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Preface

This volume contains the proceedings of the 6th International Workshop on Soft
Computing and Applications (WILF 2005), which took place in Crema, Italy, on
September 15–17, 2005, continuing an established tradition of biannual meetings
among researchers and developers from both academia and industry to report
on the latest scientific and theoretical advances, to discuss and debate major
issues, and to demonstrate state-of-the-art systems.

This edition of the workshop included two special sessions, sort of subwork-
shops, focusing on the application of soft computing techniques (or computa-
tional intelligence) to image processing (SCIP) and bioinformatics (CIBB).

WILF began life in Naples in 1995. Subsequent editions of this event took
place in 1997 in Bari, in 1999 in Genoa, in 2001 in Milan, and in 2003 back in
Naples.

Soft computing, also known as computational intelligence, differs from con-
ventional (hard) computing in that, unlike hard computing, it is tolerant of im-
precision, uncertainty, partial truth, and approximation. The guiding principle
of soft computing is to exploit the tolerance for imprecision, uncertainty, partial
truth, and approximation to achieve tractability, robustness, and low solution
cost. The main components of soft computing are fuzzy logic, neural computing,
and evolutionary computation.

A rigorous peer-review selection process was applied to the 86 submitted pa-
pers. The Program Committee was carefully selected for their knowledge and
expertise, and, as far as possible, papers were matched with the reviewer’s par-
ticular interests and special expertise. The results of this process are seen here
in the high quality of papers published within this volume.

Of the 50 published papers, 23 have an Italian provenance; the next strongest
representation is from Korea, with 9 papers; all remaining papers are European,
with the exception of 3 from the USA, 1 from Algeria and 1 from Iran. This
distribution confirms the vocation of WILF to establish itself as a truly interna-
tional event.

The success of this conference is to be credited to the contribution of many
people. In the first place, we would like to thank the members of the Program
Committee for their commitment to the task of providing high-quality reviews.
We would also like to thank the Information Technology Department of the
University of Milan, which hosted the workshop on its premises.

December 2005 Isabelle Bloch
Alfredo Petrosino

Andrea G.B. Tettamanzi



Organization

Organizing Committee

Chairs: Isabelle Bloch (Ecole Nationale Supérieure des
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Jérôme Lang, IRIT, CNRS, France
Henrik Larsen, Roskilde University, Denmark
Sankar Pal, Indian Statistics Institute, India
Witold Pedrycz, University of Alberta, Canada
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Adam Kasperski, Pawe�l Zieliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Possibilistic Planning Using Description Logics: A First Step
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Didier Dubois and Henri Prade

Abstract. When representing knowledge, it may be fruitful to distinguish
between negative and positive information in the following sense. There are
pieces of information ruling out what is known as impossible on the one hand,
and pieces of evidence pointing out things that are guaranteed to be possible.
But what is not impossible is not necessarily guaranteed to be possible. This
applies as well to the modelling of the preferences of an agent when some
potential choices are rejected since they are rather unacceptable, while others
are indeed really satisfactory if they are available, leaving room for alternatives
to which the agent is indifferent. The combination of negative information is
basically conjunctive (as done classically in logic), while it is disjunctive in the
case of positive information, which is cumulative by nature. This second type of
information has been largely neglected by the logical tradition. Both types may
be pervaded with uncertainty when modelling knowledge, or may be a matter of
degree when handling preferences. The presentation will first describe how the
two types of information can be accommodated in the framework of possibility
theory. The existence of the two types of information can shed new light on the
revision of a knowledge / preference base when receiving new information. It is
also highly relevant when reasoning with (fuzzy) if-then rules, or for improving
the expressivity of flexible queries.

Generally speaking, bipolarity refers to the existence of positive and negative
information. There are at least three different types of bipolarity. The simplest one,
which may be termed symmetric univariate bipolarity, takes place when the negative
and the positive parts are the exact images of each other. It is the situation in classical
logic where negation is involutive. Graded versions of this type of bipolarity are
provided in uncertainty modelling by probabilities (since P(A) = 1 P(¬A)), and in
multiple criteria decision making, by bipolar univariate scales having a central
element (e. g., the scale [0,1], where 1 (resp. 0) stands for fully satisfactory (resp. not
satisfactory at all), and 1/2 models indifference). A second type of bipolarity, termed
dual bivariate, refers to the use of two separate scales still pertaining to the same
information, with generally a duality relation putting the scales in correspondence. An
example of it is the representation of uncertainty by dual belief and plausibility
functions in Shafer evidence theory, or dual necessity and possibility measures in
possibility theory. A third type of bipolarity, called "heterogeneous", which is

1   Introduction 

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 1 – 10, 2006.
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addressed in this paper, takes place when dealing with two different kinds of
information in parallel. For instance, incomplete information describing a subset of
elements is naturally expressed in a bipolar way. On the one hand, we know that some
elements of the referential do not belong to this subset: this is negative information
and on the other hand, we know that some other elements belong to this subset: this is
positive information. This applies to knowledge or preference representations.

Negative knowledge is usually given by pieces of generic knowledge, integrity
constraints, laws, necessary conditions, which state what is impossible, forbidden.
Observed cases, examples of solutions, sufficient conditions are positive pieces of
information. Beware that positive knowledge may not just mirror what is not
impossible. Indeed what is not impossible, not forbidden, does not coincide with what
is explicitly possible or permitted. So, a situation that is not impossible (i.e., possible)
is not necessarily guaranteed possible (i.e., positive) if it is not explicitly permitted,
observed or given as an example. The bipolar view applies to preference
representation as well if we have to identify positive desires among what is not more
or less rejected. More precisely, negative preferences express solutions, which are
rejected or unacceptable, while positive preferences express solutions that are desired,
pursued. Bipolarity is supported by recent works on cognitive psychology showing
that there are indeed two independent types of information, processed separately in
the mind [7]. Indeed, positive and negative information require different
representation models and reasoning techniques.

Bipolarity may also be present in other domains. For instance, learning processes
bridge the gap between positive and negative information: situations that are often
observed are eventually considered as normal and those never observed are
considered as impossible. In inconsistency handling problems, argumentation
frameworks compute arguments in favor and arguments against formulas. A conflict
on a formula is then solved by evaluating the acceptability of arguments in favor of
this formula with respect to arguments against this formula. Then, an argument may
be accepted, rejected or in abeyance i.e., neither accepted nor rejected [2]. Multiple
criteria decision-making can be addressed by evaluating the weight of criteria in favor
of a decision and criteria against it.

Possibility theory is a suitable framework for modelling and reasoning about
bipolar information. Then negative information and positive information are
represented by two separate possibility distributions yielding possibility and
guaranteed possibility measures respectively; see, e. g. [9, 13]. This paper provides an
introduction on representation and reasoning about bipolar information in this
framework. The next section first recalls the semantic representation of bipolar
information, and then presents a more compact representation in terms of logical
expressions. It also briefly discusses the fusion and the revision of bipolar
information. Section 3 discusses bipolarity in the representation of if-then rules.
Section 4 briefly discusses the handling of bipolar preferences in flexible querying.

Bipolar information is represented in possibility theory by two separate possibility
distributions, denoted by  and , representing respectively positive and negative

2   Representation of Bipolar Information in Possibility Theory

2 D. Dubois and H. Prade 



information. When  and  are binary possibility distributions (i.e., , ( ) (resp.
( )) is 1 or 0), the set I of impossible situations is computed as follows:

I = {  :    and ( ) = 0},

and the set GP of guaranteed possible situations is computed as follows:

GP = { :    and ( ) = 1}.

In uni-polar possibility theory, a possibility distribution [19] , encodes a total pre-
order on a set  of interpretations or possible states. It associates to each
interpretation  a real number ( )  [0, 1], which represents the compatibility of the
interpretation  with the available knowledge on the real world (in case of uncertain
knowledge), or how acceptable reaching state  is, or equivalently to what extent  is
not rejected (in case of preferences). The larger ( ), the more plausible or acceptable

 is, according to the problem under concern (knowledge or preference modelling
respectively). The distribution  acts as a restriction on possible states. In particular,

( ) = 0 means that  is totally impossible. The second possibility distribution 
should be understood differently. The degree ( )  [0, 1] estimates to what extent
the feasibility of  is supported by evidence, or  is really satisfactory, and ( ) = 0
just means that  has not been observed yet, or when speaking of preference that  is
not especially satisfactory (but this does not mean rejection in any case).

A characteristic property of heterogeneous bipolarity is the fact that the sets of
guaranteed possible (GP) and impossible (I) situations should be disjoint and not
cover all the referential. This is expressed by the coherence condition GP  NI, where
NI =   I is the set of non-impossible situations. This condition means that what is
guaranteed to be possible should be not impossible. This applies as well to bipolar
preference modelling where guaranteed possible and impossible situations are
replaced by guaranteed satisfactory and non-rejected solutions respectively. When
information is graded in presence of uncertainty (or priority),  represents the fuzzy
set of guaranteed possible (or satisfactory) elements and  represents the fuzzy set of
not impossible (or not rejected) elements. The coherence condition now reads [13]:

  , ( )  ( ). (1)

Example 1 - Bipolar knowledge: Assume for instance one has some information
about the opening hours and prices of a museum M. We may know that museum M is
open from 2 pm to 4 pm, and certainly closed at night (from 9 pm to 9 am). Note that
nothing forbids museum M to be open in the morning although there is no positive
evidence supporting it. Its ticket fare is neither less than 2 euros nor more than 8 euros
(following legal regulations), prices between 4 and 5 euros are guaranteed to be
possible (they are prices actually proposed by the museum).

Since cases referring to observations accumulate, while constraints induced by the
knowledge of impossibilities eliminate possible worlds, positive information
aggregate disjunctively, and negative information aggregate conjunctively. This can 

2.1   Semantic Representations  Combination and Revision 
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be understood in our setting in the following way. A constraint like « the value of X

: 

.



is restricted by Ai » is encoded by a possibility distribution  s. t.  μAi. Several
constraints « X is Ai » for i = 1, …, n are thus equivalent to  mini μAi. By the
principle of minimal commitment (anything not declared impossible is possible), it
leads to choose the greatest possibility distribution  = mini μAi compatible with the
constraints. Hence a conjunctive combination. In the case of positive information « X
is Ai » is equivalent to  μAi, since it reports to what extent some states are feasible.
Then several observations « X is Ai » for i = 1,…, n are equivalent to  maxi μAi. By
closed world assumption (anything not observed as actually possible is not
considered), one gets  = maxiμAi. Hence a disjunctive combination.

Given a pair of possibility distributions  and , we can define: the possibility degree
of a logical formula , ( ) = max{ ( ):  and = }, the dual necessity
degree N( ) = 1 (¬ ) on the one hand, and the guaranteed possibility degree of a
formula , ( ) = min{ ( ):  and = } on the other hand (and if necessary
the dual degree of potential necessity ( ) = 1 (¬ )), where =  denotes that
the interpretation  makes  true. Note that  underlies an existential quantifier since

( ) is high as soon as some  satisfying  is plausible enough. It agrees with the
negative nature of information, since ¬  is impossible, i. e. (¬ ) = 0  N( ) = 1,
corresponds to the non-existence of an interpretation  falsifying  and having a non-
zero degree of possibility ( ).  underlies a universal quantifier since ( ) is low as
soon as some  with a low plausibility satisfies . It agrees with the positive nature of
information encoded by , since ( ) = 1 requires that all the interpretations of  are
fully feasible.

Merging bipolar information [5], by disjunctive (resp. conjunctive) combination of
positive (resp. negative) information, may create inconsistency when the upper and
lower possibility distributions, which represent the negative part and the positive part
of the information respectively, fail to satisfy the consistency condition , ( )

( ). Then, it is necessary to revise either  or  (or their syntactic counterparts, see
2.2 below) for restoring consistency. When dealing with knowledge, the observations
are generally regarded as more solid information than beliefs, and then the revision
process is modelled by revised( ) = max( ( ), ( )), which describes the revision of 
by  once a new report has been fused with the current  using max operation. Thus
priority is given to reports on observed values and it is a belief revision process.

A dual type of revision, defined by revised( ) = min( ( ), ( )) would consist in
changing  into revised when receiving information restricting  more (applying fusion
based on min combination). This type of revision is natural when dealing with
preferences, since then  is associated with a set of more or less imperative goals,
while positive information corresponds to the expression of simple desires. Then
goals have more priority than the wishes expressed as positive information.

It is generally difficult to specify a possibility distribution pointwisely on large
discrete universes. The qualitative possibility theory framework offers three compact
representations of a possibility distribution, namely a logical representation by means

2.2   Logical Representations of Qualitative Bipolar Possibilistic Information
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of a set of weighted formulas [12], a conditional representation by means of default
rules, and a Bayesian-like directed acyclic graph representation. The representation of
negative information has been widely investigated in these three formats [4]. These
three formats can be adapted for representing positive information [5, 6]. We only
consider the logical format here. For negative information, formulas refer to pieces of
belief (with certainty levels) or to goals (with priority levels), while for positive
information formulas report observations (with confidence levels), or describe classes
of solutions (with their satisfaction levels).

The logical representation of bipolar information is given by means of two separate
sets of weighted classical logic formulas of the form N = {( i, ai): i = 1, …, n} and 
= {[ j, bj] : j = 1, …, n} modelling respectively negative and positive information.
The pair ( i, ai) means that the necessity degree of i is at least equal to ai, i.e. N( i) 
ai (which implies (¬ i)  1  ai), and the pair [ j, bj] means that the guaranteed
possibility degree of j is at least equal to bj i.e., ( j)  bj. Given the bases N and

, we can generate their associated possibility distributions as follows:   ,

( ) = 1  maxi{ai : ( i, ai)  N,  |  i} ;          ( ) = 1 if ( i, ai)  N,  |= i

( ) = maxi{bj : [ j, bj]  ,  |= j} ;             ( ) = 0 if [ j, bj]  ,  |   i.

Note that adding new formulas to N leads to a more restrictive possibility
distribution, which agrees with the fact that -measures model negative information.
On the other hand, adding new formulas to  yields a larger possibility distribution,
which fits with the fact that -measures model positive information.

In the tradition of expert systems, a rule is understood as a production rule, associated
to a modus ponens-like deduction process. Such a rule is thus a kind of inference rule,
however without a clear mathematical status. In more recent probabilistic expert
systems, rules are encoded as conditional probabilities in a belief network. This view
of a weighted rule, if mathematically sound, is at odds with the logical tradition, since
the probability of a material implication describing a rule clearly differs from the
corresponding conditional probability. This observation [17] has led to a vivid debate
in philosophical circles since the late seventies [15] without fully settling the case.

A rule is not a two-valued entity, it is a three valued one [11]. To see it, consider a
database containing descriptions of items in a set S. If a rule "if A then B" is to be
evaluated in the face of this database, it clearly creates a 3-partition of S, namely:

- the set of examples of the rule: A  B,
- its set of counter-examples: A  ¬B,
- the set of irrelevant items for the rule is: ¬A.

Each case should be encoded by means of a different truth-value. The two first
cases only corresponding to the usual truth-values "true" and "false" respectively. The
third case corresponds to a third truth-value that, according to the context, can be
interpreted as "unknown", undetermined, irrelevant, etc. This idea of a rule as a 
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event" actually goes back to De Finetti [8] in 1936. It is also the backbone of De
Finetti's approach to conditional probability. Indeed it is obvious to see that the
probability P(B|A) is entirely defined by P(A B) and P(A ¬B). This framework
for modeling a rule produces a precise mathematical model: a rule is modeled as a
pair of disjoint sets representing the examples and the counter-examples of a rule,
namely (A B, A ¬B). This definition has several consequences. First, it justifies
the claim made by De Finetti that a conditional probability P(B|A) is the probability
of a particular entity denoted by B|A that can be called a conditional event.

Moreover it precisely shows that material implication only partially captures the
intended meaning of an "if-then" rule. It is obvious that the set of items where the
material implication ¬A B is true is the complement of the set of counter-examples
of a rule. Hence the usual logical view does not single out the examples of the rule,
only its counter-examples. This is clearly in agreement with the fact that propositions
in classical logic represent negative information. On the other hand, the set of
examples of a rule is A B and clearly represents positive information. Thus, the
three-valued representation of an "if-then" rule also strongly suggests that a rule
contains both positive and negative information. Note that in data mining [1] the merit
of an association rule A B extracted from a database is evaluated by two indices:
the support degree and the confidence degree, respectively corresponding to the
probability P(A B) and the conditional probability P(B|A) = P(A B) / (P(A B) +
P(A ¬B)). This proposal may sound ad hoc. However the deep reason why two
indices are necessary to evaluate the quality of a rule is because the rule generates a 3-
partition of the database, and two evaluations are needed to picture their relative
importance. In fact the primitive quality indices of an association rule are the
proportion of its examples and the proportion of its counter-examples. All other
indices derive from these basic evaluations.

This tri-valued representation also tolerates nonmonotonicity. It is intuitively
satisfying to consider that a rule R1 = "if A then B" is safer than or entails a rule R2 =
"if C then D", if R1 has more examples and less counterexamples than R2 (in the
sense of inclusion). This entailment relation (denoted |~) can be formally written as

B A  |~  D C if and only if A  B  C  D and C ¬D  A ¬B.

Indeed, it has been shown [13] that the three-valued semantics of rules provide a
representation for the calculus of conditional assertions of Kraus, Lehmann and
Magidor [16], which is the main principled approach to nonmonotonic reasoning.

It is also interesting to see how the bipolar view of if-then rules can be handled by
the bipolar possibilistic logic setting. Although -based formulas and N-based
formulas are dealt with separately in the inference machinery, their parallel
processing may be of interest, as shown now. Observe that a -possibilistic logic
formula [ , b] is semantically equivalent to the formula [ , min(v( ), b)] where
v( ) = 1 if  is true and v( ) = 0 if  is false. For N-possibilistic logic formulas, it is
also possible to "move" a part of the formula in the weight slot [10], but in a different
manner, namely (¬ , a) is equivalent to ( , min(v( ), a)). This remark enables us
to deal with the application of a set of parallel uncertain "if then" rules, say "if l then
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l" and "if 2 then 2" in presence of a disjunctive input " l  2". In the bipolar
view, each rule is represented by a pair of possibilistic formulas of each type, namely
([ i  i, bi],(¬ i  i , ai)). Then, the rules can be rewritten as ([ i, min (v( i), bi)],
( i , min(v( I), ai)). Note that we should have here i |= i  for ensuring consistency.

Now, observe that [ 1, min(v( 1), b1)] semantically entails [ 1  2, min(v( 1),
b1)], and similarly [ 2, min(v( 2), b2)] entails [ 1  2, min(v( 2), b2)] since [ , b]
entails [   , b]. Finally, since [ , b] and [ , b ] entail [ , max (b, b )], we obtain
[ 1  2, max(min(v( 1), b1), min(v( 2), b2))].

For N-possibilistic logic formulas, we have that ( , a) entails (   , a) on the one
hand, while ( , b) and ( , b ) entail ( , max(b, b )). So for the two rules, we obtain
( 1   2 , max(min(v( 1), a1), min(v( 2), a2))).

For b1 = b2 = 1 and a1 = a2 = 1, this expresses that if it is known that l  2 is true
(since v( l  2) = max(v( l), v( 2)), then 1  2 is guaranteed to be possible, and
interpretations which falsifies 1   2  are impossible. This is now illustrated.

Example 2  Let us consider the two rules R1: "if an employee is in category 1 ( l),
his monthly salary (in euros) is necessarily in the interval [1000, 2000] ( 1 ) and
typically in the interval [1500, 1800] ( 1)", R2: "if an employee is in category 2 ( 2),
his salary (in euros) is necessarily in the interval [1500, 2500] ( 2 ) and typically in
[1700, 2000] ( 2)". Typical values are here the values known as being guaranteed to
be possible. Let us examine the case of a person who is in category 1 or 2 ( l  2);
then we can calculate that his salary is necessarily in the interval [1000, 2500] ( 1  

2 ), while values in [1700, 1800] ( 1  2) are for sure possible for his salary. Note
that one might get an empty conclusion with other numerical values, but this would
not have meant a contradiction! This bipolar conclusion may, for instance, be
instrumental when proposing a salary to a person whose category is ill-determinate.

Lastly, the bipolar view has been also applied to fuzzy rules "if A then B" (when A
and/or B become fuzzy), and more particularly the advantages of using conjointly
implicative rules (encoding negative information) and conjunctive rules (encoding
positive information) in the same rule-based system, have been emphasized in [18].
Indeed, the bipolar view of "if-then" rules can be exploited for building a typology of
fuzzy "if then" rules, based on multiple-valued implications or conjunctions, where
each type of fuzzy rules serves a specific purpose [14].

Flexible queries have been aroused an increasing interest for many years in the
database literature and the fuzzy set-based approach, which was introduced about 25
years ago, is simple to apply and is practically useful. Flexible queries were generally
thought in terms of constraints restricting possible values of attributes. By flexible
queries, we mean than these constraints could be fuzzy, or prioritized. Fuzzy
constraints can be viewed as preference profiles: values associated with degree 1 are
fully acceptable, while values with degree 0 are completely rejected; the smaller the
degree, the less acceptable the value. The violation of a (crisp) prioritized constraint
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leads to an upper bound of the global evaluation involving this constraint, which is all
the smaller as the constraint has a higher priority. Fuzzy constraints can be viewed as
collections of nested prioritized constraints. Fuzzy constraints correspond to
"negative" preferences in the sense that their complements define fuzzy sets of
rejected values as being non-acceptable.

However, there is another type of preferences, which has a 'positive' flavor. These
preferences are not constraints, but only wishes that are more or less strong, but not
compulsory [12]. If at least some of these wishes are satisfied, it should give some
bonus to the corresponding solutions (provided that they also satisfy the constraints, or
at least the most important ones, if it is impossible to satisfy all of them). For example,
the query "find an apartment not too expensive, and if possible near the train station"
involves two attributes, the price, and the distance to the station. It expresses a fuzzy
constraint on the price and a wish on the distance to the station.

Bipolar queries are queries that involve two components, one pertaining to
constraints and the other to simple wishes. Let i = 1, n be a set of attributes. Let Ci be
the subset of the domain Ui of attribute i, representing the (flexible) constraint

restricting the acceptable values for i (in other words, Ci = Ric where Ri is the (fuzzy)
set of rejected values according to i). Let Di be the subset of the domain of i,
representing the values that are really wished and satisfactory for i. The consistency
condition (1) is assumed for each pair (Ci, Di), i.e.,

u, μDi
(u) μCi

(u) (2)

expressing that a value cannot be more wished than it is allowed by the constraint.
Note that the pair (Ri, Di) with μRi

= 1 μCi
can be viewed as an Atanassov pair of

membership and non-membership functions [3], since (2) then writes μDi
+ μCi

1.

Then a query is represented by a set of pairs {(Ci, Di), i = 1, n} satisfying (2).

It may happen that for some attribute i there is no constraint. In such a case Ci = Ui,
i.e., u, μCi

(u) = 1. If no value is particularly wished in Ui then Di = , i.e., u,

μDi
(u) = 0. Considering the above example of a query about an apartment we have a

constraint on the price and a wish on the distance to the station. This is represented by
the set of the two pairs {(Not_too_expensive, ), (Udistance, Near)}, where
Not_too_expensive and Near are labels of fuzzy sets.

How can a query {(Ci, Di), i =1, n} be evaluated? Given a tuple u = (u1, ... , ui, ... ,
un) of a non-fuzzy database, we can thus compute a pair of matching degrees, namely

(C(u), D(u)) = ( i μCi
(ui), i μDi

(ui)),

where (resp. ) are a conjunctive (resp. disjunctive) combination operation. Using
min and max respectively, it reflects the extent to which u satisfies all the constraints
and at least one wish. The question is then to rank-order the tuples. A basic idea is to
give priority to constraints, and thus to have a lexicographic ranking, by using C(u) as
primary criterion, and D(u) as a secondary one for breaking ties. This procedure can
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be improved by considering that satisfying several wishes is certainly better than
satisfying just one. Let  be a permutation reordering the μDi

(ui) ‘s decreasingly, i.e.

μD (1)
(u (1))  ... μD (n)

(u (n)). This leads to rank–order the vectors

 (mini μCi
(ui), μD (1)

(u (1)), ... , μD (n)
(u (n)) )

lexicographically from (1, 1, … , 1) to (0, 0, … , 0). A similar procedure can be
applied first to the C- component (reordering the μCi

(ui)‘s increasingly this time),

which refines both the min-based ordering and the Pareto ordering.
Besides, the information stored in the database might be bipolar itself, as in

Example 1. This means that for each attribute i, one has both negative information
(values that are impossible), giving birth to a super-set NIi of non-impossible values,
and positive information under the form of a subset GPi of values that are guaranteed
to be possible (more generally one would have a pair of possibility distributions ( i,

i) s. t. i I). Let us consider a bipolar query (Ci, Di). This gives birth to a hierarchy
of situations on the basis of which answers could be ranked, namely 1) NIi Di ; 2)
NIi  Ci and GPi  Di ; 3) NIi Ci ; 4) GPi  Di ; 5) GPi  Ci ; 6) GPi Di  ; 7) NIi

Di  and GPi Ci  ; 8) NIi Di  ; 9) GPi Ci ; 10) NIi Ci .
These conditions can be further refined under the form of graded degrees of inclusion
and intersection in the general case.

This paper has proposed an overview on the representation and handling of bipolar
information in possibility theory framework. Bipolarity enables us to distinguish
between what is possible or satisfactory from what is just not impossible or not
undesirable. Bipolarity is met in many areas such as knowledge representation,
learning, decision, inconsistency handling, etc.

References 

1. R. Agrawal, T. Imielinski and A. Swami. Mining association rules between sets of items in 
large databases. Proc. of ACM SIG-MOD, 207-216,1993. 

2. L. Amgoud, C. Cayrol and M.C. Laguasquie-Schiex. On the bipolarity in argumentation 
frameworks.Proc. 10th Non Monotonic Reason. Workshop (NMR’04), Whistler, 2004, 1-10.  

3. K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96,1986. 
4. S. Benferhat, D. Dubois, S. Kaci and H. Prade. Bridging logical, comparative and graphi-

cal possibilistic representation frameworks. Proc. 6th Europ. Conf. on Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty (ECSQARU'01),LNAI 2143, 422-431, 
2001 

5. S. Benferhat, D. Dubois, S. Kaci and H. Prade. Bipolar representation and fusion of prefer-
ences in the possibilistic logic framework. Proc. 8th Int. Conf. on Principle of Knowledge 
Representation and Reasoning (KR'02), 158-169, 2002. 

6. S. Benferhat, D. Dubois, S. Kaci and H. Prade. Bipolar possibilistic representations. Proc. 
18th Int. Conf. Uncertainty in Artificial Intelligence (UAI'02), 45-52, 2002. 

5   Conclusion

A Bipolar Possibilistic Representation of Knowledge and Preferences 9

7. J.T. Cacioppo and G.G. Bernston. The affect system: Architecture and operating character-
istics. In Current Directions in Psychological Science, 8(5), 133-137, 1999. 



8. B. De Finetti. La logique des probabilités. Actes Int. Cong. de Philosophie Scientifique,
volume 5, 1-9, 1936. 

9. D. Dubois, P. Hajek and H. Prade. Knowledge-Driven versus data-driven logics. J. of 
Logic, Language, and Information, 9, 65-89, 2000. 

10. D. Dubois, J. Lang and H. Prade. Possibilistic logic. In Handbook of Logic in Artificial  
Intelligence and Logic Programming, 3 (D. Gabbay et al., eds), 439-513, 1994. 

11. D. Dubois and H. Prade. Conditional objects as non-monotonic consequence relationships. 
IEEE Trans. on Systems, Man and Cybernetics, 24 (12), 1724-1739,1994. 

12. D. Dubois and H. Prade. Bipolarity in flexible querying. In Flexible Query Answering Sys-
tems, 5th International Conference, (FQAS'02), Copenhagen, LNAI 2522, Springer-Verlag, 
174-182, Oct. 27-29, 2002. 

13. D. Dubois, H. Prade and P. Smets. "Not impossible" vs. "guaranteed possible" in fusion 
and revision. Proc. 6th Europ. Conf. on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQAR U'01), LNAI 2143, 522-531, 2001. 

14. D. Dubois, H. Prade and L. Ughetto. A new perspective on reasoning with fuzzy rules. Int. 
J. of Intelligent Systems, 18, 541-567, 2003. 

15. W.L. Harper, R. Stalnaker and G. Pearce, eds. In Ifs. D. Reidel, Dordrecht, 1981. 
16. S. Kraus and D. Lehmann and M. Magidor. Nonmonotonic reasoning, preferential models 

and cumulative logics. Artificial Intelligence, 44, 167-207, 1990. 
17. D. Lewis. Probabilities of conditionals and conditional probabilities. J. Phil. Logic, 3, 1973 
18. L. Ughetto, D. Dubois and H. Prade. Implicative and conjunctive fuzzy rules- a tool for 

reasoning from knowledge aaid examples. Proc.16th National Conf. on Artificial Intelli-
gence (AAAI'99), 214-219, 1999. 

19. L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets & Syst., 1, 3-28, 
1978. 

10 D. Dubois and H. Prade 



Statistical Distribution of Chemical Fingerprints

S. Joshua Swamidass1 and Pierre Baldi1,2

1 Department of Computer Science,
Institute for Genomics and Bioinformatics,

University of California, Irvine,
CA 92697-3435

Tel.: (949) 824-5809, Fax.: (949) 824-4056
sswamida@ics.uci.edu

2 Department of Biological Chemistry, College of Medicine,
University of California, Irvine

pfbaldi@ics.uci.edu

Abstract. Binary fingerprints are binary vectors used to represent
chemical molecules by recording the presence or absence of particular
substructures, such as labeled paths in the 2D graph of bonds. Com-
plete fingerprints are often reduced to a compressed format–of typical
dimension n = 512 or n = 1024–by using a simple congruence operation.
The statistical properties of complete or compressed fingerprints repre-
sentations are important since fingerprints are used to rapidly search
large databases and to develop statistical machine learning methods in
chemoinformatics. Here we present an empirical and mathematical anal-
ysis of the distribution of complete and compressed fingerprints. In par-
ticular, we derive formulas that provide good approximation for the ex-
pected number of bits set to one in a compressed fingerprint, given its
uncompressed version, and vice versa.

1 Introduction

As in bioinformatics, one of the most fundamental tasks of chemoinformatics is
the rapid search of large repositories of molecules. In a typical task, given a query
molecule or a family or query molecules and a set of additional constrains, one is in-
terested in retrieving all themolecules contained in a large repository thatmay con-
tain million of compounds, such as PubChem, ZINC [6], or ChemDB [3],aa that are
similar to the query molecule(s) and satisfy the given constraints. To faciliate this
process, in most chemoinformatics systems, molecules are represented by binary
fingerprints ([4, 5] and references therein) and it is these fingerprints and their simi-
laritymeasures (e.gTanimoto,Tversky) [10, 8] that are used for the searches.While
a sophisticated technology for deriving useful fingerprints and similarity measures
has been developed, the statistical analyses of the properties of these fingerprints
and theassociatedfingerprintmeasures and significance cutoffshavenotbeen stud-
ied extensively. Lessons learnt in bioinformatics, for instance in the development
of the BLAST [1] family of algorithms, show that these statistical properties may
be important to develop better search algorithms, as well as better similarity mea-
sures and kernels for machine learning in chemoinformatics [7, 9]. Here we take a

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 11–18, 2006.
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first step by studying, modeling, and aproximating the statistical distributions of
both compressed and uncompressed chemical fingerprints.

