditions than in NoFeedback conditions. Concretely, listeners who 
receive less attention from the speaker in NoFeedback conditions will receive 
more attention in Feedback conditions and listeners who receive more attention 
from the speaker in NoFeedback conditions will receive less attention in 
Feedback conditions 

3. Shared attention (attention from listeners for the speaker) will be higher in 
Feedback conditions. 

4. Participants’ satisfaction about group communication and performance will be 
higher in the presence of feedback visualization. 

 
In order to evaluate hypothesis 4, subjective judgments about participant’s 

satisfaction with the visualization feedback were collected by means of a 
questionnaire. Group satisfaction was assessed by a satisfaction questionnaire 
combining questionnaires about group process and decision making [10], [12]. An 
additional set of questions was included to address participants’ subjective 
judgements about usefulness and usability of the service (including aspects such as 
participation, distraction, awareness and privacy).  

The experiment applied a within-subjects (or rather “within-group”) design. Every 
group participated in two discussion sessions in which the members discussed the best 
solution for a particular topic. In one condition feedback was provided, in the other no 
feedback was provided. At the beginning participants were told that participation was 
voluntary and they were asked to sign the consent form. All groups were asked for a 
written permission for audio and video recording. Next they filled in a standard 
personality questionnaire. In each condition (with and without feedback), the groups 
first had a 5 minutes discussion about a topic that they could select from a list 
provided by the experimenter. The 5 minutes discussion served for the group 
members to get used to each other and to the environment, and to familiarize with the 
feedback. The five minutes discussion in the Nofeedback condition was included to 
ensure that both target conditions would be preceded by an initial discussion. To 
avoid order effects, order of feedback and Nofeedback conditions was balanced 
across groups. It was left up to the participants to reflect or not on the displayed 
information.  

 
Experimental task. First we planned to use a hidden profile decision task [18], 
making groups discussing the selection of a student from a set of students for 
admission in a programme in one session and the choice of a location for a shop from 
a number of possible locations in the other session [4].  However, a pilot test showed 
that people started reading their hidden facts from the paper during the discussion in 
order to find the best decision. As our intention was to observe the visual attention, it 
was decided to redesign the hidden profile tasks. All members received the same 
facts, but each participant had to defend a different position, representing a particular 
set of beliefs and values (a profile). E.g., for the student selection task one participant 
would emphasize financial incentives associated with admission of particular students 
whereas another member would emphasize intellectual ability. The goal of each task 
for the group was to reach consensus about the optimal choice during a 20 minutes 
group discussion. Users were told in advance that no task description would be 
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available during the discussion. First the experimenter instructed the participants to 
study their profile and the alternatives independently and make a preliminary choice. 
They had 15 minutes to write down and memorize the important arguments. In order 
to simplify the memorizing task, the amount of choice parameters was reduced and 
the number of options to choose from was limited to three for each task. The 
discussion began only when every member is ready; additional time was given on 
request. A pilot test showed that people discussed actively and defended their beliefs 
and values according to the profile very enthusiastically. The main tasks were 
counterbalanced with feedback conditions. The total duration of an experiment was 
about 2 hours. As in the first test, for the visualization condition a Wizard of Oz 
approach was applied.  

 
Participants. In total 44 (18 female and 26 male) participants took part in the 
experiment in groups of 4 persons. Members of at least two groups knew each other 
in advance. Participants were Dutch and foreign students and researchers of the 
different departments of the University (Technische Universiteit Eindhoven). The 
average age of participants was 29,5. All groups had members of both genders and 
were composed of the people of the same or close social status in order to prevent 
higher-status dominance [15]. In particular, students were in different group than 
senior researchers. One of the groups was eliminated from the data analysis due to 
missing speaking activity data for one participant, leaving 10 groups, comprising 40 
subjects. 

 
Measures. Measures for speaking time, attention from speaker and shared focus of 
attention were obtained from the log files of the Wizard codings, indicating speaking 
time and gazing behaviour for individual participants once a second. All parameters 
were expressed as percentages. For Speaking time, each participant’s speaking time 
was expressed as the percentage of time that participant had been speaking of the 
overall speaking time for that session. For Attention from the speaker, the attention 
for each individual participant when listening was expressed as the percentage of time 
that the participant had been looked at by the speaker, summing over the different 
speakers throughout the session. Shared attention for the speaker was expressed as the 
number of participants that had been looking at the speaker simultaneously, converted 
to percentages, for each individual participant when speaking. For instance, if during 
a particular turn all other three members had been looking at the speaker all the time, 
it would amount to 100% shared attention for that turn. If two speakers had been 
looking all of the time and the third listener not at all, it would amount to 67% shared 
attention. Percentages were summed across all turns of each individual participant. 

 
Quantitative results  
 
Speaking time. Figure 3 shows a scatter plot containing the speaking time (%) for 
each individual participant in the NoFeedback and the difference score in the 
Feedback and NoFeedback condition. As can be seen, there is a clear negative trend, 
meaning that participants who speak relatively much in the NoFeedback condition 
show a decrease in Speaking Time (a negative difference score) and participants who  
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underparticipate in the NoFeedback condition speak relatively more in the Feedback 
condition (show a positive difference score). The Pearson correlation is -.53, with an 
associated t of –3.88 (df = 38), p<.05. The same results are obtained if we compute 
the correlation on deviation scores for individual participants against the group mean. 
However, this analysis assumes that scores of individual participants are independent, 
which is clearly not the case. Therefore, we also computed deviation scores for each 
participant from the group mean (|ii=1,4-group mean|) and calculated the mean 
deviation per group in the no-feedback and feedback condition. In this analysis, the 
difference between no-feedback and feedback conditions was in the predicted 
direction (group mean deviation no-feedback: 9.07, feedback: 7.74) but not significant 
(t(9)=1.26, p=.24).  Thus, although we find some evidence supporting hypothesis 1, 
stating that speaking time will be balanced more equally in sessions with feedback 
than in sessions without feedback, the difference between the two conditions is not 
significant. 
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Fig. 3. Scatter plot of speaking time in NoFeedback condition and Difference score Speaking 
time Feedback-NoFeedback, for individual participants 

 
Attention from speaker. Fig. 4 shows a scatter plot containing the attention from the 
speaker (%) for each individual participant in the NoFeedback and the difference 
score in the Feedback minus the NoFeedback condition. As can be seen, there is a 
clear negative trend, meaning that participants who get relatively little attention from 
the speaker in the NoFeedback condition receive more attention from the speaker in 
the Feedback condition, while the reverse holds for participants who receive relatively 
much attention from the speaker in the NoFeedback condition. The Pearson 
correlation is -.36, with an associated t of –2.36 (df = 38), p<.05. Again, computing 
deviations from the group mean and comparing the mean deviation per group in the 
no-feedback and feedback condition showed that the difference between the no-
feedback and feedback condition was in the predicted direction but not significant: 
no-feedback: 9.45, feedback: 8.38 (t(9)=0.94, p=.37). Thus, although we find some 
evidence supporting hypothesis 2, holding that the attention from the speaker will be 
divided more equally between listeners in Feedback conditions than in NoFeedback 
conditions, the difference between conditions is not significant. 
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Fig. 4. Scatter plot of Attention from speaker in NoFeedback condition and Difference score 
Attention from Speaker Feedback-NoFeedback, for individual participants   

 
Shared attention. For shared attention, our hypothesis stated that there would be an 
overall increase in shared attention from the NoFeedback condition to the Feedback 
condition. This was not supported by the data, neither for individual scores (t(39)=-
1.81, p=.08)  nor for group means (t(9)=-1.78, p=.11), although the difference 
between the NoFeedback and Feedback conditions was in the predicted direction: 
68.17% shared attention for NoFeedback and 70.64 %shared attention for Feedback. 
So, hypothesis 3 is not confirmed.  

 
Questionnaire results. The results of the group process satisfaction show that the 
feedback had a positive influence on the group process satisfaction. All questionnaires 
used 7-point Likert-scales. Analysis of questions on satisfaction with the group process 
showed a significant difference between answers for Feedback and NoFeedback in 
favour of Feedback in 7 out of 15 questions.  

Table 1. Paired T-test for the Difference D between Feedback and NoFeedback condition 

Feedback-NoFeedback Mean D SD t Sig. 
Group participation worked very well 0.53 1.57 2.12 .04 
There was no disruptive conflict 0.63 1.74 2.28 .03 
Comments reflected respect for one another 0.40 1.24 2.05 .05 
Participants reached agreement 0.78 2.07 2.37 .02 
People were friendly 0.48 1.06 2.83 .01 
General quality of participants’ contributions 
was very good 

0.43 1.22 2.21 .03 

 

Table 1 shows the results for the statements where the largest scores were observed. 
Analysis of the satisfaction with the decision making process showed no significant 
result. Results for questions about satisfaction with the service were quite positive and 
all above the middle value. Results for additional questions demonstrated that it was 
not embarrassing for the users to have the feedback in front of the group (mean=4.97), 
and they didn’t find the information distracting (mean=4.25). Interestingly, even 
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though participants often looked at the information, they also could easily forget 
about it. In our vision this is the advantage of peripheral information. 

6   Conclusion and Discussion 

We have presented a visualization service that generates feedback on speech activity 
and visual attention for participants in small group meetings. Evaluations provided 
preliminary evidence that the feedback service affected the amount of time 
participants spoke during the meeting; also, we obtained preliminary evidence that 
feedback influenced the way speakers distributed their visual attention across listeners 
during the meeting. Finally, we found that the feedback had a positive influence on 
the group process satisfaction. No effect was found for Shared attention. Possibly, the 
presence of the visualization itself may have drawn visual attention of the participants 
away from the speakers, interfering with our predicted effects. Further analyses are 
needed to get a better understanding of the data.  

Several explanations may be conceived to explain the preliminary effects that we 
observed. At a basic level, the visualization may create a global awareness for social 
dynamics, as a result of which participants adjust their speaking behaviour and gazing 
behaviour. Alternatively, or in addition, the concrete moment to moment feedback 
may make participants aware that their current turn is getting rather long and that they 
are systematically neglecting particular listeners. Again, further analyses are needed 
to shed light on possible explanations. 

Finally, it needs to be pointed out that our current experiments and results concern 
situations where equal participation is valuable, since participants need to reach 
agreement and each participant’s viewpoint should receive due attention. Obviously, 
equal participation is not always useful. In a meeting where there is a chairman whose 
main purpose is to inform the audience, or when a team has invited an expert, one 
would not want the chairman or expert to pursue equal participation as an aim in 
itself, and a completely different rhythm of the conversation will be appropriate. 
However, even in those cases the speaker’s eye gaze may serve to make feel people 
connected and committed to contribute when appropriate. Thus, even though the 
precise patterns will differ across different types of meetings, we believe that 
feedback on social dynamics will help to improve meeting behaviour. 
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Abstract. In this paper, we present a multimodal discourse ontology
that serves as a knowledge representation and annotation framework for
the discourse understanding component of an artificial personal office
assistant. The ontology models components of natural language, mul-
timodal communication, multi-party dialogue structure, meeting struc-
ture, and the physical and temporal aspects of human communication.
We compare our models to those from the research literature and from
similar applications. We also highlight some annotations which have been
made in conformance with the ontology as well as some algorithms which
have been trained on these data and suggest elements of the ontology
that may be of immediate interest for further annotation by human or
automated means.

1 Introduction

People can communicate with great efficiency and expressiveness during natu-
ral interaction with others. This is perhaps the greatest reason that face-to-face
conversations remain such a significant part of our working lives despite the nu-
merous technologies available that allow communication by other means. Never-
theless, businesses spend millions of dollars each year conducting meetings that
are often seen as highly inefficient [1], and there is great interest in research-
ing these interactions to better understand them, create technology to facilitate
them, and assist in the recording and dissemination of their content.

To do this in a manner that is truly useful to organizations and desirable to
individuals, automated “meeting understanding” should encompass not only the
annotation of video and audio for playback, but the extraction of relevant infor-
mation at the level of semantics and pragmatics: what subjects were discussed,
what decisions were made, and what tasks were assigned [2]. Because natural
multi-party interactions are vastly complex, and because this information we
wish to extract is equally complex, of many different types, and expressed in
many different modalities, a meeting understanding system must have an inte-
grated and expressive model of meetings, discourse, and language supporting it
to effectively manage its knowledge.

For our meeting understanding system, a component of the Cognitive Assis-
tant that Learns and Organizes (CALO), knowledge integration and expression

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 162–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Multimodal Discourse Ontology for Meeting Understanding 163

is performed through the use of a formal ontology. Our work in the design of
this ontology parallels that which has has been termed “meeting modelling” [3],
“meeting ontology” [4], or “meeting data model” [5] elsewhere in the literature.
While other efforts of this kind are similar in purpose, to our knowledge, our
ontology is the only implementation that (1) integrates such a wide variety of
components, (2) is directly linked to a domain of understanding, and (3) uses
an expressive semantics for representation and inference.

In the following sections, we present our multimodal discourse ontology (hence-
forth, MMDO) and describe its purpose in the CALO system. Section 2 provides
a clearer problem definition in relation to similar research. In Sect. 3, we describe
the ontology itself in detail. Finally, in Sect. 4, we present some of the current and
potential functional uses of the ontology in performing automatic understanding
and annotation.

2 Background

There are currently multiple efforts being undertaken to create systems that
observe, organize, facilitate, or otherwise understand meetings automatically.
Each effort has brought forth distinct proposals for models of meetings and
their associated data. Many commonalities may be found between these models,
while in some cases, differing motivations and requirements have caused new
approaches to be taken.

One nearly universal motivation is for the support of human end-user applica-
tions. [5] proposes a model for meetings and meeting data intended for a meeting
browsing web tool; [3] describes a generic model for corpus-based multimodal
interaction research supporting remote conferencing and virtual simulation; [4]
describes an ontology of collaborative spaces and activities for meeting argumen-
tation structuring, navigation, and replay. Our ontology is designed similarly to
support human end-user applications like these, including a meeting browser
with search, summary, and playback capabilities and a proactive assistant for
relevant document retrieval during the meeting. Additionally, the system is de-
signed to answer user queries similar to those obtained in user studies such as
[6] and [2], each of which is formally encoded as a knowledge base query which
uses the ontology’s terminology.

In addition to considering the human end-user, the MMDO is also designed to
facilitate inter-process communication within an adaptive automatic discourse
and natural-language understanding architecture, which requires the modelling
of concepts that may not play a role for the user. Any information generated
by individual components, e.g. the speech recognizer or natural language parser,
must be specified in the model in order to be communicated system-wide, increas-
ing the ontology’s complexity and requiring that it take into account constraints
imposed by the functioning of system components.

The MMDO, as one of many subontologies in the CALO system ontology,
is a model and representation which is directly compatible with the ontologies
supporting CALO’s other functions, such as event calendaring, email and con-
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tact management, and task monitoring. Since these concepts and knowledge
about them are the very subject matter of the meetings we wish to automati-
cally understand, this compatibility allows our ontology to elegantly connect to
representations of discourse subject matter.

Another driving factor in our design is the system’s upper ontology. All on-
tologies in the CALO system are designed using the Component Library (CLib)
ontology [7], a library of generic atomic and complex concepts, each represent-
ing a type of entity, event, role, or property. While we will not describe imple-
mentation specifics in this paper, the reader should be aware that CLib and
CALO’s component ontologies, including the MMDO, are implemented by the
CLib maintainers in the Knowledge Machine language [8], an expressive frame-
based knowledge representation language with first-order logic semantics.

Our design of the MMDO, following the motivations presented above (see [9]
for a comparable set of motivations in the design of a dialogue act taxonomy),
is meant to remain flexible and generic. In many cases models are purpose-
fully underspecified to support further theory development. In others, system
requirements have prompted full specification of models that may change to ac-
commodate a more generic architecture. We will now turn to describing the core
ontology that is a foundation for the MMDO.

2.1 Upper Ontology

The CLib [7] serves as the CALO system’s upper ontology. Its components are
designed to be reusable and composable by non-experts and therefore take in-
spiration from natural language, causing its concepts to be relatively intuitive to
users. The principal division in the library is between Entities (things that are)
and Events (things that happen). Events are divided into States and Actions ,
where states are relatively static and brought about or changed by actions. In
addition, a Role is something an entity is in the context of an event. Compo-
sition is then achieved through the use of relations between components and
properties . Every concept in the MMDO described below is designed through
composition and relation to these and other previously defined components.

2.2 The CLib Communication Model

The CLib ontology includes a Communication Model (CM), a model of com-
munication and knowledge exchange between agents. It includes three layers,
representing the physical, symbolic, and informational components of individ-
ual communicative acts (the Communicate event); the events in these three lay-
ers typically occur simultaneously, transforming the communicated domain-level
Information into an encoded symbolic Message , from this message into a con-
crete physical Signal , and back again (see Fig. 1, where dashed lines divide the
layers). Events are depicted as ovals and Entities are depicted as darker rect-
angles. The arrows signify relations . The three layers may be interpreted as
aligning with the layers of joint action described in [10] at which communicative
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Fig. 1. The CLib Communication Model

grounding takes place. To complete the first layer, there must be attention; for
the second, identification; and for the third, understanding.

As a foundation for further development of the MMDO, we posit a func-
tional interpretation of the Communicate event that is appropriate for structur-
ing multi-party human dialogue. Namely, the Communicate event is taken to
serve the role of an atomic communicative act : a temporally contiguous commu-
nicative action with a possible interpretation and contextual significance, along
the lines of what may be called a speech act, dialogue move, dialogue act, or
conversational act/move in the literature. Its role in the ontology as described
below will serve as its formal definition.

3 The Multimodal Discourse Ontology

We now turn to describing the details of the MMDO. We present the ontology in
three parts proceeding conceptually from local to global elements. First, Sect. 3.1
describes extensions to the CM required to apply its internal model of commu-
nicative acts to natural multimodal communication; Sect. 3.2 then goes beyond
these internals to describe the discourse model that connects communicative acts
together and that defines their relationship to individual participants in a multi-
party discourse; finally, Sect. 3.3 describes our model of the meeting activity and
its relationship to the participants, the discourse, and the meeting environment.

3.1 Extending the Communication Model

At the level of individual communicative acts, our model uses the CM as a
starting point, but requires several extensions to take into account both the con-
stituent structure of natural language and the multimodal, multi-party nature
of meeting dialogue.

Multimodal Communication. The basic CM assumes a one-to-one map-
ping across its three layers, neglecting the multimodal co-expression of speech



166 J. Niekrasz and M. Purver

and gesture that is found in natural conversation [11] (e.g. simultaneous ver-
bal and gestural reference, as in “Can you pass me that [point] cup please?”).
To model multimodal communication, we extend this to multiple media via the
CLib concepts of Medium and Language , where a Signal must be transmitted
over some Medium and a Message must be encoded in some Language . For a
single Communicate event, we now allow the Encode action to produce a mul-
tiplicity of Messages , each in their own Language , which each generate their
own physical signal in some Medium . Speech is characterized as employing any
SpokenLanguage such as SpokenEnglish and the medium of Sound ; writing
of text employs a WrittenLanguage such as WrittenEnglish and the medium
of Ink ; natural human gesture employs the language of HumanGesture and the
medium of Light .

Additionally, the basic association of physical-layer events with various media
are encoded as definitional axioms for subclasses of the Embody event such as
Speak , Draw , and Gesticulate (Hear , Read , and See are encoded as subclasses
of Sense for the sensory half of the model). By asserting these latter physical-
layer events independent from the symbolic or informational layers, they may
optionally serve to represent events like coughing or accidental ink-marks that
are produced in the appropriate mode but determined to be without linguistic
or communicative function.

Constituent Structure. Despite our addition of a dimension supporting multi-
modality to the CM, there remains a single symbolic entity (a Message ) between
the physical signal and the domain interpretation for each mode. In extending
our model to natural language, and in particular when providing a basis for
automatic NL processing, we of course require a more complex representation
which includes not only the multiple layers of utterance representation in the
CM but also their internal constituent structure (representations of individual
words and phrases within utterances). While keeping to the CM model, we there-
fore take Messages as our equivalent of signs, with lexical, syntactic, semantic,
phonological, or semaphoric (gestural) representations expressed as properties
thereof.

Our framework follows that of the General Ontology for Linguistic Description
[12], positing a recursively-defined LinguisticUnit , which is the building-block
of Messages and is a Message itself. Units are then built into constructions
through composition, generating a LinguisticConstruction (a collection of
units forming its own unit), a LinguisticConstituent (one of two or more
units that form a construction), and a LinguisticAtom (a unit that is not a
construction). These generic classes are realized through medium- and language-
specific subclasses, allowing information in all modalities to be expressed in
the same framework. For written and spoken language, these specific subclasses
include Word and Sentence , together with sub-lexical units such as spoken
Phonemes and written OrthographicUnits . For graphical representations such
as whiteboard diagrams, they include atomic and compound DiagramObjects .
For gestural communication, they include units such as DeicticGesture and
IconicGesture , modelling the set of gestures termed “semaphoric” in [11].
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Physical Embodiment and Signal Segmentation. If we are to be able to
replay particular constituents for analysis, or to train processing components
(e.g. speech recognizers) based on their observed realizations, this linguistic con-
stituent structure must be linked to a parallel structure in the layer of physical
signals, and we therefore elaborate the CM one step further. We take the Embody
event to be composed of subevents that realize the individual constituents of
the Message , resulting in temporal sub-constituents of the overall Signal . This
provides us with an event-based (temporal) representation for the physical re-
alization of linguistic constituents, allowing a representation for language-based
signal segmentation of audio, ink, and video, a common task and important
requirement for linguistic and multimedia annotation (see [13] for a discussion).

Semantics. In the case of gestural acts such as DeicticPoint , knowledge of its
referent is enough to fully characterize the Information component in the com-
munication model. Units of natural language, however, are semantically more
complex and need to be annotated for meaning at their multiple constituent lev-
els. In the MMDO, this is handled by each linguistic constituent (including the
Message as a whole) potentially having a logical-form component, allowing
us to express not only the propositional content of the constituent, but also the
referential content of individual words and phrases where suitable. This com-
ponent is expressed using the CLib ontology and its component domain ontolo-
gies, realizing a direct link to the system’s knowledge base. Additionally, given
the high levels of uncertainty due to speech recognizer errors and ungrammati-
cal speech, full propositional semantic annotation will often not be possible for
the highest-level Message . However, in application we take a robust fragment-
parsing approach within a Davidsonian semantics, allowing us to posit event,
entity, and role representations wherever possible, while leaving other entities or
roles underspecified.

Communicative Roles. The basic CM contains a simple representation for
the relations that individuals have to a communicative act. They are either the
recipient or agent of the events in the model. For natural multi-party conver-
sation, this is overly simplistic. People may be overhearers of acts even though
they are not the direct addressees; and the intended addressee of an utterance or
gesture may be the entire group (e.g. lecturing), a subset (e.g. third-party talk),
or an individual. The basic model will therefore not support algorithms for ad-
dressee detection (and subsequently turn-taking and initiative management in
an interactive system). We therefore add Addressee and Overhearer to the set
of Roles that a Person may play in a Communicate event.

3.2 Modeling Discourse Structure

The extensions described so far are restricted to individual communicative acts.
This section describes further extensions that allow us to express relations be-
tween these acts, providing an integrated model of a Discourse event and its
structure.
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Dialogue Structure. Our notion of discourse structure is expressed by con-
sidering a set of Communicate events as dialogue moves, expressed via mem-
bership of particular subclasses and with their interrelation expressed via the
properties associated with these subclasses. Following e.g. [14], we class moves
at more than one nominally independent layer. At the most fundamental level,
we consider only a move’s effect on the immediate short-term context, and use
the generic act level of MALTUS [14] (compatible with the MRDA scheme
[15]). This includes the basic acts Statement , Question , Backchannel and
Floorholder , but not more intentional acts such as e.g. propose, challenge
(see below).

However, rather than simply label moves, we use their antecedent property
to express discourse structure directly, relating each move to its antecedent. At
this level we restrict moves to having a single antecedent, but allow multiple
moves to share the same antecedent; this results in a tree structure (follow-
ing [16]) able to express not only simple adjacency pairs but multiple possibly
simultaneous threads represented by the branches of the tree. We take each tree
to be a Discourse , a structurally related set of individual Communicate acts,
required to be semantically or pragmatically coherent via constraints on their
structural relations.

These constraints on the classes of move that can serve as each others’ an-
tecedents can of course be expressed directly by constraints on the antecedent

property associated with those classes (e.g. answers must have queries as an-
tecedents, backchannels must have antecedent moves with different speakers).
However, our intention is to model not only the move structure of the discourse,
but its effect on the emerging context, and so we combine this approach with
a notion of information state and constraints on its update. This allows us to
express the information-state update approach familiar in dialogue processing
([17] among others) directly within the MMDO, rather than requiring a sepa-
rate dialogue management module or rule set. As set out below, we believe this
is advantageous for automated processing and learning, allowing multiple con-
straint types to be considered simultaneously. The exact constraints will depend
on the model of information state used: in an obligation-based model an Ask

move can be associated directly with the introduction of an addressee’s obli-
gation to address the question; in a question-based model it can be associated
with the direct introduction of a new question under discussion [17]. Impor-
tantly, including these fine-grained semantic constraints does not commit us to
a bottom-up approach, building semantic interpretations and using them to de-
rive move type; on the contrary, standard dialogue move classifiers can be used to
hypothesize move types, and the information state constraints used to influence
or disambiguate semantic interpretation.

Argumentation and Decision-making. At a higher level of abstraction, we
also allow for a coarser-grained level of structure intended to model the argumen-
tative and decision-making processes of meeting discourse (embodying a notion
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similar to that of “rhetorical relations” or “discourse structure” in the analysis
of text) such as the raising of issues and the proposal, defense, rejection and
acceptance of alternative solutions to the issue [18]. We do not regard it as ei-
ther practicable or desirable to assign this structure at the level of individual
utterances (the level of individual Communicate acts assumed in the dialogue
structure of the previous section). Instead, raising issues or proposing alterna-
tives is a function often performed by segments of multiple utterances. A single
coherent proposal sequence might consist of multiple atomic statements and
questions, and it will be most useful to users to report it in this way. We there-
fore posit Communicate events that have multiple Encode subevents, spanning
those events which characterize dialogue moves. These higher-level acts of com-
munication characterize steps in a negotiative process such as Propose , Reject ,
and Accept , each acting on an Issue which is represented using the domain
ontology in the same manner as the logical form content of dialogue-level com-
municative acts.

3.3 Modeling the Meeting Activity

The previous sections describe a bottom-up discourse model, assembling a prag-
matically unified Discourse structure out of interrelated Communicate events.
However, meetings are not just discourse; they may include non-communicative
activities (e.g. note-taking, waiting for all to arrive) and multiple discourses (e.g.
simultaneous side conversations, dialogues separated by breaks for equipment
setup). The MMDO therefore models a Meeting as an independent class of col-
laborative Activity , an event that has a collection of component subevents ,
the majority of which are Discourses . Our only restriction on the subevents
is that they occur in one location over a contiguous period of time. As well
as the bottom-up characterization, we can therefore also segment Meeting and
Discourse activities in a top-down, coarser-grained way.

Coarse Segmentation. User studies such as [6] demonstrate that a temporally-
coarse characterization of a meeting can help users to extract information from
annotated meeting records. Automatic coarse segmentation of meetings has cor-
respondingly been the subject of much research, but approaches differ widely in
the concepts of segment used. One approach is to segment according to “group
actions”, recognizing physical group activities using speech and/or multimodal
features of the discourse [19–21]. The taxonomies used combine a high-level anal-
ysis of discourse type (e.g. monologue and discussion) with physical actions of the
participants (e.g. presence at the whiteboard and note-taking). In earlier work
[22, 19], the taxonomy included activities based on an argumentative dimension
of the discourse (e.g. consensus and disagreement), though these do not appear
in later analysis. [5] suggest a similar set of “meeting activities” but include
a wide variety of other concepts like voting, multiple simultaneous discussions,
and silence. A contrasting approach [23] suggests a simple taxonomy contrast-
ing multi-party, multi-directional exchange of information with uni-directional
exchange, to attain high coverage and low ambiguity. In addition, segmentation
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can also be driven by content – e.g. [24] incorporate lexical features to segment
discourse by topic.

It is clear from this variety of segmentation methods that no single segmenta-
tion nor taxonomy of segments is objectively optimal. Nevertheless, each type of
segmentation is likely to provide a useful means for meeting browsing, summary
and information retrieval. Therefore, rather than identifying a single taxonomy
of segment classes in the MMDO, we have adopted the aims of high coverage,
low ambiguity, and high inter-annotator agreement highlighted in [23] and [9],
and have identified a number of nominally independent dimensions over which
either a Meeting or Discourse can be usefully segmented and classified.

At a coarse-grained level, a Meeting may be segmented along the dimen-
sions of physical state and agenda state. Physical state depends only on the
physical activities of the participants (for example, all participants being seated
around a table, vs. one being at the whiteboard while the rest are in their seats).
Agenda state refers to the position within a previously defined meeting structure,
whether specified explicitly as an agenda document (providing a list of classes)
or as directed by a meeting leader.

At a similar level of granularity, Discourses may be segmented along the di-
mensions of information flow and topic. Information flow describes the general
discourse type (e.g. is the subject matter open for discussion with participation
by several parties, or is there a one-directional flow as in a presentation or brief-
ing) [23]. Topic then describes the coherence of the theme or semantic content
of the discussion (we expect this to align significantly with the agenda state for
some meeting types). We anticipate that both of these dimensions will be useful
for browsing and summarization of meetings, and have produced annotations
and initial algorithms to support doing this [25]. We also anticipate that finer-
grained segmentations of Discourses may be useful, for example according to
floor-holding activity, and include this ability in the MMDO.

Participant Roles and Segment Classes. In each of the above dimensions,
segments may then be classified and participants assigned roles in those events.
While we have yet to define a comprehensive set, we provide some potential
examples to clarify.

In the dimension of physical state, a frequent suggestion in the literature is
for a segment class of “presentation” or “whiteboard” [19–21]. In our model,
the physical state of being at the whiteboard is represented independently of an
information flow dimension. Thus, for the segment in the latter dimension, the
roles of InformationProvider and InformationConsumer are specified (see
[23]); while the segment in the former dimension will require a single role of one
person at the whiteboard.

As a further example, in the turn-taking dimension, a single person may be
said to be the FloorHolder for some segment of a Discourse , and the ontology
may assert the constraint that only one person may play this role. Of course,
this state will be affected by the floor-handling nature of communicative acts
and constraints may be imposed on this relationship in the ontology as well.
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4 Automatic Processing and Annotation

The depth and breadth of the ontology mean that it provides not only a complete
basis for knowledge storage and annotation, but also a framework for automated
communication between software agents. A multi-agent system has been built in
collaboration with other project partners that populates a knowledge base with
the fundamental physical signal information (video, audio, and sketch) recorded
during a meeting. Given that information, separate interpretive agents populate
the knowledge base with instances of the classes described above, building up a
representation of the discourse, using each others’ assertions as a foundation (see
[26] for a more application-relevant discussion of the ontology along these lines).

Our first step in applying this software framework as part of CALO has been to
create algorithms for adaptive topic segmentation and classification. A number
of different approaches have been investigated, both discriminative (including
decision trees based on lexical and discourse information such as speaker activity
changes and the proportion of silence, following [24], and maximum entropy
models based on simple lexical features) and generative (adapting [27] to model
discourse topic shifts as changes between states in a topic-word Markov model).
Results so far are encouraging, with Pk error levels against a set of human
annotations approaching 30% (a level not far from typical human annotator
agreement, see [25]) for individual classifiers.

5 Future Work

Both human and automated annotation of meetings is currently being performed
using this framework for a set of meetings being collected at multiple institutions.
However, some elements of the MMDO framework have not yet been applied
to these data, and in the future we expect to address these elements, which
include principally the argumentative and decision-making aspects, semantic
alignment with domain ontologies, and detection of floor-holding mechanisms
and addressee detection. Additionally, we are planning to use the availability of
simultaneous multimodal information to learn classifiers for multimodal speech
act detection (using not only prosodic and lexical information, but the semantic
parser output). We are also working on a software framework called NOMOS
to support flexible human annotation and visualization using this and other
ontology-based models [25].
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Abstract. We present a novel approach to developing interfaces for
multi-application dialogue systems. The targeted interfaces allow trans-
parent switching between a large number of applications within one sys-
tem. The approach, based on the Rapid Dialogue Prototyping Method-
ology (RDPM) and the Vector Space Model techniques, is composed of
three main steps: (1) producing finalized dialogue models for applications
using the RDPM, (2) designing an application interaction hierarchy, and
(3) navigating between the applications based on the user’s application
of interest.

1 Introduction

A multi-application dialogue system is defined as a dialogue system allowing the
user to navigate between a set of applications. Applications considered range
from simple tasks such as operating a home device or booking a flight to more
complex tasks such as controlling a smart-room or managing the (road) traffic.

To date, due to the complexity of the management of language interfaces and
their strong dependence on the interaction context, a really generic approach for
multi-application dialogue design does not yet exist; each application or a set
of applications requires the development of a specific model. Multi-application
dialogue model prototyping therefore represents a significant part in the devel-
opment process of multi-application interactive systems. However, most current
prototyping methods are limited to the development of dialogue systems working
on a single application or a small set of applications [3], [8], [10], [12].

In this perspective, we aim at developing a generic dialogue modeling method-
ology for the efficient production of interfaces for multi-application dialogue
systems. The targeted interface allows transparent switching between a large
number of applications within one system. The approach, based on the Rapid
Dialogue Prototyping Methodology (RDPM1) [1] and the Vector Space Model
(VSM) techniques, is composed of three main steps: (1) producing finalized di-
alogue models for applications using the RDPM, (2) designing an application
interaction hierarchy based on VSM techniques, and (3) navigating between the
applications based on the user’s application of interest.
1 A methodology allowing a quick production of frame-based dialogue models.

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 174–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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These steps are described in sections 2, 3, and 4 respectively. A scenario
example for producing a dialogue system accessing 10 applications in the ICIS
domain 2 is presented in section 5. Finally, in sections 6 and 7 we summarize
the main points of the paper and possible further extensions of the methodology
respectively.

2 Producing Finalized Dialogue Models for Applications
Using the RDPM

The finalized dialogue model for each application can be quickly produced using
the RDPM.

The general idea underlying the RDPM is that the dialogue model is a frame-
based model that can be quite easily and systematically derived from a relational
representation of the application itself, hereafter called the task model. More pre-
cisely, the RDPM consists of five main consecutive steps, namely: (1) producing
a task model for the targeted application; (2) automatically deriving an initial
dialogue model from the produced task model; (3) using the generated interface
to carry out Wizard-of-Oz experiments (i.e. dialogue simulations) to improve
the initial dialogue model; (4) carrying out an internal field test to further refine
the dialogue model (reformulation of system messages, improved feedback, etc.),
and to validate the evaluation procedure (coherence, understandability); and (5)
carrying out an external field test to evaluate the final dialogue model according
to the evaluation procedure defined during the internal field test. Steps 1 and 2
are briefly described in the next sections in the context of producing finalized di-
alogue models for applications, the remaining steps are described in detail in [1].

2.1 Task Model

In the RDPM, an application is seen as a set of functions the user can invoke
through a multimodal interface to perform the various functionalities provided by
the application. In this perspective, an application is modeled as a solution table
[1], where the rows correspond to the possible functions (also called “solutions”
or “targets”) and the columns are the attributes needed to uniquely identify each
of the functions, and to invoke it. In other words, the values of the attributes
in a row of the solution table (also referred to as canonical values) correspond
to the values of the arguments of the function, the call of which results in the
fulfillment of the corresponding application functionality. For example, in the
ICIS domain, the task model for the patient search can reduce to a single generic
function select patient(name, age, address,...), the attributes of which
identify the selection features available for the patient search. Therefore, the task
model of the patient search is a solution table with as many columns as there are
attributes, the rows of which are the various value combinations corresponding to
2 ICIS stands for Interactive Collaborative Information Systems, a Dutch research

project which aims at developing intelligent collaborative information systems tech-
nology in order to reduce risks and damages in chaotic complex environments.
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patients. At the computational level, the calls to the select patient() function
are implemented in the form of SQL queries to the solution table containing the
required information.

2.2 Finalized Dialogue Model for a Single Application

In our approach, a finalized dialogue model is defined as a set of interconnected
multimodal Generic Dialogue Nodes (referred to as mGDNs [9]), where each of
the dialogue nodes is associated with one of the attributes (also called “slots”
or “fields”) in the solution table. In complex applications, these mGDNs are di-
vided into groups, where each group is considered as an object and the mGDNs
in the group are attributes of the object. For instance, the First Name, Last
Name, and Function mGDNs belong to the Person group. For any given slot,
the role of the associated mGDN is to perform the simple interaction with the
user that is required to obtain a valid value for the associated attribute. In the
architecture that we have selected for the implementation of our multimodal
dialogue-driven interfaces, the processing of the mGDNs (i.e. the actual interac-
tion with the user according to the specification of the mGDNs) is performed by
a specific module called the local dialogue manager. However, this is, of course,
not sufficient to carry out any real dialogue: some form of global dialogue man-
agement also has to be integrated. For example, in addition to the definition of
the mGDNs and the specification of the local dialogue manager, some branch-
ing logic responsible for the management of the global dialogue flow needs to
be specified. In our approach, this branching logic is hard-coded in a specific
dialogue management module, called the global dialogue manager. The under-
lying assumption is that the encoded local and global dialogue flow manage-
ment strategies are indeed application-independent, i.e. that, in most situations,
they lead to an acceptable, though not always optimal behavior for the sys-
tem. Consequently, in our approach, dialogue model design essentially reduces
to the application-dependent, declarative specification of the mGDNs, the en-
coded dialogue management strategies being used without modification for all
applications. In short, a finalized dialogue model consists of two main parts: (1)
the application-dependent, declarative specification of the mGDNs; and (2) the
application-independent (local and global) dialogue flow management strategies
encoded in the corresponding (local and global) dialogue manager. Both of these
components are described in more detail in [1].

2.3 System Architecture

The general architecture of the dialogue system corresponding to each single
application produced by the RDPM is represented in Fig. 1.

Three input modalities: voice, text and pointing can be used independently or
simultaneously depending on the configuration of the current active mGDN [9].
These inputs are pre-processed by the Natural Language Understanding (NLU)
modules and the Pointer Understanding (PU) module. The outputs from NLU
and PU modules are semantic triples (attribute, value, time-stamp). The fusion
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Fig. 1. Architecture of dialogue systems produced by RDPM

manager integrates the semantic triples receiving from the NLU and PU modules
and sends a set of integrated semantic triples to the dialogue manager. In the
current implemented version, the fusion manager simply collects the semantic
triples based on their time-stamp relation and forwards them to the dialogue
manager.

The dialogue manager encodes the local dialogue flow management strategy
and global dialogue management strategy. Therefore, the input to the dialogue
manager is first processed by the local dialogue management strategy in which
we define five types of generic situations: OK, Request for Repetition, Request
for Help, NoInput, and NoMatch [1].

In the case of the OK situation, control is handed back to the global dialogue
manager which applies the global dialogue management strategy for the activa-
tion of the next mGDN. The dialogue state information (e.g. the current dialogue
state, the active mGDN, etc.) and the recognized semantic triples are updated
to the dialogue state info module and the dialogue history module respectively.
When the dialogue manager gathers enough constraints 3, it sends the request
to the action manager, the application connected with this module performs the
task and sends the feedbacks to the action manager, the action manager then
forwards these feedbacks to the dialogue manager. In addition, functions related
with user modeling and system customization have been integrated such as Re-
set Patterns and Custom Actions. Reset Patterns allows the system to adapt to
the behavior of a specific user or population of users by anticipating their next
decisions. The idea is to develop an intelligent reset algorithm that estimates the
most probable values for some mGDNs slots in a new dialogue session accord-
ing to the previous interactions with the user. Custom Actions allows the users
to dynamically associate sequences of solutions with a single new solution. The
main goal of these two functions is to reduce the time to perform a task with the
interface. The hypothesis is that these functions will indeed increase the quality

3 This happens when the number of solutions (extracted from the solution manger)
satisfying the current constraints is smaller than or equal to a pre-defined solution
threshold.
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of the interaction as perceived by the user. These two functions are described in
detail in [2].

The outputs from the dialogue manager to the visualizer are multimedia
prompts containing messages and a pointing zone update content. The mes-
sages are visualized in the user interface (Prompt Visualizer) and/or uttered by
the mGDN during the interaction (Prompt Synthesizer). The messages are com-
bined with the pointing zone update content (the content is a map, a calendar
or a table depending on the nature of the mGDN) to allow the user to provide
the desired values using keyboard, microphone or mouse click/touchscreen.

3 Designing an Application Interaction Hierarchy

In section 2, we showed that it is possible to produce n finalized dialogue models
M0, M1, ..., Mn−1 from n applications A0, A1, ..., An−1 using the RDPM 4, the
question is how to integrate these applications in one unique system (i.e. multi-
application dialogue system).

Vrugt and Portele [12] introduced a dialogue system accessing multiple ap-
plications with a dynamic setup that can be changed at run-time. Their goal
is achieved by application-independent knowledge processing inside the dialogue
system based on modular ontological descriptions. They also define a clear inter-
face between a dialogue system and applications by realizing a generic dialogue
functionality on top of the application independent knowledge processing. This
approach assumes that the user knows exactly which application he is going
to interact with and therefore it is not scalable to the development of dialogue
systems with a large number of applications.

Carroll and Carpenter [3] developed a call-routing dialogue system using the
VSM techniques. The system allows routing the user’s telephone call to the right
department. Two main modules in the system are the routing module and the
disambiguation module. When the routing module returns more than one can-
didate applications, the disambiguation module is invoked. The disambiguation
module determines the number of terms relevant to the user’s request (say n)
and uses a YN-question (n = 1) or a WH-question (n > 1) to identify the desired
application (i.e. the department) or transfers the call to the operator (n = 0).
The authors do not view each application as a finalized dialogue model, therefore
no further interaction happens when an application is identified.

We organize applications in a hierarchy since it allows flexible dealing with
a large number of applications [4]. The hierarchy can be created manually or
automatically. When the number of application is large (hundreds, thousands,
or more 5), it is difficult to create the hierarchy manually, therefore an automatic
process is suitable for this case. In our approach, the hierarchy is produced
automatically using VSM techniques and an hierarchical clustering algorithm.

4 Each application can have its own set of input modalities as described in section 2.3.
5 We assume that each application is described by an associated textual document

and the main goal is to find out the user’s application of interest.
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3.1 Application Interaction Hierarchy

An application interaction hierarchy is an m levels hierarchy of n finalized dia-
logue models consisting of three types of nodes:

1. Root (level: m-1): unique node on the top of the hierarchy.
2. Internal nodes (level: from m-2 to 1): each internal node consists of at least

two child nodes, a child node can be an internal node or a leaf. The hierarchy
accepts lattice nodes (i.e. internal nodes, each of them has more than one
father node).

3. Leaves(level: 0): correspond to n applications.

An application interaction hierarchy (n = 10) is represented in Fig. 4.

3.2 Vector Space Model for the Finalized Dialogue Models

We assume each finalized dialogue model which the production is described in
section 2 is characterized by a textual description of the associated application.
The textual description can be extracted from the mapping tables (cf. Fig. 1).
We represent these descriptions by k-dimension vectors d0, d1, ..., dn−1 using the
VSM techniques.

The following paragraph presents the process of producing vectors and com-
puting the similarity between the textual descriptions of the applications using
the standard VSM technique (in the implementation phase, a suitable VSM
and the number of index terms are selected based on the content of textual de-
scriptions. For example, in case the textual description is a set of sentences, a
semantic VSM taking into account the dependence between terms such as [11]
is appropriate):

1. Produce index terms from the textual descriptions
We analyze the textual descriptions using Natural Language Processing
(NLP) techniques (syntactic analysis, morphological & stop words filtering,
term extraction) to produce k index terms: t1, t2, ..., tk.

2. Construct occurrence matrix F
A description is represented by a lexical profile: di = (wi0, wi1, ..., wik−1).
wij is the weight (or importance) of the jth indexing term tj in the textual
description di. wij is often simply the number of occurrences of tj in di or
the inverted occurrence frequency.
The n × k occurrence matrix F:

F =

⎛⎜⎜⎝
d0
d1
...

dn−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
w00 w01 ... w0k−1
w10 w11 ... w1k−1
... ... ... ...

wn−10 wn−11 ... wn−1k−1

⎞⎟⎟⎠
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3. Compute the score (or measure the similarity)
The most common similarity measure for the standard VSM is the cosine of
the angle between the vectors:

sim(di, dj) = cos(−→di ,
−→
dj) =

k−1
p=0(wip×wjp )

k−1
p=0 w2

ip
× k−1

p=0 w2
jp

.

We use this measure to determine the similarity between two applications,
i.e. the score between Ai and Aj : s(Ai, Aj) = sim(di, dj).

3.3 Hierarchical Clustering Algorithm

From the vectors d0, d1, ..., dn−1 and their similarity computation produced in
3.2, we use the hierarchical clustering algorithm [7] to produce the application
interaction hierarchy:

1. Consider each di is a single cluster, we have n clusters, the distances between
a pair of clusters i and j (in this step): D(i, j) = 1 − sim(di, dj).

2. Find the most similar pair of clusters (i.e. min(D(i, j))) and merge them into
a single cluster, so that we have one cluster less.

3. Compute distances between the new cluster and each of the old clusters.
4. Repeat steps 2 and 3 until all items are clustered into a single cluster of

size n.

Step 3 can be done in several ways such as single-linkage, complete-linkage,
or average-linkage clustering [6]. Applying the single-linkage, the formula to cal-
culate the distance between two clusters C1, C2:

D(C1, C2) = min
i∈C1,j∈C2

[D(i, j)]

The output of the presented clustering algorithm is a binary tree (Fig. 3), this
tree is transformed to an application interaction hierarchy based on the degree
of similarity between the applications 6 (Fig. 4).

4 Navigating Between Applications Based on the User’s
Application of Interest

The system aims to find out the target application with a minimal number
of dialogue turns. Based on the application interaction hierarchy produced in
section 3, the preliminary experimented work presented in [5], and the textual
content provided by the user, the user-system interaction process is described in
detail in the following algorithm:
6 For example, if a node N1 has two child nodes (N2, N3) and N2 has two child nodes

N4, N5 and [D(N2, N3) − D(N4, N5)] ≤ α, α is a predefined threshold, then N2 is
removed; N4, N5 become the child nodes of N1.
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1. Start
The system starts with a generic prompt: “What can I do for you?” (similar
to the internal GDN “Start” described in [1]).

2. Active node determination
When receiving a user’s request, the system first represents the request in the
form of a vector q = (q1, q2, ..., qk) using the set of k index terms described
in section 3.2, and then determines the active node on the hierarchy by the
following steps:
(a) Score computation

Compute the similarity between q and d0, d1, ..., dn−1, we obtain a set of
scores s0, s1, ..., sn−1: si = sim(di, q).
For example, in Fig. 2 we have s0 = 0.85, s1 = 0.9, ..., s9 = 0.15.

(b) Upward propagation
Select the best scores at each level and propagates them upward until
the root is reached.
For example, in Fig. 2 we have s0−2 = max(s0, s1, s2) = 0.9.

(c) Downward traversal to determine the active node
Start from the root, compute the difference between two highest score
child nodes, if this difference is below a certain threshold (we call this
threshold the internal node stop threshold ts : (0 < ts ≤ 1)), then stop.
If not, go down to the highest score child node and continue to determine
the active node.
For example, in Fig. 2, starting from M0−9, we calculate the difference
between M0−4 and M5−9: dif(M0−4, M5−9) = 0.4, it is greater than
ts = 0.15, then we go down to M0−4, we still have dif(M0−2, M3−4) = 0.2
is greater than ts then we go down to M0−2, we have dif(M0, M1) =
0.05 < ts then M0−2 is the active node.

M0 M8M7M6M5M4M3M2

M0-2 M3-4 M5-7 M8-9

M0-4 M5-9

M0-9

M1 M9

User’s query

0.85 0.9 0.8 0.5 0.7 0.40.3 0.25 0.1 0.15

0.9 0.7 0.4 0.15

0.40.9

0.9

tl = 3, ts = 0.15

Fig. 2. Determine the active node based on the user’s query

3. Response generation
The active node identified in the previous steps can be a root, an internal
node or a leaf. Two types of response depending on the position of the active
node are:
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(a) The active node is the root or an internal node
In this case, the functionality of the active node is similar to the list
processing GDN described in [1]. The system shows a list of application
candidates belonging to the active node and their score is not below the
highest score leaf outside the active node (e.g. in fig. 2, M4 is the highest
score leaf outside the active node M0−2). To avoid showing a bulky list to
the user (particularly in case of vocal dialogue), the maximum number of
application candidates is limited by a threshold called the list processing
threshold tl, with tl is a positive interger. The user can determine to
go next (i.e. show the tl following application candidates), previous
(i.e. show the tl previous application candidates), stop (i.e. restart the
dialogue), up (i.e. move to the upper level on the hierarchy), down (i.e.
move to the highest score child node), or select the desired application.
If the user does not change the active node (i.e he does not use the
command up or down) and after browsing all the applications (belonging
to the active node) he could not find his desired applications, the system
temporarily assigns the scores of the browsed leaves to zero and goes
back to step 2b.

(b) The active node is a leaf
The application takes control and interacts with the user as an appli-
cation-specific dialogue system. If the user’s request is out of the
application’s domain, go back to step 2.

An example of the algorithm with n = 10 and tl = 3 is presented in Fig. 5
and explained in detail in section 5.3.

5 Scenario Example

This section illustrates, on the global level, the process of developing a dialogue
system accessing 10 applications in the ICIS domain using three steps presented
in sections 2, 3, 4. The applications are: car route navigation (A0), air route nav-
igation (A1), traffic lanes (A2), map and fire management (A3), tunnel sensors
management (A4), weather forecast (A5), virtual control room (A6), road sur-
face temperature monitoring (A7), patient information search (A8), and medical
worker verification (A9).

5.1 Step 1

Applying the RDPM, we produce the finalized dialogue models: M0, M1, ..., M9.

5.2 Step 2

From the finalized dialogue models, we create the application interaction hier-
archy (cf. Fig. 4). Finalized dialogue models for the root and internal nodes are
the list processing mGDNs produced by the RDPM.The role of each node is to



GDM for Multi-application Dialogue Systems 183

M0 M8M7M6M5M4M3M2

M0-2

M3-4

M5-7

M8-9

M0-4 M5-9

M0-9

M1 M9

M0-1 M5-6

Fig. 3. Binary tree

M0 M8M7M6M5M4M3M2

M0-2 M3-4 M5-7 M8-9

M0-4 M5-9

M0-9

M1 M9

A0 A9A8A7A6A5A4A3A2A1

Fig. 4. Application Interaction Hierarchy

select a subset of the applications belonging to it, for example the role of M0−2
is to select a subset of {A0, A1, A2}.

5.3 Step 3

An example of the system-user interaction is presented in Fig. 5. The “Start”
mGDN sends the system’s prompt S1 to the user. According to the content of
the user’s prompt U2, the active node M0−2 is determined. M0−2 asks the user to
select an application from the list {A0, A1, A2} (all three applications are shown
because tl = 3). Based on the user’s answer in U4, M0 is activated. In steps
from 5 to k − 1, M0 interacts with the user as an application-specific dialogue
system. In step k, the user’s request Uk is out of M0’s application domain, M0
then forwards Uk to the system. The system analyzes Uk and activates M8. M8
continues the interaction with the user and processes the out of the application
domain case in a similar manner M0 has done.

M0 M8M7M6M5M4M3M2

M0-2 M3-4 M5-7 M8-9

M0-4 M5-9

M0-9

M1 M9

A0 A9A8A7A6A5A4A3A2A1

S1: What can I do for you?

U2: Give me the direction to the tunnel.

S3: Please select the application from the 
list: (1) car route navigation, (2) air route 
navigation, (3) traffic lanes

U4: One

S5: First, you need to go from Twente 
airport, ...

...

Sk-1: What else do you want?

Uk: Umm, I want to find some 
      information about a patient.
Sk+1: Seeking for the patient information. 
        What is the patient’s name?

2'

1

2

3

4

4'

k-1

5

k

k+1

k'

k”

Start tl = 3

Fig. 5. Navigating between the applications
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6 Conclusion

We have presented a framework for the development of interfaces for multi-
application dialogue systems. Three important steps in the framework are de-
scribed and illustrated by a scenario example.

Currently, the RDPM software toolkit is available for the development of fi-
nalized dialogue models for single applications. It has been used in three research
projects: InfoVox 7, INSPIRE 8, IM2.MDM 9 to validate the principle idea of
the methodology, and is being extended for the development of a large num-
ber of applications in the ICIS domain. The practical result shows that from a
simple application, we can develop an initial dialogue model in several hours.
The dialogue manager, the most important part of dialogue prototyping, covers
most of the application independent dialogue functionalities (i.e. branching logic,
dialogue dead-end management strategy, confirmation strategy, dialogue termi-
nation strategy, incoherencies, strategy defining level of initiative, etc.) There-
fore, we can re-use the dialogue manager and the other modules described in
section 2.3 for the development of multi-application dialogue systems.

Some initial work toward developing the application interaction hierarchy and
navigating between the applications (sections 3 and 4) has been analyzed and im-
plemented (e.g. NLP Pre-Processing Tool, VSM). The multi-application dialogue
system for ICIS domain presented in section 5 is currently under development.

7 Future Work

Two main possible extensions of the generic dialogue modeling methodology we
plan to study in the future are crossing-application and task selection.

7.1 Crossing-Application

The application interaction hierarchy created in section 3 can be used to manage
several concurrent applications (i.e. crossing-application). This extension is sig-
nificant when the user wants to simultaneously execute several applications in or-
der to achieve his goal in an optimal way. For example, in the scenario presented
in section 5, the user’s goal is to find out an optimal route for sending a rescue
team to the disaster site. Suppose that the system contains two applications,
the car root navigation application and the traffic lanes application. Obviously,
if the user can interact with both these applications simultaneously, his goal can
be more quickly satisfied than he does with each application sequentially.

7.2 Task Selection

In the definition of the application interaction hierarchy in the section 3.1, we
mentioned that each leaf corresponds to an application. In task-oriented dia-
7 http://liawww.epfl.ch/Research/infovox.html
8 http://www.knowledge-speech.gr/inspire-project/index.html
9 http://www.issco.unige.ch/projects/im2/mdm/
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logues, each application usually consists of several tasks. We can extend the
hierarchy for identifying a task or a set of tasks in an application. To achieve
this goal, the hierarchy will be constructed from the set of tasks in the same way
we have done for the set of applications. Further work on task sharing (i.e. one
task appears in several applications) will be studied.
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Abstract. We present baseline results for the joint segmentation and
classification of dialog acts (DAs) of the ICSI Meeting Corpus. Two sim-
ple approaches based on word information are investigated and compared
with previous work on the same task. We also describe several metrics
to assess the quality of the segmentation alone as well as the joint per-
formance of segmentation and classification of DAs.

1 Introduction

As spoken language technology research moves toward more complex domains,
further processing of the stream of words provided by a recognizer is often neces-
sary. To support higher-level tasks such as information retrieval and summariza-
tion [1, 2], the input speech signal must be segmented into meaningful units, for
example dialog acts (DAs). The five DA types used in this work are statements,
questions, backchannels, floorgrabbers, and disruptions. The task we investigate
here is how to split a stream of words into non-overlapping segments of text
and assigning mutually exclusive DA types mentioned above to these segments.
While this task description suggests a sequential solution, an approach based on
joint segmentation and classification most likely performs best because knowl-
edge of the classification might also improve the segmentation. We use the term
joint segmentation and classification for systems that do not implement this task
in the form of two independent modules running in sequence but produce their
final result by taking into account information from both the segmentation and
the classification.

Previous work mainly concentrated on either the segmentation of speech into
sentences [3, 4] or the classification of already segmented text into various sets
of DA types [5–8]. For automatic segmentation of speech it remains unclear how
well a subsequent component can handle segmentation errors. For the latter
case, the classification of DAs, it is typically assumed that the true segmenta-
tion boundaries are provided. As a consequence, a degradation of the perfor-
mance due to imperfect segmentation boundaries must be expected. To provide
more realistic results for the task of automatic segmentation and classification
of DAs, a sequential approach is described in [9]. Results for the related task of

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 187–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



188 M. Zimmermann et al.

subtype detection for sentence-like units (statements, backchannels, questions,
or incomplete) for broadcast news and spontaneous telephone conversations were
reported in [10]. In this paper we make a first attempt toward joint segmentation
and classification of DAs on the ICSI (MRDA) Corpus [11].

2 Methodology and Performance Metrics

For the joint segmentation and classification of DAs, two simple techniques
are investigated in this paper. The first technique is based on a hidden-event
language model (HE-LM) described in [12], and the second relies on a hidden
Markov model (HMM) based tagger. The HE-LM is frequently used for detec-
tion of sentence boundaries [9, 4], where after each word the model predicts a
nonboundary or a sentence boundary event. In contrast, we use the HE-LM to
predict not only a DA boundary or a nonboundary event, but the type of the DA
boundary at the same time. This extension to [12] was also used in [3] to detect
sentence boundaries and 5 different types of disfluencies. In our case the DA-
specific boundary posterior probabilities are computed using forward-backward
dynamic programming. The model can be seen as an nth order HMM in which
the word/event pairs correspond to states and the words to observations, with
the transition probabilities given by the n-gram LM.

The second technique relies on the concept of disambiguation of words, which
is widely used in the form of HMM-based part of speech (POS) taggers. In
our case a conventional n-gram LM is used to model the priors of sequences
((w1, d1), (w2, d2), . . . (wn, dn)). The wi are the words from the lexicon provided
by the speech to text (STT) system and the di represent specific DAs, such as
statements, questions, etc. To model segmentation boundaries between words
of the same DA type, the lexicon of the DA types also includes special symbols
indicating the first word of a new DA (e.g. the symbol S+ tags the first word of a
statement, while the other words of a statement are tagged with an S). Mapping
probabilities p(w|(w, d)) are then estimated from the LM training corpus. Note
that compared to the conventional way of POS tagging based on HMMs, our
model states do not correspond to the tags only, but to joint events of words and
tags. Simple add-1 smoothing is applied to account for unseen word-DA combi-
nations. Finally, the sequence ((w1, d1), (w2, d2), . . .) with the highest posterior
probability is computed for a provided input sequence (w1, w2, . . .).

To assess the performance of joint segmentation and classification of DAs,
a number of measures have been proposed. We first describe two metrics for
the measurement of the segmentation performance before metrics for the joint
segmentation and classification of DAs are explained. The NIST-SU metric was
used to report the segmentation performance in previous work [9] and has been
defined by NIST for the EARS MDE evaluations [13]. As this measure takes into
account only the local correspondence of reference boundaries and boundaries
computed by the system, a direct interpretation of the resulting error rates is not
always easy. To provide a more intuitive metric we propose the DA segmentation
error rate (DSER), which measures the percentage of wrongly segmented DA
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Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
NIST-SU C E E C C E E C
DSER C| E | C |E| E |

Metric Errors Reference Units Error Rate

NIST-SU 3 FA, 1 miss 5 boundaries 80%
DSER 3 match errors 5 DAs 60%

Fig. 1. Two metrics for the assessment of segmentation performance. S, Q, B, and D
represent words of statements, questions, backchannels, and disruptions. DA bound-
aries are indicated using the symbol ‘|’, while ‘.’ is used for nonboundaries. Errors and
correct cases are indicated using letters E and C.

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
NIST-SU C E E C E E E C
Lenient C C E C C E E E E C C
Strict C E E E E E E E E E E
DER C| E | E |E| E |

Metric Errors Reference Error Rate

NIST-SU 1 sub., 3 FAs, 1 miss 5 boundaries 100%
Lenient 5 match errors 11 words 45%
Strict 10 match errors 11 words 91%
DER 4 match errors 5 DAs 80%

Fig. 2. Comparison of metrics to measure joint performance of segmentation and clas-
sification of DAs

segments. A DA is considered to be mis-segmented if and only if its left and/or
right boundary does not correspond to the reference segmentation exactly. This
implies that the DSER metric penalizes missed cases more than false alarm (FA)
cases, compared to the NIST-SU metric. See Fig. 1 for an illustration.

For the assessment of the joint performance of the segmentation and classi-
fication of DAs, four different metrics are used in the experiments described in
Sec. 3. These metrics are illustrated in Fig. 2. First, the NIST-SU error metric is
adapted to also include substitutions, not only missed boundaries or false alarms.
Substitutions occur when the system outputs a DA boundary at the correct po-
sition, but the reference and the system disagree on the DA type on the left side
of the boundary. The word-based “lenient” and “strict” metrics have been in-
troduced in [9]. The lenient metric does not take into account the segmentation
boundaries and only compares the DA types assigned to corresponding words.
For the strict metric, a word is considered to be correctly classified if and only
if it has been assigned the correct DA type and it lies in exactly the same DA
segment as the corresponding word of the reference.

As a metric for the joint segmentation and classification of DAs that is easy to
interpret, we propose the DA error rate (DER). This metric is derived from the
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DSER and not only requires a DA to have exactly matching boundaries but also
to be tagged with the correct DA type. The DER thus measures the percentage
of the misrecognized DA and can be seen as a length-normalized version of the
strict metric.

For completeness we also mention the recognition accuracy as described in [14],
which corresponds to the classical word error rate. As in the case of the word
error rate, the accuracy metric of [14] only relies on the sequence of symbols (DA
types in our case) and does not consider the actual segmentation boundaries.
Scoring is then based on the string edit distance. This metric is not used in the
experiments below.

3 Experiments and Discussion

For all experiments reported here the experimental setup used is as described
in [9]. Of the 75 available meetings in the ICSI MRDA corpus, two meetings of a
different nature are excluded (Btr001 and Btr002). From the remaining meetings
we use 51 for training, 11 for development, and 11 for evaluation. For the seg-
mentation and classification of the DA types, the available speech is first sorted
according to the speaker, and then by time. The available DA types are mapped
to the following five distinct types: backchannels (B), disruptions (D), floor grab-
bers (F), questions (Q), and statements (S). Each system is then optimized and
evaluated under both reference and STT conditions. Under the reference con-
dition it is assumed that we have access to the true sequence of spoken words,
while under the STT condition the recognizer’s top-choice sequence of words is
provided. The sequential approach to segmentation and classification of DAs de-
scribed in [9] differs in a number of aspects from the systems investigated in this
paper. Major differences lie in its sequential nature and the usage of prosodic
and word-based information for both segmentation and classification of DAs.
Prosody has been shown to help both the segmentation [4] and the classifica-
tion of DAs [7]. While this system has the potential drawback of working in a
sequential fashion, it is taking advantage of prosody in the segmentation step
and requires access to the complete DA segment for classification. The potential
advantage of the systems described in this paper lies in their ability to produce
segmentation boundaries that are based on the estimation of the previous DA
type for the last n words. However, both the HE-LM and the HMM tagger ap-
proach decide to segment and classify DAs based on local information only. Since
the classification of the DA is implicitly done by predicting a corresponding DA
boundary, valuable information is lost when the beginning of the current DA has
fallen out of the current n-gram context.

Segmentation performance results of the different systems are provided in Ta-
ble 1. To better compare the integrated approaches with the previous results, we
report the segmentation error rate for [9] using the HE-LM alone without taking
into account the prosodic pause feature. Note that, due to a minor difference in
the counting of errors under STT conditions, the error rates given in Table 1
are slightly lower than those previously reported in [9]. Comparing the HE-LM
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Table 1. Comparison of the segmentation error rates of the different systems under
both reference and STT conditions

Condition System NIST-SU DSER

[9] 34.5 40.8
Ref [9] np1 46.0 53.0

HE-LM 46.3 55.3
Tagger 51.1 61.7

[9] 45.5 49.4
STT [9] np1 59.5 62.0

HE-LM 59.6 62.4
Tagger 62.8 66.9

1 reduced system, no prosody features

Table 2. Comparison of the segmentation and classification performance of the differ-
ent systems under both reference and STT conditions

Condition System NIST-SU Lenient Strict DER

[9] 52.6 20.0 64.4 54.4
Ref [9] np1 62.3 21.0 72.4 64.1

HE-LM 62.2 23.3 74.3 66.5
Tagger 69.5 22.6 78.6 72.6

[9] 68.3 25.1 75.4 64.3
STT [9] np1 78.3 25.0 82.9 73.2

HE-LM 78.0 26.2 83.8 73.9
Tagger 81.3 22.4 85.4 77.3

1 reduced system, no prosody features

and the tagger approach of this paper, we notice that the HE-LM consistently
outperforms the tagger on both segmentation metrics.

Performance results for the joint segmentation and classification of DAs are
provided in Table 2 for the different systems. Again, performance results for the
reduced version of [9] (not including prosody) is used for better comparison with
the HE-LM and the tagger based methods. Compared with these results, the
HE-LM approach shows a comparable performance, which is promising, given
the simplicity of the approach. As we would expect, the system described in [9] in
its original form outperforms the approaches investigated here. A notable result
from these experiments is the observation that the tagger based approach shows
the lowest lenient error rates and, at the same time, the highest error rates for
the NIST-SU, the strict, and the DER metrics. This observation suggests that
the lenient metric is most useful when used in combination with other metrics
that take into account the quality of the segmentation as well.

4 Conclusion and Outlook

We have investigated two simple approaches based on word information for joint
segmentation and classification of DAs in multiparty meetings. Furthermore,
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with the DSER and the DER we propose additional performance metrics for
segmentation and joint segmentation and classification of DAs with a simple
semantic interpretation. The DSER measures the percentage of the correctly
segmented DAs, while the DER quantifies the percentage of correctly segmented
and tagged DAs. Based on the experiments, we suggest that the lenient metric
proposed in [9] should not be used alone but in combination with other metrics
that also take into account the quality of the segmentation.

The results provided in this paper serve as a baseline against which we will
measure the results of future work on joint segmentation and classification. As a
next step we will investigate approaches that do not rely only on local evidence,
but rather are able to take into account complete DA hypotheses along the lines
of [14]. In such a framework it is also possible to integrate prosodic information
and to consider word lattices.
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Abstract. The network of excellence HUMAINE is currently making
a co-ordinated, interdisciplinary effort to develop a consistent view on
emotion-oriented computing. This overview paper proposes a “map”
of the research area, distinguishing core technologies from application-
oriented and psychologically oriented work. First results from the on-
going research in the thematic workpackages are reported.

1 Introduction

It is increasingly recognised that emotional factors in a broad sense are central
to improving the naturalness of interaction between machines and their users.
As humans, users react emotionally to aspects of their environment that matter
to them [1], and these emotions will influence their way of acting [2], their way
of thinking [3], and their decisions [4]. Furthermore, as social animals, humans
expect their interaction partners to pick up signs of emotion and to react to
them in some appropriate way [5]. Currently machines that interact with human
users do not take account of the emotional dimension that humans expect to find
in interaction, and that is a recurrent source of frustration. A simple example
for emotionally inadequate system behaviour is a message window suggesting a
software update which is triggered while the user is under time pressure or giving
a presentation: it is likely to induce panic or anger rather than appreciation.
A more sophisticated example is a multi-modal dialogue system that cannot
anticipate the emotional impact of a piece of information on the user: if the
system informs the user that, e.g., there are no more seats left on the flight the
user wants to book, a standard happy-sounding voice will not improve customer
relations.

Creating competent emotion-oriented systems is a large scale challenge. The
European Network of Excellence HUMAINE (HUman-MAchine Interaction Net-
work on Emotions) was established to prepare the scientific and technological
ground for this task, with funding from the EU IST programme from 2004 to
2007.

HUMAINE follows a principled approach to addressing the large number of is-
sues involved. As the network brings together researchers with a very wide range
of backgrounds, a first phase of 18 months was scheduled in the work plan, whose
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aim was to identify an appropriate set of sub areas into which research can be
structured, and to come to a common understanding of the core issues in each
of these thematic areas. In several iterations, this first phase led to the estab-
lishment of plans for “exemplars”, i.e. achievable pieces of work illustrating how
things should be done in a principled way in a given area. In each thematic area,
a workshop was held (or will soon be held), in which the subject matter is high-
lighted from a broad range of perspectives. The proceedings of these workshops
are available on the HUMAINE portal (http://emotion-research.net/ws).
The discussions of phase one are now basically complete, and the second phase
is starting, in which these exemplars are actually built.

This paper reports on some of the key outcomes of the first phase, mainly by
outlining the “exemplars” envisaged in order to advance the state of the art in
the different thematic areas.

2 Mapping the Research Area

A key part of the first project phase is reaching an understanding of the various
tasks and disciplines relevant to emotion-oriented computing, and the ways in
which they may interact. The ideas incorporated in the initial HUMAINE pro-
posal have fared reasonably well, but they have developed with experience. Fig-
ure 1 summarises what seem to be the key divisions and connections at this stage.

The central column represents the areas where purely technological challenges
loom largest. It is not self-evident that detection and synthesis should function as
separate sub-disciplines, and HUMAINE initially proposed a different division:
but it has become clear that they draw on different background technologies.
‘Planning action’ involves modelling the kind of action pattern that might be
expected in a particular emotional state, either so that an artificial agent can
generate appropriate action patterns or so that it can anticipate the kinds of
action pattern that a human might produce in a given state - which in turn may
be used to recognise emotion or to select among various responses that might
be considered.

The left hand column deals with issues where application is most obviously
of concern. The special character of usability issues in this area has gradually
become clearer. Finding out how users respond to an emotion-oriented system
is both more difficult than it is for technologies with more objective aims, and
more important. It is more difficult because emotional responses are subtle, and
easily disrupted by interventions that are meant to measure them. It is more
important because designing an emotion-oriented system is centrally concerned
with accommodating to non-rational preferences and dispositions in the user. In
that situation, iterative user-centred design methods seem likely to be indispens-
able. Work on emotion-related language could in principle be divided up among
the sub-disciplines in the central column, but in practise it draws on different
conceptual roots and has particular links to applications in the relatively near
future. It has become clear that HUMAINE’s workpackage on persuasion and
communication in effect represents that area.
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Fig. 1. Graphical representation of the sub-areas involved in achieving emotion-
oriented computing

The right hand column contains the sub-areas with the strongest roots in
psychology. These are divided between one concerned with theory and one con-
cerned with empirical data, which was described in the original proposal as
‘databases’. Of course existing theory is informed by data, but for a variety of
reasons, it has not generally been the kind of data that it is natural to col-
lect with a view to developing emotion-oriented systems. As a result, there are
creative tensions between that kind of data collection and existing psychologi-
cal theory. Similarly, psychological theory does not simply inform technological
work. Technological work is a test of its accuracy and completeness in a general
sense. It also promises to provide unparallelled tools to test theories, in the form
of artificial agents whose actions can be controlled with a precision that is im-
possible with humans, and which therefore provide unparallelled opportunities
to test theoretical ideas.

It is not an accident that synthesising signs of emotion is at the centre of
the diagram. There are rich connections among all the areas, but the task of
synthesising agents that can interact emotionally seems at the present time to
be the one that best summarises the state of the art - in the sense that it cannot
be done well without satisfactory progress in all the others. Conversely, failures
in this area may expose problems in any of the other areas.

At either edge of the diagram are issues with a strong philosophical element
which affect the whole enterprise, though they do not impact all of the areas
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equally. One, whose strongest effect is on the areas related to psychology, is
finding appropriate ways to describe emotions and emotion-related states. The
other, whose strongest effect is on the areas close to application, is the ethics of
emotion-oriented systems.

This summary is deliberately at a broad level. The sections that follow look
at individual thematic areas in more detail.

3 Describing Emotions

It is difficult to work with phenomena unless one has good ways of describing
them. In the broad area of emotion, it is widely accepted that words in common
use are an unsatisfactory medium. It is not simply that potentially interesting
states elude description: even core terms like “emotion” or “affect” are defined
differently by different experts, and they point non-experts in various directions
according to context [6,7]. HUMAINE has chosen to confront the issue by making
the description of emotion an explicit focus of research. It is being addressed on
several levels.

At the first level, there has been vigorous discussion within HUMAINE about
the domain that needs to be addressed [8]. The surface argument involves ques-
tions about how widely or narrowly to use words like ‘emotion’ and ‘affect’,
but it reflects a deeper issue, which is to mark out a practically important set
of problems that yield to conceptually related solutions. As a first step, HU-
MAINE aims to map out states which are or might be considered to be related
to emotion, and which are both reasonably common and potentially relevant in
human-computer interaction. HUMAINE aims to carry out that kind of ‘actuar-
ial’ exercise, and initial steps have been taken [9]. Words then need to be found
(or invented) that allow the domains that matter practically to be described in
a way that is convenient and intuitive.

At a second level, the Theory workpackage in HUMAINE has started to build
up a glossary of emotion-related terms, drawing on the existing literature [10].
This conceptual and terminological clarification task will differentiate the differ-
ent types of affective phenomena that should be distinguished from a theoretical
perspective, while at the same time staying close to application concerns. Com-
ments from the potential users of this vocabulary (e.g., the “system-builders”
in the network) will be sought in several iterations, leading to successive clari-
fication and re-formulation, culminating in definitions that can be used by re-
searchers from any theoretical background. Establishing a common terminology
will significantly reduce the barrier to cross-disciplinary cooperation in this area.

The third level involves the practical methods of describing individual emo-
tional states. Newcomers to the field tend to use short lists of basic emotions,
often not realising that these were proposed in the specific context of evolution-
ary, “Darwinian” emotion theories [6]. A key aim of the Theory workpackage is
to promote awareness of the available choices of emotion descriptions, and the
circumstances in which they may be useful. For example, lists of emotion words
are being established that are particularly useful in the context of emotion-
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oriented technological systems [8]; descriptions of individual cognitive appraisal
components can be related to aspects of facial expression; and broad dimensional
labelling can be used to track the general emotional tone over time. As these
options become better known in the technological community, system-builders
can select the most suitable formalisms for their application.

The Databases workpackage in HUMAINE approaches the issue of emotion
descriptions from a different angle [11]. Rather than formulating and specifying
descriptions out of theory, this workpackage will explore the phenomena that can
be found in “real” data, i.e. in naturalistic recordings of persons experiencing
emotions [12]. Often, the phenomena observed in such contexts differ substan-
tially from the clear-cut ideas that come to the fore in emotion theories. For
example, emotion-related states of low intensity, as they often occur in natural
dialogue, cannot easily be described by emotion theories which focus on intense,
fullblown emotions. In addition, word-based emotion representations (“anger”,
“sadness” etc.) cannot easily capture the composites and shades of emotion that
are frequently observed in naturalistic data, e.g. when two emotions are simul-
taneously present, or when one emotion is expressed in order to mask another
one that is experienced [13]. One of the aims of the Databases workpackage is
to provide “provocative” data which exposes these issues. On that basis, it aims
to identify labelling schemes that are genuinely suited to describe that kind of
material. These are expected to combine elements of several existing approaches
– description using everyday verbal categories, broad dimensional descriptions,
and descriptions based on appraisal theory.

4 Detecting and Generating Signs of Emotion

One fundamental of natural human-machine interaction is the ability to de-
tect the signs of emotion emitted by the user, intentionally or unintentionally.
This task is, on the one hand, heavily dependent on the emotion models used,
e.g. whether the emotion is described as a category or as a region in a multi-
dimensional space. The task is also highly dependent on the material from which
to recognise emotion: for example, classifiers that work very well with acted
emotional material may fail on naturalistic material [14]. The challenge involves
events with an emotional component as well as “pure”emotions, such as dialogue
success [15], and classification may well depend on contextual knowledge as well
as local features [16].

HUMAINE has prioritised three modalities for study – facial expression in
video; speech in audio; and physiological parameters. In each of these, its first
priority is to establish the reliability of alternate signal analysis algorithms for
extracting basic features. Building on that, it aims to clarify the principles of ef-
fective cross-modal integration. One challenge that is immediately apparent is to
deal with the different temporal structures that characterise the modalities. Most
algorithms in biosignal processing operate on a continuous, and relatively slow
time scale. Speech tends to be analysed in discrete units, ranging from phonemes
to phrases and even sequences of phrases; whereas the best known approaches
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to facial expression analysis deal with essentially instantaneous ‘stills’. Beyond
that, several theoretical models of multimodal integration will be compared. The
simplest types of integration model to be considered include the “direct identifi-
cation” model, where all input signals are directly transmitted to one multimodal
classifier, and the “separate identification” model, where emotion is recognised
from each modality separately. More complex integration models include the
“dominant modality recoding” model, where a dominant modality drives the
perception of other modalities, and the “common space recoding” model, where
all the modalities are projected upon a common space prior to categorisation (as
audiovisual speech recognition is thought to involve mapping information from
both modalities into a common motor space).

Cutting across these issues is the question of which type of emotion descriptor
to predict. Key options include discrete, dimensional and appraisal models of
emotions. There is evidence that some types of descriptor relate particularly
directly to the information available in some modalities [17]. HUMAINE will
study the extent to which there are privileged relationships between descriptors
and particular sources of evidence.

