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Abstract. A combination of gene ranking, dimensional reduction, and
recursive feature elimination (RFE) using a BP-MLP artificial neural
network (ANN) was used to select genes for DNA microarray classifi-
cation. Use of k-means cluster analysis for dimensional reduction and
maximum sensitivity for RFE resulted in 64-gene models with fewer in-
variant and correlated features when compared with PCA and mimimum
error. In conclusion, k-means cluster analysis and sensitivity may be
better suited for classifying diseases for which gene expression is more
strongly influenced by pathway heterogeneity.

1 Introduction

Artificial neural networks (ANNs) have been applied to DNA microarray data
through several approaches. Tarca et al used ANNs to normalize cDNA microar-
ray data and demonstrated a reduction in both intensity-dependent bias and
spatial-dependent bias[1]. The agreement between regulatory motifs and func-
tional classes of Saccharomyces cerevisiae genes in clusters based on Euclidean
distance, correlation, and mutual information was found to be lower than ANN-
derived clusters[2]. Using expression data for cardiovascular disease, Tham et al
reported that an ANN approach provided promising prediction results[3]. The
remaining clinical papers on ANNs focused on diagnostic classification of several
types of cancer such as leukemia, lymphoma, lung cancer, prostate cancer, and
various neurological malignancies [4-9].

The goal of this paper was to assess correlation and differential expression
among features identified through a combination of methods involving gene
ranking, dimensional reduction, and recursive feature elimination (RFE). Com-
parisons are provided describing the amount of between-gene correlation in
64-gene models as a function of dimensional reduction and RFE methods. Also
provided is the proportion of genes among the 64-gene models with significant
between-class differential expression.
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2 Methods

2.1 Simulated Data Set

Let the matrix E of gene expression profiles have dimension G x A, where G is
the number of genes (¢ = 1,2,...,G) and A is the number of microarrays (a =
1,2,...,A). A simulated data set with 400 genes and 20 arrays was generated
with expression values distributed normally as N(u, o) as shown in Table 1.
Symmetry in the simulated expression values was preserved among the 2 classes
in order to prevent bias in the sensitivity for a particular class.

Table 1. Description of 400 simulated genes for 20 arrays

Simulated genes

Class A(10 arrays) Class B(10 arrays)
# Genes Odd arrays Even arrays Odd arrays Even arrays
40 N(0,1) N(0,1) N(0,1) N(0,1)
20 N(5,1) N(5,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(5,1)
20 N(5,1) N(5,1) N(-5,1) N(-5,1)
20 N(-5,1) N(-5,1) N(5,1) N(5,1)
20 N(5,1) N(0,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(0,1)
20 N(5,1) N(-5,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(-5,1)
20 N(5,1) N(-5,1) N(5,1) N(0,1)
20 N(5,1) N(0,1) N(5,1) N(-5,1)
20 N(5,1) N(-5,1) N(5,1) N(-5,1)
20 N(2.5,1)  N(0,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(2.5,1)  N(0,1)
20 N(2.5,1) N(-2.5,1)  N(0,1) N(0,1)
20 N(0,1) N(0,1) N(2.5,1)  N(-2.5,1)
20 N(2.5,1) N(-2.5,1) N(2.51) N(0,1)
20 N(2.5,1)  N(0,1) N(2.5,1)  N(-2.5,1)
20 N(2.5,1)  N(-2.5,1)  N(2.5,1)  N(-2.5,1)

2.2 Empirical Data Sets

We used two empirical data sets available in the public domain. The first was
published by Hedenfalk et al [I0] on BRCA1 and BRCA2 mutations with 3170
genes and 15 arrays comprising 2 classes (7 arrays for BRCAI and 8 arrays
for BRCA2). The second was published by Khan et al [9] on childhood small
round blue-cell tumors (SRBCT) with 2308 genes and 63 arrays comprising 4
classes (23 arrays for EWS-Ewing Sarcoma, 8 arrays for BL-Burkitt lymphoma,
12 arrays for NB-neuroblastoma, and 20 arrays for RMS-rhabdomyosarcoma).