2 Chemical Fingerprints

We use A,B, . . . to denote molecules. We assume that molecules are represented
by binary fingerprints of length N , denoted by A, B,. . .. The precise interpre-
tation of the fingerprint is irrelevant for our purpose, but to fix his ideas, the
reader may think that each bit is associated with the present or absence of a
labeled path of labeled atoms and bonds present in a molecule. The value of
N depends on the depth of the paths, but a typical value could be something
like N = 215 = 32, 768 or more. These fingerprints are compressed (or “folded”)
using a simple modulo operator to fingerprints a, b....of lenth n, with N = nk.
Typically, in current systems, n = 512 = 29 or n = 1024 = 210. Ultimately, it is
these short fingerprints that are used to derive similarity measures and searching
databases. A bit in position j of the compressed fingerprint is set to one if and
only if there is at least one bit set to one in position j modulo n in the full
fingerprint of length N . For each molecule, we will use capital letters A,B, . . . to
denote the number of bits set to one in the full fingerprint, and lower case letters
a, b, . . . to denote the number of bits set to one in the corresponding compressed
fingerprint. The corresponding count and projection operator are denoted by c
and n so that: A = c(A), a = c(a) and a = n(A).

While in some applications it may be possible to exploit information associ-
ated with specific bits or weigh bits differently, in order to develop a probabilistic
theory and consistently with common practice, here we will assume that the fin-
gerprints are “random” in the sense that information about the labeled paths
associated with each position is ignored and that the bits are being distributed
randomly and uniformly along the fingerprint. In practice this requires applying
a random permutation to the deterministically computed fingerprints of length
N prior to compression, or, in practice, using a good hashing function to derive
“randomized” fingerprints of length n. Note that for a typical users, the value
of N is often unknown. Even for developers, the value of N is often not very
relevant since labeled paths are indexed one molecule after the other. In this
case, what is meaningful is the value of N∗, the total number of paths actually
observed in a set of molecules. In some theoretical derivations we will assume
first knowledge of N and then dispense from such knowledge.

3 Basic Distributions and Models

First we are interested in understanding the joint distribution ofA and a (or A/N
and a/n) and this is best achieved by studying the marginals and conditionsl
distributions and using decompositions of the form P (A, a) = P (A)P (a|A) =
P (a)P (A|a). For illustration purposes, an example of empirical distribution is
given in Table 1 using a random sample of 50,000 molecules extracted from the
ChemDB database.
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Table 1. Empirical and predicted statistics computed on a random sample of 50,000
molecules extracted from the ChemDB [3] database. Fingerprints are associated with
labeled paths of length up to 8 (i.e. 8 atoms and 7 bonds). The total number of observed
labeled paths is N∗ = 152, 087. The length of the compressed fingerprints is n = 512.
Predicted values are derived using Equations 6 and 8 (see text).

A A/N∗ a a/n

Mean 138.68 9.1186e-04 119.5305 0.2335
Median 136 8.9423e-04 119 0.2324
STD 53.2388 3.5006e-04 40.0672 0.0783

Variance 2.8344e+03 1.2254e-07 1.6054e+03 0.0061
Predicted Mean 136.12 8.9591e-04 121.485 o.2373
Predicted STD 52.452 3.4488e-04 40.68 0.0794

3.1 Distribution of Uncompresssed Fingerprints [A (or A/N)]

It is reasonable to assume a Gaussian or Gamma distribution approximation for
P (A)

GĀσA
(A) =

1√
2πσA

e−(A−Ā)2/2σ2
A (1)

with Ā being the mean (also median and mode) and σA the standard deviation.
In the Gamma model defined for A ≥ 0,

Gammars(A) =
sr

Γ (r)
Ar−1e−sA (2)

with mean r/s, variance r/s2, and mode (r−1)/s (for r ≥ 1, which is the case in
our application). The two parameters that characterize these distributions can
easily be fit to the data. It is worth noting, that a simple binomial model in
general is not a good model for A because empirically the variance of A is larger
than its mean (Table 1), whereas in a binomial distribution the variance (Npq)
is necessarily less or equal to the mean (Np).

Altenatively, the distribution of α = A/N or α = A/N∗ can be modeled using
a Beta distribution with

Betars(α) =
Γ (r + s)
Γ (r)Γ (s)

αr−1(1 − α)s−1 (3)

The expectation of this Beta distribution is E(α) = r/(r + s), the variance
V ar(α) = rs/(r + s)2(r + s+ 1), and the mode (r − 1)/(r + s− 2). Figure 1.

3.2 Conditional Distribution of Compressed Fingerprints [a (or
a/n) Given A (or A/N)]

As in the case of random graph theory [2], with a given value A we can consider
two slightly different, but asymptotically, equivalent models: fixed density and
fixed size uniform models. In the fixed density model, bits are produced by
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Fig. 1. Empirical distributions of a, A, a/n and A/N∗ and maximum likelihood fit
using Gaussian, Gamma, and Beta models

independent identically distributed coin flips with probability α = A/N (or
α/N∗) of success. In the fixed size model, a subset of A bit is selected uniformly
among all subsets of A bits of the full N bit vector. The bits in the corresponding
subset are set to one, the bits in the complement are set to 0. Although both
models are known to yield similar results asymptotically, the fixed size model
is often less tractable due to the weak but non zero-correlations it introduces
between different bits. In general, we will use the density model since it is more
tractable. We use A and a to denote the random variables associated with the
total number of bits set to one and write, for instance, P (A = A) or just P (A)
when the context is clear. In this case, the probability of setting a bit to 0 in a
is (1−α)k and therefore the corresponding distribution is binomial B(n, p) with:

P (a = a|α) = B(n, p) with p = 1 − (1 − α)k (4)

Thus although A or a do not have binomial distributions, the condition distri-
bution of a given A can be reasonably approximated by a binomial distributions
(Figure 3), although the binomial approximation here overestimates the variance.
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Therefore, given α, E(a) = n[1−(1−α)k] and V ar(a) = n[1−(1−α)k](1−α)k.
When N is large, we have:

lim
N→∞

[1 − (1 − α)k] = lim
N→∞

[1 − (1 − A

N
)]

N
n = e−A/n (5)

which does not depend on N (hence the irrelevance of its exact value). Thus
given A, for N large a is approximately binomial with B(n, 1 − e−A/n) and

E(a|A) ≈ n(1 − e−A/n) (6)

This is a one-to-one increasing function. Using the same approximations, we get
the conditional variance

V ar(a|A) ≈ n(1 − e−A/n)e−A/n (7)

By inverting the one to one function in Equation,6 we get also an estimate of A
given a for large N

A ≈ −n log(1 − a

n
) (8)
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Fig. 2. Empirical mean and standard deviation of a given A. Red curve corresponds
to the predicted mean derived from Equation 6.
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The functions in 6 and 8 are monotone increasing, hence one-to-one, and provide
good estimates of the value of a given A and vice versa in practical regimes. For
instance, by applying them to the means (or modes) of the empirical distribution
of a and A we get the estimates in Table 1 which are less than 5% away from the
true values. Figure 2 shows, for each value of A, the predicted value of a using
Equation 6, together with the empirical standard deviation of a. When applied
using the mean of A, Equation 7 gives an underestimate of the variance of a.
Better estimates are easily obtained by approximating A or a with Gaussian
distributions and applying Equations 6 and 8 to points that are one empirical
standard deviation away from the mean of A or a. This yields the estimates in
the last row of Table 1.

The binomial model for the conditional distribution is thus a reasonable model
that gives good first order predictions. However, as a distribution, for a given
value of A it overestimates the variance of a (Figure 3) because instead of holding
A fixed, it holds the α = A/N fixed, and therefore looks at a range of possible
values for A.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12
STD vs Mean of a Given A

S
T

D
  

 

Mean    

Data
Random Replicate
Binomial Approx.

90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

0.12

P
(a

|A
=

12
7)

a

P(a|A) Compared with Binomial Distributionn

Data
Binomial

Fig. 3. Upper figure: Empirical STD versus mean of a given A. Theoretical curve,
derived from Equation 7, overestimates the STD. Lower figure: Empirical distribution
of a given A = 127, and corresponding binomial distribution associated with fixed
density, rather than fixed A.
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3.3 Distribution of Compressed Fingerprints [a (or a/n)]

Using continuous notation, the distribution of a is obtained by integrating over
A or over α in the form

P (a = a) =
∫ +∞

−∞
P (a|A)P (A)dA =

∫ 1

0
P (a|α)P (α)dα

=
∫ +∞

−∞

(
n

a

)
[1 − (1 − A

N
)k]a[(1 − A

N
)k]n−aP (A)dA

=
∫ 1

0

(
n

a

)
[1 − (1 − α)k]a[(1 − α)k]n−aP (α)dα (9)

These integrals do not have simple closed form solutions. However, using
Gaussian or Gamma distributions on A or Beta distributions on α, we can
expand the polynomials, integrate term by term, and derive closed form sum
expansions (given in our corresponding Technical Report).

Furthermore, for N large, by interchanging the limit and integral operators
and using Equation 5 we get:

P (a = a) =
∫ +∞

−∞

(
n

a

)
(1 − e−A/n)a(e−A/n)n−aP (A)dA

=
∫ 1

0

(
n

a

)
(1 − e−kα)a(e−kα)n−aP (α)dα (10)

Another approach to derive an approximation to P (a) is to combine the Gaus-
sian or Gamma approximation to P (A) (or Beta to A/N∗) with the relationship
in Equation 8. This gives

P (a) ≈ n

n− a
GĀσA

(−n log(1 − a

n
)) ≈ n

n− a
Gammars(−n log(1 − a

n
)) (11)

3.4 Conditional Distribution of Uncompressed Fingerprints [A or
A/N Given a (or a/n)]

This can easily be derived indirectly by using Bayes theorem in the form

P (A|a) = P (a|A)
P (A)
P (a)

(12)

and using the marginal and conditional distributions derived above. A more
direct model may also be possible.

4 Conclusion

Here we have taken the first steps towards studying the statistical properties of
uncompressed and compressed fingerprints. Work in progress is currently aimed
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at studying the statistical properties of similarity measures, such as the Tanimoto
or Tversky similarity measures computed on pairs of fingerprints, the properties
of similarity measures computed on groups of molecules (profiles), and at the
extreme value distribution of fingerprint similarities in order to define efficient
significance thresholds.
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Abstract. The technique of direct and inverse fuzzy (F-)transforms of
three different types is introduced and approximating properties of the
inverse F-transforms are described. A method of lossy image compression
and reconstruction on the basis of the F-transform is presented.

1 Introduction

In classical mathematics, various kinds of transforms (Fourier, Laplace, inte-
gral, wavelet) are used as powerful methods for construction of approximation
models and their further utilization. The main idea of these transforms consists
in transforming the original model into a special space where the computation
is simpler. The transform back to the original space produces an approximate
model or an approximate solution.

In this paper, we put a bridge between these well known classical methods
and methods for construction of fuzzy approximation models. We have developed
[4] the general method called fuzzy transform (or, shortly, F-transform) that
encompasses both classical transforms as well as approximation methods based
on elaboration of fuzzy IF-THEN rules studied in fuzzy modelling.

In this paper, we will use approximation models on the basis of three different
fuzzy transforms to data compression and decompression. A method of lossy
image compression and reconstruction on the basis of F-transforms is illustrated
on examples of pictures.

Due to the space limitations, all proofs are omitted. The interested reader can
find them in [4].

2 Fuzzy Partition of the Universe and the Direct
F-Transform

The core idea of the technique proposed in this paper is a fuzzy partition of an
interval as a universe. We claim that for a sufficient (approximate) representation
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of a function, defined on the interval, we may consider its average values within
subintervals which constitute a partition of that interval. Then, an arbitrary
function can be associated with a mapping from thus obtained set of subintervals
to the set of average values of this function. Moreover, the set of the above
mentioned average values gives an approximate (compressed) representation of
the considered function. Let us give the necessary details (see [4]).

Definition 1. Let x1 < . . . < xn be fixed nodes within [a, b], such that x1 = a,
xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An, identified with their
membership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition
of [a, b] if they fulfil the following conditions for k = 1, . . . , n:

1. Ak : [a, b] −→ [0, 1], Ak(xk) = 1;
2. Ak(x) = 0 if x �∈ (xk−1,xk+1) where for the uniformity of denotation, we

put x0 = a and xn+1 = b;
3. Ak(x) is continuous;
4. Ak(x), k = 2, . . . , n, monotonically increases on [xk−1,xk] and Ak(x), k =

1, . . . , n − 1, monotonically decreases on [xk,xk+1];
5. for all x ∈ [a, b]

n∑
k=1

Ak(x) = 1. (1)

The membership functions A1(x), . . . , An(x) are called basic functions.

Let us remark that the shape of basic functions is not predetermined and there-
fore, it can be chosen additionally.

We say that a fuzzy partition A1(x), . . . , An(x), n > 2, is uniform if the
nodes x1, . . . ,xn are equidistant, i.e. xk = a + h(k − 1), k = 1, . . . , n, where
h = (b − a)/(n − 1), and two more properties are fulfilled for k = 2, . . . , n − 1:

6. Ak(xk − x) = Ak(xk + x), for all x ∈ [0,h],
7. Ak(x) = Ak−1(x− h), for all x ∈ [xk,xk+1] and

Ak+1(x) = Ak(x− h), for all x ∈ [xk,xk+1]

Figure 1 shows a uniform partition by sinusoidal shaped basic functions:

A1(x) =

{
0.5(cos π

h (x− x1) + 1), x ∈ [x1,x2],
0, otherwise,

Ak(x) =

{
0.5(cos π

h (x− xk) + 1), x ∈ [xk−1,xk+1],
0, otherwise,

where k = 2, . . .n − 1, and

An(x) =

{
0.5(cos π

h (x− xn) + 1), x ∈ [xn−1,xn],
0, otherwise.

The following lemma [3,4] shows that, in the case of a uniform partition, the
expression of F-transform components can be simplified.
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Fig. 1. An example of a uniform fuzzy partition of [1, 4] by sinusoidal membership
functions

Lemma 1. Let the uniform partition of [a, b] be given by basic functions A1,
. . . , An, n ≥ 3. Then ∫ x2

x1

A1(x)dx =
∫ xn

xn−1

An(x)dx =
h

2
, (2)

and for k = 2, . . . , n − 1 ∫ xk+1

xk−1

Ak(x)dx = h. (3)

Let C([a, b]) be the set of continuous functions on the interval [a, b]. The fol-
lowing definition (see also [3,4]) introduces the fuzzy transform of a function
f ∈ C([a, b]).

Definition 2. Let A1, . . . , An be basic functions which form a fuzzy partition
of [a, b] and f be any function from C([a, b]). We say that the n-tuple of real
numbers [F1, . . . ,Fn] given by

Fk =

∫ b

a f(x)Ak(x)dx∫ b

a
Ak(x)dx

, k = 1, . . . , n, (4)

is the (integral) F-transform of f with respect to A1, . . . , An.

Denote the F-transform of a function f ∈ C([a, b]) with respect to A1, . . . , An

by Fn[f ]. Then according to Definitions 2, we can write

Fn[f ] = [F1, . . . ,Fn]. (5)

The elements F1, . . . ,Fn are called components of the F-transform.
It is easy to see that if the fuzzy partition of [a, b] (and therefore, basic func-

tions) is fixed then the F-transform establishes a linear mapping from C([a, b])
to Rn so that

Fn[αf + βg] = αFn[f ] + βFn[g]
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At this point we will refer to [4] for some useful properties of the F-transform
components. The most important one we are going to present below. We will
show that the components of its F-transform are the weighted mean values of a
given function where the weights are given by the basic functions.

Theorem 1. Let f be a continuous function on [a, b] and A1, . . . , An be basic
functions which form a fuzzy partition of [a, b]. Then the k-th component of the
integral F-transform gives minimum to the function

Φ(y) =
∫ b

a

(f(x) − y)2Ak(x)dx (6)

defined on [f(a), f(b)].

Let us specially consider a discrete case, when the original function f is known
(may be computed) only at some nodes p1, . . . , pl ∈ [a, b]. We assume that the
set P of these nodes is sufficiently dense with respect to the fixed partition, i.e.

(∀k)(∃j)Ak(pj) > 0. (7)

Then the (discrete) F-transform of f is introduced as follows.

Definition 3. Let a function f be given at nodes p1, . . . , pl ∈ [a, b] and A1,
. . . , An, n < l, be basic functions which form a fuzzy partition of [a, b]. We say
that the n-tuple of real numbers [F1, . . . ,Fn] is the discrete F-transform of f with
respect to A1, . . . , An if

Fk =

∑l
j=1 f(pj)Ak(pj)∑l

j=1 Ak(pj)
. (8)

Similarly to the integral F-transform, we may show that the components of the
discrete F-transform are the weighted mean values of the given function where
the weights are given by the basic functions.

2.1 Inverse F-Transform

A reasonable question is the following: can we reconstruct the function from its
F-transform? The answer is clear: not precisely in general because we are loosing
information when passing to the F-transform. However, the function that can be
reconstructed (by the inversion formula) approximates the original one in such
a way that a universal convergence can be established.

Definition 4. Let A1, . . . , An be basic functions which form a fuzzy partition of
[a, b] and f be a function from C([a, b]). Let Fn[f ] = [F1, . . . ,Fn] be the integral
F-transform of f with respect to A1, . . . , An. Then the function

fF,n(x) =
n∑

k=1

FkAk(x) (9)

is called the inverse F-transform.
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The theorem below shows that the inverse F-transform fF,n can approximate
the original continuous function f with an arbitrary precision.

Theorem 2. Let f be a continuous function on [a, b]. Then for any ε > 0 there
exist nε and a fuzzy partition A1, . . . , Anε of [a, b] such that for all x ∈ [a, b]

|f(x) − fF,nε(x)| ≤ ε (10)

where fF,nε is the inverse F-transform of f with respect to the fuzzy partition
A1, . . . , Anε .

In the discrete case, we define the inverse F-transform only at nodes where the
original function is given.

Definition 5. Let function f(x) be given at nodes p1, . . . , pl ∈ [a, b] and Fn[f ] =
[F1, . . . ,Fn] be the discrete F-transform of f w.r.t. A1, . . . , An. Then the function

fF,n(pj) =
n∑

k=1

FkAk(pj),

defined at the same nodes, is the inverse discrete F-transform.

Analogously to Theorem 2, we may show that the inverse discrete F-transform
fF,n can approximate the original function f at common nodes with an arbitrary
precision.

3 F-Transforms of Functions of Two and More Variables

The direct and inverse F-transforms of a function of two and more variables can
be introduced as a direct generalization of the case of one variable.

Suppose that the universe is a rectangle [a, b] × [c, d] and x1 < . . . < xn are
fixed nodes from [a, b] and y1 < . . . < ym are fixed nodes from [c, d], such that
x1 = a, xn = b, y1 = c, xm = d and n, m ≥ 2. Let us formally extend the set of
nodes by x0 = a, y0 = c and xn+1 = b, ym+1 = d. Assume that A1, . . . , An are
basic functions which form a fuzzy partition of [a, b] and B1, . . . , Bm are basic
functions which form a fuzzy partition of [c, d]. Let C([a, b] × [c, d]) be the set of
continuous functions of two variables f(x, y).

Definition 6. Let A1, . . . , An be basic functions which form a fuzzy partition of
[a, b] and B1, . . . , Bm be basic functions which form a fuzzy partition of [c, d].
Let f(x, y) be any function from C([a, b] × [c, d]). We say that the n × m-matrix
of real numbers Fnm[f ] = (Fkl) is the (integral) F-transform of f with respect
to A1, . . . , An and B1, . . . , Bm if for each k = 1, . . . , n, l = 1, . . . , m,

Fkl =

∫ d

c

∫ b

a f(x, y)Ak(x)Bl(y)dxdy∫ d

c

∫ b

a
Ak(x)Bl(y)dxdy

. (11)
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In the discrete case, when an original function f(x, y) is known only at some
nodes (pi, qj) ∈ [a, b] × [c, d], i = 1, . . . , N , j = 1, . . . ,M , the (discrete)
F-transform of f can be introduced analogously to the case of a function of
one variable. We assume additionally that sets P = {p1, . . . , pN} and Q =
{q1, . . . , qM} of these nodes are sufficiently dense with respect to the chosen
partitions, i.e.

(∀k)(∃j)Ak(pj) > 0,

(∀k)(∃j)Bk(qj) > 0.

Definition 7. Let a function f be given at nodes (pi, qj) ∈ [a, b] × [c, d], i =
1, . . . , N , j = 1, . . . ,M , and A1, . . . , An, B1, . . . , Bm where n < N , m < M , be
basic functions which form fuzzy partitions of [a, b] and [c, d] respectively. Suppose
that sets P and Q of these nodes are sufficiently dense with respect to the chosen
partitions. We say that the n × m-matrix of real numbers Fnm[f ] = (Fkl) is the
discrete F-transform of f with respect to A1, . . . , An and B1, . . . , Bm if

Fkl =

∑M
j=1
∑N

i=1 f(pi, qj)Ak(pi)Bl(qj)∑M
j=1
∑N

i=1 Ak(pi)Bl(qj)
. (12)

holds for all k = 1, . . . , n, l = 1, . . . , m.

As in the case of functions of one variable, the elements Fkl, k = 1, . . . , n,
l = 1, . . . , m, are called components of the F-transform.

If the partitions of [a, b] and [c, d] by A1, . . . , An and B1, . . . , Bm are uniform
then the expression (11) for the components of the F-transform may be simplified
on the basis of expressions which can be easily obtained from Lemma 1:

F11 =
4

h1h2

∫ d

c

∫ b

a

f(x, y)A1(x)B1(y)dxdy,

F1m =
4

h1h2

∫ d

c

∫ b

a

f(x, y)A1(x)Bm(y)dxdy,

Fn1 =
4

h1h2

∫ d

c

∫ b

a

f(x, y)An(x)B1(y)dxdy,

Fnm =
4

h1h2

∫ d

c

∫ b

a

f(x, y)An(x)Bm(y)dxdy,

and for k = 2, ..., n − 1 and l = 2, ..., m − 1

Fk1 =
2

h1h2

∫ d

c

∫ b

a

f(x, y)Ak(x)B1(y)dxdy,

Fkm =
2

h1h2

∫ d

c

∫ b

a

f(x, y)Ak(x)Bm(y)dxdy,

F1l =
2

h1h2

∫ d

c

∫ b

a

f(x, y)A1(x)Bl(y)dxdy,
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Fnl =
2

h1h2

∫ d

c

∫ b

a

f(x, y)An(x)Bl(y)dxdy,

Fkl =
1

h1h2

∫ d

c

∫ b

a

f(x, y)Ak(x)Bl(y)dxdy.

Remark 1. All the properties (linearity etc.) proved for the F-transform of a
function of one variable can be easily generalized and proved for the considered
case too.

Definition 8. Let A1, . . . , An and B1, . . . , Bm be basic functions which form
fuzzy partitions of [a, b] and [c, d] respectively. Let f be a function from C([a, b]×
[c, d]) and Fnm[f ] be the F-transform of f with respect to A1, . . . , An and B1,
. . . , Bm. Then the function

fF
nm(x, y) =

n∑
k=1

m∑
l=1

FklAk(x)Bl(y) (13)

is called the the inverse F-transform.

Similarly to the case of a function of one variable we can prove that the inverse
F-transform fF

n,m can approximate the original continuous function f with an
arbitrary precision.

4 F-Transforms Expressed by Residuated Lattice
Operations

Our purpose here is to introduce two new fuzzy transforms which are based
on operations of a residuated lattice on [0, 1]. These transforms lead to new
approximation models which are formally represented using weaker operations
than the arithmetic ones used above in the case of the (ordinary) F-transform.
However, these operations are successfully used in modeling of dependencies
characterized by words of natural language (e.g. fuzzy IF–THEN rules) and
also, in modeling of continuous functions. Therefore, two new F-transforms that
we are going to introduce in this section extend and generalize the F-transform
considered above.

There is another important application of fuzzy transforms based on residu-
ated lattice operations – an application to image processing. By this, we mean
an application to image compression and reconstruction. We will discuss this
later in Section 6.

Let us briefly introduce the concept of residuated lattice which will be a basic
algebra of operations in the sequel.

Definition 9. A residuated lattice is an algebra

L = 〈L, ∨, ∧, ∗, →,0,1〉.

with four binary operations and two constants such that
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– 〈L, ∨, ∧,0,1〉 is a lattice where the ordering ≤ defined using operations ∨, ∧
as usual, and 0,1 are the least and the greatest elements, respectively;

– 〈L, ∗,1〉 is a commutative monoid, that is, ∗ is a commutative and associative
operation with the identity a ∗1 = a;

– the operation → is a residuation operation with respect to ∗, i.e.

a ∗ b ≤ c iff a ≤ b → c.

A residuated lattice is complete if it is complete as a lattice.
The well known examples of residuated lattices are boolean algebras, Gödel,

�Lukasiewicz and product algebras. In the particular case L = [0, 1], the multipli-
cation ∗ is called t-norm. In the foregoing text we will operate with some fixed
residuated lattice L on [0, 1].

4.1 Direct F↑ and F↓-Transforms

Let the universe be the interval [0, 1]. We redefine here the notion of fuzzy parti-
tion of [0, 1] assuming that it is given by fuzzy sets A1, . . . , An, n ≥ 2, identified
with their membership functions A1(x), . . . , An(x) fulfilling the following (only
one!) covering property

(∀x)(∃i) Ai(x) > 0. (14)

As above, the membership functions A1(x), . . . , An(x) are called the basic func-
tions. In the sequel, we fix the value of n ≥ 2 and some fuzzy partition of [0, 1]
by basic functions A1, . . . , An.

We assume that a finite subset P = {p1, . . . , pl} of [0, 1] is fixed. Moreover,
we assume that P is sufficiently dense with respect to the fixed partition, i.e. (7)
holds.

Definition 10. Let a function f be defined at nodes p1, . . . , pl ∈ [0, 1] and
A1, . . . , An, n < l, be basic functions which form a fuzzy partition of [a, b]. We
say that the n-tuple of real numbers [F ↑

1 , . . . ,F ↑
n ] is a (discrete) F↑-transform of

f w.r.t. A1, . . . , An if

F ↑
k =

l∨
j=1

(Ak(pj) ∗ f(pj)) (15)

and the n-tuple of real numbers [F ↓
1 , . . . ,F ↓

n ] is the (discrete) F↓-transform of f
w.r.t. A1, . . . , An if

F ↓
k =

l∧
j=1

(Ak(pj) → f(pj)). (16)

Denote the F↑-transform of f w.r.t. A1, . . . , An by F↑
n[f ] and the F↓-transform

of f w.r.t. A1, . . . , An by F↓
n[f ]. Then we may write:

F↑
n[f ] = [F ↑

1 , . . . ,F ↑
n ], F↓

n[f ] = [F ↓
1 , . . . ,F ↓

n ].

Analogously to Theorem 1 we will show that components of the lattice based
F-transforms are lower mean values (respectively, upper mean values) of an orig-
inal function which give least (greatest) elements to certain sets.
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Lemma 2. Let a function f be defined at nodes p1, . . . , pl ∈ [0, 1] and A1, . . . , An

be basic functions which form a fuzzy partition of [0, 1]. Then the k-th component
of the F↑-transform is the least element of the set

Sk = {a ∈ [0, 1]| Ak(pj) ≤ (f(pj) → a) for all j = 1, . . . , l} (17)

and the k-th component of the F↓-transform is the greatest element of the set

Tk = {a ∈ [0, 1]| Ak(pj) ≤ a → f(pj) for all j = 1, . . . , l} (18)

where k = 1, . . . , n.

5 Inverse F↑ (F↓)-Transforms

All F-transforms (the ordinary one and those based on the lattice operations)
convert the respective space of functions into the space of n-dimensional real vec-
tors. We have defined the inverse F-transform in Subsection 2.1. In this section,
we will define inverse F↑ and inverse F↓-transforms and prove their approxima-
tion properties.

In the construction of the inverse F↑- and F↓-transforms we use the fact that
the operations ∗ and → are mutually adjoint in a residuated lattice.

Definition 11. Let function f be defined at nodes p1, . . . , pl ∈ [a, b] and let
F↑

n[f ] = [F ↑
1 , . . . ,F ↑

n ] be the F↑-transform of f and F↓
n[f ] = [F ↓

1 , . . . ,F ↓
n ] be the

F↓-transform of f w.r.t. basic functions A1, . . . , An. Then the following func-
tions, defined at the same nodes as f , are called the inverse F↑-transform

f↑
F,n(pj) =

n∧
k=1

(Ak(pj) → F ↑
k ), (19)

and the inverse F↓-transform

f↓
F,n(pj) =

n∨
k=1

(Ak(pj) ∗ F ↓
k ), (20)

The following theorem shows that the inverse F↑- and F↓-transforms approxi-
mate the original function from above and from below.

Theorem 3. Let function f be defined at nodes p1, . . . , pl ∈ [0, 1]. Then for all
j = 1, . . . , l

f↓
F,n(pj) ≤ f(pj) ≤ f↑

F,n(pj). (21)

Remark 2. Let us remark that similarly to Definition 7, the direct and inverse
lattice based F-transforms of a function of two and more variables can be intro-
duced as a direct generalization of the case of one variable.
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6 Application of the F-Transform to Image Compression
and Reconstruction

A method of lossy image compression and reconstruction on the basis of fuzzy re-
lations has been proposed in a number of papers (see e.g. [1,2]). When analyzing
these methods, we have realized that they can be expressed using F-transforms
based on lattice operations. In this section, we will explain how the general
technique of F-transform can be successfully applied to the compression and
reconstruction of images and compare the effectiveness of all three types of the
F-transform with respect to this problem. We will see that all considered ex-
amples witnessed the advantage of the ordinary F-transform (4) over the lattice
based F-transforms (cf. (15) and (16)).

Let an image I of the size N × M pixels be represented by a function of two
variables (a fuzzy relation) fI : N × N −→ [0, 1] partially defined at nodes (i, j) ∈
[1, N ] × [1,M ]. The value fI(i, j) represents an intensity range of each pixel. We
propose to compress this image with the help of the one of the three discrete
F-transforms of a function of two variables by the n × m-matrix of real numbers

Fnm[fI ] =

⎛⎜⎝F11 . . . F1m

...
...

...
Fn1 . . . Fnm

⎞⎟⎠ .