There is no unambiguous measure of success for such emotion recognition
components: Should it perform as closely as possible like a human, i.e., make
the same errors as humans, or should it be as accurate as possible, i.e. possibly
more accurate than a human? The answer to this question is likely to depend on
the application area. In a stress detection module for drivers, high accuracy is
important; in a conversational interface, acting as human-like as possible will be
more important. As a baseline for comparison, work is being performed within
the Theory workpackage to assess the recognition capabilities of humans. Pre-
senting the same audiovisual material to both human raters and classification
algorithms will provide interesting insights in the similarity of their judgements.

Synthesising emotional signs is as important as their recognition for natural
human-machine interaction. From a human point of view, it could be seen as
just “the other side of the medal”. However, the technologies involved in the
two endeavours differ completely. HUMAINE investigates how emotions can be
expressed by Embodied Conversational Agent (ECA) systems [18]. This work
has started by compiling a list of capabilities that go beyond the current state
of the art, but which would be required for an emotionally competent ECA.
They can be grouped into three areas: perception, interaction, and generation.
In the perception domain, an important pre-requisite for believable emotional
interaction is an ECA’s capability to perceive the user, events, or other agents. A
key means for modelling this capability is an affect-related attention mechanism.
On the level of interaction, rather than modelling the ECA merely as a speaker,
it is important to attempt the generation of listener behaviour. Among other
things, this includes backchannel utterances, which can signal to the user that
the ECA is listening; what it does or does not understand; and how it evaluates
what is being said [19]. On the generation side, the existing capabilities such as
gestural and vocal expressivity need to be refined both in richness and in control,
in order to model more closely what humans do in expressive situations.
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This last point is obviously linked to the analysis of naturalistic databases of
emotional behaviour. Conceptually, the insights gained from such analyses can
be used for improving the rendered ECA behaviour. But the link can be made
even more direct: given a suitable description format, a database annotation
can be used to “drive” an ECA, so that the ECA can serve as an analysis-by-
synthesis framework for validating the annotation scheme. First promising steps
in this direction have been undertaken [20].

5 Emotions in Computational Cognitive Architectures

Going beyond shallow descriptions of emotions requires an understanding of the
emotional aspects of the cognitive architecture that processes them. Existing
systems that predict emotional reactions from situation descriptions are often
based on the cognitive emotion model proposed by Ortony, Clore and Collins
[21], which provides a useful but limited account.

HUMAINE attempts to understand and describe the emotional aspects of
cognitive architectures more fully by a combination of two approaches.

Conceptually, a “blueprint” description for an affectively competent agent
will be compiled in the Theory workpackage [10], with the aim to describe the
mechanisms involved in emotional processing. It will gather the different points
of view taken by current theorists from different disciplines, including psychol-
ogy, cognitive neuroscience, philosophy, and ethology, and should be the starting
point for a fruitful dialogue with engineer-oriented groups regarding the issues
encountered during the implementation process. It should be seen as an evolv-
ing source “book”, where state-of-the-art questions could be asked and where
attempts to address them will be described.

Practically, HUMAINE also works with existing cognitive system architec-
tures, and investigates the various ways in which emotions can be incorporated
in such architectures [22]. The workpackage on emotion in Cognition and Ac-
tion explores emotional phenomena in a range of very different approaches to
cognitive architectures.

The “low-level” or sub-symbolic approach is concerned with the investiga-
tion of the influence of emotions in cognition and action from the perspective
of their embodiment. Following this view, cognition and action are inseparable,
tightly coupled perception-action loops rather than separable input-output ele-
ments. In this line of research, HUMAINE investigates robots endowed with a
relatively simple cognitive architecture inspired by biological perception-action
loops. First results indicate that minor modifications to the architecture, mod-
elled after biological neuromodulation, can give rise to emergent “emotional”
behaviour. Ethological methods, which are usually applied to studying animal
behaviour, can be used to interpret the behaviour of such a robot. For example,
in one scenario, two motivated robots competed for a resource (“food”). Usually,
their bumpers would signal an obstacle that must be avoided. However, when
the architecture was altered so that the bumper sensitivity dropped when the
“hunger” became too big, the robots could be observed to show “aggressive”
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behaviour when trying to attain the resource, pushing each other away [23]. An-
other example is a visual homeostasis mechanism leading to “bonding” behaviour
as displayed by Lorentz’ geese [24].

The “high-level” or symbolic approach works on extensions of existing belief-
desire-intention (BDI) models with emotion. This approach is studied in HU-
MAINE in the scope of dialogue simulation, and is based on Bayesian networks
as a method to represent uncertain knowledge and reasoning. Existing cognitive
models of emotion activation are being revised in the light of a document [25]
produced by the Theories workpackage concerning emotion theories and classi-
fication of emotion models. Furthermore, it is envisaged to design an affective
user modelling component to be combined with a linguistic parser of the user
moves, in order to integrate ‘recognition’ and ‘interpretation’ functions. How to
integrate these in a single cognitive model is another research question that will
be addressed.

The “hybrid” approach attempts to bridge the gap between sub-symbolic
and symbolic aspects of cognition and emotion. It will do so using agents that
combine both levels, being at the same time embodied/reactive and deliberative.
Studying the way in which these two levels are interrelated with respect to
emotions first requires clear definitions of key properties, such as representational
features, degree of autonomy, or independence from the outside world. On that
basis, one can then start to deal with issues such as management of timing
and prioritisation between both levels, or how to achieve mappings between the
contents of these levels. For example, it would be interesting to know that an
avoidance tendency on the reactive level is somehow linked to an emotion named
“fear” on the symbolic level. Making this link explicit is not trivial. Similarly,
where the reactive component generates a behaviour that appears contradictory
to the symbolic emotional assessment of the situation, it will be most relevant
to model the negotiation and decision-making process required between the two
levels to generate behaviour.

All these approaches focus on modelling the cognitive mechanisms and result-
ing behaviour of an individual. Complementarily, HUMAINE also addresses the
social and interpersonal mechanisms of regulating the emotions of individuals.
Here, the unit of analysis is the relation in groups of two or more agents rather
than the behaviour or mental state of an individual. This work includes a broad
range of aspects, from the study of human politeness [26] to modelling the links
between personality, emotion, and mood [27].

6 Affecting the User

The ultimate goal of HUMAINE is to enable the community to build emotion-
oriented technological systems. Even if this is still an ambitious, long-term goal,
work is underway in HUMAINE to prepare the ground.

The workpackage Emotion in Communication and Persuasion explores ways
to purposefully induce emotions in the human user [28,29]. Models of persuasion
are developed and tested in both monological and dialogical situations. Natural
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language is one important means for inducing emotions in human users. A first
application in this area is the creative humour testbed, where the system gener-
ates potentially funny slogans based on semantic properties of natural language
[30]. This example shows the direction in which first applications of emotion-
oriented technology are emerging: Rather than fully competent stand-alone sys-
tems, the language-based creative humour testbed can produce a number of
potentially funny slogans out of which the really funny ones need to be selected
by a human user.

Several types of communicative strategy are investigated in the context of
persuasion. One such strategy is politeness, currently being explored in a con-
versational context [26]. Another is deception: the recognition and generation
of lying expressions. As a scenario for investigating lying behaviour in human-
machine interaction, an interactive dice game was developed, played by two
humans and an ECA. The game can only be won by lying occasionally [31]. In
this controlled scenario, various aspects of lying can be studied, related to system
behaviour (simulated lying), user reactions to simulated lying, and user lying.

Affective issues in user interfaces present a new set of challenges to usability
research. Work in the Usability workpackage focuses on finding methods that
can help guide future design and evaluation of affective systems [32,33]. Existing
usability criteria such as control, predictability or transparency are not the most
suitable for describing emotional systems. For that reason, the exemplar in this
workpackage will first of all develop a set of criteria by which to measure suc-
cessful, usable affective interaction systems. These criteria will not be objective,
independently measurable entities, but will make sense relative to the specific
application domain, aim to capture subjective experiences of the user, and fore-
most, be related to the designer’s intention for the application. These criteria will
then need to be translated into evaluation metrics, accompanied by suggested
evaluation methods. Existing user-centred methods for design and evaluation
will be investigated with respect to their use for emotion-oriented systems. At
the same time, new methods will be proposed that are targeted specifically at
capturing the unique aspects of affective interaction. Examples for such methods
are: a sensual method for non-verbal mediation of affective state, a Wizard-of-Oz
environment for multimodal emotional interaction, and an extended think-aloud
protocol designed to capture emotional interactions.

7 HUMAINE Conscience

When dealing with machines that might one day be able to influence human
emotions, there is a real need to think about the ethical dimension of such
systems. It is only too easy to imagine, e.g., persuading machines used for “en-
hancing” product sales, or surveillance systems measuring continually the degree
of friendliness exhibited by call-centre staff.

HUMAINE takes a proactive approach to these issues in its Ethics work-
package – few projects in the IST domain investigate ethical implications so
thoroughly. An ethical audit [34] marked the starting point of this endeavour:
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it consisted of a questionnaire assessing participants’ previous experience with
ethical issues in emotion-oriented systems and in emotion research including hu-
man participants. It was completed by all HUMAINE partner institutions. Its
results showed a serious lack of preparation among the organisations carrying out
research in the area. More importantly, the parties involved were not necessarily
aware of this shortcoming.

The challenge faced by HUMAINE’s Ethics team is thus to set up a whole
new body of procedures and criteria by which to make sure that research and its
results are not used to put humans to unethical risks. The theoretical framework
in which these issues are now being addressed [35] is called Principlism [36]. It is
based on the four universally shared moral principles of nonmaleficence, auton-
omy, beneficence, and justice. It is acknowledged that applying these principles
to a concrete situation involves delicate judgments. Any set of general recom-
mendations will therefore need to be complemented by a panel of humans, e.g.
by an ethics committee that can address specific situations.

8 Conclusion: Steps Ahead

This paper has given a short overview of the broad range of activities under way
in the Network of Excellence HUMAINE. Despite the multitude of angles from
which network members address the complex set of thematic areas, people have
come to a common understanding of key research issues. Joint specification of
plans for exemplars has been a crucial mechanism to bring perspectives closer.

In the second phase of HUMAINE, which is starting now, these exemplars will
actually be built. Due to its nature as a network, HUMAINE will not produce
full-scale demonstrator or prototype systems. This allows us to avoid the need to
make the usual short-term shortcuts required to make a system look coherent.
Instead, we will produce illustrations at various levels of technological sophisti-
cation. The core intention behind building this type of exemplars is to do things
“right”, in the interest of a well-founded, iterative build-up of competences. With
this approach, we believe we can make a real, lasting contribution.
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Abstract. We aim to create a model of emotional reactive virtual hu-
mans. This model will help to define realistic behavior for virtual charac-
ters based on emotions and events in the Virtual Environment to which
they react. A large set of pre-recorded animations will be used to obtain
such model. We have defined a knowledge-based system to store anima-
tions of reflex movements taking into account personality and emotional
state. Populating such a database is a complex task. In this paper we
describe a multimodal authoring tool that provides a solution to this
problem. Our multimodal tool makes use of motion capture equipment,
a handheld device and a large projection screen.

1 Introduction

Our goal is to create a model to drive the behavior of autonomous Virtual
Humans (VH) taking into account their personality and emotional state. This
model does not aim to work by itself, it should be supported by a more generic
model of behavior, but our model will complement the realistic behavior by
enabling VHs to perform reflex movements triggered by events in the Virtual
Environment (VE). Reflex movements can be modulated by inner personality
and emotions of the VH e.g. there is a ball thrown towards the VH, the virtual
character should avoid it, they way it performs the avoidance reflex will depend
on its inner state: an energetic motion or a more lethargic one depending on the
level of excitement and personality.

We intend to build our animation model on the basis of a large set of ani-
mation sequences described in terms of personality and emotions. In order to
store, organize and exploit animation data, we need to create a knowledge-based
system, an animations database.

This paper focuses on the authoring tool that we designed for populating
such animation database. We observe that the process of animating is inherently
multimodal because it involves several inputs such as motion capture (mocap)
sensors and user control on an animation software. For simplifying the process of
animating we propose to integrate the required inputs into a multimodal inter-
face composed of a handheld device (providing a mobile GUI), motion capture
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equipment and a large projection screen (to ease the interaction with virtual
characters). One of the added values of our system is that it provides an im-
mersive multimodal environment for animating characters. Our tool allows for
interacting within the Virtual Environment as if the user were inside. Anima-
tion data produced with this tool is organized considering personality traits and
emotional states.

The rest of the paper is organized as follows: next chapter presents related
work on multimodal interfaces and knowledge-based proposals for VH animation.
This will be followed by our system proposal, its architecture and implementa-
tion. Finally we present our results and plans for future work.

2 Related Work

Our authoring tool is intended to facilitate the process of producing character
animation in an innovative way. Our approach is to animate a character from
“inside”, having the actor (animator) immersed in a Virtual Environment and
looking at the world through the eyes of the character. For this we need to address
multiple interaction modalities: body motion, 3D visualization, etc. Moreover,
animation data created by the user should be stored and organized in an efficient
way. The following section presents a brief overview on multimodal interfaces
research. The second subsection deals with models and strategies for organizing
animation data in a knowledge-based system.

2.1 Multimodal Interfaces

A multimodal system has two or more input/output communication channels.
The benefit of using multimodal systems is to get more transparent, flexible, ef-
ficient and expressive means of human-computer interaction. A descriptive con-
ception of multimodal interfaces can be found in Oviatt’s work [25].

Multimodal interfaces are implemented in Virtual Environments (VE) be-
cause they help to produce the effect of immersion. This immersion is provided
through a natural interaction between the user and the environment. One pio-
neer multimodal application is the “Media Room” by Bolt [6]. This application
combines images projected on a screen and user gestures. The fact of positioning
one or more users in front of a large rear-projection screen displaying the virtual
world is an approach in semi-immersive VE that has given encouraging results.

Examples of systems implementing the semi-immersive approach are: “The
Enigma of the sphinx” [1] and the “Magic Wand” [7]. In the same line of re-
search, “Conducting a virtual orchestra” [26] proposes a semi-immersive VE
based on a large projection screen, a handheld device and 3D sound rendering.
A PDA-based GUI was implemented to conduct the orchestra. User’s gestures
while conducting were captured with a magnetic tracker attached to the PDA.
Handheld devices are innovate interfaces for VE. Another example of integration
of handheld devices in VE can be found in [14]. These works explore the potential
of using handheld devices to interact with Virtual Environments and VH.
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Multimodal interfaces allows us to create more immersive Virtual Environ-
ments and they have the advantage of facilitating user interaction. It is inter-
esting to incorporate handheld devices as an interaction device because they
reinforce human-human contact in a Virtual Environment, avoiding the need to
sit in front of a screen with a mouse and keyboard. We will use these ideas to
build our multimodal interface. Next subsection deals with models for organizing
animation, data management is essential for exploiting and reusing information.

2.2 Knowledge-Based Systems for Virtual Human Animation

The animation model we are developing will require a large amount of animation
sequences. We need a database for storing and organizing animation data. The
following is a brief review of research targeted at organizing animation data for
Virtual Humans.

The Amoba system [12] uses a database structure to organize motion. This
is a very spread and ambiguous organization structure. We require something
more specialized and with richer annotations -metadata- describing the content
-animation.

The work presented in [17] proposes the use of a database to retrieve the
desired animation and manipulate it from a GUI. This work is interesting from
the point of view of the process needed to reuse animations and models. Another
implementation for reusing animation data is presented in [21] this research
considers the importance of a database to animate avatars in real time. These
couple of works do not deal with the process of populating the database.

A new approach towards incorporating semantics into Virtual Humans and
their animation is presented in [13]. This work intends to define in a formal way,
the components of a VH, including its animation, by means of an ontology.

We observe that in order to maximize the reuse and exploitation of anima-
tion data, we need to incorporate a semantic layer that enables both computer
systems and human users to acquire, organize, and understand the informa-
tion. For realistic animations, we need to have as much data as possible in the
database. The tool we propose intends to facilitate both the data acquisition
and organization.

3 Multimodal Tool for Populating an Animation
Database

This section presents the conceptual description of our authoring tool based
on the multimodal interaction concepts presented in previous section and the
requirements for associating the desired data to the animation.

3.1 Knowledge-Base Structure

In order to define a model for emotional reactive VH we need to associate traits of
personality and emotions to the animations. By considering such inner variables
we expect to increase believability of the characters.
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Improving believability in computer generated characters is one of the main
challenges in computer animation. A believable behavior has many aspects to
consider: realism, emotions, personality and intent [9]. There are many models
that approach a realistic behavior following the principle of action selection, goal-
oriented animation, etc. They frequently use synthesized animations, created by
means of specialized algorithms. The most realistic results are obtained with
prerecorded animations performed by human actors using mocap. Several models
consider that personality and emotional states are the more general traits that
influence behavior [22]. This is why we consider interesting to have animations
influenced by these traits.

We organize animations in terms of emotions and personality because they
are key components of a believable behavior. There are models of personality and
emotion for VH that allow to design an emotionally personified virtual human.
Among the most complete personality models for virtual humans are: [20] [19]
and other less complex such as [10].

We took some of the common factors proposed by the models mentioned
before to describe the metadata (attributes describing animation sequence) of
our knowledge-based system. To represent personality we use the Five Factor
Model (FFM) [23] that describes personality in five dimensions. The parameters
that compose this model are described in table 1.

We have found two popular models of emotion used in character anima-
tion: The Cognitive Structure of Emotions Model (OCC - Ortony, Clore and
Collins) [24] categorizes several types of emotions based on the positive or nega-
tive reactions to events, actions, and objects, it defines 22 emotions; and Ekman’s
6 basic emotions for facial expression [11] (joy, sadness, anger, surprise, fear, and
disgust) that can be combined to obtain other expressions. As the multilayered
model says [19] only 4 expressions of Ekman (joy, sadness, fear and anger) are
defined in the OCC model. Surprise and disgust do not find place in the OCC
model, mainly because they do not involve much cognitive processing. They
group OCC and Ekman’s emotions within 6 expressions to represent the emo-
tional states and to reduce the computational complexity. This emotions are
explained and categorized in the table 1.

Table 1. Models of personality (FFM) and emotion (OCC)

��������	�	
��������
����
�������
���

���
�� �������
���

��
���������

�������������
��������
��������

�����
�����

��������

�����������������	��� ���������������
��
��
����!
"�
����
�����#�
 ��
 ���!
������$�	��������
��
������ ������
�����
%��	���&�
�����������������
���

 ��� 
�

'���&
�����(���
�����)�&�����	����	����
�����*����
'�����+�
�����
�����,�������(��
�����
�����(��
�
�	�

)�&

+�	����

�����

+�������
����

������


����������
��������	

������


+�������

�������,������ ��'�
�

,����
���
����
&�����
������+ ����
,������

���
��� �������
���

��������
���-�	���������������
& ����-�	���������
���

The FFM and OCC models are ideally suited to the task of creating concrete
representations of personality and emotions with which to enhance the illusion
of believability in virtual characters [3].
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The models we have defined describe an individualization of VH humans. Each
VH is defined by a specific combination of attribute values corresponding to the
FFM. Each VH can have many configurations of the attributes of emotional
states (OCC model), and each attribute can be defined in different levels.

To describe animations we consider also events in the environment, these
events are represented by objects in the VE. For example we can have a sphere
that represents a ball. The ball can then produce the event “thrown ball”.

One event is associated to one animation because this event will make the VH
move in reaction. One animation is performed as reaction to one event, under
one configuration of emotional state for one specific personality of a VH. This
conception is translated into a database diagram presented in figure 1.
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Fig. 1. Diagram of the knowledge-base system

Under this structure, when an event occurs in the environment, the animation
engine will look into the knowledge base for an animation suitable to perform
a reaction, taking into account the specific conditions of emotional state and
personality. Next subsection gives more details on the components of the multi-
modal interface and how they are interconnected.

3.2 Multimodal Structure

The multimodal authoring tool we propose makes use of motion capture, a large
projection screen and a handheld device.

The motion capture system, as main input device, allows the animator to ac-
quire high quality animations and give the appropriate intention and expressive-
ness to each movement. The second input modality is the handheld device that
will work as a remote control. In combination with the PDA, a large screen will
provide visual feedback to the user. With the PDA device we reduce the amount
of people required in the production process, and make a more interactive inter-
face, the same person using the mocap can drive the authoring. Moreover, this
mobile interface allows for previewing the animation and accessing the database
without the need to be in front of a PC.

The interaction of the elements above mentioned with the knowledge-based
system is illustrated in figure Figure 2. These elements are described as follows:
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Fig. 2. Multimodal interaction between elements

– Main control of the authoring resides in the Manager system. This Manager
receives commands from the PDA device and executes an action in response;
it can also send information to the PDA, such as metadata (attributes) or
animation data (the actual animation).

– Sensors continuously send information about the actor’s position and the
Manager system reads them depending of the command in process; it could
be reading only the right hand orientation or all the sensors information
(recording an animation).

– The Manager makes transactions in the knowledge-base system, can store
or retrieve information of the metadata or animation sequences.

– The manager system communicates with the 3D viewer in which the VE is
represented. A VE contains VHs and objects that trigger events, the scene
is projected on the large screen.

The authoring process is driven through the PDA device. First, the user
selects a VH or object by pointing at the large screen and pressing a button in
the PDA. Objects can be associated to an event. Events can be triggered from
the PDA. Depending of the event some of its parameters can be modified, for
example a ball can be thrown in different directions.

From the PDA, personality traits and emotion parameters of a VH can be
configured for each sequence to be recorded. Many combinations of parameters
of emotional states can be recorded for one event. This configurations are saved
in the knowledge base system. The GUI in the PDA with this functionality
implemented is illustrated in the figure 3.

Animating a VH can be done in two modalities: watching the VH mimic the user
movements, or viewing the VE through the VH eyes (see figure 7). The character
moves in real time according to the data acquired by the mocap system.

For recording, there is a mechanism similar to a VCR with a big button
to start and stop recording. To start recording we give 5 seconds for the user
to get an initial posture before recording the animation. After those 5 seconds
the sequence starts to be recorded until the user presses stop. When storing
the recorded animation, the last three seconds are removed to avoid storing
undesired motions due to the movement for pressing the stop button on the
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Fig. 3. Screen shots of the GUI in the PDA

Fig. 4. Previewing animation on the handheld device

PDA. User can Save or discard a sequence. The animation is stored with the
current configuration of emotional states, event, personality and VH. Finally,
“Stop animating” option stops animating from the mocap and “Stop authoring”,
the VH is deselected.

To reproduce animations the user can Play a sequence. It consists on repro-
ducing the last sequence recorded in the large screen, or any of the other saved
sequences. This last option will only work when the VH is neither being animated
nor in pause. User can also preview recorded sequences in the PDA (figure 4). We
have explained the main components of the multimodal tool and its work-flow.
Next section provides technical details concerning the implementation.

4 Implementation

Motion capture is performed using the motion capture system from Ascension
Technology [4], composed of 13 6-DOF magnetic sensors.As interface with the Mo-
cap we used an utility developed at VRlab: Shared Input Devices (SID) [16]. The
SID program gets the sensor information and puts it in a shared memory zone in
the host machine. The manager program access to this shared memory to obtain
the sensors data. This information is translated and sent to the 3D animation tool.

The animation tool used was Maya 5.0 [8]. Maya provides a rich set of tools
for rendering, modeling and animating. It is one of the leader solutions in the
market and can be considered as a defacto standard in the animation industry.
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In Maya we modelled VH with H-Anim [15] skeleton. H-Anim is a W3C standard
for animating humanoid models. We used a Plug-in presented in [2] to export
the animation in MPEG-4 BAP [18]. This encoding animation is a low bit-rate
representation suitable for networked applications.

Data from mocap sensors are sent to Maya using Maya’s motion capture API.
We created a component that uses this API and also applies the right transfor-
mation to the raw sensors data. Each 6-DOF sensor needs to be calibrated to
provide its data in the same coordinate space used by Maya. Calibration was im-
plemented following the method described in [5], it computes the correspondence
between the initial orientation of each sensor and the default initial orientation
of each H-Anim body part. We implemented in maya several MEL (Maya Em-
bedded Language) scripts for: linking the sensors data with the skeleton used to
animate the VH; start and stop recording movements and exporting animations.
This commands are executed by the Manager system.

Virtual Humans modeled in Maya are animated through their H-Anim skele-
ton. We used inverse kinematics to compute proper joint rotation values for the
VH limbs, and applied orientation constraints to some joints (root, column and
skull) with the suitable weights. We created in Maya one locator for each sen-
sor and constrained them to the proper effector or joint. The association of the
sensors in the actor with the mocap and the locators in Maya and the skeleton
are shown in figure 5.

Fig. 5. Association of the mocap’s sensors with the skeleton effectors/joints

As handheld device we used a PDA iPAQ HP 4700. We built the GUI for
the PDA in C# with controls to drive the animation process. To preview the
recorded animations on the PDA we switch application and use a mobile 3D
viewer based on the “Mobile Animator”[14].

The knowledge-based system was set up in MySQL. This database is free, easy
to implement and provides enough performance for our needs. Data transmission
to and from the database is done using ODBC for MySQL.

The Manager system was implemented in C++. The communication with
the PDA is done through sockets. Interaction with maya is done through the
“Command Port” interface (MEL command: commandPort).
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Fig. 6. Component diagram implementation

The components diagram in figure 6 shows the interaction between the de-
scribed components.

The GUI in the PDA (see fig 3) has a “Tab menu” for selecting VH or objects,
configuring personality, emotions or events and recording animation. Events can
be selected from the PDA and modified and activated. The data configured in
the PDA is sent as a character stream.

For selecting VHs or objects we read the position and orientation of the 6-
DOF sensor on the right hand, within this we exploit the fact of having the
sensors already set on the user. We calibrate the initial position as the center of
the screen and transform sensor orientation into 2D coordinates corresponding to
the computer screen. 2D screen coordinates are used to drive the mouse pointer
position. This way the user can naturally interact just by pointing at the screen.

To save animations we use a MEL script to execute a plug-in that exports the
skeleton animation to MPEG-4 BAP format. The BAP file created is placed into a
shared directory in the host machine and the path saved in the database. If the user
wants to play the animation on the PDA the Manager sends the path and name of
the animation and the Mobile animator is able to preview the animation.

5 Discussion and Results

To start populating the database, we have tested our multimodal tool with
different examples. We used the example mentioned in the introduction, a ball
being thrown towards the VH. We defined the event “Ball thrown”. Figure 7
shows the animation process: the user configures a VH, performs an animation,
and previews the saved animation on the PDA.

The combination of Mocap with a large projection screen proved to be an
efficient and intuitive way to produce multiple sequences of realistic animation
and had good feed-back to the user. The lightweight interface (PDA) was more
comfortable than using a PC, but disturbed the user because he had to decide
between keeping the PDA in the hand while recording or leave it. We believe that
the handheld device could be enhanced with speech recognition, in particular
for the start/stop recording functionality. The multimodal interface provided a
useful mechanism for populating the animation database that we have defined,
but we still need to populate it with different reflex movements that a human
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Fig. 7. Using the multimodal authoring tool

being could perform under specific emotional and personality conditions. For
this we may need to record in video several people and evaluate their inner state
and then use the video with an actor to reproduce the movement.

Describing animation sequences by means of metadata introduces a semantic
layer that promote the reuse and increases the productivity of animation.

6 Conclusions and Future Work

We have presented a multimodal tool to populate a knowledge based system
for VH animation. The tool involves the use of motion capture, a handheld in-
terface, a semi immersive VE (large projection screen) and the incorporation of
semantics (metadata) to the animation. Animation data is organized in a knowl-
edge base taking into account personality traits and emotional state of the VH.
The multimodal interface provides a fast and intuitive tool for populating the
animation database. However there may still be need for fine-tunning animation
due to the inherent noise of the Mocap data.

Future work consists on populating the animations repository in order to
provide a rich repertoire for the animation model. The model for reactive VH
will be described in future publications. The current paper focused on describing
the tools for acquiring and organizing the information.
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Abstract. Many face recognition methods have been reported in the literature. 
Also many face databases and face recognition methodologies are available to 
test them. Unfortunately most authors test their methods using restricted 
databases, or random subsets of them. This does not facilitate the comparison of 
the methods. In this paper we propose an evaluation methodology that utilizes 
three publicly available databases and an evaluation protocol that offers 
numerous splits of the images between training and testing images. We also 
evaluate many different face recognition methods using our methodology, 
offering a comparison between them. 

1   Introduction 

Face recognition from still images or video sequences has an ever growing number of 
applications; recent examples include security and smart room deployments [1]. If 
performance could be boosted to the level achieved by other biometric features, face 
recognition would rank among the most desirable methods, because of the non-
intrusiveness and the simplicity of the infrastructure required.  

Many algorithms have been proposed, both feature-based (EBGM [2]) and 
appearance-based (PCA [3,4], LDA [4,5], ICA [6], correlation filters [7], HMM [8] 
and kernel methods [9]) to mention a few. Those methods have been introduced in the 
literature, but in most cases their testing has followed a proof-of-concept approach: 
the methods are shown to work, but they are tested on different face databases, 
sometimes databases created for the task, without following a particular testing 
methodology. Hence their performance is often difficult to properly estimate and 
compare. 

There exist many databases that can be used for the evaluation of face recognition 
algorithms. Some of them offer many images per subject, but have limited number of 
subjects (Aberdeen [10], ORL [8], HumanScan [11], Yale [12] and CMU Expression 
[13]). ORL and CMU Expression have close-cropped faces with expression variations 
that are extreme for some subjects. Unfortunately the expressions are not captured 
systematically, thus there are different expressions for different subjects. The Yale 
database extensively and systematically covers different lighting conditions and slight 
pose variations, but neither expressions nor occlusions. HumanScan has moderate but 
non-systematic lighting and pose variations and some occlusions by glasses and even 
hands. The presence of many images per person in these databases allows the testing 
of methods using either few or many training images per class. 
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The FERET database [14] has hundreds of subjects but offers only four neutral 
images for the majority of subjects. Nevertheless, the most established testing 
methodology utilizes this database, allowing a comparison of performance but only 
for applications that are limited in number of training images per class. The AR 
database [15] consists of faces of 126 persons. The images have systematic 
expression, illumination and occlusion impairments, but unfortunately there are too 
few neutral faces. Hence this database is mostly suited for the assessment of the effect 
of specific situations to face recognition and not for a general performance 
assessment. 

This lack of uniform testing approach across methods and databases often leads to 
confusing or even contradicting results in the literature. For example, regarding PCA 
and LDA methods, the results in [5,15-21] fail to clarify the effect of factors like the 
distance metrics, the number of training images per class, the pre-processing scheme 
used and the removal of the eigenvectors with the largest associated eigenvalues. 
Also, regarding HMM, excellent performance is reported on the ORL database [8]. 
This is indeed the case, but only for that database. We have found that the 
performance of the method using the HumanScan database is much worse. 

In order to facilitate the complete assessment of the performance of face 
recognition methods, covering different number of training images per class, 
expressions, illumination conditions, pose variations and occlusions, a new testing 
methodology is proposed, covering the databases and the evaluation protocol for the 
partition of the images into training and testing. Numerous such partitions are defined, 
allowing the statistical evaluation of the methods. 

With the proposed testing methodology, we proceed to compare the performance 
of several methods (PCA variants, LDA, EBGM variants and HMM variants) and 
several pre-processing schemes (intensity normalization, histogram equalization and 
edginess [22]). This offers a fair comparison of all the methods under the common 
testing methodology. 

This paper is organized as follows: In section 2 the evaluation methodology is 
detailed. Then, in section 3 the results obtained from many different algorithms are 
presented. Finally in section 4 the conclusions are drawn. 

2   Evaluation Methodology 

In the following subsections, the proposed evaluation methodology is detailed. First 
the databases are presented and their choice is justified. Then, the evaluation protocol 
is detailed. 

2.1   Databases 

The goal of the proposed methodology is to provide the means for comparison of face 
recognition methods, not the combination of face detection and recognition. Hence 
the databases that are to be used should allow for the extraction of the faces from the 
images. Also, most of the methods deal with faces that are geometrically normalized 
to some standard size. Furthermore, they require the eyes to be located in predefined 
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pixels in some template. To complicate matters, feature-based methods need more 
feature than just the eyes to be marked on the images. Hence it is desirable to use 
databases with some feature points marked on them. These points must include the 
eyes, as the geometric normalization is based on their position. Alternatively, a face 
database can provide close-cropped faces, approximately normalized in size and in 
eye position. Such databases can be useful for the assessment of the methods under 
non-ideal detection. 

Taking into account the available databases, we propose a methodology that 
utilizes three databases: the HumanScan, the CMU Expression and two subsets of the 
Yale B database. 

The HumanScan database, although originally developed for face detection, is very 
well suited for face recognition evaluations because it depicts faces in normal but not 
ideal conditions. Such conditions characterize images with faces that are 
approximately frontal and with mostly neutral expressions. The occlusions are normal 
glasses (not dark sunglasses), blinking eyes and fingers. Lighting conditions vary, but 
not to the extreme. HumanScan offers high resolution non-cropped faces of 21 people 
and many images per person. Unfortunately the pose, illumination and expression 
changes are not performed systematically, nor can the same conditions be found 
across all people in the database. A set of 20 facial features are marked on the images, 
allowing the evaluation of feature-based methods. The images are not cropped, 
allowing geometric normalization based on the given eye positions, or imperfect 
geometric normalization and cropping to evaluate the effect of non-ideal detection. 
Finally, the images are not normalized in terms of intensity, allowing the evaluation 
of intensity normalization pre-processing schemes. 

The CMU Expression database depicts 13 people, offering 75 close-cropped 
images per person. The people in it pose with different and sometimes extreme facial 
expressions, albeit in a non-systematic way. 

The Yale B database comprises of 10 people, under 65 different illumination 
conditions and 9 different poses, so in total 585 images per person. Both the 
illumination conditions and the poses are carefully controlled. The illumination 
conditions can be very extreme, while the poses are frontal with small rotations. The 
faces are not cropped and hand-annotated coordinates are given for the geometric 
normalization. For the frontal faces, the coordinates of the eyes and the mouth are 
given. For the non-frontal, only the center of the head is marked, but the head size is 
inferred from the equivalent frontal images. Hence normalization of the faces is 
possible in this database, but not its use for feature-based methods. In the proposed 
evaluation methodology, two databases are generated out of the Yale B database. The 
YaleIllum database comprises of all the frontal images under any illumination. The 
YalePose comprises of all the poses under approximately frontal lighting conditions. 
Nine out of the 64 lighting conditions are considered as approximately frontal. These 
are those with azimuth between -10 and +10 degrees and elevation between -20 and 
+20 degrees. As a result, the YalePose subset comprises of 81 images per person. 

The four databases used for the proposed evaluation methodology are summarized 
in Table 1. 
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Table 1. The four databases used for the proposed evaluation methodology 

Name Persons 
Images 

per 
person 

Total 
images

Annotated 
features or 

cropped 
Pose 

Illumina-
tion 

Expres-
sion 

Occlu-
sion 

HumanScan 21 25-145 1373 
20 

features 

Minimal, 
non-

systematic

Moderate, 
non-

systematic

Minimal, 
non-

systematic 

Glasses, 
hands 

CMUExpr 13 75 975 Cropped None None 
Extreme, 

non 
systematic 

None 

YaleIllum 10 65 650 
Eyes, 
mouth 

None 
Extreme, 

systematic
None None  

YalePose 10 81 810 
Head 
center 

Moderate, 
systematic

Minimal, 
systematic

None None  

2.2   Evaluation Protocol 

The evaluation protocol defines many different partitions of training and testing 
images, with various numbers of training images per person for each database. The 
face recognition methods are trained and tested on those partitions. Hence, adhering 
to the protocol allows the evaluation of the face recognition methods in terms of 
number of training images per person, pose, illumination and expression. The large 
number of partitions allows for many runs and hence a comparison across the 
different methods of results, either of individual runs, or of statistics of groups  
of runs. 

For those databases that the impairments (variations on pose, illumination and 
expression) are introduced non-systematically, the selection of the different training and 
testing partitions can be random. The number of partitions can be any that the number of 

images per class and training images allows. The NR  runs for N training images per 

class are selected as follows: If the minimum number of images per person is minK , then 

a set of L indices { }( )
min1,2,N

ki K∈ K , 1, 2,k L= K  is selected. The set { }( )N
ki  is the 

pool from which the NR  different N-tuples of training image indices for each person are 

formed. The first NR  from the possible ( )N
LR  N-tuples are selected, starting from the 

smallest of the ( )N
ki  indices. Note that since 

 
( )

( ) !

! !
N

L

L
R

N L N
=

−
 (1) 

care should be taken not to select L N>>  and end up with NR  being very small 
relative to ( )N

LR , as in this case some of the larger ( )N
ki  are not included in the N-

tuples. The parameters for the N-tuples generation of the protocol for HumanScan and 
CMU Expression are shown in Table 2. In these two databases the primary measure 
of performance is the average Probability of Misclassification (PMC), given by the 
ratio of the falsely recognized faces over the total number of faces tried per run. 
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Table 2. The parameters for the N-tuples generation of the protocol for the non-systematic 
databases 

Database N L NR  ( )N
N LR R  (%) { }( )N

ki  

1 25 25 100 1:1:25 
2 25 300 100 1:1:25 
3 15 400 87.9 1:1:10, 12:2:20 
5 12 400 50.5 1:1:4, 6:2:20 
7 12 400 50.5 1:1:4, 6:2:20 

HumanScan 

min 25K =  

10 14 400 40.0 1:1:7, 8:2:20 
2 29 400 98.5 1:29 
3 38 400 87.9 1:2:29 
4 38 400 80.8 1:2:10, 11:3:29 

CMU Expr 

min 75K =  
5 38 400 86.6 1, 3, 5:3:29 

 
For the databases derived from Yale B, where the pose and illumination changes are 

systematic, the selection of the different training and testing partitions needs also be 
systematic. For the Yale Illumination database, extensive experiments have shown that 
optimum results are obtained when the central and extreme azimuth and elevation light-
ing are represented in the training set. Hence the 15L =  indices of the possible training 

images are { }1,4,6,27,28,29,32,33,34,56,57,58,61,62,63 . For Yale Pose, extensive test-

ing has indicated that the optimum choices for training images are those that capture the 
different poses and not the minor differences in illumination. Hence the 9L =  indices 

of the possible training images are { }1,10,19,28,37,46,55,64,73 . 

Table 3. The numbers of runs for the various numbers of training images per person of the 
protocol for the systematic databases 

Database N L ( )N
N LR R=  

2 105 
3 455 
4 1365 
5 3003 
7 6435 

Yale 
Illumination 

10 

15 

3003 
2 36 
3 84 
4 126 
5 126 
6 84 
7 36 
8 9 

Yale Pose 

9 

9 

1 
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For these two databases, where the impairments are introduced systematically, all 
the ( )N

LR  runs have to be tried. The numbers of runs for the various numbers of 

training images per person are shown in Table 3. 

3   Evaluation Results 

Some face recognition methods are evaluated using the proposed methodology. These 
include: 

• three variants of the linear subspace projection methods, namely PCA and PCA 
without the three eigenvectors corresponding to the largest eigenvalues 
(PCAw/o3), representing unsupervised projection matrix estimation [3,4] and 
LDA, representing unsupervised projection matrix estimation [4,5], 

• Elastic Bunch Graph Matching (EBGM) [2], a feature-based method, and 
• Pseudo 2D Hidden Markov Models (HMM) [8]. 

EBGM, as a feature-based method is restricted to the HumanScan database that offers 
20 hand-annotated features. 

These methods are evaluated using the different databases and intensity 
normalization schemes. The latter include zero-mean unity-variance normalization, 
histogram equalization and edginess [22]. The median values of the PMC results are 
used for visualization of the variation of performance, but the results are also 
analyzed statistically using boxplots [23]. In these plots, the medians are represented 
by horizontal lines, the boxes around the median values represent the inter-quartile 
ranges and the whiskers represent the extend of the data. Outliers are marked by 
crosses. The notches on the boxes represent the uncertainty of the median value 
estimation: difference in the median values is statistically significant at the 5% 
significance level only if the notches of the boxes do not overlap. 

The evaluation results on HumanScan are shown in Fig. 1. In Fig. 1a the median 
values of the probability of misclassification are given as a function of the number of 
training faces per person. The performance of all methods improves as more training 
faces are used. This is expected since the excess training captures more variation of 
the appearance of the person. The best preprocessing scheme is histogram 
equalization. LDA outperforms all methods for three or more training faces per 
person. For fewer, PCAw/o3 with histogram equalization is the clear winner. In Fig. 
1.b the statistical analysis of the best methods for 10 training faces per person using 
boxplots is performed. The analysis shows that the best median of PMC of LDA 
compared to PCAw/o3 with histogram equalization, no matter the preprocessing 
scheme has statistical significance. It also shows that LDA without any preprocessing 
is not very robust; its inter-quartile range and the extend of the data exceeds that of 
PCAw/o3 with histogram equalization. The usage of with histogram equalization 
makes LDA robust, with performance significantly better than the other two. 

The evaluation results on Yale Illumination are shown in Fig. 2. In Fig. 1a the 10th 
percentile values of the probability of misclassification are given as a function of the 
number of training faces per person. In this case we do not report the median, since 
the particular choice of training images is very important; the different lighting 
conditions have to be represented in training as uniformly as possible. The best 
preprocessing scheme is edginess, but it is not very effective for PCAw/o3. LDA 
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outperforms all methods for five or more training faces per person. For fewer, PCA 
with edginess preprocessing is the clear winner. To demonstrate the robustness added 
to the classifiers when edginess preprocessing is used, the statistical analysis using 
boxplots is shown in Fig. 1.b. Both the median and the inter-quartile range drop. Also, 
since the notches of the PCA and LDA methods with edginess preprocessing do not 
overlap, the fact that LDA performs better has statistical significance at the 5% 
significance level. 
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Fig. 1. Results on HumanScan. (a) Median of the PMC as a function of the number of training 
faces per person. (b) Boxplot of the three best methods for 10 training faces per person. 
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Fig. 2. Results on Yale Illumination. (a) 10th percentiles of the PMC as a function of the 
number of training faces per person. (b) Boxplots of three methods for 5 training faces per 
person that indicate how preprocessing enhances robustness. 

The evaluation results on Yale Pose are shown in Fig. 3. As in Yale Illumination, 
the 10th percentile values of the probability of misclassification are given as a function 
of the number of training faces per person. The effect of preprocessing is not as 
straightforward here. Depending on the method and the number of training faces per 
person no preprocessing or histogram equalization are the best choices. Histogram 
equalization is beneficial to the two PCA variants for many training faces per person, 
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but should not be used with LDA. LDA outperforms all methods for three or more 
training faces per person. For fewer, PCA should be used. Finally, note the 
catastrophic effect of ignoring the three eigenvectors with the largest associated 
eigenvalues. 
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Fig. 3. 10th percentile values of the PMC as a function of the number of training faces per 
person for Yale Pose 
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Fig. 4. Median values of the PMC as a function of the number of training faces per person for 
CMU Expression 
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The evaluation results on CMU Expression are shown in Fig. 4. As the variations 
in this database are not systematic, the median values of the probability of 
misclassification are given as a function of the number of training faces per person. 
This database does not provide a challenge to face recognition, as both PCA and LDA 
result to zero median PMC values for two or more training faces per person. As in the 
case of pose variation, the effect of preprocessing is not straightforward. Depending 
on the method and the number of training faces per person no preprocessing or 
histogram equalization are the best choices. Nevertheless, the effect of preprocessing 
is not as pronounced as in other cases. Finally, as in the case of pose variation, also 
here in the case of expression variation, it is catastrophic to ignore the three 
eigenvectors with the largest associated eigenvalues. 

4   Conclusions 

An evaluation methodology is proposed in this paper, comprising of four face 
databases and an evaluation protocol. The protocol is different in the various 
databases, taking into account whether the impairments each introduces to the images 
are performed systematically or not. The protocol allows for a large number of 
different partitions between the training and testing data. 

The proposed evaluation methodology allows for a thorough study of the face 
recognition methods in terms of number of training images per person, pose, 
illumination and expression variations, and geometric and intensity normalization. 
Some face recognition methods (linear subspace projection variants, EBGM, HMM, 
correlation filters) and different intensity normalization schemes (zero mean/unity 
variance, histogram equalization and edginess) are thus evaluated, leading to the 
following conclusions: The methods perform differently when applied on different 
databases. This is because the databases depict different impairments, in which some 
methods are better suited than others. Under ideal geometric normalization, linear 
subspace projection performs best, with LDA being more robust than PCA for more 
than 3 training images per person. EBGM is impressive for one training image per 
class. Intensity normalization is very important for illumination changes, with 
edginess performing best, but leads to performance degradation for pose and 
expression changes. Histogram equalization has a more mild effect in the case of pose 
and expression changes, whereas it is quite good for illumination changes. Finally, 
ignoring the three eigenvectors with the largest associated eigenvalues enhances 
performance only if there are no pose or expression changes. For the latter case, the 
performance degradation is severe. 

Thus, a face recognition system that is applied on unconstraint images, without any 
a-priori knowledge of the illumination, pose and expression the person under test will 
assume should not discard the three eigenvectors with the largest associated 
eigenvalues and should use histogram equalization to preprocess the images. The 
designer of the system should try to include examples of the extreme illuminations 
and poses that are expected in the training faces. 

Additional work is underway both in terms of methods and databases. Both other 
linear subspace projection methods (direct LDA [24], OFLD [25]), as well as non-
linear extensions (kernel methods [9], LaplacianFaces [26]) are being investigated. 
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Regarding databases, the ORL [8] and AR [15] databases are under integration in the 
proposed methodology. The PIE [27] database is also under consideration. 
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Abstract. In this paper, we present a system to track the horizontal head
orientation of a lecturer in a smart seminar room, which is equipped with
several cameras. We automatically detect and track the face of the lecturer
and use neural networks to classify his or her face orientation in each cam-
era view. By combining the single estimates of the speaker’s head orienta-
tion from multiple cameras into one joint hypothesis, we improve overall
head pose estimation accuracy. We conducted experiments on annotated
recordings from real seminars. Using the proposed fully automatic system
we are able to correctly determine the lecturer’s head pose in 59% of the
time and for 8 orientation classes. In 92% of the time, the correct pose class
or a neighbouring pose class (i.e. a 45 degree error) were estimated.

1 Introduction

In recent years there has been much research effort spent on building smart
perceptive environments. The challenge is to build environments which support
humans during their activities without obliging them to concentrate on operating
complicated technical devices.

In the framework of the European Union Research project CHIL, we are
therefore developing services that aim at proactively assisting people during
their daily activities and in particular during their interaction with others. Here,
we focus on office and lecture scenarios, as they provide a wide range of useful
applications for computerized support.

To provide intelligent services in a smart lecture environment it is necessary
to acquire basic information about the room, the people in it and their interac-
tions. This includes for example the number of people, their identities, location,
posture, body and head orientation, speech etc.

A person’s head orientation can be a valuable cue to determine his or her
focus of attention and interaction partners. This could be useful to index seminar
recordings, to detect context switches such as interruptions, discussions, etc. and
in particular to tell the “smart room” about the lecturer’s target of attention,
for instance the audience, a whiteboard, his or her laptop etc.

In this work, we present a fully automated system for tracking a lecturer’s
head pose. By using multiple cameras we cover the entire room and are able
to combine head pose estimates coming from various camera views into one
single, more robust hypothesis. To estimate head pose in each view, we use an
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appearance-based approach as proposed in [8], as it has proven to provide useful
results even from low-resolution facial images such as the ones captured with the
smart room cameras.

The remainder of this paper is organized as follows: In Section 1.1 we discuss
related work. Section 2 introduces the Sensor setup used in our smart room.
Section 3 gives a system overview and describes the technical components – head
detection and extraction, frontal-face classification, head pose estimation and
fusion – in detail. Section 4 presents experimental results on recorded seminars.
In Section 5 we conclude this paper.

1.1 Related Work

In recent years, various approaches for visually estimating head pose were pre-
sented. Yet, the interacting person whose pose was to be recognized often had
to limit its movement and rotation to a fixed area around the camera. This
prohibits natural behaviour and only allows to embed those systems in environ-
ments where the user’s freedom of movement is restricted anyway (like in a car
or in front of a screen).

Especially model-based approaches as presented in [3], [2], [7] are affected
by this constraint. Since in these approaches, a number of facial features need
to be detected to compute head pose, they require facial images of quite high
resolution and also suffer of tracking problems due to fast head movements.

In contrast, appearance-based approaches tend to achieve satisfactory results
even with lower resolutions of extracted head images. In [8] a neural-network-
based approach was demonstrated for head pose estimation from very low reso-
lution facial images which were captured by a panoramic camera. Here, however,
the output only covered ranges from the left to the right profile. Also only one
camera view was used, thereby limiting the application of the system to an area
around a meeting table.

Another interesting work is described by Ba and Obodez in [1]. They classify
facial images by modelling the responses of Gabor and Gaussian filters for a
number of pose classes. An interesting contribution of their work is the combi-
nation of head detection and pose estimation in one particle filter framework.
However, their work was limited to a monocular system.

Tian et al. [9] described the use of wide baseline overhead stereo-cameras in a
room to classify an observed head pose into one of a fixed set of discrete pose classes.
Neural networks were implemented for estimating the head pose seen by each cam-
era. A maximum-likelihood search results in the final pose hypothesis. Though the
architecture of the presented system seems to be usable for more than two cameras,
the work lacks an example with more than one camera pair. To our knowledge, this
is the only work combining multiple views for head pose estimation.

2 Sensor Setup

Figure 1 depicts our sensor setup: four calibrated colour cameras (Sony DFW-
500) are mounted in the upper corners of the smart-room at a height of about
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2.7m. The size of the room is 5.9m × 7.1m. Because of this layout, the entire
room is covered by the cameras’ field of view, such that at least one facial view
of the user’s head can always be obtained. The missing ability to zoom optically
results in very low-resolution images of the extracted head, depending on where
the person is standing. Using the native camera resolution of 640 × 480 pixels,
the typical size of a head is about 20 × 30 to 50 × 65 pixels in our data. Figure
4 shows the four views of the room as seen by the cameras.

In addition to the low resolution facial views, our recordings also suffer from
non-optimal lighting conditions due to the non-uniform illumination coming from
different light sources in the room (halogene lamps as well as sunlight coming
through the windows). In our recordings, therefore, mostly two camera views are
always confronted with strong back light.

Fig. 1. Four cameras are placed in the upper corners of the smart-room, such that at
least one facial view of the head can be obtained. We estimate the horizontal rotation
angle (pan) of a person’s head by combining the estimates from multiple cameras.
The overal pose estimation is relative to the room coordinate system, situated in the
north-western corner of the room.

3 System Overview

Our system for tracking a lecturer’s head pose consists of the following main
components:

1. Tracking of the lecturer
2. Head detection and alignment
3. Classifying frontal views vs. views at the head’s back
4. Pose estimation for each camera view
5. Building a joint pose hypothesis

The following sections describe these components in detail.
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3.1 Tracking the Lecturer’s Head

In order to track the location of the lecturer’s head, we follow the approach
presented in [5]: A particle filter framework integrates multiple cues from all
of the camera views and hypothesizes the lecturer’s 3D position. It does so
by performing sampled projections of 3D hypotheses and scoring them, thus
avoiding the need for explicit triangulation.

Intuitively, the lecturer is the person that is standing and moving most, while
people from the audience are generally sitting and not moving much. In order to
exploit this behavior, we decided to use dynamic foreground segmentation based
on adaptive background modeling [6] as primary feature. To support the track,
we use detectors for face and upper body [10] [4].

In order to evaluate a hypothesis, we project a person-sized cuboid centered
around the head position to the image plane, and count the number of foreground
pixels inside the projected polygon. The fraction of foreground pixels within the
polygon is then used as the particle’s score. This calculation is sped-up by first
computing an integral image of the foreground map, so that a particle can be
scored in constant time independently from image resolution.

Furthermore, for each particle, the head cuboid projection on the image plane
is classified by a single run of the face-detector. The overlap between the pro-
jected head box and all detected faces is used to refine the particle’s score. In
the same manner, upper body detection is incorporated to support the track.

Using this tracking scheme, computationally expensive features are evaluated
locally at the particles’ projected positions in the respective images. Thus, the
complexity of the tracking algorithm is related linearly to the image size, the
number of cameras, and the number of particles. The average tracking error was
evaluated to be about 23cm throughout all video sequences.

3.2 Head Alignment

Since the estimated position of the lecturer given by the tracking module does
not provide consistently aligned bounding boxes of the lecturer’s face, a further
face alignment step becomes necessary, before faces can be extracted for later
processing.

In order to align and extract the lecturer’s face in each camera view, we use
a frontal and profile face detector which are based on Haar-feature cascades as
proposed in [10]. The search space for these face detectors is limited to a search
window around the initially estimated position of the lecturer, projected into
the respective camera view (see Figure 4 for an example - the big boxes around
the lecturer’s head depict the search windows for the face detectors).

Since the face detectors sometimes fail to detect a face, we predict the face
bounding boxes in those camera views, in which the lecturer’s face could not be
detected in order to get a facial view for later pose estimation. This can be done
if the face was detected in at least two other camera views. From the detected
faces, we then compute the lecturer’s 3D position by triangulation and project a
3D cuboid around the 3D head location into those camera views where no face
was detected (see also Figure 2).
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Fig. 2. We detect heads using both frontal and profile face cascades in each camera
view. The 3D position of the head is computed by triangulating the centroid of each
detected head region in associate camera pairs and searching for the 3D position with
the smallest residual. In camera views where no head was found at all, the head’s region
is derived by placing a fixed-size cuboid around the computed head’s centroid in 3D
and re-projecting the cube onto the corresponding camera’s image plane. The edges of
the projection describe the derived head region then.

If - due to false face detections - more than one face is detected in a camera
view, those face bounding boxes that lead to the minimal triangulation residual
are chosen as the correct ones.

3.3 Classifying Frontal Views vs. Views at the Head’s Back

In our experiments, we observed that neural networks for head pose estimation
performed worse if views of the back of a head (showing hair only) were included
in the training data set. Therefore, we try to automatically detect back-views
of heads in our data. To do this, we trained a neural network classifier which
outputs the a-posteriori probability, that a given image depicts a frontal view
in the range from left to right profile ([−90◦, +90◦]). Following the work we
presented in [11], we use a three-layered, feed-forward network, trained with
frontal views and views of the head’s back only. For the latter the target output
was defined to be 0, else 1. Finally, we use a likelihood threshold of 0.5 above
which all captures are classified as (near-) frontal views of the head. As input to
the neural net, a histogram-normalized grayscale image of the head as well as
horizontal and vertical edge images were used. All these were downsampled to
16 × 16 pixels each, and concatenated into one single feature vector.
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The network was trained using standard error backpropagation, minimizing
the output error on a cross evaluation set within 100 training cycles.

3.4 Single-View Head Pose Estimation

We first try to estimate the lecturer’s head orientation relative to each camera
position in the range of [−90◦, +90◦]. Doing the estimation relative to each cam-
era (position) first - instead of estimating head orientations relative to the world
coordinate system - allows us to train and use only one single neural network to
estimate head pose for all cameras (see Figure 3). This has the advantage that
all available facial images from all cameras can be used for training the network.
Also, this makes our system independent of the positioning of the cameras in the
room and allows us to add further cameras without the necessity of retraining
the network.

Fig. 3. Each camera’s line of sight points straight to the corresponding head’s 3D
centroid. By using relative head pose angles, the very same head pose estimating neural
network may be used for each additional camera view, thus preventing the necessity
to train one single network for each camera view respectively.

To estimate head pose, we follow our previous work [11] using a three-layered,
feed-forward network with one single output unit. Head pose is estimated con-
tinously in the range of [−90◦, +90◦]. As input images, again downsampled his-
togram normalized grayscale images as well as horizontal and vertical edge im-
ages of heads are used.

The network is trained with standard error backpropagation, using a dataset
that consists of frontal views of the head only, ranging from left to right profile.
As noted above, we experience a more robust performance of the system by
limiting its output and therefore the training data to the [−90◦, +90◦] range.

3.5 Building the Joint Hypothesis

We define Θ = {θi}, with θi ∈ {0◦, 45◦, . . . , 315◦} as the set of all possible head
pose classes. These are defined to be relative to the world coordinate system in
the room.
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Fig. 4. Example output of our discrete head pose estimation system. The arrows
indicate the final head pose estimation (long red arrow) and the groundtruth head
pose (short green arrow). Further, the position of the arrows indicate the position of
the user in the smart-room. The rectangles in each camera view indicate both our
search window (large rectangle) in which the system tries to detect a head, and the
actual detected head region (small rectangle).

Further, at each timestamp we have H = {h1, h2, . . . , hn}, the set of all single
orientation estimations made. n represents the number of cameras used, depict-
ing frontal views at the lecturer’s head only.

In making a final decision about the true head pose, we score a pose hypothesis
θi by summing up the a-posteriori probabilities of all available estimations as
follows:

π(θi) =
n∑

j=1

P (θi|hj) (1)

Finding the best hypothesis then consists in maximizing the score by searching
for the best fitting hypothesis θ̂:

θ̂ = argmax
θi∈Θ

π(θi) (2)

The described procedure guarantees increasing hypothesis scores, the more cam-
era views are being used and easily allows to extend an existing setup by adding
more cameras in order to stabilise the estimation. Hereby, the algorithm’s com-
plexity increases linearly with the number of cameras C and the number of
possible head orientation classes according to O(C · |Θ|).
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The a-posteriori probabilities in equation (1) are derived from confusion ma-
trices that were built for each camera whilst evaluating the classification perfor-
mance of the trained neural network on the cross evaluation set. Since confusion
matrices transcribe the amount of estimated facial views when the true head
pose is known, they allow to compute the a-posteriori probabilities of pose classes
when a specific single estimation is given. That way, the posterior probability of
a class θi given the observation hj can be computed as

P (θi|hj) =
kij∑
m kmj

(3)

where kij denotes the matrix element in row i and column j. While the ma-
trix columns define the different estimation classes and the rows describe the
groundtruth head pose classes.

4 Experiments and Results

Considering the educational smart-room scenario we already described earlier,
we evaluated our implementation on real videos that were recorded during a
seminar lecture in 2003. Overall we recorded 7 persons, further splitting each
recording into 4 segments of 5 minutes each, on which training and evaluation
was realised separately. However, in order to reduce redundancy, we annotated
and evaluated every 10th frame only. In the multiuser scenario, we trained the
underlying neural networks on segments 1 and 2, using segment 3 as cross eval-
uation set. Segment 4 was used for evaluation purposes, thus evaluating the
networks with video data that has not been seen before in the training stage,
though resulting from the same persons. In the unknown user scenario, we im-
plemented a round robin evaluation, thus excluding a person’s recording from
training and cross evaluation when evaluation is being done on this person’s
video data.

For providing groundtruth information regarding the true head pose, we man-
ually annotated the videos with the observed head pose of the lecturer, classi-
fying the head’s pose manually into one of eight equidistant classes such as
0◦, 45◦, 90◦, ...315◦.

4.1 Multiuser System

In case of the multiuser system, the networks have been evaluated with the
same persons they have been trained with, although not the very same segments
have been used. In this case, with the use of our earlier described head position
tracking module, classifying frontal views of the head performed with an accuracy
of 83.5%.

As Table 1 shows, head orientation estimation performed correctly with ap-
proximately 59% in our fully automatic scenario. This means, the networks were
evaluated using unsupervised head extractions, thus including outliers and vari-
ance resulting from imperfect alignment of the corresponding bounding box.
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In case of manually annotated 3D positions of the head’s centroid and manual
removal of extreme outliers, the performance increased to approximately 74%
correct detection of the pose class thus showing the impact of imperfect face
detections and outliers in the complete system.

One major problem regarding outliers in alignment comes from views where
the head region has been derived from other views: Using a fixed-size cuboid
surely is ineffective in assigning a hard edged region of interest. Estimating
the head’s approximate size in 3D and using a secondary triangulation step re-
garding the bounding box’ vertices might therefore provide an alternative for
future work.

Table 1. System’s performance on head pose estimation in percent. We evaluate both
the results for automatic recognizing of facial views as well as choosing near frontal
views manually. Using a fully automatic system, the correct pose class is detected
58.9% of the time. In 91.7% of the time, the correct class or a neighbouring pose class
is detected (error < 45◦). When choosing frontal views manually, the correct head
pose is recognized in 74.6% of the time.

correct class correct or neighbour class

multiuser manual view selection 74.6 96.4

multiuser automatic view selection 58.9 91.7

unknown user automatic view selection 48.4 82.9

The second limitation is clearly resulting from the error produced by the
facial view classifier, especially considering the fact how such a false positive
classification shifts the range of possible head poses that are to be considered.
If, for example, camera 1 and 2 depict frontal captures of the user’s head and
camera 3 estimates a false positive, the range of possible head poses clearly shifts
up to the third camera’s view range. Since the orientation estimation network
only gets trained up to profile faces captures, the output of the third camera
is taken into account as if the head is truly rotated into that direction. This
leads to the best matching head pose for a wrongfully extended range, which
clearly produces false hypotheses in the end. Regarding these outcasts, temporal
filtering could help in reducing this negative effect.

4.2 Unknown Users

The unknown user scenario was realised by implementing the leave-one-out
method, where one person was removed from the training data set and exclu-
sively used for evaluation purposes only. The results are shown in Table 1. In
this unknown user scenario, the initial facial view recognition step achieved a
correct recognition rate of 79.6%.
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Overall, correct pose class detection was achieved in 48.4% of the time. In
82.9% of the time the estimated pose class fell in either the correct class or a
neighbouring class (error < 45◦). Although the obtained performance is worse
than in the multiuser case, we can see that - as in the multiuser case - the
performance increases as more facial views are available for pose classification
(see Table 2). The results furthermore indicate that it might be advantageous
to train the system with much more data in order to increase the networks’
capability of generalisation on unseen people.

Table 2. Correct classification in percent in case of both a multiuser and an unknown
user scenario. In both cases, using more frontal views at the head enhances the system’s
performance.

1 frontal view 2 frontal views 3 frontal views avg.

multiuser 37.5% 58.3% 72.5% 58.9%

unknown users 27.3% 55.2% 55.3% 48.4%

5 Conclusions

In this work, we have presented an approach for estimating the horizontal head
orientation of a lecturer in a multi-camera smart-room environment. We estimate
head orientation in each camera view using a neural network. Multiple head pose
estimates coming from various camera views are then fused in order to obtain a
more accurate estimate of the lecturer’s head orientation.

Since head pose is initially estimated with respect to each camera, our ap-
proach is flexible and allows for easy change of camera positions and use of
additional cameras without the necessity of retraining the system.

We conducted experiments on a set of real seminar recordings. Our exper-
iments show that the overall error significantly decreases as more facial views
are included in the estimation. In a multiuser evaluation, the correct pose class
could be detected in 58.9% of the frames. In 91.7% of the time, the correct class
or a neighbouring pose class (i.e. a 45 degree error) were estimated. In case of
unseen users, in 48.4% of the frames the pose class was correctly determined
(82.9% when including the neighbouring pose classes).

Our setup provides an unobtrusive estimation of a lecturer’s rough head orien-
tation. We believe that this will be useful for many applications in smart seminar
rooms, e.g. in order to detect people’s focus of attention and interaction among
each other.

As our experiments show, pose estimation results were quite heavily affected
by false detections of near frontal facial views. In future work we will try to
circumvent these problems by soft classification of near frontal views (instead
of hard decisions as it is the case right now). We furthermore hope to improve
results by using temporal filtering to stabilize the system output.
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Abstract. Object localization and tracking are key issues in the analy-
sis of scenes for video surveillance or scene understanding applications.
This paper presents a contribution to the object tracking task in indoor
environments surveyed by multiple fixed cameras. The method proposed
uses a foreground separation process at each camera view. Then, a 3D-
foreground scene is modeled and discretized into voxels making use of
all the segmented views, preventing the difficulties of inter-object oc-
clusions in 2D trackers, and increasing the robustness for not having to
rely only in one view. The voxels are grouped into meaningful blobs,
whose colors are modeled for tracking purposes, using a novel voxel-
coloring technique that considers possible inter/intra-object occlusions.
Finally, color information together with other characteristic features of
3D object appearances are temporally tracked using a template-based
technique which takes into account all the features simultaneously in ac-
cordance with their respective variances. Extensive experiments dealing
with several hours of video sequences in real-world scenarios have been
conducted, showing a very promising performance.

1 Introduction

One of the important objectives of image and video analysis is the development of
accurate and robust tracking techniques for multiple moving objects in dynamic
and cluttered visual scenes. It is particularly desirable in the video surveillance
field where an automated system allows fast and efficient access to unforeseen
events that need to be attended by security guards or law enforcement officers.
It also enables tagging and indexing interesting scene activities / statistics in a
video database for future retrieval on demand. In addition, such systems are the
building blocks of higher-level intelligent vision-based or assisted information
analysis and management systems with a view to understanding the complex
actions, interactions, and abnormal behaviors of objects in the scene.

Vision-based surveillance systems can be classified in several different ways,
considering the environment in which they are designed to operate. In this paper
our focus is on processing videos captured by multiple fixed camera overlooking
indoor areas in visual monitoring scenarios.

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 241–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Multiple camera surveillance has two key advantages over single camera sys-
tems. First, the occlusion problem automatically vanishes when using enough
cameras. And second, the process gains robustness for not having to rely only
in one camera.

There have been several attempts to fuse video information from different
cameras. Some approaches start with the assumption that the scene develops
in flat areas with large distances between objects and cameras. The tracking
becomes then only a problem of 2D localization in a plane. In such situations it
is commonplace to project tracking regions from one camera view to another [1].
The process, known as homography between images, can be employed to select
which projection is used based on the localization of the object, in order to avoid
occlusions present in a camera but not in others.

Although homographic transformations between images have proved to solve
some problems, they fail when the assumptions of large distances and flat areas
do not hold, such as indoor scenarios. To overcome this limitation, there have
been some works which try to do a 2D-based tracking and then fuse the results
into a 3D space; and others which try to fuse 3D features first, to use them later
in a single tracker.

1.1 Our Approach

We focus on the second approach. In particular, we propose using the camera
views to extract foreground voxels, i.e., the smallest distinguishable box-shaped
part of a three-dimensional image. Indeed, foreground voxels provide enough
information for precise object detection and tracking. Furthermore, there are
several alternatives for the voxel extraction process, such as laser range scanners
that although providing very precise volumetric information, suffer from very low
scanning rates, making them unsuitable for our application. Other non-invasive
reconstruction methods use intensity-based techniques [2] that compute corre-
spondences across images and then recover the 3D structure by triangulation
and surface fitting. Unfortunately, for effective operation of these techniques the
camera views must be close so that the correspondence is effective. Besides, a
huge number of points have to be usually matched and fused into a consistent
model, making it a slow and difficult task.

Instead, we propose using shape from silhouette, which is another non-invasive
and faster technique. A calibrated [3] set of cameras must be placed around the
scene of interest, and the camera pixels must be provided as either part of the
shape (foreground) or background. Each of the foreground camera point defines
a ray in the scene space that intersects the object at some unknown depth along
this ray; the union of these visual rays for all points in the silhouette defines
a generalized cone within which the 3D object must lie. Finally, the object is
guaranteed to lie in the volume defined by the intersection of all the cones. The
main drawback of the method is that it doesn’t always capture the true shape
of the object, as concave shape regions are not expressed in the silhouettes.
However, this is not a severe problem in a tracking application as the aim is not
to reconstruct photorealistic scenes.
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Fig. 1. The system block diagram showing the chain of functional modules

After the voxelization process (see figure 1), a connected component analysis
CCA is followed to cluster and label the voxels into meaningful 3D-blobs, from
which some representative features are extracted. Finally, there is a template-
based matching process aiming to find persistent blob correspondences between
consecutive frames.

The paper is structured as follows. In the next section the techniques for
pixel-domain analysis leading to the segmented foreground views are described.
Section 3 is devoted to discussion on issues concerning 3D-blob extraction, in-
cluding the voxelization process and the voxel coloring. Section 4 describes the
object tracking approach adopted. Section 5 illustrates the experimental evalu-
ations of the system. And, finally the paper concludes in Section 6 .

2 2D Foreground Segmentation

The 2D foreground extraction technique that we have used [4, 6] is based on
the adaptive background subtraction method proposed by Stauffer and Grimson
[7]. A mixture of K Gaussian distributions is used to model RGB color changes,
at each pixel location, in the imaging scene over the time. With each incoming
frame the Gaussian distributions are updated, and then used to determine which
pixels are most likely to result from a background process. This model allows
a proper representation of the background scene undergoing slow lighting and
scene changes as well as momentary variations.
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The foreground pixels thus obtained, however, are not exempt from false de-
tections due to noise in the background and camera jitters. A false-foreground
pixels suppression procedure is introduced to alleviate this problem. Basically,
when a pixel is initially classified as a foreground pixel, its 8-connected neighbor-
ing pixels’ models are examined. If the majority of these models, when applied
to this pixel, agree that it’s a background pixel, then it’s considered as a false
detection and removed from foreground.

Once the foreground objects pixels have been identified, an additional scheme
[5] is applied to find out if some of these foreground pixels correspond to areas
likely to be cast shadows or specular reflections. The working mechanism of this
novel scheme is the following:

As the first step, we evaluate the variability in both brightness and color
distortion [8] between the foreground pixels and the adaptive background, and
possible shadows and highlights are detected. It was observed though that this
procedure is less effective in cases that the objects of interest have similar colors
to those of presumed shadows. To correct this, an assertion process comparing
the gradient / textures similarities of the foreground pixels and corresponding
background is incorporated. These processing steps, effectively removing cast
shadows, also invariably delete some object pixels and distort object shapes.
Therefore, a morphology-based conditional region growing algorithm is employed
to reconstruct the object’s shapes. This novel approach gives favorable results
compared to the current state-of-the-art to suppress shadows / highlights.

3 3D Blob Extraction

Once the foreground region has been extracted in each camera view, the blobs in
the 3D space are constructed. In our implementation, the bounding volume (the
room) is discretized into voxels. Each of the foreground camera points defines
a ray in the scene. Then, the voxels are marked as occupied when there are
intersecting rays from enough cameras MINC over the total N.

The relaxation in the number of intersecting rays at a voxel prevents typical
missing-foreground errors at the pixel level in a certain view, consisting in fore-
ground pixels incorrectly classified as background. Besides, camera redundancy
also prevents analog false-foreground errors, since a wrongly defined ray in a
view will unlikely intersect with at least MINC −1 rays from the rest of the
cameras at any voxel.

3.1 Voxel Connectivity Analysis

After marking all the occupied voxels, with the process described above, a con-
nectivity analysis is performed to detect clouds of connected voxels, i.e. 3D-
blobs, corresponding to tracking targets. We choose to group the voxels with
26-connectivity which means that any possible contact between voxels (vertices,
edges, and surfaces) makes them form a group. Then, from all the possible blobs,
we consider only the ones with a number of connected voxels greater than a cer-
tain threshold B SIZE, to avoid spurious detections.
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3.2 Voxel Coloring

After voxel grouping, the blobs are characterized with their color (dominant
color, histogram, histogram at different heights, etc.), among other features. This
characterization is employed later for tracking purposes. However, a trustworthy
and fast voxel coloring technique has to be employed before any color extraction
method is applied to the blob.

We need to note that during the voxelization and labeling process, inter/intra-
object occlusions are not considered, as it is irrelevant whether the ray came from
the occluded or the occluding object. However, in order to guarantee correct
pixel-color mapping to visible voxels in a certain view, occlusions have to be
previously determined.

We discard slow exhaustive search techniques, which project back all the
occupied voxels to all the camera views to check intersecting voxels along the
projection ray. Instead, for the sake of computational efficiency, we propose a
faster technique, making use of target localization, which can be obtained from
the tracking system.

As photorealistic coloring is not required in our application, intra-object oc-
clusions are simply determined by examining if the voxel is more distant to the
camera than the centroid of the blob the voxel belongs to. On the other hand,
inter-object occlusions in a voxel are simply determined by finding objects (rep-
resented by their centroid) in between the camera and the voxel. This is achieved
by computing the closest distance between the segment voxel-to-camera and the
objects’ centroids (dist(vc,oc)). The process is schematized in the Voxel-Blob
level in figure 2.

To reduce even further the computational complexity, the voxels can be approx-
imated by the position of the centroid of the blob they belong to, as it’s shown in
the Blob level in figure 2, and intra-object occlusions are not examined.

Finally, the color of the voxels is calculated as an average of the projected
colors from all the non-occluding views.

4 Object Tracking

After labeling and voxel coloring, the blobs are temporally tracked throughout
their movements within the scene by means of temporal templates.

Each object of interest in the scene is modeled by a temporal template of
persistent features. In the current studies, a set of three significant features are
used for describing them: the velocity at its centroid, the volume, and the his-
togram. Therefore at time t, we have, for each object l centered at (plx, ply, plz),
a template of features Ml(t). Prior to matching the template l with a candidate
blob k in frame t + 1, centered at (p′kx, p′ky, p′kz) with a feature vector Bk(t + 1),
Kalman filters are used to update the template by predicting its new velocity
and size in M̂l(t+1). The mean Ml(t) and variance Vl(t) vector of the templates
are updated when a candidate blob k in frame t + 1 is found to match with
it. The updates are computed using the latest corresponding L blobs that the
object has matched.
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Fig. 2. Voxel Coloring block diagram, showing the two proposed methods. On the left,
the Voxel-Blob level, which addresses voxel coloring individually. On the right, a faster
approach using only the centroids of the blobs.

For the matching procedure we choose to use a parallel matching strategy.
The main issue is the use of a proper distance metric that best suits the problem
under study. The template for each object being tracked has a set of associated
Kalman filters that predict the expected value for each feature (except for the
histogram) in the next frame. Obviously, some features are more persistent for
an object while others may be more susceptible to noise. Also, different features
normally assume values in different ranges with different variances. Euclidean
distance does not account for these factors as it will allow dimensions with larger
scales and variances to dominate the distance measure.

One way to tackle this problem is to use the Mahalanobis distance metric,
which takes into account not only the scaling and variance of a feature, but also
the variation of other features based on the covariance matrix. Thus, if there are
correlated features, their contribution is weighted appropriately.

However, with high-dimensional data, the covariance matrix can become non-
invertible. Furthermore, matrix inversion is a computationally expensive process,
not suitable for real-time operation. So, in the current work a weighted Euclidean
distance between the template l and a candidate blob k is adopted, assuming a
diagonal co-variance matrix. For a heterogeneous data set, this is a reasonable
distance definition. Further details of the technique have been presented in the
past [4].
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5 Results

The voxelization and tracking methods have been evaluated extensively using,
among others, our own recordings at the UPC smart-room and the benchmark-
ing video sequences provided by the CHIL project [9]. The CHIL sequences are
provided with manually labeled tags of the tracking target corresponding to
thousands of frames of seminar presentations in a smart room.

The room discretization was done using 5 × 5 × 5 cm3 cubes. During the
voxelization process we used 4 cameras, accepting voxel reconstruction with at
least MINC = 3 intersecting rays. Blobs with B SIZE lower to 700 were filtered
out and voxel coloring was performed with the Blob-level faster approach, setting
THR = 40 cms.

Under the above mentioned conditions, the voxelization and tracking process
performs at 5 fps; with an average tracking error under 20 cms (see the complete
results in Table 1).

The algorithm performs extremely well except in object grouping situations,
not being able to segment them. In spite of that, the tracker is able to recover
the correct tags after the objects ungroup. Some videos are available in our web
at: http://gps-tsc.upc.es/imatge/ jl/Tracking.html

Fig. 3. Voxel reconstruction and labeling of a video sequence recorded at the UPC
smart-room
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Table 1. First column shows the mean of Euclidian distance between the estimated
position of the centroid, and the ground truth of the head center. Note that for this
evaluation, not 3D distances are used, but rather the 2D distance between the projec-
tion on the ground of the estimated head centre and that of the ground truth labels.
The second column expresses the percentage of frames where the distance between the
estimated distance and the ground truth was worse than 30 cms.

30 minutes of video Error Results with Error > 30 cms

Results 148.2 mms 3.8%

6 Conclusions and Future Work

In this paper, we have presented a system able to create a 3D-foreground scene,
characterize objects with 3D-blobs and track them, preventing the difficulties
of inter-object occlusions in 2D trackers, and increasing the robustness for not
having to rely only in one view. The system uses a novel voxel coloring scheme
which allows fast object histogram retrieval used later with other features in a
parallel matching technique during the tracking.