2.3 Gene Ranking

We applied non-parametric independent k-sample statistical tests and ranked
genes based on their significance level. For the 2-class simulated and Hedenfalk
et al data sets, we applied the Mann-Whitney test to rank genes based on signifi-
cance. The Mann-Whitney test approximates the Gini diversity index commonly
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used for feature selection[I1]. While all of the 400 simulated genes were used, we
applied a cutoff criterion of p < 0.2 for the 3170 original genes in the Hedenfalk
et al data set and identified 967 genes. For the 4-class Khan et al data set with
2308 original genes, we used the independent k-sample Kruskal-Wallis ANOVA
test to rank genes and applied a cutoff p < 0.01. This led to 898 gene expression
profiles. Tail probabilities for parametric t-tests applied to the Hedenfalk et al
data resulted in 1191 genes with p < 0.20 and 920 genes for F-tests applied to
the Khan et al data for which p < 0.01. Parametric test results were not used
for gene ranking, but stored for bookkeeping.

2.4 Dimension Reduction with K-Means Cluster Analysis

In addition to gene ranking and use of p-value cutoffs, we applied k-means clus-
tering and principal components analysis (PCA) for dimension reduction in order
to minimize effects from the curse of dimensionality[I2]. For k-means clustering,
let k& (k=1,2,...,K) be the the kth cluster of a clustering, and K the total
number of clusters. The optimal value of K is determined by cycling through
values of K = 2,3,...,v/G. This is performed as follows. For K clusters, the total
within-cluster sum-of-squares is

K Gy

SSW(K) =Y |Ixgr — my|, 1)

k=1g=1

where x4, is the row vector containing expression values for gene g in cluster k&
over the A arrays and my, is the mean vector for G genes in cluster &, and ||.||
is the Euclidean distance. For the same K clusters, the smallest between-cluster
distance is
d(K) = i — 2
(K) = | _min [l — . @)

and the score function for a set of K clusters is
d(K
si= M 3)

SSW(K)
After evaluating the score function Sk for values of K ranging from 2 to v/G,
the optimal value of K is

Kopt = max {Sk}. (4)

2<K<VG
Once K,p; is determined, the k-means algorithm is rerun using K, clusters.
K-means clustering results in a A x K M matrix of k-means centers. For each
gene, determine the k-means score which maps the gene back to the center k as

zgk:”Xg_m’“”_“’“ k=1,2,..., K, (5)

Ok

where x, is the standardized expression vector for gene g, my, is the mean vec-
tor for center k, ||xy — my]|| is the Euclidean distance between expression for
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gene g and center k, and ur and op are the average and standard deviation
of distances ||x, — my|| between all genes and center k. This was repeated
for each cluster center to yield a G x K Z matrix of k-means scores. Since
the scores are standard normal distributed, the bulk of scores will be centered
around zero and genes with the smallest or greatest distance from the cluster
center will yield greater scores. For the simulated data set, we identified 12
centers (i.e., Kop=12). For the Hedenfalk et al breast cancer data, we iden-
tified 30 centers, whereas for the Khan et al SRBCT data, we identified 28
centers.

2.5 Dimension Reduction with PCA

During PCA, the top 10 eigenvalues were extracted from the G x G correlation
matrix R. The array by component (A x P) F matrix of PC scores is determined
with the matrix of standardized expression values (standardized with mean and
s.d. over the genes) as follows

F = 7Z W. (6)

AxXP AXGGxP

In order to map genes back to the arrays via the principal components, the
matrix of PC score coefficients was obtained using the matrix operation

W = L (UL, (7)
GxP GxP pxp

where L is the loading matrix reflecting the correlation between each gene expres-
sion profile and the extracted PC scores. The top 10 PC’s were always extracted
from the gene by gene correlation matrix and used for training. Orthogonal
rotations were not performed.

2.6 ANN Training During Recursive Feature Elimination

Recursive feature elimination (RFE) was based on a BP-MLP ANN with one hid-
den layer. The ANNChip computer program (http://www.chipst2c.org) was used
for RFE and included 8-fold cross-validation and leave-one-out testing where ar-
rays were randomly assigned to 8 validation groups. Each validation group was
selected singly resulting in a single ANN model in which the remaining 7/8 of
arrays were used for training. During leave-one-out testing, array 1 was left out
of models 1-8, array 2 left out of models 9-16, etc., so that each array was left
out during 8 models. Table 2 summarizes the input data sets with the number
of samples and genes, the reduction methods and derived matrices used to feed
the ANN during RFE, and the total number of models used based on 8-fold
cross-validation with leave-one-out testing.