The following expression reminds the components Fkl obtained by the ordinary
F-transform of a function of two variables (11):

Fkl =

∑M
j=1
∑N

i=1 fI(i, j)Ak(i)Bl(j)∑M
j=1
∑N

i=1 Ak(i)Bl(j)

where A1, . . . , An, B1, . . . , Bm, are basic functions which form fuzzy partitions
of [1, N ] and [1,M ], respectively and n < N , m < M . We refer to Remark 2
for the case of lattice based F-transforms. The value ρ = nm/NM is called a
compression ratio.

A reconstruction of the image fI , being compressed by Fnm[fI ] = (Fkl) with
respect to A1, . . . , An and B1, . . . , Bm, is given by the inverse F-transform (13)
adapted to the domain [1, N ] × [1,M ]:

fF
nm(i, j) =

n∑
k=1

m∑
l=1

FklAk(i)Bl(j).

On the basis of Theorem 2 we know that the reconstructed image is close to
the original one and moreover, that it can be obtained with a prescribed level
of accuracy. On Fig. 2 and Fig. 3 (the figures are taken from [2]), we illustrate
the proposed compression method and reconstruction based on F-transforms of
all three types. Let us show the advantage of the ordinary F-transform over
the lattice based F-transforms in what concerns images “Bird” and “Bridge”
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a)

 

b) c)

d) e)

Fig. 2. The original image “Bird” a) is compressed and reconstructed by the ordinary
F-transform method (pictures b) and d)) and by the lattice based F↑-transform method
(pictures c) and e)). The compression ratio ρ = 0.56 has been used for images on
pictures b) and c) and the compression ratio ρ = 0.39 has been used for images on
pictures d) and e).
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a)

b) c)

d) e)

Fig. 3. The original image “Bridge” a) is compressed and reconstructed by the ordinary
F-transform method (pictures b) and d)) and by the lattice based F↑-transform method
(pictures c) and e)). The compression ratio ρ = 0.56 has been used for images on
pictures b) and c) and the compression ratio ρ = 0.39 has been used for images on
pictures d) and e).
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compression/reconstruction. We have evaluated the quality of the reconstructed
images using PSNR value given by

PSNR = 20 log10
255
ε

, ε =

√∑N
i=1
∑n

j=M (fI(i, j) − fF
nm(i, j))

MN
.

The table below [2] contains values of PSNR for images “Bird” and “Bridge”.

“Bird” “Bridge”
ρ F-transform F↑-transform

0.56 38.3182 35.9521
0.39 36.4782 28.4277

ρ F-transform F↑-transform
0.56 38.3182 35.9521
0.39 36.4782 28.4277

On the basis of Theorem 1, we may proclaim that the PSNR-quality is the
best for compression/reconstruction methods based on the ordinary F-transform
in comparison with the lattice based F-transforms.

7 Conclusion

A method of lossy compression and reconstruction data on the basis of fuzzy
transforms has been proposed and its advantage over the similar method based
on a lattice based F-transform is discussed. The proposed method can be applied
not only to pictures, but also to music and other kinds of digital data.
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Abstract. We can get much knowledge from images. This process can be done 
in the mind by a human, and implementation of this mind processing by a sys-
tem is very difficult. This project attempt to image mining for a simple case. In 
this paper we develop designed neuro-fuzzy system and it is used for accident 
prediction in two vehicles scenario. The results show better performance respect 
to previous version. 

Keywords: Image Mining, ANFIS, Knowledge Extraction. 

1   Introduction 

Recent years have witnessed the rapid increase of data all around the world. Data can 
be classified in two parts: Structured and Unstructured. Knowledge discovery from 
structured data can be done through data analysis methods. But in the case of unstruc-
tured data such as text, image and voice, special mining techniques are needed to 
discover the implicit knowledge of them [29].  Image mining systems are used for 
many applications, such as: data transmission, data saving, image studying, automatic 
learning of an art, event or action due an image sequential, and may be not considered 
by a human, automatic control for a place such as large shops, airports, security sys-
tems, and others…. Much research was done for “Image Retrieval” [4-27] but didn’t 
consider “Knowledge Mining”. This paper attempted to implement an “Image Min-
ing” system for a simple case study. Material & methods, results and conclusion for 
this study have been presented in the following sections.  

2   Materials and Methods 

Knowledge has different levels and definitions so because of some problems we must 
constraint our project to some simple issues. For this purpose we attempted to Knowl-
edge Discovery from Traffic People Behavior (KDFTPB) with simple behaviors [28] . 

Any entropy, disturbance, accident, accident prediction, normal behavior, traffic rules 
and etc., can be considered as knowledge. As mentioned ago, at the first step we con-
sider a simple condition and complex issue holds later. Therefore for simplicity, we 
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considered a set of scenario with two vehicles with some normal and abnormal behav-
iors. Also we considered simple knowledge extraction such as accident prediction. Thus 
system must be got online images and at each time with the current data and the previ-
ous knowledge (extracted from the previous images), get some knowledge about the 
accident prediction. So the system must be having a memory and includes the previous 
knowledge extraction position. In the other hand it must be intelligence.  

Behavior of people and vehicle are fuzzy concepts. In the other words, we can intro-
duce some concept ‘Low Velocity’ for very different velocities but at the different roads. 
Therefore we must have fuzzy concept for this purpose. We showed that one of the best 
solutions for the image mining system is to use ANFIS1, because of its adaptive nature, 
capability of non-systematic rule learning, and extended input-output mapping [2, 3].  

ANFIS uses a given input/output data set and constructs a fuzzy inference system 
(FIS) whose membership function parameters are tuned using either a back propaga-
tion algorithm or in combination with a least squares type of method. This allows 
fuzzy systems to learn from the data they are modeling [1].  

2.1   Data Simulation 

Data was simulated for ANFIS training, checking, and testing. Simulated data was 
divided in two categories: (1) Normal motion, and (2) Abnormal motion. Figure (1) 
shows normal motion for two vehicles. Two dimensions stand for road length and 
width that are normalized between zero and one.  

 
(1-a) 

Fig. 1. (a)Normal motions with zero swing for vehicles with never leaves their lines (b) Small 
swing normal motions for vehicles with never leaves their lines, (c) Large swing normal mo-
tions for vehicles with never leaves their lines  

                                                           
1 Adaptive Neuro Fuzzy Inference System.  
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(1-b) 

 

(1-c) 
Fig. 1. (continued) 

This motion is considered with zero, small and large swing for vehicles with 
never leaves their lines. Because of normalization, large swing is real for vehicle 
motions. Figure (2) shows abnormal motion for two vehicles. This motion is con-
sidered with large swing for vehicles with leaving their lines. Expert reviewed gen-
erated data and he/she assigned its outputs for each time. Thus we have a set of 
inputs/outputs for ANFIS training, checking and testing. Data can be used by 
ANFIS have the following format.  
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Fig. 2. Large swing abnormal motions for vehicles with leaving their lines 

Image1=(x-position1, y-position1, object-velocity1, object-direction1, ..., object-direction2, 
desired-output,  prediction -output).  
INPUT VECTOR= [Image1, Image2...Image10]. 

2.2   ANFIS System 

Figure (3) shows last block diagram for image mining by ANFIS [28]. The concept of 
this figure is: M images from one scenario are processed and some features extracted  
 

      Preprocessing             Layer 1     Layer 2     Layer 3  
                                  Fuzzification  Rule Base  Defuzzification 

Im- Informa-

Ima- Informa-

Im- Informa-

 

 

 

 

 

 

 

Fig. 3. Block diagram of last version neuro-fuzzy image mining system  
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        Preprocessing             Layer 1     Layer 2     Layer 3  
                                  Fuzzification  Rule Base  Defuzzification 

Im- Informa-

Im- Informa-

 

 

 

 

 

Fig. 4. Block diagram of new version neuro-fuzzy image mining system  

in order to feed into ANFIS. So that sequence of the images is used for knowledge 
extraction such as it performed in the brain for image mining by human. Because of 
non-deterministic human behavior and capability of ANFIS in chaotic time series 
prediction (Mackey-Glass) [3], it is the best choice for this purpose. At the new ver-
sion (figure 4), we divided system into some steps. At each step we consider only 2 
images from one scenario, and feed them to ANFIS system, therefore we break total 
processing into many sub- processing, that each of the input vector has one share 
image with previous input vector. With sharing images we can save memory or his-
tory of system, in the other words we can save capability of the system for event 
tracking. 

3   Results and Conclusion 

Designed ANFIS systems were used in three phases: (1) Training phase. (2) Testing 
phase (Fig. 5). (3) Checking phase. Horizontal axis stands for rules that extracted by 
ANFIS from input-output data pairs and vertical axis stands for outputs. Outputs in 
each of the figures have different symbols for system outputs (output of ANFIS 
system or FIS output) and target outputs (that is labeled by expert). Checking data 
was used for over-fitting prevention. It can be seen from results, that training was 
been successful, and some errors occurred for checking and testing data. It must be 
noticed that conceptual nature of output, and different value for each of the scenario 
output by different experts or one expert at different time, we must not used abso-
lute errors for system performance validation. It must see that how much the FIS 
outputs and target outputs are close together, and very different values at each of 
the situation can be seen as an error. In the other words if the population and distri-
bution of two outputs is similar and don’t see any disagreement, it must be seen as 
good performance. Fig. (5-b) shows the better performance in testing data respect to 
Fig. (5-a). So it is clear that new design has better performance respect to last de-
sign version.  
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(a) 

 

(b) 

Fig. 5. Testing phase result (a) last version (b) new version 
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Abstract. Fuzzy Q–learning extends the Q–learning algorithm to work
in presence of continuous state and action spaces. A Takagi–Sugeno
Fuzzy Inference System (FIS) is used to infer the continuous executed
action and its action–value, by means of cooperation of several rules.
Different kinds of evolution of the parameters of the FIS are possible,
depending on different strategies of distribution of the reinforcement sig-
nal. In this paper, we compare two strategies: the classical one, focusing
on rewarding the rules that have proposed the actions composed to pro-
duce the actual action, and a new one we are introducing, where reward
goes to the rules proposing actions closest the ones actually executed.

Keywords: Reinforcement Learning, Fuzzy Q–learning, Fuzzy logic,
continuous state-action space, reinforcement distribution.

1 Introduction

We present a comparison between two reinforcement distribution approaches in
Fuzzy Q-Learning, a reinforcement learning algorithm for fuzzy models.

Reinforcement Learning (RL) is a paradigm that makes an agent learn the
optimal policy, namely the optimal action to take given a state of affairs, through
the direct interaction with the environment and a critic of each action taken. The
agent gets no direct information about the optimal control strategy. RL is based
on the idea that the result of an action is evaluated and the parts of the model
contributing to it are rewarded accordingly; this reward is used to compute an
accurate estimation of the model fitness to the rewarding criteria [7].

Q–Learning [9] is one of the most popular, model–free, RL algorithm. It is
based on the idea that the expected discounted sum of future reinforcements can
be estimated by a function of all the states and the actions, called Q–function,
which gives a measure of the fitness of each action in each state and can be used
to define an optimal policy.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 40–45, 2006.
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When the agent is in state xt, an action at is selected and applied ; then the
agent senses a new state, xt+1, and a reinforcement signal, rt

xt,at . The action–
value of such an action Qt (xt, at) is updated by:

Qt+1 (xt, at
)

= Qt
(
xt, at

)
+ α

(
rt
xt,at + γmax

a
Qt(xt+1, a) − Qt

(
xt, at

))
(1)

where α is the learning rate and γ a discount factor, both between 0 and 1.
Since operating in large search spaces is time expensive (curse of dimension-

ality problem), Q–learning is often applied in domains modeled by few discrete
states where a small number of actions is possible,

Several solutions have been proposed to generalize over the state–action space
to reduce this problem. Function approximators are able to interpolate a function
using a limited number of parameters; in addition they rely on good convergence
proofs in many important cases. In particular, we use a Takagi–Sugeno Fuzzy
Inference System (FIS) as linear function approximator, thus considering a kind
of Fuzzy Q–learning.

Many algorithms that implement Fuzzy Q–learning have been presented in the
last years. In [1] Seo and Youn used fuzzy variables instead of discrete values and
then filled lookup tables with fuzzy values. Berenji [2] has proposed a Q–learning
approach that allows to integrate fuzzy constraints in direct reinforcement learn-
ing. Bonarini [3] proposed a fuzzy Q-learning version with delayed reinforcement.
Glorennec [5] and Jouffe [6] have given a fundamental contribution in the defini-
tion of Fuzzy Q–learning; one of the methods described in the following sections
originates from their work.

2 Fuzzy Q–Learning

The goal of a FIS is to map a N–dimensional, real–valued, input state domain
X to a continuous action function and its action–value function. In order to do
this, a fuzzy partition is defined over X. Each fuzzy set of the partition is denoted
by a label, A, and described by a membership function, μA.

Each dimension Xk of the state space is covered by nXk
fuzzy sets. Thus, we

call the membership function of the jth
k fuzzy set Xjk on the kth variable Xk as

μX jk
, where jk = 1, . . . , nXk

. The conjunction among the fuzzy sets Xj1 , . . . ,XjN is
the premise of the rule Rj1,...,jN . The consequent of each rule is associated to a set
of nj1,...,jN possible discrete actions Aj1,...,jN = {aj1,...,jN ,1, . . . , aj1,...,jN ,nj1,...,jN

}
and the correlated action values Qj1,...,jN = {qj1,...,jN ,1, . . . , qj1,...,jN ,nj1,...,jN

}, so
qj1,...,jN ,i is associated to the ith discrete action available in the rule Rj1,...,jN ,
which can be written as follows:

Rj1,...,jN : IF x1 is Xj1 AND . . . AND xN is XjN
THEN y = aj1,...,jN ,1 with qj1,...,jN ,1

OR . . . OR y = aj1,...,jN ,nj1,...,jN
with qj1,...,jN ,nj1,...,jN

where the AND operator is implemented as the T-norm product. At each time
step, only one action per active rule will participate to the inference, while all
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the others remain inactive. This describes an exclusive OR and a competition
among the actions of each rule. To simplify the notation, let us associate all the
possible combinations of the indexes {j1, . . . , jN} of the rules to natural numbers
r = 1, . . . , nR, so we can rename the indexes, and Rj1,...,jN simply becomes Rr .

When a crisp input vector xt enters the system at time t, all the rules Rr

that cover a region to which xt partially belongs are said to be partially active
by the matching degree φr(xt) of their premises. It may happen that the sum
of activation degrees is larger than 1; the normalized activation degree, ψr(xt)
is defined as:

φj1,...,jN (xt) =
∏

j1,...,jN

μXji
(xi) . ψr(xt) =

φr(xt)∑nR

r=1 φr(xt)
. (2)

Each active rule infers only one discrete action, and the action actually exe-
cuted in state xt is a composition of such discrete actions.

In each fuzzy state the agent must exploit what it already knows in order
to obtain reward, but it must also explore, to discover possibly more rewarding
regions in the state–action space. In the present work, exploration is implemented
by a kind of ε-greedy choice of the action: for each rule the agent computes a
selection parameter J by linearly combining, with parameters ηq and ηΥ , the
quality of the available actions normalized in [0, 1], Qnorm

r , and a vector Υr of
random values uniformly distributed in [0, 1].

J = ηqQ
norm
r + ηΥΥr . ǎt

r = ar, arg maxi{Jr,i} . (3)

Then, it selects the action ǎt
r with the highest J value.

The coefficient ηΥ of Υr in the linear combination gets smaller and smaller
with time, so the more the system learns the more greedily it chooses.

Once the degree of activation of the premises is determined and an action for
each active fuzzy rule is selected, the rules cooperate with each other in creating
a continuous action to execute in xt at time t: At(xt). The overall inference
is computed as the sum of the actions ǎt

r chosen by each rule weighted by the
corresponding normalized activation degrees ψr(xt):

At(xt) =
nR∑
r=1

ψr(xt) ǎt
r . (4)

Notice that with At(xt) we actually mean A(xt, ǎt
r). Moreover, At(xt) is a con-

tinuous action in the sense that, given the selected discrete actions, a continuous
variation of xt implies a continuous and smooth variation of At(xt), but in a
continuous state xt there is only a discrete set of possible interpolated actions.

2.1 The Q Function

According to Glorennec and Jouffe [5, 6], the Q–value associated to At(xt) in
state xt at time t, namely Qt (xt, At(xt)), is derived by the quality of the actions
ǎt

r selected to interpolate At(xt):
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Qt
(
xt, At(xt)

)
=

nR∑
r=1

ψr(xt) qt
r,i . (5)

Note that the continuous action actually executed At(xt) might be very dif-
ferent from the discrete actions ǎt

r by which it obtained reward. Furthermore,
the Q–function is not computable over the whole state–action space but it is
restricted only on the subdomain At(xt). The function Q actually should be
written as Q(xt, At(xt), ǎt

r), so the point (xt, At(xt)) in the state–action space is
not associated to any Q–value per se, as it happens in connectionist approaches.
In order to overcome the problems arising from this issue, we introduce another
way of thinking the action–value function in a FIS.

Parameter update in algorithms with function approximators is often imple-
mented as a gradient descent with respect to a function, usually the Minimum
Square Error (MSE), which is quite simple to compute in the case of la inear
approximator such as the fuzzy system we are considering [8]. So, we update the
parameters associated to the chosen actions with the following equation:

qt+1
r,i = qt

r,i − αεt
Q∇qt

r,i
Qt
(
xt, At(xt)

)
= qt

r,i − αεt
Qψr(xt) . (6)

where εt
Q is defined as:

εt
Q = rt

xt,At(xt) + γmax
a

Q(xt+1, a) − Qt
(
xt, At(xt)

)
. (7)

In order to speed the learning up we use eligibility traces [8], which let
∇qt

r,i
Qt (xt, At(xt)) slowly decay to zero in time and be reemployed in extra

updates during the following time–steps and a meta–learning rule that allows
individual components to learn more or less, depending on the stable or oscilla-
tory nature of the component itself. We cannot give further details here due to
space restrictions.

2.2 The Q Function

We propose an alternative formulation of the interpolation of the action–value
function, which we will indicate as Q–function, that is univocally defined over
the whole state–action domain. We strongly fuzzify the action dimension in cor-
respondence with each rule Rr with one fuzzy set Ar,i centered in each discrete
action ar,i, so that a generic point at – and in particular At(xt) – is covered by
the fuzzy sets of the discrete actions, in the active rules, which are most similar
to it. Thus, we can compute and update the Q–values focusing the attention on
the rules proposing actions similar to the one actually executed. We interpolate
in each Rr the value Q̃r(at)1 by considering the Ar,i matching the actual action,
and then we use it as in Equation 5 of Section 2.1 to interpolate Qt(xt, at):

Q̃r(at) =
nr∑
i=1

μAr,i
(at) qt

r,i . Qt(xt, at) =
nR∑
r=1

ψr(xt) Q̃r(at) . (8)

1 In this case it not necessary to normalize the sum since the fuzzification is strong.
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The update of Q–values is performed by a gradient descent method as well,
but in this case the updated parameters correspond to the discrete actions that
are most similar to the executed action, and therefore responsible for the inter-
polation of Q̃r(at) and then Qt(xt, at). The update formula takes into account
the fuzzy sets associated to the discrete actions in every active rule Rr:

qt+1
r,i = qt

r,i − αεt
Q∇qt

r,i
Qt(xt, At(xt))

= qt
r,i − αεt

Qψr(xt)μAr,i
(At(xt)) . (9)

where εt
Q

is defined like εt
Q in Equation 7.

Eligibility traces and meta–learning rule have been adopted in this case too.

3 Experiments and Comparison Between Q and Q

We have implemented a system that can distribute reward according to both Q
and Q. We have applied it on the following example: a golf player agent should
decide the strength of the stroke given the distance from the hole; if it strokes
too strongly, the reward of the action is very small, if it strokes the ball in the
hole at once it is very large, if it takes more than one stroke it is in the middle.

As shown in Figure 1, Q–values focus on the individual selection of the best
actions available by the FIS, bound to a specific fuzzification, without dispersing

(a) Q–function surface

(b) Q–function surface

Fig. 1. Q and Q surfaces of a golf player agent: d is the distance from the hole, F is
the force of the stroke. In 1(a) the Q–values put in evidence only the best actions to
select, while in 1(b) the Q–values characterize the whole action–value space.
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the reward information. However, the parameters are usually updated by differ-
ent rules. This makes them incoherent and oscillatory. Furthermore, the function
Q depends on xt, At(xt), ǎt

r, so the point (xt, At(xt)) in the state–action space
is not associated to any Q–value per se, so a real action–value function is defined
only when the choice of ǎt

r is deterministic, like in the case of the optimal policy,
otherwise parameters are meaningless. Thus, when the fuzzification does not suit
the problem well, we cannot rely on these values.

Q-values provide an action–value with characteristics more similar to the ex-
pected ones. These functions are stable, since they receive coherent updates from
similar executed actions and, most of all, they are defined over the whole domain.
Thus, they provide an estimation of the whole action–values distribution, so we
can compare optimal and suboptimal actions, and we may be able to understand
whether the fuzzification is inadequate. However, there are some drawbacks: the
boundaries turn to be less frequently updated and are biased by the initial value
for longer; moreover, the information about the action–value function is bounded
to the shape of the membership functions, so rules covering in discontinuous re-
gions of action–value functions may give intrinsically oscillatory results. This
problem might be reduced by an accurate design of the reward function [4].
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Abstract. In this paper several combinatorial optimization problems on
fuzzy weighted matroid are considered. It is shown how to characterize the
degrees of optimality of elements in the setting of the possibility theory.

1 Introduction

An important and interesting class of combinatorial optimization problems can
be formulated on matroids (a good introduction to matroids can be found in [7]).
Let E = {e1, . . . , en} be a given, finite set and let I be a collection of subsets of
E closed under inclusion (that is if A ∈ I and B ⊆ A, then B ∈ I). The system
(E, I) is matroid if it satisfies the following growth property: if A ∈ I, B ∈ I
and |A| < |B|, then there exists e ∈ B \A such that A ∪ {e} ∈ I. The elements
in I are called independent sets. The maximal (under inclusion) elements in I
are called bases and the minimal (under inclusion) elements not in I are called
circuits. It can be easily verified that all the bases of a matroid have the same
cardinality. In the matroidal combinatorial optimization problem (Opt for short)
a nonnegative weight we is given for every element e ∈ E and we seek a base B,
for which the cost F (B) =

∑
e∈B we is maximal (or minimal).

Matroids are precisely the structures for which the very simple and efficient
greedy algorithm works. The greedy algorithm for the maximization problem
takes the following form:

1: Order elements so that we1 ≥ we2 ≥ · · · ≥ wen .
2: B ← ∅
3: for i ← 1 to n do
4: if B ∪ {ei} ∈ I then B ← B ∪ {ei}
5: end for
6: return B
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For the minimization problem we have to reverse the order of the elements in
line 1. The running time of the greedy algorithm is O(n logn + nf(n)), where
f(n) is time required for deciding whether a given set B ⊆ E contains a circuit
(see line 4). Note that f(n) depends on the particular structure of a matroid.

In this paper we study problem Opt in which the values of the weights are
not precisely known. We use fuzzy intervals to model the ill-known weights.
The evaluation by fuzzy intervals is performed in the setting of possibility the-
ory. The possibility theory, which proposes a natural framework for handling
incomplete knowledge, is fully described in [3]. If the exact values of the weights
are not available, then the notion “optimal solution” also becomes imprecise. It
is not possible to say a priori which elements of E will be a part of an optimal
solution. However, using the possibility theory, we can characterize the possi-
bility and the necessity of the event that a given element e ∈ E will be a part
of an optimal solution. Such a characterization may be useful in some practical
applications. It allows for example to detect the elements which will never (will
always) be a part of an optimal solution. Moreover, in the fuzzy case we can
detect the elements for which the possibility (necessity) of being a part of an
optimal solution is low or high. This may be used for preprocessing the problem
before choosing a solution. Such a preprocessing was performed for example in
[1] and [8] before calculating the optimal solution with respect to the maximal
regret criterion.

2 Fuzzy Interval Weighted Matroids

Suppose that every weight we, e ∈ E, can take any value from a given interval
We = [w−

e , w
+
e ], where w−

e ≥ 0. A vector w = (we)e∈E , we ∈ We, that represents
an assignment of weights we to elements e ∈ E is called configuration. We denote
by Γ the set of all the configurations, i.e. Γ = ×e∈E [w−

e , w
+
e ] . We use we(w)

to denote the weight of element e ∈ E in configuration w ∈ Γ . We denote by
E(w) a subset of those elements of E which belong to at least one optimal base
in configuration w ∈ Γ . A given element e ∈ E is said to be possibly optimal
if and only if there exists a configuration w ∈ Γ such that e ∈ E(w). A given
element e ∈ E is said to be necessarily optimal if and only if e ∈ E(w) for all
configurations w ∈ Γ .

We show now how to decide whether a given element e ∈ E is possibly
(necessarily) optimal. Consider two particular configurations w+

{f} and w−
{f}

induced by f ∈ E:

we(w+
{f}) =

{
w+

e if e = f ,
w−

e otherwise
, we(w−

{f}) =

{
w−

e if e = f ,
w+

e otherwise
, e ∈ E.

If we are seek a maximum weighted base, then the following theorem can be
proven [5]:

Theorem 1. A given element e ∈ E is possibly (resp. necessarily) optimal if
and only if there exists an optimal base B in configuration w+

{e} (resp. w−
{e})

such that e ∈ B.
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For the minimum weighted base, there is a symmetric theorem (it is enough
to exchange w+

{e} and w−
{e} in Theorem 1). Using Theorem 1 one can check

whether a given element e is possibly (necessarily) optimal. This can be done
by executing the slightly modified greedy algorithm for configurations w+

{e}
and w−

{e}. The modification consists in assuring that e appears before all the
other elements with the same weight (see ordering in line 1 of the greedy algo-
rithm). The element e is then possibly (necessarily) optimal if and only if the
obtained base contains e (see [5] for details). This result generalizes the results
obtained in [8] for the particular minimum spanning tree problem. Thus, it is
clear that we can detect all the possibly and necessarily optimal elements in
O(n2 log n+ n2f(n)) time. The complexity of detecting all the possibly optimal
elements can be additionally reduced. If we seek a maximum weighted base, then
the following theorem holds [5]:

Theorem 2. Let w− be configuration where all the weights are set to their lower
bounds and let B be an optimal base in w−. An element e /∈ B is possibly optimal
if and only if an element f �= e in the circuit C ⊆ B ∪ {e} of the minimal value
of w−

f satisfies w+
e ≥ w−

f .

The symmetric theorem holds if we seek a minimum weighted base. Using The-
orem 2 we can proceed as follows. First, we compute an optimal base B in
configuration w−. All the elements e ∈ B are then possibly optimal by defini-
tion. Then, for all e ∈ E \B we determine the element f from Theorem 2, which
in a typical situation requires O(nf(n)) time, where f(n) is the time required
for detecting cycle C in B ∪ {e}. Thus, all the possibly optimal elements can be
detected in O(n log n+ nf(n)) time. Unfortunately there is no a counterpart of
Theorem 2 for the necessarily optimal elements.

We show now how to extend the notions of possible and necessary optimality
of elements to the fuzzy intervals case. Let us recall that a fuzzy interval X̃ is a
fuzzy set in the space of real numbers, whose membership function μX̃ is normal,
quasiconcave and upper semi-continuous on IR [3]. In this paper we work only
with nonnegative fuzzy intervals (μX̃(x) = 0 for x < 0) with bounded support.
We assume that the membership function μX̃ denotes the possibility distribution
for variable X , whose value is not precisely known. The interpretation of the
possibility distribution and some methods of obtaining it from the knowledge
possessed about X are described in detail in [3]. It is well known that the λ-
cut of X̃, that is the set X̃λ = {x : μX̃(x) ≥ λ}, λ ∈ (0, 1], is the classical
interval [X̃−(λ), X̃+(λ)]. We additionally assume that X̃0 = [X̃−(0), X̃+(0)] is
the support of X̃ . The intervals X̃λ, λ ∈ [0, 1] can be easily calculated for a wide
class of fuzzy intervals, called the fuzzy intervals of the L-R type [3].

Suppose now that the weights of the elements are modeled as fuzzy intervals
W̃e, e ∈ E. Then, the join possibility distribution over all the weights configu-
rations w = (we)e∈E is π(w) = mine∈E{μW̃e

(we)}. The degrees of possible and
necessary optimality of a given element e ∈ E are defined as follows:

Π(e is optimal) = sup
w: e∈E(w)

π(w),
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N(e is optimal) = 1 −Π(e is not optimal) = inf
w: e/∈E(w)

(1 − π(w)).

The optimality degrees of a given element e ∈ E can be calculated in the
following way. Let Mλ, λ ∈ [0, 1] be a matroid in which the weights are given
as the classical intervals We = [W̃−

e (λ), W̃+
e (λ)], e ∈ E. Then, the degrees of

possible and necessary optimality of e can be calculated as follows (see also [5]):

Π(e is optimal) = sup{λ ∈ [0, 1] | e is possibly optimal in Mλ},
N(e is optimal) = 1 − inf{λ ∈ [0, 1] | e is necessarily optimal in Mλ}.

If e is not possibly (not necessarily) optimal in M0 (M1) then degree of possible
(necessary) optimality of e is equal to 0. It canbe easily verified thatΠ(e is optimal)
< 1 implies N(e is optimal) = 0, and N(e is optimal) > 0 implies Π(e is optimal) =
1. The calculation of the optimality degrees of e ∈ E, with a given accuracy ε ∈
(0, 1), is straightforward if there exist algorithms for the corresponding interval
problems. The standard method consists in dividing the interval [0, 1] and solving
a sequence of the classical interval cases. Thus, the difficulty of the problems lies in
the classical interval case. In the next sections we will analyze in detail three par-
ticular matroidal problems. We will focus on the classical interval cases, assuming
that the further generalization to the fuzzy intervals is straightforward.

3 The Minimum Spanning Tree Problem

Let E = {e1, . . . , en} be a set of edges of a given connected and undirected
graph G = (V,E). The set I consists of all the subsets of edges E′ ⊆ E such
that subgraph G′ = (V,E′) is acyclic (that is I is the set of all forests in G). The
system (E, I) in this problem is one of the best known examples of matroids (it
is so-called graphic matroid). A base is a spanning tree of G and a circuit is a
subset of edges creating a simple cycle in G. In the classical minimum spanning
tree problem, we seek a spanning tree for which the total weight is minimal. The
greedy algorithm calculating the optimal spanning tree is known in the literature
as Kruskal’s algorithm. The complexity of Kruskal’s algorithm is O(n log n) [2].