Some of the directions to take to improve results include projecting back
the 3D-blobs to assist the foreground segmentation technique. Also, dynamic
adjustment of the required number of intersecting rays at a voxel MINC will be
investigated. The parameter may be set depending on the position of the tracking
target, allowing tracking in areas where only fewer cameras have visibility.
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Abstract. This paper presents a novel approach to the problem of es-
timating and tracking 3D locations of multiple targets in a scene using
measurements gathered from multiple calibrated cameras. Estimation
and tracking is jointly achieved by a newly conceived computational
process, the Projective Kalman filter (PKF), allowing the problem to
be treated in a single, unified framework. The projective nature of ob-
served data and information redundancy among views is exploited by
PKF in order to overcome occlusions and spatial ambiguity. To demon-
strate the effectiveness of the proposed algorithm, the authors present
tracking results of people in a SmartRoom scenario and compare these
results with existing methods as well.

1 Introduction

Estimating the 3D position and velocity of objects in a scene is of interest in
a number of applications such as visual surveillance, SmartRoom monitoring,
human-computer interfaces and scene understanding. Multiple view geometry
has been addressed in [12] from a mathematical viewpoint, but there is still
work to be done for the efficient fusion of redundant camera views and its com-
bination with image analysis techniques for object detection and tracking. In
this framework, the current paper proposes a novel technique to address the
problem of tracking multiple 3D locations based on the data obtained from a set
of calibrated cameras.

Many vision based tracking techniques have been developed to deal with se-
quences from a single perspective [11, 6] but considerably less work has been
published on tracking of 3D locations with multiple cameras. One of the main
problems within this topic is establishing correspondences among features from
different perspectives [4]. On the other hand, multiple viewpoints allow exploiting
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spatial redundancy and overcome ambiguities caused by occlusion or segmenta-
tion errors and provide 3D position information as well.

The common methodology to this problem in existing approaches is composed
by two disjoint successive steps: estimation of the 3D location and Kalman track-
ing over this estimation. Bayesian networks [5, 7], algebraic methods [17, 9] or
homographies [3] have been employed to establish correspondences among the
projections of the 3D tracked points on all views and then perform a Kalman
tracking directly on this estimated 3D location. The main drawbacks of these
methods are sensitivity to occlusions and spatial ambiguity when resolving the
multiple view correspondence problem [4].

In this paper, we present a novel technique that performs a joint estimation
and tracking of multiple 3D locations allowing the problem to be posed in a
single, unified framework. Projective geometry underlying the image formation
process is exploited allowing the definition of our Projective Kalman Filter.
Information redundancy among views is taken into account to define a data
association process to deal with occlusions and keep a coherent track. This filter
has found applicability in a SmartRoom scenario in the fields of body and gesture
analysis (see Fig.1) or person tracking.

The outline of this work is as follows. Background topics on projective geom-
etry and Kalman filtering required in forecoming sections are reviewed in Sec.2.
Projective Kalman Filter theory is presented on Sec.3. Experimental results are
presented in Sec.4. Finally, conclusion and further improvements are given in
Sec.5.
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Fig. 1. Example of an application of tracking of 3D locations from its projections
within the framework of body analysis (based on [8]). Tracking of the hidden state s[t]
among time from its projections zk[t], 0 ≤ k < N , would allow obtaining the position
of body joints.
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2 Projective Geometry and Kalman Tracking Basics

In order to define a joint estimation-tracking scheme that exploits the under-
lying projective geometry of a multiple view scenario, some basic concepts are
presented. Formation of images formulation and Kalman filtering theory
are briefly reviewed but the reader is addressed to [12] and [15] for more
references.

2.1 Multiple View Systems and Projective Geometry

Obtaining two-dimensional coordinates (pixel positions) of an image from a
three-dimensional magnitude (a 3D location) is a process where a dimension is
lost. Formally, projection can be seen as a many-to-one morphism ψ : R

3 → N
2

that transforms 3D Euclidean coordinates in the world reference frame into 2D
coordinates in the camera reference frame. The usual mathematical way to model
this process passes through projective geometry as an efficient description of the
image formation process. Essentially, a camera is regarded as a projective de-
vice where an image is the result of the central projection of 3D world points
onto the image plane. Specifically, the pinhole camera model is employed in
this paper. Projective effects due to vanishing points can be easily modeled and
understood if we take into consideration projective coordinate systems. Many
authors take advantage from projective geometry and homogeneous coordinates
when addressing computer vision problems [12].

Projection operation can be fully described in homogeneous coordinates by
the linear application P : P

3 → P
2 denoted as the projection matrix 1. So,

x = PX, P = K[R|t], x ∈ P
2, X ∈ P

3, (1)

where the calibration matrix K models the intrinsic parameters of the camera
(focal length, scaling and projection center) and R and t its extrinsic parameters
(rotation and translation of the camera).

It must be noted that projection is essentially a non-linear operation when
defined by the application ψ : R

3 → N
2. In fact, when adopting the pinhole

camera model and the associated projective geometry model, the relation be-
tween the image coordinates x̃ = [x̃ ỹ]� ∈ N

2 and the projected coordinates
x = [x y z]� ∈ P

2 is stated as:

x̃ =
⌊

x

z

⌋
, ỹ =

⌊
y

z

⌋
. (2)

For the sake of simplicity in the notation, let us re-define ψP : R
3 → N

2 as the
projection operator from 3D coordinates to image coordinates embedding Eq.1
and Eq.2.

1 The notation employed in this paper follows the one described by [12,10].
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2.2 Standard Kalman Filter Data Model

The Kalman filter addresses the general problem of estimating the state s ∈ R
n

of a discrete-time controlled process that is governed by the linear stochastic
difference equation:

s[t + 1] = F s[t] + w[t], (3)

with a measurement z ∈ R
m that is

z[t + 1] = H s[t + 1] + v[t + 1]. (4)

The random variables w[t] and v[t] represent the state and measurement noise
respectively. The matrix F in the difference Eq.3 relates the state at the future
step t + 1 to the state at the current step t and the matrix H in the measure-
ment Eq.4 relates the state to the measurement z[t+1]. Matrices F and H might
change with each time step despite most of the approximations in Kalman fil-
tering assume they are constant. In order to define a convergent Kalman filter,
the random variables w[t] and v[t] are assumed to be independent of each other,
white and with normal probability distributions

p(w) ∼ N (0,Q), (5)
p(v) ∼ N (0,R). (6)

2.3 Standard Kalman Filter Evolution

In summary, we have the following situation: starting from an initial estimate
ŝ[0| − 1], with an initial state covariance matrix denoted as Σ[−1| − 1], for each
observation z[t + 1], the estimate of the state is updated using the following
steps:

1. State estimate extrapolation:

ŝ[t + 1|t] = Fŝ[t|t] (7)

2. Error covariance extrapolation:

Σ[t + 1|t] = FΣ[t|t]F� + Q (8)

3. Kalman gain:

K[t + 1] = Σ[t + 1|t]H�[t + 1]
(
H[t + 1]Σ[t + 1|t]H�[t + 1] + R

)−1
(9)

4. State estimate update:

ŝ[t + 1|t + 1] = ŝ[t + 1|t] + K[t + 1] (z[t + 1] − H[t + 1]ŝ[t + 1|t]) (10)

5. Error covariance update:

Σ[t + 1|t + 1] = (I − K[t + 1]H[t + 1])Σ[t + 1|t] (11)
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3 Projective Kalman Filter (PFK)

Kalman filtering is the optimal strategy when dealing with estimation problems
that involve linear relationships between the observed and real state variables
and the distorting noise has a normal probability density. In the current anal-
ysis scenario, Kalman theory has still applicability and allows defining a joint
estimation-tracking scheme exploiting the projective nature of the data gathered
from the cameras.

3.1 Multi-camera 3D Tracking Scenario

Let us define X̃i[t] = [X̃ i[t] Ỹ i[t] Z̃i[t]]�, 0 ≤ i < M , as the M 3D locations,
targets, to be tracked along time. The available data of each of the N cameras is
noted as x̃i

k[t] = [x̃i
k[t] ỹi

k[t]]�, 0 ≤ i < M , 0 ≤ k < N and its formation process
can be described as:

x̃i
k[t] = ψPk

(
X̃i[t]

)
+ ξi

k[t], (12)

where ξi
k[t] is a noise factor present at time t in the projection of the i-th tracked

object on the k-th camera and ψPk
is the projection operator associated to this

camera. The noise factor ξi
k[t] is mainly formed by two contributions

ξi
k[t] = gi

k[t] + di
k[t], (13)

where gi
k[t] is the noise introduced by the inaccuracies of the calibration process,

camera resolution, lens distortion,... considered to have a normal probability
distribution in virtue of the Central Limit Theorem. On the other hand, di

k[t]
is modeled as an impulsive noise result of a bad foreground region detection,
occlusions or heavy lens distortion (borders of the image).

3.2 Kalman Filtering on Multiple Projective Planes

Defining a scheme embedding estimation and tracking based on a direct appli-
cation of Kalman equations Eq.3 and Eq.4 is not straightforward. Let us define
our state variable s[t] as the position and velocity that describe the dynamics of
the tracked 3D location in homogeneous coordinates:

s[t] = [Xi[t] Ẋi[t]]� = [X̃ i[t] Ỹ i[t] Z̃i[t] 1 ˙̃X i[t] ˙̃Y i[t] ˙̃Zi[t] 0]�. (14)

The measure process described by Eq.4 must be modelled according to the
projective nature of the observations. The data captured by the N cameras, that
is the projections of the 3D tracked location given by Eq.12 (pixel positions),
forms the observation vector z[t]:

z[t] = [xi
0[t] xi

1[t] · · · xi
N−1[t]]

� (15)

= [x̃i
0[t] ỹi

0[t] 1 x̃i
1[t] ỹi

1[t] 1 · · · x̃i
N−1[t] ỹi

N−1[t] 1]�,

that is the detected projections of X̃i[t] on every view.
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It can be seen that the problem of tracking a 3D location (hidden state) from
its projections on calibrated cameras (observation) does not fit with the standard
Kalman filter formulation. Relations between the real state, X̃i[t], and the ob-
servations, x̃i

k[t], are non-linear. Thus, statistical distributions when processed
by a projective device, ψPk

, do not usually keep the same statistical proper-
ties. Hence Kalman filtering theory can not be applied directly. Solutions to
this problem have arisen as the Extended Kalman Filter (EKF) [16], the Un-
scented Kalman Filter (UKF) [13] or Particle Filtering [1]. Moreover, normal
distribution of the involved random variables is not fulfilled. The random vari-
ables modelling the movement of the 3D location to be tracked (position and
velocity) are modelled as a normal distribution but the observed variables, that
are affected by the noise factor ξi

k[t] described by Eq.13, are not. This problem
can be coarsely solved by approximating ξi

k[t] by a normal distribution how-
ever, this solution leads to poor results in presence of occlusions (large values
of ξi

k[t]).
Projective Kalman filter is able to perform a joint estimation and tracking by

adding some modifications on the parameters introduced by Eq.3 and Eq.4 in
order to deal with the data model defined by Eq.14 and Eq.15. Filter evolution
follow the standard Kalman equations defined in Sec.2.3. Regarding the state
equation Eq.3:

• State Transition Matrix: Matrix F is set to be constant over time and
defined as:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1
T 0 0 0

0 1 0 0 0 1
T 0 0

0 0 1 0 0 0 1
T 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

• Process noise: The statistics of process noise w[t] are set to be normal. The
covariance matrix Q defining this random variable is learnt from groundtruth
data and set invariant through time.

In order to define a Kalman scheme to track 3D positions from multiple cam-
era data, the measure process described by Eq.4 must be modelled accordingly
to the projective nature of the observations.

• Observation Matrix: The key point of our Kalman filter scheme relies in the
definition of the observed data. A first proposal for this matrix would be:

H =

⎡⎢⎣ P0 03×4
...

...
PN−1 03×4

⎤⎥⎦ . (17)
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However, this matrix, when applied to the state vector s[t] would generate
coordinates that might not be on the image plane (z 
= 1). Hence, the pro-
jection non-linearity must be compensated to obtain coordinates fulfilling
z = 1 in order to have a coherent data model. Our proposal for the adaptive
design of the matrix H[t + 1] is as follows:

H[t + 1] =

⎡⎢⎣α0 · · · 0
...

. . .
...

0 · · · αN−1

⎤⎥⎦ ·

⎡⎢⎣ P0 03×4
...

...
PN−1 03×4

⎤⎥⎦ ,

αk =
1

P3
k · ŝ[t + 1|t]I4×4, (18)

where P3
k is the 3th row of Pk and ŝ[t + 1|t] is the predicted state given by

Eq.7. In this way, when computing Eq.10 the observed, z[t+1], and predicted
term, H[t + 1]ŝ[t + 1|t], can be compared (both have z = 1) leading to a
meaningful result. The non-linearity introduced by the projection operator,
ψPk

, is therefore overcome and successfully modelled.

• Observation noise: The statistics of the observation noise ξi
k[t] can not be

modelled as a random variable with normal distribution. Nevertheless, de-
spite Kalman theory would seem not to be applicable, we propose an scheme
to design an adaptive covariance matrix R[t] that will be able to handle oc-
clusions and make Kalman theory fit in our scheme. Covariance matrix R[t]
can be seen as a matrix that controls how reliable is the observed data in
order to use it for the estimation of the hidden state ŝ[t + 1|t + 1]. In the
observation process, there could be two situations: if there is no occlusion
in the projection of Xi[t] onto the k-th view, then the distorting noise ξi

k[t]
reduces to be the AWGN gi

k[t] part or if there is occlusion and the predomi-
nant noise term turns out to be the impulsive di

k[t] factor. Under this model,
R matrix can be defined for every time step as:

R[t] =

⎡⎢⎣β0 · · · 0
...

. . .
...

0 · · · βN−1

⎤⎥⎦ , (19)

where

βk =
{

σk if there is no occlusion (ξk[t] ≈ gk[t])
∞ if there is occlusion (ξk[t] ≈ dk[t]) . (20)

where σk is the observation covariance noise at k-th view. With this scheme,
non-informative data coming from occluded views is disregarded when com-
puting the estimation of the hidden state and projections corrupted with
AWGN are correctly handled. The algorithm to decide whether a view is
occluded or not is described in Sec.3.3.
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3.3 Data Association Problem

In presence of multiple objects, occlusion and noisy measurements, it is impor-
tant to assign the correct measurement to each tracked object. This is called the
data association problem [2]. The following algorithm describes how to associate
data to every tracked object in the scene (inspirated by [17]) and decide whether
an occlusion has occurred in some views.

X

Y

Z

Γ

Image In

s[t + 1]

s[t]

ŝ[t + 1|t]

ψPn(Γ)

ψPn(ŝn[t + 1|t])

on

z0
n[t + 1]

zn[t]

z1
n[t + 1]

Fig. 2. Data association scenario. State estimation ŝ[t+1|t] and the uncertainty region
defined by Γ when projected into image In allow associating the correct observation,
z0

n[t + 1], to the interest track dismissing false detections, z1
n[t + 1].

Data association must determine the spatial correspondence of two projections
generated by the same 3D feature at two consecutive time instants in the same
image. In this way, when tracking multiple targets, the algorithm will be able
to perform properly. Moreover, in the case when a correspondence can not be
established probably due to an occlusion, the data association algorithm should
modify the R[t+1] matrix accordingly. The proposed data association procedure
is described by the following steps:

1. State estimate extrapolation: In order to perform a search for the most
likely correspondence on time t+1, the algorithm estimates the state at this
time through Eq.7 thus obtaining ŝ[t + 1|t].

2. Data bounding: From the state evolution equation Eq.3, it can be assumed
that the uncertainties of the 3D tracked location, the state, are modelled by
the process noise described by the covariance matrix Q. Assuming that this
matrix has been correctly estimated, it can be inferred that the 3D position,
s[t + 1], fulfills the condition:

s[t + 1] ∈ Γ, (21)

Γ :
{
X/ (X − ŝ[t + 1|t]) W−1 (X − ŝ[t + 1|t])� ≤ 0

}
. (22)
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That is, s[t+1] is inside the ellipsoid Γ in homogeneous coordinates defining
an uncertainty region proportional to the state noise covariance. The conic
matrix W [12] contents information about the topology of the ellipsoid and
we define it from Q as:

W =

⎡⎢⎢⎣
0

γQ 0
0

0 0 0 −1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
γσx 0 0 0
0 γσy 0 0
0 0 γσz 0
0 0 0 −1

⎤⎥⎥⎦ . (23)

In our experiments, a value γ = 6 has provided effective results.
3. Data Association: The geometric property defined in Eq.21 and Eq.22

must be also fulfilled when dealing with a projection of this 3D scenario as
depicted in Fig.2. A process to associate the most likely projection at time
t + 1 with respect to t can be defined straightforward. Since our input data
are pixels detected on the projected images we could associate the pixel that
minimizes a given criteria related to the projection of Γ , ψPk

(Γ ), to the
i-th track. Generally, the perspective projection of an ellipsoid is an ellipse
defined by the matrix V fulfilling the following condition [12]:

V ∝ (PkW−1P�
k

)−1
. (24)

Then, a proposal to establish the best association between the i-th track at
the time t + 1 with the input data zl

n[t + 1], 0 ≤ l < L (there could be
uncountable input data coming from the real tracks, false detections,...) can
be done through the Mahalanobis distance:

zi
n[t + 1] = (25)

min
zl

n[t+1]

√
(zl

n[t + 1] − ψPk
(ŝ[t + 1|t]))V (zl

n[t + 1] − ψPk
(ŝ[t + 1|t]))�.

4. Occlusion detection: In the case when the condition related to the i-th
track association√

(zi
n[t + 1] − ψPk

(ŝ[t + 1|t]))V (zi
n[t + 1] − ψPk

(ŝ[t + 1|t]))� > δ, (26)

is fulfilled, being δ a threshold, we can say that there is an occlusion or the
data is too corrupted to be taken into account in next steps of the Kalman
filter. Hence, a criterium to set the parameter βk from Eq.20 is defined. For
our experiments, we took δ = 0.2.

4 Results

In order to evaluate the performance of the proposed tracking method, two exper-
iments were carried out. We applied the described algorithm to both synthetic
and real data to demonstrate the efficiency of our solution and compare it to
the performance of the existing approaches to this problem within a SmartRoom
framework [9, 17]. The scenario where this algorithm was applied (in both syn-
thetic and real data) was the SmartRoom at UPC provided with 5 fully calibrated
wide angle lense cameras with a resolution of 768x576 pixels at 25 fps.
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Experiment 1: Synthetic Data

A synthetic path was created simulating the movement of a single person walking
inside a SmartRoom. For this scenario two possibilities of the noise factor ξk

were studied: only Gaussian noise or Gaussian noise and occlusions added in the
projected views. For the first case, different Gaussian noise levels were added
in the projected views according to the measurement equation Eq.4. For the
second case, occlusions were simulated by adding high amplitude noise bursts
of a duration of 10 frames with Pocclusion = 0.3. For these input data, PKF
and the standard KF [17, 9] algorithms were applied to test and compare the
performance of our joint estimation-tracking scheme. Fig.3(a) and 3(b) depict
the error curves for different levels of noise in the two situations. Fig.3(c) shows
the zenital view of the grountruth and PKF and KF estimated paths. Finally,
Table 1 shows some quantitative results comparing PKF and KF performances.

(a) (b)

(c)

Fig. 3. Results on synthetic data. In (a), the error curves for the PKF and KF for
diverse levels of Gaussian noise. In (b), the error curves for the PKF and KF operating
in the same noise conditions with a Pocclusion = 0.3 and an occlusion length of 10
samples. In (c), the groundtruth trajectory of the location of interest and the results
of PKF and KF (zenital view).



260 C. Canton-Ferrer et al.

Table 1. Mean and standard deviation of the error for tracks with different levels of
Gaussian noise for PKF and KF with 5 cameras and no occlusions (Values in mm)

Gaussian Noise PKF KF
σ2 μ σ μ σ

50 7.93 3.90 9.48 4.38
100 10.31 5.09 13.13 6.17
150 11.90 5.90 15.87 7.54
200 13.11 6.55 18.15 8.68
250 14.01 7.10 20.12 9.66
300 14.90 7.58 21.83 10.54

Experiment 2: Real Data

In order to test our system, a sequence of 400 frames with two people spon-
taneously interacting with each other was recorded. Foreground regions were
segmented and the top of each region in every view was taken as the input data
in order to track the 3D head of each person. By applying PKF, we obtained
the tracking results depicted in Fig.4 but, when applying KF, occlusions made
the tracker unable to keep a coherent track along time. In the case were the
foreground regions representing the two people merged in one view, the redun-
dancy in the other views allowed keeping coherent tracks but accuracy of the
position estimation decreased. Video results for this sequence can be obtained
at http://gps-tsc.upc.es/imatge/ Ccanton/pkf.zip.

Fig. 4. Results on real data. Zenital plot showing simultaneous tracking of two people.

5 Conclusions and Future Work

A new approach towards tracking 3D locations from its projections on multiple
calibrated cameras has been presented. The proposed scheme performs a joint
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estimation and tracking by taking advantage of the projective nature of the
observations, defining the Projective Kalman Filter. Results on synthetic and
real data proved this scheme to produce more reliable results in comparison
with the standard Kalman approaches to this problem. The accuracy of PKF was
good, even though the error in the experiments with real data were conditioned
by calibration, foreground segmentation and camera positions.

Future research perspectives involve the development of schemes more robust
to occlusions, input data inconsistencies and position of the cameras. Applications
of this technique to body analysis and person tracking are under research as well.
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Abstract. The behavior of the least squares filter (LeSF) is analyzed
for a class of non-stationary signals that are composed of multiple sinu-
soids whose frequencies, phases and the amplitudes may vary from block
to block and which are embedded in white noise. Analytic expressions
for the weights and the output of the LeSF are derived as a function of
the block length and the signal SNR computed over the corresponding
block. Recognizing that such a sinusoidal model is a valid approxima-
tion to the speech signals, we have used LeSF filter estimated on each
block to enhance the speech signals embedded in white noise. Automatic
speech recognition (ASR) experiments on a connected numbers task,
OGI Numbers95[20] show that the proposed LeSF based features yield
an increase in speech recognition performance in various non-stationary
noise conditions when compared directly to the un-enhanced speech and
noise robust JRASTA-PLP features.

1 Introduction

Speech enhancement, amongst other signal de-noising techniques, has been a
topic of great interest for past several decades. The importance of such tech-
niques in speech coding and automatic speech recognition systems can only be
understated. Towards this end, adaptive filtering techniques have been shown to
be quite effective in various signal de-noising applications. Some representative
examples are echo cancellation[9], data equalization [10-12], narrow-band sig-
nal enhancement[8,13], beamforming[14,15], spectral estimation[3], radar clutter
rejection, system identification[16] and speech processing[8].

Most of the above mentioned representative examples require an explicit ex-
ternal noise reference to remove additive noise from the desired signal as dis-
cussed in [8]. In situations where an external noise reference for the additive
noise is not available, the interfering noise may be suppressed using a Wiener
linear prediction filter ( for stationary input signal and stationary noise) if there
is a significant difference in the bandwidth of the signal and the additive noise
[8,3,2]. One of the earliest use of the least mean square filtering for speech en-
hancement is due to Sambur[5]. In his work, the step size of the LMS filter was
chosen to be one percent of the reciprocal of the largest eigenvalue of the corre-
lation matrix of the first voiced frame. However, speech being a non-stationary

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 262–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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signal, the estimation of the step size based on the correlation matrix of just sin-
gle frame of the speech signal, may lead to divergence of the LMS filter output.
Nevertheless, the exposition in [5] helped to illustrate the efficacy of the LMS
algorithm for enhancing naturally occurring signals such as speech. In [3], Zei-
dler et. al. have analyzed the steady state behavior of the adaptive line enhancer
(ALE), an implementation of least mean square algorithm that has applications
in detecting and tracking stationary sinusoidal signals in white noise.

In [2], Anderson et al extended the above mentioned analysis for a stationary
input consisting of finite band-width signals in white noise. These signals consist
of white Gaussian noise (WGN) passed through a filter whose band-width α is
quite small relative to the Nyquist frequency, but generally comparable to the
bin width 1/L. They have derived analytic expressions for the weights and the
output of the LMS adaptive filter as function of input signal band-width and
SNR, as well as the LMS filter length and bulk delay ‘z−P ’ (please refer to Fig. 1).

In this paper, we extend the previous work in [2,3] for enhancing a class of non-
stationary signals that are composed of multiple sinusoids whose frequencies and
the amplitudes may vary from block to block and which are embedded in white
noise. The key difference in the approach proposed in this paper is that we relax
the assumption of the input signal being stationary. Therefore the input signal
is blocked into frames and we analyze a L-weight least squares filter (LeSF),
estimated on each frame which consists of N samples of the input signal.

We have derived the analytical expressions for the impulse response of the L-
weight least squares filter (LesF) as a function of the input SNR (computed over
the current frame), effective band-width of the signal (due to finite frame length),
filter length ‘L’ and frame length ‘N ’. Recognizing that such a time-varying si-
nusoidal model[7] is a reasonable approximation to the speech waveforms, we
have applied the block estimated LeSF filter for de-noising speech signals em-
bedded in broad-band noise. Sinusoidal model is particularly suitable for voiced
speech which consists of sinusoids with frequencies at the multiple of the fun-
damental frequency (pitch). The ASR experiments were performed on the OGI
Numbers95[19] database which consists of free-format connected numbers. The
clean utterances were corrupted by realistic additive noise from the Noisex[20]
database. The usual Mel-frequency cepstral coefficient (MFCC) [17] features are
derived from the LeSF enhanced speech signal for automatic speech recognition
(ASR) application. The experimental results indicate a significant improvement
in the ASR performance.

2 Least Squares Filter (LeSF) for Signal Enhancement

The basic operation of the LeSF is illustrated in figure (1) and it can be under-
stood intuitively as follows. The autocorrelation sequence of the additive noise
u(n) that is broad-band decays much faster for higher lags than that of the
speech signal. Therefore the use of a large filter length (‘L’) and the bulk de-
lay P causes de-correlation between the noise components of the input signal,
namely (u(n−L−P +1), u(n−L−P +2), ..., u(n−P )) and the noise component
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S
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Fig. 1. The basic operation of the LeSF. The input to the filter is noisy speech,
(x(n) = s(n) + u(n)), delayed by bulk delay =P . The filter weights wk are estimated
using the least squares algorithm based on the samples in the current frame. The output
of the filter y(n) is the enhanced signal.

of the reference signal, namely (u(n)). The LeSF filter responds by adaptively
forming a frequency response which has pass-bands centered at the frequencies
of the formants of the speech signal while rejecting as much of broad-band noise
(whose spectrum lies away from the formant positions). Denoting the clean and
the additive noise signals by s(n) and u(n) respectively, we obtain the noisy
signal x(n).

x(n) = s(n) + u(n) (1)

The LeSF filter consists of L weights and the filter coefficients wk for k ∈
[0, 1, 2..L − 1] are estimated by minimizing the energy of the error signal e(n)
over the current frame, n ∈ [0, N − 1].

e(n) = x(n) − y(n) (2)

where y(n) =
L−1∑
i=0

w(i)x(n − P − i) (3)

Let A denote the (N + L) × L data matrix[6] of the input frame x =
[x(0), x(1), ....x(N − 1)] and d denote the (N + L) × 1 desired signal vector
which in this case is just a delayed version of signal x. The LeSF weight vector
w is then given by

w =
(
AHA

)−1
AHd (4)

As is well known, AHA is a symmetric L × L Toeplitz matrix whose (i, j)
element is the temporal autocorrelation of the signal vector x estimated over the
frame length [6]. [

AHA
]

i,j
= r(|i − j|) (5)

=
∑N−|i−j|

n=0 x(n)x(n + |i − j|) (6)
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In practice, AHA can always be assumed to be non-singular due to presence
of additive noise[6] for filter length L < N . The weight vector w in (4) can
be obtained using Levinson Durbin algorithm[6] without incurring a significant
computational cost.

3 LeSF Applied to Sinusoidal Model of Speech

As proposed in [7], speech signals can be modeled as a sum of multiple sinusoids
whose amplitudes, phases and frequencies can vary from frame to frame. Let us
assume that a given frame of speech signal s(n) can be approximated as a sum
of M sinusoids. Then the noisy signal x(n) can be expressed as

x(n) =
M∑
i=1

Ai cos(ωin + φi) + u(n) (7)

where n ∈ [0, N − 1] and u(n) is a realization of white noise. Then the kth lag
autocorrelation can be shown to be,

r(k) =
∑N−k−1

n=0 x(n)x(n + k)
�∑M

i=1(N − k)A2
i cos(2πfik) + Nσ2δ(k) (8)

where it is assumed that N � 1/(fi − fj) for all frequency pairs (i, j) and the
noise u(n) is white, ergodic and uncorrelated with the signal s(n). The LeSF
weight vector w(k) is then obtained as the solution of the Normal equations,∑L−1

k=0 r(l − k)w(k) = r(l + P )
l ∈ [0, 1, 2..L − 1] (9)

The set of L linear equations described in (9) can be solved by elementary
methods if the z-transform (Sxx(z)) of the symmetric autocorrelation sequence
(r(k)) is a rational function of ‘z’ [1].

Sxx(z) =
∞∑

k=−∞
r(k)z−k (10)

Consider then, a real symmetric rational z transform with M pairs of zeros and
M pairs of poles.

Sxx(z) = G

∏M
m=1(z − e−βm+jΨm)(z−1 − e−βm−jΨm)∏M
m=1(z − e−αm+jωm)(z−1 − e−αm−jωm)

(11)

If the signal x is real, then so is its autocorrelation sequence, r(k). In this case
the power spectrum, Sxx(z), has quadruplet sets of poles and zeros because of
the presence of conjugate pairs at z = exp(±αm ±ωm) and z = exp(±βm ±Ψm).
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Anderson et. al.[2] have derived the general form of the solution to (9) for input
signal with rational power spectra such as that described by (11). In this case,
the LeSF weights are given by,

w(k) =
M∑

m=1

(
Bme−βmk+jΨmk + Cme+βmk+jΨmk

)
(12)

As can be seen, LeSF consists of an exponentially decaying term and an expo-
nentially growing term attributed to reflection [8], that occurs due to finite filter
length L. The value of the coefficients Bm and Cm can be determined by solving
the set of coupled equations obtained by substituting the expression for w(k)
given in (12) into (9).

To be able to use the general form of the solution of the LeSF filter as in (12),
we need a pole-zero model of the input autocorrelation in the form as described
in (11). For sufficiently large frame length N , such that filter length L � N , we
can make the following approximation.

(N − k) � Ne−k/N (13)
k ∈ [0, 1, 2, . . . , L] and L � N

Using this approximation in (8), we get,

r(k) = Ne−k/N
M∑
i=1

A2
i cos(ωik) + Nσ2δ(k) (14)

In this form, r(k) corresponds to a sum of multiple decaying exponential se-
quences and its z transform takes up the form,

Sxx(z) =
M∑

m=1

NA2
i (1 − e−2α)

2
×

(
1

(z − e−αm+jωm)(z−1 − e−αm−jωm)

+
1

(z − e−αm−jωm)(z−1 − e−αm+jωm)
) + Nσ2

where αm = 1/N ∀ m ∈ [1.M ]
(15)

Under the approximation that the decaying exponentials are widely spaced
along the unit circle, the power spectrum Sxx(z) in (15) that consists of sum of
certain terms can be approximated by a ratio of the product of terms (of the
form (z − eρ+jθ)), leading to a rational ‘z’ transform. Specifically, as explained
in [1,2] and making the following assumptions,
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– The pole pairs in (15) lie sufficiently close to the unit circle (easily satisfied
as α � 0.)

– All the frequency pairs (ωi, ωj) in (15) are sufficiently separated from each
other such that their contribution to the total power spectrum do not overlap
significantly.

the z transform of the total input can be expressed as,

Sxx(z) = σ2
∏M

m=1(z − e−βm+jωm)(z − e+βm+jωm)∏M
m=1(z − e−αm+jωm)(z − e+αm+jωm)

× (z − e+βm−jωm)(z − e−βm−jωm)
(z − e+αm−jωm)(z − e−αm−jωm)

(16)

where αm = 1/N

Corresponding to each of the sinusoidal component in the input signal there are
four poles at locations z = e±α ± ωm and there are four zeros on the same radial
lines as the signal poles but at different distances away from the unit circle. Using
the general solution described in (12), which has been derived at length in [2],
the solution of the LeSF weight vector to the present problem is,

w(n) =
M∑

m=1

(
Bme−βmn + Cme+βmn

)
cosωm(n + P ) (17)

The values of βm, Bm and Cm can be determined by substituting (17) and (14)
in (9). The lth equation in the linear-system described in (9) has terms with coef-
ficients exp(−βml), exp(+βml), exp(−αl) cos(ωm(l+P )) and exp(αl) cos(ωm(l+
P )). Besides these, there are two other kind of terms that can be neglected.

– “Non-stationary” terms that are modulated by a sinusoid at frequency 2ωm

where m ∈ [1, M ]. For ωm 
= 0, ωm 
= π, their total contribution is approxi-
mately zero.1

– Interference terms that are modulated by a sinusoid at frequency Δω = (ωi−
ωj) where (i, j) ∈ [1, . . . , M ]. If filter length L � 2π/Δω, these interference
terms approximately sum up to zero and hence can be neglected.

The coefficients of the terms exp(−βml), exp(+βml) are the same for each of the
L equations and setting them to zero leads to just one equation which relates
βm to α and the SNR. Let ρi denote the “partial” SNR of the sinusoid at
frequency ωi i.e ρi = A2

i /σ2 and the complementary signal SNR be denoted as
γi = (

∑M
m=1,m 	=i A2

i )/σ2. Then we have the following relation,

coshβi = coshα +
ρi

2γi + ρi + 2
sinh α (18)

There are two interesting cases. First case is when the sinusoid at frequency ωi

is significantly stronger than other sinusoids such that γi is quite low. This is
1 Due to self cancelling positive and negative half periods of a sinusoid.
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Fig. 2. Plot of the filter bandwidth βi centered around frequency ωi as a function
of partial sinusoid SNR ρi for a given complementary signal SNR γi = −6.99db and
“effective” input bandwidth α(alpha) = 0.01, 0.005, 0.001 respectively. The vertical line
meets the three curves when ρi = γi.
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Fig. 3. Plot of the filter bandwidth βi centered around frequency ωi as a function
of partial sinusoid SNR ρi for given complementary signal SNRs γi = −6.99db, 10db
respectively. The “effective” input bandwidth α(alpha) = 0.01 for both the curves. The
two dots correspond to the cases when the partial SNR ρi is equal to complementary
signal SNR γi.

illustrated in figure (2), where we plot the bandwidth βi of the LeSF’s pass-band
that is centered around ωi as a function of the partial SNR of the ith sinusoid, ρi.
The complementary signal’s SNR is quite low at γi = −6.99db. We plot curves
for different “effective” input sinusoid’s bandwidth α. From (15), we note that α
is reciprocal of frame length N . The vertical line in figure (2) corresponds to the
case when ρi = γi. We note that for a given partial SNR ρi, the LeSF bandwidth
becomes narrower as the frame length N increases, indicating a better selectivity
of the LeSF filter.

In figure (3), we plot the bandwidth βi as a function of ρi for the cases when
complementary signal SNR is high at γi = 10db and is low at γi = −6.99db.
The two dots correspond to the case when ρi = γi. We note that γi = 10db
corresponds to a signal with high overall SNR2. Therefore the cross-over point
(γi = ρi) for low γi occurs at narrower bandwidth as compared to high γi case.
This is so because in the former case the overall signal SNR is low and thus
the LeSF filter has to have narrower pass-bands to reject as much of noise as
possible.

2 As overall SNR of the signal = 10 log10(10
10γi + 1010ρi ).
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Fig. 4. Plot of the magnitude response of the LeSF filter as a function of the input
SNR. The input consists of three sinusoids at normalized frequencies (0.1, 0.2, 0.4)
with relative strength (1 : 0.6 : 0.4) respectively.
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Fig. 5. Clean spectrogram of an utterance from the OGI Numbers95 database

Bi and Ci in (17) are determined by equating their respective coefficients. The
“non-stationary” interference terms between all of the pairs of the frequency
(ωi, ωj), can be neglected if (ωi − ωj) >> 2π/L. This requires that LeSF’s
frequency resolution (2π/L) should be able to resolve the constituent sinusoids.

Bi =
2e−βie−αP (α + βi)2(βi − α)
((α + βi)2 − e−2βiL(βi − α)2)

Ci =
2e−βi(2L+1)+1e−αP (α + βi)(βi − α)2

((α + βi)2 − e−2βiL(βi − α)2)
(19)

We note from (18) that the various sinusoids are coupled with each other through
the dependence of their bandwidth βi on the complementary signal SNR γi. As
a consequence of that Bi, Ci are also indirectly dependent on the powers of the
other sinusoids through βi.

In Fig.4, the magnitude response of the LeSF filter is plotted for various SNR.
The input in this case consist of three sinusoids at normalized frequencies ( 0.1,
0.2, 0.4). The frame length is N = 500 and filter length is (L = 100). As the sig-
nal SNR decreases, the bandwidth of the LeSF filter starts to decrease in order to
reject as much of noise as possible. The LESF filter’s gain decreases with decreas-
ing SNR. Similar results were reported in [2,3] for the case of stationary inputs.
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Fig. 6. Spectrogram of the utterance corrupted by F16-cockpit noise at 6dB SNR
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Fig. 7. Spectrogram of the noisy utterance enhanced by a (L = 100) tap LeSF filter
that has been estimated over blocks of length (N = 500)

In Fig. 5, we plot the spectrograms of a clean speech utterance. Fig. 6 and Fig.
7 display the same utterance embedded in F16-cockpit noise at SNR 6dB and its
LeSF enhanced version respectively. As can be seen from the spectrograms, the
LeSF filter has been able to reject significant amount of additive F-16 cockpit
noise [20] from the speech signal.

4 Experiments and Results

In order to assess the effectiveness of the proposed algorithm, speech recogni-
tion experiments were conducted on the OGI Numbers[19] corpus. This database
contains spontaneously spoken free-format connected numbers over a telephone
channel. The lexicon consists of 31 words3. The train-set and the test-set consist
of 3233 and 1206 utterances respectively. Speech signals were blocked into frames
of 500 samples (62.5ms) each and a 100 tap LeSF filter was derived using (4)
for each frame. Noting that the autocorrelation coefficients of a periodic signal
are themselves periodic with the same period (hence they do not decay with
the increasing lag), Sambur[5] has used a bulk delay equal to the pitch period

3 With confusable numbers like ‘nine’, ‘ninety’, ‘ninteen’ and so on.
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of the voiced speech for its enhancement. However, for the un-voiced speech a
high bulk delay will result in a significant distortion by the LeSF filter as its
autocorrelation coefficients decay quite rapidly for the higher lags. Therefore,
we kept the bulk delay at ‘P = 1’ as a good choice for enhancing both the voiced
and un-voiced speech frames. However, we note that the LeSF filter is inherently
more suitable for enhancing the voiced speech as in this case we can represent
the speech frame as a sum of small number of sinusoids as in (7). The relatively
high order (L = 100) of the LeSF filter is required to be able to have suffi-
ciently high frequency resolution (2π/L) to resolve the constituent sinusoids.
Each speech frame was then filtered through its corresponding LeSF filter to
derive an enhanced speech frame. Finally MFCC feature vector was computed
from the enhanced speech frame. These enhanced LeSF-MFCC were compared
to the baseline MFCC features and noise robust JRASTA-PLP[4] features with
the same window size (62.5ms). The MFCC feature vector computation is the
same for the baseline and the LeSF-MFCC features. The only difference is that
the MFCC baseline features are computed directly from the noisy speech while
the LeSF-MFCC features are computed from LeSF enhanced speech signal. Hid-
den Markov Model and Gaussian Mixture Model (HMM-GMM) based speech
recognition systems were trained using public domain software HTK[18] on the
clean training set from the original Numbers corpus. The system consisted of 80
tied-state triphone HMM’s with 3 emitting states per triphone and 12 mixtures
per state.

Table 1. Word error rate results for factory noise. Parameters of the LeSF filter,
L=100 and N=500.

SNR MFCC PLP-JRASTA LeSF MFCC

Clean 5.7 7.8 6.8
12 dB 12.3 12.2 11.9
6 dB 27.1 23.8 21.0
0 db 71.0 59.8 42.6

Table 2. Word error rate results for F16-cockpit noise. Parameters of the LeSF filter,
L=100 and N=500.

SNR MFCC PLP-JRASTA LeSF MFCC

Clean 5.7 7.8 6.8
12 dB 13.6 14.2 12.4
6 dB 28.4 25.3 20.6
0 db 72.3 59.2 41.2

To verify the robustness of the features to noise, the clean test utterances
were corrupted using Factory and F-16 cockpit noise from the Noisex92 [20]
database. The speech recognition results for the baseline MFCC, RASTA-PLP
and the proposed LeSF-MFCC, in various levels of noise are given in Tables 1
and 2. Cepstral mean subtraction was performed on all the reported features.
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The proposed LeSF processed MFCC performs significantly better than others
in all noise conditions. The slight performance degradation of the LeSF-MFCC
in the clean is due to the fact that the LeSF filter being an all-pole filter does
not model the valleys of the clean speech spectrum well. As a result, the LeSF
filter sometimes amplifies the low spectral energy regions of the clean spectrum.

5 Conclusion

We consider a class of non-stationary signals as input that are composed of
multiple sinusoids whose frequencies and the amplitudes may vary from block to
block and which are embedded in the white noise. We have derived the analytical
expressions for the impulse response of the L-weight least squares filter (LesF) as
a function of the input SNR (computed over the current frame), effective band-
width of the signal ( due to finite frame length), filter length ‘L’ and frame length
‘N ’. Recognizing that such a time-varying sinusoidal model[7] is a reasonable
approximation to the speech waveforms, we have applied the block estimated
LeSF filter for de-noising speech signals embedded in the realistic[20] broad-
band noise as commonly encountered on a factory floor and an aircraft cockpit.
The proposed technique leads to a significant improvement in ASR performance
as compared to noise robust JRASTA-PLP[4] and the MFCC features computed
from the unprocessed noisy signal.
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Abstract. It is often acknowledged that speech signals contain short-
term and long-term temporal properties [15] that are difficult to capture
and model by using the usual fixed scale (typically 20ms) short time spec-
tral analysis used in hidden Markov models (HMMs), based on piecewise
stationarity and state conditional independence assumptions of acoustic
vectors. For example, vowels are typically quasi-stationary over 40-80ms
segments, while plosives typically require analysis below 20ms segments.
Thus, a fixed scale analysis is clearly sub-optimal for “optimal” time-
frequency resolution and modeling of different stationary phones found
in the speech signal. In the present paper, we investigate the potential
advantages of using variable size analysis windows towards improving
state-of-the-art speech recognition systems. Based on the usual assump-
tion that the speech signal can be modeled by a time-varying autore-
gressive (AR) Gaussian process, we estimate the largest piecewise quasi-
stationary speech segments, based on the likelihood that a segment was
generated by the same AR process. This likelihood is estimated from
the Linear Prediction (LP) residual error. Each of these quasi-stationary
segments is then used as an analysis window from which spectral fea-
tures are extracted. Such an approach thus results in a variable scale
time spectral analysis, adaptively estimating the largest possible analy-
sis window size such that the signal remains quasi-stationary, thus the
best temporal/frequency resolution tradeoff. The speech recognition ex-
periments on the OGI Numbers95 database[19] show that the proposed
variable-scale piecewise stationary spectral analysis based features in-
deed yield improved recognition accuracy in clean conditions, compared
to features based on minimum cross entropy spectrum [1] as well as those
based on fixed scale spectral analysis.

1 Introduction

Most of the Automatic Speech Recognition (ASR) acoustic features, such as
Mel-Frequency Cepstral Coefficient (MFCC)[16] or Perceptual Linear Prediction
(PLP)[17], are based on some sort of representation of the smoothed spectral
envelope, usually estimated over fixed analysis windows of typically 20ms to
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30ms of the speech signal [16,15]. Such analysis is based on the assumption
that the speech signal can be assumed to be quasi-stationary over these segment
durations. However, it is well known that the voiced speech sounds such as vowels
are quasi-stationary for 40ms-80ms while, stops and plosive are time-limited by
less than 20ms [15]. Therefore, it implies that the spectral analysis based on a
fixed size window of 20ms-30ms has some limitations, including:

– The frequency resolution obtained for quasi-stationary segments (QSS)
longer than 20ms is quite low compared to what could be obtained using
larger analysis windows.

– In certain cases, the analysis window can span the transition between two
QSSs, thus blurring the spectral properties of the QSSs, as well as of the
transitions. Indeed, in theory, Power Spectral Density (PSD) cannot even
be defined for such non stationary segments [9]. Furthermore, on a more
practical note, the feature vectors extracted from such transition segments
do not belong to a single unique (stationary) class and may lead to poor
discrimination in a pattern recognition problem.

In this work, we make the usual assumption that the piecewise quasi-
stationary segments (QSS) of the speech signal can be modeled by a Gaussian
AR process of a fixed order p as in [2,4,10,11]. We then formulate the problem
of detecting QSSs as a Maximum Likelihood (ML) detection problem, defining
a QSSs as the longest segment that has most probably been generated by the
same AR process.1 As is well known, given a pth order AR Gaussian QSS, the
Minimum Mean Square Error (MMSE) linear prediction (LP) filter parameters
[a(1), a(2), ... a(p)] are the most “compact” representation of that QSS amongst
all the pth order all pole filters [9]. In other words, the normalized “coding error”2

is minimum amongst all the pth order LP filters. When erroneously analyzing
two distinct pth order AR Gaussian QSSs in the same non-stationary analysis
window, it can be shown that the “coding error” will then always be greater
than the ones resulting of QSSs analyzed individually in stationary windows[14].
This is intuitively satisfying since, in the former case, we are trying to encode
′2p′ free parameters (the LP filter coefficients of each of the QSS) using only
p parameters (as the two distinct QSS are now analyzed within the same win-
dow). Therefore, higher coding error is expected in the former case as compared
to the optimal case when each QSS is analyzed in a stationary window. As fur-
ther explained in the next sections, this forms the basis of our criteria to detect
piecewise quasi-stationary segments. Once the “start” and the “end” points of
a QSS are known, all the speech samples coming from this QSS are analyzed
within that window, resulting in (variable-scale) acoustic vectors.

Our algorithm is thus reminiscent of the likelihood ratio test based ML seg-
mentation algorithm derived by Brandt [10] and later on used in [11]. In [11], the
author has illustrated certain speech waveforms with segmentation boundaries
overlaid. The validity of their algorithm is shown by a segmentation experiment,

1 Equivalent to the detection of the transition point between the two adjoining QSSs.
2 The power of the residual signal normalized by the number of samples in the window.
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which on an average, segments phonemes into 2.2 segments. This result is quite
useful as a pre-processor for the manual transcription of speech signals. However,
the author in [11] did not discuss or extend the ML segmentation algorithm as a
variable-scale quasi-stationary spectral analysis technique suitable for ASR, as
done in the present work.

Before proceeding further, however, we feel it necessary to briefly discuss
certain inconsistencies between variable-scale spectral analysis and state-of-the-
art Hidden Markov models ASR using Gaussian mixture models (HMM-GMM).
HMM-GMM systems typically use spectral features based on a constant window
size (typically 20ms) and a constant shift size (typically 10ms). The shift size de-
termines the Nyquist frequency of the cepstral modulation spectrum [7], which is
typically measured by the delta features of the static MFCC or PLP features. In
a variable-scale piecewise quasi-stationary analysis, the shift size should prefer-
ably be equal to the size of the detected QSS. Otherwise, if the shift size is x%
of the duration of the QSS, then the next detected QSS will be the same but of
duration (100 − x)% and the following one will be of duration (100 − 2x)% and
so on until we have shifted past the entire duration of the QSS. This results in
the undesirable effect that the same QSS gets analyzed by successively smaller
windows, hence increasing the variance of the feature vector of this QSS. On the
other hand, the use of a shift size equal to the variable window size will change
the Nyquist frequency of the cepstral modulation spectrum [7]. Therefore, the
modulation frequency pass-band of the delta filters [7] will vary from frame to
frame and may suffer from aliasing for shift sizes in excess of 20ms.

In [3], Atal has described a temporal decomposition technique to represent
the continuous variation of the LPC parameters as a linearly weighted sum of
a number of discrete elementary components. These elementary components are
designed such that they have the minimum temporal spread (highly localized in
time) resulting in superior coding efficiency. However, the relationship between
the optimization criterion of “the minimum temporal spread” and the quasi-
stationarity is not obvious. Therefore, the discrete elementary components are
not necessarily quasi-stationary and vice-versa.

Coifman et al [6] have described a minimum entropy basis selection algo-
rithm to achieve the minimum information cost of a signal relative to the de-
signed orthonormal basis. In [8], Srinivasan et al. have proposed a multi-scale
QSS speech enhancement technique based on Coifman’s technique [6]. In [4],
Svendsen et al have proposed a ML segmentation algorithm using a single fixed
window size for speech analysis, followed by a clustering of the frames which
were spectrally similar for sub-word unit design. We emphasize here that this is
different from the approach proposed here where we use variable size windows
to achieve the objective of piecewise quasi-stationary spectral analysis. More re-
cently, Achan et al [13] have proposed a segmental HMM for speech waveforms
which identifies waveform samples at the boundaries between glottal pulse peri-
ods with applications in pitch estimation and time-scale modifications.

Our emphasis in this paper is on better spectral modeling of the speech sig-
nal rather than achieving better coding efficiency or reduced information cost.
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Nevertheless, we believe that these two objectives are somewhat fundamentally
related. The main contribution of the present paper is to demonstrate that the
variable-scale QSS spectral analysis technique can possibly improve the ASR
performance as compared to the fixed scale spectrum analysis. We identify the
above mentioned problems and make certain engineering design choices to over-
come these problems. Moreover, we show the relationship between the maxi-
mum likelihood QSS detection algorithm and the well known spectral matching
property of the LP error measure [5]. Finally, we do a comparative study of the
proposed variable-scale spectrum based features and the minimum cross-entropy
time-frequency distributions developed by Loughlin et al [1].

In the sequel of this paper, Section 2 formulates the ML detection problem
for identifying the transition points between QSS. In Section 3, we illustrate
an analogy of the proposed technique with spectral matching property of the
LP error measure. Finally, the experimental setup and results are described in
Section 4.

2 ML Detection of the Change-Point in an AR Gaussian
Random Process

Consider an instance of a pth order AR Gaussian process, x[n],n ∈ [1,N ] whose
generative LP filter parameters can either be A0 = [1, a0(1), a0(2)....a0(p)] or
can change from A1 = [1, a1(1), a1(2)....a1(p)] to A2 = [1, a2(1), a2(2)....a2(p)]
at time n1 where n1 ∈ [1,N ]. As usual, the excitation signal is assumed to be
drawn from a white Gaussian process and its power can change from σ = σ1 to
σ = σ2. The general form of the Power Spectral Density (PSD) of this signal is
then known to be

Pxx(f) =
σ2

|1 −∑p
i=1 a(i) exp(−j2πif) |2 (1)

where a(i)s are the LPC parameters. The hypothesis test consists of:

– H0: No change in the PSD of the signal x(n) over all n ∈ [1,N ], LP filter
parameters are A0 and the excitation (residual) signal power is σ0.

– H1: Change in the PSD of the signal x(n) at n1, where n1 ∈ [1,N ], LP filter
parameters change from A1 to A2 and the excitation(residual) signal power
changes from σ1 to σ2.

Let, Â0 denote the maximum likelihood estimate (MLE) of the LP filter param-
eters and σ̂0 denote the MLE of the residual signal power under the hypothesis
H0. The MLE estimate of the filter parameters is equal to their MMSE estimate
due to the Gaussian distribution assumption [2] and, hence, can be computed
using the Levinson Durbin algorithm [9] without significant computational cost.

Let x1 denote [x(1),x(2), ...x(n1)] and x2 denote [x(n1 + 1), ...x(N)]. Under
hypothesis H1, (Â1, σ̂1) are the MLE of (A1, σ1) estimated on x1, and (Â2, σ̂2)
are the MLE of (A2, σ2) estimated on x2, where x1 and x2 have been assumed to



278 V. Tyagi, C. Wellekens, and H. Bourlard

be independent of each other. A Generalized Likelihood Ratio Test (GLRT) [14]
would then pick hypothesis H1 if

log L(x) = log(
p(x1|Â1, σ̂1)p(x2|Â2, σ̂2)

p(x|Â0, σ̂0)
) > γ (2)

where γ is a decision threshold that will have to be tuned on some development
set. Given that the total number of samples in x1 and x2 are the same as in x0,
their likelihoods can be compared directly in (2). Under the hypothesis H0 the
entire segment x = [x(1)...x(N)] is considered stationary and the MLE Â0 is
computed via the Levinson-Durbin algorithm using all the samples in segment
x. It can be shown that the MLE σ̂0 is the power of the residual signal [2,14].
Under H1, we assume that there are two distinct QSS, namely x1 and x2. The
MLE Â1 and Â2 are computed via the Levinson-Durbin algorithm using samples
from their corresponding QSS. MLE σ̂1 and σ̂2 are computed as the power of the
corresponding residual signals. In fact, p(x|Â0, σ̂0) is equal to the probability of
residual signal reconstructed using filter parameters Â0, yielding:

p(x|Â0, σ̂0) =
1

(2πσ̂2
0)N/2 exp

[
−1
2σ̂2

0

N∑
n=1

(e2
0(n))

]
(3)

where e0(n) is the residual error and

e0(n) = x(n) −
p∑

i=1

a0(i)x(n − i), n ∈ [1,N ]

and

σ̂2
0 =

1
N

N∑
n=1

e2
0(n)

Similarly, p(x1|Â1, σ̂1) and p(x2|Â2, σ̂2) are the likelihoods of the residual signal
vectors of the AR models A1 and A2, respectively, and have the same functional
forms as above. Substituting these expressions into (2) yields

log L(x) =
1
2

log

[
σ̂N

0

σ̂n1
1 σ̂

(N−n1)
2

]
(4)

In the present form, the GLRT log L(x) has now a natural interpretation.
Indeed, if there is a transition point in the segment x then it has, in effect, 2p
degrees of freedom. Under hypothesis H0, we encode x using only p degrees
of freedom (LP parameters Â0) and, therefore, the coding (residual) error σ̂2

0
will be high. However, under hypothesis H1, we use 2p degrees of freedom (LP
parameters Â1 and Â2) to encode x. Therefore, the coding (residual) errors σ̂2

1
and σ̂2

2 can be minimized to reach the lowest possible value.3 This will result in

3 When Â
1

and Â
2

are estimated, strictly based on the samples from the correspond-
ing quasi-stationary segments.
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Fig. 1. Typical plot of the Generalized log likelihood ratio test (GLRT) for a speech

segment. The sharp downward spikes in the GLRT are due to the presence of a glottal

pulse at the beginning of the right analysis window (x2). The GLRT peaks around the

sample 500 which marks as a strong AR model switching point.

L(x) > 1. On the other hand, if there is no AR switching point in the segment x
then it can be shown that, for large n1 and N , the coding errors are all equal
(σ̂2

0 = σ̂2
1 = σ̂2

2). This will result in L(x) � 1.
An example is illustrated in Figure 1. The top pane shows a segment of a

voiced speech signal. In the bottom figure, we plot the GLRT as the function
of the hypothesized change over point n. Whenever, the right window i.e the
segment x2 spans the glottal pulse in the beginning of the window, the GLRT
exhibits strong downward spikes which is due to the fact that the LP filter cannot
predict large samples in the beginning of the window. However, these downward
spikes do not influence our decision significantly as we are interested in large
positive value of the GLRT to detect a model change over point. The minimum
sizes of the left and the right windows are 160 and 100 samples respectively. This
explains the zero value of the GLRT at the beginning and the end of the whole
test segment. The GLRT peaks around sample 500 which marks a strong AR
model switching point.

3 Relation of GLRT to Spectral Matching

As is well known the LP error measure possesses the spectral matching property
[5]. Specifically, given a speech segment x, let its power spectrum (periodogram)
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be denoted by X(ejω). Let the all pole model spectrum of the segment x be
denoted as X̂0(ejω). Then it can be shown that the MMSE error σ2

0 of the LP
filter estimated over the entire segment x is given by [5]

σ2
0 =
∫ π

−π

X(ejω)
X̂0(ejω)

dω where, (5)

X̂0(ejω) =
1

|1 −∑p
i=1 a0(i) exp(−j2πif) |2 (6)

Therefore minimizing the residual error σ2
0 is equivalent to the minimization of

the integrated ratio of the signal power spectrum X(ejω) to its approximation
X̂0(ejω) [5]. Substituting (5) in (4) we obtain,

log L(x) =
1
2

log

(∫ π

−π
X(ejω)
X̂0(ejω)

dω
)N

(∫ π

−π
X1(ejω)
X̂1(ejω)

dω
)n1
(∫ π

−π
X2(ejω)
X̂2(ejω)

dω
)N−n1

(7)

where, X(ejω), X1(ejω) and X2(ejω) are the power spectra of the segments x, x1

and x2 respectively. Similarly X̂0(ejω), X̂1(ejω) and X̂2(ejω) are the MMSE pth

order all-pole model spectra estimated over the segments x, x1 and x2 respec-
tively. Therefore, X̂0(ejω), X̂1(ejω) and X̂2(ejω) are the best spectral matches
to their corresponding power spectra. One way of interpreting (7) is that it is a
measure of the relative goodness between the best spectral match achieved by
modeling x as a single QSS and the best spectral matches obtained by assuming
x to consist of two distinct QSS, namely x1 and x2. This is further explained
as follows. If x1 and x2 are indeed two distinct QSS, then X1(ejω) and X2(ejω)
will be quite different and X(ejω) will be a gross average of these two spectra.
In other words, the frequency support of X(ejω) will be a union of those of the
X1(ejω) and X2(ejω). X̂1(ejω) and X̂2(ejω), having p poles each, will match
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Fig. 2. Quasi stationary segments (QSS) of a speech signal as detected by the algo-

rithm with γ = 3.5 and LP order p = 14
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their corresponding power spectra reasonably well, resulting in a lower value of
the denominator in (7). However, X̂0(ejω) will be a relatively poorer spectral
match to X(ejω) as it has only p poles to account for the wider frequency sup-
port. Therefore we incur a higher spectral mismatch by assuming x to be a single
QSS when in fact it is composed of two distinct QSS x1 and x2. This results
in the GLRT log L(x) taking up a high value. Whereas if x1 and x2 are the
instances of the same quasi-stationary process, then so is x. Therefore X1(ejω),
X2(ejω) and X(ejω) are nearly the same with similar all-pole models, result-
ing in a value of the GLRT close to zero. The above discussion points out the
fact that the QSS analysis based on the proposed GLRT is constantly striving
to achieve a better time varying spectral modeling of the underlying signal as
compared to single fixed scale spectral analysis.

4 Experiments and Results

We have used the GLRT L(x) in (4) to perform QSS spectral analysis of speech
signals for ASR applications. We initialize the algorithm with a left window size
W L = 20ms and a right window size W R = 12.5ms. We compute their correspond-
ing MMSE residuals and the MMSE residual of the union of the two windows.
Then, the GLRT is computed using (4) and is compared to the threshold. The
choice of the threshold γ = 3.5 was obtained by a visual inspection of the quasi-
stationarity of the segmented speech signal as returned by the algorithm. In
figure (2), we illustrate the boundaries of the QSS as detected by the algorithm
with γ = 3.5. Realizing that the resulting segmentation corresponded to reason-
ably quasi-stationary segments, we adopted the threshold value γ = 3.5 for all
the experiments reported in this paper. In general, the ASR results are slightly
sensitive to the threshold, although not in a huge way. If the GLRT is greater
than the threshold γ, W L is considered the largest possible QSS and we obtain a
spectral estimate using all the samples in W L. Otherwise,W L is incremented by
INCR=1.25ms and the whole process is repeated until GLRT exceeds γ or W L
becomes equal to the maximum window size WMAX=60ms. The computation of
a MFCC feature vector from a very small segment (such as 10ms) is inherently
very noisy.4 Therefore, the minimum duration of a QSS as detected by the al-
gorithm was constrained to be 20ms. Throughout the experiments, a fixed LP
order p = 14 was used.

The likelihood ratio test is quite widely used for speaker segmentation [12]
where the average length of a single speaker segment may last from 1sec to
several seconds. This provides a relatively large amount of samples to estimate
the parameters of the probability density functions as compared to the present
problem where we have to detect stationarity change over point within 20ms
to 60ms. As a result, the GLRT in (4) is quite noisy and a criterion such as
local maxima of the GLRT cannot be used. However, when the model change
occurs over longer time scales ( e.g. speaker change detection where the smallest
segment is of the order of a second), Ajmera et al. [12] have successfully used
4 Due to very few samples involved in the Mel-filter integration.
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a local maximmum of the GLRT as a speaker change point detector, thereby,
avoiding the use of a threshold.

To avoid fluctuating Nyquist frequency of the cepstral modulation
spectrum[7], a fixed shift size of 12.5ms was used in the algorithm. As explained
in the Section (1), this sometime resulted in the undesirable effect that the same
QSS gets analyzed by progressively smaller windows. To alleviate this problem,
the zeroth cepstral coefficient c(0), which is a non-linear function of the win-
dowed signal energy and, hence, of the window size, was normalized such that
its dependence on the window size is minimized.

In order to assess the effectiveness of the proposed algorithm, speech recogni-
tion experiments were conducted on the OGI Numbers corpus [19]. This database
contains spontaneously spoken free-format connected numbers over a telephone
channel. The lexicon consists of 31 words. Figure (3) illustrates the distribution
of the QSSs as detected by the proposed algorithm. Nearly 47% segments were
analyzed with the smallest window size of 20ms and they mostly corresponded
to short-time limited segments. However, voiced segments and long silences were
mostly analyzed by using longer windows in the range 30ms − 60ms. The short
peak at 60ms is due to the accumulated value over all the segments that should
have been longer than 60ms but were constrained by our choice of the largest
window size.

20 30 40 50 60

10

20

30

40

Window length in ms

Pe
rc

en
ta

ge
 o

cc
ur

en
ce

 fr
eq

ue
nc

y

Fig. 3. Distribution of the QSS window sizes detected and then used in the training

set

Throughout the experiments, MFCC coefficients and their temporal deriva-
tives were used as speech features. However, five feature sets were compared:

1. [39 dim. MFCC:] computed over a fixed window of length 20ms.
2. [39 dim. MFCC:] computed over a fixed window of length 50ms.
3. [78 dim. Concatenated MFCC:] a concatenation of the above two feature

vectors.
4. [Minimum cross entropy,39 dim MFCC:] MFCC computed from the geomet-

ric mean of the power spectra computed from 20ms, 30ms, 40ms and 50ms
long windows.
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5. [Variable-scale QSS MFCC+Deltas:] For a given frame, the window size is
dynamically chosen using the proposed algorithm ensuring that the win-
dowed segment is quasi-stationary.

In [1], Loughlin et al proposed using a geometric mean of multiple spectro-
grams of different window sizes to overcome the time-frequency limitation of any
single spectrogram. They showed that combining the information content from
multiple spectrograms in form of their geometric mean is optimal for minimizing
the cross entropy between the multiple spectra. We have followed their approach
to derive MFCC features from the geometric mean of the multiple power spectra
computed over varying window sizes, specifically 20ms, 30ms, 40ms and 50ms.

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based
speech recognition systems were trained using public domain software HTK [18]
on the clean training set from the original Numbers corpus. The speech recogni-
tion results in clean conditions for various spectral analysis techniques are given
in table 1. The fixed scale MFCC features using 20ms and 50ms long analysis
windows have 5.8% and 5.9% word error rate (WER) respectively. The concate-
nation of MFCC feature vectors derived from 20ms and 50ms long windows has
a 5.7% WER and it has twice the number of HMM-GMM parameters as com-
pared to the rest of the systems5. The slight improvement in this case may be
due to the multiple scale information present in this feature, albeit in an ad-hoc
way. The minimum cross-entropy MFCC features which were derived from the
geometric mean of the power spectra computed over 20ms, 30ms, 40ms and 50ms
long analysis windows, have a WER of 5.7%. The proposed variable-scale system
which adaptively chooses a window size in the range [20ms, 60ms], followed by
the usual MFCC computation, has a 5.0% WER. This corresponds to a relative
improvement of more than 10% over the rest of the techniques

Table 1. Word error rate in clean conditions

MFCC 20ms 5.8

MFCC 50ms 5.9

Concat. MFCC (20ms, 50ms) 5.7

Min. Cross entropy based MFCC 5.7

Proposed Variable-scale QSS MFCC 5.0

5 Conclusion

We have demonstrated that the variable-scale piecewise quasi-stationary spec-
tral analysis of speech signal can possibly improve the state-of-the-art ASR.
Such a technique can overcome the time-frequency resolution limitations of the
fixed scale spectral analysis techniques. Comparisons were drawn with the other
competing multi-scale techniques such as the minimum cross-entropy spectrum.
The proposed technique led to the minimum WER as compared to the rest of
the techniques.
5 Due to twice the feature dimension as compared to the rest of the systems.
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Abstract. This work describes classification of speech from native and
non-native speakers, enabling accent-dependent automatic speech recog-
nition. In addition to the acoustic signal, lexical features from transcripts
of the speech data can also provide significant evidence of a speaker’s ac-
cent type. Subsets of the Fisher corpus, ranging over diverse accents,
were used for these experiments. Relative to human-audited judgments,
accent classifiers that exploited acoustic and lexical features achieved up
to 84.5% classification accuracy. Compared to a system trained only on
native speakers, using this classifier in a recognizer with accent-specific
acoustic and language models resulted in 16.5% improvement for the
non-native speakers, and a 7.2% improvement overall.

1 Introduction

Automatic speech recognition systems are highly susceptible to speaker variabil-
ity. Statistical analysis reveals that – after gender – the principal component of
this inter-speaker variation is accent [2]. Recognition models trained on one type
of accent fare poorly when evaluated on a mismatched test condition. For this
reason, most speech technology research is restricted to North American dialects
of English, while the collected corpora mostly comprise native speakers.

With improving performance of speech recognizers and their expanding ap-
plications, the need to address non-native speakers has gained importance. Two
recent speech corpora reflect the necessity of this research. The massive Fisher
corpus1 includes a considerable number of recruited subjects who speak English
as a second language; meanwhile, the European Commission’s AMI Project2 is
collecting data from meetings with many non-native English-speaking partici-
pants, as well as native speakers of non-American varieties of English.

To address the problems that non-native speakers present to speech recogniz-
ers, previous work has relied upon non-native accented training data. Adapting
and retraining acoustic models from an accented corpus improved recognition of
Japanese-accented English [8], and similarly with a Hispanic-English corpus [3].
Acoustic model adaptation can also be derived from a speaker’s source language
[5], data which is potentially more accessible. Alternatively, lexicon adaptation
[9] can be utilized to reflect the phonology of non-native pronunciation.

1 http://www.ldc.upenn.edu/Projects/EARS
2 http://www.amiproject.org

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 285–293, 2006.
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This work presents an integrated accent-dependent speech recognition ar-
chitecture that is analogous to gender-dependent systems. An accent classifier
divided training data into native and non-native sets, from which recognition
models were estimated; test data was similarly split and recognized with the
corresponding accent-specific models.

We give careful consideration to the lexical aspects of non-native speech.
Exploratory language modeling experiments suggested that the word structure
of non-native language can be distinctly different from the native variety. Thus,
in addition to the acoustic signals, text transcripts of the speech data were also
used for accent classification.

To maximize the amount of data, non-native speakers were considered as a
whole, rather than working with just one specific accent group. This treatment
was partly justified by the better performance of a lexical classifier compared to
an acoustic classifier. While non-native accents might sound quite different from
each other, the words that these speakers generate tend to be characteristic of
their non-native identity.

2 Data Preparation

These experiments were performed using a subset of the Fisher collection:

– Speakers: 948 speakers; 540 male, 408 female
– Duration: 158 hours = 948 speakers × 10-minute sides
– Words: 843 words per speaker, on average
– Segments: 90.5 segments per speaker, on average

The audio speech signals were recorded over 8 kHz telephone channels, and were
accompanied by human-generated word-level reference transcripts. An acous-
tic speech segmentation tool automatically created segments without regard to
sentence or phrase structure, although these segments were treated like sen-
tences for language modeling purposes (i.e., affixed with the boundary tags <s>
and </s>).

Self-reported participant information was gathered to describe speaker demo-
graphics, and trained human auditors rated each speaker’s accent as American
or Other. For these experiments, the non-native speakers were those whose na-
tive language was not reported as English and whose accents were audited as
Other. The set of native speakers reported English as a native language and
had accents audited as American3; a subset was selected to match the size and
gender proportions of the non-native set. Normalizing the amount of data per
speaker, we used just one 10-minute conversation side for each speaker.

Table 1 gives the composition of the native and non-native accented sets.
Native speakers are grouped by place of birth, with many locally recruited par-
ticipants originating from the American Northeast. The non-native portion is
categorized by speakers’ self-reported native languages. These groupings are only
3 The Fisher collection explicitly excluded British speakers from participation.
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Table 1. Fisher corpus demographics

Accent Type Speakers Male Female

Non-native 474 270 204

Indian 116 85 31
Chinese 102 50 52
Russian 61 23 38
Spanish 60 36 24
German 26 13 13
French 20 7 13
Other 89 56 33

Accent Type Speakers Male Female

American English 474 270 204

Pennsylvania 60 39 21
New York 56 36 20
California 53 32 21
Texas 21 11 10
New Jersey 18 10 8
Ohio 19 11 8
Other 247 131 116

for description of the data sets; in this paper, only the native versus non-native
distinction is considered.

In Table 1, the non-native accents are grouped as follows:

– Indian is primarily Hindi. Also: Tamil, Farsi, Urdu, Telegu, Bengali,
Marathi, Gujarati, Malayalam, Kannada, Punjabi, and Sindhi.

– Chinese includes Mandarin and Cantonese.
– Russian comprises Russian, Bulgarian, Hungarian, Polish, Czech, Arme-

nian, Serbian, Croatian, Bosnian, Slovak, and Latvian.
– Spanish speakers are mainly Hispanic and Latin Americans. Also included

are the West Iberian languages: Portuguese and Galego.
– German comprises mostly Germanic languages: German, Danish, Dutch,

Swedish, and Afrikaans.
– French speakers are from France, Canada, and Switzerland.
– Other languages (with four or more speakers): Arabic, Turkish, Korean,

Creole, Yoruba, Romanian, Japanese, Hebrew, Greek.

Test and training sets of 100 and 374 speakers, respectively, were selected from
the native and non-native sets above, ensuring that the composition of each
subset reflected the proportions given in Table 1.

3 Accent Classification

3.1 Acoustic GMM Classifier

Given accent-specific acoustic models λa that assign probability to acoustic ob-
servations X , we can invoke the maximum likelihood criterion to determine the
accent classification â:

â = arg max
a

P(X |λa)

Ideally, the acoustic models in this computation would be a set of accent-specific
phone HMMs used for recognition; however, then it is usually necessary to align
X to a phone sequence determined in an earlier decoding pass. A more efficient
solution implements λa as a Gaussian Mixture Model: a global distribution of
speech frames, independent of sequence. This application of GMMs is fairly
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standard in other speech classification tasks such as speech detection, gender
classification, speaker identification, and warp factor selection for vocal tract
length normalization.

Accent-specific acoustic GMMs were built from the native and non-native
training data; each was a mixture 256 Gaussians trained for 10 iterations of EM.
Acoustic observations were standard ASR features: 12 mel-frequency cepstral
coefficients and energy, plus their first and second order derivatives. Features
were transformed with speaker-based cepstral mean/variance normalization, and
also with vocal tract length normalization to counteract the models’ gender
independence.

3.2 Lexical SVM Classifiers

Non-native accented speakers of English are often distinguished by acoustic di-
vergence from the standard pronunciation of native speakers. Beyond the pho-
netics and phonology, however, non-native speakers generally have a weaker com-
mand of the language and consequently produce sequences of words that a native
speaker would be less likely to utter. The motivation for using lexical features
for accent classification is based upon this hypothesis that non-native speak-
ers produce word sequences that are fundamentally different from the language
produced by native speakers. Before attempting to work with lexical features,
however, it would be reassuring to test this hypothesis with some simple language
modeling experiments.

Language models were built from each of the accented training sets (about
300K words each), and the perplexity was calculated for each of the accented test
sets (about 100K words). These open-vocabulary trigram models were smoothed
using Chen and Goodman’s modified Kneser-Ney discounting scheme, imple-
mented in the SRI Language Modeling Toolkit [6]. Table 2 demonstrates the
results of training and testing language models on various combinations of the
native and non-native sets. There is a clear correlation between matched accent
conditions and lower perplexity. Because non-native word sequences are better
predicted by training on non-native speakers, this suggests that there is a dis-
tribution of characteristic words and phrases that differs from the native set’s.
Additionally, the non-native test set had a significantly lower out-of-vocabulary
rate, reflecting the understandably smaller vocabulary size of speakers who have
had less exposure to the English language.

Table 3 provides more evidence supporting the hypothesis that language gen-
erated by non-native speakers is different. A rule-based tagger trained from WSJ

Table 2. Perplexity and out-of-vocabulary rate

Native train Non-native train

Native test 143 153
1.78% 2.31%

Non-native test 146 135
1.53% 1.68%
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Table 3. Perplexity of a POS sequence model

Native train Non-native train

Native test 14.09 14.31

Non-native test 14.28 14.05

data [1] assigned Penn Treebank part-of-speech tags to all the data, allowing the
estimation of a part-of-speech trigram model. Again there is a correlation be-
tween matched accent conditions and better predictability of tag sequences. This
might be attributed to a preference for certain syntactic forms and tenses. Or it is
possibly related to grammatical errors committed by language learners: auxiliary
and function words tend to be misused; if POS tags convey some morphological
information, it would also be possible to detect errors of agreement.

Given these results, two kinds of word-based features were investigated for
accent classification:

– Word n-grams. The distribution of words and word sequences is different for
each accent group, so n-gram counts could be good features for categorization
of speaker accents given their text transcripts.

– POS n-grams. There are probably some sequences of part-of-speech tags
that native speakers rarely produce, but are more commonly misused by
non-native speakers.

The integral counts of these n-grams were provided as input features for text
categorization with Support Vector Machines, using the SVM-Lite toolkit [4]
with a linear kernel. The training algorithm was presented with 748 accent-
labeled data points, one for each conversation side.

3.3 Comparison of Accent Classifiers

For the accent classifiers described, performance on the test set of 200 speakers
was evaluated by comparing to the reference judgments made by human auditors

Table 4. Accuracy of accent classification

Feature type Classifier type Classification accuracy

Acoustic MFCCs GMM 69.5%
Word Unigrams SVM 74.5%
Word Bigrams SVM 75.0%
Word Trigrams SVM 76.5%
POS Unigrams SVM 68.5%
POS Bigrams SVM 70.5%
POS Trigrams SVM 72.5%
All Lexical Interpolated 77.5%
All Lexical + Acoustic Interpolated 82.0%
Word Trigram + Acoustic Interpolated 81.5%
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Table 5. Lexical features from reference and recognized transcripts

Feature type Classifier type Classification accuracy

Word Trigrams with reference transcripts SVM 76.5%
Word Trigrams with recognized hypotheses SVM 79.0%

Word Trigrams (ref trans) + Acoustic Interpolated 81.5%
Word Trigrams (rec hyps) + Acoustic Interpolated 84.5%

of the Fisher corpus. As a baseline, the prior probability of each accent (native
or non-native) was exactly 50%.

Two types of classifiers were used: a maximum-likelihood GMM for the acous-
tic features, and a SVM for the lexical features. Neither classifier returned nor-
malized probabilities, so the combination of these scores was accomplished by
linear interpolation (summation of weighted scores), tuned with a grid search
over the mixing weights4.

The performance of all the classifiers is given in Table 4, where the optimal
combination of all features achieved 82% accuracy; combining the SVM score for
word trigrams with the acoustic GMM score was sufficient for 81.5% accuracy,
and for simplicity this was the scheme chosen for the experiments in the next
section.

In all experiments described thus far, lexical features were extracted from
human-annotated reference transcripts. In the next section, we will describe
ASR architectures that use accent classifiers with lexical features extracted from
1st-pass recognition hypotheses. Despite the high word error rate, the accent
classification accuracy actually improves, as shown in Table 5. This convenient
result suggests that the errors made by the recognizer are perhaps also correlated
to a speaker’s accent.

4 Accent-Dependent Speech Recognition

An accent classification system is not very practical on its own, and in this
project its intended application is to pre-process the data used in an accent-
dependent speech recognition system. Using accent-specific models can greatly
improve recognition performance, but relies upon a good accent classifier to
appropriately select which models to apply.