Selection of Genes Based on Maximum Sensitivity. In order to gauge
the influence of each gene on the classification, target outputs ¢J for each gene
were calculated during the last sweep of every model using the last known weights
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Table 2. ANN training during recursive feature elimination (RFE) and ANN model
summary for 8-fold cross-validation with leave-one-out testing

Reduction Training Network ANN
Data method Samples Genes matriz® size  models®
Simulated k-means 20 400 20M12 12-5-2 160
X
PCA 20 400 F 10-4-2 160
20%10
Hedenfalk et al k-means 15 967 15M30 30-12-2 120
X
PCA 15 967 F 10-4-2 120
15%10
Khan et al k-means 63 898 M 28-11-4 504
63x28
PCA 63 898 F 10-4-2 504

63x10

¢ Matrices from reduction results were used for training the ANN during RFE.
® Number of models equal to 8 validation groups times number of samples.

and setting the input nodes x; equal to either the 1 x K row vector of k-means
scores z, for each gene or the 1 x P row vector w, of PC score coefficients for
each gene. It warrants noting that the ANN was not retrained here, but rather
gene-specific values of {g were determined by applying the last known weights to
gene-specific row vectors of Z or W, which map the genes back to the original
M and F matrices used for training. The average gene-class-specific sensitivity
of each gene was then determined as

1 <~ 919
9 _— c
57 n 2= o, (8)

where g is the gene, c is the class, n is the number of input nodes based on n = K
and x = z, if the ANN was trained with k-means centers based on M, or n = P
and x = wy if the ANN was trained with PC scores based on F. The partial
derivative 0t9/0x; is determined via the chain rule, by first differentiating #9
w.r.t. hidden layer outputs, v;, and then input row values, z;, given by

Ot 0t dv;
8962- o zj: (%j 8962

_ Z dtd 9y. dv; Ou;
B r dy. Ovj duj Oz;

expe) (S ex(n) — explae)

—uy
ho € ih
Je (1 +e—uj)2 ©J

| (o)

Class-specific sensitivities for each gene were summed over all models and then
sorted in descending order. Genes at the top of the sort were selected as the best
predictors based on gene-class-specific sensitivity. The list of genes was divided
equally into genes with the greatest sensitivity for discriminating each class.
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For example, for a list of 8 genes and 2 classes, the 4 genes with the greatest
sensitivity for discriminating class 1 were used along with the 4 genes with the
greatest sensitivity for discriminating class 2.

Selection of Genes Based on Minimum Error. In addition to RFE based
on sensitivity, we also calculated the gene-class-specific mean square error during
the last sweep, £ = 0.5(tJ — t.)2, using the recomputed values of #J described
above. Analogously, we derived lists of genes for which each class was represented
equally by genes having the lowest gene-class-specific MSE.

2.7 Generating Lists of Selected Genes

A modular approach was employed for generating the list of genes identified during
RFE. Lists were divided uniformly into genes that best discriminated each out-
come class, depending on whether the selection criterion was minimum gene-class-
specific MSE or maximum gene-class-specific sensitivity. The total number of genes
in a list was based on powers of 2 multiplied by the number of classes, such that the
list was uniformly loaded with genes that best discriminated each class.

2.8 ANN Training with Selected Gene Expression Profiles

After recursive feature identification, we trained the ANN models with the ac-
tual standardized values of expression for the identified genes. For example,
for 64 genes (features) and 2 outcome classes a 64-26-2 network was employed,
where the number of hidden nodes is equal to 40% of the number of input

Table 3. ANN training input using standardized expression profiles of genes selected
during recursive feature elimination (RFE). 8-fold cross-validation with leave-one-out
testing used.