Consider the case in which the weights of edges of G are specified as closed
intervals. The problem of detecting the possibly and the necessarily optimal edges
was studied in [1] and [8] (in [8] the possibly optimal edge was called weak and
the necessarily optimal one was called strong). This characterization was used for
preprocessing the problem before calculating the robust spanning tree. All the
possibly and the necessarily optimal edges can be detected in O(n2 logn) time,
using the results presented in Section 2. This method, consists in executing n
times the Kruskal’s algorithm, was adopted in [8]. The complexity of calculation
of all the possibly optimal edges can be significantly reduced. In [1] the following
proposition (which is a consequence of the more general Theorem 2) was proven:

Proposition 1 ([1]). Let w+ be a configuration where all the weights are at
their upper bounds and let T be a minimum spanning tree in w+. An edge e =
(u, v) ∈ E \ T is possibly optimal if and only if an edge f of the maximal weight
w+

f on the path from u to v in T satisfies w−
e ≤ w+

f .
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The idea of algorithm for detecting all the possibly optimal elements, which is
based on Proposition 1, is as follows. We start with computing the minimum
spanning tree T in configuration w+. All the edges e ∈ T are then possibly
optimal by definition. Then, for every edge e ∈ E \ T we can compute in O(|V |)
time the proper edge f from Proposition 1 and check whether w−

e ≤ w+
f . The

overall complexity becomes then O(n logn + n|V |), which can be additionally
reduced to O(n log n + |V |2) (see [1] for details). Observe that in dense graphs
(n ≈ |V |2) this complexity is O(n logn), which is the same as the running time
of Kruskal’s algorithm. Unfortunately there is no a counterpart of Proposition 1
for detecting all the necessarily optimal edges. Therefore, all these edges can be
detected in O(n2 logn) time by executing n times the Kruskal’s algorithm.

4 The Selecting Items Problem

Let E = {e1, . . . , en} be a set of items. The set I consists of all the subsets of E
with cardinality less or equal than a given number 1 ≤ p < n. It can be easily
verified that system (E, I) in this problem is a matroid (it is so called uniform
matroid). A base is a subset A of E such that |A| = p and a circuit C is a subset
of A such that |C| = p + 1. Thus, in the selecting items problem, we seek a
subset of E with cardinality exactly p, for which the total weight is maximal.
The selecting items problem can be viewed as a basic resource allocation problem
with linear cost function [4]. In the classical case the best solution can be easily
obtained by selecting p items of the greatest weights. It can be performed in
O(n) time in the following way: first, the (p + 1)th greatest weighted element
g ∈ E is calculated (this can be done in O(n), see e.g. [2]); then, all the items
e ∈ E such that we > wg are added to A; if |A| < p then set A is completed to
p by items e ∈ E such that we = wg.

Consider now the case in which the weights of elements in the problem are
given as closed intervals. The following two propositions allow to detect all the
possibly and necessarily optimal elements very efficiently.

Proposition 2. Let w− be a configuration where all the weights are at their
lower bounds. Let f be the p-th greatest weighted element in w−. Then element
e ∈ E is possibly optimal if and only if w+

e ≥ w−
f .

Proof. (⇒) Suppose by contradiction that e is possibly optimal and w+
e < w−

f .
Condition w+

e < w−
f means that there are at least p elements which weights are

strictly greater than the weight of e in configuration w+
{e}. Thus e cannot be a

part of the optimal base in w+
{e}. This implies that e is not possibly optimal (see

Theorem 1), which is a contradiction.
(⇐) If w+

e ≥ w−
f the element e is one of the p elements of the greatest weights

in configuration w+
{e}. Thus e is a part of the optimal base in w+

{e} and by
Theorem 1, it is possibly optimal. ��

Proposition 3. Let w+ be a configuration where all the weights are at their
upper bounds. Let f be the p-th greatest weighted element and let g be the (p+1)-th
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greatest weighted element in w+. Then element e ∈ E is necessarily optimal if
and only if w+

e ≥ w+
f and w−

e ≥ w+
g .

Proof. (⇒) Suppose by contradiction that element e is necessarily optimal and
w+

e < w+
f or w−

e < w+
g . In the first case (w+

e < w+
f ) element e cannot be a part

of the optimal base in configuration w+ and in the second case (w−
e < w+

g ) it
cannot be a part of the optimal base in configuration w−

{e}. This contradicts the
assumption that e is necessarily optimal.

(⇐) Conditions w+
e ≥ w+

f and w−
e ≥ w+

g assure that element e is one of the
p elements of the greatest weights in configuration w−

{e}. Thus e is a part of the
optimal base in w−

{e} and by Theorem 1, it is necessarily optimal. ��

Propositions 2 and 3 allow to detect all the possibly and necessarily optimal
elements very efficiently. The k-th greatest element in a given configuration can
be found in O(n) time (see e.g. [2]). Thus the overall complexity of the algorithm
for detecting all the possibly (necessarily) optimal elements is O(n).

5 The Scheduling Problem 1|pi = 1|∑wiUi

Let J = {1, . . . , n} be a set of jobs to be processed on a single machine. Every
job i ∈ J has unit processing time pi = 1. For every job i ∈ J , there are given:
a due date di and a weight wi. A schedule is a sequence π of jobs. A job i ∈ J
is called late in π if its completion time in π is greater than di, otherwise job i
is called on-time in π. We seek a schedule for which the sum of weights of all
the late jobs is minimal. A subset of jobs S ⊆ J belongs to I if and only if all
the jobs in S are on-time in a certain schedule π. It is easy to decide whether a
given set S belongs to I. To do this, it is enough to schedule first all the jobs
in S in order of nondecreasing due dates and then all the remaining jobs in an
arbitrary order. Then S ∈ I if and only if all the jobs in S are on-time in the
resulting schedule [2]. This schedule is said to be in the canonical form. It is
easily seen that the problem consists now in determining the set S ∈ I with the
maximal value of F (S) =

∑
i∈S wi. The optimal solution can be obtained by

constructing the corresponding canonical schedule for S. It can be proven that
system (J, I) is matroid and the optimal schedule (in the canonical form) can
be found in O(n2) time by the greedy algorithm [2], [6].

Before we consider the interval case, we show how to detect efficiently a circuit
in the considered problem. Let S = {j1, . . . , jk}, k ≤ n, be a given base. Assume
that dj1 ≤ · · · ≤ djk

. Let i ∈ J be a job such that i /∈ S. Then set S ∪ {i}
contains a circuit C. The circuit C is the minimal subset of jobs in S ∪{i} which
cannot be all scheduled on-time. The circuit C can be detected in the following
way: find the smallest number r ∈ {1, . . . , k} such that djr ≥ di and r+1 > djr ;
set C = {j1, . . . , jr, i}. It is not difficult to check that such number r must exist,
since otherwise we could create a canonical schedule in which all the jobs in
S ∪ {i} are on-time (this would contradict the fact that S is a base). To see
that C is a circuit schedule jobs in C in order of nondecreasing due dates (note
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that we try to construct a canonical schedule) and denote the resulting schedule
by σ. From the definition of r we conclude that only the last job in σ (either i
or jr) is late. Since all the processing times are equal to 1, we can remove any
job from σ and we get a schedule in which all the jobs are on-time. This implies
that all the subsets of C with cardinality |C| − 1 are independent and C is the
minimal dependent subset.

Assume now that the weights of jobs are uncertain and they are given as
closed intervals. A possibly optimal job is on-time job in an optimal schedule for
some configuration of the weights and a necessarily optimal job is on-time job in
some optimal schedule for all configurations of the weights. Such a characteri-
zation under the uncertain weights may be useful. For example, the necessarily
optimal jobs should be always processed first, while non-possibly optimal ones
should be processed last. In the fuzzy case, one can use the optimality indices
to establish some priority rules for scheduling the jobs.

Now we can use Theorem 2 to detect efficiently all the possibly optimal jobs.
We compute first in O(n2) time the optimal schedule π in configuration of
weights w−. The schedule π is in the canonical form, thus we can easily de-
termine the set S = {π(1), . . . , π(k)} of jobs which are on-time in π. The set
S is the optimal base in configuration w−, thus all the jobs i ∈ S are possi-
bly optimal. Suppose that i /∈ S. Then, we can determine in O(n) time the
smallest number r such that dπ(r) ≥ di and r + 1 > dπ(r) and check whether
w+

i ≥ min{w−
π(1), . . . , w

−
π(r)} (see Theorem 2). Therefore, all the possibly optimal

jobs can be detected in O(n2) time. Unfortunately, it is a difficult issue to give
an O(n2) algorithm for detecting all the necessarily optimal jobs. Thus, one has
to run n times the greedy algorithm which gives O(n3) time.
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Abstract. This paper is a first step in the direction of extending possi-
bilistic planning to take advantage of the expressive power and reasoning
capabilities of fuzzy description logics. Fuzzy description logics are used
to describe knowledge about the world and about actions. Fundamental
definitions are given and the possibilistic planning problem is recast in
this new setting.

1 Introduction

Planning is a branch of artificial intelligence which studies how to find the most
suitable sequence of actions to take a system from a given initial state into a
desired state, called goal.

In a classical planning problem, it is assumed that actions are determinis-
tic, the initial state is known, and the goal is defined by a set of final states; a
solution plan is then an unconditional sequence of actions that leads from the
initial state to a goal state. However, most practical problems do not satisfy
these assumptions of complete and deterministic information. This is why in re-
cent years many approaches taking into account the uncertainty in the planning
problem have been proposed. In particular, a possibilistic approach to planning
has been proposed in [2] which is an extension of the well-known STRIPS for-
malism to make possible the representation of the possibilistic uncertainty. In
this formalism, the representation of the states of the world and of the effect
of the actions is made using sets of literals. This fact has the advantage that
reasoning for solving a planning problem is decidable but it has the disavantage
that the formalism thus constructed has a severely limited expressiveness.

This paper provides a first step in the direction of extending that approach
to take advantage of: (i) the expressive power of description logics [1], (ii) the
decidable reasoning capabilities of description logics and (iii) recent extensions
of description logics to take into account uncertainty and imprecision [5].

A relevant advantage of combining fuzzy description logics and planning is
that it becomes possible to describe the planning domain using formal ontologies
for expressing and organizing the (possibly vague) knowledge available about
the planning domain in general and the particular problem at hand. On the one
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hand, it may be possible to stablish a level of detail for the concepts describing
the domain (the world states and the effect of actions may be represented by
concepts) and, on the another hand, it may be possible to make inferences about
the available knowledge. As a consequence, implicit knowledge becomes available.
This is possible because a formal ontology contains a structured vocabulary (its
“terminology”) which defines the relations between different terms.

In this work,we consider that for each planning problem we have two ontologies.
One is related to the general knowledge, valid for everyplanning problem; the other
describes knowledge about the specific problem to solve. The ontological general
formalization of a planning problem must then respect two important features:

– Analitical feature: it must be easily understandable for all planning prob-
lems, i.e, the proposed formalism must be independent of the context of the
particular problem.

– Engineering feature: the formalism must be flexible in order to support and
to manipulate the knowledge acquired during the planning process.

InSection2,weprovide abrief introduction todescription logics. InSection3,we
present a general ontology for the planning domain and a specific ontology describ-
ing a simple planning problem in the block world. In Section 4, we define the pos-
sibilistic planning problem using fuzzy description logics and Section 5 concludes.

2 Description Logics

Description logics (DL) [1] are a family of logic-based knowledge-representation
formalisms, which stem from the classical AI tradition of semantic networks and
frame-based systems. Description logics are characterized by a set of construc-
tors for building complex concepts and roles starting from the primitive ones.
Concepts represent classes which are interpreted as sets of objects, and roles
represent relations which are interpreted as binary relations on objects.

Semantics are expressed in terms of interpretations I = (ΔI , .I), where:

– ΔI is the interpretation domain,
– .I is the interpretation function, which maps:

• different individuals into different elements of ΔI ,
• primitive concepts into subsets of ΔI ,
• primitive roles into subsets of ΔI ×ΔI .

The architecture of a description-logic-based system is composed of:

– A knowledge base with: (i) terminological knowledge (TBox), containing the
definitions of concepts (for example FreeBlock ≡ Block � ¬∃on−.� (a free
block is a block such that no other object is on it)) and (ii) the knowledge
about objects (ABox) containing assertions which characterize the objects
and define the relations between them (for example on(BLOCKA,TABLE),

– The Inference Engine,
– Applications
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In order to represent uncertainty, incompleteness, and imprecision in knowl-
edge, fuzzy description logics have been proposed that allow for no crisp concept
description by using fuzzy sets and fuzzy relations. A fuzzy extension of the
description logic ALC has been introduced in [5], with complete algorithms for
solving the entailment problem, the subsumption problem, as well as the best
truth-value bound problem.

For the purpose of our approach, we have added the inverse role construct
to ALC yielding the ALCI language, which is suitable for most planning prob-
lems. If R is a role, R− denotes its inverse, meaning R−(a, b) ≡ R(b, a), for
all individuals a and b. For example, with the description logic ALC, from the
assertion on(BLOCKB,BLOCKA) it is only possible to deduce that BLOCKB is
on BLOCKA. With the ALCI language we may also express that BLOCKA has
BLOCKB on it, because on(BLOCKB,BLOCKA) = on−(BLOCKA,BLOCKB)

A fuzzy description logic is identical in most respects to a classical description
logic but it assigns a meaning to symbols by means of a fuzzy interpretation
Ĩ = (ΔĨ , .Ĩ) such that:

– ΔĨ is as in the crisp case, the interpretation domain,
– .Ĩ is the interpretation function mapping:

• different individuals into different elements of ΔĨ as the crisp case, i.e.,
aĨ �= bĨ if a �= b,

• a primitive concept A into a membership function AĨ : ΔĨ �→ [0, 1],
• a primitive role R into a membership function RĨ : ΔĨ ×ΔĨ �→ [0, 1].

3 Domain Representation

In this section, we propose an ontological formalization for the general planning
problem, with new representation for a state of the world and new representa-
tion for the actions, both using description logics. We also propose a specific
ontological formalization for planning in the block world.

3.1 Representing World States

A world state is best represented as an interpretation I that is a model of
both a TBox T and an ABox A. Usually, we do not have complete information
about the world, i.e., the model I of T is not known completely. All we know
is some facts about the world which are represented in an ABox A. Thus, all
models of the ABox and of the TBox are considered to be possible states of the
world.

Let us illustrate an example of specific ontological formalization for a planning
problem in the block world. We dispose of tree blocks A, B, C and a robot arm.
In the initial state (see Figure 1a), block A and block C are on the table, block
B is on block A, and both block B and the robot arm are free.

To describe this problem, we define four individual names: BLOCKA, BLOCKB,
BLOCKC, and TABLE, and one role on (on(a, b) means that a is on b).
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a) b)

Fig. 1. Two states in the block world: a) the initial state; b) one of the effects of
applying the action “grasp block B”

The TBox T , wich represents the specific ontology, will contain definitions of
a few useful concepts, namely:

T = {FreeBlock ≡ Block � ¬∃on−.�, InArm ≡ ¬∃on.�}.

FreeBlock is a defined concept that characterizes a block which has no other
object on it.

InArm is a defined concept that characterizes a block which is in the robot
arm. Precisely, we suppose that if a block is not on any of the available objects,
then it is in the robot arm.

In the initial state, the situation of Figure 1a will be described with an ABox
A0 containing the follwing assertions:

A0 = {on(BLOCKB,BLOCKA), on(BLOCKA,TABLE), on(BLOCKC,TABLE)}.

Uncertainty about the world states is represented by means of possibility the-
ory [3]. Possibility theory allows to represent the fact that, at a certain point of the
planning process, a state is more possible than another. To represent incomplete
and imprecise knowledge about individuals as well as about relations between in-
dividuals, we use fuzzy description logics. Consequently, an uncertain state may
be represented by a possibility distribution on fuzzy interpretations Ĩ.

3.2 Describing Actions

The syntax and the semantics of a deterministic action are those proposed by
[4]. The effect of executing an action depends on the context in which it occurs.
This kind of representation allows to group several actions into one action and
thus contributes to keeping the complexity of the planning problem low. Let T
be an acyclic TBox and A an ABox. A (deterministic) context-dependent action
act is an n-tuple:

act = {〈Context1,Effect1〉, . . . , 〈Contextn,Effectn〉} ,

in which Contexti is a set of assertions describing the ith context in which action
act may be executed, and Effecti is a set of primitive assertions describing the
ith conditional effect that should be obtained after the execution of the action.
If all assertions in Contexti are satisfied before executing action act, then all
assertions in Effecti should be satisfied afterwards. For all interpretation I, there
is a unique Contexti such that I |= Contexti.
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Definition 1 (DL Possibilistic action). An action with possibilistic effects
describes an uncertain behaviour of executing an action. Its syntax and semantic
are inherited from the deterministic action described above extended to take into
account uncertain effects [2]. Let T be an acyclic TBox. A possibilistic action
pact for T is an m-tuple of possibilistic effects pei:

pact =
{

pei = 〈Contexti, (πi1,Effecti1), . . . , (πini ,Effectini)〉
}

i=1...m
,

in which πij ∈ (0, 1] and:

– for each state represented by an interpretation I there is a unique Contextij
such that I |= Contextij .

– for all i, max1≤j≤ni πij = 1

The following example illustrates a possibilistic action “graspB” as follows:

graspB=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈{FreeBlock(BLOCKB),
¬InArm(BLOCKA) � ¬InArm(BLOCKB) � ¬InArm(BLOCKC)},

(1, {¬on(BLOCKB,BLOCKA)}), (0.2, ∅)〉

〈{¬FreeBlock(BLOCKB)}, (1, ∅)〉

〈{InArm(BLOCKA)�InArm(BLOCKB) � InArm(BLOCKC)}, (1, ∅)〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Executing the action graspB on a state satisfying one of the contexts of the
action may results on changes on the world state. These changes are represented
by updating the ABox representing the situation of the state. Precisely, applying
the action graspB on a context in which both block B and the robot arm are
free results has two outcomes:

– the robot may succeed, i.e., with possibility 1, it grasps block B. This results
on the “retracting” of the assertion on(BLOCKB,BLOCKA) on the ABox (see
Figure 1b).

– The robot may fail, with possibility 0.2, thus leaving the situation unchanged.

The other two possibilistic effects cover the remaining possibilities, and both
have no effect.

3.3 Reasoning About Actions

For all primitive concept name A and role name R, the result of the execution
of an action act in a state I considering the unique context Contexti such that
I |= Contexti, is a state I ′ = Res(Effectik, I) such that:

AI′
= AI ∪ {bI : A(b) ∈ Effectik}\{bI : ¬A(b) ∈ Effectik}

RI′
= RI ∪ {(aI , bI) : R(a, b) ∈ Effectik}\{(aI, bI) : ¬R(a, b) ∈ Effectik}

These definitions ensure that the resulting state I′ is a model of both the
ABox and TBox resulting after executing the action on the state I.
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Applying a possibilistic action pact on a deterministic state I results on a
possibility distribution definded as follows:

π[I ′|I, pact] =
{

maxk πik if I |= Contexti and I ′ = Res(Effectik, I),
0 otherwise.

π[I ′|I, pact] espresses the possibility of reaching a possible resulting state I′

after executing the action pact in the state I. If there is more than one path
leading from I to a possible resulting state I ′, then the possibility associated to
I ′ is the maximum of the possibilities of all such paths.

In the case in which there are incompleteness and imprecision on the knowl-
edge about the current state, the reasoning made above must be adapted for
allowing fuzzy states. Precisely, we must define the possibility associated to a
resulting state when the concepts and roles describing the current state are fuzzy.

Definition 2 (Fuzzy state resulting from a possibilistic action). Let Ĩ
be a fuzzy interpretation for both the acyclic TBox T and the ABox A. Let pact be
a possibilistic action and Contexti the unique context such that SĨ(Contexti) ∈
(0, 1]. For each primitive concept name A and role name R, the result of executing
action pact in Ĩ, Ĩ ′ = Res′(Effectik, Ĩ) is such that:

AĨ′
(b) = min(max(AĨ(b), sup

k:A(b)∈Effectik

πik), 1 − sup
k:¬A(b)∈Effectik

πik)

RĨ′
(a, b) = min(max(RĨ(a, b), sup

k:R(a,b)∈Effectik

πik), 1 − sup
k:¬R(a,b)∈Effectik

πik)

The possibility distribution on the new fuzzy states obtained after the execu-
tion of action pact is given by:

π[Ĩ ′|Ĩ, pact] =
{

maxk min(πik,SĨ(Contexti)) and Ĩ ′ = Res′(Effectik, Ĩ),
0 otherwise.

where SĨ(Contexti) expresses the degree with which the state I satisfies the
context Contexti and π[Ĩ ′|Ĩ, pact] espresses the possibility to arrive in fuzzy
state Ĩ ′ after executing action pact in fuzzy state Ĩ.

3.4 Plan of Actions

A sequential plan is a totally ordered set of actions 〈pacti〉N−1
i=0 such execution

transforms the interpretation representing the possible initial state to one rep-
resenting possible final states satisfying the desired goal.

A partially ordered plan is a pair P = (A,O) where A is a set of actions and
O is a set of ordering constraints between these actions. A completion of P is
a sequential plan CP = 〈pacti〉N−1

i=0 such that A = {pact0, . . . , pactN−1} and the
total ordering pact0 < · · · < pactN−1 is consistent with O.

A consistent partially ordered plan is a plan P = (A,O) with a consistent set
O of ordering constraints.
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Executing a plan P means executing pact0, pact1, . . . , pactN−1 in sequence,
where 〈pacti〉N−1

i=0 is a completion of P .
The possibility of reaching a given state IN by executing a sequential plan of

possibilistic actions 〈pacti〉N−1
i=0 starting in I0, is given by:

π[IN |I0, 〈pacti〉N−1
i=0 ] = max

〈I1...IN−1〉
min

i=0...N−1
π[Ii+1|Ii, pacti],

where 〈I1 . . . IN−1〉 represents a sequence of states visited from I1 to IN−1 and
Ii+1 is obtained from Ii by applying Definition 2.

The evaluation of a solution plan is made using the necessity measure which
corresponds to the certainty of reaching a goal state after applying the plan.

Let Goals be the set of the goal states, and πinit a possibility distribution
over the possible initial states I0. The possibility and necessity measures (in
possibility theory) to reach a goal state after the execution of the sequential
plan 〈pacti〉N−1

i=0 from I0 are given by:

Π [Goals|πinit, 〈pacti〉N−1
i=0 ] = max

I0
min(Π [Goals|I0, 〈pacti〉N−1

i=0 ], πinit(I0))

= max
I0,IN ∈Goals

min(π[IN |I0, 〈pacti〉N−1
i=0 ], πinit(I0))

N [Goals|πinit, 〈pacti〉N−1
i=0 ] = 1 − Π [Goals|πinit, 〈pacti〉N−1

i=0 ]

= min
I0,IN ∈Goals

max(1 − πinit(I0), 1 − π[IN |I0, 〈pacti〉N−1
i=0 ])

4 Possibilistic Planning Problem

Given a possibilistic planning described by means of a specific ontology, our ob-
jective is to construct a plan whose execution leads the world from an initial
possible state to a state satisfying the goals with a given certainty. It corre-
sponds to finding an optimal sequence of transition relation on interpretations
that transforms an initial ABox representing the initial state to another ABox
representing the final possible states which satisfy the goal conditions.

Definition 3 (Possibilistic Planning Problem). A possibilistic planning
problem Δ is a triple 〈πinit,Goals, A〉 where πinit is the possibility distribution
associated to the initial state, Goals is a set of possible goal states and A is the
set of available possibilistic actions.

Given a possibilistic problem, two criteria may be considered to define a solution
plan P :

– P is a γ-acceptable plan if N [Goals|πinit,P ] ≥ γ;
– P is an optimally safe plan, or simply, optimal plan if N [Goals|πinit,P ] is

maximal among all possible sequential plans.

This definition can be extended to partially ordered sets of actions. Let P be
a consistent partially ordered plan :
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– P is a γ-acceptable plan if N [Goals|I0, CP ] ≥ γ for all totally ordered
completion CP of P ;

– P is an optimal plan if N [Goals|I0, CP] is maximal among all possible
sequential plans for all totally ordered completion CP of P .

5 Conclusions

In this paper, we have proposed an initial framework for integrating description
logics and possibilistic planning. The fundamental definitions for approaching
possibilistic planning when knowledge about the world and actions is repre-
sented by means of fuzzy DLs have been provided, and the possibilistic planning
problem has been recast in this setting. In particular, the framework we propose
in this work allows the use of conceptual knowledge for describing both the states
of the world and the possibilistic action. A state is represented as an interpre-
tation in description logics; the contexts in which a possibilistic action may be
executed and the effects of the action are both represented using concepts and
assertions.

We have also defined the reasoning problem for the possibilistic actions thus
represented. We have first considered the crisp case with a deterministic repre-
sentation for a state. In a second time, we have proposed an extension of this
representation for taking into account the case in which the knowledge about
the state of the world is uncertain.

The main advantage of using fuzzy DLs to represent knowledge about the
world and actions is that represetations may be more concise and efficient rea-
soning algorithms can be exploited to infer implicit knowledge.
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Abstract. A prospective study of the use of ordered multi-lattices as
underlying sets of truth-values for a generalised framework of logic pro-
gramming is presented. Specifically, we investigate the possibility of using
multi-lattice-valued interpretations of logic programs and the theoretical
problems that this generates with regard to its fixed point semantics.

1 Introduction

Weakening the structure of the underlying set of truth-values for logic program-
ming has been studied extensively in the recent years. There are approaches
which are based either on the structure of lattice (residuated lattice [4, 13] or
multi-adjoint lattice [9]), or more restrictive structures, such as bilattices or tri-
lattices [7], or even more general structures such as algebraic domains [11]. One
can also find some attempts aiming at weakening the restrictions imposed on
a (complete) lattice, namely, the “existence of least upper bounds and great-
est lower bounds” is relaxed to the “existence of minimal upper bounds and
maximal lower bounds”. In this direction, Benado [1] and Hansen [5] proposed
definitions of a structure so-called multi-lattice.

Recently an alternative notion of multi-lattice was introduced [2, 8] as a theo-
retical tool to deal with some problems in the theory of mechanised deduction in
temporal logics. This kind of structure also arises in the research area concern-
ing fuzzy extensions of logic programming: for instance, one of the hypotheses
of the main termination result for sorted multi-adjoint logic programs [3] can
be weakened only when the underlying set of truth-values is a multi-lattice (the
question of providing a counter-example on a lattice remains open).

As far as we know, there have been no attempts to use multi-lattices in the
context of extended fuzzy logic programming; our aim in this work is precisely
to study the computational capabilities of this new structure in that framework
and, specifically, in relation to its fixed point semantics.

The structure of the paper is as follows: In Section 2 the definition and pre-
liminary theoretical results about multi-lattices are introduced; later, the syntax
and semantics of our extended logic programs are presented in Section 3; then,
an initial proposal for fixed point semantics for these extended logic programs is
given in Section 4. Finally, in the last section we present some conclusions and
prospects for future work.
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I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 61–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



62 J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño

2 Preliminary Results

Recall that a lattice is a poset such that the set of upper (lower) bounds has a
unique minimal (maximal) element, that is, a minimum (maximum). In a multi-
lattice, this property is relaxed in the sense that minimal elements for the set of
upper bounds should exist, but the uniqueness condition is dropped.

Definition 1. A complete multi-lattice is a partially ordered set, 〈M,≤〉, such
that for every subset X ⊆ M , the set of upper (lower) bounds of X has minimal
(maximal) elements, which are called multi-suprema (multi-infima).

Note that, by definition, it follows that the sets multinf(X) and multisup(X) are
antichains (non-empty sets consisting of pair-wise incomparable elements).

It is remarkable that, under suitable conditions, the set of fixed points of a
mapping from M to M does have a minimum and a maximum.

Definition 2. A mapping f :P −→ Q between two posets is said to be isotone
if x ≤ y implies f(x) ≤ f(y); a mapping g:P −→ P is inflationary if x ≤ g(x)
for all x ∈ P .

Theorem 1. Let f : M −→ M be an isotone and inflationary mapping on a
multi-lattice, then its set of fixed points is non-empty and has a minimum
element.

Proof. Let us write X = {x | f(x) = x}, this set is nonempty since inflation
forces � to be a fixed point; now, consider a ∈ multinf(X) a maximal lower
bound of X , and let us prove that a is a fixed point of f .

As a is a lower bound for all x ∈ X , we have a ≤ x and, by isotonicity,
f(a) ≤ f(x) = x for all x ∈ X (the equality follows by definition of X); thus,
f(a) is also a lower bound of X . Moreover, a is maximal and, by inflation, we
have a ≤ f(a); thus, we also have f(a) ≤ a and a should be a fixed point, that
is a ∈ X .

Consider a, b ∈ multinf(X), and recall that we have just proved that a, b ∈ X .
As both are lower bounds of X , then a ≤ b and b ≤ a. Thus, multinf(X) is a
singleton consisting of the minimum element of X , that is, the minimum fixed
point. ��

As by assumption, our sets will not necessarily have a supremum but a set of
multi-suprema, we will need to work with some ordering between subsets of
posets. Three different (pre-)orderings are usually considered in the literature,
the Hoare ordering, the Smyth ordering and the Egli-Milner ordering:

Definition 3. Consider X,Y ⊆ 2M :

– X �H Y iff for all x ∈ X exists y ∈ Y such that x ≤ y.
– X �S Y iff for all y ∈ Y exists x ∈ X such that x ≤ y.
– X �EM Y iff X �H Y and X �S Y
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Regarding computational properties of multi-lattices, it is interesting to impose
certain conditions on the sets of upper (lower) bounds of a given set X . Specifi-
cally, we would like to ensure that any upper (lower) bound is greater (less) than
a minimal (maximal); this condition enables to work on the set of multi-suprema
(multi-infima) as a set of “generators” of the bounds of X . The formalisation of
these concepts is given as follows, where UB(X) (resp. LB(X)) denotes the set
of upper (lower) bounds of X :

Definition 4. A multi-lattice is said to be consistent if the following set of
inequalities hold for all X ⊆ M :

LB(X) �EM multinf(X) multisup(X) �EM UB(X)

Note that in the two items above, one part of the Egli-Milner ordering is trivial,
since any multi-infimum is a lower bound and any multi-supremum is an upper
bound. It is not difficult to provide examples of non-consistent multi-lattices:

Example 1. A non-consistent multi-lattice is showed on the left of Fig. 1, where

UB({a, b}) = {�, d} ∪ {cn | n ∈ N}

in which element d is minimal in UB({a, b}); however, the elements cn fail to be
greater than one minimal upper bound.

Another reasonable condition to require on a multi-lattice is that it should not
contain infinite sets of mutually incomparable elements (antichains) since, se-
mantically, it makes little sense to consider infinitely many incomparable truth-
values. Consistent multi-lattices without infinite antichains have interesting com-
putational properties: to begin with, recall that the sets of multi-suprema or
multi-infima for totally ordered subsets (also called chains) always have a supre-
mum and an infimum.

Lemma 1. Let M be a consistent multi-lattice without infinite antichains, then
any chain in M has a supremum and an infimum.

�

d

b a

c1

c 3

c2

⊥

...

Fig. 1.



64 J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño

Proof. Let {xi}i∈I ⊂ M be a chain and, assume that a, b ∈ multisup({xi}). We
will show that there is an element c ∈ multinf({a, b}) which is an upper bound
of the chain.