Several ASR systems were built and tested with SRI’s DECIPHER [7]. The
resulting performance was suboptimal because many compromises were made
to allow for rapid training and testing of the systems, as well as to provide a
carefully controlled experiment. In particular, the gender-independent acoustic
models (genonic HMMs) were trained on a relatively small amount of data: about
60 hours of the quickly annotated Fisher corpus, rather than hundreds of hours
of precisely transcribed speech. The language models were exclusively trained
on the small subsets of the Fisher data: bigrams can be rather sparse with only
4 This was a “cheating” experiment: tuned on the test set. However, there was not a

sharp peak at the optimal interpolation weight



Accent Classification for Speech Recognition 291

(1)

Test Speech

Native AM

Pass 1 Hypotheses

Native LM

(3)

Test Speech

Native AM

Pass 1 Hypotheses

Native Speech

Native LM

Acoustic GMM

Non-Native AM

Non-Native Speech

Non-Native LM

(2)

Test Speech

Native AM

Pass 1 Hypotheses

Native Speech

Native LM

Acoustic GMM

Non-Native AM

Non-Native Speech

(4)

Test Speech

Native AM

Pass 2 Hypotheses

Native Speech

Native LM

Acoustic GMM +
Word 3gram SVM
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Fig. 1. Four types of system architectures: (1) Baseline system using native models;
(2) Accent-specific acoustic models; (3) Accent-specific acoustic and language models;
(4) Two-pass system using lexical and acoustic features for accent classification

300K words of training text. Also, there was no speaker adaptation of acoustic
models – only VTLN in the front-end feature extraction. These optimizations
allowed very fast run-time performance, as the recognizer processed speech data
in less than 3x real-time on a 2.4GHz Pentium machine.

Figure 1 depicts various accent-dependent architectures. In System (2), an
acoustic GMM classifier selects the accent-specific acoustic models. System (3)
is similar, but the language models are also accent-specific. The first-pass recog-
nition hypotheses from System (3) are utilized in System (4) to classify accents
using acoustic and lexical features.

4.1 Results of Recognition Experiments

We first consider the separation of native and non-native speakers according
to the judgments of the human auditors. Table 6 describes the performance
of accent-dependent recognizers when models are matched and mis-matched to
the test accents. The first column represents a system trained only on native
speakers, System (1). The rightmost column represents a gold-standard system,
if it could use the human auditors to select which accent-specific recognition
models to employ.

Results of the recognition experiments are summarized in Table 7, demon-
strating how an automatic speech recognition system can improve performance
by identifying non-native speakers with lexical information, as well as acoustic,
and recognizing those speakers with non-native models. These results again sup-
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Table 6. Combinations of accent-specific models: Word Error Rate %

Native models Non-native models Accent-matched models

Native Test 50.72 59.30 50.72
Non-native Test 64.40 52.79 52.79

Overall 57.20 56.22 51.70

Table 7. Results of speech recognition experiments: Word Error Rate %

System Native Non-native Overall

(1) 50.72 64.40 57.20
(2) 53.76 53.45 (-17.0%) 53.62 (-6.3%)
(3) 53.73 53.32 (-17.2%) 53.55 (-6.4%)
(4) 52.64 53.75 (-16.5%) 53.08 (-7.2%)

Gold Standard 50.72 52.79 (-18.0%) 51.70 (-9.6%)

port the hypothesis that non-native speakers differ in the lexical aspects of their
language use.

In retrospect, it would have been informative to compare these results to an
accent-independent system with models trained on all the data, not just the
native set. Models trained on twice as much data would be less sparse; however,
combining the accents would also make the distributions less sharp. This is a
possibility for future experimentation.

5 Conclusion

This work described a series of experiments using subsets of native and non-
native speakers drawn from the Fisher corpus. An investigation of the word and
part-of-speech sequence models gave evidence that speaker accents are more than
simply acoustic differences. Lexical features proved useful for accent classifica-
tion, even when extracted from relatively poor recognition hypotheses. Lastly,
accent classifiers were integrated into an accent-dependent speech recognition
architecture which significantly outperformed a system trained only on native
speakers.

Similar to physiological factors such as gender, accents contribute to the gen-
eral problem of speaker variability. As speech recognition systems evolve to ad-
dress these challenges, the utility of the technology increases and it becomes more
accessible to diverse populations. In this global perspective, modern speech rec-
ognizers must be designed to perform for all kinds of accents, and not exclusively
native speakers.
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Abstract. In this paper, we present initial results towards boosting pos-
terior based speech recognition systems by estimating more informative
posteriors using multiple streams of features and taking into account
acoustic context (e.g., as available in the whole utterance), as well as pos-
sible prior information (such as topological constraints). These posteri-
ors are estimated based on “state gamma posterior” definition (typically
used in standard HMMs training) extended to the case of multi-stream
HMMs.This approach provides a new, principled, theoretical framework
for hierarchical estimation/use of posteriors, multi-stream feature com-
bination, and integrating appropriate context and prior knowledge in
posterior estimates. In the present work, we used the resulting gamma
posteriors as features for a standard HMM/GMM layer. On the OGI
Digits database and on a reduced vocabulary version (1000 words) of
the DARPA Conversational Telephone Speech-to-text (CTS) task, this
resulted in significant performance improvement, compared to the state-
of-the-art Tandem systems.

1 Introduction

Using posterior probabilities for Automatic Speech Recognition (ASR) has be-
come popular and frequently investigated in the past decade. Posterior proba-
bilities have been mainly used either as features or as local scores (measures)
in speech recognition systems. Hybrid Hidden Markov Model / Artificial Neural
Network (HMM/ANN) approaches [1] were among the first ones to make use
of posterior probabilities as local scores. In these approaches, ANNs and more
specifically Multi-Layer Perceptrons (MLPs) are used to estimate the emission
probabilities required in HMM. Hybrid HMM/ANN method allows for discrim-
inant training, as well as for the possibility of using short acoustic context by
presenting several frames at MLP input. Posterior probabilities have also been
used as local scores for word lattice rescoring [2], beam search pruning [3] and
confidence measures estimation [4]. Regarding the use of posterior probabilities
as features, one successful approach is Tandem [5]. In Tandem, a trained MLP is
used for estimating local phone posteriors. These posteriors, after some transfor-
mations, can be used alone or appended to standard features (such as MFCC or
PLP) as input features to HMMs. Tandem technique takes the advantage of dis-
criminative acoustic model training, as well as being able to use the techniques

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 294–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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developed for standard HMM systems. In both hybrid HMM/ANN and Tandem
approaches, local posteriors (i.e., posteriors estimated using only local frame or
limited number of local frames as context) are used.

In [6], a method was presented to estimate more informative posterior prob-
abilities based on “state gamma posterior” definition (as usually referred to in
HMM formalism) to generate posteriors taking into account all acoustic informa-
tion available in each utterance, as well as prior knowledge, possibly formulated
in terms of HMM topological constraints. In their approach, posterior probabili-
ties are estimated based on state gamma posterior definition in a HMM configu-
ration, which, after some transformations, are fed as features into a second layer
consisting of standard HMM/Gaussian Mixture Models (HMM/GMM). Such an
approach was shown to yield significant performance improvement over Tandem
approach. In [7], these posteriors are used as local scores for a Viterbi decoder.
It also showed improvement over hybrid HMM/ANN approach which uses local
posteriors as local scores.

Building upon the idea of multi-stream HMMs [8,9], in this paper we present
initial investigations towards extending the mentioned posterior estimation
method to multi-stream case. We show that the posterior probabilities can be
estimated through a multi-stream HMM configuration based on multi-stream
state gamma definition, thus giving the estimate of posteriors by combining
multiple streams of input features and also taking into account whole context
in each stream as well as prior knowledge encoded in the model. Our hierar-
chical approach is as follows: The input feature streams are PLP cepstral [10]
and TRAP temporal [11] features which are known to have some complementary
information. We estimate the posteriors based on state gamma posterior defini-
tion through a multi-stream HMM configuration. These posteriors are used after
some transformations as features for a standard HMM/GMM layer. This hierar-
chical approach provides a new, principled, theoretical framework for combining
different streams of features taking into account context and model knowledge.
We show that this method gives significant performance improvement over base-
line PLP-TANDEM [5] and TRAP-TANDEM [11] techniques and also entropy
based combination method [12] on OGI digits [13] and a reduced vocabulary
version (1000 words) of CTS [6] databases.

In the present paper, Section 2 reviews single stream gamma posterior estima-
tion method. The extension of this method to multi-stream case is explained in
Section 3. Section 4 explains the configuration of our hierarchical multi-stream
posterior based ASR system. Experiments and results are presented in Section
5. Conclusions and future work plans are discussed in Section 6.

2 Single Stream “Gamma Posterior” Estimation

In this section, we show how posterior probabilities can be estimated taking
into account whole context in a stream and prior knowledge (e.g. topological
constraints) encoded in the model. These posteriors are estimated based on
“state gamma posterior” definition (as it is referred to in HMM formalism)
through an HMM configuration.
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In phone based speech recognition systems, phones are usually modeled by
a few number of states. The posteriors are first estimated for each state (called
“state gamma posteriors” as referred to in HMM formalism and used in HMM
training), which then can be integrated to phone or higher level posteriors.

According to standard HMM formalism, the state gamma posterior γ(i, t|M)
is defined as the probability of being in state i at time t, given the whole obser-
vation sequence x1:T and model M encoding specific prior knowledge (topologi-
cal/temporal constraints):

γ(i, t|M) � p(qt = i|x1:T , M) (1)

where xt is a feature vector at time t, x1:T = {x1, . . . , xT } is an acoustic obser-
vation sequence of size T and qt is HMM state at time t, which value can range
from 1 to Nq (total number of possible HMM states). In the following, we will
drop all the dependencies on M , always keeping in mind that all recursions are
processed through some prior (Markov) model M .

In standard likelihood-based HMMs, the state gammas γ(i, t) can be esti-
mated by using forward α and backward β recursions (as referred to in HMM
formalism) [14] using local emission likelihoods p(xt|qi = t) (e.g., modeled by
GMMs):

α(i, t) � p(x1:t, qt = i)

= p(xt|qt = i)
∑

j

p(qt = i|qt−1 = j)p(x1:t−1, qt−1 = j)

= p(xt|qt = i)
∑

j

p(qt = i|qt−1 = j)α(j, t − 1) (2)

β(i, t) � p(xt+1:T |qt = i)

=
∑

j

p(xt+1|qt+1 = j)p(qt+1 = j|qt = i)p(xt+2:T |qt+1 = j)

=
∑

j

p(xt+1|qt+1 = j)p(qt+1 = j|qt = i)β(j, t + 1) (3)

thus yielding the estimate of p(qt = i|x1:T ):

γ(i, t) � p(qt = i|x1:T ) =
α(i, t)β(i, t)∑
j α(j, t)β(j, t)

(4)

As mentioned above, we recall that the α and β recursions are processed through
a specific HMM, which is used to represent prior knowledge.

Similar recursions, also yielding “state gamma posteriors” and using the same
assumptions as the case of likelihood based recursions, can be developed for lo-
cal posterior based systems such as hybrid HMM/ANN systems using MLPs
to estimate HMM emission probabilities [6]. In standard HMM/ANN systems,
these local posteriors are usually turned into “scaled likelihoods” by dividing
MLP outputs p(qt = i|xt) by their respective prior probabilities p(qt = i),
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i.e.:p(xt|qt=i)
p(xt)

= p(qt=i|xt)
p(qt=i) . These scaled likelihoods can be used in “scaled al-

pha” αs and “scaled beta” βs recursions to yield gamma posterior estimates [6].
These recursions are similar to the previous recursions except that the likelihood
term is replaced by the scaled likelihood:

αs(i, t) � p(x1:t, qt = i)∏t
τ=1 p(xτ )

=
p(xt|qt = i)

p(xt)

∑
j

p(qt = i|qt−1 = j)αs(j, t − 1)

=
p(qt = i|xt)
p(qt = i)

∑
j

p(qt = i|qt−1 = j)αs(j, t − 1) (5)

βs(i, t) � p(xt+1:T |qt = i)∏T
τ=t+1 p(xτ )

=
∑

j

p(xt+1 = j|qt+1 = j)
p(xt+1 = j)

p(qt+1 = j|qt = i)βs(j, t + 1)

=
∑

j

p(qt+1 = j|xt+1)
p(qt+1 = j)

p(qt+1 = j|qt = i)βs(j, t + 1) (6)

γ(i, t) � p(qt = i|x1:T ) =
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

(7)

subscript s indicates that the recursion is based on scaled likelihood. In the above
equations, exactly the same independence assumptions as standard HMMs are
used, beside the fact that the local correlation may be better captured if the
ANN is presented with acoustic context.

3 Multi-stream “Gamma Posterior” Estimation

In multi-stream HMM configuration, the definition of the state gamma posterior
is extended to the probability of being in specific state i at specific time t, given
the whole observation sequences for all streams, and model M encoding specific
prior knowledge:

γ(i, t) � p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T , M) (8)

where superscript n indicates the stream number. We call the state gamma poste-
rior estimated using multiple streams of features as “multi-stream state gamma”.
As we show in this section, multi-stream state gammas can be estimated using
multi-stream forward α and backward β recursions. The multi-stream α and β
recursions can also be written based on individual stream αn and βn recursions.
In this work, we focus on the posterior based systems, therefore all the recursions
are written using scaled likelihoods. The same multi-stream recursions but for
likelihood based systems has been explained in [15].
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We start with individual stream forward αn and backward βn recursions:

αn
s (i, t) � p(xn

1:t, qt = i)∏t
τ=1 p(xn

τ )

=
p(qt = i|xn

t )
p(qt = i)

∑
j

p(qt = i|qt−1 = j)αn
s (j, t − 1) (9)

βn
s (i, t) �

p(xn
t+1:T |qt = i)∏T
τ=t+1 p(xn

τ )

=
∑

j

p(qt+1 = j|xn
t+1)

p(qt+1 = j)
p(qt+1 = j|qt = i)βn

s (j, t + 1) (10)

where αn
s (i, t) and βn

s (i, t) show the forward and backward recursions for stream
n. Subscript s indicates that the recursion is written using scaled likelihoods.

We note here that we need to estimate p(qt = i), which can be done recursively
as follows:

p(qt = i) =
∑

j

p(qt = i|qt−1 = j)p(qt−1 = j) (11)

Using individual stream forward recursions αn
s and applying the usual HMM

assumptions, we can write multi-stream forward αs recursion as follows:

αs(i, t) � p(x1
1:t, x

2
1:t, ..., x

N
1:t, qt = i)∏t

τ=1 p(x1
τ )
∏t

τ=1 p(x2
τ )...
∏t

τ=1 p(xN
τ )

(12)

=
p(x1

1:t, x
2
1:t, ..., x

N
1:t|qt = i)p(qt = i)∏t

τ=1 p(x1
τ )
∏t

τ=1 p(x2
τ )...
∏t

τ=1 p(xN
τ )

(13)

=
p(x1

1:t|qt = i)p(x2
1:t|qt = i)...p(xN

1:t|qt = i)p(qt = i)∏t
τ=1 p(x1

τ )
∏t

τ=1 p(x2
τ )...
∏t

τ=1 p(xN
τ )

(14)

=
p(x1

1:t,qt=i)
t
τ=1 p(x1

τ )

p(qt = i)

p(x2
1:t,qt=i)

t
τ=1 p(x2

τ )

p(qt = i)
...

p(xN
1:t,qt=i)

t
τ=1 p(xN

τ )

p(qt = i)
p(qt = i) (15)

=
α1

s(i, t)
p(qt = i)

α2
s(i, t)

p(qt = i)
...

αN
s (i, t)

p(qt = i)
p(qt = i) (16)

=
∏N

n=1 αn
s (i, t)

p(qt = i)N−1 (17)

when going form (13) to (14), we add the following reasonable assumption:

p(x1
1:t, x

2
1:t, ..., x

N
1:t|qt = i) = (18)

p(x1
1:t|qt = i)p(x2

1:t|qt = i)...p(xN
1:t|qt = i)

while (14) is rewritten as (15) simply by applying Bayes rule.
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The multi-stream βs recursion can also be written using individual stream βn
s

recursions:

βs(i, t) �
p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = i)∏T
τ=t+1 p(x1

τ )
∏T

τ=t+1 p(x2
τ )...
∏T

τ=t+1 p(xN
τ )

(19)

=
p(x1

t+1:T |qt = i)p(x2
t+1:T |qt = i)...p(xN

t+1:T |qt = i)∏T
τ=t+1 p(x1

τ )
∏T

τ=t+1 p(x2
τ )...
∏T

τ=t+1 p(xN
τ )

(20)

=
p(x1

t+1:T |qt = i)∏T
τ=t+1 p(x1

τ )

p(x2
t+1:T |qt = i)∏T
τ=t+1 p(x2

τ )
...

p(xN
t+1:T |qt = i)∏T
τ=t+1 p(xN

τ )
(21)

= β1
s (i, t)β2

s(i, t)...βN
s (i, t) (22)

=
N∏

n=1

βn
s (i, t) (23)

Note that (19) is rewritten as (20) assuming

p(x1
t+1:T , x2

t+1:T , ..., xN
t+1:T | qt = i) = (24)

p(x1
t+1:T |qt = i)p(x2

t+1:T |qt = i)...p(xN
t+1:T |qt = i)

The multi-stream state gamma γ(i, t) can then be obtained using multi-stream
αs and βs recursions:

γ(i, t) � p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T )

=
p(x1

1:T , x2
1:T , ..., xN

1:T , qt = i)
p(x1

1:T , x2
1:T , ..., xN

1:T )

=
p(x1

1:t, x
1
t+1:T , x2

1:t, x
2
t+1:T , ..., xN

1:t, x
N
t+1:T , qt = i)∑

j p(x1
1:t, x

1
t+1:T , x2

1:t, x
2
t+1:T , ..., xN

1:t, x
N
t+1:T , qt = j)

=
p(x1

1:t, x
2
1:t, ..., x

N
1:t, qt = i)p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = i)∑
j p(x1

1:t, x
2
1:t, ..., x

N
1:t, qt = j)p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = j)

=

p(x1
1:t,x

2
1:t,...,x

N
1:t,qt=i)p(x1

t+1:T ,x2
t+1:T ,...,xN

t+1:T |qt=i)
N
n=1

t
τ=1 p(xn

τ ) N
n=1

T
τ=t+1 p(xn

τ )

j p(x1
1:t,x

2
1:t,...,x

N
1:t,qt=j)p(x1

t+1:T ,x2
t+1:T ,...,xN

t+1:T |qt=j)
N
n=1

t
τ=1 p(xn

τ ) N
n=1

T
τ=t+1 p(xn

τ )

=
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

(25)

We remind that all multi-stream recursions are processed through a (Markov)
model M encoding some prior knowledge (e.g. topological constraints).

3.1 Ergodic HMM with Uniform Transition Probabilities

As already mentioned above, all single stream, as well as multi-stream α and β
recursions are applied through a given HMM topology representing some prior
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knowledge. When no specific prior knowledge is available, the simplest solution
consists in using ergodic HMM with uniform transition probabilities, i.e. p(qt =
i|qt−1 = j) = K. In this case, the multi-stream gamma estimation equation (25)
can be rewritten as follows:

γ(i, t) = p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T )

=
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

=

N
n=1 αn

s (i,t)
p(qt=i)N−1 βs(i, t)∑
j

N
n=1 αn

s (j,t)
p(qt=j)N−1 βs(j, t)

=

N
n=1

p(qt=i|xn
t )

p(qt=i) k p(qt=i|qt−1=k)αn
s (k,t−1)

p(qt=i)N−1 βs(i, t)∑
j

N
n=1

p(qt=j|xn
t )

p(qt=j) k p(qt=j|qt−1=k)αn
s (k,t−1)

p(qt=j)N−1 βs(j, t)
(26)

Assuming ergodic uniform transition probabilities, the sum over k factors in
above numerator and denominator and also βs factors are identical and can thus
be droped. Moreover, the state prior p(qt = i) is constant, thus yielding:

γ(i, t) =
∏N

n=1 p(qt = i|xn
t )∑

j

∏N
n=1 p(qt = j|xn

t )
(27)

Therefore, the multi-stream state gamma is the normalized product of posteriors
(MLP outputs) and gammas do not capture context and specific prior knowledge.
In this case, the multi-stream gamma estimation method can be interpreted as
a principled way to combine two streams of features.

3.2 Higher Level Posterior Estimation

In case of having phone-based ASR system and modeling each phone with more
than one state, state gamma posteriors should be integrated to phone level poste-
riors. In the following, we call these phone posteriors as “phone gammas” γp(i, t),
which can be expressed in terms of state gammas γ(i, t) as follows:

γp(i, t) � p(pt = i|x1
1:T , x2

1:T , ..., xN
1:T ) =

Nq∑
j=1

p(pt = i, qt = j|x1
1:T , x2

1:T , ..., xN
1:T )

=
Nq∑
j=1

p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )p(qt = j|x1

1:T , x2
1:T , ..., xN

1:T )

=
Nq∑
j=1

p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )γ(j, t) (28)

where pt is a phone at time t. Probability p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )

represents the probability of being in a given phone i at time t knowing to be
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in the state j at time t. If there is no parameter sharing between phones, this
is deterministic and equal to 1 or 0. Otherwise, this can be estimated from the
training data. In this work, we model each phone with one state in the multi-
stream HMM, therefore in this particular case, state gammas are equal to phone
gammas and we do not need to integrate state gammas to phone gammas.

4 Hierarchical Multi-stream Posterior-Based ASR

In this section, the configuration of our hierarchical multi-stream speech recogni-
tion system is explained. The main idea is to combine N (two in our case) streams
of features which have complementary information by estimating gamma poste-
riors through a multi-stream HMM configuration. These posteriors capture the
whole context in all streams as well as prior knowledge (e.g. topological con-
straints) encoded in the model, thus they are expected to be more informative
than individual streams of features before the combination. Figure 1 shows our
hierarchical multi-stream posterior based ASR system. This hierarchical system
consists of three layers: The first layer gets two streams of raw features (PLPs
and TRAPs) extracted from speech signal, and estimates two streams of pos-
teriors using MLPs. This is called “single stream posterior estimation”. These
streams of posteriors are used after turning to scaled likelihoods in the second
layer of hierarchy, which is a multi-stream posterior based HMM to obtain the
estimates of multi stream state gammas. The state gammas are then used as fea-
tures after some transformations (KLT) for the third layer of hierarchy which is
a standard HMM/GMM train/inference back-end. In the following, some issues
related to the system is explained in more details:

Divide 
by

priors

Divide 
by

priors

Scaled Likelihoods
Phone

Scaled Likelihoods
Phone

Multi−stream gamma

        estimation

Multi−stream HMM

KLT

Log 
&

f
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TRAPs
f

Standard HMM/GMM

Back−end

gammas

Hierarchy
of

MLPs

Posteriors

Phone

Posteriors

Phone

Multi−stream 

t

t

MLP

Single stream posterior
estimators

Fig. 1. Hierarchical multi-stream posterior based ASR: Two streams of posteriors are
estimated form PLP and TRAP features using MLPs, then these posteriors are turned
into scaled likelihoods by dividing by the priors. The resulting two streams of scaled
likelihoods are fed to the multi-stream HMM. The multi-stream gammas are estimated
using multi-stream forward αs and backward βs recursions as explained in Section 3.
These multi-stream gamma posteriors are used after some transformations (KLT) as
features for a standard HMM/GMM back-end system.

4.1 Input Streams of Features

The first step in developing the system is to choose two sets of features hav-
ing complementary information. Spectral (cepstral) features and features having
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long temporal information are suitable candidates. We used PLP cepstral fea-
tures1 [10] and TRAPs temporal features [11] as input feature streams for the
system. TRAP features represent temporal energy pattern for different bands
over a long context, while PLPs represent full short-term spectrum (possibility
with very short time context).

4.2 Single Stream Posterior Estimation

In the first layer of hierarchy, the two input feature streams (PLPs and TRAPs)
are processed by MLPs to estimate posterior probabilities of context-independent
phones. For PLP cepstral features, usually 9 frames of PLP coefficients and their
first and second order derivatives are concatenated as the input for a trained
MLP to estimate the posterior probabilities of context-independent phones [5].
The phonetic class is defined with respect to the center of 9 frames. For the case
of TRAPs, different bands temporal energy pattern over 0.5 to 1 second TRAP
temporal vector are first processed by band classifier MLPs, then the outputs of
these band classifiers are fed as inputs for a merger MLP [11]. The Merger MLP
outputs gives the posterior estimate for context-independent phones. Again, pho-
netic class is defined with respect to the center of 0.5-1 second temporal vector.
In the reminder of the paper, we call these single stream posterior estimates as
PLP and TRAP posteriors.

4.3 Multi-stream Posterior Estimation

Having two stream of posteriors estimated from PLP and TRAP features using
MLPs, the next step in the hierarchy is to estimate state gammas through the
multi-stream HMM configuration. Posteriors are first divided by priors to obtain
scaled likelihoods, i.e.: p(xn

t |qt=i)
p(xn

t ) = p(qt=i|xn
t )

p(qt=i) , and then these scaled likelihoods
are used in multi-stream forward αs and backward βs recursions according to (17,
23) to obtain estimates of state gammas. In this work, we model each phone with
one state, thus state gammas are equal to phone gammas. Moreover, we assume
ergodic uniform transition probabilities between phones, therefore as explained
in Section 3.1, the multi-stream state gamma estimation can be interpreted as a
probabilistic principled way to combine different streams of features which have
complementary information.

5 Experiments and Results

Results are presented on OGI digits [13] and a reduced vocabulary version of
the DARPA Conversational Telephone Speech-to-text (CTS) task (1’000 words)
databases [6]. We used PLP and TRAP features as input streams to our system.

The PLP cepstral coefficients [10] are extracted using 25-ms window with 10-
ms shifts. At each frame, 13 PLP coefficients, their first-order and second-order
derivatives are extracted and concatenated to make one feature vector.
1 In the reminder of the paper, “PLP cepstral features” stands for PLP cepstral coef-

ficients and their first and second order derivatives.
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For extracting TRAP features, the short-term critical band spectrum is com-
puted in 25-ms windows with 10-ms shifts and the logarithm of the estimated
critical band spectral densities are taken. There are 15 bands. For each band,
50 frames before and after the center of analysis is taken resulting in 101 points
long temporal TRAP vector [11].

In this work, each phone is modeled by one state in the multi-stream HMM
and we assume ergodic uniform transition probabilities between phones.

5.1 OGI Digits

The task is recognition of eleven words (American English Digits). The test set
was derived from the subset of CSLU Speech Corpus [13], containing utterances
of connected digits. There are 2169 utterances (12437 words, about 1.7 hours) in
the test set. Training set contains 2547 utterances (about 1.2 hours). This set is
also derived from CSLU Speech Corpus and utterances containing only connected
digits are used. Standard HMM/GMM train/inference back-end system is based
on HTK. There are 29 context-independent phonetic classes. The subset of OGI
stories [16] plus a subset of OGI numbers [13] was used for training MLPs for
single stream posterior estimation. This set has in total 3798 utterances with
total length about 4.5 hours.

Two streams of posteriors (one from PLP features and the other one from
TRAP features) are estimated as explained in Section 4.2 for the test and train-
ing set. They are then turned into scaled likelihoods and used in the multi-stream
HMM layer to get the estimates of state (phone) gammas. These gamma poste-
riors are fed as features (after gaussianization and decorrelation through log and
KL transform) to the standard HMM/GMM layer. For comparison purposes,
we also run the standard HMM/GMM system using single stream posterior esti-
mates as features (after log and KLT) in order to obtain the baseline performance
of single stream PLP and TRAP posteriors before the combination (This corre-
sponds to PLP-TANDEM and TRAP-TANDEM methods). Moreover, we used
an inverse entropy based combination method [12] to combine PLP and TRAP
posteriors, and compare the combination performance with our method. Table 1
shows the result of recognition studies.The first column shows the features (after
log and KLT) which are fed to standard HMM/GMM layer. The second column
shows word error rate (WER). The first row shows the baseline performance
of posteriors estimated using PLP features (the first stream). The second row
shows the baseline performance of posteriors estimated using TRAP features

Table 1. Word error rates (WER) on OGI Digits task

Features WER

PLP posteriors 3.6%
TRAP posteriors 4.8%

Inverse entropy combination 3.5%
Multi-stream gammas 2.9%
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(the second stream). The third row shows the performance of features obtained
by inverse entropy combination of PLP and TRAP posteriors and the fourth row
shows the performance of our system which uses multi-stream gamma posteri-
ors obtained by combining the mentioned streams of PLP and TRAP posteriors
through the multi-stream HMM. The system using multi-stream gamma poste-
riors performs significantly better than the systems using baseline single stream
posteriors before the combination and also inverse entropy based combination.

5.2 DARPA CTS Task

The use of multi-stream gamma estimation method was further evaluated on a
conversational telephone speech (CTS) recognition task. The training set for this
task contained 15011 utterances (about 15.9 hours) and the test set contained
951 utterances (about 0.6 hour) of male speakers CTS speech randomly selected
from the Fisher Corpus and the Switchboard Corpus. There were 46 context-
independent phonetic classes in this task. The layer estimating single stream
posteriors were trained on the same training set using PLP and TRAP features.
The standard HMM/GMM system is based on HTK. A 1000 word dictionary
with multi-words and multi-pronunciations was used for decoding, using a bi-
gram language model.

Similar experiments as the case of OGI Digits database was repeated. Table
2 shows the recognition results. Again, multi-stream gamma combination gives
significant improvement over PLP and TRAP posteriors before the combination
and also inverse entropy combination.

Table 2. Word error rates (WER) on CTS task

Features WER

PLP posteriors 48.7%
TRAP posteriors 55.1%

Inverse entropy combination 48.7%
Multi-stream gammas 46.8%

6 Conclusions and Future Work

In this paper, we proposed a new, principled, theoretical framework for hierar-
chical estimation/use of posteriors and multi-stream feature combination, and
we presented initial results for this theory. We explained how the posterior esti-
mation can be enhanced by combining different streams of features and taking
into account all possible information present in the data (whole acoustic con-
text), as well as possible prior information (e.g. topological constraints). We used
these posteriors as features for a standard HMM/GMM system. We showed our
system performs significantly better as compared to the PLP-TANDEM and
TRAP-TANDEM baseline systems and inverse entropy combination method on
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two different ASR tasks. This theoretical framework allows designing optimal hi-
erarchical multi-stream systems since it proposes a principled way for combining
different streams of features by hierarchical posterior estimation and introducing
context and prior knowledge to get better evidences in the form of posteriors.

In this work, we investigated the particular case of assuming ergodic uniform
transition probabilities. We will further investigate this method by introducing
prior knowledge encoded in appropriate model to get better estimates of pos-
teriors. The state gammas can be also used for reestimating MLP parameters
in the single stream posterior estimation layer. In this case, the MLPs used for
estimating single stream phone posteriors from acoustic features are retrained
with multi-stream phone gamma posteriors as new labels.
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Abstract. In this paper we aim to investigate the use of Variational
Bayesian methods for audio indexing purposes. Variational Bayesian
(VB) techniques are approximated techniques for fully Bayesian learn-
ing. Contrarily to non Bayesian methods (e.g. Maximum Likelihood) or
partially Bayesian criterion (e.g. Maximum a Posteriori), VB benefits
from important model selection properties. VB learning is based on the
Free Energy optimization; Free Energy can be used at the same time as
an objective function and as a model selection criterion allowing simul-
taneous model learning/model selection. Here we explore the use of VB
learning and VB model selection in a speaker clustering task comparing
results with classical learning techniques (ML and MAP) and classical
model selection criteria (BIC). Experiments are run on the evaluation
data set NIST-1996 HUB-4 and results show that VB can outperform
classical methods.

1 Introduction

Model selection is a main issue in many machine learning problems. In different
real data applications an hypothesis on the model is done before proceeding with
the learning task. If the hypothesized model does not respect the structure of
experimental data, the effectiveness of the learning is strongly affected. Here the
need comes for techniques that can select the model that best fit to data.

The probabilistic framework is largely used for model selection. It considers
probabilities over different models and assumes that the best model is the one
that maximizes model probability given the observed data i.e. given a model
m and an observation data set D , best model maximizes P (m|D). Depending
on the model complexity, P (m|D) cannot always be obtained in close form and
approximated techniques must be considered instead. The most used approxi-
mations (e.g. BIC [1]) are sometimes inappropriate according to the considered
application and need heuristic tuning to be effective. In this paper we discuss
a new type of approximated method called Variational Learning (a.k.a. Ensem-
ble Learning) that allows an approximated close form solution to the model
selection problem. The key of Variational methods is the replacement of real
unknown parameter distributions with approximated distributions (Variational
distributions) that permit an analytical tractability of the solution. Obviously
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the effectiveness of this approach depends on how close the approximated dis-
tributions are to real distributions.

We investigate here the use of Variational techniques in a speaker clustering
task. This task often represents the first processing step in many audio index-
ing and speech recognition systems. Speaker clustering is formulated as a model
selection problem in which the speaker number must be estimated. The most
popular solution uses the BIC (see [2],[3]) that is actually true only asymptoti-
cally. In order to obtain reasonable results in the limited data case, an heuristic
adjustment of the model selection criterion is done. It often gives serious tuning
problems and final result is strongly affected. Variational methods are a finer ap-
proximation of the Bayesian integral and result more effective than BIC in many
model selection tasks. Furthermore they allows simultaneous model learning and
model selection in a fully Bayesian fashion.

The paper is organized as follows: in section 2 we discuss model selection
problems, in section 3 we present the Variational Bayesian framework, in section
4 we present the speaker clustering model and experiments that compare VB
and MAP/BIC, ML/BIC systems.

2 Model Selection

Let us consider a data set D and model set Model = {m}. In a probabilis-
tic framework, model that fits data in the best way is the model that maxi-
mizes P (m|D) i.e. the model probability given the data. Applying Bayes rule, we
obtain:

P (m|D) =
P (D|m)P (m)

P (D)
(1)

where P (D) =
∑

m P (D|m)P (m) does not depend on m. If prior probability over
model P (m) is uniform (i.e. no prior information over the model is available),
the best model is the model that maximizes data evidence i.e. P (D|m). Let
us designate with θ the model parameter set and with p(θ|m) parameter set
distribution. The data evidence can be obtained marginalizing model parameters
w.r.t. their distributions i.e.

p(D|m) =
∫

p(D|θ, m) p(θ|m)dθ (2)

Expression (2) is known as marginal-likelihood.
Marginal likelihood has the interesting property of penalizing models that

have too many degree of freedom not necessary for modeling experimental data.
This is also known as the Occam razor property (e.g. see [4]). The idea is that
models with more free parameters can model a larger data set, resulting in a
parameter probability p(θ|m) more spread over the parameter domain.

Unfortunately for many currently used models like Hidden Markov Models
(HMM) or Gaussian Mixture Models (GMM), no close form solution is possible
for marginal likelihood because of hidden variables. A common choice for over-
coming this problem consists in simply ignoring the integral in (2); in this way
the classical Maximum a Posteriori parameter estimation can be recovered i.e.
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θMAP = argmaxθ p(D|θ, m)p(θ|m) (3)

The MAP approach is tractable but not fully Bayesian because it is a point esti-
mation that just considers parameters instead of distributions over parameters.
Using a metaphor coming from physics, MAP just considers the ‘density’ instead
of the ‘mass’ of the distribution. MAP becomes a reasonable approximation when
parameter distribution is extremely peaked and the ‘mass’ of the distribution is
concentrated around the maximum but in general cases it can neglect important
contributions to the integral. On the other hand MAP criterion has no model
selection properties and approximation of the integral mass must be considered.
The most popular approximation technique is the Bayesian Information Crite-
rion (BIC). BIC was first derived by Schwartz in [1]. It can be obtained from a
Laplace approximation of the Bayesian integral (2). The Laplace approximation
makes a local Gaussian approximation around the MAP parameter estimate θ̂
and is based on large data limit. Let us suppose that the cardinality of the data
set D is N , and that the number of free parameters θ is p, in this case the
BIC is:

log p(D|m)BIC = log p(D|θ̂, m) − p

2
ln N (4)

Expression (4) has an intuitive explanation: a more complicated model i.e. a
model with many free parameters p will result in a larger penalty term p

2 log N
respect to a model with a smaller number of free parameters. BIC is a very
rude approximation of the Bayesian integral but presents many tractability ad-
vantages because it can be easily computed as long as a MAP estimation of
model parameter is available. As previously outlined BIC is based on a large
data limit that is rarely meet in real data problems. To overcome this limitation
and to make the criterion more effective in different situations, the penalty term
is generally multiplied by a threshold λ that is heuristically determined depend-
ing on the application. For example in audio indexing problems, a huge gain
in the model selection task is obtained manually modifying the penalty term
(see [3]) or using some validation data to find the optimal λ for a given data
set.

3 Variational Learning

Variational learning is a relatively new technique based on the use of approxi-
mated distributions instead of real distributions in order to obtain a tractable
learning task. Variational methods assume that the unknown posterior distri-
bution over parameter p(θ|D, m) can be approximated by another distribution
q(θ|D, m) that is actually the variational posterior distribution (or simply vari-
ational distribution) derived from data. Considering Jensen inequality it is pos-
sible to write:

log p(D|m)= log dθq(θ|D, m)
p(θ|m)p(D,θ|m)

q(θ|D, m)
≥ dθq(θ|D, m)log

p(D, θ|m)

q(θ|D, m)
=F (θ)

(5)
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F (θ) is called variational free energy or ensemble learning energy and is a lower
bound on the marginal log likelihood; variational learning aims to optimize the
free energy w.r.t. variational distributions instead of the intractable marginal log
likelihood log p(D|m). One of the key point in this framework is the choice of the
form for distribution q(θ|D, m) that must be close enough to the real unknown
parameter distribution p(θ|D, m) and still of a tractable form. The difference
between marginal log-likelihood and free energy is:

log p(D|m) − F (θ) = KL(q(θ|D, m)||p(θ|D, m)) = −
∫

q(θ|D, m)log
p(θ|D, m)
q(θ|D, m)

(6)

Equation (6) means that variational learning actually minimizes the distance
between the true posterior distribution and the variational posterior distribu-
tions. In the limit case, if q(θ|D, m) = p(θ|D, m) the free energy is equal to the
log-marginal likelihood.

3.1 Learning with Hidden Variables

A very appealing property of variational learning is its capacity of handling hid-
den variables. In fact hidden variables can be simply seen as stochastic variables
(as parameters) with their own distributions. In some variational learning sys-
tems there is no difference between the way parameters and hidden variables are
considered (e.g. see [6]). Let us define X the hidden variable set, it is possible to
introduce a joint variational distribution over hidden variables and parameters
q(X, θ|D, m) and applying again Jensen inequality we obtain:

log p(D|m)=
∫

p(D, X, θ|m) dθ dX ≥
∫

q(X, θ|D, m)log
p(D, X, θ|m)
q(X, θ|D, m)

=F (θ, X)

(7)

At this point another further approximation must be done in order to obtain a
tractable form: in fact considering the joint variational distribution q(θ, X |D, m)
of parameters and hidden variables can be a prohibitive task when the number
of hidden variables is large. For this reason the independence between hidden
variables and parameters is assumed i.e. q(θ, X |D, m) = q(θ|D, m)q(X |D, m).
Under this hypothesis, optimal variational posterior distributions that maximizes
the free energy can be found using an EM-like algorithm (see [8]) also known as
VBEM algorithm. In fact simply deriving the free energy w.r.t. q(θ|D, m) and
q(X |D, m), it is possible to obtain an iterative update equation system that will
converge in a local maximum of the free energy. The equation system consists
of an E-like step :

q(X |D, m) ∝ e<log p(D,X|θ,m)>θ (8)

and an M-like step:

q(θ|D, m) ∝ e<log p(D,X|θ,m)>X p(θ|m) (9)
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where < . >z means average w.r.t. z. This EM-like algorithm does not estimate
any parameter (contrarily to MAP) but just parameter distributions. Under the
factorization hypothesis it is possible to rewrite the free energy as follows:

F (θ, X) =
∫

dθdXq(X |D, m)q(θ|D, m)log[
p(D, X, θ|m)

q(X |D, m)q(θ|D, m)
]

= < log
p(D, X |θ, m)
q(X |D, m)

>X,θ −KL[q(θ|D, m)||p(θ|m)] (10)

The free energy can be seen as composed of two terms: a first term depending on
data and variational distributions (over both parameters and hidden variables)
and a second term that is the KL divergence between the variational distribution
over parameters q(θ|D, m) and the prior distribution over parameters p(θ|m).
By definition we have KL[q(θ|Y, m)||p(θ|m)] ≥ 0 with equality when q(θ|Y, m) =
p(θ|m); this term acts like a sort of penalty term that penalizes models with more
parameters. In fact models with many parameters will result in a sum of KL
divergence term for each parameter. It is very interesting to notice that VB does
not simply consider the number of parameters (like in the BIC) but it explicitly
considers the divergence between posterior distributions and prior distributions.
It can be shown that in large data limit this penalty term converges to the BIC
penalty term (see [9]). Intuitively free energy is an interesting quantity for doing
model selection as long as it approximates the Bayesian integral, we will consider
a more rigorous framework in section 3.2.

Now that an efficient solution for handling hidden variables has been intro-
duced, fully Bayesian learning is possible in many models previously intractable.
For example variational learning in Hidden Markov Models is first introduced in
[5] and in Gaussian Mixture Models is first introduced in [8]. The applicability
of Variational Bayesian EM (VBEM) algorithm to a general model is studied in
[7]. VBEM algorithm can be derived for conjugate-exponential models i.e. mod-
els that meet the following two conditions: 1) The complete data likelihood is
in the exponential family; 2) The parameter prior is conjugate to the complete
data likelihood. Many well known models satisfy those two conditions: Gaussian
mixture models, Hidden Markov models, Factor Analyzer, Principal Component
Analysis, etc.

3.2 Model Selection Using Free Energy

In this section we define a more rigorous framework for model selection using free
energy. Let us consider the log marginal likelihood obtained integrating over all
possible models p(D) =

∑
m p(D|m)p(m) and let us introduce a variational pos-

terior probability over models q(m). Applying one more time Jensen inequality,
it is possible to have:

log p(D) = log[
∑
m

p(D|m)p(m)] ≥
∑
m

q(m)[Fm + log
p(m)
q(m)

] (11)

where p(m) is a prior probability over the model and Fm is the free energy for
model m. Again a bound on the log marginalized likelihood is derived. Deriving
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w.r.t. q(m) and solving we obtain for the optimal variational distribution over
models:

q(m) ∝ exp{Fm}p(m) (12)

that means that optimal posterior over model is proportional to the exponential
of the free energy times the prior probability. If prior probability over models is
uniform, q(m) will depend on free energy only. It means that the free energy can
be used for doing model selection instead of the real log marginal likelihood.

4 Variational Bayesian Speaker Clustering

The most popular approach to speaker clustering task consists in the use of
an ergodic HMM [10] in which each state represents a speaker. Our system is
based as well on a fully connected HMM with emission probabilities modeled
by GMMs. In order to obtain a non-spare solution a duration constraint of D
frames on the emission probabilities is imposed. Furthermore we assume that
the probability of transition to state j is the same regardless the initial state i.e.
αr j = αr′ j ∀r, r

′
, where j = {1, ..., S} with S the total number of states. To

summarize let us designate [O1, ..., OT ] a sequence of T blocks of D consecutive
frames [Ot1, ...., OtD] where D is the duration constraint. It is then possible to
write the log-likelihood :

log P (O|θ, m) =
T∑

t=1

log [
S∑

j=1

αj{
D∏

p=1

M∑
i=1

βijN(Otp, μij , Γij)}] (13)

where S represents the number of states (that represent speakers), M Gaus-
sian component that models each speaker, and θ = {βij , μij , Γij} represents
mixture model parameters (weights, means and Gaussians). If the state num-
ber S is known, model (13) can be learned using the Expectation-Maximization
algorithm for both MAP and ML criteria.

As long as the number of speakers (i.e. states) is unknown, it must be esti-
mated using a model selection criterion. Generally the BIC criterion is used. We
consider here the Variational Bayesian framework for both model learning and
model selection at the same time.

In VB methods prior distributions over parameters must be chosen; according
to the discussion of section 3 we set those distributions as belonging to the
conjugate exponential family. Let us consider now model in expression (13) and
let us define following probability distributions over parameters:

P (αj) = Dir(λα 0) P (βij) = Dir(λβ 0)
P (μij |Γij) = N(ρ0, ξ0Γij) P (Γij) = W (ν0, Φ0) (14)

where Dir(), N(), W () are respectively Dirichlet, Normal, Wishart distributions
and {λα 0, λβ 0, ρ0, ξ0, ν0, Φ0} are hyperparameters. We assume here a fully tied
prior distributions i.e. λα 0 = λβ 0 = ξ0 = ν0 = τ , Φ0 = τ × I where I is
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an identity matrix and ρ = ȳ where ȳ is the average of all file observations.
Parameter τ is also known as relevance factor.

Model (13) with prior distribution (14) belongs to the conjugate-exponential
family so the EM-like algorithm can be applied. Variational posterior distri-
butions have the same form of prior distributions with updated hyperpara-
meters i.e.:

P (αj) = Dir(λα j) P (βij) = Dir(λβ ij)
P (μij |Γij) = N(ρij , ξ0Γij) P (Γij) = W (νij , Φij) (15)

Once variational posterior are estimated, a close form for the free energy can
be obtained and used for model selection purposes. The EM-like algorithm for
model (13) is derived in the appendix.

4.1 Experiments

In this section we compare experimentally VB system, ML/BIC system and
MAP/BIC system in a speaker clustering task on the evaluation data set NIST-
1996 HUB-4. Acoustic features consist of 12 MFCC coefficients. The training
procedure uses the following algorithm: the system is initialized with a large
speaker number Minitial then optimal parameters are learned using three crite-
ria (VB,ML,MAP). Initial speaker number is then reduced progressively from
Minitial to 1 and parameter learning is done for each new initial speaker num-
ber. Optimal speaker number is estimated scoring different models with VB free
energy (that was used as objective function in the training step) and with the
BIC (for MAP and VB). It is important to outline that when Minitial is big VB
prunes models to a smaller number of final speaker.

In order to evaluate the quality of clustering we use concepts of cluster purity
and speaker purity introduced respectively in [11] and [12]. We consider in all
our tests an additional cluster for non-speech events. Using the same notation
of [12], let us define:

– R: number of speakers
– S: number of clusters
– nij : total number of frames in cluster i spoken by speaker j
– nj.: total number of frames spoken by speaker j, j = 0 means non-speech

frames
– n.i: total number of frames in cluster i
– N : total number of frames in the file
– Ns: total number of speech frames

It is now possible to define the cluster purity pi and the speaker purity qj :

pi =
R

j=0

n2
ij

n2
.i

qj =
S

i=0

n2
ij

n2
j.

(16)
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Definitions of acp (average cluster purity) and asp (average speaker purity)
follow:

acp =
1
N

S∑
i=0

pi n.i asp =
1

Ns

R∑
j=1

qj n.j (17)

In order to define a criterion that takes care of both asp and acp, the geometrical
mean is used:

K =
√

asp · acp (18)

We present three different scores for each system: a score obtained initializing the
system with the real speaker number obtained from labels (designed as (known)),
the best score obtained (designed as (best))and the score of the selected model
given by BIC or VB score (designed as (selected)).

Table 1. Results on NIST 1996 HUB-4 evaluation test for speaker clustering: ML/BIC
vs. VB with non-informative priors

File File 1 File 2 File 3 File 4

Nc acp asp K Nc acp asp K Nc acp asp K Nc acp asp K

(a) ML (known) 8 0.60 0.84 0.71 14 0.76 0.67 0.72 16 0.75 0.74 0.75 21 0.72 0.65 0.68

(b) ML (best) 10 0.80 0.86 0.83 9 0.72 0.77 0.74 15 0.77 0.83 0.80 12 0.63 0.80 0.71

(c) ML (selected) 13 0.80 0.86 0.83 16 0.84 0.63 0.73 15 0.77 0.83 0.80 21 0.76 0.60 0.68

(d) VB (known) 8 0.70 0.91 0.80 14 0.75 0.82 0.78 16 0.68 0.86 0.76 21 0.60 0.80 0.69

(e) VB (best) 12 0.85 0.89 0.87 14 0.84 0.81 0.82 14 0.75 0.90 0.82 13 0.63 0.80 0.71

(f) VB (selected) 15 0.85 0.89 0.87 14 0.84 0.81 0.82 14 0.75 0.90 0.82 13 0.64 0.72 0.68

Let us consider at first results of ML/BIC and VB. In order to compare
them in fairest way VB priors are initialized as non-informative priors (i.e. small
relevance factor τ that brings no information). The system is initialized with
Minitial = 35 speakers modeled by a 15 components GMM. Results are shown
in table 1. First of all, VB baseline and best results (lines d-e) are higher than
the ML/BIC results (lines a-b) on the first three files while they are almost
similar on the last one. It is very important to notice that on the first three files
the VB selected model corresponds to the best model; this shows the fact that
the VB bound is a very effective metrics for performing model selection. Results
in table 1 for ML/BIC refers to values selected using λ = 2: for this threshold
value, BIC selected models are near to the best ML model (even if their K score
are lower compared to VB scores). Anyway results in the ML/BIC system are
extremely sensitive to the value of λ. In File 1 inferred speaker number is far
away from the real speaker number probably because of the fact that a big part
of the file is non-speech events that are clustered in many different clusters:
anyway final K is high. In File 2 and File 3 inferred speaker number is near to
real speaker number (File 2 contains very few non-speech parts). Finally in File
4 BIC infers the right cluster number while VB does not: anyway final K score is
the same for BIC and ML. As we outlined in section 3.2, VB should infer the best
Gaussian component number per cluster together with the best speaker number.
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Figure 1 plots on a double Y axis graph final Gaussian components (left Y axis)
and observation number assigned to a cluster (right Y axis). It is easy to notice
that small amount of data assigned to a cluster results in a smaller number of
final Gaussian components; on the other hand a large amount of data results in
a model that keeps all Gaussian components (15 in our case). In Figure 2 free
energy and score K are plotted on the same graph w.r.t. number of speakers for
file 1. The free energy follows closely the score K for all considered number of
speakers resulting in an extremely useful criterion for inferring the best system
(similar graphs can be obtained for the other 3 files). As final remark we can
notice that the best score never corresponds to the score obtained initializing
the system with the real speaker number.
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Fig. 1. Thick line (left Y axis): final Gaus-
sian components vs. cluster number; big
line (right Y axis): observation number as-
signed to a cluster vs. cluster number
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Fig. 2. Blue line (right Y axis): free energy
vs. number of clusters (states); Green line
(left Y axis): K vs. number of clusters; Free
energy follows the clustering score

Another interesting result can be obtained comparing the VB method with
another partially Bayesian method like the MAP. In fact MAP needs as well
prior distributions but does not produce any posterior distributions contrarily
to VB. MAP and VB can be initialized with the same prior distributions that
can be obtained from some previous knowledge on the data. This is the idea of
all adaptation methods that initialize prior distributions with a general speaker
model called Universal Background Model (UBM). We want to compare here the
adaptation obtained with the MAP criterion with the adaptation obtained with
the VB criterion. In the MAP system the model selection is the BIC while in
the VB system the free energy is used. The UBM used is a 32 component GMM
estimated from the BN96 HUB4 training data set. The system is initialized with
Minitial = 35 speakers and results are again provided in terms of average cluster
purity, average speaker purity and K =

√
acp · asp.

Table 2 shows results on the four files. Line (a) shows MAP results when the
speaker number is a priori known, line (b) shows the best score obtained by
the MAP system changing speaker number from Minitial = 35. Line (c) shows
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Table 2. Results on NIST 1996 HUB-4 evaluation test for speaker clustering:
MAP/BIC vs. VB with informative priors

File File 1 File 2 File 3 File 4

Nc acp asp K Nc acp asp K Nc acp asp K Nc acp asp K

(a) MAP (known) 8 0.52 0.72 0.62 14 0.68 0.78 0.73 16 0.71 0.77 0.74 18 0.65 0.69 0.67

(b) MAP (best) 20 0.81 0.84 0.83 22 0.84 0.80 0.82 29 0.78 0.74 0.76 18 0.65 0.69 0.67

(c) MAP (selected) 15 0.80 0.81 0.81 18 0.78 0.85 0.81 16 0.69 0.77 0.73 20 0.63 0.64 0.64

(d) VB (known) 8 0.68 0.88 0.77 14 0.69 0.80 0.74 16 0.74 0.83 0.78 21 0.67 0.73 0.70

(e) VB (best) 22 0.83 0.85 0.84 18 0.85 0.87 0.86 22 0.82 0.82 0.82 20 0.69 0.72 0.70

(f) VB (selected) 22 0.83 0.85 0.84 19 0.87 0.80 0.83 16 0.78 0.79 0.79 19 0.67 0.73 0.70

results for MAP system with BIC selection. Lines (d),(e) and (f) are analogous
to lines (a), (b) and (c) but model learning and model selection is done using
VB learning. We actually present in line (c) the best results obtained with an
empirical threshold set to λ = 0.4.

First of all we can notice that on the three considered situation VB always
outperforms the MAP/BIC framework. Probably the most interesting result
comes from best results obtained from the two approaches (lines (b) and (e))
that shows that VB does not simply make selection better than MAP but can
also adapt a model that holds a higher score. Results with informative priors are
still comparable to results with non-informative priors described in table 1.

Inferred cluster number is near to real speaker number for file 3 and file 4 while
it is definitely far from reality in file 1 and file 2. Actually final cluster number
obtained with informative priors is always higher than the one obtained using
non-informative priors described in table 1. It can easily explained considering
the fact that models are adapted from a background model giving origin to some
small spurious clusters that are not merged together. For instance in file 1 the
real cluster number is 8 while the inferred cluster number is 22, anyway values
of acp and asp are high showing a good clustering; this is probably due to the
fact there are many small clusters of speech and non-speech that are not merged
together.

The use of informative priors (i.e. a background model) for speaker clustering
presents the advantage that robust models can be obtained with small amount
of data. Sometimes a speaker does not provide enough speech to generate a
model and in systems without prior information it is simply clustered together
with other speakers: that explains the fact in our previous non-informative prior
system (see table 1), inferred cluster number is smaller. Anyway a drawback
comes from the quality of the background model: if for any reason it is not a
good prior model for the current speech, the same speaker may be split in more
clusters. This is a very important issue in Broadcast news segmentation because
speech is often corrupted by many noise sources (e.g. music, background speech,
various noises) that are obviously unpredictable by the background model; in
those cases an absence of prior information may be more efficient (for clustering)
than a wrong prior information. For this reason the system would definitively
benefits of a preliminary step of speech/non-speech discrimination.
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5 Conclusions

In this paper we have studied a speaker clustering system based on the VB
framework for model learning and model selection with non-informative and in-
formative (i.e. an UBM model is used for prior distributions initialization). We
compared results with a ML/BIC system and a MAP/BIC system. VB outper-
forms both approaches both in model learning and in model selection.
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Appendix

In this appendix we give details the EM-like algorithm for variational Bayesian
learning for model 13. Two kinds of latent variables x and z must be considered
here: a variable x that designate the speaker (or equivalent state) that is speak-
ing, and z (conditioned to x) that designate the Gaussian component that has
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emitted the observation. We assume prior distributions as (14). The E-like step
i.e. expression (8) for hidden variables x and z can be written as:

q(xt, ztp|Otp) = q(ztp|Otp, xt)q(xt|Otp)
∝ exp{< logαxt > + < logβxt,ztp > + < logP (Otp|xt, ztp)>}

(19)

Developing (19), it is possible to derive γ̃xt=j = q(xt|Otp) and γ̃ztp=i|xt=j =
q(ztp|Otp, xt) where j is the hidden state and i is the hidden Gaussian.

γ̃∗
ztp=i|xt=j = β̃ij Γ̃

1/2
ij exp{−E} exp{ −g

2νij
} with E =

1
2
(Otp − ρtp)T Γ̄ij(Otp − ρtp)

(20)

γ̃ztp=i|xt=j = q(γztp = i|γxt = j) =
γ̃∗

ztp=i|xt=j∑
i γ̃∗

ztp=i|xt=j

(21)

γ̃∗
xt=j = α̃j

D∏
p=1

M∑
i=1

γ̃∗
ztp=i|xt=j (22)

γ̃xt=j = q(γxt = j) =
γ̃∗

xt=j∑
j γ̃∗

xt=j

(23)

where g is the dimension of acoustic vectors. Parameters expected values can be
computed as follows:

log α̃j = Ψ(λαj ) − Ψ(
∑

j

λαj ); log β̃ij = Ψ(λβij ) − Ψ(
∑

j

λβij ); (24)

log Γ̃ij =
g∑

i=1

Ψ((νij + 1 − i)/2) − log |Φij | + glog2; Γ̄ij = νijΦ
−1
ij ; (25)

where Ψ is the digamma function. In the M step, we know that posterior dis-
tributions will have the same form of prior distributions i.e. distributions (15).
Re-estimation formulas for parameters are given by:

αj =
∑T

t=1 γ̃xt=j

T
(26)

βij =

∑T
t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=j∑T
t=1
∑D

p=1 γ̃xt=j

(27)

μij =

∑T
t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=jOtp∑T
t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=j

(28)

Γij =

∑T
t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=j(Otp − μij)T (Otp − μij)∑T
t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=j

(29)
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λαj =
T∑

t=1

Nj + λα0; λβij = Nij + λβ0; ρij =
Nij μij + ξ0 ρ0

Nij + ρ0
; (30)

Φij = Nij Γij +
Nijξ0(μij − ρ0)(μij − ρ0)T

Nij + ρ0
+ Φ0; (31)

νij = Nij + ν0; ξij = Nij + ξ0; (32)
(33)

where Nij =
∑T

t=1
∑D

p=1 γ̃xt=j γ̃ztp=i|xt=j and Nj =
∑T

t=1 γ̃xt=j .

and hyperparameter re-estimation formulas are given by:
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Abstract. Interest within the automatic speech recognition (ASR) re-
search community has recently focused on the recognition of speech cap-
tured with one or more microphones located in the far field, rather than
being mounted on a headset and positioned next to the speaker’s mouth.
Far field ASR is a natural application for beamforming techniques using
an array of microphones. A prerequisite for applying such techniques,
however, is a reliable means of speaker localization. In this work, we
compare the accuracy of source localization systems based on only au-
dio features, only video features, as well as a combination of audio and
video features using speech data collected during seminars held by actual
speakers. We also investigate the influence of source localization accuracy
on the word error rate (WER) of a far field ASR system, comparing the
WERs obtained with position estimates from several automatic source
localizers with those obtained from true speaker positions. Our results
reveal that accurate speaker localization is crucial for minimizing the
error rate of a far field ASR system.

1 Introduction

Interest within the automatic speech recognition (ASR) research community has
recently focused on the recognition of speech captured with one or more mi-
crophones located in the far field, rather than being mounted on a headset and
positioned next to the speaker’s mouth. Far field ASR is a natural application for
beamforming techniques using an array of microphones, which has been shown
to provide superior sound capture capability with respect to a single microphone
both in terms of signal-to-noise ratio (SNR) and word error rate (WER). A pre-
requisite for applying such techniques, however, is a reliable means of speaker
localization. In prior work, we used an extended Kalman filter to directly update
position estimates in an audio only speaker localization system based on time
delay of arrival [1]. In other work, we enhanced our Kalman filter-based audio
localizer with video information to obtain more accurate position estimates [2].
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We have also proposed an audio-video source localizer based on a particle fil-
ter [3], which for some applications has several advantages as compared to the
conventional Kalman filter. In this work, we compare the accuracy of source
localization systems using only audio features, only video features, as well as
a combination of audio and video features. We also investigate the influence of
source localization accuracy on the WER of a far field ASR system, comparing
the WERs obtained with position estimates from several automatic source local-
izers with those obtained from true speaker positions. To provide a baseline, we
also compare the performance of our far field ASR system with the performance
from a close-talking microphone (CTM).

The speech material used in our empirical studies was collected as part of
the European Union integrated project CHIL [4], Computers in the Human In-
teraction Loop, which aims to make significant advances in the fields of speaker
localization and tracking, speech activity detection and far field ASR. The corpus
is comprised of seminars and oral presentations collected with both near and far
field microphones. In addition to the audio sensors, the seminars were recorded
by calibrated video cameras. This simultaneous audio-visual data capture en-
ables the realistic evaluation of component technologies as was never possible
with earlier data bases. One of the long term goals of the CHIL project is the
reliable recognition of speech in a real reverberant environments, without any
constraint on the number of simultaneously active sound sources. This problem
is surpassingly difficult, given that speech recorded with far field microphones is
generally degraded by both background noise and reverberation. Moreover, our
speech material is challenging for other reasons: The style of the speech varies
greatly, from spontaneous to read, and contains many of the artifacts seen in
spontaneous speech, such as filled pauses, restarts and hyper articulation. Al-
though the seminars were held in English, many of the speakers are non-native
and hence speak with pronounced European accents. In addition, the seminars
are most often concerned with automatic speech recognition and related topics,
which implies that recognition vocabularies and language models built with the
standard corpora of training text are poorly matched to this recognition task.

The remainder of this article is organized as follows. Section 2 describes the
development of a baseline system at the Universität Karlsruhe (TH) including
data collection and labeling, speaker localization, beamforming, language model
training and acoustic training and adaptation. Section 3 presents a variety of
source localization and ASR experiments using different types of acoustic source
localization schemes. Finally, Section 4 concludes the presented work and give
plans for future work.

2 Baseline System

The CHIL seminar data present significant challenges to both modeling compo-
nents used in ASR, namely the language and acoustic models. With respect to
the former, the currently available CHIL data primarily concentrates on tech-
nical topics with focus on speech research. This is a very specialized task that
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contains many acronyms and therefore is quite mismatched to typical language
models currently used in the ASR literature. Furthermore, large portions of the
data contain spontaneous, disfluent, and interrupted speech, due to the inter-
active nature of seminars and the varying degree of the speakers’ comfort with
their topics. On the acoustic modeling side, and in addition to the latter dif-
ficulty, the seminar speakers exhibit moderate to heavy German or other Eu-
ropean accents in their English speech. The above problems are compounded
by the fact that, at this early stage of the CHIL project, not enough data is
available for training new language and acoustic models matched to this sem-
inar task, and thus one has to rely on adapting existing models that exhibit
gross mismatch to the CHIL data. Clearly, these challenges present themselves
in both close-talking microphone data, as well as the far-field data captured
using the microphone array (MA).

2.1 Data Collection and Labeling

The data used for the experiments described in this work was collected during
a series of seminars held by students and visitors at the Universität Karlsruhe
(TH), Germany, since Fall 2003. The students and visitors spoke English, but
mainly with German or other European accents, and with varying degrees of
fluency. This data collection was done in a very natural setting, as the students
were far more concerned with the content of their seminars, their presentation in
a foreign language and the questions from the audience than with the recordings
themselves. Moreover, the seminar room is a common work space used by other
students who are not seminar participants. Hence, there are many “real world”
events heard in the recordings, such as door slams, printers, ventilation fans,
typing, background chatter, and the like.

The seminar speakers were recorded with a Sennheiser CTM, a 64-channel
Mark III MA developed at NIST (National Institute of Standards and Technolo-
gies) mounted on the wall, four T-shaped MAs with four elements mounted on
the four walls of the seminar room and three Shure Microflex table-top micro-
phones located on the work table where the position was not fixed. A diagram of
the seminar room is shown in Figure 1. All audio files have been recorded at 44.1
kHz with 24 bits per sample. The high sample rate is preferable to permit more
accurate position estimations, while the higher bit depth is necessary to accom-
modate the large dynamic range of the far field speech data. For the recognition
process the speech data was down-sampled to 16 kHz with 16 bits per sample. In
addition to the audio data capture, the seminars were simultaneously recorded
with four calibrated video cameras that are placed at a height of 2.7 m in the
room corners. Their joint field of view covers almost the entire room. The images
are captured at a resolution of 640x480 pixels and a framerate of 15 frames per
second, and stored as jpg-files for offline processing.

The data from the CTM was manually segmented and transcribed. The data
from the far distance microphones was labeled with speech and non-speech re-
gions. The location of the centroid of the speaker’s head in the images from
the four calibrated video cameras was manually marked every 0.7 second. Based
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Fig. 1. The CHIL seminar room layout at the Universität Karlsruhe (TH)

on this marks the true position of the speaker’s head (ground truth) in three
dimensions could be calculated within an accuracy of approximately 10 cm [5].

2.2 Speaker Localization: Audio Features

The lecturer is the person that is normally speaking, therefore we can use audio
features using multiple microphones to detect the speaker position.

Consider the j-th pair of microphones, and let mj1 and mj2 respectively be
the positions of the first and second microphones in the pair. Let x denote the
position of the speaker in a three dimentional space. Then the time delay of
arrival (TDOA) between the two microphones of the pair can be expressed as

Tj(x) = T (mj1,mj2,x) =
‖x − mj1‖ − ‖x − mj2‖

c
(1)

where c is the speed of sound. To estimate the TDOAs a variety of well-known
techniques [6,7] exist. Perhaps the most popular method is the phase transform
(PHAT), which can be expressed as

R12(τ) =
1
2π

∫ ∞

−∞

X1(ejωτ )X∗
2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )| ejωτ dω (2)

where X1(ω) and X2(ω) are the Fourier transforms of the signals of a microphone
pair in a microphone array. Normally one would search for the highest peak in
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the PHAT to estimate the TDOA. As we are using a particle filter framework,
described in Section 2.4, we need to calculate the probability of the acoustic
observation A given that the state of the system is characterized by the current
particle si. We decompose the acoustic observation A into m pairs of microphones
(in our case 12), such that the total probability is given by

p(A|si) =
1
m

m∑
j=1

p(Aj |si) (3)

In order to obtain a (pseudo) probability score for each microphone pair j, we
consider the PHAT value at the time delay position Tj(x = si) given a particular
particle si. As the values returned by the PHAT can be negative, but probability
density functions must be strictly nonnegative, we found that setting all negative
values of the PHAT to zero yielded the best results.

p(Aj |si) = max(Rj(Tj(x = si)), 0) (4)

To get the final probability distribution which tells us how likely the acoustic
observation A is produced by a particle si, we must normalize over all particles:

p(A|si) =
p(A|si)∑
i p(A|si)

(5)

2.3 Speaker Localization: Video Features

For the task of person tracking in video sequences, there is a variety of features
to choose from. In our lecture scenario, the problem comprises both locating
the lecturer and disambiguating the lecturer from the people in the audience.
As lecturer and audience cannot be separated reliably by means of fixed spatial
constraints as, e.g., a dedicated speaker area, we have to look for features that
are more specific for the lecturer than for the audience.

Intuitively, the lecturer is the person that is standing and moving (walking, ges-
ticulating) most, while people from the audience are generally sitting and moving
less. In order to exploit this specific behavior, we decided to use dynamic fore-
ground segmentation based on adaptive background modeling as primary feature,
a detailed explanation can be found in [3]. In order to support the track indicated
by foreground segments, we use detectors for face and upper body, also described
in [3]. Both features (foreground F and detectors D) are linearly combined using a
mixing weight β (for our experiments β was fixed to 0.7, this value was optimized
on a development set), so that the particle weights for view j are given by

p(V j |si) = β · p(Dj |si) + (1 − β) · p(F j |si) (6)

To combine the different views, we sum over the weights from the v different
cameras in order to obtain the total weight of the visual observation of the
particular particle:

p(V |si) =
1
v

v∑
j=1

p(V j |si) (7)
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To get a (pseudo) probability value which tells us how well the particle si

explains the visual observation V we have to normalize over all values:

p(V |si) =
p(V |si)∑
i p(V |si)

(8)

2.4 Data Fusion with Particle Filter

Particle filters [8] represent a generally unknown probability density function by
a set of random samples {si}. Each of these particles is a vector in state space
and is associated with an individual weight πi. The evolution of the particle set
is a two-stage process which is guided by the observation and the motion model:

1. The prediction step: From the set of particles from the previous time in-
stance, an equal number of new particles is generated. In order to generate
a new particle, a particle of the old set is selected randomly in consideration
of its weight, and then propagated by applying the motion model. In the
simplest case, this can be additive Gaussian noise, but higher order motion
models can also be used.

2. The measurement step: In this step, the weights of the new particles are
adjusted with respect to the current observation. This means, the probability
p(zt|si) of the observation zt needs to be computed, given that the state of
particle si is the true state of the system.

As we want to track the lecturer’s head centroid, each particle si = (x, y, z)
represents a coordinate in space. The ground plane is spanned by x and y, the
height is represented by z. The particles are propagated by simple Gaussian
diffusion, thus representing a coarse motion model:

s′i = si · (Nσ=0.2m, Nσ=0.2m, Nσ=0.1m) (9)
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Using the features as described before in Sections 2.2 and 2.3, we can calculate
a weight πi for each particle at the current time instance by combining the
probability of the current acoustical observation A and the visual observation V
using a weighting factor α:

πi = α · p(A|si) + (1 − α) · p(V |si) (10)

The weighting factor α was set by

α =
m0

m
· 0.6 (11)

where m is the total number of microphone pairs and m0 the number of values
above 0. The average value of α was approximately 0.4. Therefore, more weight
was given to the video features.

A particle’s weight is set to 0 if the particle leaves the lecture room1 or if its
z-coordinate leaves the valid range for a standing person (1.2m < z < 2.1m).
The final hypothesis about the lecturer’s location over the whole particle set
1 . . . q (in our case q = 300) can be derived by a weighted summation over the
individual particle locations si,t at time t:

Λt =
1
q

q∑
i=1

πi,t · si,t (12)

Sampled Projection Instead of Triangulation

A common way to obtain the 3D position of an object from multiple views is to
locate the object in each of the views and then to calculate the 3D position by
using triangulation. This approach, however, has several weak points: Firstly, the
object must be detected in at least two different views at the same time. Secondly,
the quality of triangulation depends on the points of the object’s images that are
chosen as starting points for the lines-of-sight; if they do not represent the same
point of the physical object, there will be a high triangulation error. Thirdly,
searching for the object in each of the views separately—without incorporating
geometry information—results in an unnecessarily large search space.

In the method proposed here, we avoid the aforementioned problems by not
using triangulation at all. Instead, we make use of the particle filter’s capacity
to predict the object’s location as a well-distributed set of hypotheses; i.e., many
particles cluster around likely object locations, and fewer particles populate the
space between. As the particle set represents a probability distribution of the
predicted object’s location, we can use it to narrow down the search space. So
instead of searching a neighborhood exhaustively, we only look for the object at
the particles’ positions.

1 We restrict the particles to be within the full width of the room’s ground plane
(0 < y < 7.1m) and half of the depth (0 < x < 3m).
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When comparing the proposed method to Kalman filter-based tracking, the
following advantage becomes apparent: A particle filter is capable of model-
ing multi-modal distributions. That means in particular, that no single mea-
surement has to be provided and no information is lost by suppressing all but
the strongest measurement, as it is the case for Kalman filter. Furthermore,
there is no data-association problem such as would be encountered when try-
ing to match object candidates from different views in order to perform explicit
triangulation.

2.5 Beamforming

In this work, we used a simple delay and sum beamformer implemented in the
subband domain. Subband analysis and resynthesis was performed with a cosine
modulated filter bank [9, §8]. In the complex subband domain, beamforming is
equivalent to a simple inner product

y(ωk) = vH(ωk)X(ωk)

where ωk is the center frequency of the kth subband, X(ωk) is the vector of
subband inputs from all channels of the array, and y(ωk) is the beamformed
subband output. The speaker position comes into play through the array mani-
fold vector [10, §2]

vH(ωk) =
[
ejωkτ0(X) ejωkτ1(x) · · · ejωkτN−1(x)

]
where τi(x) = ‖x − mi‖/s is the propagation delay for the i-th microphone
located at mi.

2.6 Language Model Training

To train language models (LM) for LM interpolation we used corpora consisting
of broadcast news (160M words), proceedings (17M words) of conferences such as
ICSLP, Eurospeech, ICASSP or ASRU and talks (60k words) by the Translan-
guage English Database. Our final LM was generated by interpolating a 3-gram
LM based on broadcast news and proceedings, a class based 5-gram LM based
on broadcast news and proceedings and a 3-gram LM based on the talks. The
perplexity is 144 and the vocabulary contains 25,000 words plus multi-words and
pronunciation variants.

2.7 Acoustic Model Training

As relatively little supervised data is available for acoustic modeling of the
recordings the acoustic model has been trained on Broadcast News [11] and
merged with the close talking channel of meeting corpora [12,13] summing up
to a total of 300 hours of training material.

The speech data was sampled at 16kHz. Speech frames were calculated using
a 10 ms Hamming window. For each frame, 13 Mel-Minimum Variance Dis-
tortionless Response (Mel-MVDR) cepstral coefficients were obtained through
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a discrete cosine transform from the Mel-MVDR spectral envelope [14]. There-
after, linear discriminant analysis was used to reduce the utterance based cepstral
mean normalized features plus 7 adjacent to a final feature number of 42. Our
baseline model consisted of 300k Gaussians with diagonal covariances organized
in 24k distributions over 6k codebooks.

2.8 Acoustic Adaptation: Close Talk Speech

The adaptation of the close talking acoustic model was done in consecutive steps:

1. A supervised Viterbi training of the CHIL adaptation speakers followed by
a maximum a posteriori (MAP) combination of this model with the acoustic
model of the original system: To find the best mixing weight, a grid search
over different mixing weights was performed. The weight, which reached the
best likelihood on the hypotheses of the first pass of the unadapted speech
recognition system, was chosen as the final mixing weight.

2. A supervised maximum likelihood linear regression (MLLR) in combination
with feature space adaptation (FSA) and vocal track length normalization
(VTLN) on the close talking CHIL development set: This step adapts to
the speaking style of the lecturer and the channel. In the case of non-native
speakers the adaptation should also help to cover some ‘non nativeness’.

3. A second, now unsupervised MLLR, FSA and VTLN adaptation based on
the hypothesis of the first recognition run: this procedure aims at adapting to
the particular speaking style of a speaker and to changes within the channel.

2.9 Acoustic Adaptation: Far Distance Speech

The adaptation of the far distance acoustic model was done in consecutive steps:

1. Four iterations of Viterbi training on far distance data from NIST [15] and
ICSI [16] over all channels on top of the acoustic trained models to better
adjust the acoustic models to far distance.

2. A supervised MLLR in combination with FSA and VTLN on the far distance
(single distance or MA processed) CHIL development set: This step adapts to
the speaking style of the lecturer and the channel (in particular to the room
reverberation). In the case of non-native speakers the adaptation should also
help to cover some non-native speech.

3. A second, now unsupervised MLLR, FSA and VTLN adaptation based on
the hypothesis of the first recognition run: this procedure aims at adapting to
the particular speaking style of a speaker and to changes within the channel.

3 Experiments

In order to evaluate the performance of the described system, we ran experiments
on recordings as described before on five seminars/speakers providing a total of
approximately 130 minutes speech material with 16.395 words.



Microphone Array Driven Speech Recognition 329

3.1 Source Localization

The error measure used for source localization is the average Euclidean distance
between the hypothesized head coordinates and the labeled ones.

It can be seen, Table 1, that even though the video only tracker performs
considerably better than the audio only tracker, the performance can still be
significantly increased by combining both modalities. This effect is particularly
distinctive during one recording in which the lecturer is standing most of the time
in one dark corner of the room, thus being hard to find using solely video features
(116cm mean error). While the video only tracker has the same performance
for all frames and speech only frames, the precision of the audio only and the
combined tracker is higher for the frames where speech is present compared to
the precision over all frames.

Table 1. Averaged error in 3D head position estimation of a lecturer over all frames
(approximately 130 Minutes) and frames where speech was present (approximately 105
Minutes)

Tracking mode Average error (cm)
all frames speech frames

Audio only 46.1 41.7
Video only 36.3 36.5
Video & Audio 30.5 29.1

3.2 Speech Recognition

The speech recognition experiments described below were conducted with the
Janus Recognition Toolkit (JRTk), which was developed and is maintained
jointly by the Interactive Systems Laboratories at the Universität Karlsruhe
(TH), Germany and at the Carnegie Mellon University in Pittsburgh, USA. All
tests used the language and acoustic models described above for decoding.

As mentioned before the big advantage of the MA is the big gain in WER
over a single channel, compare the numbers in Table 2. Infact using a MA with
an estimated speaker position over a single far distance channel we gain back
26.9% of the accuracy compared to the CTM.

Table 2. Word error rates (WER)s for a close talking microphone and a single micro-
phone of the array and the microphone array with different position estimates

Tracking mode WER

Close Talking Microphone 34.0%

Microphone Array
single microhone 66.5%
estimated position (Audio only) 59.8%
estimated position (Video only) 59.1%
estimated position (Audio & Video) 58.4%
labeled position 55.8%
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3.3 Source Localization vs. Speech Recognition

Figure 3 compares the average position error of the source localization to the
WER. If the error of the labeled position to the ground truth is around 15
cm (our calculatinon of the accuracy is approximately 10 cm), then a linear
relationship can be seen.
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Fig. 3. Plot comparing the average position error to the word error rate

4 Conclusions

We have compared the WER on different approached for person tracking using
multiple cameras and multiple pairs of microphones. The core of the tracking
algorithm is a particle filter that works with estimating the 3D location by sam-
pled projection, thus benefiting from each single view and microphone pair. The
video features used for tracking are based on adaptive foreground segmentation
and the response of detectors for upper body, frontal face and profile face. The
audio features are based on the TDOA between pairs of microphones, and are
estimated with a PHAT function.