Reduction RFE Training Network ANN
Data method method Samples Genes(n) matriz® size  models®
Simulated k-means min(EY) 20 2,4,8,16,32,64 20E n-0.4n-2 160
Xn
max(SY) 20 2,4,8,16,32,64 20E n-0.4n-2 160
Xn
PCA min(B{) 20 248163264 B = n-04n-2 160
Xn
max(SY) 20 2,4,8,16,32,64 20E n-0.4n-2 160
Xn

Hedenfalk et al k-means min(EY) 15 2,4,8,16,32,64 15]§n n-0.4n-2 120
max(S¢) 15 248163264 E  n04n-2 120

PCA min(BY) 15 248163264 B n-04n-2 120

max(S¢) 15 248163264 E  n04n-2 120

Khan et al k-means min(EY) 63 4,8,16,32,64 E n-0.4n-4 504

63xn

max(S9) 63 48163264 B n-04n-4 504

PCA min(EJ) 63 48163264 B n-04n-4 504
Xn

max(S9) 63 4,8,16,32,64 E n04n4d 504
63xn

¢ Training matrix of standardized gene expression E based on genes sorted by RFE method.
® Number of models equal to 8 validation groups times number of samples.
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nodes. During runs with actual gene expression profiles, we assessed accuracy,
the proportion of between-gene correlation coefficients that were significant
(p < 0.01 and p < 0.05), and the proportion of genes in the list that had
significant parametric test statistics (p < 0.05) during the original gene rank-
ing calculations. Table 3 lists the gene expression data used for training the
ANN.

3 Results and Discussion

The choice for using non-parametric Mann-Whitney U and Kruskal-Wallis tests
for gene ranking should have a minimal effect on the observed results. Li et al
assessed the effect of 8 different feature selection statistics on SVM outcome and
determined that for more than 150 microarray-based genes the variation in per-
formance was small[I3]. Figure 1 illustrates the average and standard deviation
of sensitivity for different types of simulated expression profiles based on dimen-
sional reduction by k-means clustering and PCA. K-means resulted in near-zero
values of sensitivity for genes with lower within-class variation of expression,
such as N(5:1)|N(0;1), N(0:1)|N(5;1), N(5:1)|N(-5;1), and N(-5:1)|N(5;1). How-
ever, for PCA genes N(0;1)|N(5,1) and N(-5;1)|N(5;1) showed large negative
values of sensitivity. For these genes, PCA inflated sensitivity that was not de-
tected by k-means. One can notice in Figure 1 that, for the remainder of genes
with larger differential entropy, k-means resulted in greater sensitivity when com-
pared with PCA. Another disadvantage of PCA is that orthogonal projections
may have nothing to do with class discrimination. Moreover, the bulk of data in-
cluding noise and outlier patterns that often load on the lower components (>3)

® k-means

v PCA
N(2.5;1);N(-2.5;1)|N(2.5;1)_N(-2.5;1) - —eo— —v—i
N(2.5;1)_N(0;1)|N(2.5;1)_N(-2.5;1) - —— —v—
N(2.5;1)_N(-2.5;1)N(2.5;1)_N(0;1) - H—v—o—
N(0;1) [N(2.5;1)_N(-2.5:1) { +———O— —v—
N(2.5;1)_N(-2.51)N(©0;1) { +—e—F ——
N(0;1)|N(2.5;1)_N(0;1) - —v— e
N(@2.51)_NO;)NO;1) { +H—e— —v—
N(5;1)_N(-5;1)N(5;1)_N(-5;1) - ——etvt
N(5;1)_N(0;1)|N(5;1)_N(-5;1) - v
N(5;1)_N(-5;1)|N(5;1)_N(0;1) - —e— v
N(0;1)|N(5;1)_N(-5;1) 1 —e—— v
N(5;1)_N(-5;1)|N(0;1) - —e— v
N(0;1)|N(5;1)_N(0;1) - v ol
N(5;1)_N(0;1)|N(0;1) - A v
N(-5;1)|N(5;1) 1 v .
N(5;1)|N(-5;1) 1 v
N(0;1)|N(5;1) | v .
N(5;1)[N(0;1) - o —v—
N(0;1)[N(0;1) - v
04 03 0.2 01 0.0 0.1