As there are no infinite antichains in M , the set multinf({a, b}) is finite, and
we can write

multinf({a, b}) = {c1, . . . , cn}
If n = 1, as any xi is a lower bound of {a, b}, by the hypothesis of consistency

we would have xi ≤ c1 for all i ∈ I.
If n > 1, by contradiction, assume that no cj , with j = 1, . . . , n, is an upper

bound of the chain; then, for all j we choose an element xj which is not upper
bounded by cj . Now, as {xi} is a chain, let us consider the greatest of x1, . . . ,xn,
say xj0 . By consistency, there is ck which is greater than xj0 , but then

xk ≤ xj0 ≤ ck

which would contradict the choice of xk.
Summarising, we have proved the existence of c ∈ multinf({a, b}) which, more-

over, is an upper bound of the chain. Now, c ∈ multinf({a, b}) implies the in-
equalities c ≤ a and c ≤ b; on the other hand, as c is also an upper bound of
{xi} and a and b are multi-suprema of {xi}, then a ≤ c and b ≤ c, resulting that
a = b = c, which proves that multisup({xi}) is a singleton, hence the supremum
of the chain.

The proof for the infimum is similar. ��
All the hypotheses are necessary for the existence of supremum and infimum of
chains; in particular, the condition on infinite antichains cannot be dropped.

Example 2. The poset on the right of Fig. 1 is a consistent multi-lattice; how-
ever, the set of upper bounds of the increasing sequence {xn} does not have a
minimum, but two minimals, namely, a and b.

We will assume in the rest of the paper that our underlying multi-lattices are
complete, consistent and without infinite antichains.

3 Extended Logic Programs

In this section we provide a first approximation of the definition of an extended
logic programming paradigm in which the underlying set of truth-values is as-
sumed to have structure of multi-lattice. The proposed schema is an extension
of the monotonic logic programs of [4]. The definition of logic program is given,
as usual, as a set of rules and facts.

Definition 5. An extended logic program is a set P of rules of the form A ← B
such that:

1. A is a propositional symbol of Π, and
2. B is a formula of F built from propositional symbols and elements of M by

using isotone operators.
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An interpretation is an assignment of truth-values to every propositional symbol
in the language.

Definition 6. An interpretation is a mapping I:Π → M . The set of all inter-
pretations is denoted I.

Note that by the unique homomorphic extension theorem, any interpretation I
can be uniquely extended to the whole set of formulas (the extension will be
denoted as Î). The ordering ≤ of the truth-values M can be extended point-wise
to the set of interpretations as usual.

A rule of an extended logic program is satisfied whenever the truth-value of
the head of the rule is greater or equal than the truth-value of its body. Formally:

Definition 7. Given an interpretation I, a rule A ← B is satisfied by I iff
Î(B) ≤ I(A). An interpretation I is said to be a model of an extended logic
program P iff all rules in P are satisfied by I, then we write I |= P.

Example 3. Let us consider the following program on the multi-lattice in Fig. 2:

�

d

b a

c

⊥

Fig. 2.

E ← A

E ← B

A← a

B ← b

It is easy to check that the interpretation defined
as I(E) = 	, I(A) = a, I(B) = b is a model of
the program.

Every extended program P has the top interpretation � as a model; regarding
minimal models, it is possible to prove the following technical lemma.

Lemma 2. A chain of models {Ik}k∈K of P has an infimum in I which is a
model of P.

Proof. Given a propositional symbol A, the existence of infk{Ik(A)} is guaran-
teed by Lemma 1, thus we can safely define an interpretation Iω as follows:

Iω(A) = inf
k∈K

{Ik(A)}

Now, let us show that Iω is a model of P:
Given a rule A ← @[B1, . . . , Bn] in P, where @ denotes the composition of

the operators occurring in the body of the rule, and the Bi’s are the variables
occurring in it; by isotonicity of @ we obtain the following chain of inequalities
for all i ∈ K:

Îi(B) = @[Ii(B1), ..., Ii(Bn)] ≥ @
[

inf
k∈K

{Ik(B1)}, ..., inf
k∈K

{Ik(Bn)}
]

= Îω(B)
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As Ii is a model for all i we obtain:

Ii(A) ≥ Îi(B) ≥ Îω(B)

thus, by definition of infimum, we have

Iω(A) = inf
k∈K

{Ik(A)} ≥ Îω(B)

so Iω is a model of P. ��
Theorem 2. There exist minimal models for any extended logic program P.

Proof. Let M be the set of models of P. By Zorn’s lemma, we only have to prove
that any chain in M is lower bounded, but this follows from the previous lemma
since the infimum of a chain of models is also a model. ��
Example 4. Continuing with the program in the previous example, it is easy to
check that the program does not have a minimum model but two minimal ones:

I1(E) = c I2(E) = d
I1(A) = a I2(A) = a
I1(B) = b I2(B) = b

4 Fix-Point Semantics

An interesting technical problem arises when trying to extend the definition of
the immediate consequences operators to the framework of multi-lattice-based
logic programs. One of the several possible approaches to provide a fixed point
semantics for the extended logic programs is presented and analysed.

The main theoretical tool for the study of the fixed point semantics of pro-
gramming languages is Knaster-Tarski theorem in some of its constructive ver-
sions, although some other fixed point theorems are also of use, see [6].

Given a logic program P valued on a lattice, the operator TP: I → I, maps
interpretations to interpretations, and can be defined by considering

TP(I)(A) = sup{Î(B) | A← B ∈ P}
Note that all the suprema involved in the definition do exist provided that we
are assuming a complete lattice structure on the underlying set of truth-values;
however, this needs not hold for a multi-lattice.

In order to work this problem out, we consider the following definition.

Definition 8. Given an extended logic program P, an interpretation I and a
propositional symbol A; we can define TP(I)(A) as

multisup
(
{I(A)} ∪ {Î(B) | A← B ∈ P}

)
Some properties of this definition of the TP operator are stated below, where
�S denotes the Smyth-ordering between subsets of a poset:
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Lemma 3. If I � J , then TP(I)(A) �S TP(J)(A) for all propositional symbol A.

Proof. Let us write XI to denote the set {I(A)} ∪ {Î(B) | A ← B ∈ P}, then
the hypothesis states that X↑

J ⊆ X↑
I , where the ↑ denotes the upwards-closure

of a set. Now, consider b ∈ TP(J)(A), then b is an element of X↑
J ⊆ X↑

I ; thus, by
consistency, considering any minimal a of X↑

I below b leads to the existence of
an element a ∈ TP(I)(A). ��
The definition of TP proposed above generates some coherence problems, in that
the resulting ‘value’ is not an element, but a subset of the multi-lattice. A possible
solution to this problem would be to consider a choice function ()∗ which, given
an interpretation, for any propositional symbol A selects an element in TP(I)(A);
this way, TP(I)∗ represents actually an interpretation.

Regarding particular properties of the composition of the TP operator with
suitable choice functions, the first property one can obtain, directly from the
definition, is that the composition leads to an inflationary operator.

Lemma 4. Given an interpretation I and a choice function ()∗, then I(A) ≤
TP(I)∗(A) for all propositional symbol A.

Note that, for some choice functions, the resulting operator TP
∗ might not be

monotone in the set of interpretations, since it can lead to incomparable interpre-
tations; the multi-lattice of Fig. 2 can be used to construct a counter-example.

Example 5. Consider the following program with just two facts {A← a,A ← b}
and interpretations I(A) = ⊥ and J(A) = c; obviously I � J . Now, we have
that TP(I)(A) = {c, d} and TP(J)(A) = {c}. Thus, the choice function ()∗ which
selects d in TP(I)(A) generates incomparable interpretations TP(I)∗ and TP(J)∗.

We are interested in computing models of our extended programs by successive
iteration of TP

∗. Therefore, we should characterise the models of P in terms TP.
The following result, which characterises the models of our extended programs
in terms of properties of TP, can be proved:

Proposition 1. The four statements below are equivalent:

1. I is a model of P.
2. TP(I)(A) = {I(A)} for all A ∈ Π.
3. TP(I)∗ = I for all choice function.
4. I ∈ TP(I),1 (i.e. I is a fixed point of TP as a non-deterministic operator).

Proof.
(1 ⇒ 2). Let us assume that I is a model of P; then, we have that I(A) ≥ Î(B)
for all rule A← B ∈ P. This implies that I(A) is the maximum of the set

{I(A)} ∪ {Î(B) | A← B ∈ P}
hence, the only multi-supremum.
1 Abusing notation this means that I(A) ∈ TP(I)(A) for all A ∈ Π .
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(2 ⇒ 1). The hypothesis implies that I(A) is an upper bound of

{Î(B) | A ← B ∈ P}
as a result, I(A) ≥ Î(B) for all rule A← B ∈ P and I |= P.
(2 ⇔ 3 ⇔ 4). Trivial. ��
Regarding the iterated application of the TP operator, the use of choice functions
is essential. Let us consider a model I, that is, a fixed point of TP, then for all
propositional variable A, we have that TP(I)(A) = {I(A)}. Lemma 3 guides us
in the choice after each application of TP as follows:

– For the base case, we have2 � � I, then TP(�)(A) �S TP(I)(A) = {I(A)}.
This means that there exists an element m1(A) ∈ TP(�)(A) such that

m1(A) ≤ I(A)

This way we obtain an interpretation m1 satisfying m1 � I such that for
any propositional variable A, m1(A) is an element of TP(�)(A).

– This argument applies also to any successor ordinal: given mk � I, there
exists an element mk+1(A) ∈ TP(mk)(A) such that

mk(A) ≤ mk+1(A) ≤ I(A)

where the first inequality holds by the definition of TP and the second in-
equality follows from Lemma 3.

– For a limit ordinal α, Lemma 1 states that for all A the increasing sequence
{mn(A)} has a supremum, which is considered, by definition, to be mα(A).

As a result of the discussion above we obtain that we can choose suitable elements
in the sets generated by the application of TP in such a way that we can construct
a transfinite sequence of interpretations mk satisfying

m1 � m2 � · · · � mk � · · · � I

Note that the sequence of interpretations above, can be interpreted as the Kleene
sequence which allows to reach the least fixed point of TP in the classical case.

Interestingly enough, if I is a minimal model of P, the previous sequence of
interpretations can be proved to converge to I.

Theorem 3. Let I be a minimal model of P, then the previous construction
leads to a Kleene sequence {mλ} which converges to I.

Proof. A cardinality-based argument suffices to show that {mλ} is eventually
constant and equal to I:

Let β be the least ordinal greater than the cardinal of the set of interpreta-
tions, for all λ < β we can consider the interpretation mλ and, thus, define the
following map

h: β −→ I
λ �→ mλ

2 Here, as usual, � denotes the minimum interpretation.
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If the transfinite sequence were strictly increasing, then h would be injective,
obtaining a contradiction with the choice of β. As a result, we have proved the
existence of an ordinal α such that mα = mα+1.

Recall that, by definition, we have mα � I and mα+1 ∈ TP(mα), therefore
mα ∈ TP(mα) and, by Proposition 1, mα is a model of P. By minimality of I we
have that mα = I. ��
Example 6. Continuing with the previous example, let us consider the minimal
model I1, and let us construct a sequence of approximating interpretations as
stated in the theorem above.

� TP(�) m1 TP(m1) m2

A ⊥ {a} a {a} a

B ⊥ {b} b {b} b

E ⊥ {⊥} ⊥ {c, d} c

5 Conclusions and Future Work

A fixed point semantics has been presented for multi-lattice-based logic pro-
gramming, together with some initial and encouraging results: in particular, we
have proved the existence of minimal models for any extended program and that
any minimal model can be attained by some Kleene-like sequence.

However, a number of theoretical problems have to be investigated in the
future: such as the constructive nature of minimal models (is it possible to con-
struct suitable choice functions which generate convergent sequence of interpre-
tations with limit a minimal model?). Possible answers should on a general theory
of fixed points, relying on some of the ideas related to fixed points in partially
ordered sets [10] or, perhaps, in fuzzy extensions of Tarski’s theorem [12].
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Abstract. Allen’s interval algebra allows one to formulate problems
that are, in the general case, intractable; for this reason several tractable
sub-algebrae have been proposed. In this paper the attention is focused
on the fuzzy counterparts of those sub-algebrae and a different method
to identify their relations is shown: rules for identifying fuzzy tractable
relations starting from the knowledge of the classic tractable relations.
Enumeration is used to verify the rules and quantify expressiveness, and
algebraic considerations adopted to bind the enumeration itself.

Keywords: Fuzzy Sets, Possibility Theory, Representation of Vague and
Imprecise Knowledge.

1 Introduction

Temporal reasoning problems are usually formulated as CSPs (Constraint Sat-
isfaction Problems) where the variables represent temporal entities (points or
intervals) and the constraints are disjunctions of atomic temporal relations. The
general formulation of Allen’s Interval Algebra is NP−complete, therefore many
studies have been devoted to the identification of subsets that are computation-
ally affordable and enough expressive. The first tractable sub-algebra discovered
is the pointizable algebra SA [12], that is the subset of Allen’s relations that can
be expressed by means of relations in the Point Algebra PA [11].

In [12] another tractable sub-algebra, which is based on convex point algebra
PAc, is identified; it is called SAc.

If a network is built with relations in PA, then the path-consistency is suffi-
cient to assure the global consistency and the 4-consistency to find the minimal
network.

The maximal tractable sub-algebra that includes all the Allen’s atomic re-
lations is unique and it has been identified in [10] as the set of ORD − Horn
formulae H. Applying the path-consistency algorithm to a network whose con-
straints belong to H is enough to decide its global consistency.

To deal with uncertain temporal knowledge, the Possibility Theory [4] can be
introduced in qualitative temporal relations by associating a degree of preference
to each atomic relation. In [5] it is stated that a set of fuzzy relations is tractable if
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all its α-cuts [14] are classic tractable relations; besides, from [5], if all the classic
sets coming from the α-cuts are algebrae then also the original fuzzy set is an
algebra. This principle will be used for rules discovery.

The fuzzy tractable sub-algebrae considered in this paper are the counterparts
of the following classic sub-algebrae:

1. PAc which is the subset of convex relations of the point algebra PA1

2. V23, a subset of point-interval set of relations described in [6]: this is not an
algebra2, because the composition relation it is not closed, but it is useful to
build the qualitative algebra QA [9]; however operations are not needed in
the following, so this “algebra” will be studied as well;

3. SA, the pointizable algebra cited before;
4. SAc, the sub-algebra of IA analogous to the SA but based on PAc relations;
5. ORD −Horn, the maximal tractable sub-algebra of IA [10].

The first two items of the previous list can be easily considered by hand,
because the number of possible combinations are 8 and 32 respectively (and
indeed the PAc

fuz relations have already been explicitly listed). The last three
sub-algebrae however are all based on IA, whose classic relations amount to 8
192, a number of combinations that only a computer can manage. In this paper
a method for finding sets of rules to identify tractable relations is presented
in Section 2 and an analytical formulation to calculate the cardinality of an
algebra in Section 3. The correctness of the rules is verified using Prolog scripts
that enumerate the relations taking into account the bounds from Section 3; the
results are reported in Section 4.

2 The Discovery of Rules

Qualitative aspect of temporal knowledge can be represented using qualitative
algebrae and CSPs [1, 11, 9]; a temporal constraint is a binary relation between
a pair of intervals or points, represented by a disjunction of atomic relations :

X1 (b1, . . . , bm) X2

where each bi can be one of the thirteen mutually exclusive atomic relations that
may exist between two intervals (such as equal, before, meets et c.), or one of the
three possible relations between two points (<, =, >) or one of the five possible
relations between an interval and a point [9].

In [3] Allen’s Interval Algebra has been extended to the framework of Pos-
sibility Theory by defining a new algebra IAfuz where a degree αi has been
attached to every atomic relation bi. It indicates the preference degree of the
corresponding assignment among the others

X1 R X2 with R = (b1[α1], . . . , b13[α13])
1 PA is already tractable, it is used just for testing.
2 Recall that an algebra is a set of relations closed under inversion, conjunction and

composition.
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where αi is the preference degree of bi (i = 1, . . . , 13). Preferences degrees can
be defined in the interval [0, 1]; if we restrict them to the set {0, 1}, then the
classic approach is re-obtained.

Intervals are interpreted as ordered pairs (x, y) : x ≤ y of �2, and soft con-
straints between them as fuzzy subsets of �2 × �2 in such a way that the pairs
of intervals that are in relation relk have membership degree αk.

In this framework, different types of temporal constraints can be represented
such as:

– soft constraints, that enables us to express preferences among solutions;
– prioritized constraints, the priority indicating how essential it is that a con-

straint be satisfied;
– uncertain constraints.

We have extended in a similar way Meiri’s Qualitative Algebra [2].
The function “deg{}” over a set of relations will indicate the preference de-

grees of the elements of that set, so deg{b1, . . . , bk} = {deg(b1), . . . , deg(bk)}.
In the crisp case there are several studies that have characterized tractable

subsets of relations (see [6, 7, 8, 10, 13]); the fuzzy extensions of qualitative tem-
poral algebrae add another “dimension” to the search space, because also the
correlations among the preference degrees must be taken into account. In this
paper an algorithm to evaluate those correlations and write rules that charac-
terize tractable subclasses is developed exploiting the theorems in [5], as stated
before. It starts from the knowledge of the atomic relations, of the base relations
(that is the relations of the super-algebra) and of the classic tractable relations;
it can be briefly described as follows. For each base relation {reli, i = 1 . . . n}:

1. if it is in the list of tractable relations right, otherwise
2. add to the relation each one of the atomic relations relk+1, k ≥ n that neither

belongs to the current set nor it is already considered;
(a) check if the new set of relations {reli, i = 1 . . . n} ∪ {relk+1} is now in

the list of tractable relations and, if so, associate it with the conditions

{reli, i = 1 . . . n} ← deg(relk+1) ≥ mini=1...n{deg{reli}} (1)

3. if the iterations in step 2 do not produce any additional condition then
the original relation {reli, i = 1 . . . n} cannot be included in the tractable
relations, therefore add the condition

{reli, i = 1 . . . n} ← mini=1...n{deg{reli}} ≤ maxk:k≥n{deg{relk}} (2)

The heads of the rules (on the left of the arrow) represent the relations that
have been considered, and can be thought just as labels that simplify the fol-
lowing reduction steps (indeed all the relevant information is in the right hand
side). Two reduction steps can be applied on the set of relations that have an
associated condition to be satisfied and on the excluded relations. First, if an
associated condition is a superset of another one then the whole condition can
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be skipped; this means that it will be satisfied whenever the other is satisfied be-
cause the relation with fewer terms is stricter. This check can be done reasoning
on the labels.

For example, let us consider these two relations with conditions:

{a, c, d} ← deg(b) ≥ min{deg{a, c, d}}
{a, d} ← deg(b) ≥ min{deg{a, d}}

The first condition is a superset of the second one, so the whole first condition
can be omitted:

{a, d} ← deg(b) ≥ min{deg{a, d}}
To see this it is possible to rewrite the above conditions as

(deg(b) ≥ deg(a) ∧ deg(b) ≥ deg(c) ∧ deg(b) ≥ deg(d))
∧

(deg(b) ≥ deg(a) ∧ deg(b) ≥ deg(d))

and easily see that if both these conditions are true for a given set then deg(b) ≥
deg(c) and they can be reduced to

(deg(b) ≥ deg(a) ∧ deg(b) ≥ deg(d))

The second possible reduction is analogous to the previous one, but is applied
to the conditions of excluded relations. Here is an example: given the following
conditions

{a, c, e} ← min{deg{a, c, e}} ≤ max{deg{b, d}}
{a, c} ← min{deg{a, c}} ≤ max{deg{b, d, e}}

the left hand side of the first condition (min{ deg{a, c, e} }) is a superset of the
second one and the whole first condition can be omitted:

{a, c} ← min{deg{a, c}} ≤ max{deg{b, d, e}}
To prove this it is possible to rewrite the above conditions as

((deg(a) ≤ deg(b) ∨ deg(a) ≤ deg(d))
∨(deg(c) ≤ deg(b) ∨ deg(c) ≤ deg(d))
∨(deg(e) ≤ deg(b) ∨ deg(e) ≤ deg(d)))

∧
((deg(a) ≤ deg(b) ∨ deg(a) ≤ deg(d) ∨ deg(a) ≤ deg(e))
∨(deg(c) ≤ deg(b) ∨ deg(c) ≤ deg(d) ∨ deg(c) ≤ deg(e)))

and notice that if both these conditions are true for a given set then it cannot
be the case that the only true clause is

(deg(e) ≤ deg(b) ∨ deg(e) ≤ deg(d)) ∧ (deg(a) ≤ deg(e) ∨ deg(c) ≤ deg(e))
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because, by distributing ∨ over ∧ we obtain

a ≤ b ∨ c ≤ b ∨ a ≤ d ∨ c ≤ d

therefore (deg(e) ≤ deg(b) ∧ deg(e) ≤ deg(d)) can be ignored and the second
condition is sufficient.

2.1 Results

The algorithm has been implemented in Prolog. It is able to build the PAc
fuz

and also the V23
fuz deduced by hand starting from the list of the classic relations

(V23) in [6].
For example let consider an algebra that is based on four atomic relations a, b, c,

d, therefore having 24 = 16 base relations, and let exist 9 tractable relations

{(a), (b), (c), (d), (a, d), (b, d), (a, b, d), (b, c, d), (a, b, c, d)}
From step 2 we obtain the following five conditions:

{a, b} ← deg(d) ≥ min{deg(a), deg(b)}
{b, c} ← deg(d) ≥ min{deg(b), deg(c)}
{c, d} ← deg(b) ≥ min{deg(c), deg(d)}

{a, b, c} ← deg(d) ≥ min{deg(a), deg(b), deg(c)}
{a, c, d} ← deg(b) ≥ min{deg(a), deg(c), deg(d)}

From step 3 this one:

{a, c} ← min{deg(a), deg(c)} ≤ max{deg(b), deg(d)}
the first reduction gives three conditions:

{a, b} ← deg(d) ≥ min{deg(a), deg(b)}
{b, c} ← deg(d) ≥ min{deg(b), deg(c)}
{c, d} ← deg(b) ≥ min{deg(c), deg(d)}

the second reduction in this case is not useful (indeed there is only a relation).
The results are summarized in Table 1. Here for every set the cardinality of

the classic base set, the cardinality of the classic subset, the number of conditions
found in step 2 (1) and their amount after the first reduction, the number of addi-
tional conditions found in step 3 (2) and their amount after the second reduction

Table 1. Statistics on the example algebra

base set cnd. r. cnd. excl. r. excl. s
16 9 5 3 (67%) 1 1 (0%) 0.07
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are shown. The computations have been performed on a Pentium IV PC at 2 GHz,
and the algorithms implemented in SWI Prolog, SICStus Prolog and YAP Prolog.

A comparison between the third and the sum of the fifth and seventh columns
gives an idea of the effectiveness of the rules in identifying the relations and also,
in a sense, of the “regularity” of the sub-algebra:

9 − (1 + 3)
9

= 0.556 ∼= 56%

By applying the algorithm to the considered algebrae results in Table 2 are
obtained.

Table 2. Statistics on the computations

base set excl. r. excl. cnd. r. cnd. s
PAc

fuz 8 7 0 0 (0%) 1 1 (0%) 0.00
V23

fuz 32 23 0 0 (0%) 9 4 (56%) 0.01
SAc

fuz 8 192 83 7 872 50 (99%) 237 28 (88%) 3.96
SAfuz 8 192 188 7 368 38 (99%) 636 52 (92%) 7.31
Hfuz 8 192 868 4 874 30 (99%) 2 450 36 (98%) 13.75

The ratios are in Table 3.

Table 3. Reductions introduced by the rules

PAc
fuz V23

fuz SAc
fuz SAfuz Hfuz

86% 83% 6% 52% 92%

The fuzzy tractable sub-algebra Algfuz of a generic fuzzy qualitative algebra
Alg is

Algfuz = (Alg,Cnd1,Cnd2)

where Cnd1 and Cnd2 represent the sets of conditions to be checked. Cnd1 is
built from the conditions found in step 2 and the first reduction step, Cnd2 from
step 3 and the second reduction step.

3 Equivalent Relations

In order to obtain an upper-bound of the relations to be checked in this section
a general formula to obtain the exact number of full-relations is proposed. It is
based on equivalence classes because the relations themselves are infinite, being
infinite the set of real numbers in the range [0, 1]; there is however a finite number
of ways to order the relations, to distinguish n relations indeed only n distinct
degrees of preference are needed. Besides, as far as tractability is concerned,
they can safely abstracted further by considering only “full relations”, that is
relations with n elements in an algebra with n elements (in this context the
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term “element” means “atomic relation”). In fact the “full” relations are always
tractable, so a relation with k < n elements is equivalent to the following:

{r1[d1], . . . , rk[dk], rk+1[dk+1], . . . , rk+2[dk+1], . . . , rn[dk+1]}

with dk+1 < mini=1...k{di}.
In qualitative relations the ordering among relations is the only aspect relevant

for tractability; therefore, the relations can be ordered using their preference
degrees in a decreasing manner and study only the “>” and “=” orderings. To
take into account the symmetry of “=”, the partitions P (n) of a number n in
addenda will be used; the partitions are written as a set of sets, for example
P (2) = {{1, 1}, {2}} and P1,2 = 1.

For a given algebra with n elements there are

nr = n!
n−1∑
j=0

|P (j)|∑
i=1

1
ϕ(Pi(j))

χ(Pi(j))μ(Pi(j)) (3)

unique full relations to be checked for tractability, where

χ(Pi(j)) = Cn−j
|Pi(j)| =

(n− j)!
|Pi(j)| (n− j − |Pi(j)|)!

represents the number of combinations of n − j elements in groups of |Pi(j)|
elements,

μ(Pi(j)) =
|Pi(j)|!∏j−1

k=0 ζPi(j)(k)!

is the multinomial of |Pi(j)| elements in j − 1 groups of ζPi(j)(k) elements

ζPi(j)(k) = |{xh : xh = Pih(j) ∧ Pih(j) = k,h = 1 . . . |Pi(j)|}|

and

ϕ(Pi(j)) =
|Pi(j)|∏
k=1

(Pik(j) + 1)!

counts the equivalent relations.
Applying the formula (3) to the super-algebrae in exam the numbers in Table 4

are obtained.

Table 4. Cardinality of fuzzy full algebrae

alg. classic rel. fuzzy rel.
PAfuz 3 13
PIfuz 5 541
IAfuz 13 526 858 348 381
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4 Results

In order to verify the rules the actual relations are needed; the enumeration has
been performed using Prolog scripts. A first script uses a “brute force” approach
that generates exhaustively all the relations and then tests if they are unique;
the second one identifies “a priori” the duplicates and prunes them, exploiting
the fact that, working with relations ordered by preference degrees, once a prefix
has been proven to be intractable all the relations that share the same prefix
will be intractable as well, by definition of α-cut [14], so:

{r1[d1], . . . , rk[dk]} intractable ⇔ {r1[d1], . . . , rk[dk]}∪
⋃

j:j>k

{rj [dj ]} intractable

Unfortunately, neither of the two scripts is able to enumerate all the unique
full relations for the Allen’s algebra, which has thirteen atomic relations, for the
number of possible combinations is too high (the formula gives 526 858 348 381,
as reported in Table 4). The partial results are in Table 5 and they stop at n = 8.

The alternative is to generate just the “right” relations by checking in the
pruning step if the prefix belongs to a tractable classic relation; in this way it
has been possible to enumerate relations in Table 6 (Hfuz is still unreachable).

This last approach is the most effective, but it does not explicitly enumerate
all the relations.

Table 5. Pruning speed-ups

n. permut. s (spd-up)
3 13 0.00
4 75 0.00
5 541 0.01 (50%)
8 545 835 28.96 (22%)

Table 6. Full tractable fuzzy relations

s-alg. class. rel. fuzzy rel. s
PAc

fuz 7 10 0.00
V23

fuz 23 290 0.01
SAc

fuz 83 68 216 34.87
SAfuz 188 915 564 406.5

These relations are relevant because they synthesize the essential expres-
siveness of the algebrae; in fact even if the fuzzy relations are infinite, due
to the infinite degrees of preference, there are only a finite number of distin-
guishable relations (reported in Table 5), and all the remaining relations could
be “grouped” by assigning a degree of priority and capture in this way the
infinity. To return to the original equivalence classes it is sufficient to multi-
ply the cardinality by 2, because each full relation includes exactly a partial
relation:
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{r1[d1], . . . , rn[dn]} : dn = mini=1...n{di}
= {r1[d1], . . . , rn−1[dn−1]} ∪ I[dn]

where I[dn] = {r1[dn], . . . , rn[dn]}.
The relations found by applying the rules, by enumeration and by manual

verification (when possible, that is for n < 6) are identical; therefore the algo-
rithms can reasonably deduce and enumerate the right sets of fuzzy relations
from the classic ones, and discover consistent rules.

5 Conclusions

Tractable sub-algebrae are important in order to build solvers able to scale well
with the problem size. We are working on a temporal constraint solver that is
able to manage qualitative and metric constraints also affected by uncertainty
using Possibility Theory [2]. We use convex metric relations, namely trapezoidal
distributions, in order to assure the existence of a fix point in the resolution
process and the user can choice singleton constraints to obtain a result in a
polynomial amount of time. However for the qualitative constraints there is not
an easy way to make a problem tractable (obviously a user could constrain
the relations to belong to PA, but it would be rather restrictive); the rules
proposed in this article are an easy tool for the tractability assessment. Tractable
qualitative sub-algebrae can be exploited in two ways: a first idea is to guide the
input of the user in order to filter out the constraints not belonging to a particular
tractable sub-algebra; a more sophisticated method is to build a Branch & Bound
algorithm that partitions the intractable relations in tractable subsets.

A further development could be the application of the method to the QA
extended as QAfuz in [2] whose tractable subsets have been identified in [7],
and possibly to other tractable sub-algebrae extended by means of Possibility
Theory.
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Abstract. In this paper we introduce reasoning procedures for ALCQ+
F ,

a fuzzy description logic with extended qualified quantification. The lan-
guage allows for the definition of fuzzy quantifiers of the absolute and
relative kind by means of piecewise linear functions on N and Q ∩ [0, 1]
respectively. In order to reason about instances, the semantics of quan-
tified expressions is defined based on recently developed measures of the
cardinality of fuzzy sets. A procedure is described to calculate the fuzzy
satisfiability of a fuzzy assertion, which is a very important reasoning
task. The procedure considers several different cases and provides direct
solutions for the most frequent types of fuzzy assertions.

1 Introduction

Description logics (DL) [1] are a family of logic-based knowledge-representation
formalisms, which stem from the classical AI tradition of semantic networks
and frame-based systems. DLs are well-suited for the representation of and
reasoning about terminological knowledge, configurations, ontologies, database
schemata, etc.

The need of expressing and reasoning with imprecise knowledge and the diffi-
culties arising in classifying individuals with respect to an existing terminology
is motivating research on nonclassical DL semantics, suited to these purposes. To
cope with this problem, fuzzy description logics have been proposed that allow
for imprecise concept description by using fuzzy sets and fuzzy relations. For in-
stance, a fuzzy extension of the description logic ALC has been introduced in [6],
with complete algorithms for solving the entailment problem, the subsumption
problem, as well as the best truth-value bound problem.