The tracker using audio and video input clearly outperforms both the audio-
and video-only tracker on the accuracy of the estimate resulting in a decrease of
WER. One reason for this is that the video and audio features described in this
paper complement one another well: the comparatively coarse foreground feature
along with the audio feature guide the way for the face detector, which in turn gives
very precise results as long as it searches around the true head position. Another
reason for the benefit of the combination is that neither motion and face detection
nor acoustic source localization responds exclusively to the lecturer and not to
people from the audience – so the combination of both increases the chance of
actually tracking the lecturer and therefore a decrease in WER.
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In the future we want to use advanced techniques such as cepstral domain
maximum likelihood beamformer [17] for the MA. For the fusion weight we
want to define a criteria which depends on voice activity detection to give more
weight to the audio in the case of speech and vice versa.
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Abstract. An important step to bring speech technologies into wide deployment 
as a functional component in man-machine interfaces is to free the users from 
close-talk or desktop microphones, and enable far-field operation in various 
natural communication environments.  In this work, we consider far-field auto-
matic speech recognition and speech activity detection in conference rooms.  
The experiments are conducted on the smart room platform provided by the 
CHIL project.  The first half of the paper addresses the development of speech 
recognition systems for the seminar transcription task.  In particular, we look 
into the effect of combining parallel recognizers in both single-channel and 
multi-channel settings.  In the second half of the paper, we describe a novel al-
gorithm for speech activity detection based on fusing phonetic likelihood scores 
and energy features.  It is shown that the proposed technique is able to handle 
non-stationary noise events and achieves good performance on the CHIL  
seminar corpus.    

1   Introduction 

Speech is one of the most effective means of communication for humans.  It is there-
fore an essential modality in multimodal man-machine interactions.  Speech-enabled 
interfaces are desirable because they promise hands-free, natural, and ubiquitous 
access to the interacting device.  Much progress in speech technologies has been 
made in recent years.  However, the majority of the successful applications to date, 
e.g. call-center automation, broadcast news transcription, and desktop dictation, all 
but confine the speaker to a nearby microphone. 

An important step to bring speech technologies into wide deployment as a func-
tional component in man-machine interfaces is to free the users from close-talk or 
desktop microphones, and enable far-field operation in various natural communica-
tion environments.  In this work, we consider two related aspects of speech technolo-
gies, automatic speech recognition (ASR) and speech activity detection (SAD), in a 
far-field scenario.  The experiments are carried out on the smart room platform pro-
vided by the European Commission integrated project: Computers in the Human In-
teraction Loop (CHIL).  The CHIL smart room is a conference room equipped with 
multiple audio and visual sensors to facilitate intelligent multimodal interactions. On 
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the acoustic side, the main far-field input is provided by linear microphone arrays.  In 
addition to the linear arrays, T microphone arrays, desktop microphones, as well as 
close talk microphones may also be available.  On the visual side, video cameras with 
wide-angle lens provide coverage of the entire space; active pan-tilt-zoom (PTZ) 
cameras allow close-up shots of the subjects in the room.  In this paper, we shall con-
centrate on experiments using only the audio sensors.  Note that the concept of smart 
room is not restricted to the context of CHIL.  Research results obtained here can be 
readily extended to other interactive environments where multimodal ambient intelli-
gence is sought. 

Far-field ASR in conference rooms is a challenging task.  Because of reverbera-
tion, it would be extremely difficult for a single distant microphone to give satisfac-
tory recognition results, unless the training and testing conditions in terms of acoustic 
environment, speaker location, and microphone placement are perfectly matched.  A 
promising way of improving far-field ASR performance is to use an array of micro-
phones [1].  Microphone arrays are able to acquire higher quality signal because of 
the high directivity achieved by beam-forming algorithms, which typically assume 
that the geometry of the array is regular and known.  Ultimately, we would like to 
have systems that can take advantage of an arbitrary set of distributed acoustic sen-
sors.  In such cases, it becomes necessary to look beyond the conventional beam-
forming algorithms and consider alternative ways to fuse the information provided by 
the multiple microphones.  Instead of operating in the signal level, it is also possible 
to carry out the fusion in the hypothesis domain.  Through the subsequent experi-
ments, we aim to gain some preliminary understandings of the potentials of the  
proposed high-level fusion by comparing the recognition performance of single  
microphone, beam-forming, and hypothesis combination. 

Speech activity detection is a crucial aspect in smart room applications.  Not only 
does it play an essential role as a front-end step to the ASR process, but also provides 
important cues to speaker localization and acoustic scene analysis algorithms.  Most 
existing SAD algorithms build classifiers directly on the features extracted from the 
acoustic signal [2]-[4].  The features may be straight forward energy coefficients or 
more complex frequency domain representations.  The common choice of classifiers 
ranges from adaptive thresholds to linear discriminants, regression trees, and Gaus-
sian mixture models (GMM).  In general, energy-based speech detection is computa-
tionally efficient and simple to implement, but lacks robustness to noise.  Although 
performance can be improved by using adaptive thresholds or appropriate filtering of 
the energy estimates, it remains difficult to address non-stationary noise effectively.  
It has been shown that frequency based speech features, such as Mel-frequency cep-
stral coefficients (MFCC), are necessary for further improvement in noise robustness.  
In this paper, we propose to employ such features indirectly, through the acoustic 
model that is assumed to have generated them.  The resulting acoustic phonetic fea-
tures are extracted based on the phonetic class conditional MFCC observation vector 
likelihoods by the acoustic model, and are used to augment baseline energy based 
features.  The two types of features are fused and subsequently considered for 
speech/silence detection using a GMM classifier. 

The rest of the paper is organized as follows.  In the next section, we first describe 
the sensor configuration in the CHIL smart room and the CHIL seminar corpus.  Sec-
tion 3 addresses the development of speech recognition systems for the seminar tran-



334 S.M. Chu, E. Marcheret, and G. Potamianos 

scription task.  In particular, we look into the effect of combining parallel recognizers 
in both single-channel and multi-channel settings.  Section 4 introduces the proposed 
SAD algorithm based on fusing phonetic likelihood scores and energy features.  In-
stead of putting ASR and SAD results together in a separate section, we shall cover 
the experimental results in their respective sections immediately after the algorithms 
are introduced.  Finally, conclusions and future work are discussed in section 5. 

2   CHIL Seminar Corpus 

The speech data used in the experiments are collected in the CHIL smart room at the 
Universität Karlsruhe in Karlsruhe, Germany.  The corpus consists of two parts.   

The first part was recorded in the fall of 2003 and made available for the June 2004 
evaluation, thus shall be refereed to as the June’04 dataset in the remainder of the 
paper.  The content of the speech data contains technical seminars given by students 
of the university.  There are seven seminars and seven distinct speakers with varying 
degree of fluency in English.  During each session, both close talk and far-field re-
cordings are made concurrently, the former through a Sennheiser close talk micro-
phone (CTM), and the latter by two linear eight-channel microphone arrays.  The 
signal is sampled at 16 KHz with 16-bit resolution.  The total duration of the re-
cording is 137 minutes.  The data is further partitioned into two subsets: a develop-
ment set with 68 minutes and 3971 utterances, and a test set with 69 minutes and 3077 
utterances.  All seven speakers appear in both of the subsets. 

 

Fig. 1. Schematic of the CHIL smart room at the Universität Karlsruhe. The environment as 
shown was used to collect the Jan’05 dataset. 
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The second part of the corpus was recorded after a series of hardware updates were 
made to the smart room.  In particular, the Sennheiser CTM is replaced by a Coun-
tryman E6 microphone; and a new 64-channel Mark III microphone array developed 
by the National Institute of Standards and Technology (NIST) is now providing the 
far-field data.  The signal is sampled at 44.1 KHz with 24 bits per sample.  The sche-
matic of the updated CHIL seminar room is shown in Figure 1.  The data was made 
available for the January 2005 evaluation, and shall be referred to as the Jan’05 data-
set here on.   

There are five seminars and five speakers in this collection.  Among the speakers, 
one also appeared in the June’04 dataset.  The development set contains 46 minutes of 
speech segmented into 1395 utterances; the test set contains 133 minutes of data and 
1764 utterances.  Two speakers are found in the development set, including the one 
shared with the June’04 dataset.  In addition to those two speakers, the test set also 
has three speakers unseen in the development set. 

Both the June’04 dataset and the Jan’05 set were manually segmented and tran-
scribed.  For the far-field data, speech and non-speech regions are also labeled to 
provide ground truth for the SAD experiments.   

3   ASR Experiments 

To develop an effective speech recognition system for the CHIL seminar transcrip-
tion, the following characteristics of the task must be considered.  

First, the amount of available training data is limited.  Given that the total duration 
of the development set is less than two hours, it is therefore unfeasible to train a large 
vocabulary continuous speech recognizer (LVCSR) from scratch.  A more plausible 
approach is to start from a set of acoustic models trained on other much larger speech 
corpora, and then refine these models using the CHIL development data through ad-
aptation.  

Second, the smart room environment, the seminar scenario, and the mostly Euro-
pean speaker set make this collection distinct from most of the existing large speech 
corpora/tasks.  Therefore, a system based solely on one of the existing databases is 
unlikely to give the optimal performance.  In our work, we aim to take advantage of 
different speech datasets by running three systems developed separately on three very 
different corpora in parallel, and combining the word hypotheses generated by the 
systems to give the final output. 

Lastly, because the domain of the speech content is well defined, further reduction 
in recognition error can be achieved by developing a domain specific language model.  
In the June 2003 CHIL evaluation [5], we first experimented using the text from in-
domain technical publications for language model development.  The merit of the 
approach was clearly demonstrated in the evaluation results.  In this work, we shall 
continue to use the same method.  

3.1   System Description 

The three parallel recognition systems considered here are: (1) a wide-band dictation 
system, (2) a wide-band dialogue system with German accent [6], and (3) a narrow-
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band conversational system.  The front-end specifications and the configurations of 
the acoustic models are summarized in Fig. 2.   

In both the first and the second system, supervised maximum a posteriori (MAP) ad-
aptation was performed using the development set (joint set of the June’04 and Jan’ 05 
development data).  In the third system, supervised MLLR was applied.  Note that these 
adaptations were speaker-independent.  In addition to MLLR, the third system also 
performs speaker-dependent VTLN and feature-level minimum phone error (fMPE) [7] 
adaptation.  These operations are carried out at run-time and are unsupervised. 

Content: 
 ViaVoice dictation 
Duration: 
 400 Hours, 1K speakers 

Front-end: 
 22K, MFCC, LDA+MLLT  
Basic Acoustic Model:
 ±5 context, 3.5K states, 
 42.7K Gaussians 

Speaker Independent:
 supervised MAP  
Speaker dependent:
 none 

training  
corpora 

acoustic 
modeling 

task
adapt.

Training Data: 
 (a). 3M-word Switchboard  
 (b). 1M-word Eurospeech’03 proceedings  
 (c). CHIL June 2004 dev set

Model Description: 
20K words  

 trigram  
 0.5×dev + 0.3×eurospeech + 0.2×swb

language 
modeling 

Content: 
 interview, accented 
Duration: 
 200 hours, 780 speakers 

Front-end: 
 22K, MFCC, LDA+MLLT  
Basic Acoustic Model:
 ±5 context, 3.4K states, 
 53K Gaussians 

Speaker Independent:
 supervised MAP  
Speaker dependent:
 none 

Content: 
 Switchboard, Fisher 
Duration: 
 2100 Hours 

Front-end: 
 8K, VTLN PLP 
Basic Acoustic Model:
 ±2 context, 7.8K states, 
 143K Gaussians 

Speaker Independent:
 supervised MLLR  
Speaker dependent:
 fMPE 

SYSTEM 1 SYSTEM 2 SYSTEM 3 

decoding 

rover 
 

Fig. 2. The IBM CHIL ASR system is composed of three parallel large vocabulary speech 
recognizers. The acoustic models in each of the individual systems are trained on different 
speech corpora and adapted to the CHIL seminar transcription task using the development data.  
The three systems share the same language model. The word hypotheses are combined using 
ROVER to give the final recognition result. 

The language model is developed on three datasets: the CHIL development set, a 
three million word set from the Switchboard corpus, and a one million word set derived 
from Eurospeech '03 proceedings using automated PDF to ASCII conversion.  The 20k 
vocabulary contains the following words: all words in the CHIL development set, words 
in the Switchboard set with 5+ counts, words in the Eurospeech set with 2+ counts.  A 
trigram model is built on each of the three corpora with modified Kneser-Ney smooth-
ing.  The final language model is obtained through the following interpolation, 

 dswitchboareurospeechchil ×+×+× 2.03.05.0  (1) 

The language model is shared by all three recognition systems.  During testing, the input 
speech is first decoded separately by the three individual systems.  Then the outputs are 
combined using the NIST ROVER [8] system to produce the final hypothesis. 
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3.2   Experimental Results 

To establish appropriate benchmarks for the multi-channel far-field experiments, we 
first test the recognition system with the CTM recording and data from a single chan-
nel in the microphone array.  Adaptations are applied to the basic acoustic models 
using the development data from the corresponding channels.  With respect to the 
given system, the CTM result should give an upper bound for the multi-channel far-
field performance; while the single channel result should provide an estimate of the 
baseline.   

We also compare the performance from the current recognition system with an ear-
lier system (06/04), which is essentially system 2 in Fig. 2, adapted with only the 
June’04 development set.  The benchmark results are summarized in Table 1. 

Table 1. Recognition results in word error rate for the close talk and far field microphones.  
The results from the 06/04 system and the 01/05 system are compared. 

Test set : system close talk far field 
06/04 : 06/04 35.1% 64.5% 
06/04 : 01/05 31.5% 63.2% 
01/05 : 01/05 36.9% 70.8% 

The results clearly show the difficulty posed by far-field ASR. In all three cases, the 
word error rates (WER) for the single far-field microphone are approximately doubled 
compared with the corresponding CTM performance. The results also confirm the 
benefit of parallel decoding using diverse acoustic models. On the same June’04 test 
set, the parallel system is able to reduce the WER from 35.1% to 31.5%, which trans-
lates to a 10.3% relative reduction.  The differences are illustrated in Fig. 3. 
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Fig. 3. Benchmark results of the ASR systems using data from CTM and single channel far-
field microphone. On the June’04 test set, the Jan’05 system employing three parallel acoustic 
models gives superior recognition performance to the June’04 system. 
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Two multi-channel far-field ASR experiments are carried out.  Both use the same 
16 channels of microphone array data found in the June’04 dataset.  In the first ex-
periment, beam-forming is applied to the multiple outputs of the microphone array to 
generate a single channel of acoustic signal.  The signal is then passed to the ASR 
system for adaptation and recognition.   In the second experiment, each channel of the 
microphone array is first processed independently.  For a given utterance, 16 word-
level hypotheses with word confidence scores are generated.  These hypotheses are 
then combined using the ROVER program to give the final word sequence. 

The results of the multi-channel ASR experiments are shown in Fig. 4.  In addition 
to the beam-forming and hypothesis-combination results, the single-channel WERs 
for all 16 channels are also listed.  The single-channel WER is used to create a ranked 
list of the channels; and hypothesis integration experiments are repeated for top n 
channels for 16,,2,1 K=n . 

Decoding the beam-formed signal gives a WER of 58.5%.  This is a clear im-
provement over the single-channel results, which has an average WER of 64% ap-
proximately.  The lowest WER achieved by hypothesis integration is 59.5%, which is 
not far behind the beam-forming performance.  This is indeed encouraging consider-
ing the facts that the beam-forming algorithm explicitly relies on the known geometry 
of the array, and that the hypothesis integration approach is able to attain more than 
80% of the gain without the advantage of this prior knowledge.  Therefore, in the 
situation where the sensor configuration is not known, hypothesis integration can 
serve as a viable alternative to signal domain algorithms. 

One disadvantage of running multiple recognition engines is the increased demand 
on computational resource.  However, from Fig. 4, it can be observed that in this 
particular experiment, most of the gain occurs when the first few channels are added.  
If this observation is true in general, then the computational load of the approach can 
be significantly reduced.  Further experiments are still required. 

chan. single 
chan. 

# of  
chan. rover 

00 63.8 1 63.1 
01 63.5 2 62.9 
02 63.9 3 60.7 
03 64.2 4 60.8 
04 64.2 5 60.6 
05 63.8 6 60.6 
06 63.8 7 60.5 
07 64.2 8 60.2 
08 64.3 9 59.9 
09 63.5 10 59.5 
10 63.3 11 59.7 
11 63.8 12 59.7 
12 63.1 13 59.8 
13 63.6 14 59.7 
14 63.6 15 59.6 
15 64.4 16 59.7 

beam 58.5 lower 59.5
(a) (b) 
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Fig. 4. Comparing the recognition results on the microphone array data. (a). results for each 
individual channel and the beam-forming signal; (b). Rover top n channels according to (a). 
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In essence, array-processing is an information fusion problem.  The fusion problem 
arises when different observations about the same underlying process are available 
from multiple sources.  The goal then is to find the optimal way to integrate the 
sources so that the generating process can be inferred.  In a conventional beam-
forming algorithm, the information is integrated at a very low-level in the signal do-
main; whereas in the rather straight-forward alternative approach taken in the second 
experiment, the fusion takes place at a much higher level in the hypothesis space.  In 
fact, it is worthwhile to look into mechanisms for multi-channel ASR that permit 
intermediate level fusion. 

4   Speech Activity Detection Experiments 

The proposed SAD system operates on two types of features, the energy features 
generated directly from the signal, and the acoustic phonetic features defined from 
observations generated by the ASR acoustic model.  The energy features are five-
dimensional vectors computed from band-passed signals.  Conceptually, the five 
components track the energy envelope of the waveform with different sensitivities, 
thus providing evolving statistics about the signal.  The details of the computations 
can be found in [9], and are omitted here for brevity.  The emphasis will be given to 
the acoustic phonetic features proposed in this work.  

4.1   Acoustic Phonetic Features for SAD 

The acoustic phonetic feature space employed for speech activity detection is de-
rived from the acoustic model used for ASR.  The acoustic model is generated from 
partitioning the acoustic space by context-dependent phonemes with the context 
defined in this work as plus and minus five phonemes, cross-word to the left only. 
The context-dependent phoneme observation generation process is modeled as a 
GMM within the hidden Markov model (HMM) framework, and in typical large-
vocabulary ASR systems, this leads to more than 40k Gaussian mixture compo-
nents.  Calculating all HMM state likelihoods from all Gaussians at each frame 
would preclude real-time operation.  Therefore, we define a hierarchical structure 
for the Gaussians, where it is assumed that only a small subset of them is significant 
to likelihood computation at any given time.  The hierarchical structure takes ad-
vantage of the sparseness by surveying the Gaussian pool in multiple resolutions 
given an acoustic feature vector x.  As part of the training process, the complete set 
of available Gaussian densities is clustered into a search tree, in which the leaves 
correspond to the individual Gaussians, and a parent node is the centroid of its chil-
dren for a defined distance metric. At the bottom of this tree resides a many-to-one 
mapping, collapsing the individual Gaussians to the appropriate HMM state. There-
fore, the HMM state s  conditional likelihood of a given observation vector x at time t 
is computed as 
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where G(s) is the set of Gaussians that make up the GMM for state s.  Traversing the 
tree will yield a subset of active Gaussians, denoted by Y.   Based on Y and the many-
to-one mapping, the conditional likelihood of a state is approximated as 

 )|()|(max)|(
)(

gpsgpsp
sGYg

xx
∩∈

=  (3) 

If no Gaussian from a state is present in Y, a default floor likelihood is then assigned 
to that state. 

To define the acoustic phonetic space used for speech activity detection, we apply 
an additional many-to-one mapping to the pruned result of the hierarchical tree.  This 
function maps  phonemes into three broadly defined classes: (i) the pure silence pho-
neme, trained from non-speech; (ii) the disfluent phonemes, which are noise like 
phonemes, namely the unvoiced fricatives and plosives, i.e., the ARPAbet subset {/b/, 
/d/, /g/, /k/, /p/, /t/, /f/, /s/, /sh/}; and (iii) all the remaining phonemes, such as the 
vowels and voiced fricatives.  The three classes will be denoted by c1, c2, and c3.  
From the acoustic feature x, which is used to traverse the acoustic model hierarchy, 
we can form the speech detection class posteriors for the three speech detection 
classes as, 
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where G(ci) is the set of Gaussians defined by the mapping from the phonemes to the 
speech detection class ci. 

Pruning at each level of the hierarchical acoustic model is accomplished by using a 
threshold relative to the maximum scoring likelihood for that level.  As a result, the 
sharper the drop-off in Gaussian likelihoods, the more aggressive the pruning be-
comes.  Therefore, both SNR and the phoneme being pronounced impact the pruning.  
Features extracted from vowels and other voiced phonemes will result in more ag-
gressive pruning than unvoiced fricatives, plosives and silence phonemes. This prun-
ing will remain relative to SNR, with increasing SNR resulting in an overall more 
aggressive pruning. 

The above observation results in additional speech detection features based on 
class-normalized Gaussian counts. Let’s denote the number of Gaussians after hierar-
chical pruning that map to speech detection class ci, 

icn , and consider the normalized 

counts 
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as additional features.  Combining (4) and (5), we obtain the six-dimensional acoustic 
phonetic feature vector 
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Finally, the five-dimensional energy features and the acoustic phonetic features are 
concatenated to form an 11-dimensional feature vector.  

4.2   Training and Classification 

The joint energy and acoustic phonetic feature vectors are projected to an eight-
dimensional feature space using PCA, on which a three-class GMM classifier is built.  
For each class eight Gaussian densities with diagonal covariance matrices are used. 

The class labels for the training data is inferred through Viterbi alignment using the 
ASR acoustic model and the transcripts of the corresponding utterances.  Once the 
phone-level alignment is computed, the class identity of a frame can be readily ob-
tained via the phoneme-to-class mapping described earlier. 

During classification, the likelihood scores of a frame given the three GMMs are 
first evaluated.  The scores are then smoothed over time to give the classification 
result.  As a final step, the three classes are mapped to speech/non-speech according 
to the following rules. 

1. c1  non-speech 
2. c3  speech 
3. c2  speech, if the one of the two neighboring frames is c1, and the other is c3; 

otherwise c2  non-speech 

This mapping allows the system to correctly handle both consonant-vowel-consonant 
transitions and non-stationary noise events. 

4.3   Experimental Results    

The far-field performance of the SAD system is evaluated using the first channel of 
the linear microphone array in the CHIL June’04 dataset.   

The basic acoustic models used to compute the acoustic phonetic features are the 
same as the ones in system 1 described in the ASR experiments.  Specifically, they 
consist of 3.5K HMM states and 43K Gaussian mixtures, trained on 400 hours of data 
from 1000 speakers.  The acoustic models use 40-dimentional features derived from 
24-dimensional MFCCs through LDA/MLLT.  Supervised MAP adaptation is applied 
on top of the basic acoustic models using the development set. 

Three metrics are used to evaluate the SAD performance.  They are defined as fol-
lows, 

• Speech detection error rate (SDER) = time of incorrect decisions at speech 
segments / time of speech segments 

• Non-speech detection error rate (NDER) = time of incorrect decisions at non-
speech segments / time of non-speech segments 

• Average detection error rate (ADER) = (SDER + NDER) / 2. 
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In our experiments, the operating points of the SAD are chosen such that the follow-
ing condition is satisfied, 

 |SDER − NDER| / (SDER + NDER)  0.1 (7) 

The SAD results using both the basic and the adapted acoustic models are shown in 
Table 2.  As expected, the performance of the adapted system is significantly better 
than the system using baseline acoustic models.   

Table 2. Speech activity detection results on the June’04 CHIL seminar dataset. The system 
uses joint energy and acoustic phonetic features and Gaussian mixture models for classification. 

metric baseline  MAP adaptation 
SDER 16.70% 10.01% 
NDER 16.43% 11.92% 
ADER 16.57% 10.96% 

The reported performance of the adapted system was superior to all five other sys-
tems evaluated by the CHIL consortium [10], achieving 4% to 36% relative ADER 
reduction.  All other submitted systems built classifiers directly on the energy or  
other speech features.  The results clearly demonstrate the strength of the acoustic 
phonetic based approach to speech activity detection. 

5   Conclusions 

In this work, we consider far-field automatic speech recognition and speech activity 
detection in the CHIL smart room.  In particular, we look into the effect of combining 
parallel recognizers in both single-channel and multi-channel settings for far-field 
ASR.  Experiments show that for microphone array-based ASR, word-level hypothe-
sis combination is able to achieve recognition performance comparable to conven-
tional beam-forming algorithms.  For speech activity detection, a novel algorithm 
based on fusing acoustic phonetic features and energy features is proposed and suc-
cessfully evaluated on the CHIL seminar corpus. 
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Abstract. The automatic processing of speech collected in conference
style meetings has attracted considerable interest with several large scale
projects devoted to this area. This paper describes the development of a
baseline automatic speech transcription system for meetings in the con-
text of the AMI (Augmented Multiparty Interaction) project. We present
several techniques important to processing of this data and show the per-
formance in terms of word error rates (WERs). An important aspect of
transcription of this data is the necessary flexibility in terms of audio
pre-processing. Real world systems have to deal with flexible input, for
example by using microphone arrays or randomly placed microphones in
a room. Automatic segmentation and microphone array processing tech-
niques are described and the effect on WERs is discussed. The system
and its components presented in this paper yield competitive perfor-
mance and form a baseline for future research in this domain.

1 Introduction

Many people spend a considerable time in their working life in meetings, how-
ever the efficiency of meetings is often low and hence approaches for streamlining
the process and for retaining and crystallising the right information have been
developed. So far computers are rarely used to aid this process. Projects like
AMI (which stands for Augmented Multiparty Interaction) aim to investigate
to use of machine based techniques to aid people in and outside of meetings
to gain efficient access to information. Meetings are an audio visual experience
by nature, information is presented for example in the form of presentation
slides, drawings on boards, and of course by verbal communication. The latter
forms the backbone of most meetings. The automatic transcription of speech in
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meetings is of crucial importance for meeting analysis, content analysis, sum-
marisation, and analysis of dialogue structure. Widespread Work on automatic
recognition of speech in meetings started with yearly performance evaluations
by the U.S. National Institute of Standards and Technology (NIST) [19]. Work
on meeting transcription was initially facilitated by the collection of the ICSI
meeting corpus [13] which was followed by trail NIST meeting transcription eval-
uations in Spring 2002. Further meeting resources were made available by NIST
[9], Interactive System Labs (ISL) [3] and the Linguistic Data Consortium RT04s
Meeting evaluations [19].

As the number of speech resources for meetings is still relatively small, simi-
lar to work presented in [22], a recognition system for conversational telephone
speech (CTS) forms the starting point for our work on meetings. This approach
was preferred to bootstrapping from Broadcast News (BN) systems (as for ex-
ample in [21]) as the meeting style is expected to be colloquial rather than pre-
sentational. In the following we give a description of meeting resources followed
by a description of our CTS baseline system. This is followed by an analysis of
meeting vocabulary and linguistic context followed by experimental results with
various approaches to acoustic modelling.

2 Meeting Resources

The ICSI Meeting corpus [13] is the largest meeting resource available consisting
of 70 technical meetings at ICSI with a total of 73 hours of speech. The number
of participants is variable and data is recorded from head-mounted and a total of
four table-top microphones. A 3.5 hour subset of this corpus covering 30 minute
extracts of 7 meetings was set aside for testing (icsidev). Further meeting corpora
were collected by NIST [9] and ISL [3], with 13 and 10 hours respectively.Both
NIST and ISL meetings have free content (e.g. people playing games or discussing
sales issues) and number of participants. We also make use of the RT04s NIST
evaluation set (rt04seval) which also includes meetings recorded by the LDC.

As part of the AMI project a major collection and annotation effort of the
AMI meeting corpus[4] is currently underway. Data is collected from three dif-
ferent model meeting rooms in Europe (mostly Edinburgh and IDIAP at the
moment). Overall more than 100 hours of speech are to be transcribed. The
meeting language is English. Each meeting normally has four participants and
the corpus will be split into a scenario portion and individual meetings. The sce-
nario portion will involve the same participants over multiple meetings on one
specific task. The data used in this paper only originates from scenario meet-
ings. An additional development set (amidev) consisting of 8 meetings from 2
locations is used for testing.

3 The AMI CTS System

All systems in this paper are based on standard speech recognition technology
such as HMM based acoustic models and N-gram based language models. In
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the following we briefly outline the front-end and acoustic modelling, dictionary
consruction, and language modelling on this task.

3.1 Acoustic Modelling

Font-ends make use of 12 MF-PLP [24,12] coefficients and the 0th cepstral co-
efficient c0. These are derived from a reduced bandwidth of 125-3800Hz. First
and second order derivatives are added to form a 39 dimensional feature vector.
Cepstral mean and variance normalisation is performed on complete conversa-
tion sides and hence are implicitly speaker specific. Acoustic models are pho-
netic decision tree state clustered triphone models with standard left-to-right
3-state topology. They were obtained using standard HTKmaximum likelihood
training procedures (see for example [11]). The system uses approximately 7000
states where each state is represented as a mixture of 16 Gaussians. Speaker
adaptive training is performed in the form of vocal tract length normalisation
(VTLN) both in training and test. Warp factors are estimated using a parabolic
search procedure, a piecewise linear warping function and a maximum likelihood
criterion[11]. Speaker adaptation is perfermed using maximum likelihood linear
regression (MLLR) of the means and variances[8].

Feature transformation is applied in the form of smoothed heteroscedastic
linear discriminant analysis (SHLDA) [17]. SHLDA is used to reduce a 52 di-
mensional formed by the standard feature vector plus third derivatives to 39
dimensions. HLDA estimation procedure[16] requires the estimation of full co-
variance matrices per Gaussion. SHLDA uses smoothing of the covariance esti-
mates by interpolating with standard LDA type with-in class covariances.

Σsm = αΣ + (1 − α)ΣWC (1)

Σsm is the smoothed estimate of the covariance matrix and ΣWC is the LDA
type within-class matrix estimate based on an occupancy weighted average. Val-
ues for α of 0.8 − 0.9 were found to yield satisfactory results.

3.2 Dictionaries

The UNISYN pronunciation lexicon [7] forms the basis of dictionary develop-
ment with pronunciations mapped to the General American accent. Normalisa-
tion of lexicon entries to resolve differences between American and British de-
rived spelling conventions was performed yielding a 115k word base dictionary.
Pronunciations for a further 11500 words were generated manually to ensure
coverage of training data. For consistency and a simplified manual pronuncia-
tion generation process hypotheses generation procedures have been developed.
Pronunciations for partial words are automatically derived from the baseform
dictionary. Hypotheses for standard words were generated using CART based
letter-to-sound rules. The CART based letter-to-sound prediction module was
trained on the UNISYN dictionary using tools provided with the Festival speech
synthesis software [1] using left and right context of five letters and left context of



The Development of the AMI System for the Transcription of Speech 347

Table 1. Size of various text corpora in million words (MW)

Corpus name #words (MW)

Swbd/CHE 3.5
Fisher 10.5
Web (Switchboard) 163
Web (Fisher) 484
Web (Fisher topics) 156

BBC - THISL 33
HUB4-LM96 152
SDR99-Newswire 39
Enron email 152

ICSI meeting 1
Web (meetings) 128

two phones. This gave 98% phone accuracy and 89% word accuracy on the base
dictionary., for manually generated pronunciations the error rates were 89% and
51% respectively. Although the word accuracy is quite low on new words (many
of which were proper names, partial words etc.), the phone accuracy remains
relatively high.

3.3 Language Modelling and Vocabulary

Selection of vocabulary for recognition is based on a collection of in-domain
words. However, in the case of insufficient data it is beneficial to augment this
list with the most frequent words from other sources, for example Broadcast
News (BN) corpora. This “padding” technique was used for all dictionaries in
this paper unless stated otherwise. The target dictionary size was 50000 words
and the source of words was BBC news data, the Broadcast News 1996 Hub4
corpus (HUB4-LM96), and Enron data[14] (see table 2).

Language model training data for conversational speech is sparse. Hence mod-
els are constructed from other sources and interpolated (as in e.g. [11]). This is
true for both CTS and meeting data. Hence we have processed a large number
of different corpora to form the basis of our language models. The most impor-
tant corpora are listed in Table 1. A full discussion of all source material would
go beyond the scope of this paper. The most important non-standard data was
found to be the the Web collected resources [2] and ICSI meetings. In total more
than 1300 MW of text are used. Each corpus was normalised using identical
processes. Apart from standard cleanup we tried to ensure normalised spelling

Table 2. Perplexities on the NIST Hub5E 1998/2001/2002 evaluation test sets (CTS)

Hub5e eval sets Bigram Trigram 4-gram

Swbd 104.53 85.97 84.12
Swbd + HUB4 95.00 72.55 69.04
Swbd + HUB4 + Web 90.89 66.75 61.59
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and uniform hyphenations across all corpora. For the training and testing of lan-
guage models the SRI LM toolkit [23] was used to train models with Kneser-Ney
discounting and Backoff. Table 2 shows perplexity results on the NIST Hub5e
evaluation sets. Note the substantial reduction in perplexity by the additional
web resources.

3.4 Decoding and Overall System Performance

Decoding operates in three passes. The Cambridge University speech decoder
HDecode is used for recognition with trigram language models. Table 3 shows
results for each pass. The first pass yields a first level transcription which is
used or VTLN warp factor estimation. In the second pass improved output
is generated using VTLN trained models. The final output is obtained after
MLLR adaptation using transforms for speech and silence. The table also gives
a comparison of results with and without SHLDA. Trigram language models as
described above were used in the experiments. A significant reduction in word
error rate (WER) from both VTLN and SHLDA is observed.

Table 3. %WER results on the NIST Hub5E 2001 evalution set

eval01 VTLN MLLR non-HLDA SHLDA

pass1 37.2 35.0
pass2 × 33.8 32.1
pass3 × × 32.1 30.6

4 Language in Meetings

Even though of general conversational nature, meeting data differs substantially
from CTS. First of all the acoustic recoding condition is usually more complex
as the speaker has no feedback on the recording quality. Speech signals of close-
talking microphones are distorted by heavy breathing, head-turning and cross-
talk. Table 4 shows raw statistics on several meeting corpora. Average utterance
durations are larger than on CTS, however with great variation. We can also
observe that corpus size is not a good predictor for the number of unique words
in the corpus and hence complexity.

Table 4. Statistics for meeting corpora

ICSI NIST ISL AMI

Avg. Dur (sec) 2.42 3.98 3.21 3.95

#words 823951 157858 119184 154249
#unique wds 11439 6653 5622 4801
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4.1 Vocabulary

We shall loosely define a domain as a set of sub-corpora that, when used in a
combined non-discriminative fashion, yield better performing models than the
parts. This definition is not strict and will show a tendency to combine small
corpora. However for the purpose of model training the question of how to use
data is most important. Table 5 shows on the left hand side Out Of Vocabulary
(OOV) rates using vocabulary derived from each meeting corpus. The OOV rates
do not correlate perfectly with vocabulary sizes (Table 4). On the right hand
side the wordlists are padded as described in section 3.3 (this includes removal
of obvious typographic errors). It is evident that overall the effect of vocabulary
mismatch is greatly reduced uniformly for all cases. This suggest that only a
very small amount of meeting specific vocabulary is necessary. Hence padding
was used in all further experiments.

Table 5. %OOV rates of meeting resource specific vocabularies. Columns denote the
word list source, rows the test domain.

No padding Padding to 50k
ICSI NIST ISL AMI ICSI NIST ISL AMI

ICSI 0.00 4.95 7.11 6.83 0.01 0.47 0.58 0.57
NIST 4.50 0.00 6.50 6.88 0.43 0.09 0.59 0.66
ISL 5.12 5.92 0.00 6.68 0.41 0.37 0.03 0.57
AMI 4.47 4.39 5.41 0.00 0.53 0.53 0.58 0.30

COMB 1.60 4.35 6.15 5.98 0.16 0.42 0.53 0.55

4.2 Content

Apart from the raw word difference it is important understand the effect of
the wide range of topics covered in the various meetings. A set of experiments
was conducted to compare meeting resource optimised language models on the
basis of the meeting resource specific (MRS) padded vocabularies. Language
models are obtained by optimisation of interpolation weights for the components
outlined in Table 1. Table 6 shows perplexities on all corpora. In all cases that
the best perplexities are achieved on the originating corpus, however with little
margin. Note also that the MRS LMs significantly outperform the generic LMs

Table 6. Cross meeting room perplexities on subsets of rt04seval and rt05samidev.
COMB denotes training or testing using all meeting data.

Test Corpus ICSI NIST ISL AMI COMB

ICSI 68.17 74.57 73.76 77.14 67.97
NIST 105.91 100.87 102.01 105.95 101.25
iSL 104.68 99.45 98.45 106.39 102.86
AMI 115.56 114.26 114.41 88.91 94.08

LDC 97.78 90.66 88.87 92.44 93.84

COMB 107.46 105.93 105.73 90.62 92.74
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only in the case of ISL and AMI. In general the perplexity of ICSI test data is
very low. This appears to be a property of this data set.

5 Meeting Transcription

Common for all meeting rooms is that audio is recorded either by close-talking
microphones or via single or multiple distant microphones. The latter may be
arranged in a fixed array configuration. Due to interaction between speakers the
system must be capable of speech detection and and speaker grouping as well as
recognition. In the following we first outline techniques for audio segmentation
and microphone array processing, followed by a description of model training
procedures and recognition results.

5.1 Automatic Segmentation

Speech activity detection (SAD) for close talking microphones poses a significant
challenge. The high levels of cross-talk and non-speech noise (such as breath or
contact noise) prohibit the use of threshold based techniques, the standard in more
‘friendly’ recording conditions. The system used here is a straight-forward statis-
tical based approach with additional components to control cross-talk between
channels. Statistical approaches to SAD typically use HMM or GMM based clas-
sifiers with special feature vectors such as channel cross-correlation and kurtosis
(e.g. [20,25]). A 14 dimensional PLP [12] feature vector is used to train a Multi-
Layer-Perceptron (MLP) classifier with a 101 frame input layer, a 20 unit hidden
layer and an output layer of two classes. Parameters are trained on 10 meetings
from each meeting resource totalling around 20 hrs of data. Further 5 meetings
from each corpus are used to determine early stopping of the parameter learning.
The utterance segmentation uses Viterbi decoding and scaled likelihoods derived
from the MLP and a minimum segment duration of 0.5 seconds.

Cross talk suppression is performed at the signal level using adaptive-LMS
echo cancellation [18]. Additons to the basic system are: the use of multiple refer-
ence channels in cancellation; automatic channel delay estimation and offsetting
of reference signals to account for this delay; automatic cross-talk level estima-
tion; and ignoring of channels which produce low levels of cross-talk. Updates
are further made on a per sample basis to account for non-stationary ‘echo’ path.
On the classifier level additional features were introduced to aid the detection
of cross-talk:
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where xt+L
t−L is the signal x windowed over 2 · L samples and Pl and Ph are the

minimum and maximum pitch period over which peak picking is carried out
(corresponding to 50-300Hz). Eq. 2 describes across-meeting normalised RMS
energy, Eq. 3 signal and spectrum kurtosis, and Eq. 4 as a voicing strength
measure based on the maximum amplitude in the speech cepstrum in the range
of frequencies 50-300Hz.

5.2 Microphone Array Processing

Audio from multiple distant microphones (MDMs) can be used in variety of ways.
The AMI baseline system uses an enhancement based approach. Recordings from
a number of microphones placed in the meeting rooms are combined to arrive
at a single, enhanced output file that is then used as input for recognition. The
system is required to cope with a number of unknown variables: varying numbers
of microphones; unknown microphone placement; unknown numbers of talkers;
time variant skew between input channels introduced by the recording system;
and different room geometry and acoustic conditions.

The MDM processing operates in a total of four stages. First gain calibration
is performed by normalising the maximum amplitude level of each of the input
files. Then a noise estimation and removal procedure is run. This in itself is a
two pass process. On the first pass the noise spectrum Φnn(f) of each input
channel is estimated as the noise power spectrum of the M lowest energy frames
in the file (M = 20 was used for the current experiments). On the second pass
a Wiener filter with transfer function Φxx(f)−Φnn(f)

Φxx(f) (where φxx(f) is the input
signal spectrum) is applied to each channel to remove stationary noise. The noise
coherence matrix Q, estimated over the M lowest energy frames, is also output
at this time. In the third stage delay vectors between each channel pair are
calculated for every frame in the input sample. The delay between two channels
is the time difference between the arrival of the dominant sound source and is
calculated by finding the peak in the Generalised Cross Correlation [15] between
input frames across two channels. The delay vector is given as the delays for all
pairs with respect to a single reference channel - there are therefore N delays
in each vector, with the delay for the reference channel equal to 0. Further a
vector of relative scaling factors is calculated, corresponding to the ratio of of
frame energies between each channel and the reference channel. The start and
end times in seconds, along with the delay and scaling factors are output for
each frame. Finally The delay and scaling vectors are then used to calculate
beamforming filters for each frame using the standard superdirective technique
[5,6]. The superdirective formulation requires knowledge of the noise coherence
matrix. However this is not available as the microphone positions are not known.
Either a unity coherence matrix may be used (leading to delay-sum filters) or
the Q matrix estimate in the second stage may be used. Each frame is then
beamformed using the appropriate filters and the output subsequently used for
recognition.
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5.3 Model Building

As outlined above the the fact that meeting resources are still comparatively
small, bootstrapping from CTS models was used. However, as CTS data is only
available at a bandwidth of 4kHz this poses additional questions on the initiali-
sation and training procedure.

Bandwidth and Adaptation. Table 7 shows recognition performance on the
icsidev test set using various model training strategies. The baseline CTS systems
yield a still reasonable error rate. Training on 8kHz-limited (NB) ICSI training
data yields a WER of 27.1%. Using the full bandwidth (WB) reduces the WER
by 1.8%. The standard approach for adaptation to large amounts of data is
MAP [10]. As CTS is NB only, adaptation to WB ICSI data was performed
using MAP adaptation in an iterative fashion. However the performance of the
adapted NB system was still poorer than that of the system trained on WB data.
The results show that MAP adaptation from CTS models while using wideband
data is desirable. In our implementation the adaptation model set is used for
two purposes: for computation of state level posteriors and to serve as a prior.
Even if the former is performed well, NB models cannot be used to serve as prior
directly. In order to overcome this problem the means of the CTS models were
modified using block-diagonal MLLR transforms. One transform for speech and
one for silence was estimated on the complete ICSI corpus using models trained
on ICSI NB data. After an initial step with MLLR-adapted CTS models iterative
MAP adaptation is resumed as before. The use of more detailed modelling of
the transition from NB to WB by the use of more transforms was not found to
yield a significant performance improvement. After 8 iterations a further 0.9%
reduction in WER is obtained.

Table 7. %WER results on icsidev for several different training strategies and a trigram
LM optimised for the ICSI corpus

Data Bandwidth Adaptation #Iter %WER

CTS NB - - 33.3
ICSI NB - - 27.1
ICSI WB - - 25.3
ICSI NB MAP 1 26.5
ICSI NB MAP 8 25.8
ICSI WB MLLR + MAP 8 24.6

ALL WB MLLR + MAP 8 25.8

Meeting Resource Specific Language Modelling. The language and vo-
cabulary in meetings differs substantially. We have found evidence that his is
also true for the acoustics However the advantage of having more data out-
weighs the differences. Hence we use acoustic models trained on the all meeting
resources. Table 8 shows WER results using acoustic models trained on the com-
plete meeting data and specific language models. An initial observation makes
clear that on average the best strategy is to combine all the resources (similar
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Table 8. %WER on the rt04eval sets . TOT gives WERs overall, while MRS denotes
the use of language models focusing on specific meeting rooms.

TOT ISL ICSI NIST LDC

MRS ISL 40.2 44.7 25.8 34.1 53.8
MRS ICSI 40.2 45.2 25.1 34.7 53.5
MRS NIST 40.2 44.6 26.2 34.1 53.6
MRS AMI 41.0 45.1 26.9 35.8 54.2

COMBINED 40.0 44.5 25.6 34.4 53.4

to the acoustics). Further the variation of scores is modest whereby AMI data
is distinct from all other resources. A moderate beneficial effect can be observed
from using meeting room specific language models.

Independent Headset Microphone (IHM) Processing. The sections
above gave an outline of the components required for a baseline system on meet-
ing transcription. The task of combining the components in a sensible complex.
For optimal performance many of the techniques cannot just simply be ”plugged”
together. Table 9 shows WER results using various model building techniques.
Models are trained on a total of 96 hours of meeting speech. The baseline model
yields 40% overall. By far the best performance is achieved on the ICSI portion
of the data and performance is roughly gender balanced. Similar to CTS the
use of VTLN yields a substantial improvement. Comparing the systems VTLN1
and VTLN2, the gain from CTS-adaptation remains even in conjunction with
VTLN. The next part of the table shows the use of echo-cancelled (EC) data (as
used for segmentation). Virtually no effect on recognition performance can be
observed. The last section shows results with automatic segmentation (all other
results are based on reference segmentation). The SEG1 system only makes use
of the basic configuration, i.e. using an MLP only trained on PLP features.

Table 9. %WER on the rt04eval set using a combined tigram language model. CTS
denotes CTS-adapted, EC echo cancellation.The table shows gender specific results
(F/M) and results per meeting room . In the first section the reference segmentation
of the data is used.

System CTS VTLN EC TOT F M ISL ICSI LDC NIST

BASE × 40.0 39.4 40.4 44.5 25.6 53.4 34.4
VTLN1 × × 36.9 36.4 37.2 42.0 22.4 50.3 30.5
VTLN2 × 37.6 36.0 38.4 42.7 23.3 51.3 30.1
VTLN1 - SHLDA × × 36.0 35.1 36.5 41.0 21.8 50.5 27.4

EC1 × × 40.3 39.5 40.7 44.7 25.9 54.8 33.1
VTLN-EC1 × × × 37.0 36.1 37.5 41.2 22.9 50.8 30.9

SEG1 × 50.8 51.1 50.6 50.4 38.2 73.3 37.4

MDM Processing. Almost all meeting corpora used a different approach to
record speech with remote microphones. In the ICSI corpus microphones are not
in fixed array configuration, the ISL corpus only uses one distant microphone,
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Table 10. %WER on rt04seval and rt05samidev-n when training on various meeting
resource combinations

rt05seval rt05samidev-n
Combination TOT ISL ICSI LDC NIST TOT UEDIN IDIAP

ICSI,NIST 50.4 56.2 24.1 61.1 36.9 59.1 60.2 58.4
ICSI,NIST,ISL 50.6 56.2 22.9 61.8 37.2 59.1 60.0 57.6
ICSI,NIST,ISL,AMI 50.3 54.5 27.4 61.3 36.2 57.3 59.0 54.5

Table 11. %WER on rt04seval and rt05samidev-n with different amounts of traiing
data. ms0, ms10,and wb describe data preparation (see text).

rt05seval rt05samidev-n
System TOT CMU ICSI LDC NIST TOT UEDIN IDIAP

ms0 51.0 55.4 26.4 63.4 34.9 57.4 58.9 55.0
ms10 51.0 54.3 25.9 63.6 37.0 56.4 58.0 54.0
wb 50.7 56.5 24.3 61.9 36.4 56.3 58.2 53.4

VTLN - wb 47.2 51.4 20.6 60.2 31.3 - - -

wb icsiseg 55.2 59.5 32.2 66.7 40.5 - - -

AMI uses a circular microphone array. Table 10 shows performance results with
models trained on specific corpora. Overall the size and type of data used appears
to have little impact on performance. Only the use of AMI training data appears
to aid recognition on the AMI test set. The enhancement based approach de-
scribed in section 5.2 has the disadvantage that it cannot cope with overlapped
speech. Since straight-forward removal of overlapping segments however would
be far to restrictive. Instead word timings from forced alignment were used to
identify overlaps. Speech segments were split, either at point of at least 100ms
silence (ms10), of silence occurrence(ms0), or at arbitrary word boundaries (wb).
These approaches reduce the original training set size of 96 hours to 56, 63 or
66 hours respectively. Table 11 shows associated WER results. Only a minor
preference of an increase in training set size is evident. However training set size
has an impact on the effect of channel based normalisation schemes. Table 11
shows the performance after VTLN in both training and test, yielding improve-
ments comparable to IHM. Finally table 11 shows results for use of automatic
segments as generated by the ICSI segmenter[22] which results in 5% absolute
reduction in WER, mostly driven by an increase in the deletion rate. note that
the greatest degradation was on the ICSI corpus.

6 Conclusions

In this paper the components of the AMI meeting transcription system were
described. So far the system is equipped with baseline compomen ts that allow
the processing of the highly variable data. We have shown: the feasibility to use
the Edinburgh UNISYN dictionary for speech recognition, the effective use of
language model data for meetings collected from the internet; the effective use of
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SHLDA and VTLN on CTS and meetings, both in IHM and MDM recorddings;
the language properties of meeting rooms; and effective data preparation for
this domain. We have further presented initial transcription results on the AMI
meeting corpus.
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Abstract. Acoustic events produced in meeting-room-like environments may 
carry information useful for perceptually aware interfaces. In this paper, we fo-
cus on the problem of combining different information sources at different 
structural levels for classifying human vocal-tract non-speech sounds. The 
Fuzzy Integral (FI) approach is used to fuse outputs of several classification 
systems, and feature selection and ranking are carried out based on the knowl-
edge extracted from the Fuzzy Measure (FM). In the experiments with a limited 
set of training data, the FI-based decision-level fusion showed a classification 
performance which is much higher than the one from the best single classifier 
and can surpass the performance resulting from the integration at the feature-
level by Support Vector Machines. Although only fusion of audio information 
sources is considered in this work, the conclusions may be extensible to the 
multi-modal case. 

1   Introduction 

In context-aware systems such as smart-rooms or intelligent personal devices, acous-
tic event classification (AEC) can provide support for a high-level analysis of the un-
derlying acoustic scene. On the other hand, AEC can also offer useful information to 
peer technologies like speech enhancement or acoustic source localization to improve 
their performance. In this paper, we focus on the classification of a particular type of 
acoustic events, a set of human vocal-tract non-speech sounds, since they were found 
responsible for a large part of errors in classification of meeting-room acoustic events 
[1]. In fact, those sounds contributed with a 70% to the total classification error, in 
spite of accounting only for 30% of the acoustic events. Additionally, as it was also 
observed in [1], they are mainly confused among themselves. 

In [1], we build and tested several feature sets by combining features used in speech 
recognition with other perceptual features. Also, several classifiers were tested, which 
were based on either Gaussian mixture models (GMM) or support vector machines 
(SVM) [2]. In our tests, the latter approach showed significantly higher classification ac-
curacies. Actually, SVMs are discriminant classifiers and they do not need a training da-
tabase as large as generative classifiers like GMMs do. Furthermore, we could say that 
they are not so sensitive to the presence of irrelevant features [3], so it is appropriate to 
use them with a large and diverse feature set, as it was done in those tests.  
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Fig. 1. Fusion at the feature (a) and decision (b) levels 

In this paper, we present some preliminary attempts to improve the performance 
achieved in [1] for the above-mentioned subset of human sounds, by focusing on both 
feature selection and combination of classifiers, and using concepts and tools from 
fuzzy theory; concretely, the fuzzy integral (FI) [4,5,6] and the fuzzy measure (FM).  

Over the past several years there have been a number of successful applications of 
fuzzy integral in multi-criteria decision-making and pattern recognition (e.g. [7,8,9]). 
In AEC, different acoustic features are extracted from the audio signal with an objec-
tive to obtain different kinds of information sources. These features are then used to 
feed a classifier or several classifiers. In this work we compare the fusion of the in-
formation sources at the feature-level (early integration, see Figure 1 (a)) with the fu-
sion at the decision-level (late integration, see Figure 1 (b)) using Fuzzy Integral ap-
proach.  

It is assumed that each feature represents an equally contributing and independent 
source of information; in praxis, however, the contribution of individual features is 
not obvious and apparently diverse features can be highly correlated. When perform-
ing the feature-level fusion, the created feature space may be of very high dimension 
and thus be susceptible to the curse of dimensionality [10]. On the other hand, at the 
decision-level, since the media sources are treated separately, the interdependencies 
among the different sources are usually left unexplored. Simple fusion methods (e.g. 
sum, product, minimum, maximum, weighted arithmetical mean (WAM), etc 
[7,11,12]) are not able to model in any understandable way an interaction among vari-
ous sources of information and thus are not suitable for aggregation of interacting cri-
teria. In order to obtain a flexible representation of correlation among information 
sources, it is useful to define the weights according to the FM, based not only on each 
criterion but also on each subset of criteria. From a given FM, it is possible to extract 
information that may give an insight into the behaviour of FI: importance and interac-
tion of information sources, tolerance and uncertainty of the decision-maker, etc.  

Both the feature-level fusion and the decision-level fusion are compared in this 
work by performing AEC experiments. As a default classifier we use SVMs, which 
helps to overcome the problem of the high-dimensionality of the input space of fea-
tures. The results indicate that the decision-level fusion by FI outperforms WAM and 
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has similar or better results than feature-level fusion with SVM. We also observed 
that the fact of decreasing the number of information sources negatively influences 
the results from decision-level fusion with FI, but leads to an improvement for fea-
ture-level fusion by SVM. The FI aggregation may be appropriate when the feature-
level fusion is difficult (e.g. due to the different nature of the involved features), or 
when it is beneficial to preserve the application or technique dependence (e.g. when 
fusing well established feature-classifier configurations). For that reason, we have 
also conducted experiments to combine Hidden Markov Models (HMM) that use 
frame-level features with SVM using signal-level features and witnessed an additional 
improvement.  

The rest of the paper is organized as follows: Section 2 gives the basics of FI and 
FM. Section 3 presents the description of the experiments, the database, the features, 
the classifier setup, and the metrics used throughout the work, along with test results 
and discussions. Finally, conclusions are given in Section 4.  

2   Fuzzy Integral and Fuzzy Measure 

We are searching for a suitable fusion operator to combine a finite set of information 
sources },...,1{ zZ = . Let },...,,{ 21 zDDDD =  be a set of trained classification systems 

and },...,,{ 21 Nccc=Ω  be a set of class labels. Each classification system takes as input 

a data point nx ℜ∈  and assigns it to a class label from Ω . Alternatively, each classi-
fier output can be formed as a N-dimensional vector that represents the degree of sup-
port of that classification system to each of N classes. Suppose also that these evalua-
tions are commensurable, i.e. defined on the same measurement scale (most often the 
outputs of classification systems are posterior probabilities-like). Thus, consider hi, 
i=1,..,z, the output scores of z classification systems for class cn (the supports for class 
cn). Before defining how FI combines information sources, let’s look to a conven-
tional weighted arithmetical mean (WAM) operator. A final support measure for class 
cn  using WAM can be defined as:  

∈
=

Zi
iWAM hiM )(μ

 
(1) 

where 
∈

=
Zi

i 1)(μ  (additive), Ziallfori ∈≥ 0)(μ  

The WAM operator combines the score of z competent information sources through 
the weights of importance expressed by ( )iμ . The main disadvantage of the WAM opera-
tor is that it implies preferential independence of the information sources [12].  

Let’s denote with }),({),( jiji μμ =  the weight of importance corresponding to the 
couple of information sources i and j from Z. If μ  is not additive, i.e. 

( ) ( ) ( )[ ]jiji μμμ +≠,  for a given couple Zji ⊆},{ , we must take into account some in-
teraction among the information sources. Therefore, we can build an aggregation op-
erator starting from the WAM, adding the term of “second order” that involves the 
corrective coefficients ( ) ( ) ( )[ ]jiji μμμ +−, , then the term of “third order”, etc. In this 
way, we arrive to the definition of the FI: assuming the sequence hi, i=1,..,z, is  



360 A. Temko, D. Macho, and C. Nadeu 

ordered in such a way that zhh ≤≤ ...1 , the Choquet fuzzy integral [5,6,12] can be 

computed as 

( ) ( )[ ]
=

+−=
z

i
iFI hzizihM

1
,...,1,...,),( μμμ  (2) 

where 0ø)()1( ==+ μμ z . )(Sμ can be viewed as a weight related to a subset S of the 
set Z of information sources. It is called fuzzy measure and has to meet the following 
conditions:  

1)( 0,ø)( == Zμμ ,  Boundary 
)( )( TSTS μμ ≤⊆ , Monotonicity 

where ZTS ⊆, .  

To illustrate the FI, let us consider a case of two information sources with outputs h1 
and h2, and assume that h1<h2. Consequently, we have corrective coefficients of the 
second order only: ( ) ( ) ( )[ ]212,1 μμμ +− . According to (2), FI is computed as 

( ) ( )[ ] ( ) 21 222,1),( hhhM FI μμμμ +−=  

which, after a slight manipulation, results in 

( ) ( ) ( )( )[ ] ( ) ( ) 211 21122,1),( hhhhM FI μμμμμμ +++−=  

where the first term corresponds to the “second order” correction mentioned above. 
As was mentioned in [12], FI has very good properties for aggregation: it is con-

tinuous, non-decreasing, ranges between a minimum and a maximum value, and coin-
cides with WAM (discrete Lebesgue integral) as long as the FM is additive. Actually, 
it was shown in [12] that the ordered weighted average, the WAM, and the partial 
minimum and maximum operators are all particular cases of FI with special FM. In 
fact, FI can be seen as a compromise between the evidence expressed by the outputs 
of the classification systems and the competence represented by the FM [7]. 

Indeed, the large flexibility of the FI aggregation operator is due to the use of FM 
that can model interaction among criteria. And although the FM )(iμ  provides an ini-
tial view about the importance of information source i, all possible subsets of Z that 
include that information source should be analysed to give a final score. For instance, 
we may have 0)( =iμ , suggesting that element i, Ti ∉ , is not important; but if, at the 
same time, )()( TiT μμ >>∪ , this actually indicates i is an important element for the 
decision. For calculating the importance of the information source i, the Shapley 
score [6,12] is used. It is defined as:  

)]()([
!

!)!1(
),(

\
TiT

Z

TTZ
i

iZT

μμμφ −∪
−−

=
⊆  

(3) 

Generally, (3) calculates a weighted average value of the marginal contribution 
)()( TiT μμ −∪ of the element i over all possible combinations. It can be easily shown 

that the information source importance sums to one.  
Another interesting concept is interaction among information sources. As long as 

the fuzzy measure is not additive, there exists some correlation among information 
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sources. When )()(),( jiji μμμ +<  the information sources i and j express negative 
synergy and can be considered redundant. On the contrary, when )()(),( jiji μμμ +> , 
the information sources i and j are complementary and express positive synergy. For 
calculating the interaction indices, instead of the marginal contribution of element i in 
(3), the contribution of a pair of information sources i and j is defined as the differ-
ence between the marginal contribution of the pair and the addition of the two indi-
vidual marginal contributions, or equivalently: 

)()()(),())(( , TjTiTjiTTji μμμμμ +∪−∪−∪=Δ
 (4) 

and the interaction indices are calculated as: 

)])((
)!1(

!)!2(
),;( ,

,\
T

Z

TTZ
jiI ji

jiZT
μμ Δ

−
−−

=
⊆

 (5) 

We can see the index is positive as long as i and j are negatively correlated (comple-
mentary) and negative when i and j are positively correlated (competitive).  

As the FM is a generalization of a probability measure, we can calculate a measure 
of uncertainty associated to FM analogously to the way the entropy is computed from 
the probability [13], that is: 

[ ]
= ⊆

−∪=
z

i iZT
T TiTgH

1 \
)()()( μμγμ  (6) 

where !/!)!1( ZTTZT −−=γ , xxxg ln)( −= , and 00ln0 = by convention.  

When normalized by Zln , )(μH  measures the extent to which the information 

sources are being used in calculating the aggregation value of ),( hM FI μ . When that 

entropy measure is close to 1, all criteria are used almost equally; when it is close to 
0, the FI concentrates almost on only one criterion [14].  

It is obvious that FI completely relies on the FM. The better the FM describes the 
real competence and interaction among all classification systems, the more accurate 
results can be expected. There are two methods of calculating the FM known to the 
authors (if it is not provided by an expert knowledge): one based on fuzzy densities 
[7], and the other based on learning the FM from training data [8][9]. In our work, we 
have used the latter method: a supervised, gradient-based algorithm of learning the 
FM, with additional steps for smoothing the unmodified nodes.  

3   Experiments and Discussion 

3.1   Experimental Setup 

3.1.1   Database 
Due to the lack of an acceptable corpus, the acoustic event database used in this work 
has been assembled using different sources. Part of the database was taken from the 
seminar recordings employed within the CHIL project [15]. The other part has been 
found in a large number of Internet websites. All sounds were down-sampled to 8 
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kHz. The fact that the acoustic events were taken from different sources makes the 
classification task more complicated due to the presence of several (sometimes un-
known) environments and recording conditions.  

Table 1. Sound classes and number of samples per class 

  Event Number
A Cough & Throat 119 
B Laughter 37 
C Sneeze 40 
D Sniff 37 
E Yawn 12 

Table 1 shows the five acoustic classes considered in this work. There is a high 
variation in the number of samples per class, which represents an additional difficulty. 
In order to achieve a reasonable testing scenario, the data has been approximately 
equally split into the training and testing parts in such a way that there was the same 
number of representatives from the two data sources in the training and testing part. 
10 runs were done in all the experiments. 

3.1.2   Audio eatures 
Although the best feature sets for AEC in [1] consisted of combinations of features 
used in automatic speech recognition and other perceptual features, in the current 
work we only focus on the latter, since their contribution to vocal-tract sounds is not 
so well-established. 10 types of features were chosen with a substantial degree of re-
dundancy in order to find out, with the FM, their relative importance and their degree 
of interaction. The following types of frame-level acoustic features are investigated 
(with the number of features per frame in parenthesis):  

1. Zero crossing rate (1) 
2. Short-time energy (1) 
3. Fundamental frequency (1) 
4. Sub-band log energies (4) 
5. Sub-band log energy distribution (4) 
6. Sub-band log energy correlations (4) 
7. Sub-band log energy time differences (4) 
8. Spectral centroid (1) 
9. Spectral roll-off (1) 
10. Spectral bandwidth (1) 

Thus, 22 acoustical measures are extracted from each frame, using 16ms/8ms 
frame length/shift. Then, from the whole time sequence of each acoustical measure in 
an event, four statistical parameters are computed: mean, standard deviation, autocor-
relation coefficient at the second lag, and entropy. Those four statistical values per 
acoustical measure are used to represent the whole event. 

F
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3.1.3   SVM Setup 
In experiments with SVM we use the Gaussian kernel. Leave-one-out cross validation 
[2] was applied to search for optimal kernel parameter . To cope with data unbalance 
we introduce different generalization parameters (C+ and C-) for positively- and nega-
tively-labeled training samples [1]. MAX WINS scheme was used to extend SVM to 
the task of classifying several classes. 

3.1.4   Metrics 
For comparison of the results, three metrics are used. One is the overall system accu-
racy, which is computed as the quotient between the number of correct hypothesis 
(outputs) given by the classifier for all the classes and the total number of instances in 
the testing set. The other two metrics are the mean per class recall and the mean per 
class precision, which are defined as: 

∈
=

Cc

corr

cr

ch

C )(

)(1
Rec ,          

∈
=

Cc

corr

ch

ch

C )(

)(1
Prec  (7) 

where . denotes cardinality of a set, C is the set of classes, c is a specific class, r(c) 
is the number of reference (manually-labeled testing) instances and h(c) is the number 
of hypothesis instances for class c. The subscript corr refers to a correct hypothesis. 
Due to the unbalance in amount of data per class, we think that the recall measure is 
more meaningful than the overall accuracy, but we use both of them for our compari-
sons, together with the precision measure.   

3.2   Feature and Decision-Level Information Fusion 

In this section, the two ways of information fusion mentioned in the Introduction are 
compared. For the feature-level fusion (see Fig.1 (a)), all ten types of features were 
used to feed the input of one SVM classifier. For the decision-level fusion (see Fig 1 
(b)), ten independent SVM-based classifiers were trained, one for each feature type. 
The ten input criteria, represented by these ten classifiers, were then combined by 
WAM operator and FI with learned FM. For the weights in WAM operator we use 

uniform class noise model with the weights computed as ii E
i

E
ii EE −−= 1)1(μ where 

Ei is the training error of class ci [16]. As we can see from Figure 2, both fusion ap-
proaches show a strong improvement in comparison to SVM with the best single fea-
ture type (number 4). As expected, feeding all the features to the SVM classifier also 
increased significantly the performance (SVM, 10 feature types). Interestingly 
enough, the fusion at the decision-level by FI showed comparable results to the pow-
erful SVM classifier, which uses all the features. To gain an insight into the way FI 
works, we compare in Table 2 the individual recall score of the best feature type (col-
umn 2) for a given class, and the FI score (column 3) for the same class. Notice that, 
for the most represented class (A), the FI performance is lower, whereas for two less 
represented classes (C and D) it is higher. As the FM was trained using the errors of 
the particular classes as cost functions, we observe that, at the expense of accepting 
more errors for the most represented classes, the FI can recover a few errors for infre-
quent classes and thus obtain higher recall.  
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However, the accuracy and precision measures for both FI and WAM were slightly 
worse than that of SVM. Notice also that FI fusion has approximately 10 times higher 
computation cost (10 independent SVM classifiers vs. one), and therefore the SVM 
feature-level fusion is preferable in this case. 

Table 2. Comparison of individual recall scores for each class 

Class Best score FI 
A(119) 0.85 0.81 
B(37) 0.61 0.61 
C(40) 0.95 1.00 
D(37) 0.77 1.00 
E(12) 0.67 0.67 

3.3   Feature Ranking and Selection 

In the context of pattern recognition, the variable part of a classification system can be 
either features or classifiers. If we set classifiers to be the same, we can interpret the 
FM as the importance of features for the given classification task and we can use it for 
feature ranking and selection. 

The information about both the importance of each feature type and the interaction 
among different feature types can be extracted applying the Shapley score to the FM. 
Using this approach, Figure 3 (a) shows that in our case the feature type 6 is the most 
important, followed by the feature type 7. As both feature types measure the changes 
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Fig. 2. Recall measure for: the 10 SVM systems running on each feature type, the combina-
tion of the 10 features at the feature-level with SVM, and the fusion on the decision-level 
with WAM and FI operators 

of the spectral envelope along the time, we can conclude that that information is of 
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high importance. The only other feature type with importance score above the average 
is number 4.  

On the other hand, Figure 3 (b) shows the interaction among the feature types in 
our task; it can be seen that feature types 6 and 7 express a negative interaction, which 
coincide with their similar character. As an extreme case, the light cell (4,5) has a 
large negative value and thus indicates a high competitiveness (redundancy) of the 
mentioned feature types. That witnesses that those features are better to be considered 
separately. Actually, the feature type 4 (SBE) and the feature type 5 (Sp.Dist) become 
roughly the same feature after using the SVM normalization. In a similar way, as fea-
ture types 1 and 8 are both targeting the “main” frequency, their cell is also rather 
light. Also, from the two lighter cells in the bottom of the Figure 3 (b), one can con-
clude that feature type 9 is redundant if feature types 8 and 10 are considered. On the 
contrary, feature types 4 and 6, or 4 and 7, or 4 and 10 seem to be highly complemen-
tary, and thus are preferable to be considered together. 

  

Fig. 3. Importance (a) and interaction (b) of features extracted from FM. Dashed line in part (a) 
shows the average importance level. 

In the following AEC tests, we use the information from Figure 3 to perform the 
feature selection. In the first test, we select the 5 best feature types according to the 
individual feature type importance (Method 1), while to select the 5 best features in 
the second test, both the individual feature type importance and the interaction indices 
are used (Method 2, see [17] for a detailed description). The selected features are then 
fed to the SVM classifier. The performance of SVM with all features is considered as 
a baseline in this part. It can be seen from the results in Table 3 that Method 1 did not 
lead to a better performance, while Method 2 obtained a slight improvement over the 
baseline.  

The last column in Table 3 shows that the FI scores resulting from using the fea-
ture types chosen by Method 2 are clearly worse than the SVM ones. Actually, the re-
call score is much lower than the one shown in Figure 2 for the FI technique when us-
ing the whole set of features. The measure of uncertainty defined in (6) helps us to 
understand that behaviour of the FI on the reduced set of criteria. In fact, for 10 fea-
tures it is 0.86, meaning that to achieve the results shown in Figure 2, the FI operator 
uses in average 86% of the information contained in its 10 criteria, so preserving only 
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50% of all features is not sufficient. Consequently, we can conclude that, whereas an 
increment in the number of features may not be beneficial for techniques like SVM 
that cannot handle interactions among criteria, the FI can take advantage of the inter-
actions between information sources (associated to features) to get a substantial gain 
in performance. 

Table 3. Classification results using feature selection based on FM 
 

Support Vector Machines  

Baseline Method 1 Method 2 
FI 

Features 10 (all) 5(1,4,6,7,10) 5(4,6,7,8,10) Method 2 
Prec 84.50 82.76 86.14 81.74 
Rec 80.98 75.31 80.14 74.79 
Acc 84.83 83.97 85.86 83.79 

3.4   Fusion of Different Classifiers Using FI 

In previous sections we showed that the FI decision-level fusion obtains comparative 
results to the feature-level fusion using the SVM classifier. Indeed, from the computa-
tional cost point of view the feature-level fusion is preferred. However, when the re-
sulting feature space has a too high dimensionality or when features are conveyed by 
different data types (strings, matrices, etc) the feature-level fusion is not an option.  

On the other hand, it may be beneficial to combine the outputs of different well-
established classification configurations for a given task; for example, the output of a 
SVM classifier which is discriminative but uses features from the whole signal with 
the output of a HMM generative classifier which considers time localized features. 
Based on that, we have tested with the FI formalism the combination of a SVM classi-
fier that uses statistical (event-level) features with a HMM classifier that uses acoustic 
(frame-level) features. In these experiments, the best 5 feature types selected in the 
previous subsection by Method 2 are used with the SVM classifier. For HMM, we use 
a standard configuration coming from speech recognition: a 3 state left-to-right con-
tinuous density HMM model per class, with 8 Gaussians per state, and 13 frequency-
filtered filter-bank energies (FFBE) [18] as features. Table 4 shows the results with 
and without time derivatives ( FFBE).  

Table 4. HMM performance with and without time derivatives 

 HMM-FFBE HMM-FFBE+ FFBE  
Prec 69.28 66.70 
Rec 67.36 59.31 
Acc 84.48 79.17  

Given the low scores in Table 4 it is clear that the amount of data we use is not 
enough to train the 26 dimensional data well. Thus, we decided to fuse 3 criteria: 
SVM, HMM-FFBE and HMM- FFBE. Results of the individual classifiers and the FI 
 



 Improving the Performance of AEC by Selecting and Combining Information Sources 367 

Table 5. Individual and FI performance scores 

 SVM HMM-FFBE HMM- FFBE FI 
Prec 86.14 69.28 51.06 89.47 
Rec 80.14 67.36 60.73 82.43 
Acc 85.86 84.48 52.59 87.93  

decision fusion system are presented in Table 5 where an improvement can be ob-
served by FI fusion of the SVM output with two information sources which give 
much lower individual performances, but use different features. 

Unfortunately, we could not see any clear dependence of the ensemble perform-
ance on the diversity of the classification systems [16]. 

Note from Figure 2 that a much higher improvement was observed by fusing a lar-
ger number of information sources (10). However, the difficulty of learning FM in-
creases with the number of information sources.  

4   Conclusion 

In this work, we have carried out a preliminary investigation about the fusion of sev-
eral information sources with the fuzzy integral approach to improve the performance 
of the baseline SVM approach in the task of classifying a small set of human vocal-
tract non-speech sounds. By interpreting an information source as a specific combina-
tion of a classifier and a set of features, we have been able to carry out different types 
of tests.  

In the experiments, fusion of several information sources with the FI formalism 
showed a significant improvement with respect to the score of the best single informa-
tion source. Moreover, the FI decision-level fusion approach showed comparable re-
sults to the high-performing SVM feature-level fusion. We have also observed that 
the importance and the degree of interaction among the various feature types given by 
the FM can be used for feature selection, and gives a valuable insight into the prob-
lem. The experimental work also indicates that the FI is a good choice when feature-
level fusion is not an option. 

Acknowledgements 

The authors wish to thank Enric Monte for his valuable help and encouraging discus-
sions. This work has been partially sponsored by the EU-funded project CHIL, 
IP506909, and the Spanish Government-funded project ALIADO.  

References 

1. A. Temko, C. Nadeu, “Meeting room acoustic event classification by support vector ma-
chines and variable-feature-set clustering”, ICASSP 2005, Philadelphia, Mar., 2005. 

2. B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002. 



368 A. Temko, D. Macho, and C. Nadeu 

3. J. Weston, J. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik: “Feature Selection 
for SVMs”, Proc. of  NIPS, 2000. 

4. M. Sugeno, Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of 
Technology, 1974. 

5. M. Grabisch, “The Choquet integral as a linear interpolator”, 10th Int. Conf. on Information 
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), 
Perugia (Italy), pp.373-378, July 2004  

6. M. Grabisch, “Fuzzy integral in multi-criteria decision-making”, Fuzzy Sets  & Systems 
69, pp. 279-298, 1995 

7. L. Kuncheva, “’Fuzzy’ vs ‘Non-fuzzy’ in combining classifiers designed by boosting”, 
IEEE Transactions on Fuzzy Systems, 11 (6), pp. 729-741, 2003. 

8. S. Chang and S. Greenberg, “Syllable-proximity evaluation in automatic speech 
recognition using fuzzy measures and a fuzzy integral”, Proc. of the 12th IEEE Fuzzy 
Systems Conf., pp. 828- 833 2003. 

9. M. Grabisch, “A new algorithm for identifying fuzzy measures and its application to 
pattern recognition”. Proc. of 4th  IEEE Int. Conf. on Fuzzy Systems, Yokohama, Japan, 
pp.145-50, 1995 

10. Y. Wu, E. Chang, K. Chang, J Smith., “Optimal Multimodal Fusion for Multimedia Data 
Analysis”, Proc. ACM Int. Conf. on Multimedia, New York, pp.572-579, Oct. 2004. 

11. L. Kuncheva, “Combining classifiers: Soft computing solutions”, Lecture Notes in Pattern 
Recognition, World Scientific Publishing Co., Singapore, pp. 427-452, 2001. 

12. J-L. Marichal, “Behavioral analysis of aggregation in multicriteria decision aid, 
Preferences and Decisions under Incomplete Knowledge”, Studies in Fuzziness and Soft 
Computing, Vol. 51 (Physica Verlag, Heidelberg), pp. 153-178, 2000. 

13. J-L. Marichal, “Entropy of discrete Choquet capacities”, European Journal of Operational 
Research, 137 (3), pp. 612-624, 2002. 

14. I. Kojadinovic, J-L. Marichal, M. Roubens, “An axiomatic approach to the definition of 
the entropy of a discrete choquet capacity”, 9th  Int. Conf. on Information Processing and 
Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), Annecy (France), 
pp.763–768, 2002. 

15. "Evaluation Packages for the First CHIL Evaluation Campaign", CHIL project Deliverable 
D7.4, downloadable from http://chil.server.de/servlet/is/2712/, Mar. 2005. 

16. L. Kuncheva, Combining Pattern Classifiers, John Wiley & Sons, Inc, 2004.  
17. L. Mikenina, H. Zimmermann, “Improved feature selection and classification by the 2-

additive fuzzy measure”, Fuzzy Sets and Systems, 107:2, pp.197-218, 1999. 
18. C. Nadeu, J. Hernando, M. Gorricho, “On the decorrelation of filter-bank energies in 

speech recognition”, Proc. Eurospeech’95, pp. 1381-1384, 1995. 



S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 369 – 389, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

The Rich Transcription 2005 Spring Meeting  
Recognition Evaluation 

Jonathan G. Fiscus1, Nicolas Radde1, John S. Garofolo1, Audrey Le1,  
Jerome Ajot1, and Christophe Laprun1,2 

1 National Institute of Standards and Technology, 100 Bureau Drive Stop 8940,  
Gaithersburg, MD 20899 

2 Systems Plus, Inc., 1370 Piccard Drive, Suite 270, Rockville, MD 20850  
{jfiscus, nradde, jgarofolo, ajot, claprun}@nist.gov 

Abstract. This paper presents the design and results of the Rich Transcription 
Spring 2005 (RT-05S) Meeting Recognition Evaluation.  This evaluation is the 
third in a series of community-wide evaluations of language technologies in the 
meeting domain.  For 2005, four evaluation tasks were supported.  These in-
cluded a speech-to-text (STT) transcription task and three diarization tasks: 
“Who Spoke When”, “Speech Activity Detection”, and “Source Localization.” 
The latter two were first-time experimental proof-of-concept tasks and were 
treated as “dry runs”. For the STT task, the lowest word error rate for the multi-
ple distant microphone condition was 30.0% which represented an impressive 
33% relative reduction from the best result obtained in the last such evaluation -
- the Rich Transcription Spring 2004 Meeting Recognition Evaluation. For the 
diarization “Who Spoke When” task, the lowest diarization error rate was 
18.56% which represented a 19% relative reduction from that of RT-04S. 