Average gene-specific sensitivity for class A

Fig. 1. Average and standard deviation of sensitivity, S, for class A
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A B

K-means, minjerer_c), N=64. K-means, max{sens_c), N=64

Fig. 2. Expression profiles of top 64 simulated genes identified after gene reduction
with k-means or PCA followed by recursive feature elimination (RFE). (A) Dimension
reduction with k-means cluster analysis and RFE based on minimum MSE. (B) K-
means and maximum sensitivity. (C) PCA and minimum MSE. (D) PCA and maximum
sensitivity. Red lines denote genes with significantly different (p < 0.05) expression
levels between class A and B. Blue lines represent genes for which differential expression
is not significantly different at the 0.05 level.

contribute less to discerning the classes. The advantage of PCA dimensional re-
duction is that more genes with lower within-class variation will be identified,
driving up the accuracy.

Table 4 shows that, at the 0.01 level of significance, RFE based on k-means di-
mensional reduction along with maximum sensitivity resulted in the least amount
of between-gene correlation for all 3 data sets and the least proportion of signif-
icantly differentially expressed genes for the 2-class data sets. In Figure 2B, one
can visualize for simulated expression profiles that for k-means and sensitivity
only 17% (0.172 from Table 4, row 2) of genes in a 64-gene model had signif-
icantly different expression. On the other hand, PCA with sensitivity (Figure
2D) resulted in 81% of the genes in a 64-gene model that had significantly differ-
ent expression. The smaller proportion of significant between-gene correlation of
expression due to k-means and sensitivity can also be noticed in Figure 3 for all
data sets, and in particular for the Hedenfalk et al breast cancer data for which
the proportion of significant (p < 0.01) between-gene correlation coefficients
was 0.138.

Genes that are strongly differentially expressed and correlated may be co-
regulated by shared upstream signaling molecules. A classifier based on such
genes may have greater misclassification when pathway heterogeneity is impor-
tant for classification. We have shown that, for the data considered, an ANN
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Table 4. Recursive feature elimination (RFE) results for 64-gene ANN models includ-
ing classification accuracy, proportion of significant positive between-gene correlation,
and proportion of parametric tests significant among the 64 genes during original gene
ranking. ANNs were fed with actual standardized expression values for the 64 genes
after they were identified with RFE.

Data RFE r>0 r>0 Signif

Data set reduction method Accuracy p < 0.01* p < 0.05 genesb
Komoans  Min(E2) 1.000 0.492 0.492 1.000
) max(S?) 0.976 0.328 0.467 0.172
Simulated POA min(EY) 1.000 0.492 0.492 1.000
C max(S7) 1.000  0.341 0.371 0.813
min(EY) 1.000 0.322 0.404 0.969
K-means max(S?) 0.962 0.138 0.266 0.515
Hedenfalk et al CA min(EY) 0.967 0.197 0.325 0.703
P max(59) 0.900 0.177 0.284 0.641
Komoans  Min(EY) 0963 0.235 0.293 1.000
max(S9) 0.960 0.200 0.270 1.000
Khan et al POA min(EY) 0.996 0.239 0.295 1.000
C max(S9) 0.998 0.301 0.359 1.000

“Proportion of 2016 between-gene correlation coefficients (i.e., n(n — 1)/2) for 64 gene expression
profiles with p < 0.01.

®Proportion of 64 genes with significant parametric test (t-test or F-test) during original gene
ranking.

K-means, min(MSE) K-means, max(sens) PCA, min(MSE) PCA, max(sens)

Khan et al

Fig. 3. Plot of significant between-gene correlation for 64-gene models. ANNs trained
with standardized expression profiles for 64 genes identified during recursive feature
elimination (RFE). Red denotes significant (p < 0.01) positive correlation, whereas
blue signifies significant negative correlation.

classifier based on k-means dimensional reduction and sensitivity for RFE can
result in accuracy levels exceeding 90% with fewer invariant and correlated fea-
tures. K-means cluster analysis coupled with sensitivity for RFE may increase
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detection of patients with pathway heterogeneity, which may not be tackled as
well by RFE with minimum error or dimensional reduction with PCA.
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