In [5] we introduced ALCQ+
F , a fuzzy description logic with extended qualified

quantification1 that allows for the definition of fuzzy quantifiers of the absolute
1 In keeping with DL naming conventions, the superscript plus is to suggest that, in

addition to qualified number restrictions available in the description logic ALCQ
introduced by De Giacomo and Lenzerini [2], we provide also more general fuzzy
linguistic quantifiers. The subscript F means that the language deals with infinitely
many truth-values, as in the language ALCFM of Tresp and Molitor [7].

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 81–88, 2006.
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and relative kind by means of piecewise linear functions on N and Q ∩ [0, 1]
respectively. These quantifiers extends the usual (qualified) ∃, ∀ and number
restriction.

Incorporating fuzzy quantification into fuzzy description logics is important
by several reasons. On the one hand, number restriction is a kind of quantification
that arises very frequently in concept description, so it is necessary to extend it
to the fuzzy case. But another important reason is that not only concepts, but
also quantifiers are imprecise in many cases (e.g. “around two”, “most”).

For example, suppose you are the marketing director of a supermarket chain.
You are about to launch a new line of low-calorie products. In order to set up
your budget, you need to project the sales of this new line of products. This
can be done either by means of an expensive market research, or by means of
some kind of inference based on your knowledge of customer habits. For instance,
you could expect prospective buyers of this new line of products to be essentially
faithful customers who mostly buy foods with low energy value. We have here all
the ingredients of imprecise knowledge: a “faithful customer” is a fuzzy concept;
“low” energy value is a linguistic value, which might be modelled as a fuzzy
number; to “mostly” buy a given kind of product is equivalent to a quantified
statement of the form “most of the bought products are of this kind”, where
“most” is an imprecise quantifier.

Zadeh [8] showed that imprecise quantifiers can be defined by using fuzzy sets,
and by incorporating them into the language and providing the tools to define
their semantics we can provide a very powerful knowledge representation tool,
with greater expressive power, and closer to the humans’ way of thinking.

2 The Language ALCQ+
F

The language ALCQ+
F has the following syntax:

〈concept description〉 ::= 〈atomic concept〉 |
	 | ⊥ | ¬〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈quantification〉

〈quantification〉 ::= 〈quantifier〉〈atomic role〉.〈concept description〉
〈quantifier〉 ::= ”(” 〈absolute quantifier〉 ”)” | ”(” 〈relative quantifier〉 ”)” |

∃ | ∀
〈absolute quantifier〉 ::= 〈abs point〉 | 〈abs point〉 + 〈absolute quantifier〉
〈relative quantifier〉 ::= 〈fuzzy degree〉/u | 〈fuzzy degree〉/u + 〈piecewise fn〉
〈piecewise fn〉 ::= 〈rel point〉 | 〈rel point〉 + 〈piecewise fn〉
〈abs point〉 ::= 〈val〉/〈natural number〉
〈rel point〉 ::= 〈val〉/〈[0,1]-value〉
〈val〉 ::= [〈fuzzy degree〉 � ]〈fuzzy degree〉[ � 〈fuzzy degree〉]

In this extension, the semantics of quantifiers is defined by means of piecewise-
linear membership functions. In the case of absolute quantifiers, the quantifier
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is obtained by restricting the membership function to the naturals. The seman-
tics of fuzzy assertions in ALCQ+

F is given by the standard fuzzy conjunction,
disjunction and negation, as well as method GD [3] for quantified expressions.

The piecewise-linear functions are defined by means of a sequence of points.
These points are expressed as α � β � γ/x, where x is the cardinality value, β is
the membership degree of x, and α and γ are the limit when the membership
function goes to x from the left and from the right, respectively. When the
function is continuous, this can be summarized as β/x (since α = β = γ),
whereas discontinuities on the left (α �= β = γ) or right (α = β �= γ) can be
summarized as α � β/x and β � γ/x, respectively.

2.1 An Example

Let us go back to the example of the marketing director of a supermarket chain
about to launch a line of low-calorie products.

The knowledge base describing the business of running a supermarket chain
could contain, among others, the following terminological axioms:

FaithfulCustomer � Customer � 	
FoodProduct � Product � 	

LowCalorie � EnergyMeasure � 	
LowCalorieFood ≡ FoodProduct � ∀energyValue.LowCalorie

The ABox describing facts about your supermarket chain might contain TVBs
which we might summarize as follows:

– given an individual customer c and a product p, buys(c, p) might be inter-
preted as

buys(c, p) = f(weeklyrevenue(c, p)),

where f : R → [0, 1] is nondecreasing, and weeklyrevenue(c, p) : CustomerI×
ProductI → R returns the result of a database query which calculates the
average revenue generated by product p on customer c in all the stores op-
erated by the chain;

– given an individual customer c, FaithfulCustomer(c) might be interpreted as

FaithfulCustomer(c) = g(weeklyrevenue(c)),

where g : R → [0, 1] is nondecreasing, and weeklyrevenue(c) : CustomerI →
R returns the result of a database query which calculates the average revenue
generated by customer c in all the stores operated by the chain;

– finally, LowCalorie(x), where x is an average energy value per 100 g of product
measured in kJ, could be interpreted as

LowCalorie(x) =

⎧⎪⎨⎪⎩
1 x < 1000,
2000−x
1000 1000 ≤ x ≤ 2000,

0 x > 2000.
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Table 1. The energy value, membership in the LowCalorieFood, and the degree to
which customer CARD0400009324198 buys them for a small sample of products

Product Energy [kJ/hg] LowCalorieFood(·) buys(CARD . . . , ·)
GTIN8001350010239 1680 0.320 0.510
GTIN8007290330987 1475 0.525 0.050
GTIN8076809518581 1975 0.025 0.572
GTIN8000113004003 1523 0.477 0.210
GTIN8002330006969 498 1.000 1.000
GTIN8005410002110 199 1.000 1.000
GTIN017600081636 1967 0.033 0.184

By using the ALCQ+
F language, it is now possible to express the notion of a

faithful customer who mostly buys food with low energy value as

C ≡ FaithfulCustomer � (Most)buys.LowCalorieFood,

where (Most) ≡ (0/u+ 0/0.5 + 1/0.75).
A useful deduction this new axiom allows you to make is, for instance, cal-

culating the extent to which a given individual customer or, more precisely, a
fidelity card, say CARD0400009324198, is a C. For instance, you could know that

FaithfulCustomer(CARD0400009324198) = 0.8,

and, by querying the sales database, you might get all the degrees to which that
customer buys each product. For sake of example, we give a small subset of
those degrees of truth in Table 1, along with the energy values of the relevant
products.

According to the semantics of ALCQ+
F ,

C(CARD0400009324198) ≈ 0.742

i.e., the degree to which most of the items purchased by this customer are low-
calorie is around 0.742. This seems to be in accordance with the data in Table 1,

Table 2. Percentage of purchased items that are low-calorie at significant levels

Level Percentage
1.000 1.000 = 2/2
0.572 0.667 = 2/3
0.510 0.500 = 2/4
0.320 0.750 = 3/4
0.210 0.800 = 4/5
0.184 0.667 = 4/6
0.050 0.714 = 5/7
0.033 0.857 = 6/7
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where we can see that four products (those products p in rows 2, 4, 5, and 6)
verify

buys(CARD0400009324198, p) ≤ LowCalorieFood(p)

while for the products in rows 1 and 7 the difference between being purchased
and being low-calorie food is not so high. Only the item in row 3 seems to be a
clear case of item purchased but not low-calorie.

As another justification of why this result appears in agreement with the data,
in Table 2 we show the percentage of purchased items that are low-calorie at
α-cuts of the same level. At any other level, the percentage obtained is one of
those shown in Table 2.

At many levels the percentage is above 0.75, therefore fitting the concept of
Most as we have defined it. At level 0.050 the percentage is almost 0.75. The
only level that clearly doesn’t fit Most is 0.510, but at the next level (0.320) we
have again 0.75 and Most(0.75) = 1.

3 Reasoning with ALCQ+
F

Of course, the purpose of a knowledge representation system goes beyond storing
concept definitions and assertions. A knowledge representation system based on
fuzzy DLs should be able to perform specific kinds of reasoning. One particularly
important reasoning task is to calculate the fuzzy satisfiability of a fuzzy asser-
tion Ψ , i.e., the interval of values S(Ψ) = [βΨ , τΨ ] such that for any interpretation
I, the degree of truth of Ψ under I, noted truthI(Ψ), verifies truthI(Ψ) ∈ [βΨ , τΨ ]
(i.e., the maximum interval [β, τ ] such that Ψ is [β, τ ]–satisfiable in the sense of
Navara’s definition [4]).

In this work we introduce a PSpace-complete algorithm to calculate the fuzzy
satisfiability of a fuzzy assertion. Though infinite interpretations are taken into
account in the definition of the semantics of the language ALCQ+

F , in practice
and due to the physical limitations of computers, we are going to deal with a
finite number of individuals. The same limitations put a bound on the number
of different membership degrees we can deal with. Therefore we shall calculate
the fuzzy satisfiability of a fuzzy assertion up to a certain precision degree, given
as a number of decimals p.

In addition to the general algorithm, we have obtained some results showing
that we can calculate the fuzzy satisfiability of a fuzzy assertion directly in some
(the most common) cases. Some of these results are based on a previous result
about independence of fuzzy assertions. We introduce the following definition:

Definition 1. Two concepts A and B are independent of each other if, for all
α ∈ S(A) and β ∈ S(B), there exists an interpretation I containing an individual
d ∈ ΔI such that

AI(d) = α and BI(d) = β.

In other words, A and B are independent if the degree of truth of A does not
affect the degree of truth of B and vice versa.
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In order to determine whether two concepts are independent, we provide the
following results:

Proposition 1. Two concepts A and B, not containing quantifiers, which are
neither tautologies nor contradictions, are independent if and only if the following
four concepts are satisfiable in the crisp sense: A�B; A�¬B; ¬A�B; ¬A�¬B.

Proposition 2. Let D1 and D2 be two independent concepts. Then, no atomic
concept and no role appears in the expansion of both.

Proposition 3. Let D1 be a concept that doesn’t contain quantifiers in its ex-
pansion, and let D2 ≡ QR.C. Then, D1 and D2 are independent, regardless of
whether D1 and C are independent or not.

Proposition 4. Let D1 ≡ Q1R1.C1 and let D2 ≡ Q2R2.C2. If R1 �= R2 or C1
and C2 are independent, then D1 and D2 are independent.

A general procedure to determine whether two concepts are independent can be
obtained from Proposition 1 using the crisp procedure to check unsatisfiability.
However, Propositions 2, 3, and 4 can make things easier in some cases.

On this basis, we introduce the following results on the calculation of satisfi-
ability of fuzzy assertions:

– If A is an atomic concept, then S(A) = [0, 1].
– (Negation) If S(D) = [βD, τD], then S(¬D) = [1 − τD, 1− βD]. This verifies

S(¬¬D) = S(D) and:
• if A is atomic, S(¬A) = S(A) = [0, 1];
• if C = C1 � · · · � Cr, then S(¬C) = S(¬C1 � · · · � ¬Cr);
• if C = C1 � · · · � Cr, then S(¬C) = S(¬C1 � · · · � ¬Cr);
• if D ≡ QR.C,

S(¬D) = S(¬(QR.C)) = S((¬Q)R.C). (1)

– Let Q be an absolute quantifier such that core(Q) �= ∅ and N\supp(Q) �= ∅.
If D ≡ QR.C and S(C) = [βC , τC ], S(D) = S(QR.C) = [βD, τD], with

βD = (1 − τC)Q(0) (2)
τD = max{(τC + (1 − τC)Q(0)),Q(0)} (3)

– Let Q be a relative quantifier such that core(Q) �= ∅ and [0, 1]∩Q\supp(Q) �=
∅ with uQ = Q(x/0) (i.e., uQ is the value returned by the quantifier when
the relative cardinality is undefined). If D ≡ QR.C and S(C) = [βC , τC ],
• If Q(0) = 0 and Q(1) = 1,

S(D) = [min{uQ,βC}, τC + (1 − τC)uQ]

In particular, for quantifiers ∃ and ∀ we have u∃ = 0, u∀ = 1, and

S(∃R.C) = [0, τC ],
S(∀R.C) = [βC , 1].
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• If Q(0) = 1 and Q(1) = 0,

S(QR.C) = [1 − (τC + (1 − τC)uQ), 1 − min{uQ,βC}].
• If Q(0) = 0 and Q(1) = 0,

S(D) = [0,max{uQ, (1 − τC)uQ + (τC − βC)}].
• If Q(0) = 1 and Q(1) = 1,

S(QR.C) = [1 − max{uQ, (1 − τC)uQ + (τC − βC)}, 1].

The remaining cases are solved by means of an O(1) algorithm with a fixed
precision of p decimals.

– If D ≡ D1 �D2 � · · · �Ds with S(Di) = [βDi , τDi ], then S(D) = [βD, τD],
with

βD ≥ max
i∈{1,...,s}

{βDi},
τD = max

i∈{1,...,s}
{τDi}.

In particular, if the fuzzy assertions Di are pairwise independent,

βD = max
i∈{1,...,s}

{βDi},
τD = max

i∈{1,...,s}
{τDi}.

The value of βD with a precision degree of p decimals, when the Di are
not independent, is obtained by means of an algorithm that performs a
dichotomic search after guessing values of the atomic concepts and roles
that appear in the Di’s.

– The satisfiability of conjunctions can be obtained by using De Morgan’s laws
and the latter result.

4 Conclusions

ALCQ+
F allows for concept description involving fuzzy linguistic quantifiers of the

absolute and relative kind, and using qualifiers. We have introduced algorithms to
perform two important reasoning tasks with this logic: reasoning about instances,
and calculating the fuzzy satisfiability of a fuzzy assertion. In addition, we have
defined independence of fuzzy assertions and obtained some results that speed up
the calculation of fuzzy satisfiability in some (the most common) cases.
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Abstract. This paper focuses on the integration of the (also integrated)
declarative paradigms of functional logic and fuzzy logic programming,
in order to obtain a richer and much more expressive framework where
mathematical functions cohabit with fuzzy logic features. In this sense,
this paper must be seen as a first stage in the development of this new
research line. Starting with two representative languages from both set-
tings, namely Curry and Likelog, we propose an hybrid dialect where a
set of rewriting rules associated to the functional logic dimension of the
language, are accompanied with a set of similarity equations between
symbols of the same nature and arity, which represents the fuzzy coun-
terpart of the new environment. We directly act inside the kernel of the
operational mechanism of the language, thus obtaining a fuzzy variant of
needed narrowing which fully exploits the similarities collected in a given
program. A key point in the design of this last operational method is
that, apart from computing at least the same elements of the crisp case,
all similar terms of a given goal are granted to be completely treated
too while avoiding the risk of infinite loops associated to the intrinsic
(reflexive, symmetric and transitive) properties of similarity relations.

Keywords: Fuzzy Logic, Similarity, Functional Logic Programming.

1 Introduction

Logic Programming [12] has been widely used for problem solving and knowl-
edge representation in the past. Nevertheless, traditional logic programming lan-
guages do not incorporate techniques or constructs in order to treat explicitly
uncertainty and approximated reasoning.

FuzzyLogicprovides amathematical background formodeling uncertainty and/
or vagueness. Fuzzy logic relays on the concept of fuzzy set. Given a set U , a fuzzy
subsetA of U is a functionA : U → [0, 1]. The functionA is called the membership
function, and the value A(x) represents the degree of membership of x in the fuzzy
set A. Different functions A can be considered for a fuzzy concept and, in general,
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they will present a soft shape instead of the characteristic function’s crisp slope of
an ordinary set. A recent introduction on fuzzy logic is [17].

Fuzzy Logic Programming is an interesting and still growing research area that
agglutinates the efforts for introducing Fuzzy Logic into Logic Programming.Dur-
ing the last decades, several fuzzy logic programming systems have been devel-
oped, where the classical inference mechanism of SLD–Resolution is replaced with
a fuzzy variant which is able to handle partial truth and to reason with uncer-
tainty. Most of these systems implement the fuzzy resolution principle introduced
by Lee in [10], such as the Prolog–Elf system [9], the Fril Prolog system [4] and the
F–Prolog language [11]. Other fuzzy variants of Prolog can be found in [19], [6],
and [13].

In general, there is no common method for introducing fuzzy concepts into
logic programming. However, we have found two major, and rather different,
approaches:

– The first approach, represented by languages as Likelog [3, 18], replaces the
syntactic unification mechanism of classical SLD–resolution by a fuzzy uni-
fication algorithm, based on similarity relations (over constants and predi-
cates). The fuzzy unification algorithm provides an extended most general
unifier as well as a numerical value, called unification degree. Intuitively, the
unification degree represents the truth degree associated with the (query)
computed instance. Programs written in this kind of languages consist, in
essence, in a set of ordinary (Prolog) clauses jointly with a set of “similarity
equations” which play an important role during the unification process.

– For the second approach, programs are fuzzy subsets of (clausal) formulas,
where the truth degree of each clause is explicitly annotated. The work of
computing and propagating truth degrees relies on an extension of the reso-
lution principle, whereas the (syntactic) unification mechanism remains un-
touched. Examples of this kind of languages are the ones described in [19],
[6] and [13].

In this paper we are specially interested in the first class of fuzzy logic languages
explained before, as well as in modern functional logic languages, such as Curry.
Functional logic programming languages combine the operational principles of
the most important declarative programming paradigms, namely functional and
logic programming (see [7] for a survey). The operational semantics of such
integrated languages is usually based on narrowing, a combination of variable
instantiation and reduction, where efficient demand-driven functional computa-
tions are amalgamated with the flexible use of logical variables providing for
function inversion and search for solutions.

The structure of this paper is as follows. The following section is devoted to
detail the main features of both fuzzy logic programming and functional logic
programming. In Section 3 we explain in detail the original needed narrowing
strategy used by Curry, in order to furthermore extend it with similarity relations
in Section 4. Finally, we give our conclusions in Section 5.
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2 Fuzzy Logic and Functional Logic Programming

Similarity relation is a mathematical notion strictly related with equivalence re-
lations and, then, to closure operators, that provides a way to manage alternative
instances of an entity that can be considered ”equal” with a given degree [20]. Let
us recall that a T-norm ∧ in [0, 1] is a binary operation ∧ : [0, 1]× [0, 1] → [0, 1]
associative, commutative, nondecreasing in both the variables, and such that
x ∧ 1 = 1 ∧ x = x for any x ∈ [0, 1]. In order to simplify our developments, and
similarly to other approaches in fuzzy logic programming [18], in the sequel, we
assume that x ∧ y is the minimum between the two elements x, y ∈ [0, 1].

Definition 1. A similarity relation � on a domain U is a fuzzy subset � :
U × U → [0, 1] of U × U such that the following properties hold:

1. Reflexivity: �(x,x) = 1, ∀x ∈ U
2. Symmetry: �(x, y) = �(y,x), ∀x, y ∈ U
3. Transitivity: �(x, z) ≥ �(x, y) ∧ �(y, z), ∀x, y, z ∈ U .

A very simple, but effective way, to introduce similarity relations into pure logic
programming, generating one of the most promising ways for the integrated
paradigm of fuzzy logic programming, consists in modeling them by a set of
the so-called similarity equations of the form eq(s1, s2) = α, whith the intended
meaning that s1 and s2 are predicate/function symbols of the same arity with
a similarity degree α. This approach is followed, for instance, in the fuzzy logic
language Likelog [3], where a set of usual Prolog clauses are accompanied by a
set of similarity equations which play an important role at (fuzzy) unification
time. Of course, the set of similarity equations is assumed to be safe in the sense
that each equation connects two symbols of the same arity and nature (both
predicates or both functions) and the properties of Definition 1 are not violated,
as occurs, for instance, with the wrong set {eq(a, b) = 0.5, eq(b, a) = 0.9} which,
apart for introducing risks of infinite loops when treated computationally, in
particular, it does not verify the symmetric property.

Example 1. Given the following Prolog program, composed by a single clause
with empty body (fact) p(a), then the evaluation of goal p(X) gives the computed
answer (substitution) X �→ a, with the intended meaning that, since constant a
satisfies predicate p in the program, then when variable X is linked to a in the
proposed goal, then it is also satisfied.

However, if we add now the similarity equation eq(a, b) = 0.5 to the previous
fact, then we obtain a Likelog program for which the evaluation of goal p(X)
gives two computed answers (incorporating now to the corresponding Prolog-
like substitution, the associated truth degree): X �→ a with truth degree 1, and
X �→ b with truth degree 0.5.

It is important to note, that since Likelog is oriented to manipulate inductive
databases, where no function symbols of arity greater than 0 are allowed, then,
similarity equations only consider similarities between two predicates or two
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constants (that is, function symbols with no parameters) of the same arity. In
this paper, we drop out this last limitation by also allowing similarity equations
between any pair of (defined or constructor) function symbols which do not
necessarily be constants. Moreover, since our base language does not treat with
proper predicate symbols, we allow similarity equations between boolean (among
any other kind of defined or constructor function) symbols, which is a quite
natural way to model predicates in functional logic languages.

In the following, we assume that the intended similarity relation � associated
to a given program R, is induced from the (safe) set of similarity equations of
R, verifying that the similarity degree of two symbols s1 and s2 is 1 if s1 ≡ s2
or, otherwise, it is defined recursively as the transitive closure of the equational
set defined as: T t

r(R) =f=1...∞ Rf where Rf+1 = Rf ◦t R, for a given T-norm
t. Moreover, it can be demonstrated that, if the domain is a finite set with n
elements, then only n-1 powers must be calculated. Finally, by simply assuming
that the set of similarity equations in R is trivially extended by reflexivity, then
� = Tr(R) = R(n−1) [5].

Example 2. In the following pair of matrixes, we are considering similarities
between four arbitrary constant symbols. The second matrix has been obtained
after applying the algorithm described in [5] to the first one.⎛⎜⎜⎝

1 .7 .6 .4
.7 1 .8 .9
.6 .8 1 .7
.4 .9 .7 1

⎞⎟⎟⎠ R−−−−−−→
Similarity

⎛⎜⎜⎝
1 .7 .7 .7
.7 1 .8 .9
.7 .8 1 .8
.7 .9 .8 1

⎞⎟⎟⎠
In what follows, we propose the combined use of similarity equations together
with rewriting rules (instead of Horn clauses) typically used in pure functional
(Haskell) and integrated functional–logic (Curry) languages.

We consider a signature Σ partitioned into a set C of constructors and a set F
of defined functions. The set of constructor terms (with variables) is obtained by
using symbols from C (and a set of variables X ). The set of variables occurring
in a term t is denoted by Var(t). We write on for the list of objects o1, . . . , on. A
pattern is a term of the form f(dn) where f/n ∈ F and d1, . . . , dn are constructor
terms (with variables). A term is linear if it does not contain multiple occurrences
of one variable. A position p in a term t is represented by a sequence of natural
numbers (Λ denotes the empty sequence, i.e., the root position). Positions are
ordered by the prefix ordering: p ≤ q, if ∃w such that p.w = q. t|p denotes the
subterm of t at a given position p, and t[s]p denotes the result of replacing the
subterm t|p by the term s. We denote by {x1 �→ t1, . . . ,xn �→ tn} the substitution
σ with σ(xi) = ti for i = 1, . . . , n (with xi �= xj if i �= j), and σ(x) = x for
all other variables x. The application of a substitution σ to an expression e is
denoted by σ(e). The empty substitution is denoted by id.

A set of rewriting rules l → r such that l �∈ X , and Var(r) ⊆ Var(l) is called
a term rewriting system (TRS). The terms l and r are called the left-hand side
(lhs) and the right-hand side (rhs) of the rule, respectively. A TRS R is left-
linear if l is linear for all l → r ∈ R. A TRS is constructor–based (CB) if each
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left-hand side is a pattern. In the remainder of this paper, a functional logic
program is a left-linear CB-TRS without overlapping rules (i.e. the lhs’s of two
different program rules do not unify).

A rewrite step is an application of a rewriting rule to a term, i.e., t →p,R s
if there exists a position p in t, a rewriting rule R = (l → r) and a substitution
σ with t|p = σ(l) and s = t[σ(r)]p. The operational semantics of modern inte-
grated languages is usually based on (needed) Narrowing, which can be seen as
a combination of variable instantiation and reduction. Formally, s �p,R,σ t is a
narrowing step if p is a non-variable position in s and σ(s) →p,R t. We denote by
t0 �∗

σ tn a sequence of narrowing steps t0 �σ1 . . . �σn tn with σ = σn ◦ · · · ◦σ1.
Needed narrowing is currently an optimal, correct/complete strategy for mod-
ern, first-order, lazy functional logic languages and it its the operational basis
of the language Curry [2].

3 Needed Narrowing

A challenge in the design of functional logic languages is the definition of a
“good” narrowing strategy, i.e., a restriction on the narrowing steps issuing from
a term without losing completeness. Needed narrowing [2] is currently the best
known narrowing strategy due to its optimality properties w.r.t. the length of the
derivations and the number of computed solutions. It extends Huet and Lévy’s
notion of a needed reduction [8].

The definition of needed narrowing [2] uses the notion of a definitional tree
[1], which refines the standard matching trees of functional programming. How-
ever, differently from left-to-right matching trees used in either Hope, Miranda,
or Haskell, definitional trees deal with dependencies between arguments of func-
tional patterns. Roughly speaking, a definitional tree for a function symbol f is
a tree whose leaves contain all (and only) the rules used to define f and whose
inner nodes contain information to guide the (optimal) pattern matching during
the evaluation of expressions. Each inner node contains a pattern and a variable
position in this pattern (the inductive position) which is further refined in the
patterns of its immediate children by using different constructor symbols. The
pattern of the root node is simply f(xn), where xn are different variables.

A defined function is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions are
inductively sequential. An inductively sequential TRS can be viewed as a set of
definitional trees, each one defining a function symbol. There can be more than
one definitional tree for an inductively sequential function. In the following, we
assume that there is a fixed definitional tree for each defined function.

Example 3. It is often convenient and simplifies the understanding to provide a
graphic representation of definitional trees, where each node is marked with a
pattern, the inductive position in branches is surrounded by a box, and the leaves
contain the corresponding rules. For instance, given the following program (right
column) defining functions “f” and “g”, the definitional trees for both function
symbols can be depicted as follows:
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For the definition of needed narrowing, we assume that t ≡ f(sn) is an operation-
rooted term and Pf is a definitional tree with root π such that π ≤ t. Hence,
when π is a leaf, i.e., Pf = {π}, we have that R : π → r is a variant of a
rewriting rule. On the other hand, if π is a branch, we consider the inductive
position o of π and we say that the pattern πi ≡ π[ci(xn)]o ∈ Pf , is a child of
π in Pf . Moreover, the definitional (sub-)tree of Pf rooted with πi, (i.e., where
all patterns are instances of πi) is denoted by Pπi

f = {π′ ∈ Pf | πi ≤ π′},
whereas children(P) refers to the set of children of the root of a definitional
(sub)-tree P . For instance, in the previous definitional tree for f, the children
of Pf (or, equivalently Pf(X,Y)

f ) is the set children(Pf) = {f(a, Y), f(s(X′), Y)},
whereas children(Pf(s(X′),Y)

f ) = {f(s(X′), a), f(s(X′), s(Y′))}.
We define now a function λcrisp from terms to sets of tuples (position, rule,

substitution) which uses an auxiliary function λ for explicitly referring to the
appropriate definitional tree in each case. Then, λcrisp(t) = λ(t,Pf ) returns the
least set satisfying:

LR (LEAF-RULE) CASE: λ(t,Pf ) = {(Λ,R, id)}

BV (BRANCH-VAR) CASE: If t|o = x ∈ X , then λ(t,Pf ) =
{(p,R, σ ◦ τ) | πi ≡ π[ci(xn)]o ∈ children(Pf) and
τ = {x �→ ci(xn)} and (p,R, σ) ∈ λ(τ(t),Pπi

f )}

BC (BRANCH-CONS) CASE: If t|o = ci(tn), where ci ∈ C, then λ(t,Pf ) =
{(p,R, σ ◦ id) | πi ≡ π[ci(xn)]o ∈ children(Pf) and (p,R, σ) ∈ λ(t,Pπi

f )}

BF (BRANCH-FUNC) CASE: If t|o = g(tn), where g ∈ F , then λ(t,Pf ) =
{(o.p,R, σ ◦ id) | (p,R, σ) ∈ λ(t|o,Pg)}
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When none of the previous cases is satisfied, we assume that function λ returns
∅. Informally speaking, needed narrowing directly applies a rule if the term is an
instance of some left-hand side (LR case), or checks the subterm corresponding to
the inductive position of the branch: if it is a variable (BV case), it is instantiated
to the constructor of each one of the children; if it is already a constructor (BC
case), we proceed with the corresponding child; if it is a function (BF case), we
evaluate it by recursively applying needed narrowing.

In contrast to more traditional narrowing strategies, needed narrowing does
not compute most general unifiers. In each recursive step during the computation
of λ, we compose the current substitution with the local substitution of this step
(which can be the identity id). As in proof procedures for logic programming,
we assume that definitional trees always contain new variables if they are used
in a narrowing step. Then, t �p,R

σ t′ is a needed narrowing step for all (p,R, σ) ∈
λcrisp(t).

Example 4. If we consider again the rules for f and g in Example 3 then we
have λcrisp(f(X, g(X, X))) = {(Λ,R1, {X �→ a}), (2,R5, {X �→ s(X′)})} which en-
ables the following pair of needed narrowing steps (for readability reasons, in
our examples we underline the subterm exploited in each narrowing step and,
when needed, we also accompany it with a superindex/subindex representing
respectively its associated rule/binding):

f(X, g(X, X)) �Λ,R1
{X �→a} a

f(X, g(X, X)) �2,R5
{X �→s(X′)} f(s(X′), s(g(X′, s(X′))))

4 Extending Needed Narrowing with Similarity Relations

In this section we define a fuzzy variant of needed narrowing with similarity rela-
tions. It is important to note that the approach presented here largely improves
the older one presented in [16], where similarities were exploited in a much more
limited form by simply relaxing the notion of ”strict equality” (typical of lazy
functional languages) to the richer one of ”similar equality”.