1   Motivation  

The National Institute of Standards and Technology (NIST) has been working with 
the speech recognition community since the mid 1980s to improve the state-of-the-
art in technologies for transforming speech into text.  To facilitate progress, NIST 
has worked with the community to make training/development data collections 
available for several speech domains.  NIST collaborated with the research com-
munity to define performance metrics and create evaluation tools so that technol-
ogy developers can perform hill-climbing experiments and self-evaluate their pro-
gress.  NIST also coordinates periodic community-wide benchmark tests and 
technology workshops to inform the research community and Government spon-
sors of progress and to promote technical exchange. The test suites used in these 
benchmark tests are generally made available to the community as development 
tools after the formal evaluations. 

NIST’s evaluations have demonstrated great progress in the state-of-the-art in 
speech-to-text (STT) transcription systems. STT systems in the late 80s focused on 
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read speech from artificially-constrained domains. As the technology improved, the 
NIST evaluations focused the research community on increasingly difficult challenges 
with regard to speech modality, speaker population, recording characteristics, lan-
guage, vocabulary, etc.  Now that English Broadcast News word error rates are below 
10% and English Conversational Telephone Speech word error rates are nearing 15% 
[1], it is apparent that the research community is ready for the next challenge.   

The meeting domain presents several challenges to the technology which aren’t 
represented in the broadcast news and conversational telephone speech domains. 
These include varied forums and an infinite number of topics, spontaneous highly in-
teractive and overlapping speech, varied recording environments, varied/multiple mi-
crophones, multi-modal inputs, participant movement, and far field speech effects like 
ambient noise and reverberation.  In order to properly study these challenges, labora-
tory-quality experiment controls must be available to enable systematic research.  The 
meeting domain provides a unique environment to collect naturally-occurring spoken 
interactions under controlled sensor conditions. 

The Rich Transcription Spring 2005 (RT-05S) Meeting Recognition evaluation 
is part of the NIST Rich Transcription (RT) series of language technology evalua-
tions [1] [2]. These evaluations have moved the technology focus from a strictly 
word-centric approach to an integrated approach where the focus is on creating 
richly annotated transcriptions of speech, of which words are only one component.  
The goal of the RT series is to create technologies to generate transcriptions of 
speech which are fluent and informative and which are readable by humans and 
usable in downstream processing by machines.  To accomplish this, lexical sym-
bols must be augmented with important informative non-orthographic metadata.  
These resulting metadata enriched transcripts are referred to as “rich transcrip-
tions.”  This approach was originated in the DARPA Effective, Affordable, Reus-
able Speech-to-Text (EARS) Program1 and is being continued by NIST and other 
research communities.  These metadata can take many forms (e.g., which speakers 
spoke which words, topic changes, syntactic boundaries, named entities, speaker 
location, etc.)   

The RT-05S evaluation is the result of a multi-site/multi-national collaboration.  In 
addition to NIST, the organizers and contributors included: the Augmented Multiparty 
Interaction (AMI) program, the Computers in the Human Interaction Loop (CHIL) 
program, Carnegie Mellon University (CMU), Evaluations and Language resources 
Distribution Agency (ELDA), International Computer Science Institute and SRI In-
ternational (ICSI/SRI), The Center for Scientific and Technological Research (ITC-
irst), Karlsruhe University (KU), the Linguistic Data Consortium (LDC), and Virginia 
Tech (VT). AMI, CMU [9], ICSI [7], NIST [8], and VT each donated two meetings 
recorded at their labs to the evaluation.  Excerpts from these meetings were selected 
to comprise the RT-05 conference room test set which is similar in design to the RT-
04S test set. KU donated sixteen meetings to make a separate lecture room test set. 
CMU, ITC-irst, KU, LDC, and ELDA collaborated to prepare the reference tran-
scripts and annotations.   

                                                           
1 http://www.darpa.mil/ipto/Programs/ears/index.htm 
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2   Rich Transcription Spring 2005 Meeting Recognition 
Evaluation 

The RT-05S evaluation broke ground on four fronts. First, new audio sensors and 
digital microphone arrays were added to the test conditions. Second, a new STT 
evaluation tool developed at NIST was released to the participants to score transcrip-
tions of simultaneous overlapping speech. Third, two test sets were prepared for the 
evaluation, each representing two meeting sub-domains: small conference room meet-
ings and lectures.  Fourth, the conference room test set contained two meetings from 
Virginia Tech for which no training data was available. 

All participating teams were required to submit a single primary system on the re-
quired task-specific evaluation condition. The primary systems are expected, by the 
developers, to be their best performing systems.  NIST’s analysis focuses on these 
primary systems. 

The Rich Transcription Spring 2005 Evaluation plan [3] documents the Rich Tran-
scription Spring 2005 (RT-05S) Meeting Recognition evaluation. The evaluation plan 
describes in detail the evaluation tasks, data sources, microphone conditions, system 
input and output formats, and evaluation metrics employed in the evaluation.  This 
section summarizes the evaluation plan and covers the meeting sub-domains repre-
sented in the test set, the audio input conditions supported by the test corpora, and the 
evaluation task definitions 

2.1   Meeting Sub-domains: Conference Room vs. Lecture Room 

The meeting domain is highly variable along several dimensions. In the broad sense, 
any interaction between 2 more people may be considered a meeting. As such, meet-
ings can range from brief informal exchanges to extremely formal proceedings with 
many participants following specific rules of order. There are a number of factors that 
shape how the participants interact with each other.  Further, it is well known that the 
type, number, and placement of sensors have a significant impact on the performance 
of recognition tasks. The variability is so large that it would be impossible to build ei-
ther a training or testing corpus that encompasses all of these factors. To make the 
problem tractable, the RT evaluations have attempted to constrain the definition to 
two specific sub-domains: small conference room meetings (also occasionally re-
ferred to as “board room” meetings) and “lecture room” meetings. The two sub-
domains are used to differentiate between two very different participant interaction 
modes as well as two different sensor setups.  The RT-05S evaluation includes a sepa-
rate test set for each of these two sub-domains, labeled “confmtg” and “lectmtg.”  

In addition to differences in room and sensor configuration, the primary difference 
between the two sub-domains is in the group dynamics of the meetings. The RT con-
ference meetings are primarily goal-oriented decision-making exercises and are either 
moderated or lead by one member of the meeting.  As such, these meetings are 
highly-interactive and multiple participants contribute to the information flow and de-
cisions made.  In contrast, lecture meetings are educational events where a single lec-
turer is briefing the audience on a particular topic. While the audience occasionally 
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participates in question and answer periods, it rarely controls the direction of the in-
terchange or the outcome.  

Section 2.4 describes the corpora used for both the lectmtg and confmtg domains in 
the RT-05S evaluation. 

2.2   Microphone Conditions 

As with RT-04S, three core input conditions were supported for RT-05S: multiple dis-
tant microphones (MDM), single distant microphone (SDM), and individual head mi-
crophones (IHM). The troika of audio input conditions makes a very powerful set of 
experimental controls for black box evaluations.  The MDM condition provides a 
venue for the demonstration of multi-microphone input processing techniques. It 
lends itself to experimenting with simple beamforming and noise abatement tech-
niques to address room acoustic issues.  The SDM input condition provides a control 
condition for testing the effectiveness of multi-microphone techniques. The IHM con-
dition provides two important contrasts: first, it effectively eliminates the effects of 
room acoustics, background noise, and overlapping simultaneous speech, and second 
it is most similar to the Conversational Telephone Speech (CTS) domain [1] and may 
be compared to results in comparable CTS evaluations. 

The enumeration below contains definitions of the three previously mentioned au-
dio input conditions and three new microphone sources for the RT-05S evaluation: 
multiple Mark III microphone arrays, multiple beamformed signals, and multiple 
source localization arrays. 
 
• Multiple distant microphones: (MDM) This evaluation condition includes the au-

dio from at least 3 omni-directional microphones placed (generally on a table) be-
tween the meeting participants.  This condition was supported in both the confmtg 
and lectmtg datasets. 

• Single distant microphone: (SDM) This evaluation condition includes the audio of 
a single, centrally located omni-directional microphone for each meeting.  This mi-
crophone channel is selected from the microphones used for the MDM condition.  
Based on metadata provided with the recordings, it is selected so as to be the most 
centrally-located omni-directional microphone. This condition was supported in 
both the confmtg and lectmtg datasets. 

• Individual head microphone: (IHM) This evaluation condition includes the audio 
recordings collected from a head mounted microphone positioned very closely to 
each participant’s mouth.  The microphones are typically cardioid or super cardioid 
microphones2 and therefore the best quality signal for each speaker.   Since the 
IHM condition is a contrastive condition, systems can also use any of the micro-
phones used for the MDM condition. This condition was supported in both the 
confmtg and lectmtg datasets. 

• Multiple Mark III microphone arrays: (MM3A) This evaluation condition includes 
audio from all the collected Mark III microphone arrays.  The lectmtg dataset con-

                                                           
2  After the evaluation began, NIST discovered some of their head microphones were omni-

directional. 
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tains the data from each channel of one Mark-III microphone array per meeting.  In 
addition, the NIST subset of the confmtg data contains the data from each channel 
of three Mark-III microphone arrays per meeting.  Due to time constraints, no re-
sults were submitted using these data.   

• Multiple Source Localization microphone arrays (MSLA): This evaluation condi-
tion includes the audio from all the CHIL source localization arrays (SLA). An 
SLA is a 4-element digital microphone array arranged in an upside down ‘T’ to-
pology [4]. The lecture room meeting recordings include four SLAs, one mounted 
on each wall of the room. 

2.3   Evaluation Tasks 

Four evaluation tasks were supported for the RT-05S evaluation: a Speech-To-Text 
transcription task and three diarization tasks: “Who Spoke When”, “Speech Activity 
Detection”, and “Source Localization.”  The latter two tasks were proposed for inclu-
sion by the CHIL program and they were considered dry run tasks for the RT-05S 
evaluation.  The following is a brief description of each of the evaluation tasks: 
 
Speech-To-Text (STT) Transcription: STT systems are required to output a tran-
script of the words spoken by the meeting participants along with the start and end 
times for each recognized word.  For this task, no speaker designation is required.  
Therefore, the speech from all participants is to be transcribed as a single word output 
stream. 

Systems were evaluated using the Word Error Rate (WER) metric.  WER is de-
fined to be the sum of system transcription errors, (word substitutions, deletions, and 
insertions) divided by the number of reference words and expressed as a percentage.  
It is an error metric, so lowers scores indicate better performance.  The score for per-
fect performance is zero. Since insertion errors are counted, it is possible for WER 
scores to exceed one hundred percent. 

WER is calculated by first harmonizing the system and reference transcript through 
a series of normalization steps.  Then the system and reference words are aligned us-
ing a Dynamic Programming solution. Once the alignment mapping between the sys-
tem and reference words is determined, the mapped words are compared to classify 
them as either correct matches, inserted system words, deleted reference words, or 
substituted system words.  The errors are counted and statistics are generated. 

The MDM audio input condition was the primary evaluation condition for the STT 
task for both meeting sub domains.  The confmtg data supported two contrastive con-
ditions, SDM and IHM, and the lectmtg data supported four contrastive conditions, 
SDM, IHM, MSLA, and MM3A.  Participants could submit systems for the confmtg 
domain, the lectmtg domain, or both the sub domains.  Systems could use the knowl-
edge of the domain as side information and therefore configure their systems for each 
sub domain.3 

 

                                                           
3  All systems, for all tasks, were privy to side information about the data being processed.  The 

evaluation plan enumerates these in detail. 
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Diarization “Who Spoke When” (SPKR) SPKR: Systems are required to annotate 
a meeting with regions of time indicating when each meeting participant is speaking 
and clustering the regions by speaker.  It is a clustering task as opposed to an identifi-
cation task since the system is not required to output a name for the speakers – only a 
generic id.4 

The Diarization Error Rate (DER) metric is used to assess SPKR system perform-
ance. DER is the ratio of incorrectly attributed speech time, (either falsely detected 
speech, missed detections of speech, or incorrectly clustered speech) to the total 
amount of speech time, expressed as a percentage.  As with WER, a score of zero in-
dicates perfect performance and higher scores indicate poorer performance than lower 
scores. 

DER is calculated by first computing a 1:1 mapping between the system-generated 
speaker clusters and the segment clusters in the reference transcript using the Hungar-
ian solution to a bipartite graph5.  Once the mapping is found, system segments not at-
tributed to the mapped reference speaker cluster are declared incorrectly clustered 
speech.  Falsely detected speech and missed detections of speech are calculated by 
simple accumulating the amount of time for each class of error. 

For 2005, the primary measure of DER was calculated for non-overlapping speech 
only in order to be comparable with previous evaluations of speaker diarization.  
However, given the shifting focus to evaluation of all speech (including overlapping 
speech), the DER was also computed for overlapping speech segments.  Both sets of 
scores are provided.  In future such evaluations, the primary measure will focus on all 
speech. 

Inherent ambiguities in pinpointing speech boundaries in time and annotator vari-
ability result in a small degree of inconsistency in the time annotations in the refer-
ence transcript. As such, a 0.25 second collar around each reference segment is not 
scored. This collar effectively minimizes the amount of DER error due to reference 
annotation inconsistencies.   

Another challenge is in determining how large a pause in speech must be to 
cause a segment break. Although somewhat arbitrary, the cutoff value of 0.3 sec-
onds was empirically determined to be a good approximation of the minimum du-
ration for a pause in speech resulting in an utterance boundary. As such, segments 
that are closer than 0.3 seconds apart are merged in both the reference and system 
output transcripts. 

The MDM audio input condition was the primary evaluation condition for the 
SPKR task for both meeting sub domains. The confmtg data supported one contrastive 
condition, SDM, and the lectmtg data supported three contrastive conditions, SDM, 
MSLA, and MM3A. Participants could submit systems for the confmtg domain, the 
 

                                                           
4  In a real meeting transcription application, it is likely that the SPKR and STT system outputs 

would be merged to attribute each transcribed word to a particular meeting participant.  The 
decision was made to not yet evaluate an integrated STT/SPKR task since, at this early stage, 
it is important to understand how each of the core components of such a system behaves.  It’s 
anticipated that such an integrated task will be included in the RT evaluations in the future. 

5  http://www.nist.gov/dads/HTML/HungarianAlgorithm.html 
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lectmtg domain, or both the sub domains. Systems could use the knowledge of the 
domain as side information and therefore configure their systems for each sub do-
main.6 

Diarization “Speech Activity Detection” (SAD):  SAD systems are required to an-
notate a meeting with regions of time indicating when at least one person is talking. 
The SAD task is therefore a simplified version of the SPKR task because no speaker 
clustering is performed by the system.  The task was introduced to lower barriers for 
participation and to gauge the contribution of SAD errors to the SPKR and STT tasks. 
Since this is the first time the SAD task has been included in the RT evaluations, it 
was treated as an experimental dry run. 

Because SAD is viewed as a simplification of the SPKR task, the SPKR DER scor-
ing metric is also used to score the SAD task.  The same no-score collar, 0.25 sec-
onds, was applied during scoring and the same smoothing parameter, 0.3 seconds, 
was applied to the reference files.  The reference files were derived from the SPKR 
reference files by simply merging the reference speaker clusters into a single cluster 
and then merging segments that either overlap or were within the 0.3 second smooth-
ing parameter. 

The MDM audio input condition was the primary evaluation condition for the SAD 
task for both meeting sub domains.  The confmtg data supported two contrastive con-
ditions, SDM and IHM, and the lectmtg data supported four contrastive conditions, 
SDM, IHM, MSLA, and MM3A.  Participants could submit systems for the confmtg 
domain, the lectmtg domain, or both the sub domains.  Systems could use the knowl-
edge of the domain as side information and therefore configure their systems for each 
sub domain.7 

The SAD task using IHM data is not directly comparable to SAD on distant micro-
phone data, (i.e., MDM, SDM, MSLA, or MM3A data).  An IHM channel includes 
both the wearer’s speech and cross talk for other meeting participants. This cross talk 
is not considered detectable speech even though it was human generated. Not only 
must IHM SAD systems detect speech, but also detect when the speech is cross talk. 
This of course is a much harder problem. 

One issue arose during this evaluation regarding meeting participants who speak 
very little. Since the DER was measured separately for each close-talking microphone 
and since the denominator of the DER metric is the amount of speech uttered, the 
DER for quiet speakers may be dominated by falsely detected speech errors. Time did 
not permit us to examine alternative scoring techniques which would minimize this 
effect prior to the MLMI workshop. 

 
Diarization “Source Localization” (SLOC):  SLOC systems are required to emit the 
three-dimensional position (in millimeters) of each person who is talking. The labels 
do not include the speaker’s identity, but systems must be able to distinguish between 
time periods with speech and without speech. As such, this task is similar to the SAD 
task with the additional requirement of speaker location. The RT-05S instantiation of 
                                                           
6  All systems, for all tasks, were privy to side information about the data being processed.  The 

evaluation plan enumerates these in detail. 
7  All systems, for all tasks, were privy to side information about the data being processed.  The 

evaluation plan enumerates these in detail. 
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the SLOC task is a simplified proof-of-concept version of this task. For RT-05S, the 
task was constrained to segments which contained only a single speaker -- a lecturer 
in the CHIL lecture room data. Therefore, SLOC for overlapping speakers was not 
addressed. 

In order to infer location from the audio stream, SLOC systems use the source lo-
calization array audio data.  The three dimensional position of the each SLA micro-
phone element has been computed and given to the systems and from that informa-
tion; the SLOC systems infer the location of the speaker. 

The primary, and only, evaluation condition for the SLOC task is the MSLA audio 
input condition for the lectmtg data.  No other audio input conditions were supported 
for this task and none of the confmtg data has SLA recordings. 

The definition of the task and evaluation metrics are documented in the CHIL 
“Speaker Localization and Tracking – Evaluation Criteria” document [4].  The metric 
used to evaluate the SLOC task was the Root-Mean-Squared of Localization Error 
(RMSE).  The EVAL_IRST_SP_LOC scoring software was developed by ITC-irst 
and contributed to NIST in scoring the results of the evaluation.  The RMSE metric 
determines the Euclidean distance between the reference speaker position and the sys-
tem-hypothesized speaker position every 10 milliseconds.  The task was added to the 
evaluation at the request of the CHIL program participants and was supported in large 
part by the CHIL Program.   

2.4   RT-05S Evaluation Corpora Details 

As indicated previously, the RT-05S evaluation data consisted of two test sets: a con-
ference room meeting (confmtg) test set and a lecture room meeting (lectmtg) test set.  
The recordings were sent to participants as either down sampled 16-bit, 16Khz NIST 
Speech Header Resources (SPHERE) files or in the original sample format 24-bit, 
44.1 Khz WAV and headerless raw files.  The recordings of the meetings in the 
confmtg data set were distributed in their entirety while only the selected excerpts 
from the lectmtg data were distributed.8 Some of the meeting recordings also included 
video recordings.  However, they were not distributed for the evaluation since none of 
the evaluation participants planned to implement multi-modal experiments this year.  
The video recordings may be made available at a later date for future multi-modal 
system development. 
 
Conference Room Meetings: The confmtg test set consisted of nominally 120 minutes 
of meeting excerpts from ten different meetings.  Five sites each provided two meetings 
for the evaluation test set and NIST selected a twelve minute excerpt from each meeting 
to be evaluated.  The five contributing sites were the Augmented Multi-party Interaction 
(AMI) Project, Carnegie Mellon University (CMU), the International Computer Science 
Institute (ICSI), the National Institute of Standards and Technology (NIST), and Virginia 
Tech (VT).  The Linguistic Data Consortium (LDC) transcribed the test set according to 
the “Meeting Data Careful Transcription Specification - V1.2” guidelines [5]. Table 1 
gives the salient details concerning the confmtg evaluation corpus. 

                                                           
8  The 1.2 terabytes of lecture meeting data proved too large to distribute within the evaluation 

time constraints. 
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Each meeting recording evaluation excerpt met minimum sensor requirements.  
Each meeting participant wore a head-mounted close talking microphone and there 
were at least three table top microphones placed on a table between the meeting par-
ticipants. The only exception to this is meeting NIST_20050412-1303 from NIST in 
which a meeting participant was talking over a conference phone. In addition to these 
sensors, the AMI meetings included an eight-channel circular microphone array 
placed on the table between the meeting participants, and the NIST meetings included 
three Mark III arrays mounted on the walls. 

Table 1. Summary of Conference Room Meeting evaluation corpus 

Meeting ID Duration 
(minutes) 

Number of 
Participants 

Notes 

AMI_20041210_1052 12.2 4 Remote control design 
AMI_20050204_1206 11.9 4 Remote control design 
CMU_20050228_1615 12.0 4 Data collection for 

translation 
CMU_20050301-1415 12.0 4 Transcription conven-

tion discussion 
ICSI_20010531-1030 12.2 7 Meeting data collection 
ICSI_20011113-1100 12.0 9 Staff meeting 
NIST_20050412-1303 12.1 10 NIST ITL Diversity 

Committee meeting 
NIST_20050427-0939 11.9 4 NIST computer support 

staff meeting 
VT_20050304-1300 12.0 5 Tsunami relief planning 
VT_20050318-1430 12.1 5 Scholarship selection 

committee 
Total 120.4 56  
Unique speakers  46  

 

Lecture Room Meetings: The lectmtg test set consisted of 150 minutes of lecture 
meeting excerpts from 16 different lectures recorded at Karlsruhe University[4]. The 
lectures were all technical language technology talks given by invited lecturers. Two 
types of excerpts were selected and transcribed by CMU: lecturer excerpts where the 
lecturer was the primary talker, and question/answer (Q&A) excerpts where the lec-
turer fielded questions from the audience.  There were seventeen lecturer excerpts9 
accounting for 89 minutes of data and twelve Q&A excerpts accounting for 61 min-
utes of data. Once the excerpts were selected, ELDA, KU and ITC-irst collaborated to 
annotate the data for the source localization task. 

The audio sensors used in the lectmtg data were configured differently than the 
confmtg data. Only the lecturer and up to two audience members wore head-mounted, 
close-talking microphones. The rest of the audience was audible on the distant micro-
phones. Four microphones were placed on the table in front of the lecturer and a fifth 
                                                           
9 Two excerpts were selected from one of the meetings. 
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tabletop microphone was placed in the corner of the room. Four source localization 
arrays were mounted on each of the four walls of the room. Finally, a NIST Mark III 
array was placed directly in front of the lecturer. 

2.5   Simultaneous Speech: STT Scoring 

As previously noted, people often talk at the same time during meetings.  The result-
ing overlapping speech represents a large challenge for speech technologies. Figure 1 
is a cumulative histogram of the time within the test sets as a function of the number 
of active speakers10.  It is evident from the graph that a large fraction of the time in 
each test set (~30% and 8% for the confmtg and lectmtg data sets respectively) in-
volves simultaneous speech11. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

None 1 2 3 4 5 6 7 8 9 10

Number of Active Speakers

P
er

ce
nt

ag
e 

of
 T

im
e

RT-05S Conference Room
RT-05S Lecture Room
RT-04S Conference Room

 

Fig. 1. Cumulative histogram of testable time as a function of active speakers. The data points 
labeled 'None' indicate time in the test set where no one is talking. 

During the RT-04S evaluation, a prototype method was developed at NIST [2] to 
perform multi-stream STT scoring.  For the RT-05S evaluation, a new alignment tool 
ASCLITE was developed in C++ and distributed to sites for use in the evaluation as 
part if the SCTK [6] toolkit.  The techniques used by ASCLITE are described in [2].  
The previous instantiation of SCLITE required a single reference and output word 

                                                           
10 Active speakers calculated by segmenting the test set into independent regions for alignment 

where each region has no speakers crossing the region boundaries. 
11 Estimates published in 2004 for the RT-04S test set [2] were higher because silence regions 

in the test set were not included in the estimate.  
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stream for alignment.  ASCLITE represents an extension to support the alignment of 
multiple reference word streams (one for each speaker) to a single output word 
stream.  Using this technique, system words are allowed to map to any reference word 
while maintaining the sequential ordering of words.  This evaluation protocol enables 
the evaluation of single-stream STT systems using a multiple-speaker test set. Using 
ASCLITE, these systems can now be evaluated over segments of overlapping speech. 

In order to limit the combinatorial explosion, the set of legal alignments is con-
strained to disallow the mapping of two reference words to each other.  Even with this 
constraint, state-of-the-art computer system memory limits are exceeded. Experiments 
with the RT-04S and RT-05S test sets indicated that up to five simultaneous reference 
streams could be scored without exceeding memory limitations.  Therefore, segments 
with greater than 5 simultaneous speakers were not evaluated. However, not much 
data was lost in this constraint. The majority of the test sets (98%, 97% and 100% of 
the RT-05S confmtg, RT-04S confmtg, and RT-05S lectmtg respectively) were able to 
be evaluated.  

3   Results of the RT-05S Evaluation 

3.1   RT-05S Evaluation Participants 

The following table lists the RT-05S participants and the evaluation tasks each site 
took part in.  In total there were nine sites submitting with three sites participating in 
two tasks. 

Table 2. Summary of evaluation participants and the tasks for which systems were submitted 

Site ID Site Name STT SPKR SAD SLOC 
AMI Augmented Multiparty Interac-

tion Program 
X    

ICSI/SRI International Computer Science 
Institute and SRI International 

X X   

ITC-irst Center for Scientific and Tech-
nological Research 

   X 

KU Karlsruhe Univ.    X 
ELISA 
Consortium 

Laboratoire Informatique 
d'Avignon (LIA), Communi-
cation Langagière et Interac-
tion Personne-Système 
(CLIPS), and LIUM 

 X X  

MQU Macquarie Univ.  X   
Purdue Purdue Univ.   X  
TNO The Netherlands Organisation 

for Applied Scientific Research  
 X X  

TUT Tampere Univ. of Technology    X 
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3.2   Speech-To-Text (STT) Results 

Two sites participated in the STT task, ICSI/SRI and AMI. They both ran their sys-
tems on both the confmtg and lectmtg data.  While it is disappointing to see only two 
participants for this task, these two submissions represent many people’s efforts 
across multiple research sites.  

Appendix A contains the system performance graphs for the STT task Figure 2 
shows the WERs for the confmtg data set under the MDM audio input conditions as 
46.9% and 38.4% for AMI and ICSI/SRI respectively.  For ICSI/SRI, this represents a 
33% relative reduction in WER from last year in which ICSI/SRI achieved a 53.4% 
WER (Figure 5). While the AMI WER was higher, this was the first public evaluation 
for the AMI system and a very good first showing.  The lowest IHM WER was 25.9% 
compared to last year’s 32.7% (Figure 5) which is a 20% relative reduction.   

From Figure 2 The lectmtg data appears to be slightly harder than the confmtg data 
(13% and 40% relative for AMI and ICSI/SRI respectively) for the MDM microphone 
condition.  However, the error rates comparing confmtg and lectmtg IHM systems are 
similar indicating that while the language difficulty may be equal, perhaps the chal-
lenges of distant microphones may not. 

In Figure 4, the confmtg WERs by meeting shows no obvious performance out-
liers. However for the VT meetings, which are blind test data for the systems, 
ICSI/SRI did well on the VT meetings while AMI did not. 

ICSI/SRI ran their system on the MSLA audio input condition on the lectmtg data.  
They achieved a 46.3% WER which is a 14% relative reduction from their MDM re-
sult.  This is encouraging result.  It is our opinion that as even more audio channels 
are used to record the speech, WERs will be reduced even further although the exact 
benefit can only be determined through experimentation. 

When the lectmtg data is split into lecturer and Q&A subsets, there is no difference 
in performance for AMI.  However ICSI/SRI did slightly better on the lecturer speech 
51% as opposed to 58% on the Q&A speech. 

3.3   Diarization “Who Spoke When” (SPKR) Results 

Four sites participated in the SPKR task, the ELISA Consortium, ICSI/SRI, MQU and 
TNO. Appendix B contains the performance graphs for the SPKR task.  The lowest 
DER for the primary systems on the confmtg data was 18.5% and 15.3% for the 
MDM and SDM audio input conditions respectively (Figure 6). Both scores were 
achieved by ICSI/SRI.  These scores represent 20% and 32% relative reductions com-
pared to RT-04S (Figure 10).   

Oddly, this year’s SDM error rates are lower than the MDM error rates.  The dif-
ference is predominantly caused by the VT meetings where the SDM error rates are 
64% and 24% lower than matched MDM DERs.  For the rest of the meetings, the 
MDM and SDM scores are, by a sign test, not statistically different. 

Figure 8 plots the MDM primary systems performance on the confmtg data set as a 
function of meeting id. The VT-20050318 meeting had the highest DER for all sys- 
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tems. Since the VT meetings are blind test data, this may be an indication of over -
fitting to development data or, when coupled with the aforementioned low SDM error 
rates for the VT meetings, this may be an indication of differences in recording condi-
tions. Neither can be proven with the existing data. 

Like last year, the error rates for the full test set (the diamonds in Figure 7) are 
higher than just the non-overlapping speech. 

The DERs for the lectmtg data set are in general lower than DERs for the confmtg 
data set.  The best primary submission for all three audio input conditions is 12.2% 
for the ICSI/SRI team (Figure 6). This impressive result was achieved by declaring all 
testable speech as a single speaker without looking at the audio data. While the base-
line is low, ICSI/SRI achieved a lower DER of 10.4% with a real system (Figure 7). 
In fact, most sites had contrastive systems with lower DERs so Figure 7 uses the low-
est achieved DER for each data set/site/audio condition combination. 

Not surprisingly, Figure 9 shows a marked difference in performance between the 
lecturer speech and the Q&A subset of the lectmtg data.  System performance on the 
Q&A subset of the data is commensurate with the ELISA confmtg MDM results, but 
27% higher for the ICSI/SRI system on the confmtg MDM data.  It is difficult to say 
from the results whether or not the data was harder or if there was insufficient time 
for system development. 

3.4   Diarization “Speech Activity Detection” (SAD) Results 

Three sites participated in the SAD task: the ELISA consortium, Purdue and TNO.  
The lowest DER (from Figure 11 ) for the MDM condition on the confmtg data was 
5.04% by TNO while ELISA’s error rate was 7.42%.  These error rates are commen-
surate with the SPKR systems scored with the SAD evaluation criterion shown inFig-
ure 7. ELISA achieved a 6.59% DER for the lectmtg data, MDM audio condition and 
the error rates for lecturer vs. Q&A subsets were roughly equal with 6.67% and 
6.47% respectively 

Purdue [383] was the only site to participate in the IHM audio input condition on 
the confmtg data. They achieved an SAD DER of 26.9%.  As expected, SAD DERs 
are demonstrably higher for IHM than MDM or SDM conditions.   

The SAD dry run was successful in that a system was built and tested with the 
evaluation infrastructure.  However, the community is looking towards more chal-
lenging tasks, like the SPKR task, so SAD will not be an evaluation task in 2006. 

3.5   Diarization “Source Localization” (SLOC) Results 

Three sites participated in the SLOC task: ITC-irst, KU and TUT.  The RMSE Error 
rates for the three systems were 309mm, 569mm, and 851mm respectively on the lec-
turer subset of the lectmtg test set. 

The lowest error rate is impressive for the initial benchmark of this technology.  
The dry run was successful in that systems could be built to tackle the task and the 
evaluation methodology effectively measured system performance. However this 
level of performance is likely not sufficient for two reasons: (1) the systems were 
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given lecturer-only speech, and (2) the required accuracy is likely to be lower than 
current performance. 

These systems were given speech from a single talker, the lecturer. There was little 
competing speech and the lecturer’s movements were typically constrained to the 
front of the room. As additional talkers are active and they move throughout the meet-
ing space, error rates will degrade.  

The community needs a good method to determine what constitutes sufficient ac-
curacy; is it defined by geometrically measuring the person’s location or by error rate 
reductions for consumers of SLOC system output? The current performance level is 
not sufficient for determining the exact person location. The average human male’s 
neck to shoulder size is 235 mm12 meaning the average error is beyond the person’s 
body.  The community is starting to research the uses of SLOC systems and the field 
has exciting possibilities. 

4   Conclusions and Future Evaluations 

In our opinion, the primary lesson learned from the RT-05S evaluation was that sys-
tems will do better as more sensors are collected; addition sensors will enable new 
tasks, like SLOC, and improve performance of existing tasks, like ICSI’s WER reduc-
tion from additional distant microphones.  The additional sensors also provide a rich 
opportunity for multimodal systems that blend the strengths of audio-based process-
ing with video processing strengths.  Indeed, this should be a new thrust in the meet-
ing domain to support and experiment with sensor fusion techniques. 

The successful evaluation of overlapping, simultaneous speech for the STT task is 
an indication that it is time to push for stream-based STT in the meeting domain.  
While it is invaluable to work on component technologies for a while, merging STT 
and SPKR is starting to make sense just like merging STT and segmentation in the 
early stages of the Broadcast News domain.  With the advent of a plethora of audio 
channels, blind source separation (BSS) could easily support this task without modifi-
cation to existing STT systems since BSS will deliver a single speaker’s speech to the 
STT system. 

The meeting recognition community is largely a volunteer group and therefore not 
encumbered with demands of program goals.  The community should consider tack-
ling unsolved problems in the STT field such as out-of-vocabulary (OOV) word de-
tection.  All of today’s STT systems have finite vocabularies and including the capa-
bility of detecting OOVs would improve the usefulness of rich transcriptions to down-
stream users. 

It is clear that the meeting recognition community is a vibrant and growing com-
munity. This year’s goal should be to broaden the research base for technologies to 
pull in new participants with new ideas and energy. 

                                                           
12 The maximum shoulder width for a man’s X-Large shirt according to the “Standards and 

Guidelines for Crochet and Knitting” by the Craft Yarn council of America, http://www. 
yarnstandards.com/s-and-g.pdf. 



 The Rich Transcription 2005 Spring Meeting Recognition Evaluation 383 

Acknowledgements 

NIST would like to thank everyone who donated meeting recordings for the evalua-
tion, AMI, CMU, ICSI/SRI, VT and KU.  Special thanks go to the sites that prepared 
the reference transcriptions and annotations: CMU, ELDA, KU, and LDC. 

Disclaimer 

These tests are designed for local implementation by each participant. The reported 
results are not to be construed, or represented, as endorsements of any participant’s 
system, or as official findings on the part of NIST or the U. S. Government. 

References 

1. Fiscus et. al., “Results of the Fall 2004 STT and MDE Evaluation”, RT-04F Evaluation 
Workshop Proceedings, November 7-10, 2004. 

2. Garofolo et. al., “The Rich Transcription 2004 Spring Meeting Recognition Evaluation”, 
ICASSP 2004 Meeting Recognition Workshop, May 17, 2004 

3. Spring 2005 (RT-05S) Rich Transcription Meeting Recognition Evaluation Plan, 
http://www.nist.gov/speech/tests/rt/rt2005/spring/rt05s-meeting-eval-plan-V1.pdf 

4. Speaker Localization and Tracking – Evaluation Criteria, http://www.nist.gov/speech/ 
tests/rt/t2005/spring/sloc/CHIL-IRST_SpeakerLocEval-V5.0-2005-01-18.pdf 

5. LDC Meeting Recording Transcription, http://www.ldc.upenn.edu/Projects/Transcription/ 
NISTMeet 

6. SCTK toolkit, http://www.nist.gov/speech/tools/index.htm 
7. "The ICSI Meeting Project: Resources and Research" A. Janin, J. Ang, S. Bhagat,  

R. Dhillon, J. Edwards, J. Macias-Guarasa, N. Morgan, B. Peskin, E. Shriberg, A. Stolcke, 
C. Wooters and B. Wrede, NIST ICASSP 2004 Meeting Recognition Workshop, Montreal 

8. “The NIST Meeting Room Pilot Corpus”, John S. Garofolo, Christophe D. Laprun, Martial 
Michel, Vincent M. Stanford, Elham Tabassi, LREC 2004 

9. “The ISL Meeting Corpus: The Impact of Meeting Type on Speech Style”, Susanne Bur-
ger, Victoria MacLaren, Hua Yu,  ICSLP-2002 

10. “Speech Activity Detection on Multichannels of Meeting Recordings”, Zhongqiang Huang 
and Mary P. Harper, Proceedings from the RT-05 Workshop at MLML-05. 



384 J.G. Fiscus et al. 

Appendix A: Speech-To-Text Results 
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Fig. 2. WERs for primary STT systems across test sets and audio input conditions 
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Fig. 3. WERs for primary MDM STT systems as a function of the number of active speakers in 
a segment. The bars for <=1 include regions were no one is talking and the final column “All 
Data” is the cumulative WER from Figure 2. 
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Fig. 4. WERs for primary MDM STT systems broken down by meeting. Meetings are sorted by 
average WER. 
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Fig. 5. WERs for the best MDM and SDM STT systems from RT-04S and RT-05S.  MDM and 
SDM results are broken down by “1 Spkr.” for non-overlapping speech, ‘<=5 Spkr.’ which in-
cludes simultaneous speech, or ‘Full Test’ for the complete test set.  The RT-04S systems were 
re-scored with ASCLITE. 
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Appendix B: Diarization “Who Spoke When” (SPKR) Result 
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Fig. 6. DERs for primary SPKR systems across test sets and audio input conditions 
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Fig. 7. DERs for “Lowest Error Rate” systems from each site across test sets and audio input 
conditions. The triangles mark the DERs over all data including simultaneous speech. The 
diamonds mark the error rate of SPKR systems scored as SAD systems. 
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Fig. 8. DERs for primary MDM SPKR systems broken down by meeting id.  Meetings are 
sorted by average DER. 
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Fig. 9. DERs for “Lowest Error Rate” systems from each site for the lectmtg data broken down 
by the lecturer and Q&A subsets 
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Fig. 10. DERs for the best MDM and SDM SPKR systems from RT-04S and RT-05S 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix C: Diarization “Speech Activity Detection” Results 
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Fig. 11. DERs for primary SAD systems across test sets and audio input conditions 
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Fig. 12. DERs for primary MDM SAD systems broken down by meeting id.  Meetings are 
sorted by average DER. 
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Abstract. This paper describes efforts by the University of Pennsylvania's Lin-
guistic Data Consortium to create and distribute shared linguistic resources – 
including data, annotations, tools and infrastructure – to support the Rich Tran-
scription 2005 Spring Meeting Recognition Evaluation. In addition to distribut-
ing large volumes of training data, LDC produced reference transcripts for the 
RT-05S conference room evaluation corpus, which represents a variety of sub-
jects, scenarios and recording conditions. Careful verbatim reference transcripts 
including rich markup were created for all two hours of data. One hour was also 
selected for a contrastive study using a quick transcription methodology. We 
review the two methodologies and discuss qualitative differences in the result-
ing transcripts. Finally, we describe infrastructure development including tran-
scription tools to support our efforts.   

1   Introduction 

Linguistic Data Consortium was established in 1992 at the University of Pennsylvania 
to support language-related education, research and technology development by creat-
ing and sharing linguistic resources, including data, tools and standards.  Human lan-
guage technology development in particular requires large volumes of annotated data 
for building language models, training systems and evaluating system performance 
against a human-generated gold standard.  LDC has directly supported NIST's Rich 
Transcription evaluation series by providing both training and evaluation data and 
related infrastructure. For the Rich Transcription 2005 Spring Meeting Recognition 
Evaluation, LDC provided large quantities of training data from a variety of domains 
to program participants. Additionally, LDC produced both quick and careful reference 
transcripts of evaluation data to support automatic speech-to-text transcription, diari-
zation, and speaker segmentation and localization in the meeting domain.  Finally, in 
the context of this program LDC has undertaken creation of specialized annotation 
software that supports rapid, high-quality creation of rich transcripts, both in the 
meeting domain and in a wide variety of other genres. 

2   Data  

2.1   Training Data  

To enhance availability of high-quality training data for RT-05S, LDC distributed 
twelve corpora that are part of the LDC catalog for use as training data by evaluation 
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participants. The data included not only three corpora in the meeting domain, but also 
two large corpora of transcribed conversational telephone speech (CTS) as well as 
one corpus of transcribed broadcast news (BN).  All data was shipped directly to 
registered evaluation participants upon request, after sites had signed a user agree-
ment specifying research use of the data.  The distributed training data is summarized 
in the table below. 

RT-05S Training Data Distributed by LDC 

Title Speech Transcripts Volume 
Do-
main 

Fisher English Training 
Part 1  

LDC2004S13 LDC2004T19 750+ 
hours 

CTS 

Fisher English Training 
Part 2 

LDC2005S13 LDC2005T19 750+ 
hours 

CTS 

ICSI Meeting Corpus LDC2004S02 LDC2004T04 72 hours Meeting 
ISL Meeting Corpus LDC2004S05 LDC2004T10 10 hours Meeting 
NIST Meeting Pilot  
Corpus 

LDC2004S09 LDC2004T13 13 hours Meeting 

TDT4 Multilingual  
Corpus 

LDC2005S11 LDC2005T16 300+ 
hours 

BN 

2.2   Evaluation Data  

In addition to training data, LDC developed a portion of the benchmark test data for 
this year's evaluation.  The RT-05S conference room evaluation corpus includes ten 
meeting sessions contributed by five organizations or consortia: AMI (Augmented 
Multi-Party Interaction Project), CMU (Carnegie Mellon Institute), ICSI (Interna-
tional Computer Science Institute), NIST (National Institute of Standards and Tech-
nology), and VT (Virginia Tech).  The sessions contain an average of six participants.  
In all but one case, head-mounted microphone recordings were available; the one 
exception is a speaker participating in the recording session by teleconference.  The 
meetings represent a variety of subjects, scenarios and recording conditions.  The RT-
04 meeting evaluation corpus, also transcribed by LDC, covered a broader set of 
meeting activities, including simulated meetings and game playing (for instance a 
game of Monopoly or role playing games).  The RT-05S conference room corpus on 
the other hand contains more typical business meeting content [1].  As a result, LDC 
transcribers found the RT-05S corpus easier to transcribe. 

3   Transcription 

3.1   Careful Transcription (CTR) 

For purposes of evaluating transcription technology, system output must be compared 
with high-quality manually-created verbatim transcripts. LDC has already defined a 
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careful transcription (CTR) methodology to ensure a consistent approach to the crea-
tion of benchmark data. The goal of CTR is to create a reference transcript that is as 
good as a human can make it, capturing even subtle details of the audio signal and 
providing close time-alignment with the corresponding transcript. CTR involves mul-
tiple passes over the data and rigorous quality control.  Some version of LDC's current 
CTR specification has been used to produce test data for several speech technology 
evaluations in the broadcast news and conversational telephone speech domains in 
English, Mandarin, Modern Standard and Levantine Arabic as well as other languages 
over the past decade. The CTR methodology was extended to the meeting domain in 
2004 to support the RT-04 meeting speech evaluation, and was used in producing this 
year's conference room evaluation corpus [2]. 

Working with a single speaker channel at a time (using head-mounted microphone 
recordings where available), annotators first divide the audio signal into virtual seg-
ments containing speaker utterances and noise. At minimum, the audio is divided into 
individual speaker turns, but long speaker turns are segmented into smaller units.  
Speaker turns can be difficult to define in general and are particularly challenging in 
the meeting domain due to the frequency of overlapping speech and the prevalence of 
side conversations that occur simultaneously with the main thread of speech.  Further, 
speakers may utter comments under the breath that are difficult to distinguish from 
non-speech sounds, even when listening to a head-mounted microphone signal.  Tran-
scribers are therefore generally instructed to place segment boundaries at natural 
breakpoints like breath groups and pauses, typically resulting in segments of three to 
eight seconds in duration.  In placing segment boundaries, transcribers listen to the 
entire audio file in addition to visually inspecting the waveform display, capturing any 
region of speech (no matter how minimal) as well as isolating certain speaker noises 
including coughs, sneezes, and laughter. Breaths are not specifically captured unless 
they occur around a speaker utterance. Transcribers are instructed to leave several 
milliseconds of silence padding around each segment boundary, and to be cautious 
about clipping off the onset of voiceless consonants or the ends of fricatives. Meeting 
segmentation practices do not differ substantially from those for other domains, but 
additional care is taken to create segment boundaries that respect the natural flow of 
the conversation, particularly with respect to the speaker turn issues mentioned above.   

After accurate segment boundaries are in place, annotators create a verbatim tran-
script by listening to each segment in turn. Because segments are typically around 
five seconds, it is usually possible to create a verbatim transcript in one listen; but 
difficult regions that contain speaker disfluencies or other phenomena may warrant 
several reviews. No time limit is imposed, but annotators are instructed to utilize the 
"uncertain transcription" convention if they need to review a segment three or more 
times.  A second pass checks the accuracy of the segment boundaries and transcript 
itself, revisits sections marked as uncertain, and adds information like speaker iden-
tity, background noise conditions, plus special markup for mispronounced words, 
proper names, acronyms, partial words, disfluencies and the like. A final pass over the 
transcript is conducted by the team leader to ensure accuracy and completeness. The 
individual speaker channels that have been transcribed separately are then merged 
together. Senior annotators listen to the merged files and use the context of the full 
meeting to verify specific vocabulary, acronyms and proper nouns as required. Fur-
ther automatic and manual scans over the data identify regions of missed speech, 
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correct common errors, and conduct spelling and syntax checks, which identify badly 
formatted regions of each file. 

3.1.1   Quality Control  
The meeting domain presents a number of unique challenges to the production of 
highly accurate verbatim transcripts, which motivates the application of quality con-
trol procedures as a part of the multi-pass strategy described above. One such chal-
lenge is the prevalence of overlapping speech. In meetings, overlap is extremely fre-
quent, accounting for well over half the speech on average.  Even when transcribing 
from the individual speaker recordings, capturing overlapping speech is difficult. 
Other speakers are typically audible on close-talking microphone channels, and tran-
scribers must focus their attention on a single speaker's voice while simultaneously 
considering the context of the larger conversation to understand what is being said.  
During all stages of transcription, transcribers and team leaders devote extra attention 
to overlapping speech regions. 

Transcription starts with the individual head-mounted microphone recordings, 
which facilitates the accuracy of basic transcription.  Senior annotators listen to all 
untranscribed regions of individual files, identifying any areas of missed speech or 
chopped segments using a specialized interface.  Some meetings contain highly spe-
cialized, technical terminology and names that may be difficult for transcribers to 
interpret.  To resolve instances of uncertainty, final quality checks are conducted on a 
merged file, which conflates all individual speaker transcripts into a single session 
that is time-aligned with a mixed recording of all head-mounted channels, or a distant 
or table-top microphone channel. This merged view provides a comprehensive check 
over the consistency of terminology and names across the file, and is conducted by a 
senior annotator who has greater access to and knowledge of technical jargon. Senior 
annotators also check for common errors and standardize the spelling of proper nouns 
and representation of acronyms in the transcript. Transcription ends with multiple 
quality assurance scans, which include spell checking, syntax checking, which identi-
fies portions of the transcript that are poorly formatted (for example, conflicting 
markup of linguistic features), and expanding contractions. 

3.2   Quick Transcription  

The careful transcription process described above was used to prepare benchmark 
data for purposes of system evaluation. In addition, LDC selected a one-hour subset 
of the evaluation data for transcription using Quick Transcription (QTR) methodol-
ogy. The goal of the QTR task is simply to "get the words right" as quickly as possi-
ble; to that end, the QTR methodology automates some aspects of the transcription 
process and eliminates most feature markup, permitting transcribers to complete a 
verbatim transcript in a single pass over the data. The QTR approach was adopted on 
a limited scale for English conversational telephone speech data within the DARPA 
EARS program [3], with real-time transcription rates of seven to ten times real-time.  
Automatic post-processing includes spell checking, syntax checking and scans for 
common errors. Team leaders monitor annotator progress and speed to ensure that 
transcripts are produced within the targeted timeframe.  The resulting quick transcrip-
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tion quality is naturally lower than that produced by the careful transcription method-
ology. Speeding up the process inevitably results in missed or mis-transcribed speech; 
this is particularly true for disfluent or overlapping regions of the transcript.  How-
ever, the advantage of this approach is undeniable.  Annotators work, on average, ten 
times faster using this approach than they are able to work within the careful tran-
scription methodology.   

Manual audio segmentation is an integral part of careful transcription, but is very 
costly, accounting for 1/4 or more of the time required to produce a highly-accurate 
verbatim transcript.  To reduce costs in QTR, we developed AutoSegmenter, a proc-
ess that pre-segments a speech file into reasonably accurate speaker segments by 
detecting pauses in the audio stream. AutoSegmenter achieves relatively high accu-
racy on clean audio signals containing one speaker, and typically produces good re-
sults on the head-mounted microphone channels.  If the audio is degraded in any way, 
however, the quality of automatic segmentation falls dramatically, leading to large 
portions of missed speech, truncated utterances, and false alarm segments – segments 
that may have been triggered by noise, distortion, or other meeting participants. In the 
QTR method, segment boundaries produced by AutoSegmenter are taken as ground 
truth and are not altered or manually verified, since doing so would result in real-time 
rates far exceeding the target of five times real-time. 

3.2.1   Quality Control  
Quality assurance efforts are minimized for QTR, since the goal of this approach is to 
produce a transcript in as little time as possible.  A quick quality assurance check was 
applied to the five transcripts were reviewed in a quick final pass, which involved a 
spell check, a syntax check and some basic formatting standardization including the 
removal of "empty" segments – that is, false alarm segments created by AutoSeg-
menter that contain no speech.  (Typically these segments contain background noise 
or other speaker noise which under QTR is not transcribed.) Additionally, the contrac-
tions in each file were expanded.  Transcripts were not reviewed for accuracy or  
completeness. 

3.3   CTR vs. QTR: A Contrastive Study  

With one hour of the conference room evaluation data transcribed using both the CTR 
and QTR methods, comparison of the resulting data is possible.  Practical constraints 
of time and funding prevented us from providing a complete quantitative analysis of 
discrepancies during RT-05.  While LDC's transcription toolkit does include proc-
esses to automatically compare and calculate agreement rates for multiple transcripts 
of the same source data, existing infrastructure assumes that segment boundaries are 
identical for transcripts being compared.  The data created for RT-05 does not meet 
this requirement; CTR files contain manual segment boundaries while QTR files 
contain autosegments.  However, a qualitative comparison is still possible. 

In general terms, careful transcription offers maximum transcript accuracy, but it is 
time consuming and costly.  Quick transcription by contrast is much more efficient, 
but does not maintain the same level of accuracy.  Both methods may be called for to 
suit particular needs (for example, CTR for benchmark evaluation data; QTR for 
large-volume training data). 
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Comparison of the CTR- and QTR-produced transcripts of the five sessions reveals 
discrepancies in both segmentation practices and orthographic completeness.  These 
categories are not orthogonal: many orthographic errors are caused by the automatic 
assignment of segment boundaries and the time constraints imposed in QTR.  The 
following table shows the most common differences between QTR and CTR tran-
scripts.  Highlighting indicates higher accuracy or completeness. 

Table 1. Common discrepancies between Quick and Careful transcripts 

 QTR CTR 

word substitutions  
(e.g., and instead of %um) 

careful word transcription 

no indication of speaker re-
starts, disfluencies 

indication of speaker re-
starts, disfluencies 

lacking some punctuation, 
capitalization 

standard punctuation, capi-
talization 

lacks special markup (for filled 
pauses, acronyms, mispro-
nounced words, etc.) 

contains special markup 
(for filled pauses, acro-
nyms, mispronounced 
words, etc.) 

misinterpreted acronyms  acronyms verified 

transcription 

misinterpreted, inconsistent 
transcription of technical jar-
gon 

technical jargon verified 

isolated breaths segmented  
(captured by AutoSegmenter) 

no isolated breaths cap-
tured  
(in accordance with task 
specification) 

words dropped out of segment 
careful word segmentation 
– no missed words 

segmentation 

split words (1- it 2-‘s) no split words (it’s) 

3.3.1   Orthographic Discrepancies 
The quality and completeness of orthography and transcription content is necessar-
ily lower with QTR, given the abbreviated real-time rate goals of this method.  
According to the task definition, QTR is an effort to “get the words right.”  A quick 
transcript will contain limited or no special markup, inconsistent capitalization and 
fewer punctuation marks. Meeting sessions contain specialized and sometimes 
highly technical content. During the CTR quality control process, senior annotators 
investigate the meeting context and relevant jargon to resolve any cases of uncer-
tainty on a transcriber’s part. However, during the quick transcription process, which 
targets a transcription rate of five times real-time, no time is allocated to researching 
specialized vocabulary. As shown in the example below, this can result in mis- 
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Table 2. Transcription discrepancies in ICSI_20010531-1030 

QTR CTR 

689.110 692.550 me013: ((roar)) digits 
and and stuff like that. the me- the 
meeting meeting 
692.790 694.240 me013: is uh later 
today. 

689.075 691.400 me013: @AURORA 
digits, and and stuff like that.  
691.400 694.250 me013: The mee- the 
meeting meeting is %uh later today.   

 

transcribed segments, or the use of the "uncertain transcript" flag, denoted by double 
parentheses.  

It is always possible for two transcribers to interpret non-technical speech differ-
ently. In CTR, these errors are typically eliminated through repeated quality assurance 
passes over the data, which specifically target accuracy and consistency across all 
speakers in a given session and resolution of cases of transcriber uncertainty.  Con-
sider the following example: 

Table 3. Common transcription discrepancies in CMU_20050301-1415 

QTR CTR 
157.130 161.370 fLDKKLH: I ((offi-
cially)) I don't know. I thought it was 
more around forty seconds though for 
that 

156.750 161.325 fLDKKLH: I've usu-
ally -- I don't know, I thought it was 
more around forty seconds though for 
that.  

 
This and the previous example show how the faster real-time rate in QTR affects 
transcription quality. 

3.3.2   Segmentation Discrepancies 
The limitations of automatic segmentation in the meeting domain become abundantly 
clear when comparing segments in QTR and CTR transcripts. Meeting data intro-
duces its own set of hurdles, such as ambient noise and multiple simultaneous speak-
ers.  Adjusting the AutoSegmenter threshold to capture all speech and noise from the 
targeted speaker, while excluding noises and isolated breaths or other non-transcribed 
material, is extremely difficult.  In light of such challenges, the automatically gener-
ated segment boundaries may chop off words, parts of sentences, or eliminate entire 
utterances.  Inaccurate segmentation of the speech signal can change the meaning of  
 

Table 4. Segmentation discrepancies in CMU_20050301-1415 

QTR CTR 

224.810 226.180 fZMW: 
But uh yeah, I agree. 

224.575 226.325 fZMW:  
That's what I (()) -- yeah. I agree. 
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the utterance itself, as in this example, where the QTR segment starts approximately 
.25 seconds later than the CTR segment. 

The impact of low amplitude on segmentation and transcription in general can be 
significant.  In the example below, even careful manual segmentation and transcrip-
tion was made difficult by a weak audio signal.  The QTR rendering of the excerpt 
below is extremely impoverished, lacking approximately 50% of the words captured 
in the CTR version. 

Table 5. Segmentation/transcription discrepancies in VT_20050318-1430 

QTR CTR 

800.470 800.980 rehg-g: Wright State. 

801.650 803.310 rehg-g: he wants to 
continue at Wright State. 

804.580 805.360 rehg-g: That's his 
preference. 

800.450 804.150 rehg-g: ^Wright State 
student, he wants to continue at ^Wright 
State, so that's 
804.400 805.800 rehg-g: that's his pref-
erence school. 

[missed] 
806.650 809.400 rehg-g: %um In bio-
medical engineering and %uh  
 

[missed] 
810.950 813.900 rehg-g: kind of inter-
esting in his write up because he said he 
wanted to %uh  

[missed] 
814.800 816.725 rehg-g: design ^Luke 
^Skywalker's hand. 
 

[missed] 817.025 817.975 stephen-e: {laugh} 

[missed] 
817.600 818.525 rehg-g: It's like wow. 
{laugh} 

820.490 821.250 rehg-g: said when 
whenever 

821.510 825.080 rehg-g: Whenever 
someone asks him what he wants to do 
or what he's doing that's the easiest way 
to describe it. 

819.325 825.250 rehg-g: Because you 
know every -- he said when whenever 
whenever someone asks him what he 
wants to do, what he's doing that's the 
easiest way to describe it. 

Another common automatic segmentation error is a form of truncation that occurs 
when complete utterances are captured by AutoSegmenter but are chopped in half in 
the presence of short pauses, as in the following example: 
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Table 6. Segment truncation in CMU_20050301-1415 

QTR CTR 

67.640 68.950 fZMW: if it's longer than 
twenty sec- 

67.425 70.350 fZMW: If it's longer than 
twenty seconds then they have a prob-
lem.  

67.980 68.930 fLDKKLH: Mhm. 67.875 68.600 fLDKKLH: Mhm.  

69.060 70.410 fZMW: -conds then I 
have a problem. 

 
 

In this example, AutoSegmenter detected a 0.1 second pause in the middle of the 
word "seconds," resulting in a halved word. Where the audio signal is clean and the 
amplitude is high, AutoSegmentation provides good results:  

Table 7. Similarities between CTR and QTR in CMU_20050301-1415 

QTR CTR 

131.810 137.910 mVHQQMY: I- is that 
due to uh speech recognition in general 
or just with whatever particular system 
they were using? 

131.725 137.750 mVHQQMY: I- is that 
due to %uh speech recognition in gen-
eral or just with whatever particular 
system they were using?  

136.450 140.980 fZMW: We never had 
this problem though I was kind of sur-
prised that they went back to this old 
system. 

136.275 141.225 fZMW: We never had 
this problem though I was kind of sur-
prised that they went back to this old 
system.  

The level of accuracy demonstrated in the previous example makes a case in favor 
adopting a QTR-style approach to at least parts of the transcription process.   

3.4   Transcription Rates 

A fundamental challenge in transcribing meeting data is simply the added volume 
resulting from not one or two but a half a dozen or more speakers. A typical thirty-
minute telephone conversation will require twenty hours or more to transcribe care-
fully (30 minutes, two speakers, 20 times real-time per channel).  A meeting of the 
same duration with six participants may require more than 60 hours to produce a 
transcript of the same quality.  LDC careful transcription real-time rates for the 
RT05S two-hour dataset approached 65 times real-time, meaning that one hour of 
data required around 65 hours of labor (excluding additional QC provided by the team 
leader). Examined in light of the number of total channels, however, the real-time rate 
for careful transcription per channel is around 15 times real-time, comparable with 
rates for BN and slightly less than that for CTS.  Methods like Quick Transcription 
can cut these times considerably, but the volume of effort required is still substantial.  
The real-time rate for quick transcription of a one-hour dataset is about 18 times real-
time; the real-time rate per channel is around four times real-time.  
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4   Infrastructure 

Specialized software and workflow management tools can greatly improve both effi-
ciency and consistency of transcription, particularly in the meeting domain.  The 
nature of meeting speech transcription requires frequent jumping back and forth from 
a single speaker to a multi-speaker view of the data, which presents a challenge not 
only for the transcribers, but for the transcription tools they use. Current transcription 
tools are not optimized for this approach (or in many cases do not permit it at all).  
Further, different languages and domains currently require different tools (leading to 
lack of comparability across results).  For the most part existing transcription tools 
cannot incorporate output of automatic processes, and they lack correction and adju-
dication modes.  Moreover, user interfaces are not optimized for the tasks described 
above, in particular QTR.  To support the demand for rapid, efficient and consistent 
transcription, LDC has created a next-generation speech annotation toolkit, XTrans, to 
directly support a full range of speech annotation tasks including quick and careful 
transcription of meetings.  XTrans utilizes the Annotation Graph Toolkit [4, 5] whose 
infrastructure of libraries, applications and GUI components enables rapid develop-
ment of task-specific annotation tools.  Among the existing features, XTrans 

• Operates across languages 
• Operates across platforms 
• Supports transcription across domains 
• Contains customized modules for Quick Transcription, Careful Transcription 
and Rich Transcription/Structural Metadata markup 
• Includes specialized quality control features; for instance speakerID verifica-
tion to find misapplied speaker labels and silence checking to identify speech 
within untranscribed regions.   
• Contains an "adjudication mode", allowing users to compare, adjudicate and 
analyze discrepancies across multiple human or machine-generated transcripts 

As an added feature of great benefit to meeting transcription, XTrans allows users 
to easily move back and forth between the multi- and single-speaker views, turning 
individual channels on and off as required to customize their interaction with the data.  

Two Data Views in XTrans 
 

  

Fig. 1. Global speaker view in XTrans Fig. 2. Individual speaker view in XTrans 
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XTrans also automates many common annotation tasks, for instance removing the 
need for repetitive keystrokes and allowing the annotator to speed up audio playback.  
A timer function will also enforce transcriber efficiency by warning users (and report-
ing to managers) when transcription rates exceed the targeted real-time rate for a 
given task.  As with LDC's current transcription tools, XTrans will be fully integrated 
into LDC's existing annotation workflow system, AWS.  AWS controls work (project, 
file) assignment; manages directories and permissions; calls up the annotation soft-
ware and assigned file(s) for the user; and tracks annotation efficiency and progress.  
AWS allows for double-blind assignment of files for dual annotation, and incorpo-
rates adjudication and consistency scoring into the regular annotation pipeline.  Su-
pervisors can query information about progress, efficiency and consistency by user, 
language, data set, task, and so on. 

5   Future Plans and Conclusion 

LDC's planned activities include additional transcription in the meeting domain as 
well as new data collection.  Using existing facilities at LDC developed for other 
research programs, meeting collection is currently opportunistic, with regularly sched-
uled business meetings being recorded as time allows.  Five hours of English meet-
ings, three hours of meetings in Chinese and another two hours in Arabic have already 
been collected under this model.  As new funding becomes available, we also plan to 
develop our collections infrastructure with additional head-mounted and lavaliere 
microphones, an improved microphone array, better video capability and customized 
software for more flexible remote recording control. While the current collection 
platform was designed with portability in mind, we hope to make it a fully portable 
system that can be easily transported to locations around campus to collect not only 
business meetings but also lectures, training sessions and other kinds of scenarios. 

Future plans for XTrans include incorporation of video input to assist with tasks 
like speaker identification and speaker turn detection.  We also plan to add a "correc-
tion mode" that will allow users to check manual transcripts or verify output of auto-
matic processes including autosegmentation, forced alignment, SpeakerID and auto-
matic speech recognition output.  A beta version of XTrans is currently under testing, 
and the tool will be freely distributed from LDC beginning in late 2005 [6].    

Shared resources are a critical component of human language technology devel-
opment.  LDC is actively engaged in ongoing efforts to provide crucial resources for 
improved speech technology to RT-05 program participants as well as to the larger 
community of language researchers, educators and technology developers. These 
resources are not limited to data, but also include annotations, specifications, tools 
and infrastructure.   
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Abstract. In this paper we describe the ICSI-SRI entry in the Rich
Transcription 2005 Spring Meeting Recognition Evaluation. The current
system is based on the ICSI-SRI clustering system for Broadcast News
(BN), with extra modules to process the different meetings tasks in which
we participated. Our base system uses agglomerative clustering with a
modified Bayesian Information Criterion (BIC) measure to determine
when to stop merging clusters and to decide which pairs of clusters to
merge. This approach does not require any pre-trained models, thus in-
creasing robustness and simplifying the port from BN to the meetings
domain. For the meetings domain, we have added several features to our
baseline clustering system, including a “purification” module that tries
to keep the clusters acoustically homogeneous throughout the cluster-
ing process, and a delay&sum beamforming algorithm which enhances
signal quality for the multiple distant microphones (MDM) sub-task. In
post-evaluation work we further improved the delay&sum algorithm, ex-
perimented with a new speech/non-speech detector and proposed a new
system for the lecture room environment.

1 Introduction

The goal of a diarization system is to locate homogeneous regions within an
audio segment and consistently label them for speaker, gender, music, noise, etc.
Within the framework of the Rich Transcription 2005 Spring Meeting Recogni-
tion Evaluation, the labels of interest were solely speaker regions. This year’s
evaluation expands its focus from last year and considers two meeting sub-
domains: the conference room, as in previous NIST evals, and the lecture room,
with seminar-like meetings. In each subdomain a test set of about two hours
was distributed. Participants’ systems were asked to answer the question “Who
spoke when?” The systems were not required to identify the actual speakers by
name, but just to consistently label segments of speech from the same speaker.
Performance was measured based on the percentage of audio that was incorrectly
assigned.

This year is the first time that we participated in the Diarization task for the
Meetings environment. The clustering system used is based on our agglomerative
clustering system originally developed by Ajmera et al. (see [1] [2] [3] [4]). Its pri-
mary advantage is that it requires no pre-trained acoustic models and therefore

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 402–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is robust and easily portable to new tasks. One new feature we have added to the
system is a purification step during the agglomerative clustering process. The
purification process attempts to split clusters that are not acoustically homoge-
neous. Another new feature we have added is multi-channel signal enhancement.
For the conditions where multiple microphones are available, we combine these
multiple signals into a single enhanced signal using delay&sum beamforming.
The resulting system performed well in the meetings environment, achieving of-
ficial scores of 18.56% and 15.32% error for the Multiple Distant Microphones
(MDM) and Single Distant Microphone (SDM) conference room conditions1, and
10.41%, 10.43% and 9.98% error for the lecture room MDM, SDM and Multiple
Source Localization Array (MSLA) conditions2.

In Section 2 we present the detailed description of the different parts in our
system. In Section 3 we describe the systems submitted in the evaluation and
their performance. In Section 4 we describe some improvements to the system
that were made after the evaluation was submitted. Finally, ongoing and future
work are presented in Section 5.

2 System Description

The system this year has two parts that are combined to adapt to the different
tasks and data available. The first part consists of an acoustic fusion of all
the available channels (when they exist) into a single enhanced channel via the
delay-and-sum beamforming algorithm. The second part is our basic speaker
diarization system, similar to the system submitted for the Fall 2004 Broadcast
News evaluation (RT04f) (see [4]). The main differences in this second part are:

1. the use of an un-biased estimator for the variance together with minimum
variance thresholding.

2. a purification algorithm to clean the clusters of non acoustically homoge-
neous data.

3. a major bug-fix in the core clustering system.

The delay&sum beamforming algorithm is used in some tasks where more
than one microphone is available (i.e. MDM and MSLA for Diarization). It uses
a sliding analysis window of length 500ms, with an overlap of 50%. At each step,
a 500ms segment from each of the different channels is aligned to a reference
channel producing a delay for that segment. The delay-adjusted segments are
then summed to produce an enhanced output, which becomes the input of the
basic diarization system. The delays are computed using GCC-PHAT and special
care is taken to maintain continuity in the delays given non-speech and multiple
speaker areas. For a more detailed description see section 2.1.

1 After the evaluation we made some simple changes to the delay&sum algorithm that
considerably changed these results.

2 Although these are not the primary submission results, as explained below, these
are obtained using the clustering system just described.
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Fig. 1. Delay-and-sum system

The second part of the system is our basic speaker diarization system. This
system uses agglomerative clustering and begins by segmenting the data into
small pieces. Initially, each piece of data is assigned to a separate cluster. The
system then iteratively merges clusters and resegments, stopping when there are
no clusters that can be merged. This procedure requires two measures: one to
determine which pair of clusters to merge, and a second measure to determine
when to terminate the merging process. In our baseline system, we use a modified
version of BIC [5] for both of these measures. The modified BIC equation is
defined as:

log p(D|θ) ≥ log p(Da|θa) + log p(Db|θb) (1)

where Da and Db represent the data in two clusters and θa and θb represent the
models trained on the data assigned to the two clusters. Finally, D is the data
from Da ∪ Db and θ represents the model trained on D.

Eq. 1 is similar to BIC, except that the model θ is constructed such that
the number of parameters is equal to the sum of the number of parameters in
θa and θb. By keeping the number of parameters constant on both sides of the
equation, we have eliminated the traditional BIC penalty term. This increases
the robustness of the system as there is no need to tune this parameter.

We can compute a merging score for θa and θb by combining the right and
left-hand sides of Eq. 1:

MergeScore(θa, θb) = (2)
log p(D|θ) − (log p(Da|θa) + log p(Db|θb))

2.1 Delay-and-Sum Beamforming

The delay&sum (D&S) beamforming technique [6] is a simple yet effective way to
enhance an input signal when it has been recorded on more than one microphone.
It doesn’t assume any information about the position of the microphones or their
placement. The principle of operation of D&S can be seen in Figure 1.

Given the signals captured by N microphones, xi[n] with i = 0 . . .N−1 (where
n indicates time steps) if we know their individual relative delays d(0, i) (called
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Time Delay of Arrival, TDOA) with respect to a common reference microphone
x0, we can obtain the enhanced signal using equation 3.

y(n) = x0[n] +
N−1∑
i=1

Wi[n]xi[n − d(0, i)] (3)

Where Wi[n] represents individual channel weighting. In the basic delay&sum
formulation they are set to 1. By adding together the aligned signals the usable
speech adds together and the ambient noise (assuming it is random and has a
similar probability function) will be reduced. Using D&S, according to [6], we
can obtain up to a 3db SNR improvement each time that we double the number
of microphones. We were able to obtain a 15.62% DER using D&S over multiple
microphones compared to 21.32% on SDM for the RT04s development set.

In order to estimate the TDOA between two segments from two microphones
we used the generalized cross correlation with phase transform (GCC-PHAT)
method (see [7]). Given two signals xi(n) and xj(n) the GCC-PHAT is defined
as:

GPHAT (f) =
Xi(f)[Xj(f)]∗

|Xi(f)[Xj(f)]∗| (4)

where Xi(f) and Xj(f) are the Fourier transforms of the two signals and [ ]∗ de-
notes the complex conjugate. The TDOA for these two microphones is estimated
as:

d̂PHAT (i, j) =
argmax

d

(
R̂PHAT (d)

)
(5)

where R̂PHAT (d) is the inverse Fourier transform of GPHAT (f). Although the
maximum value of R̂PHAT (d) corresponds to the estimated TDOA, we have
found it useful to keep the top N values for further processing.

There are two cases where the GCC-PHAT computation can provide inaccu-
rate estimates for speaker clustering. On one hand, as we don’t eliminate the
regions of non-speech from the signal prior to delay&sum and due to the small
size of the analysis window (500ms), when trying to estimate the TDOA from a
non-speech region it returns a random delay value with a very small correlation.
To avoid this we consider only TDOA estimates with GCC-PHAT values greater
than 0.1 (of a normalized maximum value of 1), and carry over the previous es-
timates to the current segment otherwise. On the other hand, the GCC-PHAT
also has problems when there are two or more people talking at the same time.
In such cases the estimated TDOA will focus on one or another of the sources,
producing an instability and diminishing the quality of the output. To solve this
problem we compute the 8 biggest peaks of the GCC-PHAT in each analysis win-
dow and select the TDOA that is within a small distance from the previously
obtained delay or the bigger one.

2.2 Speech/Non-Speech Detection

In this year’s system we continue to use the SRI Speech-to-Text (STT) system’s
speech/non-speech (SNS) detector to eliminate the non-speech frames from the
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input to the clustering algorithm. Its use in our speaker diarization system was
introduced in last year’s RT04f evaluation. The SRI SNS system is a two-class
decoder with a minimum duration of 30ms (three frames) enforced with a three-
state HMM structure. The features used in the SNS detector (MFCC12) are
different from the features used for the clustering. The resulting speech segments
are merged to bridge short non-speech regions and padded. The speech/non-
speech detector used in RT05s has been trained on meetings data (RT-02 devset
data and RT-04s training data). The parameters of the detector were tuned on
the RT05s meetings development data to minimize the combination of Misses
and False Alarms as reported by the NIST mdeval scoring tool.

2.3 Signal Processing and System Initialization

For our system this year, we used 19 MFCC parameters, with no deltas. The
MFCCs were computed over a 30 millisecond analysis window, stepping at 10 mil-
lisecond intervals. Before computing the features for each meeting, we extracted
just the region of audio specified in the NIST input Unpartitiones Evaluation Map
(UEM) files. The features are then calculated over this extracted region.

The first step in our clustering process is to initialize the models. This requires
a “guess” at the maximum number of speakers (K) that are likely to occur in
the data. We used K=10 for the conference room data and K=5 for the lecture
room data. The data is then divided into K equal-length segments and each
segment is assigned to one model. Each model’s parameters are then trained
using its assigned data. To model each cluster we use mixtures of gaussians with
diagonal covariance matrix starting with 5 gaussians per model. These are the
models that seed the clustering and segmentation processes described next.

2.4 Clustering Process

The procedure for segmenting the data consists of the following steps:

1. Run the SRI Meetings SNS detector.
2. Extract 19 MFCCs every 10ms.
3. Discard the non-speech frames.
4. Create the initial models as described above in Section 2.3.
5. The iterative merging process consists of the following steps:

(a) Run a Viterbi decode to re-segment the data.
(b) Retrain the models using the segmentation from (a).
(c) Select the pair of clusters with the largest merge score (Eq. 2) that is

> 0.0. (Since Eq. 2 produces positive scores for models that are similar,
and negative scores for models that are different, a natural threshold for
the system is 0.0.)

(d) If no pair of clusters is found, stop.
(e) Merge the pair of clusters found in (c). The models for the individual

clusters in the pair are replaced by a single, combined model.
(f) Run the purification algorithm (see section 2.5 for details) if the number

of merging iterations is less than the initial number of clusters.
(g) Go to (a).
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2.5 Purification Algorithm

We have observed that the performance of our system is significantly affected
by the way the models get initialized. Even though the initial models are re-
segmented and retrained a few times during the clustering process, there are
“impure” segments of audio that remain in a model in which they don’t belong
and negatively affect the final performance of the system. Such segments are
either non-speech regions not detected by the SNS detector, or actual speech.

A particular segment of the audio that is quite dissimilar to the other segments
in that model may not get assigned to any other model due to: a) the current
model over-fitting that data, or b) there is not another model that provides a
better match.

The purification algorithm is a post-merging step designed to find these seg-
ments and extract them, thus “purifying” the cluster. The segments considered
are continuous intervals as found in the Viterbi segmentation step. The algo-
rithm that we use to do the purification is applied after each cluster merge as
follows:

1. For each cluster, we compute the normalized likelihood (dividing the total
likelihood by the number of frames) of each segment in the cluster given the
cluster’s model. The segment with the highest likelihood is selected as the
one that best fits the model.

2. For each cluster, we compute the modified BIC score (as seen in eq. 2)
between the best fitting segment (as found in the previous step) and each
of the other segments. If all comparisons give a positive value, the cluster is
assumed to be pure, and is not considered a candidate for purification.

3. The segment with the lowest score below a certain threshold (-50 in our
system) is extracted from the cluster and is re-assigned to its own cluster.

The source cluster keeps the same number of gaussians; therefore the purifica-
tion process increases the total number of gaussians in the system (because a new
cluster is created in the last step above). The purification algorithm is executed
at most only on the first K iterations of the resegmentation-merging processing.
We observed an improvement of approx. 2% absolute using this technique on a
development data set built from the RT04s data sets and AMI meetings.

3 Evaluation Performance

For the evaluation we used different combinations of the pieces presented above.
Almost all of these combinations share several common attributes:

– 19th order MFCC, no deltas, 30 msec analysis window, 10 msec step size.
– Each initial cluster begins with five gaussians.
– Iterative segmentation/training.
– Cluster purification.
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3.1 Conference Room Systems

For the conference room environment we submitted one primary system in each
of the MDM and SDM conditions. The MDM system uses delay&sum to acous-
tically fuse all the available channels into one enhanced channel. Then it applies
the clustering to this enhanced channel. The SDM condition skips the delay&sum
processing, as the system’s input is already a single channel (from the most cen-
trally located microphone according to NIST).

3.2 Lecture Room System

In the lecture room environment we submitted primary systems for the tasks
MDM, SDM and MSLA, and contrastive systems for MDM (two systems), SDM
and MSLA (two systems). Following is a brief description for each of these sys-
tems and their motivation:

– MDM, SDM and MSLA primary condition (MDM/SDM/MSLA p-
omnione): We observed in the development data that on many occasions we
were able to obtain the best performance by just guessing one speaker for
the whole duration of the lecture. This is particularly true when the meeting
excerpt consists only of the lecturer speaking, but is often also achieved in
the question-and-answer section since many of the excerpts in the develop-
ment data consisted of very short questions followed by long answers by the
lecturer. We therefore presented these systems as our primary submissions,
serving also as a baseline score for the lecture room environment. Contrary
to what we observed in the development data, our contrastive (“real”) sys-
tems outperformed our primary (“guess one speaker”) submissions on the
evaluation data.