We extend the notion of computed answer for also reporting now (apart for
the classical components of substitution and value), a real number in the in-
terval [0, 1] indicating the similarity degree computed along the corresponding
derivation. Hence, we re-define function λ from terms and definitional trees to
sets of tuples (position, rule, substitution, similarity degree). If t ≡ f(sn) is
the operation-rooted term we consider for being processed, in the initial call
to λfuzzy , we must guarantee that any term (including t itself), rooted with a
symbol similar to f be will be treated. So,

λfuzzy(t) = {(p,R, σ,min(α,β)) | �(f, g) = α and (p,R, σ,β) ∈ λ(g(sn),Pg}

and now, the extended definition for λ is:
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LR (LEAF-RULE) CASE: λ(t,Pf ) = {(Λ, π → r, id, 1)}

BV (BRANCH-VAR) CASE: if t|o = x, where x ∈ X , then λ(t,Pf ) =
{(p,R, σ ◦ τ, α) | πi ≡ π[ci(xn)]o ∈ children(Pf ) and
τ = {x �→ ci(xn)} and (p,R, σ, α) ∈ λ(τ(t),Pπi

f )}

BC (BRANCH-CONS) CASE: if t|o = d(tn), where d ∈ C, then λ(t,Pf ) =
{(p,R, σ,min(α,β)) | �(d, ci) = α and πi ≡ π[ci(xn)]o ∈ children(Pf)

and (p,R, σ,β) ∈ λ((t[ci(xn)]o,Pπi

f ))}

BF (BRANCH-FUNC) CASE: if t|o = g(tn), where g ∈ F , then λ(t,Pf ) =
{(o.p,R, σ,min(α,β)| �(g,h) = α and (p,R, σ,β) ∈ λ(h(tn),Ph}

As we can see, LR and BV cases are very similar to the corresponding ones pre-
sented in Section 3, but propagating now the corresponding similarity degrees.
Moreover, closely related to the initial call to λfuzzy seen before, the last case
(BF) performs recursive calls to λ for evaluating the operation–rooted subterm at
the considered inductive position, as well as all other (almost identical) subterms
rooted with defined function symbols similars to g. Something almost identical
occurs with the BC case, but the intention now is to treat all subterms whose
constructor symbols at the inductive position are similars to d.

Example 5. Consider again the same program of Example 4 augmented with
the new rule R6 : h(r(X), Y) → r(Y) together with the similarity equations
S1 : eq(g, h) = 0.7 and S2 : eq(s, r) = 0.5. Then, λfuzzy(f(X, g(X, X))) =
λ(f(X, g(X, X)),Pf) = [see BV1] ∪ [see BV2] = {(Λ,R1, {X �→ a}, 1), (2,R5,
{X �→ s(X′)}, 1), (2,R6, {X �→ s(X′)},min(0.7, 0.5))}.
BV1 The first alternative in this BV case, consists in generating the binding τ1 =

{X �→ a} and then computing λ(τ1(f(X, g(X, X))),Pf(a,Y)
f ) = λ(f(a, g(a, a)),

Pf(a,Y)
f ). Since this last call represents a LR case, it returns {(Λ,R1, id, 1)}.

Then, after applying the binding τ1 to the third element of this last tuple,
the returned set for this case is {(Λ,R1, {X �→ a}, 1)}.

BV2 After generating the second binding τ2 = {X �→ s(X′)}, we must compute
λ(τ2(f(X, g(X, X))), Pf(s(X′),Y)

f ) = λ(f(s(X′), g(s(X′), s(X′))), Pf(s(X′),Y)
f ) =

[see BF1]= {(2,R5, id, 1), (2,R6, id,min(0.7, 0.5))}. Now, we simply need
to apply τ2 to the last component of the tuples obtained in BF1, hence
returning {(2,R5, {X �→ s(X′)}, 1), (2,R6, {X �→ s(X′)},min(0.7, 0.5))}.

BF1 In this BF case, where the considered inductive position is 2, we perform the
following two recursive calls (observe that the second one exploit the simi-
larity equation S1): λ(g(s(X′), s(X′)), Pg)∪λ(h(s(X′), s(X′)), Ph) = [see BC1]
∪ [see BC2] = {(Λ,R5, id, 1), (Λ,R6, id, 0.5)}. And then, since obviously po-
sition Λ.2 coincides directly with position 2, and the similarity between g
and h is 0.7, the set returned in this case is {(2,R5, id, 1), (2,R6, id,min(0.7,
0.5))}.
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BC1: This BC case, immediately evolves to the following LR case λ(g(s(X′), s(X′)),
Pg(s(M),N)
g ) = {(Λ,R5, id, 1)}. Now, since �(s, s) = 1, and min(1, 1) = 1, the

returned tuple in this case is (Λ,R5, id, 1) itself.

BC2: By exploiting the second similarity equation S2 : eq(s, r) = 0.5, this BC

case also computes the LR case λ(h(r(X′), s(X′)), Ph(r(X),Y)
h ) = {(Λ,R6,

id, 1)}. Finally, since min(0.5, 1) = 0.5, then λ(h(s(X′), s(X′)), Ph) = {(Λ,
R6, id, 0.5)}.

Now, since λfuzzy(f(X, g(X, X))) = {(Λ,R1, {X �→ a}, 1), (2,R5, {X �→ s(X′)}, 1),
(2,R6, {X �→ s(X′)},min(0.7, 0.5))}, then we can apply the three following deriva-
tion steps (note that similarity degrees corresponds to the second sub-index of
each narrowing step):

f(X, g(X, X)) �Λ,R1
{X �→a},1 a

f(X, g(X, X)) �2,R5
{X �→s(X′)},1 f(s(X′), s(g(X′, s(X′))))

f(X, g(X, X)) �2,R6
{X �→s(X′)},0.5 f(s(X′), r(s(X′)))

As our example reveals, there are two important properties enjoyed by our ex-
tended definition of needed narrowing:

– λfuzzy is conservative w.r.t. λcrisp since, the first two tuples computed before
are the same to those ones obtained in the crisp case (see example 4), but
accompanied now with the maximum truth degree 1, and

– moreover, similarity equations between defined/constructor function sym-
bols are exploited as much as possible (in the initial call and BF/BC cases),
which is the key point to obtain the third tuple in our example, by exploiting
the two similarity equations collected in our program.

5 Conclusions and Future Work

In this paper we have highlighted the main problems appearing when introduc-
ing fuzziness into functional logic programming. Focusing on practical aspects,
we have been mainly concerned with syntactic and operational subjects, also
providing representative examples and discussions about our all contributions.

The next step in our ongoing research is centered in the development of a
theoretical framework defining a declarative semantics for the new paradigm and
the corresponding correctness/completenes proofs for our approach. Moreover,
we are also planning to investigate other integration lines, such as those based
on SLDE-resolution, programs with weighted clauses, and so on.

Finally, since in our research group we have experience in the development
of sophisticated (fold/unfold based) optimizations tools for functional logic and
fuzzy logic programs (see [14, 15], respectively), for the future we are also plan-
ning to adapt these techniques to the new setting proposed in this paper.
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Abstract. In this paper some effective methods for calculating the exact
degrees of possible and necessary optimality of an element in matroids
with ill-known weights modeled by fuzzy intervals are presented.

1 Introduction

In combinatorial optimization problems, we are given a set of elements E and a
weight we is associated with each element e ∈ E. We seek an object composed
of the elements of E for which the total weight is maximal (minimal). In the
deterministic case the elements of E can be divided into two groups: those which
belong to an optimal solution (optimal elements) and those which do not be-
long to an optimal one. In this paper, we consider the case in which the weights
are imprecise and they are modeled by the classical intervals and fuzzy inter-
vals. In the interval-valued case the elements form three groups: those that are
optimal for sure (necessarily optimal elements), those that are not optimal for
sure and the elements whose optimality is unknown (possibly optimal elements).
In the fuzzy-valued case the weights of elements are modeled by possibility dis-
tributions [1]. In this case the notions of possible and necessary optimality can
be extended and every element can be characterized by degrees of possible and
necessary optimality.

In this paper, we wish to investigate the combinatorial optimization problem,
which can be formulated on a matroid (a good introduction to matroids can
be found in [4]). The case of interval-valued weights is first addressed and it is
then extended to fuzzy intervals. The main results of this paper are two effective
algorithms, based on profile approach [2], for calculating the exact values of
degrees of possible and necessary optimality of a given element.

2 Preliminaries

Consider a system (E, I), where E = {e1, . . . , en} is a nonempty ground set
and I is a collection of subsets of E closed under inclusion, i.e. if B ∈ I and

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 99–107, 2006.
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A ⊆ B then A ∈ I. The system (E, I) is a matroid (see e.g. [4]) if it satisfies
the following growth property: if A ∈ I, B ∈ I and |A| < |B|, then there exists
e ∈ B \ A such that A ∪ {e} ∈ I. The maximal (under inclusion) independent
sets in I are called bases. The minimal (under inclusion) sets not in I are called
circuits. The construction of any base is not a difficult issue. If σ specifies an
order of elements of E, then the corresponding base Bσ can be constructed by
simple Algorithm 1. We call Bσ, the base induced by σ.

Algorithm 1. Constructing a base of a matroid
Input: A matroid M = (E, I), a sequence σ = (e1, . . . , en) of E.
Output: A base Bσ of M.
Bσ ← ∅
for i ← 1 to n do

if Bσ ∪ {ei} ∈ I then Bσ ← Bσ ∪ {ei}
return Bσ

The running time of Algorithm 1 is O(nf(n)), where f(n) is time required for
deciding whether set B∪{ei} contains a circuit, which depends on the particular
structure of a matroid.

Let us denote by pred(e, σ) the elements which precede element e in se-
quence σ. The following property of matroids can be proven [3].

Proposition 1. Let σ and ρ be two sequences of the elements of E. Let e ∈ E
be an element such that pred(e, σ) ⊆ pred(e, ρ). If e /∈ Bσ then e /∈ Bρ.

In the combinatorial optimization problem on matroid, a nonnegative weight we

is given for every element e ∈ E and we seek a base B, for which the cost∑
e∈B we is maximal. This problem can be solved by means of a greedy algo-

rithm, that is Algorithm 1 with sequence σ, in which the elements are sorted in
the nonincreasing order of their weights. The greedy algorithm constructs the
optimal base in O(n log n+ nf(n)) time.

Evaluating whether a given element f ∈ E is optimal, i.e. whether f is a part
of an optimal base, is not a difficult issue. Let σ∗(w, f), f ∈ E, denote a special
sequence of elements of E, in which the elements are sorted in the nonincreasing
order of their weights we, e ∈ E, w is the vector of weights. Moreover, if wf =
we, e �= f , then element f precedes element e in this sequence. The following
proposition gives the necessary and sufficient condition for establishing whether
a given element is optimal [3].

Proposition 2. A given element f is optimal if and only if f is a part of the
optimal base Bσ∗(w,f) induced by σ∗(w, f).

Proposition 2 suggests an O(n log n + nf(n)) method for evaluating the opti-
mality of f , where O(n logn) is the time required for forming σ∗(w, f). This
complexity can be improved. Let σ(w, f), f ∈ E, denote a sequence, such that
pred(f, σ(w, f)) = {e ∈ E : we > wf}. Clearly, σ(w, f) can be obtained in O(n)
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time since it is not necessary to order the elements (we only require elements
e ∈ E, such that we > wf to appear before f).

Proposition 3. A given element f is optimal if and only if f is a part of a base
Bσ(w,f) induced by σ(w, f).

Proof. It is clear that pred(f, σ(w, f)) = pred(f, σ∗(w, f)). Thus, by Proposi-
tions 1, f ∈ Bσ∗(w,f) if and only if f ∈ Bσ(w,f). Hence, by Propositions 2, f is
optimal if and only if f ∈ Bσ(w,f). ��
From Proposition 3, we immediately obtain a method for evaluating the opti-
mality of an element. It requires O(n+ nf(n)) = O(nf(n)), where O(n) is time
for forming sequence σ(w, f) and O(nf(n)) is time for constructing base Bσ(w,f)
by Algorithm 1.

In the case when element f ∈ E is not optimal (i.e. it is not a part of
an optimal base), a natural question arises: how far is f from optimality. In
other words, what is the minimal nonnegative real number δf that added to
the weight of f makes it optimal. Clearly, δf can be calculated as follows:
δf = maxB∈B

∑
e∈B we − maxB∈Bf

∑
e∈B we, where B is the set of all bases

and Bf is the set of all the bases containing f .

3 Evaluating the Optimality of Elements in
Interval-Valued Matroids

Consider now the case in which the values of weights are only known to belong
to intervals We = [w−

e , w
+
e ], e ∈ E. We define a configuration as a precise

instantiation of the weights of each element e ∈ E, i.e. w = (we)e∈E , we ∈ We.
We denote by Γ the set of all the configurations, i.e. Γ = ×e∈E [w−

e , w
+
e ]. We use

we(w) to denote the weight of element e ∈ E in configuration w ∈ Γ . Among the
configurations of Γ , we distinguish two extreme ones. Namely, the configurations
w+

{f} and w−
{f} such that:

we(w+
{f}) =

{
w+

e if e = f ,
w−

e otherwise
, we(w−

{f}) =

{
w−

e if e = f ,
w+

e otherwise
, e ∈ E. (1)

A given element f ∈ E is possibly optimal if and only if it is optimal in some
configuration w ∈ Γ . A given element f ∈ E is necessarily optimal if and only if
it is optimal in all configurations w ∈ Γ . Instead of being optimal or not, like in
the deterministic case, elements now form three groups: those that are for sure
optimal despite uncertainty (necessarily optimal elements), those that are for
sure not optimal, and elements whose optimality is unknown (possibly optimal
elements). Note that, if an element f ∈ E is necessarily optimal, then it is also
possibly optimal but the converse statement is not true.

We can obtain more information about optimality of f ∈ E. Let δf (w), w ∈
Γ , denote the minimal nonnegative real number such that f with weight wf (w)+
δf (w) becomes optimal in configuration w. Let us define δ−f = minw∈Γ δf (w)
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and δ+f = maxw∈Γ δf (w). Now the interval Δf = [δ−f , δ
+
f ] indicates how far

f is from being possibly (resp. necessarily) optimal. There are some obvious
connections between the notions of optimality and the bounds δ−f and δ+f of
element f ∈ E.

Proposition 4. An element f is possibly (resp. necessarily) optimal if and only
if δ−f = 0 (resp. δ+f = 0).

The following theorems characterize the possibly and the necessarily optimal
elements.

Theorem 1. Element f ∈ E is possibly optimal if and only if f is a part of a
base Bσ(w+

{f},f) induced by σ(w+
{f}, f).

Proof. (⇒) From the possible optimality of f , it follows that there exits con-
figuration w ∈ Γ such that f is optimal. Proposition 3 implies f is a part of a
base Bσ(w,f) induced by σ(w, f). It is easy to observe that pred(f, σ(w+

{f}, f)) ⊆
pred(f, σ(w, f)). Proposition 1 now yields f ∈ Bσ(w+

{f},f).

(⇐) If f ∈ Bσ(w+
{f},f) then f is optimal under configuration w+

{f}, by Proposi-
tion 3, and thus f is possibly optimal. ��
Theorem 2. Element f ∈ E is necessarily optimal if and only if f is a part of
a base Bσ(w−

{f},f) induced by σ(w−
{f}, f).

Proof. (⇒) If f is necessarily optimal then it is optimal for all configurations,
in particular for w−

{f}. By Proposition 3, f ∈ Bσ(w−
{f},f).

(⇐) Suppose f ∈ Bσ(w−
{f},f). Consider any configuration w ∈ Γ . It is easy to

see that pred(e, σ(w, f)) ⊆ pred(e, σ(w−
{f}, f)). We conclude from Proposition 3

that f ∈ Bσ(w,f) and by Proposition 1 f is optimal in w. Accordingly, f is
optimal for all configurations w ∈ Γ and thus it is necessarily optimal. ��
Making use of Theorems 1 and 2, one can easily evaluate the possible and neces-
sary optimality of an element f . In order to assert whether f is possibly optimal,
we apply Algorithm 1 in which the order of elements is specified by σ(w+

{f}, f).
Element f is then possibly optimal if the obtained base contains f . Otherwise,
it is not possibly optimal. In the same way, we assert whether f is necessarily
optimal. The running time of both methods is O(nf(n)).

Theorems 1 and 2 allow also to determine interval Δf = [δ−f , δ
+
f ]. If f /∈

Bσ(w+
{f},f) (which indicates that δ−f > 0) then set Bσ(w+

{f},f) ∪ {f} contains an

unique circuit C. We can find an element g ∈ C \ {f} of the minimal value
of w−

g . Then, from Theorem 1, it follows that δ−f = w−
g − w+

f . Similarly, if
f /∈ Bσ(w−

{f},f) (which indicates that δ+f > 0) then set Bσ(w−
{f},f) ∪ {f} contains

an unique circuit C. We can find an element g ∈ C \ {f} of the minimal value
of w+

g and, by Theorem 2, δ+f = w+
g − w−

f . It is easily seen that both values δ−f
and δ+f for a given element f ∈ E can be computed in O(nf(n)) time.
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4 Some Methods of Computing the Optimality Degrees
of Elements in Fuzzy-Valued Matroids

We now generalize the concepts of interval-valued matroids to the fuzzy-valued
ones and provide a possibilistic formulation of the problem (see [1]). The weights
of elements of E are ill-known and they are modeled by fuzzy intervals W̃e,
e ∈ E. Let us recall that a fuzzy interval is a fuzzy set in the space of real num-
bers IR, whose membership function μW̃e

is normal, quasiconcave and upper
semi-continuous on IR (see for instance [1]), μW̃e

: IR → [0, 1]. The membership
function μW̃e

, e ∈ E, expresses the possibility distribution of the weight of el-
ement e ∈ E (see [1]). Let w = (we)e∈E , we ∈ IR, be a configuration of the
weights. The configuration w represents a certain state of the world. Assuming
that the weights are unrelated, the joint possibility distribution over configura-
tions, induced by the W̃e, e ∈ E, is as follows: π(w) = mine∈E μW̃e

(we). Hence,
the degrees of possibility and necessity that an element f ∈ E is optimal are
defined as follows:

Π(f is optimal) = sup
w: f is optimal in w

π(w), (2)

N(f is optimal) = inf
w: f is not optimal in w

(1 − π(w)). (3)

The degrees of optimality can be generalized by fuzzyfying the quantity δf ,
f ∈ E in the following way:

μΔ̃f
(x) = Π(δf = x) = sup

w: x=δf (w)
π(w).

The following relations hold:

Π(f is optimal) = Π(δf = 0) = μΔ̃f
(0),

N(f is optimal) = N(δf = 0) = 1 − sup
x>0

μΔ̃f
(x).

Every fuzzy weight W̃e, e ∈ E, can be decomposed into its λ-cuts, that is the sets
W̃e(λ) = {x |μW̃e

(x) ≥ λ}, λ ∈ (0, 1]. It is well known that W̃e(λ), λ ∈ (0, 1], is
the classical interval [W̃−

e (λ), W̃+
e (λ)]. We assume that [W̃−

e (0), W̃+
e (0)] is the

support of W̃e. Functions W̃−
e : [0, 1] → IR and W̃+

e : [0, 1] → IR, are called
left and right profiles of W̃e [2], respectively (see Fig. 1a). Thus, the profiles
can be seen as a parametric representations of the left and right hand sides of a
fuzzy interval. We assume additionally that both profiles are strictly monotone.
This assumption holds for the fuzzy intervals of L-R type [1]. Therefore, it is not
restrictive. Let M(λ) = (E, I), λ ∈ [0, 1], be the interval-valued matroid with
weights W̃e(λ), e ∈ E, being the λ-cuts of the fuzzy weights. A link between the
interval case and the fuzzy one resulting from formulae (2) and (3) and the fact
that if α < β then W̃e(β) ⊆ W̃e(α), e ∈ E, is as follows:

Π(f is optimal) = sup{λ | f is possibly optimal in M(λ)}, (4)
N(f is optimal) = 1 − inf{λ | f is necessarily optimal in M(λ)}. (5)
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Equations (4) and (5) form the theoretical basis for calculating the values of the
optimality indices. They suggest a standard bisection method for determining
the optimality degrees (2) and (3) of a fixed element with a given accuracy ε
via the use of λ-cuts. At each iteration the possible (necessary) optimality of
the element is evaluated in the interval-valued matroid M(λ) according to The-
orem 1 (Theorem 2). The calculations take O(| log ε|nf(n)) time. Unfortunately,
this method gives only an approximate values of the optimality degrees. Further
in this section, we propose some polynomial algorithms which give the exact
values of the degrees of optimality.

First, we need to extend two extreme configurations (1) to the fuzzy case.
The fuzzy counterparts w̃+

{f} and w̃−
{f} are vectors of the left and right profiles

defined as follows:

W̃e(w̃+
{f}) =

{
W̃+

e if e = f ,
W̃−

e otherwise
, W̃e(w̃−

{f}) =

{
W̃−

e if e = f ,
W̃+

e otherwise
, e ∈ E. (6)

Assume that we intend to calculate the value of Π(f is optimal), f ∈ E.
The key observation is that in order to do this, it is enough to analyze only the
fuzzy configuration w̃+

{f}. Moreover, it is sufficient to take into account only the

intersection points of profile W̃+
f with profiles W̃−

e , e �= f , in configuration w̃+
{f}.

Let eλ1 , . . . , eλm be elements in E, whose left profiles intersect with the right
profile of element f . The numbers λ1, . . . , λm ∈ [0, 1] denote the cuts such that
W̃−

eλi
(λi) = W̃+

f (λi), i = 1, . . . ,m. We assume that λ1 ≤ · · · ≤ λm, W̃−
eλ1

(λ1) ≤
· · · ≤ W̃−

eλm
(λm). Let us also distinguish elements v1, . . . , vr in E whose left pro-

files are entirely on the left hand side of W̃+
f and elements u1, . . . , uq whose left

profiles are entirely on the right hand side of W̃+
f . The 3-partition of elements

is of the form E = {u1, . . . , uq} ∪ {eλ1 , . . . , eλm} ∪ {v1, . . . , vr} (see Fig. 1b).
Let us now define sequences σ0, σ1, . . . σm in the following way:

σ0 = (u1, . . . , uq,f , eλ1 , . . . , eλm , v1, . . . , vr),
σi = (u1, . . . , uq, eλ1 , . . . , eλi ,f , eλi+1 . . . , eλm , v1, . . . , vr), i = 1, . . . ,m− 1,
σm = (u1, . . . , uq, eλ1 , . . . , eλm ,f , v1, · · · , vr).

(a) (b)
1

1

μW̃ (x)

W̃ − W̃ +

λ1

λ2

λm

eλ1eλ2 eλm f u1u2uqv1v2vrx x

Fig. 1. (a) The left and right profiles of fuzzy interval W̃ (in bold). (b) The partition
of E with respect to the intersection points of profile W̃ +

f with profiles W̃ −
e , e 	= f , in

configuration w̃+
{f}.
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Note that the sequences differ from each other only in the position of the element
f , which depends on the cut λi. Let us define λ0 = 0.

Observation 1. If f ∈ Bσi−1 , then f is possibly optimal in matroid M(λ),
λ ∈ [0, λi], i = 1, . . . ,m.

Proof. Observe, that it is sufficient to show that f is possibly optimal in interval
weighted matroid M(λi). It is easy to see that the extreme configuration w+

{f}
in M(λi) is as follows: wf (w+

{f}) = W̃+
f (λi) and we(w+

{f}) = W̃−
e (λi) if e �= f .

From the construction of the sequence σi, it follows that pred(σ(w+
{f}, f), f) ⊆

pred(σi−1, f). Thus, from Proposition 1 and the assumption f ∈ Bσi−1 , we see
that f is a part of the base Bσ(w+

{f},f) in M(λi) and, by Theorem 1, it is possibly

optimal in M(λi). ��
Observation 2. If f /∈ Bσi then f is not possibly optimal in matroid M(λ),
λ ∈ (λi, 1], i = 0, . . . ,m.

Proof. From the definition of sequence σi it follows that W̃−
e (λi) ≥ W̃+

f (λi) for
all e ∈ pred(f, σi) (see also Fig. 1b). Let λ > λi. From the strict monotonicity
of the right and left profiles we obtain W̃−

e (λ) > W̃+
f (λ) for all e ∈ pred(f, σi).

Thus in the interval weighted matroid M(λ) all the elements e ∈ pred(f, σi)
must also precede f in the corresponding sequence σ(w+

{f}, f) in matroid M(λ).
Therefore, according to Propositions 1 and Theorem 1, element f is not possibly
optimal in M(λ). ��
Observations 1 and 2, together with formula (4) yield:

Proposition 5. If f ∈ Bσm then Π(f is optimal) = 1. Otherwise, let k be the
smallest index in {0, 1, . . . ,m} such that f /∈ Bσk

. Then Π(f is optimal) = λk.

Proposition 5 allows to construct an effective algorithm (Algorithm 2) for com-
puting the value of Π(f is optimal) of a given element f ∈ E. The key of Algo-
rithm 2 is that there is no need to apply Algorithm 1 for each sequence σ0, . . . , σm

for checking whether f is a part of base Bσi induced by σi, i = 0, . . . ,m. Using
the fact that the sequences differ from each other only in the position of ele-
ment f , which depends on the cut λi, we only need to test if f can be added to
a base constructed in Algorithm 2 after each choosing of an element eλi . It is
easily seen that Algorithm 2 implicitly check whether f ∈ Bσi , for i = 0, . . . ,m
deciding this way if f is possibly optimal. Hence, Algorithm 2 is equivalent to
one course of Algorithm 1. Since finding all the intersection points requires O(n)
time if all the fuzzy intervals are of the L-L type [1], it is easily seen that Al-
gorithm 2 takes O(n logn + nf(n)) time, where O(n log n) is time required for
sorting (λi, eλi) with respect to the values of λi.

An approach to computing N(f is optimal) of a given element f ∈ E is
symmetric. In this case one need to consider fuzzy configuration w̃−

{f} and take

into account intersection points of profile W̃−
f with profiles W̃+

e , e �= f , in
configuration w̃−

{f} (see Fig. 2). The numbers λ1, . . . , λm denote the cuts such
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Algorithm 2. Computing Π(f is optimal).
Input: A fuzzy weighted matroid M = (E, I), a distinguished element f ∈ E.
Output: Π(f is optimal).
Find all pairs (λi, eλi)
Sort (λi, eλi) in nondecreasing order with respect to the values of λi

Form σ0 = (u1, . . . , uq , f, eλ1 , . . . , eλm , v1, . . . , vr)
B ← ∅
for i ← 1 to q do

if B ∪ {ui} ∈ I then B ← B ∪ {ui}
if B ∪ {f} /∈ I then return 0 /*f /∈ Bσ0 */
for i ← 1 to m do

if B ∪ {eλi} ∈ I then B ← B ∪ {eλi}
if B ∪ {f} /∈ I then return λi /*f /∈ Bσi */

return 1 /*f ∈ Bσm */

1

λ1

λ2

λm

eλ1 eλ2eλmf u1u2uqv1v2vr x

Fig. 2. The partition of E with respect to the intersection points of profile W̃ −
f with

profiles W̃ +
e , e 	= f , in configuration w̃−

{f}

that W̃+
eλi

(λi) = W̃−
f (λi), i = 1, . . . ,m, under the assumption that λ1 ≤ · · · ≤

λm, W̃+
eλ1

(λ1) ≤ · · · ≤ W̃+
eλm

(λm).
Similarly, we define σ1, . . . , σm+1 with respect to elements eλ1 , . . . , eλm whose

right profiles intersect with the left profile of element f .

σ1 = (u1, . . . , uq, eλm , . . . , eλ1 ,f , v1, . . . , vr),
σi = (u1, . . . , uq, eλm , . . . , eλi ,f , eλi−1 . . . , eλ1 , v1, . . . , vr), i = 2, . . . ,m,

σm+1 = (u1, . . . , uq,f , eλm , . . . , eλ1 , v1, · · · , vr).

Set λm+1 = 1. The following proposition is symmetric to Proposition 5 (the
proof goes in the similar manner).

Proposition 6. If f ∈ Bσ1 then N(f is optimal) = 1. Otherwise, let k be the
largest index in {1, . . . ,m+1} such that f /∈ Bσk

. Then N(f is optimal) = 1−λk.

Algorithm 3 is similar in a spirit to Algorithm 2. Here, there is also no need
to apply Algorithm 1 for each sequence σm+1, . . . , σ1 for checking whether f is
a part of base Bσi induced by σi, i = m + 1, . . . , 1, according to Theorem 2.
Similarly, Algorithm 3 implicitly check whether f ∈ Bσi , for i = m + 1, . . . , 1
evaluating this way the necessary optimality of f , which is due to the fact that
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Algorithm 3. Computing N(f is optimal).
Input: A fuzzy weighted matroid M = (E, I), a distinguished element f ∈ E.
Output: N(f is optimal).
Find all pairs (λi, eλi)
Sort (λi, eλi) in nondecreasing order with respect to the values of λi

Form σm+1 = (u1, . . . , uq, f, eλm , . . . , eλ1 , v1, . . . , vr)
B ← ∅
for i ← 1 to q do

if B ∪ {ui} ∈ I then B ← B ∪ {ui}
if B ∪ {f} /∈ I then return 0 /*f /∈ Bσm+1 */
for i ← m downto 1 do

if B ∪ {eλi} ∈ I then B ← B ∪ {eλi}
if B ∪ {f} /∈ I then return 1 − λi /*f /∈ Bσi */

return 1 /*f ∈ Bσ1 */

sequences σm+1, . . . , σ1 differ from each other only in the position of element f .
Obviously, computing N(f is optimal) also requires O(n log n+ nf(n)) time.
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Abstract. When the time span of an event is imprecise, it can be rep-
resented by a fuzzy set, called a fuzzy time interval. In this paper we
propose a representation for 13 relations that can hold between inter-
vals. Since our model is based on fuzzy orderings of time points, it is not
only suitable to express precise relationships between imprecise events
(“the mid 1930’s came before the late 1930’s) but also imprecise relation-
ships (“the late 1930’s came long before the early 1990’s). Furthermore
we show that our model preserves many of the properties of the 13 rela-
tions Allen introduced for crisp time intervals.

Keywords: Temporal Reasoning, Fuzzy Relation, Fuzzy Ordering.

1 Introduction

A significant part of the work on temporal representation and reasoning is con-
cerned with time intervals. Allen [1] defined 13 qualitative relations that may
hold between two intervals A = [a−, a+] and B = [b−, b+]. Table 1 shows how
these relations are expressed by means of constraints on the boundaries of the
intervals. The relations are mutually exclusive and exhaustive, i.e. for any two
intervals, exactly one of the relations holds. Temporal information is however of-
ten ill–defined, e.g. because the definition of some historical events is inherently
subjective (e.g. the Renaissance), or because historical documents are usually
written in a vague style (e.g. “in the late 1930s”). Ill–defined time intervals can
either be intervals with uncertain boundaries [2], or imprecise intervals [4, 5]. In
this paper we will focus on the latter, i.e. we will assume that we have complete
knowledge about the time span of an event, but that it has a gradual beginning
and/or ending. This kind of time intervals can be represented as fuzzy sets.