– MDM using speech/non-speech detection (mdm c-spnspone): This differs
from the primary submission only on the use of the SNS detector to eliminate
the areas of non-speech.

– MDM using the TableTop microphone (mdm c-ttoppur): From the available
five microphones in the lecture room, the TableTop microphone is clearly of
much better quality than all the others. We find it using an SNR estimator
and the standard clustering is used on it.

– SDM using the SDM channel with a minimum duration of 12 seconds for
each cluster (sdm c-pur12s): This uses our clustering system on the SDM
channel.

– MSLA with standard delay&sum (msla c-nwsdpur12s).
– MSLA with weighted delay&sum (msla c-wsdpur12s).

3.3 Scores

The DER scores on non-overlapped speech for this year’s evaluation as they
were released by NIST are shown in the ninth column of table 1, together with
a summary of each system’s characteristics. The numbers in the tenth column
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Table 1. Systems summary description and DER on the evaluation set for RT05s

System ID room Task Submission Delay # Initial Acoustic Mics used DER post-eval

type &sum clusters min. dur. DER

p-dspursys Conf. MDM Primary YES 10 3 sec All 18.56% 16.33%
p-pursys Conf. SDM Primary NO 10 3 sec SDM 15.32% —
p-omnione Lect. MDM Primary NO n/a n/a n/a 12.21% —
c-spnspone Lect. MDM Contrast NO n/a n/a n/a 12.84% —
c-ttoppur Lect. MDM Contrast NO 5 5 sec Tabletop 10.41% 10.21%
p-omnione Lect. SDM Primary NO n/a n/a n/a 12.21% —
c-pur12s Lect. SDM Contrast NO 5 12 sec SDM 10.43% 10.47%
p-omnione Lect. MSLA Primary NO n/a n/a n/a 12.21% —
c-nwsdpur12s Lect. MSLA Contrast YES 5 12 sec All 9.98% 9.66%
c-wsdpur12s Lect. MSLA Contrast YES 1 5 12 sec All 9.99% 9.78%

reflect improvements after small bug fixes and serve as the baseline scores used
in the remainder of this paper. In the systems using delay&sum, an improve-
ment comes from fixing a small bug in our system that we detected after the
eval (the 2% difference in conference room MDM is mainly due to the meeting
VT 20050318-1430). In the (non trivial) lecture room systems, the improvement
comes from using an improved UEM file for the show CHIL 20050202-0000-E2.

The use of delay&sum to enhance the signal before doing the clustering turned
out to be a bad choice for the conference room systems, as the SDM DER is
smaller than the MDM. In section 4.1 we consider what the possible problem
could be and propose two solutions.

4 Post-evaluation Improvements

In this section we present several improvements to the system that were intro-
duced after the evaluation.

4.1 Individual Channel Weighting

After the conference room evaluation, we observed that the straightforward de-
lay&sum processing we had performed using all available distant channels was
suboptimal. We found that the quality of the delay&summed output was nega-
tively affected when the channels are of different types or they are located far
from each other in the room.

In the formulation of the delay&sum processing, the additive noise compo-
nents on each of the channels are expected to be random processes with very
similar probability distributions. This allows the noise on each channel to be
minimized when the delay-adjusted channels are summed. In standard beam-
forming systems, this noise cancellation is achieved through the use of identical
microphones placed only a few inches apart from each other.

1 This system uses a weighted version of delay&sum using correlations, as explained
in 4.1.
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In the meetings room we assume that all of the distant microphones form
a microphone array. However, having different types of microphones changes
the impulse response of the signal being recorded and therefore changes the
probability distributions of the additive noise. Also when two microphones are
far from each other the speech they record will be affected by noise of a different
nature, due to the room’s impulse response.

After the conference room evaluation we began working on different ways to
individually weight the channels according to the quality of the signal. Here we
present two techniques we have tried, plus their combination:

SNR based weighting: A well known measure of the quality of a speech sig-
nal is its Signal-to-Noise ratio (SNR). We estimate the SNR value for each
channel for all of the evaluated portion of the meeting and we apply a con-
stant weight to each segment of each channel upon summation. The SNR is
computed according to [8].

Correlation based weighting: The weighting value is adapted continuously
during the duration of the meeting. This is inspired by the fact that the differ-
ent channels will have different quality depending on their relative distance
to the person speaking, which can change constantly during a recording.
The weight for channel i at step n (Wi[n]) is computed in the following way:

Wi[n] =
{ 1

#Channels n = 0
(1 − α) · Wi[n − 1] + α · xcorr(i, ref.) otherwise

(6)

where xcorr(i, ref.) is the cross-correlation between the delay-adjusted seg-
ment for channel i and the reference channel. When i=reference, it is just
the power of the reference channel. If the cross-correlation becomes negative
it is set to 0.0. By experimenting on the development set we set α = 0.05.

Combination of both techniques: We use the SNR to rank the channels and
select the best as the reference channel. Then the process is identical to the
correlation weighting.

In table 2 we can see the results of running these three proposed techniques
on some of the multiple distant microphone conditions.

Table 2. Effect of channel weighting on Eval DER scores

Submission Desc. Baseline SNR Weight Xcorr Weight SNR+Xcorr

MDM Conference room 16.33% 17.02% 16.17% 14.81%
MSLA Lecture Room 9.66% 8.94% 9.78% 9.83%

For Conference room data the correlation technique performs better than the
SNR, but when combined together they outperform both individual systems.
In Lecture room (on MSLA microphones) the SNR constant weights technique
works better that variable weighting. In fact, in the Lecture room environment
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by having most of the time a single speaker we benefit more from a fixed weight,
contrary to when multiple speakers intervene, benefitting from variable weights.

In order to isolate the effect of the weighting techniques, we also ran them
using perfect speech/non-speech labels, thus minimizing miss and false alarm
errors. In table 3 we can see the resulting DER.

Table 3. DER on the evaluation set for RT05s using “perfect” speech/non-speech
labels

Submission Desc. chan. Weights DER

Conference room SDM n/a 10.95%
Conference Room MDM equal 11.55%
Conference Room MDM correlation 10.50%
Conference Room MDM SNR 10.60%
Conference Room MDM SNR+corr 10.57%

4.2 Energy Based Speech/Non-Speech Detector

In our effort to create a robust diarization system that doesn’t require any train-
ing data and as few “tunable” thresholds as possible, we are experimenting with
an alternative to the SRI speech/non-speech(SNS) detector used in this year’s
evaluation. By using an energy-based detector we obtain improved results on the
test data while eliminating the need of training the speech/non-speech detector.

Given an input signal one minute non overlapping regions are processed. After
amplitude normalization a matched filter is applied [9] to emphasize the start
and end points of the speech/non-speech regions. The detection is performed
using a double threshold (from silence to speech and from speech to silence)
as implemented in NIST’s Speech Quality Assurance Package, see [10]. It is
implemented using a finite state machine.

In table 4 we can observe the speech/non-speech error and the DER scores
using this speech/non-speech detector on the different tasks. This test was only
performed in the conference room domain as we haven’t use a speech/non-speech
detector in all our lecture room systems.

Table 4. Energy-based vs. model-based SNS on conference room environment

Submission Desc. weights SNS Error full DER
Baseline Energy-SNS Baseline Energy-SNS

SDM Conference room n/a 4.7% 5.0% 15.32% 14.65%
MDM Conference room equal 5.30% 3.7% 16.33% 13.93%
MDM Conference room SNR+corr 5.3% 3.7% 14.81% 13.97%

4.3 Selective Lecture Room Clustering

On the lecture room data the submitted systems didn’t make use of the in-
formation regarding the kind of excerpt that was being clustered. As noted by
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NIST, the excepts ending with E1 and E3 have only the lecturer speaking in
them; therefore guessing that only one speaker speaks all the time consistently
achieves the best performance. On the other hand, the excerpts ending with
E2 belong to the Q&A sections, with more speakers and a structure that more
closely resembles the conference room environment.

After the evaluation, we constructed a system to take advantage of this infor-
mation. The system parses the lecture file name before processing and proceeds
assigns one speaker all the time if it contains E1 or E3, or uses “normal” clus-
tering when it has E2. In table 5 we present the results of running this system
for the different possible sets of microphones.

Table 5. Selective Lecture room clustering DER

Submission Desc. Baseline DER Sel. clust. DER

SDM Lecture room 10.47% 9.60%
MDM Lecture room 10.21% 8.75%
MSLA Lecture room 9.66% 9.38%

5 Future Work

Our future work will continue to focus on the use of techniques that require no
pre-trained models and as few “tunable” parameters as possible. Signal process-
ing related improvements include:

– Improve SNS without external training data. We will continue work on
our energy-based SNS detector, specifically focusing on robustness to differ-
ent environments including: Broadcast News, Meetings, and Conversational
Telephone Speech.

– Improve delay&sum processing and use extra information extracted from
that processing (TDOA values, correlation weights, relative energy between
microphones, etc.).

– Explore the use of alternative front-end signal processing techniques. To
date, we have limited our features to MFCC19. We would like to explore
alternative front-end features.

Improvements to the clustering algorithm include:

– Improve the cluster purification algorithm to better deal with SNS errors.
– Explore the use of techniques from Speaker ID (modified to conform to our

philosophy of “no pre-trained models”) in the clustering algorithm.
– Explore the use of alternative stopping and merging criteria.

6 Conclusions

The primary advantage of our speaker diarization system is that it requires no
pre-trained acoustic models and therefore is robust and easily portable to new
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tasks. For this year’s evaluation, we added a couple of new features to the system.
One new feature is the purification step during the agglomerative clustering pro-
cess. The purification process attempts to split clusters that are not acoustically
homogeneous. Another new feature is multi-channel signal enhancement. For the
conditions where multiple microphones are available, we combine these multiple
signals into a single enhanced signal using delay&sum beamforming. After the
evaluation we experimented with new algorithms that further improved the per-
formance on the test data. In table 6 we show the best results achieved in each
evaluation condition.

Table 6. Best performance systems on the RT05s eval data

Room type Task Technique DER

Conf. SDM section 4.2 14.65%
Conf. MDM section 4.2 13.93%
Lect. SDM section 5 9.60%
Lect. MDM section 5 8.75%
Lect. MSLA section 4.1 8.94%

On the conference room task we obtain the best results using a cross-
correlation channel weighting for the MDM condition. For both MDM and SDM
it is best to use an Energy based speech/non-speech detector. On the Lecture
room task some of the meetings only have one speaker, therefore performing
speaker clustering is not suitable for them. We obtain the best results by choos-
ing to perform speaker clustering or just assigning one speaker all the time,
depending on the show name.
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Abstract. The Purdue SAD system was originally designed to identify
speech regions in multichannel meeting recordings with the goal of focus-
ing transcription effort on regions containing speech. In the NIST RT-05S
evaluation, this system was evaluated in the ihm condition of the speech
activity detection task. The goal for this task condition is to separate
the voice of the speaker on each channel from silence and crosstalk. Our
system consists of several steps and does not require a training set. It
starts with a simple silence detection algorithm that utilizes pitch and
energy to roughly separate silence from speech and crosstalk. A global
Bayesian Information Criterion (BIC) is integrated with a Viterbi seg-
mentation algorithm that divides the concatenated stream of local speech
and crosstalk into homogeneous portions, which allows an energy based
clustering process to then separate local speech and crosstalk. The second
step makes use of the obtained segment information to iteratively train
a Gaussian mixture model for each speech activity category and decode
the whole sequence over an ergodic network to refine the segmentation.
The final step first uses a cross-correlation analysis to eliminate crosstalk,
and then applies a batch of post-processing operations to adjust the seg-
ments to the evaluation scenario. In this paper, we describe our system
and discuss various issues related to its evaluation.

1 Introduction

Recently, the research community has begun to collect audio and audio-visual
recordings of meetings in order to investigate more complex human interactions
than dialogs. A number of meeting corpora have recently become available from
several research sites [1, 2, 3, 4]. In a meeting recording, in addition to using
desktop omnidirectional microphones, each participant typically wears a head-
mounted microphone to acquire a high quality audio signal. In this paper, we
describe our system which automatically segments the audio of each individual
channel into transcribable (speech) and non-transcribable (non-speech) portions
with the goal of focusing transcriber effort in order to increase the efficiency of
producing high quality manual transcriptions.

Manual transcription is a time-consuming task. The total processing time for
one hour of audio can be more than ten hours. In a meeting room recording with

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 415–427, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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several participants and strong crosstalk, it is not unusual that audible voice is
ubiquitous on a channel throughout the meeting; however, on average only a
small percentage of that “speech” should be attributed to the local speaker,
and it is only this speech that should be transcribed. With reference to an
automatic segmentation containing transcribable and non-transcribable labels,
the annotators can focus their effort on the transcribable segments and skim over
the remaining non-transcribable segments. Furthermore, an automatic system
can help with challenges such as identification of short duration, low intensity
local speech surrounded by crosstalk with greater intensity than the local speech,
elimination of short spans of crosstalk breaking a longer span of local speech,
or identification of boundaries between local speech and cross-talk speech in
regions where both occur together. In addition, because the transcribers are
able to concentrate on short segments with reference boundaries, they should be
able to produce more accurate transcriptions of these segments [5].

The most pressing challenge for multichannel speech activity detection is the
crosstalk imposed by neighboring speakers. The existence of crosstalk results in
four possible speech activity types including “local speech”, “overlap speech”,
“background speech”, and “silence”. The audible crosstalk can sometimes be
very strong, presenting acoustic characteristics that can be highly confusable
with the local speech. In addition, participants are usually untrained in the use
of close-talking microphones and may produce breath and/or contact noise.

In the literature, there have been several past approaches focusing on seg-
mentation of multiple channels. These methods fall largely into the category of
statistical pattern recognition approaches that require a large training data set
to build the reference models and adopt an ergodic network to model the transi-
tions between different speech activity events. In Liu and Kubala’s method [6],
which was evaluated on two channel telephone speech, channel-specific features
and cross-channel features were concatenated to form the features for the four
cross-channel events, each of which was modeled by a mixture of Gaussian com-
ponents. Pfau et al. [7] proposed a speech and non-speech detector for meeting
audio segmentation using an ergodic hidden Markov model consisting of speech
and non-speech states that were trained separately. The decoding network was
traversed separately on each channel and a post-processing step using short-time
cross-correlation was applied to identify crosstalk and overlap speech in the re-
gions where more than one channel was active in the hypothesis. Wrigley et al.
[8] recently proposed a more sophisticated approach that used a Gaussian mix-
ture model for each of the four speech activity types in meetings and integrated
them into an ergodic hidden Markov model to decode each channel in parallel
on a network that is constrained to allow only reasonable classifications to occur
among the channels.

An issue when producing meeting data is that there is often little or no train-
ing data when efforts begin to transcribe meetings. The training methods used by
the previous studies may lead to a mismatch (e.g., different participants, micro-
phone types, gain settings, meeting layouts and crosstalk strength, background
noise types and strength) between the reference models trained in advance and
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Fig. 1. System Diagram

the distribution of the actual feature space of the new meeting recordings. In our
approach, we address this problem by independently training meeting-specific
models in an unsupervised way. The system flow chart is shown in Figure 1.
A preliminary segmentation is provided by step 1; then in step 2, we train a
Gaussian mixture model for each speech activity event. Note that, rather than
using the four categories previously used in the literature, in our method, “local
speech” and “overlap speech” are modeled together as “local or overlap speech”
for the following two reasons: first, the cross talk in “overlap speech” is usually
negligible considering the dramatic energy difference between the speech from
the local speaker and the background speech from neighboring participants; sec-
ond, there is often insufficient “overlap speech” in a channel to accurately train
a separate model.

This paper is organized as follows. We discuss our system in section 2, focusing
on preliminary segmentation in section 2.1, Gaussian mixture modeling in section
2.2, and post processing in section 2.3. In section 3, we describe the experimental
data set, the performance of our system at various stages, and issues related to
the reference and evaluation metric. The last section concludes this paper.

2 Our Model

2.1 Step 1. Preliminary Segmentation

Preliminary segmentation is an important step for providing the Gaussian mix-
ture modeling process labeled training data. A benefit of the multiple-channel
recording scenario is that it enables us to employ mutual information across the
channels. It is possible to treat each background channel separately; however, for
simplicity we have opted to mix together the audio from the other participants’
microphones to form a single combined channel in this study.
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Silence Detection: Initially, our algorithm separates “silence” from “speech”
(i.e., “local or overlap speech” and “background speech”). Pitch is a good indi-
cator for speech events except for unvoiced regions. A frame is considered to be a
“speech frame” if there is a pitch value defined within the corresponding region
in either of the two channels or if either channel has a log energy value greater
than the mean value of the entire channel, otherwise, it is classified roughly to
be a “silence frame”. Note that the silence detector produces the same segmen-
tation on the local channel and the composite background channel. The “speech
frames” from both channels are concatenated separately to streams of consecu-
tive “speech frames” for the BIC-based Viterbi segmentation described next.

BIC-based Viterbi Segmentation: Here the goal is to divide the “speech
frames” of each channel into “local or overlap speech” and “background speech”.
Average energy in a window is an excellent feature for discriminating between
them. A fixed-size window that is shifted by a constant length could be used
for this purpose; however, such a window can cover frames of both types when
it is placed above a boundary. Chen et al. [9] proposed a Bayesian Informa-
tion Criterion (BIC) to divide an audio stream into homogeneous segments by
maximizing it in a local domain. A point is assumed to be a changing point
if the BIC score of a sequence of vectors being modeled by two Gaussian pro-
cesses against one Gaussian process achieves a maximum that is larger than
zero. Inspired by the penalized log-likelihood function and the Viterbi reestima-
tion introduced in [10], we sought to extend the BIC criterion for global opti-
mization. Let X = XN

1 = {x1, . . . , xN} be the whole feature vector sequence,
and S = {s1, . . . , sL} be a potential segmentation. si = {xti , . . . , xti+li−1}
(t1 = 1, ti+li = ti+1, tL+lL−1 = N) where ti and li are the index of the starting
vector and the number of samples in segment si, respectively. M = {mi, . . . , mL}
is the model set for S = {s1, . . . , sL}. The maximum likelihood function of each
mi and si pair is given by L(si, mi). Then the global BIC score of X being
segmented into S and modeled by M is defined as:

BIC(X, S, M) =
L∑

i=1

log(L(si, mi)) − λ

2
#(M)log(N)

where #(M) is the number of parameters in the model set M = {m1, . . . , mL}.
We assume that the vectors in segment si are drawn from a multivariable Gaus-
sian process mi = N(μi, Σi) with the maximum log-likelihood function (d is the
dimension of the feature space):

log(L(si, mi)) = − li
2

log |Σi| − d × li
2

log(2π) − d × li
2

The global BIC score now can be written as:

BIC(X, S, M)

=
∑L

i=1(− li
2 log |Σi| − d×li

2 log(2π) − d×li
2 ) − λ

2 #(M)log(N)

=
∑L

i=1(− li
2 log |Σi|) − λ

2 #(M)log(N) − d×N
2 log(2π) − d×N

2
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The last two terms are constants given a vector sequence, hence removing them
will not affect the optimization procedure. Finally, we formulate our objective
function as:

BIC(X, S, M) = −
L∑

i=1

(li × log |Σi|) − λ#(M) log(N)

In our experiment, the covariance matrix is assumed to be diagonal and the
penalty λ is set to 2, based on its ability to produce homogeneous segments of
reasonable length on a data set independent of the evaluation data. This final
objective function is maximized by searching for the optimal segmentation set
S = {s1, . . . , sL} through dynamic programming. The whole process is denoted
BIC-based Viterbi segmentation.

Energy-based Clustering: BIC-based Viterbi segmentation produces tiny ho-
mogeneous segments without type labels. We compute the average log energy
of these segments as the clustering feature and then cluster the segments into
“local or overlap speech” or “background speech” based on their energy values,
with the distance metric defined by the diagonal covariance Mahalanobis.

Readjusting the Labels: At this point, both the time aligned “speech frames”
of the local channel and the background channel have their own segment labels.
However, a “background speech” frame in the local channel may not have a cor-
responding “local or overlap speech” frame in the background channel, which
conflicts with the cross-channel constraint. We use the following protocol to re-
fine the local speech frame labels. If a frame is located in a “local or overlap
speech” segment in the local channel, then it maintains its identity, otherwise,
its class will be affected by the label of the corresponding segment in the back-
ground channel. When the background channel is a “local or overlap speech”
segment, the local frame would maintain its class label as “background speech”,
however, it should be changed to “local or overlap speech” in case its log-energy
is higher than the corresponding “background speech” frame in the background
channel. Combining this with the silence detection results, we obtain a prelim-
inary segmentation for the local channel into three classes: “silence”, “local or
overlap speech”, and “background speech”.

2.2 Step 2. Gaussian Mixture Modeling

We next train a Gaussian mixture model with 16 components for each of the three
events using a conventional EM algorithm. An ergodic network is constructed
to model the transitions between events with the topology shown in Figure 2.

Given the network, classification is performed according to the likelihood of a
frame being generated by each Gaussian mixture. It outputs a model sequence
that refines the segmentation boundaries and re-assigns the feature vectors to one
of the three events. These re-assigned labels are used to retrain the GMMs. Four
iterations of training and decoding are employed in our system. The purpose of
this process is to generalize the feature distributions of the events, which could
help to eliminate some outliers and refine the segmentation.
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Fig. 2. Ergodic Network

2.3 Step 3. Post-processing

Next, cross-correlation-based post-processing [7] is applied to the 3-class seg-
mentation. Given two one-dimensional zero-mean data series x[n] and y[n], the
cross-correlation coefficient is calculated as:

CCC(x[n], y[n]) =
E{x[m]y[m]}√

E{x2[m]}E{y2[m]}
We calculate the cross-correlation of cepstra and energy at each dimension and
then take the average as the cross-correlation coefficient between two feature
vector sequences [6]. That is, assuming Xi[n] and Yi[n] as the ith dimension of
two d-dimensional feature vector sequences X [n] and Y [n], then:

CCC(X [n], Y [n]) =
1
d
Σd

i=1CCC(Xi[n], Yi[n])

To compensate for the time delay between the crosstalk speech and the original
speech, a time skew is set to find the maximum cross-correlation coefficient using
the following equation:

CCC(X [n], Y [n]) = max
k

1
d
Σd

i=1CCC(Xi[n + k], Yi[n])

In our system, the window size and the maximum time skew are set to 41 frames
and ±5 frames, respectively. A “local or overlap speech” frame is reclassified to
“background speech” if its log energy (normalized to the range -Emin...1.0 as
in HTK) is lower than that of the background channel and the average cross-
correlation coefficient is higher than 0.35.

A batch of post-processing steps are then applied to refine the resulting seg-
mentation. Given the mean ‘m b’ of the unnormalized log energy of the “back-
ground speech” frames:

– For each “silence” or “background speech” segment, if its average log energy
is greater than that of the background channel and greater than ‘m b’, then
it is reclassified as a “local or overlap speech” segment. This operation is
meant to recover speech that is mistakenly recognized as non-transcribable.

– Then “local or overlap speech” segments shorter than 0.05 seconds are
merged into their neighboring segments to avoid noisy and false speech
segments.
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– Those “local or overlap speech” segments whose length falls in the range
from 0.05 seconds to 0.2 seconds and that have an average log energy lower
than that of the background channel or ‘m b’ are reclassified as “background
speech”. This operation, as well as subsequent processing, is expected to
reduce false alarms.

– Those “local or overlap speech” segments longer than 0.2 seconds that have an
average log energy lower than ‘m b’ are reclassified as “background speech”.

– Merge “silence” and “back speech” segments to silence segments and relabel
“local or overlap speech” as speech.

– Merge silence segments shorter than 0.3 seconds with their neighboring
speech segments to match the smoothing operation in producing the ref-
erence.

– Pad 0.15 seconds to both ends of speech segments that are greater than or
equal to 0.7 seconds. Since there is a 0.25 seconds collar during scoring, it is
safe to pad a certain amount of silence to prevent cutting off the beginning
and ending of words without increasing false alarms. 0.7 seconds is an ex-
perimental threshold set to avoid padding false alarm segments, which tend
to be short in duration.

– Merge silence segments again to eliminate short pauses after padding.

3 Evaluation Results and Discussion

3.1 The Data

Two meetings from each of the following meeting corpora were used in the NIST
RT-05S evaluation: AMI (The AMI Meeting Corpus), CMU (The ISL Meeting
Corpus), ICSI (The ICSI Meeting Corpus), NIST (The NIST Meeting Room
Pilot Corpus), and VT (The VACE Multimodal Meeting Corpus). The partic-
ipants in each of these meetings were recorded with head microphones, thus
enabling the multichannel speech activity detection task. A summary of some of
the properties of the meetings is shown in Table 1.

The meeting domain training and development resources available for this
evaluation are described in [11]. Since our system does not require training data
for the first two steps, we only used the RT-04S evaluation data to adjust the
parameters of our post-processing steps. In our system, for each subject in a
meeting, audio streams of the respective background channels are combined
together to form a single background stream. 23 Mel-frequency cepstrum co-
efficients (MFCC) and the log energy are extracted as the main features every
10ms with a 25ms Hamming window. In addition, the pitch value is computed
at the same time step, and only those with a value between 75Hz and 600Hz are
considered valid.

The data used to evaluate the SAD systems were created in a similar way to
that used for the diarization task (i.e., the “who spoke when” task). First, man-
ually transcribed segments were provided by LDC, such that the start and end
times of each speech segment were set to the nearest tenth of a second and the
pauses longer than 0.5 seconds were separated from the speech segments. The
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Table 1. Evaluation data table and results

AMI CMU ICSI NIST VT
20041210 20050228 20010531 20050412 20050304

recording time -1052 -1615 -1030 -1303 -1300

# of participants 4 4 7 9 5

meeting duration (mins) 16 18 60 51 22

evaluated time (mins) 12 12 12 12 12

NIST metric 6.43% 7.48% 94.18% 24.69% 1.77%

contrastive metric 1.45% 2.23% 13.18% 2.58% 0.3%

20050204 20050301 20011113 20050427 20050318
recording time -1206 -1415 -1100 -0939 -1430

# of participants 4 4 9 4 5

meeting duration (mins) 37 20 57 39 44

evaluated time (mins) 12 12 12 12 12

NIST metric 35.95% 5.07% 58.22% 13.66% 6.99%

contrastive metric 8.96% 1.27% 7.38% 3.42% 0.99%

timing of reference boundaries for the SAD task were derived from these man-
ually transcribed segments. Neighboring segments with no pause of 0.3 seconds
or more between them were bridged together into a single continuous segment.
Non-lexical vocal noises such as laughter, coughing, sneezing, breaths, and lips-
macks were to be classified as silence when constructing segment boundaries.
To account for the timing errors in the reference, no-score time collars of 0.25
seconds were placed around each reference boundary to unscore these regions.

3.2 Analysis of Results

The metric that NIST used for speech activity detection performance involves
both miss and false alarm rates given the reference. An overall error score is
computed as the fraction of speaker time that is not attributed correctly to a
speaker. Table 1 shows the NIST metric score of our system for each meeting,
as well as a contrastive metric score computed as the fraction of the scored time
that is not classified correctly. The overall NIST error across the meetings was

Fig. 3. An example of the impact of cross-correlation analysis (cca) for reducing
crosstalk
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26.95% (miss rate: 8.07%, false alarm rate: 18.89%) and the overall contrastive
metric error was 4.76% (miss rate: 1.41%, false alarm rate: 3.31%).

Our system relies heavily on the performance of the preliminary segmenta-
tion. The first simple silence detection algorithm tends to classify any kind of
noise as speech if its log energy is greater than the average level on the channel.
In subsequent operations, such noise is considered to be equivalent to speech and
cannot be eliminated. Hence, breath sounds are a major source of error for our
system. Although crosstalk is initially detected as speech in the first step, the
large majority of cross talk segments are subsequently reclassified based on the
energy-based clustering of the Viterbi segmentation outputs. Crosstalk is fur-
ther reduced by using the cross-correlation coefficient between the local channel
and background channel, as shown in the example in Figure 3. However, some
crosstalk that does not have a strong correlation with the background speech
remains causing some additional false alarms. The post-processing operations
on the segments were intended to reduce some of the classification errors and
better match the way in which the data was prepared for evaluation (e.g., by
merging short pauses that are included in speech segments in the reference);
however, these steps can also introduce errors.

Although there are remaining issues for us to resolve in building a highly
effective SAD system for ihm type meeting data, there are also issues that need
to be addressed to evaluate such a system most effectively.

The Evaluation Metric: Unlike the SAD task on sdm condition, the per-
centage of speaking time is quite variable among the channels. Given the focus
on speaking time in the NIST metric, across channels the same total amount
of error can lead to very different error rates. For example, suppose there is a
10-minute recording, and two channels that contain 1 minute and 9 minutes of
speaking time in the audio. If a system produces 2 minutes total error in both
cases, regardless of whether it is composed of missed speech or false alarms,
the error rate for the first case would be 9 times larger than the second, and
twice as large as simply classifying the entire stream as silence. Such a metric
can produce an infinite error rate no matter how well a system performs, if the
speaking time is zero. For a second example, suppose there are two recordings
to be evaluated where the first represents only a small portion of the audio for
the second and includes all the speech of the second. In this case, the second
segment is far more challenging. Table 2 shows a histogram of the percentage
of speaking time across the channels as well as the corresponding error rates
obtained by our system using the NIST and contrastive metrics. Although there

Table 2. Error rates given the percentage of speaker time

percentage range 0-100% 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70%

# of channels 55 16 14 15 3 4 2 1

NIST metric 26.95% 245.56% 21.4% 18% 5.76% 15.27% 7.67% 2.58%

contrastive metric 4.62% 7.46% 2.62% 3.90% 1.96% 6.60% 4.41% 1.66%



424 Z. Huang and M.P. Harper

are many factors including the percentage of speaking time that can affect the
system performance, the trend that the NIST metric has a greater error rate
when there is a lower percentage of speaking time is apparent in the table. In
contrast, it is more stable to measure the system performance using the con-
trastive metric. Another alternative to the NIST metric might be separate error
rates for detecting speech and non-speech activities.

Long Pauses and Silence Padding: Although most of the evaluation data is
comprised of accurate reference boundaries, there are several instances of long
pauses (greater than 0.3s) during speech segments and occasional long silence
padding (greater than 0.25s). Since pauses and padding are not handled consis-
tently, it is challenging to post-process system outputs to better match the con-
ditions used to produce the reference. A forgiveness collar partially resolves the
silence padding problem, but its use also prevents systems from being evaluated
near speech boundaries, which should be an important focus of evaluation. Fig-
ure 4 depicts a sample of the channel CMU 20050228-1615 h02 mKHNPEA that
shows the reference segment and our system segmentation. We have evaluated
for this channel how different types of reference boundaries affect the evaluation
of our system. Table 3 illustrates the impact of these reference boundaries given
our system. One possible way of addressing this is to adopt a stricter sense of
where words are and eliminate the use of no-score collars and pause merging.
The benefit would be having a better sense of the issues that need to be resolved
in building a better algorithm. Forced alignment of the transcripts would be one
way of achieving this.

Fig. 4. Long pause and silence padding example

Table 3. Error rates when handling pauses and speech segment boundaries in dif-
ferent ways: the original reference boundaries with no-score collars, close boundaries
(obtained by separating pauses from the original speech reference segment and mov-
ing the boundaries as close as possible to the word ends (within 0.1s)), and smooth
boundaries (obtained by merging neighboring segments within 0.3s of each other given
the close boundary reference)

Reference type scored speaker time missed speech false alarms NIST metric

original boundary 136.79s 19.91s 0.76s 15.15%

close boundary 84.35s 3.43s 3.53s 8.26%

smooth boundary 96.43s 5.04s 2.15s 7.46%
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Breath and Other Vocal Noise: For a SAD system, one may wish to lo-
cate the words spoken by a person, while ignoring the non-speech noises such as
laughter, coughing, sneezing, breath sounds, and lipsmacks. Another alternative
is to locate everything attributable to a speaker and then the non-speech events
can be eliminated later either manually or automatically. However, it is impor-
tant that this is handled consistently. Laughter was transcribed and classified as
speech in the evaluation. Breath was transcribed and classified as speech when
it was near speech, but otherwise not. This leads to a situation where breaths
are sometimes classified as speech and sometimes not, making them difficult to
address in a consistent manner.

A Focused Performance Analysis: Our system was originally designed for
and evaluated on the multiple channel data produced under KDI (captured with
boom mics) since we had a high quality ground truth, and then adjustments were
made to support transcription of the earliest captured VACE meeting recordings.
Since our algorithm has been applied effectively to recording conditions compa-
rable to the two VT meetings in the evaluation set, it is not surprising that our
system obtains the best results on them. The VT data contains a significant
amount of crosstalk, with some having a strong amplitude challenging to sys-
tem performance. Here we present the system performance using the contrastive
metric at various stages in our multistep approach to highlight the impact of
each step. In order to evaluate the intermediate segmentations consistently with
the final segmentation, we apply the post-processing operations that follow the
cross-correlation analysis described in 2.3 to the intermediate segmentations be-
fore we evaluate them.

As shown in the table, at each stage our system finds and refines the bound-
aries gradually, and finally it reaches an overall error rate of 0.64%. It would be
desirable for the missed speech and the false alarms to decrease monotonically;
however, we have observed that on some data sets there is a tradeoff between
them. The system performance and the capacity of improvement of each step
depends heavily on how the reference segments are obtained and how the system
is evaluated on the reference.

To get a sense of how the reference and the no-score collar affect system
performance, we have evaluated our system on reference segmentations that
were obtained after the evaluation by forced-alignment of the transcription1.
Results appear in Table 5. Although the forced-alignments are not hand-fixed
and so are not 100% correct, they provide a relatively more precise gold standard
with respect to the location of speech and non-speech activities. Given that the
merging and deleting post-processing operations were developed for the NIST

1 Forced-alignment of transcriptions is an important step in creating the VACE Mul-
timodal Meeting Corpus. Transcribable and non-transcribable segmentations of a
channel are first produced using the method described in this paper, then tran-
scribers produce transcriptions for the speech segments and make minor adjustment
of the segmentation if needed. Automatic forced-alignments are obtained using these
transcriptions with careful handling of the OOV words, and only segments containing
words are considered as speech.
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Table 4. Performance at each stage on the VT meetings

missed speech false alarms contrastive metric
Preliminary segmentation 0.56% 1.38% 1.93%

Gaussian mixture modeling 0.45% 1.33% 1.78%

Post-processing 0.50% 0.14% 0.64%

Table 5. System performance with and without post-processing using different types
of references. MS stands for “missed speech”, FA for “false alarm”, and CM for “con-
trastive metric”. FoA is the reference derived directly from forced-alignments, and REF
is the original reference used in the evaluation. The first two rows are evaluated with-
out no-score collars, and the last two rows are evaluated with no-score collars of 0.25
seconds.

No post-processing W/ post-processing
MS FA CM MS FA CM

FoA 1.11% 0.97% 2.09% 0.16% 3.12% 3.27%

REF 4.21% 0.26% 4.47% 1.58% 0.74% 2.32%

FoA with C 0.38% 0.42% 0.80% 0.00% 0.42% 0.42%

REF with C 2.70% 0.22% 2.92% 0.50% 0.14% 0.64%

reference setup, we examine our system performance with and without these
steps. We can see that if we use the forced-alignments as the gold standard,
then these steps introduce errors, although they do help a lot when the original
reference (REF) is used. We also observe that when the no-score collars are added
these post-processing operations become essential even for the forced-alignment
gold standard.

4 Conclusions

In this paper, we have presented a multichannel speech activity detection algo-
rithm for meeting room recordings. The property that it requires no training
data makes it especially useful for dividing audio collections into speech and
non-speech segments when preparing to transcribe audio for a new meeting room
corpus. We have also discussed several issues related to effective evaluation of a
SAD system and have shown the importance of careful development of the gold
standard reference and evaluation metrics to support future research. In future
work, we will focus on further increasing the accuracy of detecting crosstalk and
incorporate methods to better handle non-speech noise.
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Abstract. This paper presents different pre-processing techniques, cou-
pled with three speaker diarization systems in the framework of the NIST
2005 Spring Rich Transcription campaign (RT’05S).

The pre-processing techniques aim at providing a signal quality index
in order to build a unique “virtual” signal obtained from all the micro-
phone recordings available for a meeting. This unique virtual signal relies
on a weighted sum of the different microphone signals while the signal
quality index is given according to a signal to noise ratio.

Two methods are used in this paper to compute the instantaneous
signal to noise ratio: a speech activity detection based approach and
a noise spectrum estimate. The speaker diarization task is performed
using systems developed by different labs: the LIA, LIUM and CLIPS.
Among the different system submissions made by these three labs, the
best system obtained 24.5 % speaker diarization error for the conference
subdomain and 18.4 % for the lecture subdomain.

1 Introduction

The goal of speaker diarization is to segment an N-speaker audio document in
homogeneous parts containing the voice of only one speaker and to associate the
resulting segments by matching those belonging to the same speaker. In speaker
diarization the intrinsic difficulty of the task increases according to the target
data: telephone conversations, broadcast news, meeting data.

This paper is related to speaker diarization on meeting data in the framework
of the NIST 2005 Spring Rich Transcription (RT’05S) campaign. Meeting data
present three main specificities compared to broadcast news data:

• meeting conversations are recorded with multiple microphones which implies
redundancies and different qualities of the same speech recording. The use
of information from all channels seems to be an important issue;

• the meeting room recording conditions associated with distant microphones
lead to noisy recordings, including background noises, reverberations and
distant speakers;
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• the speech is fully-spontaneous, highly interactive and presents a large num-
ber of disfluencies as well as speaker segment overlaps.

This paper is focused on the extraction of pertinent information issued from
the different multiple microphone recordings in the particular task of speaker
diarization. Indeed, signal processing techniques are applied on the different
distant microphone signal recordings in order to determine pertinent portions
of signal and to build a unique “virtual” signal. This virtual signal is then used
as input for the speaker diarization systems. Basically, the unique virtual signal
is based on a weighted sum of the multiple microphone signals. The weights of
this sum are estimated according to a signal quality index based on a signal to
noise ratio estimate.

Two main factors will be studied in this paper. First, the efficiency of the pre-
processing techniques to build a unique virtual signal in the context of speaker
diarization will be investigated. Then, the focus will be on how well systems that
were tuned with broadcast news data only can handle meeting data. Concerning
the last point, different speaker diarization systems will be tested in this study.
Developed in three different labs: the LIA, LIUM and CLIPS, these systems
have been tuned and evaluated during the French ESTER Rich Transcription
evaluation campaign. This campaign, organized in January 2005 and sponsored
by the French ministry, was dedicated to Broadcast news data [1]. No particular
tuning of the systems was made on meeting data in order to evaluate whether a
reliable pre-processing on multi-channel recordings may be sufficient in order to
maintain performance.

Finally, the RT’05S evaluation campaign has initiated a new task, based on
the Speech Activity Detection (SAD). This processing is classically implemented
in both the speech transcription and speaker diarization systems but never scored
individually. This paper will present the SAD system proposed by the authors
for the RT’05S evaluation campaign and their results.

Section 2 presents the Speech Activity Detection algorithm. Section 3 is ded-
icated to the pre-processing techniques used in order to obtain a unique signal
from the multi-channel recordings. In section 4, the LIA, LIUM and CLIPS
speaker diarization systems are presented, followed by a brief description of all
the systems submitted for the RT’05S evaluation campaign. Section 5 presents
the experimental protocols and results, and finally, section 6 concludes this
work.

2 Speech Activity Detection Task

Considered until now as only a sub-part of speech transcription or speaker di-
arization systems, Speech Activity Detection has been evaluated in the RT’05S
evaluation campaign as an entire task.

Speech Activity Detection is not trivial in a multiple microphone environment.
For instance, the portions of silence might be different from one microphone to
another. Besides, energy based SAD systems have some difficulties in dealing
with background voices.



430 D. Istrate et al.

The Speech Activity Detection (SAD) system, used by most of the systems
presented in this paper, was developed by the LIA. It is based on the ALIZE
platform [2] and relies on two passes: (1) to apply a speech activity detector
process on each individual channel for a given meeting, provided speech and
non-speech segments; (2) to keep the non-speech segments, shared over ALL the
channels. The speech activity detector process used in the first pass is based on
the speech energy modeling and works as follows:

1. the log spectral energy is computed through at a 10ms rate;
2. The energy values are first normalized using a mean removal and a variance

normalization in order to fit a 0-mean and 1-variance distribution;
3. They are then used to train a three component GMM, which aims at selecting

speech frames. Indeed, X% of the most energized frames are selected through
the GMM, with: X = w1 + (λ ∗ α ∗ w2) where: w1 the weight of the highest
(energy) gaussian component, w2 the weight of the middle component, λ an
integer ranging from 0 to 1, α a weighting parameter, empirically fixed to 0.6
on the development set. The value of λ is decided according to the likelihood
loss when merging the gaussian components 1 and 2 and the components 2
and 3. If the loss is higher for components 1 and 2, λ is set to 0 else to 1;

4. Once all the frames of a signal are labelled as speech or non-speech and
concatenated to form segments according to their labels, a final process is
applied in order to refine the speech detection. This last process is based on
two morphological rules, which consist in constraining the minimum duration
of both the speech and non-speech segments (minimum length is 0.3s).

3 Meeting Pre-processing Algorithms

Meeting signals are recorded in smart rooms i.e. a room equipped with several
audio and video captors as well as multimedia output devices (video projectors,
multi-stereo audio outputs...). According to the distant microphone position in
the table, the quality of signal may hugely differ from one microphone to another.
For instance, the main speaker utterances may be caught by one or two distant
microphones while the other microphones mainly provide background voices,
long silence periods, or background noise only. The aim of this pre-processing
system is to use redundant channel information in order to extract pertinent
information for an enhanced output virtual signal.

This output signal is a weighted mix of all channels available for a given
meeting. For each channel a quality measure (signal to noise ratio - SNR) is
estimated in order to adapt channel weights. The sum of weights is equal to 1
and the channel weights wi are computed following equation (1), where N is the
number of channels.

wi = SNRi/
N

j=1

SNRj (1)

To obtain a reliable quality measure, it is necessary to estimate the noise energy,
for which two methods have been considered: the use of a speech activity detector
(SAD) and the noise spectrum estimate.
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Fig. 1. Example of SNR estimate

If a speech activity detector is used, the labelled non-speech segments are
used to compute the average noise energy Enoise for each channel. The SNR is
estimated at each 32ms on frames of 64ms (L=1024 samples) using equation (2).

SNR = 10 log10

L

i=0

s2
i − Enoise /Enoise [dB] (2)

where si is a signal sample at instant i.
In the second case, an estimate of the noise spectrum is used in order to

discard the speech activity detector errors and to have an instantaneous noise
energy value instead of an averaged one. The algorithm is based on a minimum
statistics tracking method [3]. Assuming the noisy speech power is the sum-
mation of clean speech and background noise power, tracking power spectral
minima can provide a fairly accurate estimate of the background noise power
and then a good estimate of SNR [4]. Also, by tracking minimum statistics, this
algorithm can deal with nonstationary background noise with slowly changing
statistical characteristics. The noise spectrum is estimated every 2s using sig-
nal power spectrum histogram. An example of signal to noise ratio estimate
for a part of channel 1 signal from “NIST 20020305-1007” file is presented in
Figure 1.

In this case, the SNR is estimated using the signal power spectrum and noise
power spectrum, like in equation (3).

SNR = 10 ∗ log10

⎛⎝ M∑
i=0

S̃i/

M∑
j=0

Ñj

⎞⎠ (3)

where S̃i is signal spectral amplitude at frequency i and Ñj is noise spectral
amplitude at frequency j.

In order to evaluate the influence of these pre-processing techniques, an un-
weighted mix (wi = 1

N ) has also been computed.
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4 Speaker Diarization Systems

Three speaker diarization systems are involved in this work, developed by the
LIUM, CLIPS and LIA laboratories individually. Two of them, the LIUM and
CLIPS systems, are based on a classical speaker turn detection followed by a
clustering phase. For the LIA system, both the speaker turn detection and the
speaker clustering are performed simultaneously by using a E-HMM based ap-
proach as described in the next section.

No particular tuning on the meeting data has been carried out for these
systems to participate at the RT’05S evaluation campaign. Indeed, all these
speaker diarization systems have participated at the French Rich Transcription
evaluation campaign ESTER. Testing these systems on meeting data without
any further tuning will allow the evaluation of their robustness to environment
changes, especially if pre-processing techniques are applied beforehand on mul-
tiple microphone signals in order to extract pertinent information.

4.1 The LIA System

The LIA speaker diarization system has been entirely developed by using the
ALIZE toolkit (freely available thanks to an open software licence), released by
the LIA and dedicated to speaker recognition [5]. Its performance has been eval-
uated firstly during the ESTER evaluation campaign on Broadcast News data.
The core of the system is built on a one-step segmentation algorithm implying an
E-HMM (Evolutive HMM) [6, 7]. Each E-HMM state characterizes a particular
speaker and the transitions represent the speaker changes. All possible changes
between speakers are authorized. In this context, the segmentation process has
4 steps:

1. Initialization: A first model, named L0, is estimated on all speech data.
The HMM has one state, L0 state.

2. New speaker detection: A new speaker is detected in the segments la-
belled L0 as follows: a segment is selected among all the L0 segments accord-
ing to the likelihood maximization criterion. This selected segment is then
used to estimate the model of the new speaker, named Lx, which is added
to the HMM.

3. Adaptation/Decoding loop: The objective is to detect all segments be-
longing to the new speaker Lx. All speaker models are re-estimated through
an adaptation process according to the actual segmentation. A Viterbi de-
coding pass is done in order to obtain a new segmentation. This adapta-
tion/decoding loop is re-iterated while the segmentation is not stable.

4. Speaker model validation and stop criterion: The current segmenta-
tion is analyzed in order to decide if the new added speaker, Lx, is relevant.
In this case the decision is made according to heuristical rules on speaker Lx

segment duration. The stop criterion is reached if there is no more segment
available in L0. However, if the contrary, the process goes back to the step 2.

Finally, a resegmentation process is applied, which aims at refining the bound-
aries and at deleting irrelevant speakers (e.g. speakers with too short speech
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segments). This stage is based only on the third step of the segmentation pro-
cess. A HMM is generated from the segmentation and the adaptation/decoding
loop is launched. At the end of each iteration, speakers with too short duration
are deleted.

Concerning the front end-processing, the signal is characterized by 20 lin-
ear cepstral features (LFCC), computed every 10ms using a 20ms window. The
cepstral features are augmented by energy. No frame removal or any coefficient
normalization is applied at this stage.

The entire speaker segmentation process is largely described in [8].

4.2 The LIUM System

The LIUM speaker diarization system is based upon a BIC framework similar
to [9, 10], composed of three modules:

1. signal split into small homogeneous segments: the initial segment
boundaries are determined according to a Generalized Likelihood Ratio
(GLR) computed over two consecutive windows of 2s sliding over the signal.
No threshold is employed, except for the minimal segment length which is
set to 2.5s. The signal is over-segmented in order to minimize miss detection
of boundaries, but the minimum segment length is set long enough for a
correct estimate of a speaker model using a diagonal Gaussian;

2. speaker clustering without changing the boundaries: The clustering is
based upon a bottom-up hierarchical clustering. In the initial set of clusters,
each segment is a cluster. The two closest clusters are then merged at each
iteration until the BIC stop criterion is met. The speaker, ie the cluster,
is modeled by a full covariance Gaussian as in the segmentation process.
The BIC penalty factor is computed over the length of the two candidate
clusters instead of the standard penalty computed over the length of the
whole signal [11]. To minimize the clustering time, a first pass of clustering
is performed only over adjacent clusters. The λ parameter (eq. 4) is fixed to
2 for the first pass and to 7.5 for the second pass;

3. boundaries adjustment: a Viterbi decoding is performed to adjust seg-
ment boundaries. A speaker is modeled by a one-state HMM containing a
diagonal covariance GMM of 8 components learned by EM-ML over the set
of speaker segments. The log-penalty of switching between two speakers is
fixed experimentally to 100.

Concerning the front end-processing, the signal is characterized by 12 mel cep-
stral features (MFCC), computed every 10ms using a 20ms window. The cepstral
features are augmented by energy. No frame removal or any coefficient normal-
ization is applied at this stage.

4.3 The CLIPS System

The CLIPS system is based on a BIC [12] (Bayesian Information Criterion)
speaker change detector followed by a hierarchical clustering. The clustering
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stop condition is the estimate of the number of speakers using a penalized BIC
criterion. Whereas the LIUM system clusters homogeneous segments, the CLIPS
system clusters segments, which result from a first speaker change detection pass
as follows:

1. speaker change detection: a BIC curve is extracted by computing a dis-
tance between two 1.75s adjacent windows that go along the signal. Mono-
component Gaussian models with diagonal covariance matrices are used to
model the two windows. A threshold is then applied on the BIC curve to find
the most likely speaker change points which correspond to the local maxima
of the curve;

2. speaker clustering: Clustering starts by first training a 32 component
GMM background model (with diagonal covariance matrices) on the entire
test file maximizing a ML criterion thanks to a classical EM algorithm.
Segment models are then trained using MAP adaptation of the background
model (means only). Next, BIC distances are computed between segment
models and the closest segments are merged at each step of the algorithm
until N segments are left (corresponding to N speakers in the conversation).

3. clustering stop criterion: the number of speakers (NSp) is estimated using
a penalized BIC. The number of speakers is constrained between 1 and 15.
The upper limit is related to the recording duration. The number of speakers
(NSp) is selected to maximize equation (4).

BIC(M) = log L(X ; M) − λ(m/2)NSp ∗ log(NX) (4)

where M is the model composed of the NSp speaker models, NX is the total
number of speech frames involved, m is a parameter that depends on the
complexity of the speaker models and λ is a tuning parameter equal to 0.6.

The signal is characterized by 16 mel Cepstral features (MFCC) computed
every 10ms on 20ms windows using 56 filter banks. Then the Cepstral features
are augmented by energy. No frame removal or any coefficient normalization is
applied here.

The entire speaker segmentation process is largely described in [8].

4.4 Proposed Systems

Different systems have been submitted for the RT’05S campaign. All rely on the
following scheme - composition of 3 modules - as summarized in table 1:

1. The pre-processing module can consist in applying:
• either the weighted mix of the multiple microphone signals in which

channel weights depend on SNR, estimated either using the speech ac-
tivity detector (Weighted Mix - SAD) or by applying the noise spectrum
algorithm (Weighted Mix - Noise spectrum).

• or a simple unweighted mix of the multiple microphone signals (Mix).
2. a speaker diarization module, which can be based on the LIA, LIUM or

CLIPS systems.



NIST RT’05S Evaluation 435

3. the LIA resegmentation process (described in section 4.1) since different
studies have shown that a resegmentation phase leads to performance im-
provement [13, 14, 15, 5].

Table 1. Proposed diarization systems

Systems Pre-processing Seg/Re-Seg

WMixSpectrum Weighted Mix - Noise spectrum LIA/LIA
WMix Weighted Mix - SAD LIA/LIA
MixLIA Mix LIA/LIA
MixCLIPS Mix CLIPS/LIA
MixLIUM Mix LIUM/LIA

5 Experiments

This section presents the protocols and results obtained by the different tech-
niques proposed in this paper and submitted to the RT’05S evaluation campaign.

5.1 Protocols

For RT’05S, the speaker diarization task was evaluated on two subdomains:
recordings issued from conference rooms (similar to RT’04S) and from lecture
rooms. As for any evaluation campaign, two corpora were available:

• a development corpus: composed of RT’04S development and evaluation cor-
pora (12 meetings of about 10mn each), plus some additional meetings in-
cluding new recording sites.

• two evaluation corpora, one for each subdomain, composed of 10 meetings
of about 10mn each for the conference subdomain and 29 meetings of about
3mn each for the lecture subdomain.

In this paper, only the RT’04S data (development and evaluation) is used
as the development corpus, and will be referred to as dev corpus in the next
sections. On the other hand, the RT’05S evaluation data will be referred to as
eva−conf for conference data and eva−lect for lecture data in the next sections.

Analysis of the different corpora leads to the following observations. Regarding
the dev corpus, we may note the presence of short silence periods, which implies
some difficulties to estimate the noise spectrum or the noise energy, low SNRs
(minimum average SNR -5.4 dB; 23.75% of files with SNR < 0 dB and 65% of
files with SNR < 3 dB), a variable recording level and a bad use of the input
scale (a file with a maximum level of 2% of scale and 58.75% of files with a
maximum level <50% of scale), and finally several speakers with overlapped
speaking segments.

Some similar observations can be made on the eva − conf corpus (same sub-
domains as the dev corpus): short silence periods, with similar consequences,
low SNRs (minimum average SNR -1.95 dB; 7.5% of files with SNR < 0 dB and
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6.2% of files with SNR < 3 dB), a variable recording level and a bad use of the
input scale (a file with a maximum level of 11% of scale and 35% of files with a
maximum level <50% of scale), and several speakers with overlapped speaking
segments.

Finally, the eva−lect corpus reveals some marginal characteristics, enforced by
the shortness of the utterances: low SNR (minimum average SNR -2.1 dB; 6.2%
of files with SNR < 0 dB and 15.17% of files with SNR < 3 dB), predominantly
one speaker per record, and better use of input signal scale.

5.2 Results and Discussion

SAD task. Table 2 shows the performance of the Speech Activity Detection
system on the eva − conf and eva − lect corpora in terms of Missed Speaker
Error (MiE) and False Alarm Speaker Error (FaE) rates.

Table 2. Results of SAD on RT’05S

Task MiE FaE

eva − conf 5.3 2.1

eva − lect 5.4 1.2

We can observe that the SAD obtains comparable performance on the eva −
conf and eva − lect test sets but presents, on both, large Missed Speaker Error
rates (≈5.4%). For comparison, the best SAD system has obtained about 5% in
terms of both Missed and False Alarm Speaker error rates during the RT’05S
campaign.

Speaker diarization task. Experiments presented in this section aim at com-
paring the performance of the pre-processing techniques proposed in this pa-
per when combined with the LIA speaker diarization system (WMixSpectrum,
WMix and MixLIA) as well as at evaluating the robustness of broadcast news
speaker diarization systems on the Meetings recordings (MixLIA, MixCLIPS and
MixLIUM ).

First, all the submitted speaker diarization systems have been evaluated on
the dev corpus as presented in Table 3. Here, the system performance is expressed
in terms of Missed speaker Error (MiE), False Alarm speaker Error (FaE) and
Speaker Diarization Error (SDE) rates (the latter include both the MiE and FaE
rates as well as the speaker error rate). Details on each meeting are provided as
well as the global performance on the dev corpus.

The use of the multi-channel information (WMixSpectrum and WMix ), ex-
tracted thanks to the pre-processing techniques does not improve globally the
speaker diarization performance on the dev corpus but obtains very close re-
sults from the baseline system (simple sum of the multiple microphone signals:
MixLIA). Nevertheless, signal analysis shows that the pre-processing algorithms
improve the global SNR of resulting virtual signals; for example, in the case of
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Table 3. Results on development corpus (dev)

Meetings
SAD WMixSpectrum WMix MixLIA MixCLIPS MixLIUM

MiE FaE SDE SDE SDE SDE SDE

CMU 20020319-1400 0.5 5.5 57.9 57.9 57.9 46.9 46.9

CMU 20020320-1500 0.1 5.3 20.2 20.2 20.2 18.5 18.5

ICSI 20010208-1430 0.4 3.1 16.5 17.0 19.3 22.5 13.4

ICSI 20010322-1450 0.4 1.4 19.6 13.6 16.7 17.0 24.6

LDC 20011116-1400 0.4 2.9 4.5 15.4 8.0 6.9 7.8

LDC 20011116-1500 0.4 1.6 18.7 12.2 8.1 15.8 13.3

NIST 20020214-1148 0.2 8.1 25.4 16.8 17.3 22.8 27.2

NIST 20020305-1007 0.0 3.5 33.0 47.8 44.6 9.4 19.0

CMU 20030109-1530 0.1 0.7 34.2 34.2 34.2 27.9 32.2

CMU 20030109-1600 2.5 1.3 33.5 33.5 33.5 20.7 33.5

ICSI 20000807-1000 0.0 3.6 21.2 17.1 16.2 17.1 16.3

ICSI 20011030-1030 0.0 3.4 41.4 37.0 32.3 51.8 49.4

LDC 20011121-1700 0.0 2.2 32.0 6.7 3.3 28.7 39.6

LDC 20011207-1800 0.0 8.6 26.5 40.3 44.2 35.7 34.7

NIST 20030623-1409 0.0 1.1 18.9 18.4 24.7 30.5 11.6

NIST 20030925-1517 0.4 16.3 64.3 52.0 51.8 70.7 48.6

Global performance 0.3 4.1 27.8 26.6 26.2 25.7 26.0

LDC 20011121-1700 meeting the unweighted mix leads to a global SNR of -3.88
dB (SNR∈ [-10.1;2]dB) to be compared with -0.1 dB (SNR∈ [-6.2;5.69]dB) for
the Weighted Mix - SAD algorithm and with -0.59 dB (SNR∈ [-5.0;5.34]dB) for
the Weighted Mix - Noise spectrum algorithm. The improvement of the SNR on
the unique virtual signal does not seem to be helpful for the speaker diarization
systems.

Table 4 presents the official results obtained on the RT’05S evaluation corpus
for both the conference (eva−conf corpus) and lecture room (eva− lect corpus)
recordings (the WMixSpectrum system has not been applied on the conference
subdomain test set for the evaluation campaign). The best results have been
obtained using the two proposed pre-processing techniques as opposed to the
results reached on the RT’04S Meeting data (dev corpus). The comparison be-
tween the simple unweighted sum method and the weighted ones shows a gain of
15% relative on the eva − conf corpus and of 56% on the eva − lect. The better
quality, in terms of SNR, of RT’05S data can explain the better performance of
the systems based on weighted sums. In fact the same SNR gain observed on
both RT’04S and RT’05S does not have the same influence in terms of speaker
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Table 4. Official results reached for the RT’05S (on eva-conf and eva-lect corpora)

Show
SAD WMixSpectrum WMix MixLIA MixCLIPS MixLIUM

MiE FaE SDE SDE SDE SDE SDE

eva-conf 4.0 3.0 - 24.5 27.7 25.0 30.5

eva-lect 5.6 1.3 18.4 21.4 34.2 35.3 20.0

diarization performance according to the initial signal quality. This result tends
to demonstrate the relevance of the proposed strategy: designing a virtual signal
based on a weighted sum of the multiple microphone recordings.

Concerning the robustness of the different speaker diarization systems against
environment changes, it may be observed that their overall performance has sig-
nificantly decreased on meeting data (about 21% Speaker Error rate) compared
with broadcast news (about 12% Speaker Error rate [1] for the French ESTER
evaluation broadcast news corpus), even though it is often difficult to compare
results obtained on different databases.

Unfortunately, pre-processing techniques applied on multiple microphone sig-
nals do not seem to be sufficient to deal with meeting data issues and to avoid
specific speaker diarization systems.

6 Conclusions

This paper is concerned with the speaker diarization task in the specific context
of meeting data. More precisely, the focus is made on the handling of multiple
microphone signals available per meeting. In this framework, a novel approach is
experimented based on the rebuilding of a unique and virtual signal, composed
of the most pertinent portions of signals issued from the different multiple mi-
crophone recordings. The extraction of these pertinent portions is carried out
according to a signal quality index using the signal to noise ratio estimate.

Coupled with different speaker diarization systems developed by three differ-
ent labs: the LIA, LIUM and CLIPS, the proposed approach has been submit-
ted for the NIST 2005 Spring Rich Transcription evaluation campaign (RT’05S).
According to the results obtained on the RT’05S evaluation, the use of this pre-
processing strategy, which takes advantage of the multi-channel information,
seems to have a slight positive influence on the speaker diarization performance.

This study was also focused on the behavior of speaker diarization systems,
tuned on broadcast news and tested on meeting data. One assumption was that
the application of the pre-processing techniques and the production of the unique
and virtual signal would be sufficient to ensure similar performance between
broadcast news and meeting corpora. Nevertheless, the level of performance is
quite different between both of them. Even though the pre-processing techniques
proposed in this paper may still be improved to provide more pertinent virtual
signal, further investigation has to be done to study the other particularities
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of the meeting data (like spontaneous speech, overlap, ...), which are widely
responsible for perturbations of the speaker diarization systems.
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Abstract. The TNO speaker speaker diarization system is based on
a standard BIC segmentation and clustering algorithm. Since for the
NIST Rich Transcription speaker dizarization evaluation measure correct
speech detection appears to be essential, we have developed a speech
activity detector (SAD) as well. This is based on decoding the speech
signal using two Gaussian Mixture Models trained on silence and speech.
The SAD was trained on only AMI development test data, and performed
quite well in the evaluation on all 5 meeting locations, with a SAD error
rate of 5.0 %. For the speaker clustering algorithm we optimized the
BIC penalty parameter λ to 14, which is quite high with respect to
the theoretical value of 1. The final speaker diarization error rate was
evaluated at 35.1 %.

1 Introduction

TNO has been interested in the specific task of speaker diarization for quite
some time, as many of the applications we potentially deal with cannot assume
homogeneous speaker identities in sound recordings. One of our first implemen-
tations has been for the domain of Dutch broadcast news, and has been based on
the BIC segmentation algorithms developed by researchers at IBM, specifically
on what Chen and Gopalakrishnan developed for the DARPA sponsored NIST
Broadcast News Transcription benchmark evaluation in 1997 [4] and what later
has been refined in Ref. [15]. Our speaker segmentation implemetation was not
used for speaker adaptation of acoustic models for speech recognition, but rather
for making it possible to have an on-line demonstration of spoken document tran-
scription using our Dutch speech recognition system.1 Indeed, the demonstration
system has been running autonomously since August 2001, showing online speech
recognition results with a typical latency of about a few minutes. Speaker seg-
mentaton is not only usful for displaying results in more-or-less sensible chunks
of information, but is essential for dealing with a continuous stream of acoustic
information such as a radio broadcast. Moreover, the underlying technology we
used, the Abbot speech recognition system [14], fuses a time-reversed feature
stream processing with the normal feature stream in order to model acoustic
1 See http://speech.tm.tno.nl/radio1/ .
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context in both time directions. The feature stream can only be reversed after
an endpoint has been defined by a speech segmentation method, and we found it
a nice architectural design to use a speaker segmentation system for doing this
speech segmentation task.

With TNO’s involvement in the EU-sponsored project AMI, the speech tech-
nology group decided to renew our efforts in automatic speaker segmentation
and clustering, now in the domain of meeting recordings. This happens now in
a broader context of speaker recognition, in which we have improved our own
system a lot in recent NIST speaker recognition evaluations. Participating in
NIST evaluations has proved to be of enormous benefit to us, not only in or-
der to improve our own system and try and perform better each year within a
better-performing group of peer systems, but also in order to better understand
the essential problems of the task and evaluation metrics. We traditionally have
had interest in the problem of evaluation itself, and specifically in drawing par-
alels between machine and human performance, both in absolute comparison
and methods of analysis of results.

This paper describes our system as it was used to submit results to the NIST
2005 Rich Transcription spring evaluation [6]. Although we do not present new
algorithms, in lieu of development time, we will try to document the implemen-
tation and experiences carefully, so that other researchers who may decide to
start research in this field may benefit from them.

We will first describe our speech activity detection system, which has func-
tioned as an input to the speaker segmentation and clustering system that will be
described afterwards. Initially we will clarify the data we used for development
testing.

2 Development Test Data

Because we initially didn’t have access to the RT04s evaluation material (some-
thing which was corrected later), but had development test data of 10 AMI
meetings, we worked with five AMI meetings as training material, and used the
other for development testing, as shown in Table 1. For development of our SAD
system, we had unfortunately decided to use the SAD reference file that was
distributed with the AMI development test data. As was pointed out later by
Xavier Anguera of ICSI, these contained a lot of errors, and we should have
used the speaker diarization reference files instead. We did use the corrected
SAD reference files of the training partition of AMI meetings for building silence
and speech models for the SAD system. We also used the test split of AMI for
parameter tuning of the speaker diarization system.

About a week before the evaluation deadline we received the RT04s evaluation
data for development testing. We found that the SAD system trained on AMI
data alone performed fairly well on these meetings. We used the RT04s material,
exluding the CMU meetings, for checking that the AMI-tuned parameters of the
speaker diarization system were working for these meetings as well.

In all experiments and submissions we used information from only one of
all available microphones. We chose the lowest numbered microphone, so that
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Table 1. The split of AMI development test meetings in training and development
testing evaluation material

Training Testing
ES2002a ES2002c
ES2002d ES2009b
ES2009c ES2009d
IS1009a IS1009b
IS1009c IS1009d

our ‘multiple distant microphone’ submission can be considered ‘single distant
microphone’ as well.

3 Speech Activity Detection System

Our first attempts in speaker diarization were based on a Broadcast News seg-
mentation system that we have developed a number of years ago. One of the
ways in which this domain differs from the meeting domain is that there are
hardly any ‘silences.’ There are frequent interruptions in speech, but these are
usually filled with music, jingles, tunes, or other acoustic events. The basic BIC
segmentation method works not specifically for speech alone, and we have found
that it performed satisfactorily to segment out short filled non-speech events.
However, when applied to meeting data with significant amounts of silence, we
found BIC did not do a good job of finding the silence segments and clustering
them together. Moreover, since BIC works completely without acoustic training,
BIC does not classify any silence clusters as non-speech. This is detrimental to
speech diarization error rate (SDE), which for simple cases can be expressed as∫

C(wrong speaker) dt∫
C(any speaker) dt

(1)

where C denotes classification per time unit (e.g., frame). When in a meeting
of duration T only Ts time was spoken by any of the speakers, and no speech
activity detection is operational, this translates to false alarm time Tfa = T −Ts

and missed speech time Tmiss = 0, which results in a minimum achievable SDE
of

T − Ts

Ts
. (2)

For Ts/T ≈ 2/3, which is a normal value in development test meetings, the
minimum diarization error ≈ 50 %, a number that can only grow if segmentation
and clustering are not perfect. Thus the need for speech activity detection (SAD),
as was also recognized by the community [7], caused the decision to include SAD
as a separate task this year.

Our first attempts in SAD were based on the energy of the signal. Quite con-
trary to telephony data, such as is used in NIST speaker recognition evaluations,
this tends not to work at all for distant microphones used in the meeting domain.
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For instance, accepting all speech frames with an energy above a meeting-specific
level which is 30 dB below the maximum energy lead to a SAD error of 52%.

In a second attempt we used the Sonic speech recognition system [12] for
segmenting into speech and non-speech fragments. We built two ‘phone’ Hid-
den Markov Models (HMMs) for ‘speech’ and ‘non-speech.’ Although training
seemed to proceed normally we could not find decoder settings that would out-
put anything, i.e., output files were empty. Because Sonic is designed to be used
as large vocabulary speech recognition system it may be that the parameter
setting range did not include the proper settings for a two-phone loop grammar.

In a last attempt we trained two Gaussian Mixture Models (GMMs) for
‘speech’ and ‘non-speech.’ We built a very straightforward 2-state Viterbi de-
coder to replace the more advanced Sonic decoder for this particular purpose.
As speech features we used 12 PLP coefficients, augmented with log energy, and
their deltas calculated over 7 consecutive frames of 16ms. The GMM models
consisted of 16 Gaussian mixtures, and we estimated them using 10 iterations
of the EM algorithm. The average negative log likelihood per frame was much
lower for the silence GMM (around 20) than the speech GMM (around 34),
where we expect this error to be around 30 from experiences in text indepen-
dent speaker Universal Background Models (UBMs) [13]. A reason might be that
in the non-speech data there is less variability which is modeled more easily by
the Gaussians than in the case of the speech data.

The decoder calculates in a single forward pass the sequence of states that
maximized the likelihood to generate the observed data. Apart from the GMM
parameters that determine the state likelihood we need to estimate transition
probabilities aij that state i at time t is followed by state j at time t + 1. We
used a fixed ratio of transition probabilities for i 
= j w.r.t. i = j. We further
introduced a prior probability pi for observing a state i. Because there is a fixed
number of states, the Viterbi procedure is actually fairly easy to implement in
a matrix calculation program such as GNU Octave. In our implementation the
main program loop spans 4 lines of code. After the maximum likelihood sequence
of states has been determined, we smooth the sequence by first filtering it using
a median filter of length M and subsequently convoluting it with a rectangular
filter of R frames, favouring speech signals. Finally, speech segments with a
duration less than tmin are discarded.

Due to late arrival of development test data for meeting locations other than
AMI, we used only AMI meeting material for training the GMMs and tuning
the decoding parameters, as shown in Table 1. The result of the manual pa-
rameter optimization is shown in Table 2. The resulting SAD error on the AMI
development test evaluation split was 10.3% error.

With the availability of the RT04s development test data we applied the
SAD models and parameters as optimized for the AMI meeting rooms to this

Table 2. The optimum parameters for SAD

pn/ps ai�=j/ai=j M R tmin

0.01 1 × 10−5 1 5 0.5 s
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additional material, and found a SAD error of 2.3%. We were so pleased with
this relatively low error rate that we decided not to change any of the parameters
or models using the additional meeting material. In fact, ICSI had kindly offered
to supply us with their SAD results, and had reported error rates of about 2 %,
so we concluded that our SAD system was performing reasonably well.

4 Speaker Segmentation and Clustering System

Chen and Gopalakrishnan have written an essential paper in the speaker seg-
mentation and clustering technologies [4] that have later been refined by several
others [3,15,5] and is used widely for speaker segmentation tasks in the NIST
RT meeting tasks [8,2,11]. They introduced a method from general statistical
modeling into the speech modeling technologies which can not only be applied
to finding speaker segment and as clustering stop criterion, but also to find the
number of Gaussian mixtures in a GMM or HMM speech model. Unfortunately,
their formulas were not always flawless, and not all parameters as easy to inter-
pret, a problem that has been largely resolved in [5].

The basic Bayesian Information Criterion (BIC) describes a balance between
the goodness of fit of a given model M to given data X = {xi} and the num-
ber NM of parameters in the model. Lacking a well defined symbol for the BIC
it is defined as

BIC = log L(X|M) − 1
2
λNM log Nx, (3)

where L(X|M) is the likelihood of the data given the model, Nx the number
of data points in X and λ a ‘penalty weight’ parameter that should be 1. In
the speaker segment problem the model is usually a d-dimensional Gaussian
distribution with mean μ and covariance matrix Σ

N(xi, μ, Σ) =
exp − 1

2 (xi − μ)T Σ−1(xi − μ)

(2π)d/2
√|Σ| . (4)

Here d is the dimension of the features of X and | · · · | the determinant operator.
In calculation of the log likelihood L =

∏
i N(xi, μ, Σ) of the data X that

is modeled by this Gaussian, the part in the exponential contributes −Nxd/2.
Including the contribution from the normalizing constant we obtain

log L(X|N(μ, Σ)) = −Nx

2
(log |Σ| + d log 2π + d), (5)

of which the last two terms are not dependent on the model parameters, and are
therefore usually left out. Note that for this full covariance Gaussian model the
number of parameters is NM = d + 1

2d(d + 1).

4.1 Segmentation with BIC

In the problem of speaker segmentation the BIC is applied as follows. A model
for the total given speech signal X = {xi}, X : i = 1, . . . , Nx is compared to two
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models for a hypothesized split A: i = 1, . . . , NA and B: i = NA+1, . . . , NA+NB

with NA + NB = Nx. When the difference ΔBIC = BICA+B − BICx > 0, it is
assumed advantageous to assume two different speakers for the segments A and
B. The difference in BIC is

ΔBIC =
1
2
(
Nx log |Σ| − NA log |ΣA| − NB log |ΣB | − λNM log Nx

)
. (6)

Note that the term with log Nx is the same for BICA+B and BICx, i.e., the same
amount of data is observed in both models.

In practice we need an algorithm to find potential break points to evaluate
ΔBIC. In our implementation we analyze a ‘window’ of audio of fixed duration,
tw, and look for potential speaker break points at times te, te + tc, te + 2tc, . . . ,
tw − te. We do not consider breakpoints at a time te from the ‘edge,’ because
in determining the determinant of a d dimensional covariance matrix we need
more than d data points (frames). We only evaluate ‘candidate’ breakpoints at tc
intervals because it reduces the computational load, and only a certain resolution
of the speaker change point is required.

When positive ΔBIC values are found, the maximum of those is chosen and
accepted as a breakpoint provided that more than a user-specified Np points
have a positive ΔBIC and the maximum is more than a standard deviation
higher than the mean of these potential breakpoints. Once a segment boundary
is chosen, the segment is split off and the remaining audio data is used for finding
further breakpoints. If no breakpoint is found, the window is lengthened by new
audio data of duration tw, and a new series of values for ΔBIC is considered.
This implementation is similar to the ones described in the literature.

For computational efficiency, we calculate |Σ| from the sufficient statistics
st =

∑t
i=1 xi and ct =

∑t
i=1 xix

T
i , and bear in mind that the statistics for seg-

ment B are the difference between those for the total segment (which is constant
for the fixed window) and for A. For each segment we record the beginning and
ending times, as well as the sufficient statistics.

In Table 3 we summarize the values of the segmentation parameters we used.

Table 3. Values of the segmentation parameters. Durations are measured in seconds.

Frame Window Edge Candidate # positive
tf tw te tc Np

0.016 5 1 0.096 5

4.2 Clustering with BIC

For speaker clustering the BIC is usually used as a stop criterion for agglom-
erative clustering. Once initial segments have been formed, the segments need
to be clustered. As originally proposed in [4], we implemented an agglomerative
clustering. Using some distance measure we can find the closest two clusters, and
merge these. This process can be continued until the increase in BIC by merging
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two clusters is no longer positive. There are many ways of measuring a distance
between two clusters ci and cj [5], and we chose the ‘Gish distance’ G(ci, cj) [9]
which is the log likelihood ratio between merged model Σm and separate models

G(ci, cj) =
1
2
(
(Ni + Nj) log |Σm| − Ni log |Σi| − Nj log |Σj |

)
. (7)

The increase of BIC by merging these clusters should be positive

1
2
λcNM log Nx − G(ci, cj) > 0. (8)

Note that this difference in BIC differs from eq. 6 in some respects:

– it has an opposite sign, since we favour merging cluster rather than splitting
segments

– the log Nx term is constant since in clustering we consider all available speech
data, rather than only the speech segment that we consider to split in two
parts, which has a duration of typically only a few times tw. It is also possible
to account only for the frames in the clusters being considered, this is known
as a local BIC penalty [16].

– we have introduced a separate penalty weight λc for clustering.

In our implementation we continue with the sufficient statistics from the
segmentation process. We calculate upper triangular distance matrix Di<j =
G(ci, cj) and merge ci and cj by adding their sufficient statistics. After merg-
ing, we remove from the distance matrix row j and column j, and update row
and column i in Dij . Because we chose the Gish distance, the stop citerion (the
increase in BIC) follows directly from the minimum distance by eq. 8. As noted
by others [15], this agglomerative clustering is fairly computationally intensive,
but it has the advantage that it does find the optimum clustering.

4.3 Parameter Tuning

Although the BIC method in principle does not need tunable parameters, de-
velopment testing showed that the ‘penalty parameters’ λ and λc needed values
different from unity in order to have a reasonable SDE. Specifically, we found
the best SDE results for the AMI development test meetings when λ = 1.5 and
λc = 14.

5 Results and Discussion

In Table 4 we tabulated the results for both development test (AMI and RT04s
without CMU meetings) and RT05s evaluation.

Both SAD and speaker diarization results performed as could be expected
from the development test results. The SDE is the highest of 3 site submissions,
but only about 5%-point higher than the LIA system [10] which was the best
performing system of RT04s. The SAD results, which were only computed as a
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Table 4. SAD and speaker diarization results, in % error, for non-overlapping speaker
segments. The last three columns show SDE results where the input to the clustering
system is either our own SAD (primary evaluation system), ICSI’s SAD and perfect
SAD (post-evaluation).

Test SAD error SDE
SAD input from:
TNO ICSI perfect

AMI dev 10.3 35.7 45.9
RT04s − CMU 2.8 35.4 31.9

RT05s 5.0 35.1 37.1 32.3

necessary step for the speaker diarization, appear to be very competative. Only
SRI-ICSI’s more advance multiple microphone system [1] has slightly better
performance.

Interesting to see is the shift in SDE from our own SAD as input to ICSI’s
SAD—even though ICSI SAD has better SAD performance, the SDE increases
slightly from 35.1% to 37.1%. One reason might be that the parameter opti-
mization had been carried out using our own SAD output. Using perfect SAD
(as obtained from the reference transcription files after the evaluation) shows
the SDE purely due to clustering errors, i.e., the fraction of missed and false
alarm speech is zero.

We did not attempt to use multiple microphone information, which, in the
light of the results of other teams [1,10] turned out to be a wise decision, because
they observed higher error rates when using multiple microphone data.

We found it most remarkable that we had to tune λc = 14 which is signifi-
cantly greater than the theoretical value of 1. We have not seen such high values
reported in the literature. Even though the high value tends to over-cluster, such
that some speakers are missed completely, these speakers tend to be the ones
that spoke very little. In the overall RT05s evaluation our system missed 13
speakers out of 53, but these amounted to only 0.4% missed speaker time, and
hence contributed to the SDE only a little bit. In the extreme case of lecture
data, the skewedness is so great that this led the ICSI-SRI team to submit a ‘sys-
tem’ that attributes all speech to the same speaker [1]. This effect has previously
been noted by Jin et al. [11], and they introduced an interesting measure, the
‘speaker speaking time entropy’ which measures the skewedness of the speaking
time distribution. They found that their per-meeting SDE increased with in-
creasing speaker speaking time entropy. As an alternative to the standard SDE
we might consider a measure that somehow incorporates the prior probability of
a speaker speaking in the weighting of the speech segments. This would be an
interesting subject for future research.
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Abstract. In this paper we describe the 2005 AMI system for the tran-
scription of speech in meetings used in the 2005 NIST RT evaluations.
The system was designed for participation in the speech to text part of
the evaluations, in particular for transcription of speech recorded with
multiple distant microphones and independent headset microphones. Sys-
tem performance was tested on both conference room and lecture style
meetings. Although input sources are processed using different front-
ends, the recognition process is based on a unified system architecture.
The system operates in multiple passes and makes use of state of the art
technologies such as discriminative training, vocal tract length normal-
isation, heteroscedastic linear discriminant analysis, speaker adaptation
with maximum likelihood linear regression and minimum word error rate
decoding. In this paper we describe the system performance on the official
development and test sets for the NIST RT05s evaluations. The system
was jointly developed in less than 10 months by a multi-site team and
was shown to achieve competitive performance.

1 Introduction

Transcription of speech recorded in meetings has been the focus of attention
for speech researchers for quite some time. However the complexity of the input
puts considerable strain on the performance of such systems. Besides the acoustic
complexity, the variety of input sources and the moving speaker problems, the
transcription of spontaneous speech itself is complex and normally yields results
above 15% word error rate (WER). Speech transcripts of meetings are not only of
interest in their own right, but are an important input for higher-level processing.
Projects like AMI (Augmented Multiparty Interaction) aim to investigate the
use of machine based techniques to aid people in and outside of meetings to

S. Renals and S. Bengio (Eds.): MLMI 2005, LNCS 3869, pp. 450–462, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The 2005 AMI System for the Transcription of Speech in Meetings 451

efficiently access meeting content. Meetings are an audio visual experience by
nature, information is presented for example in the form of presentation slides,
drawings on boards, and of course by verbal communication. The automatic
transcription of speech in meetings is of crucial importance for meeting analysis,
content analysis, summarisation, and analysis of dialogue structure.

As is often the case work on automatic recognition of speech in meetings
is stimulated by yearly performance evaluations by the U.S. National Institute
of Standards and Technology (NIST) [18]. Large scale work on conference room
type meeting speech was initially facilitated by the collection of the ICSI meeting
corpus [12] which was followed by trial NIST meeting transcription evaluations
in Spring 2002. Further meeting resources were made available by NIST [8],
Interactive System Labs (ISL) [2] and the Linguistic Data Consortium for the
RT04s Meeting evaluations [18].

In this paper we describe the 2005 AMI system for the transcription of speech
in meetings used for participation in the 2005 NIST RT evaluations (RT05s). The
system was designed for participation in the speech-to-text part of the evalua-
tions, in particular transcription of speech recorded with multiple distant micro-
phones (MDM), the primary test condition, and individual headset microphones
(IHM). Both input sources are processed using different front-ends, however the
recognition process is based on a unified system architecture. The RT05s eval-
uations differ from those of previous years in that tests are conducted both on
meetings in conference room style and lecture room style. The system presented
here has been developed solely for the purpose of transcribing conference room
style meetings, with the same system being used for the transcription of the
lecture room meeting data1. Data from new sources have further enhanced the
richness of the testing conditions in terms of input speech, recording conditions
and content. The new data originates from data collection efforts as part of
two European projects, AMI2 and CHIL (Computers in the Human Interac-
tion Loop3) as well as from collections at the Virginia Polytechnic and State
University.

The rest of the paper is structured as follows: First we describe the data
resources used followed by a description of our generic system architecture and
the main system components, including an analysis of the performance of various
components on the RT05s evaluation data sets. In following sections we give an
overview of the complete system and its passes. This is contrasted with results
using manual segmentation.

2 Meeting Resources

The ICSI Meeting corpus [12] is the largest meeting resource available consisting
of 70 technical meetings at ICSI with a total of 73 hours of speech. The num-
1 This excludes the use customised language models, see Section 4.4. For that reason

we do not specifically report results on lecture room data unless required.
2 See http://www.amiproject.org
3 See http://chil.server.de.
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ber of participants is variable and data is recorded with head-mounted and a
total of four table-top microphones. We have not used any other microphones
present in the room. Further meeting corpora were collected by NIST [8] and
ISL [2], with 13 and 10 hours respectively. Both NIST and ISL meetings have
unconstrained content (e.g. people playing games or discussing sales issues) and
variable number of participants. In our development we made use of the official
RT04s development and evaluation sets (rt04sdev and rt04seval). Both sets in-
clude 10 minute extracts from 8 meetings recorded at the 3 sites above and the
Linguistic Data Consortium (LDC). As part of the AMI project a major collec-
tion and annotation effort of the AMI meeting corpus[3] is currently underway.
Data is collected at three different instrumented meeting rooms in Europe (Ed-
inburgh, IDIAP, TNO). The target size of the corpus is more than 100 hours
of transcribed speech. The meeting language is English, but many participants
are non-native speakers of the language. Each meeting normally has four partic-
ipants and the corpus will be split into a scenario portion and an unconstrained
meetings portion. Each scenario in the corpus consists of four meetings with the
same participants working on a constrained task. For the benefit of the RT05s
evaluations, AMI has released a preliminary development set (rt05samidev) and
approximately 16 hours of scenario training data. In this work both resources
were used.

For the purpose of development of systems for transcription of lecture room
speech a development set (rt05slectdev) was provided by CHIL. However this
was provided very late and due to time constraints could only be used for lan-
guage model (LM) optimisation. In this paper we further report results on the
RT05s evaluation sets from the conference room and lecture room data (rt05seval
and rt05slecteval respectively). Both sets are based on 10 minute extracts from
individual meetings. The IHM and MDM tests are conducted on the same 10
minute extract.

3 System Architecture

The system architecture overview presented in this section is generic to both
the IHM and MDM systems. A more detailed description of system compo-
nents is provided in the following section. The IHM and MDM systems differ
only in the processing of the input audio and the use of input source specific
acoustic models in the various processing stages. The system operates in a to-
tal of 6 passes. Figure 1 shows a schematic representation of the processes. In
the first pass (P1) the input data is segmented and transformed into a stream
of 39 dimensional MF-PLP feature vectors[22]. Speech segments have a start
and an end time as well as a channel/speaker label. A first recognition pass is
conducted with acoustic models trained using maximum likelihood estimation
(MLE) and a trigram LM (see Section 4.4). The resegmented output of this pass
is used only for estimation of the vocal tract length normalisation (VTLN) warp
factors on a per input channel basis. In the second pass (P2) the VTLN warp
factors are determined and the audio data is recoded with these warp factors.
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Frontend Processing

Resegmentation

VTLN,CMN, CVN

MLLR, 1 speech transform

Bigram Lattices

MPE triphones, VTLN, SHLDA, tgcomb05

MLE, tgcomb05

MLLR, 2 speech transforms

Aignment

Bigram Lattices

MRS lattice expansion

4−gram Lattices
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4−gram Lattices

CN generation

Minium word errror rate decoding

P1

P2

P3 P6

P5

P4

MPE triphones, VTLN, SHLDA, bgcomb05

Fig. 1. Processing stages of the 2005 AMI meeting transcription system

Then a second decoding pass with acoustic models trained on VTLN data is
performed. The P2 acoustic modelling includes a smoothed heteroscedastic lin-
ear discriminant analysis (SHLDA) input transform[15] and acoustic models are
trained (in the IHM case) using the minimum phone error(MPE) criterion[20].
The output of P2 is used to adapt the acoustic model means and variances using
maximum likelihood linear regression [7]. Two transforms, one for speech and
one for silence are estimated. A third decoding pass (P3) uses MLLR adapted
P2 models to generate bigram lattices. As all subsequent stages only process
lattices to constrain the search space the use of a bigram in P3 avoids too harsh
constraints.

In pass P4, the bigram lattices are first expanded using a trigram language
model, followed by a second expansion using 4-gram LMs. For conference room
data this expansion uses language models optimised for each meeting resource
(MRS). The 4-gram lattices generated in P4 are used for rescoring in the follow-
ing pass P5. Here models are adapted using up to two speech transforms using a
regression class tree. Lattice rescoring further makes use of pronunciation prob-
abilities estimated on the training data [11]. The output of this pass is a set of
lattices which form the input to the final pass, P6. Here confusion networks [16]
are formed and the most probable word from each confusion set is selected. The
final output is then aligned using the P5 acoustic models.

4 System Components

In this section a more detailed discussion of the system components as outlined
in Section 3 is presented. First a brief description of the front-end blocks, both
for the IHM and MDM cases is given. This is followed by a description of acoustic
and language model training.



454 T. Hain et al.

4.1 Front-End Processing

A common system architecture was chosen for both IHM and MDM sub-systems.
This was possible due to the enhancement based setup chosen for MDM process-
ing. In both cases the descriptions below do not include the feature extraction
process. For more details the reader is referred to [10].

Individual Headset Microphone Processing. The main task for the front-
end processing of IHM data is speech activity detection (SAD). Figure 2 outlines
the processes involved. First cross talk suppression is performed at the signal
level using adaptive-LMS echo cancellation[17]. Additions to the basic system
are: the use of multiple reference channels in cancellation; automatic estimation
and correction of skew between channels; automatic cross-talk level estimation;
and ignoring of channels which produce low levels of cross-talk. Updates are
further made on a per sample basis to account for non-stationary ‘echo’ path.

IHM MDM
Multi−channel echo cancellation

MLP based segmentation

Smoothing

Delay vector estimation

Delay−Sum beamforming

Speaker segmentation/clustering

Headset microphone
recordings recordings

Tabletop microphone

Fig. 2. Front-end processing of IHM and MDM data

The SAD system used here is a straight-forward statistical based approach with
additional components to control cross-talk between channels. A 14 dimensional
MF-PLP [22] feature vector is augmented with additional features: log energy, log
energy normalised by the total energy on all channels, signal kurtosis, and a voic-
ing strength measure based on the maximum amplitude in the speech cepstrum in
the range of frequencies 50-300Hz [19,23]. A Multi-Layer-Perceptron (MLP) with
a 31 frame input layer, a 5 unit hidden layer and an output layer of two classes is
trained. Ten meetings from each meeting resource serve as training data totalling
to around 20 hrs of data. A further five meetings from each corpus are used to
determine early stopping of the parameter learning. The utterance segmentation
uses Viterbi decoding with scaled likelihoods and a minimum segment duration
of 0.5 seconds. In a final processing step the output of the segmenter is smoothed
by padding segments with 0.1 seconds, merging overlapping segments in the pro-
cess. Table 1 shows frame error rate results on the rt05seval before and after seg-
mentation. Note that the relationship between false alarm and false reject rates
differs substantially between meeting resources. The performance overall on the
test data shows relatively high false reject rates. Smoothing the segment boundary
estimates by padding allows to reduce the false reject rates significantly.
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Table 1. Segmentation performance (in %) on rt05seval. FA denotes false acceptance,
FR false reject, and speech the percentage of speech in the reference. TOT gives the
overall performance whereas TOT(REL) are relative to the associated class.

AMI ISL ICSI NIST VT TOT TOT(REL)

RAW

FA 1.29 1.52 0.71 1.49 3.70 1.64 2.00
FR 4.49 3.03 3.36 2.81 1.12 2.94 16.23
speech 24.40 28.84 13.79 15.56 14.83 18.12

SMOOTHED

FA 1.90 2.55 1.21 2.05 4.34 2.22 2.71
FR 3.80 2.01 2.71 2.18 0.83 2.30 12.69
speech 24.40 28.84 13.79 15.56 14.83 18.12

Multiple Distant Microphone Processing. The basic processing stages of
MDM processing are outlined in Figure 2. Since the position of microphones in
the meeting room is not fixed for this task an approach that does not require
geometry information was used.

First gain calibration is performed by normalising the maximum amplitude
level of each of the input files. Then a noise estimation and removal procedure
is run. This in itself is a two pass process. On the first pass the noise spectrum
Φnn(f) of each input channel is estimated as the noise power spectrum of the
M lowest energy frames in the file (M = 20 was used. On the second pass
a Wiener filter with transfer function Φxx(f)−Φnn(f)

Φxx(f) (where φxx(f) is the input
signal spectrum) is applied to each channel to remove stationary noise. The noise
coherence matrix Q, estimated over the M lowest energy frames, is computed.
Finally delay vectors between each channel pair are calculated for every frame in
the input sample. The delay between two channels is the time difference between
the arrival of the dominant sound source and is calculated by finding the peak in
the generalised cross correlation[13] between input frames across two channels.

The delay vector is given as the delays for all pairs with respect to a single
reference channel - there are therefore N delays in each vector, with the delay
for the reference channel equal to 0. Further a vector of relative scaling factors
is calculated, corresponding to the ratio of frame energies between each channel
and the reference channel. The start and end times in seconds, along with the
delay and scaling factors are output for each frame. The delay and scaling vectors
are then used to calculate beamforming filters for each frame using the standard
superdirective technique [4,5]. Segments and speaker labels were provided by
SRI/ICSI[21].

While this approach is robust to a variety of configurations, for a small number
of sparsely located microphones (as for some rooms in the rt05seval set) delay
estimation can be unreliable and significant spatial aliasing occurs.

4.2 Acoustic Models
Acoustic models are phonetic decision tree state clustered triphone models with
standard left-to-right 3-state topology. Models are trained up to 16 mixture com-
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ponents using MLE with standard HTK4 procedures and contain approximately
4000 states. For more details on the training process the reader is referred to
[10]. In previous experiments [10] we found that maximum a posteriori (MAP)[9]
adaptation from conversational telephone speech (CTS) models gave better per-
formance than training solely on meeting data.

VTLN was applied both in training and testing, both on IHM and MDM. For
training an iterative procedure was used alternating the estimation of warping
factors and model parameter updates. For IHM initial warp factor estimates
were obtained from CTS-adapted models. Experimental evidence shows im-
proved WER performance with warp factor estimation at a reduced bandwidth
of 3800Hz. Initial experiments using IHM models for warp factor estimation on
MDM data yielded a performance degradation. Hence IHM VTLN models were
adapted to the MDM VTLN data where a single training iteration was found to
yield good results that could not be improved further.

Feature space transformation was applied in the form of smoothed
heteroscedastic linear discriminant analysis (SHLDA) [15]. The transform was
used to reduce a 52 dimensional feature vector (standard plus third derivatives)
to 39 dimensions. HLDA estimation procedure[14] requires the estimation of full
covariance matrices per Gaussian. SHLDA in addition uses smoothing of the
covariance estimates by interpolating with standard LDA type within-class co-
variances. The adaptation of CTS models when using SHLDA is non-trival due to
the reduced bandwidth of CTS data. To avoid further issues with discriminative
training no CTS data was used in conjunction with SHLDA.

All further models were trained using the minimum phone error criterion
[20]. The implementation of MPE used here is similar to that described in [20].
For this purpose numerator and denominator lattices were generated using the
SHLDA models and a bigram LM interpolated with a unigram model that in-
cludes training set specific words. The phone times as obtained in recognition are
used to improve speed in training. Only means and variances are modified and
parameter update makes use of I-smoothing. Performance was found to stabilise
after 10 training iterations5.

Table 2 shows lattice rescoring results on rt05seval IHM for models of in-
creasing complexity. Note the 0.3% performance degradation from the use of
unadapted models which is compensated by 1.6% improvement from SHLDA.
Another 2.8% absolute are gained by the use of MPE training. It can be observed
that model improvement has little impact on the deletion rate.

4.3 Training Data Selection

Training data for IHM is given by the reference transcripts. In total 104 hours
of speech were available from resources outlined in Section 2, albeit a significant
proportion of the data is silence. The special processing setup for MDM data (see
Section 4.1) however makes additional processing necessary as the system cannot
4 The Hidden Markov Model Toolkit (HTK). http://htk.eng.cam.ac.uk.
5 Both SHLDA and MPE are developed as part of the STK HMM toolkit:
http://www.fit.vutbr.cz/speech/sw/stk.html.
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Table 2. %WER on rt05seval IHM rescoring 4-gram lattices with pronunciation prob-
abilities and various models. By default models are trained on meeting data only.

TOT Sub Del Ins AMI ISL ICSI NIST VT

CTS adapted 39.1 20.0 13.4 5.7 39.9 35.1 36.0 46.9 37.6
CTS adapted, VTLN 36.9 18.5 13.0 5.5 37.0 33.1 34.4 45.2 34.8
VTLN 37.2 18.8 13.2 5.2 36.4 33.0 36.1 45.5 35.0
HLDA 35.7 17.8 13.4 4.6 36.0 31.0 33.9 43.3 34.6
SHLDA 35.6 17.7 13.3 4.5 35.6 30.3 34.5 42.8 34.7
SHLDA-MPE 32.9 15.8 13.3 3.8 32.8 27.8 32.3 39.8 31.9

Table 3. MDM Data selection. IHM denote IHM segments (inc. overlapped speech).
sil-bound and word-bound denote methods for removing overlap (cut at silence or word
boundaries), sn denotes silence normalisation.ASL denotes the average segment length.

#Segments Size (hours) ASL (sec) %Silence

IHM 136822 104.27 2.74 27.0
sil-bound 84044 62.33 2.67 21.0

word-bound 94940 65.78 2.49 21.1
word-bound + sn 96086 62.96 2.36 18.0

cope with overlapped speech. A straight forward exclusion of all segments with
overlaps would have resulted in removal of more than 60% of the data and hence
was not an option. Table 3 compares several data selection techniques based
on alignments. sil-bound denotes cuts at the nearest boundary where silence
occurs, word-bound the nearest word-boundary regardless of silence. With sn
further silence beyond 0.2 seconds at segment boundaries and within segments
was removed. The word-bound+sn configuration showed marginally better per-
formance and was used for MDM model training.

4.4 Vocabulary, Language Models and Dictionaries

The recognition vocabulary is set to cover the 50000 most frequent words us-
ing a procedure outlined in[10]. The same vocabulary was used both for lecture
and conference room style meetings. Pronunciation dictionaries are based on the
UNISYN pronunciation lexicon [6] which was manually augmented[10]. Pronun-
ciation probabilities are estimated from alignment of the training data[11].

As in previous work, LMs trained on a large number of corpora were used
to derive meeting room specific and generic language models by optimisation
of interpolation weights. The most important corpora are listed in Table 4. A
full discussion of all source material would go beyond the scope of this paper.
It is important to note that a collection of data from the web using tools and
methods as provided by [1] was performed using both AMI and CHIL data as
the basis. In both cases the proposed approach was altered to focus on previ-
ously unobserved contexts. This approach has in particular lead to a dramatic
reduction in perplexity for lecture room data by more than 30%.
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Table 4. Size of various text corpora in million words (MW)

Corpus #words (MW)

Swbd/CHE 3.5
Fisher 10.5
Web (Swbd) 163
Web (fisher) 484
Web (fisher topics) 156

BBC - THISL 33
HUB4-LM96 152
SDR99-Newswire 39
ICSI/ISL/NIST/AMI 1.5
Web (ICSI) 128

Web (AMI) 100
Web (CHIL) 70

Table 5. Perplexities for 4-gram LMs on rt04dev and rt05samidev

Language models
Data source ICSI NIST ISL AMI LDC fgcomb05

ICSI 82.734 86.1662 87.3345 97.1024 109.86 84.1826
NIST 101.442 103.668 102.054 105.683 109.212 98.8722
ISL 110.124 110.99 106.66 119.327 114.483 108.588
AMI 92.9651 108.865 108.723 77.2817 101.714 84.1282
LDC 92.3824 92.761 87.6343 99.0105 84.2745 90.5354

AllDev 86.9236 93.2191 93.6604 92.0517 106.716 85.381

Table 5 shows perplexities for language models tuned to specific meeting re-
sources as well as in combination. It is evident the meeting room specific models
outperform the combined models. Hence the lattice expansion to 4-gram lattices
(see Section 3) was performed using meeting resource specific models. This gave
an additional 0.5% WER reduction on the rt04seval set.

4.5 Minimum Word Error Decoding

Minimum word error rate decoding[16] is a widely used technique to counter
the fact that the standard speech recognition objective function is to minimise
sentence instead of word error rate which is the measurement metric. Table 6
compares the performance both on IHM and MDM. In both case the gain from
this technique was found to be moderate. The table also shows the effect of
correcting the word times by alignment. Standard decoding adds between-word
silence to the end of a word, thus artificially lengthening words. Secondly, con-
fusion network decoding uses heuristic rules to define word times. Hence again
re-alignment is needed to correct the times.
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Table 6. %WERs on rt05seval showing the effect of CN decoding. Word times are
corrected by alignment.

CN decoding Word time correction IHM MDM

32.1 44.2
× 31.2 42.2

× 31.5 44.0
× × 30.6 42.0

5 Overall System Performance

Table 7 shows WER results for the 2005 AMI meeting transcription system on
a per pass basis. The result for P3 is higher than that for P2 due to the use of a
bigram language model. The major reduction in WER at P6 can be explained by
the use of alignment (see above). The high deletion rate is a main contributor to
the error rate. Overall the WER reduction up to P6 is 10.5% absolute, however
most of the gain is already obtained in P2.The associated results on rt05seval
MDM are shown in Table 8. Note that a similar improvement is obtained to that
observed on IHM data, again with relatively high deletion rates. Particularly
poor performance on VT data has a considerable impact on performance (only
2 distant microphones!).

Table 7. %WER on rt05seval IHM

TOT Sub Del Ins Fem Male AMI ISL ICSI NIST VT

P1 41.1 21.1 14.7 5.3 41.1 37.2 42.3 36.3 37.1 49.1 41.1
P2 33.1 15.9 13.4 3.9 33.1 28.2 33.4 27.2 32.8 39.5 32.8
P3 34.4 16.9 13.7 3.9 34.4 28.7 34.8 27.7 33.5 41.8 34.6
P4.tg 32.2 15.3 13.1 3.8 32.2 27.3 32.3 26.1 32.1 39.3 31.4
P4.fg 32.3 15.5 12.9 3.9 32.3 27.7 32.6 26.4 31.9 39.5 31.2
P5 32.1 15.3 12.8 4.0 32.1 27.4 32.7 26.3 31.8 39.1 30.5
P6 30.6 14.7 12.5 3.4 30.6 25.9 30.9 24.6 30.7 37.9 28.9

Table 8. %WER on rt05seval MDM

TOT Sub Del Ins Fem Male AMI ISL ICSI NIST VT

P1 53.6 32.1 17.3 4.1 53.6 56.4 46.5 50.2 48.2 53.6 63.0
P2 50.8 31.3 14.8 4.7 50.8 51.4 44.7 46.7 43.6 51.6 60.4
P3 50.4 31.1 14.6 4.7 50.4 53.0 44.7 47.0 45.2 48.9 59.7
P4.tg 48.4 30.0 13.6 4.8 48.4 49.4 43.9 44.8 42.5 46.9 57.2
P4.fg 47.9 29.5 13.7 4.7 47.9 49.3 42.4 45.0 41.8 47.4 56.6
P5 44.2 26.0 14.0 4.1 44.2 42.6 38.6 38.9 39.2 43.8 53.2
P6 42.0 25.5 13.0 3.5 42.0 42.0 35.1 37.1 38.4 41.5 51.1
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5.1 Manual Segmentation

In previous sections we have shown that automatic segmentation is still a main
source of error. Table 9 compares results with reference and automatic segmen-
tation. Both on MDM and IHM the automatic segmentation naturally increases
deletion rates, however the effect is far stronger on IHM where the overall dif-
ference between automatic and manual segmentation is 6.4%. The gain from
confusion network decoding is further decreased with automatic segmentation.
The absolute gain from P1 to P6 is similar in absolute terms, with or without
manual segmentation.

Table 9. %WER summary for rt05seval

IHM MDM
refseg autoseg refseg autoseg

TOT Del TOT Del TOT Del TOT Del

P1 34.9 7.1 41.1 14.7 50.6 11.8 53.6 17.3
P2 26.0 7.1 33.1 13.4 46.4 11.4 50.8 14.8
P3 27.4 7.4 34.4 13.7 47.8 12.5 50.4 14.6
P4 24.5 6.4 32.3 12.9 45.1 11.5 47.9 13.7
P5 24.5 6.3 32.1 12.8 42.0 12.2 44.2 14.0
P6 24.2 6.4 30.6 12.5 40.7 12.3 42.0 13.0

Table 10. %WER on rt05slecteval

IHM MDM
TOT Sub Del Ins TOT Sub Del Ins

P1 44.4 26.4 5.0 12.9 65.0 47.6 9.9 7.5
P2 33.0 19.1 5.2 8.7 60.0 43.4 10.0 6.7
P3 33.7 19.7 5.3 8.6 59.9 43.0 11.0 5.9
P4 31.4 18.2 4.8 8.3 58.8 42.2 10.1 6.5
P5 31.1 18.2 4.6 8.3 54.8 38.7 11.2 5.0
P6 30.4 17.7 4.6 8.0 53.5 37.2 11.6 4.7

5.2 Lecture Room Meetings

Lecture room meetings as included in the RT05s evaluations originate only
from one recording site. Presentation sessions are mixed with question/answer
meetings where more than one speaker talks. In this work no development work
was performed due to lack of time. The system for conference room meetings
was used as described except for language models optimised on the associated
development data with additionally collected web-data. For MDM transcription
only the four microphones on the table were used. Table 10 shows WERs both
on IHM and MDM recordings. It is interesting to note that the WERs are in
the same range as on lecture room data, however the overall gain of the passes
is larger. Deletion rates are considerably lower on IHM compared to the results
on conference room data.
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6 Conclusions

This is the first participation of the AMI-ASR team in NIST evaluation and
the system presented here was developed from scratch in less than 10 months
in a joint multi-site effort. The system was shown to yield very competitive
performance for the transcription of meeting data in the NIST RT05s evaluation
both on lecture and conference room data. We have also described and analysed
a series of potential short-comings that will be addressed in the future. Particular
emphasis will be placed on improving the IHM and MDM front-end processing.
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Abstract. We describe the development of our speech recognition system for
the National Institute of Standards and Technology (NIST) Spring 2005 Meeting
Rich Transcription (RT-05S) evaluation, highlighting improvements made since
last year [1]. The system is based on the SRI-ICSI-UW RT-04F conversational
telephone speech (CTS) recognition system, with meeting-adapted models and
various audio preprocessing steps. This year’s system features better delay-sum
processing of distant microphone channels and energy-based crosstalk suppres-
sion for close-talking microphones. Acoustic modeling is improved by virtue of
various enhancements to the background (CTS) models, including added train-
ing data, decision-tree based state tying, and the inclusion of discriminatively
trained phone posterior features estimated by multilayer perceptrons. In partic-
ular, we make use of adaptation of both acoustic models and MLP features to
the meeting domain. For distant microphone recognition we obtained consider-
able gains by combining and cross-adapting narrow-band (telephone) acoustic
models with broadband (broadcast news) models. Language models (LMs) were
improved with the inclusion of new meeting and web data. In spite of a lack of
training data, we created effective LMs for the CHIL lecture domain. Results are
reported on RT-04S and RT-05S meeting data. Measured on RT-04S conference
data, we achieved an overall improvement of 17% relative in both MDM and IHM
conditions compared to last year’s evaluation system. Results on lecture data are
comparable to the best reported results for that task.

1 Introduction

Meeting recognition continues to be a challenging task for speech technology for sev-
eral reasons. Unrestricted speech, recognition from distant microphones, varying noise
conditions, and multiple and overlapping speakers pose problems not found in other
widely used benchmark tests. Furthermore, meetings pose the interesting problem of
designing portable recognition systems, in two regards. First, because of the relative
novelty of the task, and limited size of in-domain training corpora, it is advantageous to
try to leverage methods and data that have been developed for other genres of speech,
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such as conversational telephone speech (CTS) and broadcast news (BN), for which
one can draw on a longer development history and an order of magnitude more data.
The second motivation for portability is that the meeting domain itself is varied, with
different collection sites, acoustic conditions, and conversational styles and topics.

As for last year’s meeting evaluation (RT-04S), our development strategy for RT-
05S was to start with an existing CTS system1 and adapt it to the meeting domain.
This allowed us to leverage research between the corresponding CTS evaluations, from
the Fall of 2003 (RT-03F) to the Fall of 2004 (RT-04F), and was crucial to developing
a meeting system in the short period available. Acoustic models were adapted to the
available conference room data (some of it new for this year), and language models
were rebuilt for the conference and lecture room domains (no special acoustic models
were created for the lecture domain). A new aspect in our acoustic modeling this year
was the use of discriminatively trained Tandem/HATS features, and the fact that features
were adapted to the new task, in addition to the more standard model adaptation. The
acoustic preprocessing for meetings was also improved significantly, for both distant
and individual microphone conditions.

The evaluation task and data are described in Section 2. Section 3 gives the system
description, focusing on new developments relative to the 2004 system [1]. Results and
discussion appear in Section 4, followed by conclusions and future work in Section 5.

2 Task and Data

2.1 Test Data

Evaluation data. The RT-05S conference room evaluation data (eval05) consisted
of two meetings from each of the recording sites AMI (Augmented Multi-party Inter-
action project), CMU (Carnegie Mellon University Interactive Systems Laboratory),
ICSI, NIST, and VT (Virginia Tech). Systems were required to recognize a specific 12-
minute segment from each meeting; however, data from the entire meeting was allowed
for processing.2 Separate evaluations were conducted in three conditions:

MDM Multiple distant microphones (primary)
IHM Individual headset microphones (required contrast)
SDM Single distant microphone (optional)

The lecture room data consisted of 120 minutes of seminars recorded by the Computers
In the Human Interaction Loop (CHIL) consortium. In addition to the above conditions,
lecture data provided the following recording conditions:

MSLA Multiple source-localization arrays (optional)
MM3A Multiple Mark III microphone arrays (optional). The MM3A condition has not

yet been delivered for the evaluation set, and could be evaluated only on develop-
ment data, using a single array.

1 As explained later, we also made use of acoustic models developed for BN.
2 We did not find significant gains from adapting on entire meetings, and, except in the acoustic

preprocessing, used only the designated meeting excerpts.
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It should be noted that microphones varied substantially by type and setup, even
within each condition. For example, some of the AMI IHM data was recorded with
head-mounted lapel microphones, and MDM recording devices ranged from low- and
high-quality individual table-top microphones to AMI’s circular microphone arrays.
Meeting participants included both native and nonnative speakers of English (unlike in
CTS evaluations).

Development data. The RT-04S evaluation data, consisting of eight 11-minute ex-
cerpts of meetings from CMU, ICSI, LDC (Linguistic Data Consortium), and NIST
was designated as development data for RT-05S, and used by us as an unbiased test
set (eval04). For most of the development we relied on the RT-04S development set,
consisting of another 8 meetings from the same sources, and a newly provided set of
10 AMI meetings. Out of these we formed 10-meeting set that was balanced by meet-
ing source (designated dev04a) and that served for optimization and system tuning.
An additional 5 meetings (2 ICSI, 2 CMU, 1 LDC) were available from the RT-02 de-
vtest set (used by us only for some LM tuning and speech/nonspeech model training).
Note that the eval05 “VT” meetings had no corresponding development data and thus
served as a “blind” test. Excerpts from 5 CHIL lectures were available for development
testing in the lecture room domain.

2.2 Training Data

Training data was available from AMI (35 meetings, 16 hours of speech after segmen-
tation), CMU (17 meetings, 11 hours), ICSI (73 meetings, 74 hours), and NIST (15
meetings, 14 hours). The CMU data was of limited use in that only lapel and no distant
microphone recordings were available.

Background training data for the (pre-adaptation) acoustic models consisted of the
publicly available CTS and BN corpora. These included about 2300 hours of telephone
speech from the Switchboard, CallHome English, and Fisher collections, and about 900
hours of BN data from the Hub-4 and TDT corpora.

3 System Description

3.1 Signal Processing and Segmentation

Distant microphone processing. All distant microphone channels (in both training and
test) were first individually noise-filtered using a Wiener filter with typical engineering
modifications, identically to last year [2,1].

Subsequently, for the MDM and MSLA conditions, a delay-and-sum beamforming
technique was applied to combine all available distant microphone channels into a sin-
gle enhanced signal, described in more detail in [3]. A time delay of arrival (TDOA)
was computed between each input channel and a reference channel every 250 ms, using
the GCC-PHAT algorithm [4] on 500 ms segments. The reference channel was chosen
as the most centrally located microphone in the room, as specified by the SDM condi-
tion. For each step of 250 ms, a 500 ms segment was extracted for each channel and
delayed according to the computed TDOA. Finally, the different channels were summed
together, multiplied by a triangular window to avoid discontinuities between steps.
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Speech regions were then identified using a speech/nonspeech two-class HMM
decoder. Resulting segments were combined and padded with silence to satisfy cer-
tain duration constraints that had been empirically optimized for recognition accu-
racy. The algorithm and models were unchanged from last year [1], except that special
speech/nonspeech models were trained exclusively from and for AMI meetings.

Finally, the segments were clustered into acoustically homogeneous partitions,
which serve as pseudo-speaker units for normalization and adaptation. Last year we
fixed the number of clusters at 4; this year the cluster number was chosen automat-
ically, but such that each cluster contained at least 20 segments. We tried using the
output of the ICSI-SRI diarization system [3] for segment clustering, so far without
improvement in recognition accuracy. This could be because even within one speaker
there is important acoustic variation (e.g., due to head movement) that is detected by
the current clustering algorithm.

Close-talking microphone processing. The IHM input channels were segmented
(without Wiener filtering) into speech and nonspeech regions using the same basic algo-
rithm as for the distant microphone signals, using speech/nonspeech models trained on
the close-talking training data (again, except for separate AMI processing, models are
unchanged from 2004). No speaker clustering was performed, since it was assumed that
each IHM channel corresponds to exactly one speaker. However, this year we added a
crosstalk detector, with the goal of avoiding insertion of recognized speech from back-
ground speakers.3

The system generates start and end times for foreground speech segments by per-
forming zero-level thresholding of a “crosstalk-compensated” energy-like signal de-
rived from channel energy signals (but taking both positive and negative values).
For each target channel i = 1, 2, . . . , N in the set of IHM channels, this crosstalk-
compensated signal ECC,i is given by

ECC,i(n) = Eoffset,i(n) − 1
N − 1

∑
k 	=i

Eoffset,k(n) . (1)

Here Eoffset,k is computed as Ek(n) − minl Ek(l), that is, the signal energy minus the
minimum signal energy over the channel. This minimum energy is used as an estimate
of the noise floor.

The subtraction of the average of the nontarget energy signals is done with the ex-
pectation that regions in which crosstalk appears on the target channel (and most likely
on other channels) will have values below the threshold in the resulting signal, as the
crosstalk will appear as a region with significant energy in the averaged signal. The
energy signals represent an average over a window of 25 ms with a step size of 10 ms.
The presumed foreground segments thus detected are then intersected with the output
of the speech/nonspeech decoder.

3.2 Acoustic Modeling and Adaptation

Decoding architecture. To motivate the choice of acoustic models, we first describe
the SRI-ICSI-UW RT-04F CTS system, on which the meeting system is based (see

3 We discarded the post-recognition crosstalk detector used last year that had proven ineffective.
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Fig. 1. SRI CTS recognition system. Rectangles represent decoding steps. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses). Solid arrows denote passing of hypotheses
for adaptation or output. Dashed lines denote generation or use of word lattices for decoding.
Crossed ovals denote confusion network system combination.

Figure 1). An “upper” (in the figure) tier of decoding steps is based on MFCC features;
a parallel “lower” tier of decoding steps uses PLP features. The outputs from these
two tiers are combined twice using word confusion networks (denoted by crossed ovals
in the figure). Except for the initial decodings, the acoustic models are adapted to the
output of a previous step from the respective other tier using MLLR (cross-adaptation).
Lattices are generated initially to speed up subsequent decoding steps. The lattices are
regenerated once later to improve their accuracy, after adapting to the outputs of the first
combination step. The lattice generation steps use non-crossword (nonCW) triphone
models, and decoding from lattices uses crossword (CW) models. Each decoding step
generates either lattices or N-best lists, both of which are rescored with a 4-gram LM;
N-best output is also rescored with duration models for words and pauses [5].

The final output is the result of a three-way system combination of MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire system runs in under 20 times
real time (20xRT).4 For quick turnaround development it is useful to use a “fast” subset
of the full system consisting of just two decoding steps (the light-shaded boxes in the
figure); this fast system runs in 3xRT and exercises all the key elements of the full
system except for confusion network combination.

Baseline models and test-time adaptation. The MFCC recognition models were de-
rived from gender-dependent CTS models in the RT-04F system, which had been trained
with the minimum phone error (MPE) criterion [6] on about 1400 hours of data. (All
available native Fisher speakers were used, but to save training time, statistics were
collected from only every other utterance). The MFCC models used 12 cepstral coef-

4 Runtimes given assume operation with Gaussian shortlists. Since RT-05S did not impose a
runtime limit we ran the system without shortlists, in about 25xRT.



468 A. Stolcke et al.

ficients, energy, first-, second-, and third-order differences features, and 2 × 5 voicing
features over a 5-frame window [7]. Cepstral features were computed with vocal tract
length normalization (VTLN) and zero-mean and unit variance per speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensions using heteroscedastic
linear discriminant analysis (HLDA) [8]. After HLDA, a 25-dimensional Tandem/HATs
feature vector estimated by multilayer perceptrons (MLPs) [9,10] was appended. Both
within-word and cross-word triphone models were trained, for lattice generation and
decoding from lattices, respectively. Baseline PLP CTS models (cross-word triphone
only) were trained in analogous fashion, but did not include voicing or MLP features.
All models this year were trained using decision-tree-based state tying, rather than SRI’s
traditional bottom-up genonic model clustering; this change had resulted in improved
CTS performance.

In testing, all models underwent unsupervised adaptation to the test speaker or clus-
ter, using maximum likelihood linear regression (MLLR) with multiple, phonetically
defined regression classes. After the evaluation we experimented with regression classes
that were generated in a data-driven manner by decision trees. The first MFCC and
PLP adaptation passes used a phone-loop reference model; later passes adapted to prior
recognition output. In addition, all but the first decoding used constrained MLLR in
feature space, which was also employed in training (speaker adaptive training) [11].

Following work by the CMU-ISL team in RT-04S [12], we also experimented with
PLP baseline models trained on BN data. Unlike the CTS versions, these models use the
full signal bandwidth and are gender independent. Otherwise, the BN model used sim-
ilar training, normalization, and adaptation techniques: VTLN, HLDA, feature-space
CMLLR, and model-space MLLR.

Acoustic model task adaptation. All baseline models were adapted to the IHM and
distant microphone conditions using the respective channels in the training data. Based
on experiments with last year’s system, we chose not to use the CMU data for model
adaptation. Also, we found (in 2004) that there was no advantage to delay-summing
the training data for MDM recognition, compared to pooling all the individual distant
microphone signals into one training set. This meant that, conveniently, a single adapted
model set could be used for all distant microphone test conditions. Last year we found
only a very minor benefit from adapting acoustic models to individual meeting sources;
this year the same pooled adaptation data was used for all meetings. The weight for
adaptation data statistics was empirically optimized, and set at 20.

Last year’s baseline models had been trained with maximum mutual information
(MMI) estimation, and accordingly a version of MAP adaptation that adapted numerator
and denominator statistics separately was employed [1]. This year’s baseline models
were created using MPE training [6], and we found it best to apply the MMI-MAP
procedure in adaptation [13]. However, due to lack of time, we applied MMI-MAP
only to the IHM models, and used the standard, less-involved ML-MAP procedure on
the distant microphone models.

MLP feature adaptation. The MLPs estimating Tandem/HATS features had been
trained on a large subset of the CTS training data [10] to perform frame-level phone
discrimination. In addition to MAP-adapting the models based on these features, we
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explored adapting the features themselves to better match the meeting domain. This
was accomplished by applying three additional backpropagation iterations to the CTS-
trained MLPs, using the meeting data as training material. The KLT transform mapping
the phone log posteriors was kept unchanged from the CTS system, so as to keep the
features compatible with existing models. Because of time constraints and data avail-
ability, we were able to carry out this procedure only once, using CMU, ICSI, and NIST
close-talking microphone data. However, as described in the next section, the adapted
features gave improved results on all meeting sources, and for both IHM and distant
microphone conditions; we therefore used the same adapted MLPs in all versions of
our system.

3.3 Language Models

Three LMs were used in decoding: a multiword bigram for lattice generation, a mul-
tiword trigram for decoding from lattices, and a word 4-gram for lattice and N-best
rescoring. The same set of language models is used for all conference meeting sources
(we had found no advantage in tuning LMs to the meeting source). A second set of LMs
is used for the lecture task.

For the conference room domain, the LMs were linearly interpolated mixtures of
component LMs trained from the following sources: (a) Switchboard CTS transcripts,
(b) Fisher CTS transcripts, (c) Hub-4 and TDT4 BN transcripts, (d) AMI, CMU, ICSI,
and NIST meeting transcripts, and (e) world-wide-web data collected to match differ-
ent topics and styles [14], namely RT-04S meeting sources, AMI meetings, and 525M
words of Fisher-like conversational web data collected and published by UW for the RT-
04F evaluation. We obtained best recognition results with mixture weights that had been
tuned to minimize perplexity on heldout CMU, ICSI, LDC, and NIST (but not AMI)
transcripts. The LM vocabulary consisted of 54,524 words, comprising all words in
our CTS system (including all Hub-5 and all non-singleton Fisher words), all words in
the ICSI, CMU, and NIST training transcripts, and all non-singleton words in the AMI
training transcripts. The out-of-vocabulary rate was 0.40% on eval04 transcripts, and
0.19% on the 2005 AMI development transcripts.

For the lecture room domain, additional LM mixture components were built from
(f) 0.1M words of TED oral transcripts and (g) 28M words of speech conference pro-
ceedings (suggested by [15]). Also, the Fisher-relevant web data was replaced by web
data related to conference proceedings. The lecture LM mixture was then optimized
on CHIL development transcripts (LM tuning and testing used a jackknifing scheme to
avoid tuning on the data being tested on). No CHIL transcripts were used for N-gram
training. The lecture LM vocabulary was an extension of the conference LM vocabu-
lary, with 3791 additional frequent words found in the proceedings data. The out-of-
vocabulary rate on the CHIL development data was 0.18%.

4 Results and Discussion

Here we present results measuring the effects of the system features and improvements
described in the previous section. We will first present mostly conference meeting
results, since those were the focus of our development. Lecture recognition results are
summarized at the end.
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4.1 MDM Delay-Sum Processing

For RT-04S, we applied the delay-sum beamforming after the segmentation step, with
one TDOA estimate per waveform segment. This year, delay-summing was performed
before segmentation, as described above. Table 1 compares SDM and MDM results
with both methods. We observe that the new delay-sum method reduces word error rate
(WER) for meetings with multiple distant microphones by 6.5% relative over the old
method, and by 18.0% relative over the single-microphone condition. We also tested the
new delay-sum algorithm, but retaining the old segmentation computed from SDM in-
put, and found almost the same improvement as with segmentation based on the delay-
summed signal (last row in Table 1. This shows that the improvement stems mostly
from better recognition on the enhanced signal.

Table 1. Comparison of SDM and new and old MDM delay-sum methods, using RT-04S models
and a fast decoding system. WERs on eval04with and without CMU meetings (which had only
one distant microphone channel) are given.

Method eval04
Input Delay-sum Segmentation on w/CMU w/o CMU

SDM none SDM 51.3 48.9
MDM old SDM 47.4 42.9
MDM new delay-summed 45.5 40.1
MDM new SDM 45.5 40.3

4.2 IHM Crosstalk Filtering

Table 2 shows IHM recognition results, without and with the new crosstalk suppression
algorithm, as well as for an ideal segmentation derived from the NIST STM reference
files. On both test sets, our crosstalk processing eliminates about one third of the word
error difference between automatic and reference segmentation. However, broken down
by meeting source the error patterns on the two test sets differ somewhat. On eval04
(as well as on our development data) the crosstalk filter never increased WER signifi-
cantly.5 On eval05, however, WER sometime increases, because of occasional dele-
tions of foreground speech by the filter. This is especially a problem on the eval05
ICSI meetings, for reasons yet to be investigated. It should be noted that one of the
eval05 NIST meetings is anomalous, in that a talker participates via a speakerphone,
but without an associated IHM channel. Also, three channels do not contain any speech.
Both these factors lead to very high insertion rates that our algorithm cannot yet effec-
tively suppress.

4.3 Language Modeling

To evaluate the effectiveness of the various LM mixture components, we ran IHM
recognition tests on eval04, AMI devtest data, and CHIL devtest data. Results are

5 Here and elsewhere, we score on all eval04 personal microphone channels, including one
ICSI lapel microphone channel that was removed from official scoring.
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Table 2. IHM performance without and with crosstalk filtering, and with reference segmentation.
Results on eval04 obtained with RT-04S models, fast system; eval05 with RT-05S models,
full system. WERs are broken down by meeting source, and for eval05 by error type (substitu-
tions, deletions, insertions).

Crosstalk eval04 eval05
filter All CMU ICSI LDC NIST All AMI CMU ICSI NIST VT Sub Del Ins

No 35.4 39.7 27.4 44.7 27.1 29.3 22.1 23.3 20.5 45.8 35.8 11.0 10.3 8.0
Yes 34.3 39.3 25.2 43.0 27.3 25.9 23.3 23.3 24.5 34.5 23.6 11.0 11.5 3.4

Reference 32.1 36.9 23.9 40.3 24.3 19.5 19.2 19.9 16.8 21.4 20.6 11.2 6.7 1.6

Table 3. IHM WERs (in bold) and perplexities (in italics) with various LM mixtures on devel-
opment data

eval04 2005 devtest
Language model All CMU ICSI LDC NIST AMI CHIL

RT-04F (CTS) 28.7 95 32.1 111 24.5 78 34.1 85 21.5 109 39.8 113 37.6 320
RT-04S 28.7 97 33.1 117 22.0 62 35.7 97 21.1 99 38.3 107 31.5 212
RT-05S, no web 28.9 103 33.4 121 22.0 66 36.0 101 21.5 110 38.4 100 27.6 155
RT-05S, w/web 27.9 92 32.5 111 21.4 59 34.9 93 20.2 90 37.3 94 26.9 148

summarized in Table 3. More detailed results are reported in [16]. We note that the ad-
dition of AMI meeting transcripts, additional Fisher data, and new web data reduced
WER by about 1.2% absolute on conference meetings relative to last year’s meeting
LM. Naturally, given the difference in topic and speaking styles, the adaptation to the
lecture domain has a more dramatic effect, as the WER is reduced by 4.6%. Web data is
quite important for conference meetings, lowering the WER by 1.3%-1.5%, but less so
for lectures, where its effect is only a 0.7% absolute reduction. A possible explanation
for this difference is that lecture-relevant material on the web is already available in the
conference proceedings used in lecture LM training. Furthermore, we observe that the
CTS LM mixture performs the best on the CMU and LDC meetings in terms of WER,
and on the LDC meetings in terms of perplexity. This could be due to the sparseness of
training data for these two sources, or to intra- and inter-source variability.

4.4 Acoustic Modeling

We tested a range of acoustic models to determine the contribution of baseline model
improvements, Gaussian adaptation, MLP features (original and adapted), and CTS/BN
model combination (for distant microphone recognition). Results are summarized in
Table 4.6 Below we point out the most important contrasts.

Lines (a) and (b) give results with CTS models underlying the RT-04S and RT-05S
meeting models, respectively. We observe between 7% and 16% relative WER reduc-

6 The original MDM submission had 30.0% WER, due to a VTLN bug that actually helped on
eval05. Post-evaluation we found the BN model had not been adapted to female speakers;
however, fixing this only reduced the WER to 30.1%.
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Table 4. WERs using various sets of acoustic models and evaluation data for the conference test
conditions. All results were obtained using the full recognition system and conference meeting
LMs. Columns 2 and 3 indicate whether the Gaussian models and/or the MLP features were
adapted to the meeting domain. “None” in column 3 indicates that MLP features were not used
at all, whereas “no” means that CTS-trained MLPs were used. Highlighted results correspond to
the final evaluation system.

Baseline Gaussians MLP MDM IHM
Line models adapted adapted eval04 eval05 eval04 eval05

a RT-03F CTS no no 48.3 40.2 33.2 30.8
b RT-04F CTS no no 41.4 34.5 28.9 28.6
c RT-04F CTS no yes 41.1 34.2 28.4 27.0
d RT-04F CTS ML-MAP none n/a n/a 29.4 28.6
e RT-04F CTS ML-MAP no n/a n/a 28.6 26.9
f RT-04F CTS ML-MAP yes 40.3 32.2 28.3 26.2
g RT-04F CTS+BN ML-MAP yes 37.1 30.2 28.0 26.3
h RT-04F CTS MMI-MAP yes n/a n/a 27.9 25.9
i RT-04F CTS+BN ML-MAP+DT yes 36.8 29.8 n/a n/a
j RT-04F CTS MMI-MAP+DT yes n/a n/a 28.1 25.6

tion as a result of added CTS data and improved modeling techniques.7 Gaussian adap-
tation (e) and feature adaptation (c) each give about the same amount of improvement
for IHM. Feature adaptation gives only a small gain for MDM because the MLPs were
adapted on close-talking data only. Line (f) shows that Gaussian and feature adaptation
are partly additive. The combined WER reduction is about 7-8% relative on eval05
and 2-3% on eval04. MMI-MAP (h) gives an extra 1% relative IHM error reduction.

The combination of CTS-based MFCC models with BN-based PLP models (g) re-
sults in a large, 6-7% relative error reduction for MDM. Preliminary experiments had
shown no gain for IHM, and the post-evaluation results given here show that there is no
consistent gain over CTS-based PLP models. The reason might be that while CTS mod-
els are a better match to meeting speech in terms of speaking style, BN data contains
more samples of distant microphones and noisy speech.

After the evaluation, we tested MLLR with decision-tree-generated regression
classes (i, j), which resulted in another 1% relative improvement for most conditions,
with the exception of eval04 IHM data.

A comparison of adapted models without MLP features (d) and with adapted MLP
features (f) shows an improvement of 8.4% relative on eval05. That is comparable to
the 10% relative gain found in the CTS domain [10], and indicates good portability of
the Tandem/HATS method.

Comparing the two evaluation sets, we notice that eval05 is slightly easier (2% ab-
solute) for IHM, and considerably easier (almost 10% absolute) for MDM. The absolute
WER differences between line (a) and lines (g)/(h) are almost the same for the two test
sets (about 10% for MDM and 5% for IHM). However, almost all the win on eval04
seems to come from improvements in the baseline system, whereas for eval05 the

7 For comparison, the combined effect of all CTS model improvements was about 28% relative
error reduction on in-domain (Fisher) data.
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adaptation techniques contribute a larger gain. The reasons for this discrepancy still
remain to be investigated.

4.5 Result Summary

Table 5 summarizes results on last year’s and this year’s evaluation sets, including on
lecture room data. The lecture recognition system differed from the conference meet-
ing system only in the LM (as described earlier), and in the configuration of the signal
preprocessing. For MDM processing, we found that one of the CHIL tabletop micro-
phones had much better signal-to-noise ratio than the others, and was best used alone,
instead of in beamforming. Also, the speaker clustering for distant microphones proved
detrimental and was omitted, no doubt because the lectures are dominated by a single
speaker. For comparison with other lecture recognition work we include results on the
development data, which corresponds to the CHIL January 2005 evaluation set.

Table 5. Evaluation system result summary

Conference Meetings Lecture Meetings
eval04 eval05 CHIL devtest eval05

System MDM SDM IHM MDM SDM IHM MDM MSLA MM3A IHM MDM MSLA SDM IHM

RT-04S 44.9 51.3 33.6
RT-05S 37.1 43.0 27.9 30.2 40.9 25.9 51.6 51.0 49.7 26.9 52.0 44.8 51.9 28.0

Based on eval04 results, the overall reduction in word error compared to last year’s
system is 17.4% relative for MDM, and 16.9% for the IHM condition. Error rates are
broadly comparable on eval04 and eval05, in spite of the latter containing different
meeting sources, including one source that had not been seen in training or develop-
ment (VT).

Word error rates on CHIL seminar lectures are comparable to conference meetings
for the IHM condition. Distant microphone recognition shows 10% or more absolute
higher WERs, which is not unexpected given the challenging acoustic conditions and
the lack of in-domain training data. Results are in line with error rates reported by CHIL
research sites [15].

5 Conclusions and Future Work

We have made considerable progress in the automatic transcription of conference meet-
ings, as measured on NIST evaluation data. Substantial improvements came from
meeting-specific preprocessing methods, as well as successful porting of CTS and BN
models, MLP features, and decoding techniques, for an overall word error reduction
of about 17% relative. We were also pleased that the system generalized well to previ-
ously unseen meeting sources and to the lecture domain, the latter with only minimal
language model porting effort.

Major challenges remain, for example, in the recognition of distant speakers and
overlapping speech. The single most important problem in IHM recognition remains
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the separation of foreground from background speech, especially when not all meeting
participants are recorded individually. We also hope to benefit from tighter integration
with our diarization system in the future.
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Abstract. This work addresses the problem of automatic speaker lo-
calization and tracking in a real lecture scenario. Evaluation criteria re-
cently adopted under CHIL and NIST benchmarking are outlined. Two
speaker localization systems are described, which are based on the use
of Generalized Cross Correlation Phase Transform analysis and Global
Coherence Field. Benchmarking results, obtained on a set of 13 lectures,
showed an average RMS error of about 30 cm in the speaker localization.

1 Introduction

Localization of active speakers is a challenging research area related to micro-
phone arrays [1], with a large variety of foreseen possible applications, as video-
conferencing, security, surveillance, smart home, etc. Many research activities
and real implementations are described in the literature, mostly based on the
solution of the Time Difference Of Arrival (TDOA) problem through the esti-
mation of the phase tilt in the cross-power spectrum between two microphone
signals. This phase information is derived by computing the Generalized Cross
Correlation PHAse Transform (GCC-PHAT) introduced in [2] (as a possible al-
ternative to a Maximum Likelihood estimator) and eventually adopted in [3] for
speaker localization. To this regard, the geometry of the room and of the sensor
set-up plays an important role in deriving an accurate speaker position from the
resulting TDOA estimates.

Under CHIL 1 (Computer in the Human-Interaction Loop) European Project
this research issue is tackled by different laboratories, working on a common
experimental framework and, in particular, adopting similar distributed micro-
phone networks. Evaluation criteria have been defined and then applied to com-
pare performance of the given technologies. The most recent benchmarking was
conducted under the NIST RT-Spring Evaluation 2005 (see “http://www.nist.
gov/speech/tests/rt/rt2005/spring/”). The task refered primarily to locate,
identify and track the lecturer while speaking in a seminar, which represents
the first experimental context addressed under the CHIL project.

1 This work was partially supported by the European Commission under the Inte-
grated Project CHIL, contract number 506909.
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The remainder of this work will introduce the Speaker LOCalization (SLOC)
problem, presenting the most commonly used techniques, addressing the evalua-
tion criteria adopted under CHIL and NIST benchmarking, and finally reporting
on results obtained by using two SLOC systems realized at ITC-irst.

2 Problem Definition

Let us consider a speaker, positioned in p = (x, y, z), that generates a speech
signal r(t), and a set of M sensors, with an arbitrary three-dimensional array
geometry, placed in positions p0 = (x0, y0, z0), ..., pM−1 = (xM−1, yM−1, zM−1),
and capturing the respective electrical signals s0(t), ..., sM−1(t). Assuming that
the acoustic waves associated with r(t) propagate in a non reverberant noisy
environment, the signal acquired by acoustic sensor i can be expressed as follows:

si(t) = αir(t − ti) + vi(t) (1)

where αi is an attenuation factor due to propagation effects, vi(t) includes ad-
ditive noise components, and ti denotes the propagation time of the wavefront
from p to the i-th sensor. This propagation time can be expressed as ti = di

c
where c is the speed of sound and di is the distance between the source and the i-
th microphone. The relative delay of the wavefront arrival between microphones
i and k, can be expressed as δik = tk − ti.

In a real situation, the wave propagation is characterized by reflections on
the surfaces and scattering by the objects inside the room. The speakers can
be modeled as multiple directional acoustic emitters possibly moving in space
and overlapping in time. Taking into account the reverberation effects, for one
speaker the most suitable signal model in the discrete domain becomes:

si(n) = hi ∗ r(n) + vi(n) (2)

where * denotes convolution, vi(n) is an additive (background) noise signal at
that sensor, and hi is the channel impulse response between the speaker and
the i-th sensor, which includes implicitly the propagation time ti. From the
estimated propagation times (or, better, from the differences δik in the arrival
of the wavefront) at the sensors, one can derive the position of the speaker.

In particular, a single delay estimated between the signals of two microphones
determines a surface (hyperboloid) of potential source position in the three-
dimensional space. The surface can be reasonably approximated by a cone for
distant sources (i.e., in case of far field assumption). When multiple delay esti-
mates are derived from multiple microphone pairs, the “best intersection point”
(according to a proper definition of a distance measure and a consequent min-
imization) is assumed as estimated candidate source position. A linear array
allows source localization except for a rotation along the array axis. If the height
of the source is assumed to be known, the linear array is sufficient for a two-
dimensional localization. When a three-dimensional localization is requested, the
array geometry should span all the three axes of a cartesian coordinate system.
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In this case, microphone pairs at different heights and with different orientations
inside the room are to be used.

All these aspects make the problem of speaker localization inside rooms a spe-
cial case in the general topic of passive source localization by means of multiple
sensors. Without lack of generality, in our case the active speaker corresponds
to a wide-band, non-stationary acoustic emitter acting in closed space of small
dimension in relation with the involved wavelengths. A lot of literature exists
on the general topic, also reporting on methods that could not find direct appli-
cation in the speaker localization scenario (correlation-based and autoregressive
methods, eigenvalue-based analysis, MUSIC algorithm), in particular techniques
either requiring a priori knowledge on the statistics of the emitters and the back-
ground noise, or requiring narrowband signals, or making assumption of far-field
and low-reverberation (for more details see [4]). For speaker localization pur-
poses, the most suitable methods are those based on the estimation of time
delays δik, as described in [1] and addressed in the following. Examples of real
implementations are also described in the literature [5, 8].

3 Distributed Microphone Networks

In the CHIL project, Speaker Localization and Tracking in 3D is accomplished
by adopting a distributed microphone network: this corresponds to have a set of
arrays consisting of few microphones (e.g. T-shaped clusters of 4 microphones)
spatially distributed in such a way that any time at least one cluster is in a fa-
vorable position to provide information about the direction of wavefront arrival.

Fig. 1. Map of the CHIL room at ITC-irst: the room is equipped with one modified
NIST MarkIII array and seven T-shaped arrays; the geometry of the latter ones is
reported in the right part of the figure.
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In practice, given the same number of sensors the main advantage of a dis-
tributed microphone network over a more traditional microphone array solution
is in terms of better coverage in space, i.e. the potential for a better localization
performance for every possible speaker position and head orientation. On the
other hand, it is worth noting that spatial filtering (e.g. beamforming) can not,
in general, be applied with such a distribution due to the limitation related to
the spatial aliasing theorem [9]. Speech enhancement and acoustic feature extrac-
tion (for distant-talking speech recognition) based on a distributed microphone
network represent challenging issues to investigate.

Figure 1 shows the map of the CHIL room at ITC-irst, where seven T-shaped
arrays are placed at the same height (at about 2 meters). The Figure also shows
the geometry of a T-shaped array, which consists of four omnidirectional micro-
phones. This geometry allows to determine azimuth and elevation angles relative
to each array; merging information from different arrays allows to localize the
source in terms of (x,y,z) coordinates. Note that given a high number of micro-
phones at the same height the evaluation of z coordinate may be biased.

4 Time Delay Estimation

Methods based on estimation of Time Difference Of Arrival (TDOA) at multiple
microphones have been shown to be capable of accurate speaker localization even
in relatively noisy and reverberant environments. The Phase Transform (PHAT)
identifies a possible processor weighting in the GCC framework [2]. In the past,
it was also defined as Cross-power Spectrum Phase (CSP), as discussed in [3]
where it was applied for the first time to speaker localization, and ported into a
first product for videoconferencing already based on a T-shaped array geometry
(see “www.aethra.com”). Its computation is performed as follows. Denoting with
l the time lag, and with si(n) and sk(n) the discrete time sequences in the given
interval, which were obtained by sampling signals acquired by microphones i and
k, GCC-PHAT is defined as:

Cik(t, l) = DFT−1
{

DFT (si(n)) · DFT ∗(sk(n))
|DFT (si(n))| · |DFT (sk(n))|

}
. (3)

In particular, as shown in [3, 4, 10], a GCC-PHAT based Coherence Measure
(CM) function Cik(t0, τ), computed for an interval centered at time instant t0,
has a prominent peak at delay τ = δik corresponding to the direction of arrival.

Due to the theoretical independence of GCC-PHAT based CM from spectral
characteristics of the input signals, maximizing it in the range of possible lags
leads to an effective TDOA estimation even in presence of noise and reverber-
ation. More details on the influence of acoustics and environmental conditions
on speaker localization accuracy can be found in [11]. Starting from this basic
method, many other similar solutions to speaker localization have been proposed
in the literature during the last decade [1].

Alternative techniques have also been proposed as for instance that described
in [12]: in this case, time delays derive from the analysis of the multichannel spa-
tial correlation matrix, which takes advantage of the redundancy among multiple



480 M. Omologo et al.

microphones to reduce the effects of noise and reverberation. However, prelim-
inary experiments conducted under CHIL did not show a remarkable improve-
ment in using that technique rather than GCC-PHAT [13].

Among the most recent proposals, a technique described in [14] deserves to be
mentioned for next investigation, which derives time delay estimates by applying
a blind source separation to the given input channels.

5 Global Coherence Field

A Global Coherence Field (GCF) is a function, defined over the space of possible
sound source locations, which represents the plausibility that a sound source
is active at a given point. It was introduced in [4], related to the Coherence
Measure, and it is conceptually similar to Power Field (PF) introduced in [15].
More recently, in Chapter 8 of [1], Steered Response Power(SRP)-PHAT was
introduced, which is equivalent to GCF.

Power Field (PF) represents the power of the signal obtained at the output of
a beamformer, as a function of the point of space at which the array is steered. In
other words, if the location space is subdivided by a grid Σ of potential source
locations pl = (xl, yl, zl) and the corresponding sets τl of steering delays are
used to “scan” the space by means of the array, the power of the output signal,
when the array is steered at a given location, can be used to derive a degree of
plausibility that the source is located at that point. Now, let us consider a set Ω
of Q microphone pairs and denote with δik(x, y, z) the theoretical delay for the
microphone pair (i, k) if the source is at position (x, y, z). Once the Coherence
Measure Cik(t, δik(x, y, z)) has been computed at instant t, for each microphone
pair (i, k) belonging to Ω, GCF is expressed as:

GCFΩ(t, x, y, z) =
1
Q

∑
(i,k)∈Ω

Cik(t, δik(x, y, z)). (4)

Note that GCF is more informative than PF for SLOC purposes, especially for a
distributed microphone network where beamforming should not be applied due
to spatial aliasing. In fact, GCF is defined by considering the average coherence
between signals realigned by the beamformer, instead of the power of its output.
Figure 2 shows an example of GCF restricted to a plane (x, y).

6 ITC-irst SLOC Systems

The following of this work will address the evaluation of two SLOC systems
realized at ITC-irst. The first one is based on a two-step procedure:

– In the first step, two horizontal microphone pairs (one per T-shaped array,
with a distance of 40 cm between the microphones) are used to derive two
delay estimates by using GCC-PHAT; from the two resulting directions a
(x,y) position is computed.
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Fig. 2. GCC-PHAT based two-dimensional GCF computed using the 5 leftmost micro-
phone clusters. GCF magnitude is represented by the brightness of the plotted points.
The brightest spot in the center of the room corresponds to the active speaker.

– In the second step, two vertical microphone pairs are used to compute two
GCC-PHAT functions. From the delay corresponding to the maximum in
the two functions, the z-coordinate estimate is derived.

The second system works in a straightforward manner; in fact, it is based on
maximizing GCF over all the possible positions in the room (on a grid of 10 cm
x 10 cm).

Both systems can produce a set of coordinates every frame (i.e. about 90 ms);
however, a postprocessing based on the maxima of the GCC-PHAT functions and
on a related thresholding and smoothing leads to the decision about eventually
classifying a given frame as speech. In other words, the latter step plays the role
of a speech activity detector. Tuning of the systems was conducted on the basis
of performance obtained on a development data set.

7 SLOC Evaluation

Most of the literature addressing speaker localization is based on simulations and
often reports on performance expressed in terms of accuracy (e.g. bias and stan-
dard deviation) of delay estimates. On the other hand, in this work we directly
address the problem of evaluating a SLOC technology in terms of localization
accuracy in a real scenario. The accuracy of a speaker localization system is af-
fected by many factors: the number of exploited microphones, their sensitivity,
their spatial and spectral response, their relative geometric position, their dis-
tance from the speaker. In the CHIL project, a very similar set-up was adopted
at the partners’ sites in order to minimize fluctuations in performance due to the
above mentioned factors; this way, sharing development and test data across the
partners can lead to a reliable and fair evaluation of the different technologies.
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Fig. 3. Map of the CHIL room at Karlsruhe University (reported with the kind per-
mission of Karlsruhe University). The 2-step procedure used a horizontal and a vertical
microphone pair for each of the two arrays B and D. In the GCF-based procedure, GCF
was computed from one horizontal microphone pair for each of arrays B, C, and D.

Estimating SLOC accuracy in a real scenario implies the need of a reference
consisting in a labeled real database. For the first CHIL/NIST benchmarking,
a database of 13 lectures was used, which were recorded between November
2004 and February 2005 in the CHIL room available at Karlsruhe University
(see “http://chil.server.de” for further information). Figure 3 shows the map of
the room, characterized by a reverberation time of about 450 ms. The location
of the centroid of the speaker’s head in the images from the four calibrated
video cameras was manually marked every 667 milliseconds. Starting from these
hand-marked labels, the true position of the speaker’s head in three dimensions
was calculated using the technique described in [16]. The resulting ground truth
positions are accurate to within approximately 10 cm.

7.1 Type of Errors

In the given scenario two types of localization tasks are defined: Accurate, cor-
responding to a situation for which an extremely reliable coordinate reference is
available; Rough used to face with situations in which a reliable reference is not
available (this happens when the lecturer is interrupted by the audience, and
inspecting videorecordings does not allow to recognize where was the speaker).

Basically, SLOC performance is evaluated by means of the Euclidean distance
(or RMS) applied to the coordinates provided by the localization system (p l) and
to the corresponding reference coordinates checked by the manual transcriber
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(p r). The localization errors are classified in two classes [12, 17]: anomalies or
gross errors; non-anomalies or fine errors. Given a distance function d(p l,p r)
between the two set of coordinates, and a threshold E r in the related error, which
represents a circle (or a sphere, in the 3-dimensional version) around the true
source position p r, a localization error is classified as anomalous or gross error
if d(p l,p r) > E r; otherwise, it is classified as a non-anomalous or fine error.
Thresholds for the discrimination between fine and gross errors will be different
from Accurate localization tasks to Rough localization tasks: for instance, in a
lecture scenario the threshold can be 50 cm for the Accurate localization task
and 1 meter for the Rough localization task. For what concerns the classification
between gross and fine errors, one can also compute the localization rate Pcor, as
suggested in [18], which is defined as the number of fine errors (NFE) over the
total number of frames (NT ) for which the system has produced a localization
result, i.e. Pcor = NFE/NT .

7.2 Speech Activity Detection Constraints

In principle, a speaker localization system may produce a set of coordinates at a
high rate, for instance equal to the TDOA analysis rate. However, in a realistic
application one needs to have a system able to track smoothly the position of
the speaker. Hence, an overproduction of speaker positions have to be postpro-
cessed anyway in order to derive one position for a longer temporal segment. The
adoption of an updating rate in the range of 1-10 Hz seems to be reasonable.
This choice is also consistent with typical rates adopted for vision technologies,
and so with a potential integration between audio and image processing systems
for person localization and tracking purposes.

So, in order to evaluate different SLOC technologies a common evaluation rate
is here adopted; the example given in Figure 4 (see also the Appendix) refers to
the assumption of an evaluation temporal segment equal to 100 ms. If a speaker
localization system provides coordinates with a faster rate, the evaluation tool
averages the coordinates, on a 100 ms window centered around the given time
instant. If the speaker localization system produces data with a slower rate, or
is not able to produce a set of coordinates for some frames labelled as ”one
speaker” by the human labelers, the evaluation tool will classify those missing
data as deletion errors. Figure 4 provides one example for each of the following
situations: an averaging, a localization at the given evaluation frame rate, a
deletion, and a false alarm. Actually, introducing here deletion and false alarm
rates is due to the fact that a speaker localization system includes an implicit
acoustic event detection process. In a real application we can assume that one
is interested in a good localization accuracy as well as in a low, and balanced,
rate of deletions and false alarms, as discussed in the following.

7.3 SLOC Evaluation Tool

Based on the above mentioned approach and concepts, ITC-irst developed a
SLOC evaluation software under the CHIL project. The same software was then
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Fig. 4. Examples of outputs of the localization system for the x coordinate: SAD is the
bilevel information of speech/non-speech activity, REF is the reference transcription
of the x coordinate, OUTPUT shows the results of the localization system in the case
of output at higher frame rate than 10 Hz, in the case of output at 10 Hz and in cases
of deletion and false alarm, respectively.

adopted by NIST for RT-Spring Eval 2005 benchmarking 2. A dummy example
of how this software works is reported in Appendix. In particular, one can find:
the content of the reference (manual labeling) file for a sequence of 1.3 seconds;
a second list of data representing the output of a SLOC system; a third list
reporting the output of the evaluation software for every frame (i.e. every 100
ms); finally, a list of indicators of performance, which let one be able to interpret
a SLOC system potential from different perspectives.

7.4 NIST/CHIL Evaluation

The NIST RT-Spring Eval 2005 activity was conducted on excerpts of 13 lec-
tures, as previously mentioned. The test recordings had an overall duration of
about 66 minutes. A reference file (similar to that reported in the Appendix)
was available for every lecture, with a labeling time step of 667 ms. The total
number of reference frames was 5788. For 4241 of them, a set of coordinates
corresponding to the active speaker location was available. It is worth noting
that the recordings were selected among sequences in which most of the time
there was no interruption by the audience.

The two ITC-irst systems above described were evaluated on the given test
data. Although 16 microphone channels were available, for both SLOC systems a
subset of microphones was used. In more detail, two T-shaped arrays (namely B
and D) of the UKA room were used for the first system (based on GCC-PHAT).
For the second system (based on GCC-PHAT and GCF) the T-shaped arrays
B,C,D were used, since the array A (positioned close to the lecturer) was less
informative. In fact, in most of the recordings the lecturer was oriented towards
the audience; preliminary experiments on a development set had shown that by
including array A slightly decreased performance.
2 See also “http://www.nist.gov/speech/tests/rt/rt2005/spring/”, where the source

code and the document “SpeakerLocEval-V5.0-2005-01-18.pdf” can be downloaded.
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Table 1 reports on the results, which show (see the first two rows) that both
systems produced on the average two localizations per second (in fact, Average
Frame Rate is 1.94 and 2.25). In both cases, the RMS of fine errors is close to
20 cm and the RMS of fine and gross errors together is a little higher than 30
cm. The good performance of the system is also confirmed by the localization
rates, equal to 0.95 and 0.92, which shows that most of the errors are under the
threshold of 50 cm. The bias is neglectable in all the three coordinates, even
considering both fine and gross errors; this also shows that the video calibration
process was consistent enough. Finally, the False Alarm Rate and the Deletion
Rate are in both cases between 0.39 and 0.48, which corresponds to a satisfactory
balanced situation. On the other hand, by setting the GCF-threshold of the voice
activity detector in different ways, system behaviour changes substantially. Given
a threshold equal to 0, deletion and false alarm rates are almost equal to 0 and
1, respectively, while the average frame rate is more than 6. Finally, the last row
(with GCF-threshold=0.75) shows a case in which the error rate is improved but
deletion rate becomes unacceptable (i.e. the evaluation is done on 175 frames).

Table 1. Results obtained applying the two SLOC systems developed at ITC-irst to
the NIST-RT Spring Eval2005 test set.The last two lines refer to different settings of
the GCF threshold for speech activity detection.

Technique AverageNumber of False DeletionLocali-RMSE RMSE Bias
Frame Loc. Alarm Rate zation fine fine+ fine+
Rate[s] frames Rate Rate [mm] gross [mm] gross [mm]

2step 2.25 2539 0.42 0.41 0.95 203 309 (59,-78,-41)

GCF(0.38) 1.94 2273 0.39 0.48 0.92 198 327 (40,-47,-51)

GCF(0) 6.21 3962 0.81 0.07 0.87 226 479 (43,-64,-77)

GCF(0.75) 0.07 175 0.03 0.96 0.91 159 238 (80,-22,-57)

8 Conclusions and Future Work

In this work, the evaluation of a speaker localization system in a real lecture
scenario has been addressed. Although good performance has been obtained, the
given task can be considered of medium difficulty due to the limited movements
of the lecturer in a rather small area and to a preliminary selection of test
sequences in which there was almost no interference from the audience.

Next activities include the study of speaker localization in more complex
scenarios as meetings and interactive seminars, in which different speakers can be
active, even at the same time. To this regard, the entire distributed microphone
network can be exploited to improve system performance; GCF and its extension
to the Oriented GCF (OGCF) [19] represent good techniques along this direction.
Finally, the integration of audio and video processing is envisaged to obtain a
multi-modal person tracking in a more complex but probably more effective
framework than using a single modality. To this regard, evaluation criteria and
related tools are expected to be updated.
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Appendix: Evaluation Input-Output

Reference

Ti- Spea- Noi- Spea- x y z Ti- Spea- Noi- Spea- x y z
me[ kers se so- ker [cm] [cm] [cm] me[ kers se so- ker [cm] [cm] [cm]
s] urces ID s] urces ID

0 1 0 lect 400 200 180 0.7 1 0 aud 120 150 110
0.1 0 1 - - - - 0.8 2 0 - ND ND ND
0.2 1 0 lect 395 250 180 0.9 1 0 aud 120 150 115
0.3 2 1 - ND ND ND 1.0 1 0 lect 398 238 180
0.4 1 0 aud 120 150 120 1.1 0 1 - - - -
0.5 1 0 lect 410 225 170 1.2 1 0 aud 120 150 100
0.6 0 2 - - - - 1.3 2 1 - ND ND ND

Output of the localization system

Time [s] x [cm] y [cm] z [cm] Time [s] x [cm] y [cm] z [cm]
0 396 198 180 0.6 300 310 115
0.2 405 239 185 0.7 125 170 118
0.4 110 181 110 0.9 200 220 94
0.5 430 280 177 1.0 410 224 186

Output of the evaluation software

Time [s] Err [cm] Classification Time [s] Err [cm] Classification
0 4.5 Fine Error(Lect.) 0.7 22.1 Fine Error(Aud.)
0.1 ND No Speaker 0.8 ND Ignored
0.2 15.7 Fine Error(Lect.) 0.9 108.4 Gross Error(Aud.)
0.3 ND Ignored 1.0 19.4 Fine Error Lecturer
0.4 34.1 Fine Error(Aud.) 1.1 ND No Speaker
0.5 58.9 Gross Error(Lect.) 1.2 ND Deletion(Aud.)
0.6 ND False Alarm 1.3 ND Ignored
Evaluation Summary Lecturer Audience Overall
Pcor 0.75(=3/4) 0.67(=2/3) 0.71(=5/7)
Bias fine (x,y,z)[cm] (6.0, -9.0, 3.7) (-2.5, 25.5, -1.0) (2.6, 4.8, 1.8)
Bias fine+gross (x,y,z)[cm] (9.5, 7.0, 4.5) (25.0, 40.3, -7.7) (16.1, 21.3, -0.7)
RMSE fine [cm] 14.6 28.7 21.4
RMSE fine+gross [cm] 32.1 66.8 50.0
Deletion Rate 0(=0/4) 0.25(=1/4) 0.12(=1/8)
False Alarm Rate=0.33(=1/3)
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