To our knowledge, Nagypál and Motik [4] were the first to extend Allen’s work
to fuzzy time intervals, generalizing the relations of Table 1 to fuzzy relations.
However, their approach suffers from a number of important disadvantages, in
particular concerning the relations e, m, s and f . For example, e is not reflexive
in general; if A is a continuous fuzzy set in R, it holds that e(A, A) = s(A, A) =
f(A, A) = 0.5 while one would expect e(A, A) = 1 and s(A, A) = f(A, A) = 0.
Furthermore they only consider precise relationships. The approach proposed

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 108–113, 2006.
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Table 1. Allen’s temporal interval relations

Name Definition
1. before b(A, B) a+ < b−

2. overlaps o(A, B) a− < b− and b− < a+ and a+ < b+

3. during d(A, B) b− < a− and a+ < b+

4. meets m(A,B) a+ = b−

5. starts s(A, B) a− = b− and a+ < b+

6. finishes f(A, B) a+ = b+ and b− < a−

7. equals e(A, B) a− = b− and a+ = b+

Inverse relations
8. bi(A, B) = b(B,A) 11. mi(A,B) = m(B, A)
9. oi(A, B) = o(B, A) 12. si(A, B) = s(B, A)

10. di(A, B) = d(B,A) 13. fi(A, B) = f(B, A)

by Ohlbach [5] allows to express some imprecise temporal relations (e.g. A more
or less finishes B), but it does not deal with imprecise constraints such as “A
was long before B”. Moreover, many desirable properties that hold for Allen’s
relationships are not preserved in this fuzzification.

In Section 2 of this paper we introduce a generalization of Allen’s 13 interval
relations that can not only be used when the time intervals are fuzzy (“the mid
1930’s came before the late 1930’s), but is even powerful enough to express im-
precise relationships (“the late 1930’s came long before the early 1990’s”). The
magical ingredients are fuzzy orderings of time points; they are lifted into rela-
tionships between fuzzy time intervals through the use of relatedness measures
for fuzzy sets. In Section 3, we show that our model preserves important prop-
erties regarding (ir)reflexivity, (a)symmetry and transitivity. To our knowledge,
we are the first to introduce a generalization of Allen’s relations that can be
used for precise as well as imprecise temporal relationships between fuzzy time
intervals, and at the same time preserves so many desirable properties.

2 Fuzzy Temporal Interval Relations

Throughout this paper, we represent time points as real numbers. A real number
can, for example, be interpreted as the number of milliseconds since January 1,
1970. Because we want to model imprecise temporal relations, we need a way to
express that a certain time point a is long before a time point b, and a way to
express that a is before or approximately at the same time as b. Fuzzy relations are
particularly well suited for this purpose, due to the vague nature of these concepts.

Definition 1 (Fuzzy Ordering of Time Points). For β ∈]0, +∞[, the fuzzy
relation L�

β in R is defined as

L�
β (a, b) =

⎧⎨⎩
1 if b − a > β
0 if b − a ≤ 0

b−a
β otherwise

(1)
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for all a and b in R. L�
0 is defined by L�

0 (a, b) = 1 if a < b and L�
0 (a, b) = 0

otherwise. The fuzzy relation L�
β in R is defined as

L�
β (a, b) = 1 − L�

β (b, a) (2)

L�
β (a, b) represents the extent to which a is much smaller than b. Note that the

parameter β defines how the concept “much smaller than” should be interpreted.
Likewise, L�

β (a, b) represents the extent to which b is not “much smaller than
a”, in other words, the extent to which a is smaller than or approximately equal
to b. Moreover, L�

0 (a, b) = 1 if a ≤ b and L�
0 (a, b) = 0 otherwise, i.e L�

β is a
generalization of the crisp ordering ≤. We use these ordering relations between
time points as a stepping stone for the representation of imprecise relations that
may hold between fuzzy time intervals.

Proposition 1. Let β ≥ 0; it holds that for every a, b and c in R

TW (L�
β (a, b),L�

β (b, c)) ≤ L�
β (a, c) (3)

TW (L�
β (a, b),L�

β (b, c)) ≤ L�
β (a, c) (4)

TW (L�
β (a, b),L�

β (b, c)) ≤ L�
β (a, c) (5)

TW (L�
β (a, b),L�

β (b, c)) ≤ L�
β (a, c) (6)

TW (L�
β (a, b),L�

β (b, a)) = 0 (7)

where TW denotes the �Lukasiewicz t–norm TW (x, y) = max(0,x+ y − 1).

Recall that a fuzzy set A in R is convex and upper semicontinuous iff for each
α in ]0, 1] the set {x|A(x) ≥ α} is a closed interval.

Definition 2 (Fuzzy Time Period). A fuzzy time period is a normalised fuzzy
set in R which is interpreted as the time span of some event. A fuzzy (time)
interval is a convex and upper semicontinuous normalised fuzzy set in R. A
fuzzy time period A is called nondegenerate w.r.t. β iff A ◦ L�

β ◦ A = 1, i.e. if
the beginning of A is long before the end of A.

As recalled in Section 1, Allen’s definitions are based on constraints on the
boundaries of the intervals. If A and B are fuzzy time intervals, the boundaries
of A and B can be gradual. Hence, we cannot refer to these boundaries in the
same way we refer to the boundaries of crisp intervals. Therefore, as shown in
Table 2, we propose using relatedness measures to express the relations between
the boundaries of fuzzy intervals without actually referring to these boundaries.
For an arbitrary fuzzy relation R, these relatedness measures are defined as [3]:

A ◦T R ◦T B = sup
v∈R

T (B(v), sup
u∈R

T (A(u),R(u, v))) (8)

A �I R �I B = inf
v∈R

I(B(v), inf
u∈R

I(A(u),R(u, v))) (9)

(A �I R) ◦T B = sup
v∈R

T (B(v), inf
u∈R

I(A(u),R(u, v))) (10)
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Table 2. Relation between the boundaries of the crisp intervals [a−, a+] and [b−, b+],
and the fuzzy intervals A and B

Crisp Fuzzy Crisp Fuzzy

a− < b− A ◦ (L�
β � B) a− ≤ b− (A ◦ L�

β ) � B

a+ < b+ (A 	 L�
β ) ◦ B a+ ≤ b+ A 	 (L�

β ◦ B)

a+ < b− A 	 L�
β � B a+ ≤ b− A 	 L�

β � B

a− < b+ A ◦ L�
β ◦ B a− ≤ b+ A ◦ L�

β ◦ B

A �I (R ◦T B) = inf
u∈R

I(A(u), sup
v∈R

T (B(v),R(u, v))) (11)

(A ◦T R) �I B = inf
v∈R

I(B(v), sup
u∈R

T (A(u),R(u, v))) (12)

A ◦T (R �I B) = sup
u∈R

T (A(u), inf
v∈R

I(B(v),R(u, v))) (13)

where T is a left–continuous t–norm and I its residual implicator. For example
A◦ (L�

β �B) expresses the degree to which there is an element in A that is much
smaller than all elements in B. In the remainder of this paper we assume that T is
the �Lukasiewicz t–norm and I its residual implicator IW (x, y) = min(1, 1−x+y).

Note how the appearance of < (resp. ≤) in Table 2 corresponds to the use of
L�

β (resp. L�
β ). If β > 0, the relations from Table 2 become imprecise relations

(e.g. the beginning of A is long before the beginning of B). Using the expressions
from Table 2, we define the temporal relations for fuzzy intervals as shown in
Table 3. For convenience, we use the same notation for the temporal relations
when fuzzy intervals are used instead of crisp intervals.

3 Properties

When A and B are crisp intervals and β = 0, our definitions are equivalent to
Allen’s original definitions. Note that in Table 3 we have used the minimum to
generalize the conjunctions that appear in the crisp definitions. The use of the
minimum as t–norm makes it possible to prove the following proposition.

Proposition 2 (Exhaustivity). Let A and B be fuzzy time periods. It holds that

SW (b(A, B), bi(A, B), o(A, B), oi(A, B), d(A, B), di(A, B), m(A, B), mi(A, B),
s(A, B), si(A, B), f(A, B), fi(A, B), e(A, B)) = 1 (14)

where SW is the �Lukasiewicz t–conorm defined by SW (x, y) = min(1,x+ y) for
all x and y in [0, 1].

Proposition 3 (Mutual Exclusiveness). Let A and B be nondegenerate
fuzzy time periods w.r.t. β. Moreover, let R and S both be one of the 13 fuzzy
temporal relations. If R �= S, then it holds that

TW (R(A, B),S(A, B)) = 0 (15)
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Table 3. Fuzzy temporal interval relations

Name Definition

b(A,B) A 	 L�
β � B

o(A, B) min(A ◦ (L�
β � B), B ◦ L�

β ◦ A, (A 	 L�
β ) ◦ B)

d(A,B) min(B ◦ (L�
β � A), (A 	 L�

β ) ◦ B)

m(A,B) min(A 	 L�
β � B, B ◦ L�

β ◦ A)

s(A,B) min((A ◦ L�
β ) � B, (B ◦ L�

β ) � A, (A 	 L�
β ) ◦ B)

f(A, B) min(A 	 (L�
β ◦ B), B 	 (L�

β ◦ A),B ◦ (L�
β � A))

e(A,B) min((A ◦ L�
β ) � B, (B ◦ L�

β ) � A,A 	 (L�
β ◦ B), B 	 (L�

β ◦ A))

Proposition 4 (Reflexivity and Symmetry). The relations b, bi, o, oi, d,
di, s, si, f and fi are irreflexive and asymmetric w.r.t. TW , i.e. let R be one
of the aforementioned fuzzy relations and let A and B be fuzzy time periods. It
holds that

R(A, A) = 0 (16)
TW (R(A, B),R(B, A)) = 0 (17)

Furthermore, it holds that

e(A, A) = 1 (18)
e(A, B) = e(B, A) (19)

m(A, A) = A � L�
β � A (20)

TW (m(A, B), m(B, A)) ≤ min(A � L�
β � A, B � L�

β � B) (21)

The crisp meets relation m (between crisp intervals) is irreflexive, provided that
the beginning of each interval is strictly before the end of the interval, i.e. pro-
vided singletons (time points) are not allowed as time intervals; (20)–(21) is
a generalization of this observation in the sense that our meets relation (and
therefore also mi) is irreflexive and asymmetric if the beginning of A (resp. B)
is not approximately equal to the end of A (resp. B). From (14)–(21) it can
be concluded that the fuzzy temporal interval relations are mutually exclusive
and exhaustive w.r.t. the �Lukasiewicz t–norm and t–conorm. Moreover, the re-
flexivity and symmetry properties of our definitions are in accordance with the
corresponding properties of the temporal relations between crisp intervals.

Proposition 5 (Transitivity). The relations b, bi, d, di, s, si, f , fi and e are
TW –transitive, i.e. let R be one of the aforementioned fuzzy relations and let A,
B and C be fuzzy time periods. It holds that

TW (R(A, B),R(B,C)) ≤ R(A,C)
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No kind of transitivity holds for o, oi, m and mi in general. Thus the transitivity
properties of our definitions are in accordance with the transitivity properties of
the (crisp) temporal relations between crisp intervals.

The properties in this section are valid for arbitrary fuzzy time periods. In
practice however, it seems often more natural to consider only fuzzy time inter-
vals in this context.

4 Concluding Remarks

In this paper we have introduced a new approach to define possibly imprecise,
temporal interval relations between fuzzy time intervals. It can be shown that,
unlike in previous approaches, generalizations of all the important properties of
the crisp interval relations are valid. Further work will focus on the use of our
approach for temporal reasoning. The reader can verify that, for example

TW (d(A, B), b(B,C)) ≤ b(A,C)

which expresses that from “A takes place during B”, and “B happens before
C”, we deduce that “A takes place before C”.
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Abstract. As the amount of information on the web grows, users may
find increasing challenges in trusting and sometimes distrusting sources.
One possible aid is to maintain a network of trust between sources. In
this paper, we propose to model such a network as an intuitionistic fuzzy
relation. This allows to elegantly handle together the problem of igno-
rance, i.e. not knowing whether to trust or not, and vagueness, i.e. trust
as a matter of degree. We pay special attention to deriving trust informa-
tion through a trusted third party, which becomes especially challenging
when distrust is involved.

Keywords: network of trust, propagation, semantic web, intuitionistic
fuzzy relation, interval valued fuzzy relation.

1 Introduction

There is an increasing amount of information sources available to applications
and users on the web. As information source breadth increases, users may find
increasing challenges in trusting and sometimes distrusting sources. We expect
a systematic support for trusting information sources to be one of the keys
to a functional semantic web [2]. Trust in general has become an important
interdisciplinary research area. We refer to [7] for a recently published collection
of contributions which also shows an emerging interest in the notion of distrust.
Existing computational models usually deal with trust in a binary way: they
assume that a source is to be trusted or not, and they compute the probability
or the belief that the source can be trusted (see e.g. [8], [10]). Besides full trust or
no trust at all, in reality we also encounter partial trust. This is reflected in our
everyday language when we say for example “this source is rather trustworthy”
or “I trust this source very much”. In this paper we focus on (1) representing
trust as a matter of degree, including the case that an agent may fully trust
(or have blind faith) or distrust a source, and (2) on deriving trust information
obtained through a trusted third party (TTP).
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The first issue pertains to situations where sources can not be divided in the
trustworthy ones and the malicious ones in a clear cut way, but they can be
trusted to a certain extent. Think of trust as a matter of degree, i.e. instead
of computing the probability that a source can be trusted, we are interested in
the degree to which a source can be trusted. Whereas the existing probabilistic
approach is suitable for problems where security is at stake and malicious sources
need to be discerned from trustworthy ones, our approach leans itself better
for the computation of trust when the outcome of an action can be positive
to some extent, e.g., when provided information can be right to some degree,
as opposed to being either right or wrong. In [6], it is argued that trust and
distrust are distinct, opposite concepts. Trust and distrust can clearly coexist,
e.g. among politicians who trust each other enough to cooperate, but at the same
time maintain a “healthy level of distrust”. In Section 2, we introduce a model
that takes into account partial trust, distrust and ignorance simultaneously, as
different but related concepts.

The second problem can informally be described as: if the trust value of source
a in source b is p, and the trust value of b in source c is q, what information can be
derived about the trust value of a in c? This problem of atomic trust propagation
has been well researched in a probabilistic setting, where multiplication is used as
the main operation to combine trust values. However, when distrust is involved
as well, the need for a new, not necessarily commutative propagation operator
arises. We discuss this in Section 3.

2 Trust Network Between Sources

Trust is a multi-faceted concept, it can be full or partial, it depends on the con-
text, it depends on the purpose, etc. Developing a computational model forces
us to make some initial simplifying assumptions. One aspect is the domain de-
pendency of trust: e.g. we may trust the website of a store on information about
location and opening hours, but that does not imply that we also take for granted
everything they say in their advertisements. In this paper, we assume that we
are dealing with trust in a single domain, expressed between a set of sources
A. Another aspect is the purpose of trusting a source: in this paper, we are
not dealing with trust to support a decision. For instance, we do not provide or
discuss the use of trust-related thresholds that along with trust values may be
used for decision making.

Since trust may be a matter of degree, we use a number t between 0 and 1 to
express the degree of trust of a in b. This value is not a probability nor a belief.
In a probabilistic setting, a higher trust level corresponds to a higher probability
that a source can be trusted, while in our interpretation it corresponds to a
higher trust. Both approaches are complementary.

In our approach, 0 corresponds to total absence of trust. Roughly speaking,
this can occur in either one of the following situations: (1) a has reason to distrust
b fully, or (2) a has no information about b and hence no reason to trust b, but
also no reason to distrust b. Taking into account the fundamental difference
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between the two situations, and the fact that distrust is no less important than
trust in relying on a source, we propose to represent distrust d simultaneously
with trust as a couple (t, d), in which both t and d are numbers between 0
and 1. Trust and distrust do not have to sum up to 1, but we assume that
they satisfy the restriction t + d ≤ 1. Omitting this restriction would result in
allowing inconsistency — this is an interesting option for future development
that is however not further considered in this paper. As a result, the network of
trust between sources is represented by an intuitionistic fuzzy relation (IFR for
short).

Intuitionistic fuzzy set theory [1] is an extension of fuzzy set theory that defies
the claim that from the fact that an element x “belongs” to a given degree μA(x)
to a fuzzy set A, naturally follows that x should “not belong” to A to the extent
1−μA(x), an assertion implicit in the concept of a fuzzy set. On the contrary, an
intuitionistic fuzzy set (IFS for short) assigns to each element x of the universe
both a degree of membership μA(x) and one of non–membership νA(x) such that

μA(x) + νA(x) ≤ 1 (1)

thus relaxing the enforced duality νA(x) = 1−μA(x) from fuzzy set theory. Ob-
viously, when μA(x) + νA(x) = 1 for all elements of the universe, the traditional
fuzzy set concept is recovered. Formally an IFS A in a universe X is a mapping
from X to the lattice L∗ defined by [3]:

L∗ = {(t, d) ∈ [0, 1]2 | t+ d ≤ 1}
(t1, d1) ≤L∗ (t2, d2) ⇔ t1 ≤ t2 and d1 ≥ d2

An IFR in A is an IFS in A×A.

Definition 1. A trust network is a couple (A,R) such that A is a set of sources
and R is an IFR in A. For all a and b in A:

– R(a, b) is called the trust value of a in b
– μR(a, b) is called the trust degree of a in b
– νR(a, b) is called the distrust degree of a and b
– 1 − μR(a, b) − νR(a, b) is the hesitation of a towards b

IFS theory has been shown to be formally equivalent to interval valued fuzzy
set (IVFS) theory [4]. This is another extension of fuzzy set theory in which
the membership degrees are subintervals instead of numbers from [0, 1] (see [9]).
A couple (t, d) of trust t and distrust d corresponds to the interval [t, 1 − d],
indicating that the trust degree ranges from t to 1 − d. The hesitation degree
from IFS theory corresponds to the length of the interval. The longer the interval,
the more doubt about the actual trust value.

Table 1 illustrates this by means of some examples. (0, 1) and (1, 0) are respec-
tively the smallest and the biggest element of L∗, corresponding to full distrust
and full trust; obviously in these situations there is no hesitation. In the case of
no knowledge, namely (0, 0), the hesitation is 1. The most wide spread approach
(see column 2) only takes into account the degree of trust, and can not make
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Table 1. Examples of trust values

trust trust and distrust
IFS IVFS Guha[5]

t (t,d) [t, 1 − d] t − d

full trust 1.0 (1.0,0.0) [1.0,1.0] 1.0
full distrust 0.0 (0.0,1.0) [0.0,0.0] -1.0
no knowledge 0.0 (0.0,0.0) [0.0,1.0] 0.0
partial trust 0.2 (0.2,0.0) [0.2,0.8] 0.2
partial trust and distrust 0.6 (0.6,0.4) [0.6,0.6] 0.2
inconsistency (1.0,1.0) 0.0

the distinction between a case of full distrust and a case of no knowledge. In [5]
the distrust degree d is subtracted from the trust degree t, giving rise to a trust
value on a scale from -1 to 1. The examples (0.2, 0) and (0.6, 0.4) illustrate that
valuable information is lost in this mapping process. Indeed (0.6, 0.4) expresses
a strong opinion to trust a source to degree 0.6 but not more, while (0.2, 0)
suggests to trust to degree 0.2 but possibly more because there is a lot of doubt
in this case (the hesitation degree is 0.8). In [5], both cases are mapped to the
same value, namely 0.2.

3 Trust and Distrust Propagation

As recalled in the introduction, in a probabilistic framework, trust is propa-
gated by means of the multiplication operation. This can be straightforwardly
adapted to a fuzzy setting by using a t–norm, i.e. an increasing, commutative
and associative [0, 1]2− [0, 1] mapping that satisfies T (1,x) = x for all x in [0, 1].
Hence

T (μR(a, b), μR(b, c)) (2)

is the trust degree of a in c, derived from the trust degree of a in b and the trust
degree of b in c. Possible choices for T are TM(x, y) = min(x, y), TP(x, y) = x · y
and TL(x, y) = max(0,x + y − 1).

However if, instead of only the trust degree, we consider the complete trust
value, i.e. both the trust and the distrust degree, propagation is not straight-
forward at all anymore. In this case the propagation operator is an (L∗)2 − L∗

mapping Prop. An example shows that Prop is not necessarily commutative.
Suppose that a has full trust in b and b has full distrust in c, than intuitively we
infer that a has full distrust in c, i.e.

Prop((1, 0), (0, 1)) = (0, 1) (3)

However, if a has full distrust in b and b has full trust in c, more than one
approach is possible. The full distrust of a in b might lead a to ignoring b, i.e. no
knowledge is inferred

Prop((0, 1), (1, 0)) = (0, 0) (4)
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(3) and (4) together illustrate the non commutative behavior. However, the
distrust of a in b might encourage a to take on the contrary of what b is saying,
in other words to trust c fully, i.e.

Prop((0, 1), (1, 0)) = (1, 0) (5)

For both approaches (4) and (5) a reasonable motivation can be given. This
example only lifts part of the veil of the complex problem which propagation
scheme to choose. Our aim in this paper is not to provide a clear cut answer to
that question, but rather to provide some propagation operators that can be used
in different schemes. Recall that a t–conorm S is an increasing, commutative
and associative [0, 1]2 − [0, 1] mapping that satisfies S(0,x) = x for all x in
[0, 1]. Possible choices are SM(x, y) = max(x, y), SP(x, y) = x + y − x · y, and
SL(x, y) = min(1,x + y). A negator N is a decreasing [0, 1] − [0, 1] mapping
satisfying N (0) = 1 and N (1) = 0. The most commonly used one is Ns(x) =
1 − x.

Definition 2. The propagation operators Prop1, Prop2, and Prop3 are defined
by

Prop1((t1, d1), (t2, d2)) = (T (t1, t2), T (t1, d2))
Prop2((t1, d1), (t2, d2)) = (S(T (t1, t2), T (d1, d2)),S(T (t1, d2), T (d1, t2)))
Prop3((t1, d1), (t2, d2)) = (T (t1, t2), T (N (d1), d2))

for all (t1, d1) and (t2, d2) in L∗.

The following proposition shows that all three propagation operators copy the
information given by a fully trusted third party. It also proves that Prop1 and
Prop3 are in accordance with (4) because they derive no knowledge through a
third party that they distrust, while Prop2 takes on exactly the opposite infor-
mation given by a distrusted source and hence is in accordance with (5). Prop1
and Prop2 derive no knowledge through an unknown third party, while Prop3
displays a paranoid behavior in taking on some distrust information even from
an unknown third party.

Proposition 1. For all (t, d) in L∗ it holds that

Prop1((1, 0), (t, d)) = (t, d)
Prop2((1, 0), (t, d)) = (t, d)
Prop3((1, 0), (t, d)) = (t, d)

Prop1((0, 1), (t, d)) = (0, 0)
Prop2((0, 1), (t, d)) = (d, t)
Prop3((0, 1), (t, d)) = (0, 0)

Prop1((0, 0), (t, d)) = (0, 0)
Prop2((0, 0), (t, d)) = (0, 0)
Prop3((0, 0), (t, d)) = (0, d)

Using TP and SP, Prop1 and Prop2 take on the following form

Prop1((t1, d1), (t2, d2)) = (t1 · t2, t1 · d2)
Prop2((t1, d1), (t2, d2)) = (t1 · t2 + d1 · d2 − t1 · t2 · d1 · d2,

t1 · d2 + d1 · t2 − t1 · d2 · d1 · t2)
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This particular form of Prop1 has previously been proposed in [8] to combine
pairs of beliefs and disbeliefs. Subtracting the distrust degree from the trust
degree, the operations above reduce respectively to t1 · (t2 − d2) and (t1 − d1) ·
(t2 − d2), which are the two distrust propagation schemes put forward in [5].

4 Conclusion

In this paper we have introduced a many valued approach for a network of
trust between sources. We represent trust values as couples (t, d) in which t
corresponds to a trust degree, d to a distrust degree, and 1−t−d to an ignorance
degree. As such, to our knowledge, we are the first to introduce a model that
takes into account partial trust, distrust and ignorance simultaneously. We have
also presented a collection of three operators used for atomic propagation of
trust, distrust and ignorance. These operators are generic enough to be used in
several “trust” schemes, including those where trust, distrust and ignorance are
either full or partial, and those where propagation is commutative or not. The
ability to take into account ignorance and to propagate trust become extremely
meaningful in a large web where the trustworthiness of many sources is initially
unknown to a user, which does not imply that the user distrusts all of them, but
that the user may eventually gather evidences to trust or distrust some sources
and still ignore others.

The representation and propagation solutions presented in this paper are pre-
liminary since there is a lot more to computing trust on the web, such as further
propagation (longer chains) and aggregation (combining the trust information
received from several TTP’s). Yet one step further is to update the trust net-
work. Another aspect not yet mentioned in the paper is that it is important to
be able to calculate trust in a distributed manner taking into consideration both
efficiency and privacy.

Acknowledgments

Martine De Cock would like to thank the Fund for Scientific Research–Flanders
for funding her research, and the members of the Knowledge Systems Lab at
Stanford University for their hospitality and the inspiring cooperation, leading
to the current paper.

References

1. Atanassov, K. T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20 (1986)
87–96

2. Berners-Lee, T., Hendler, J., Lassila O.: The Semantic Web, Scientific American,
May 2001.

3. Deschrijver, G., Cornelis, C., Kerre E. E.: Intuitionistic Fuzzy Connectives Re-
visited. Proceedings of IPMU2002 (9th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems) (2002)
1839–1844



120 M. De Cock and P. Pinheiro da Silva

4. Deschrijver, G., Kerre, E. E.: On the relationship between some extensions of fuzzy
set theory. Fuzzy Sets and Systems 133 (2003) 227–235

5. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of Trust and Dis-
trust. Proceedings of WWW2004 (2004) 403–412

6. Harrison McKnight, D., Chervany, N. L.: Trust and Distrust Definitions: One Bite
at a Time. Lecture Notes in Artificial Intelligence 2246 (2001) 27–54

7. Herrmann, P., Issarny, V., Shiu, S.: Trust Management, Third International Con-
ference, iTrust 2005. Lecture Notes in Computer Science 3477 (2005)

8. Jøsang, A., Knapskog, S. J.: A metric for trusted systems. Proceedings of the 21st
National Security Conference, NSA (1998)

9. Türksen, I. B.: Interval Valued Sets Based on Normal Forms. Fuzzy Sets and Sys-
tems 20 (1986) 191–210

10. Zaihrayeu, I., Pinheiro da Silva, P., and McGuinness, D. L.: IWTrust: Improving
User Trust in Answers from the Web. Lecture Notes in Computer Science 3477
(2005) 384–392



I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 121 – 128, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SVM Classification of Neonatal Facial Images of Pain 

Sheryl Brahnam1, Chao-Fa Chuang2, Frank Y. Shih2, and Melinda R. Slack3 
 

1 Missouri State University, Computer Information Systems, 901 South National, 
Springfield MO 65804, USA 
Shb757f@smsu.edu 

2 New Jersey Institue of Technology, University Heights, Newark, NJ 07102 
{cxc1235, shih}@njit.edu 

3 Medical Director of Neonatology, St. John’s Hospital, 1235 E. Cherokee,  
Springfield, MO 65894, USA 

Melinda_slack@pediatrix.com 

Abstract. This paper reports experiments that explore performance differences 
in two previous studies that investigated SVM classification of neonatal pain 
expressions using the Infant COPE database. This database contains 204 photo-
graphs of 26 neonates (age 18-36 hours) experiencing the pain of heel lancing 
and three nonpain stressors. In our first study, we reported experiments where 
representative expressions of all subjects were included in the training and test-
ing sets, an experimental protocol suitable for intensive care situations. A sec-
ond study used an experimental protocol more suitable for short-term stays: the 
SVMs were trained on one sample and then evaluated on an unknown sample. 
Whereas SVM with polynomial kernel of degree 3 obtained the best classifica-
tion score (88.00%) using the first evaluation protocol, SVM with a linear ker-
nel obtained the best classification score (82.35%) using the second protocol.  
However, experiments reported here indicate no significant difference in per-
formance between linear and nonlinear kernels. 

1   Introduction 

Accurate assessment of pain in neonates is a difficult yet crucial task. The clinical 
definition of pain assumes the person experiencing pain has the ability to articulate 
the location, duration, quality, and intensity of their pain experience. Although non-
verbal self reporting methods have been devised that allow preverbal children to indi-
cate their pain levels by pointing to abstract renditions of facial expressions expres-
sive of increasing levels of discomfort, neonates must rely exclusively on the proxy 
judgments of others [3]. 

Several pain assessment measures have been developed to assist clinicians in diag-
nosing neonatal pain. Most of these instruments rely on the neonate’s facial displays. 
Facial displays are considered the gold standard of pain assessment [4] because they 
are the most specific and consistent indicators of pain. The facial characteristics of 
neonatal pain displays include prominent forehead, eye squeeze, naso-labial furrow, 
taut tongue, and an angular opening of the mouth [5]. Despite the fact that neonatal 
facial displays of pain are the most reliable source of pain assessment, instruments 
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based on facial displays are unsatisfactory because clinicians tend to underrate pain 
intensity [6] and often fail to utilize all the information available to them in the infants 
facial signals [7].  

In an attempt to bypass the unreliable observer, our research group is investigating 
the potential benefits face recognition technology would offer pediatric clinicians in 
diagnosing neonatal pain. Applying face recognition techniques to medical problems 
is a novel application area. Gunaratne and Sato [17] have used a mesh-based approach 
to estimate asymmetries in facial actions to determine the presence of facial motion 
dysfunction for patients with Bell’s palsy, and Dai et al. [12] have proposed a method 
for observing the facial expressions of patients in hospital beds. The facial images 
used in the Dai et al. study, however, were not of actual patients but rather of subjects 
responding to verbal cues suggestive of medical procedures and conditions. Our work 
with neonatal pain expressions is the only other research we are aware of that uses 
face recognition techniques to diagnose medical problems.  

We began work on this problem by developing the Infant COPE database. The fa-
cial displays of 26 neonates between the ages of 18 hours and 3 days old were photo-
graphed experiencing the pain of a heel lance and a variety of stressors, including 
transport from one crib to another, an air stimulus on the nose, and friction on the 
external lateral surface of the heel.  

In our initial study [1], three face classification techniques, Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA), and Support Vector Machines 
(SVMs), were used to classify the faces into two categories: pain and nonpain. The 
training and testing sets contained multiple samples of each subject in each expression 
category. No two samples were identical as each varied slightly in angle and facial 
configuration. While, ideally, as is the case with speech recognition software, samples 
of individual subjects would be available to personalize the classifier, in a clinical 
setting this is not practical as the typical newborn’s stay is short-term. The evaluation 
protocol used in our first study would probably only be applicable in intensive care 
situations where neonates have longer stays that present opportunities for collecting 
facial samples. It is more realistic to assume that the classifier will need to be trained 
on one set of subjects and then applied out of the box to future newborns. In [2], an 
evaluation protocol was developed that evaluated trained classifiers using unknown 
subjects. 

Results of the two studies were contradictory in terms of the best kernel to use with 
SVM. An SVM with polynomial kernel of degree 3 obtained the best classification 
score (88.00%) in the first study, and an SVM with a linear kernel obtained the best 
classification score (82.35%) in the second study. Sampling error caused by the small 
number of images in the sample pool is one possible explanation for this discrepancy. 
A set of new experiments using the first protocol was designed to explore sample 
error. The results of these experiments, reported in section 4, suggest that there is no 
significant difference in the performance of an SVM with a linear kernel and an SVM 
with a polynomial kernel of degree 3. 

In section 2, we describe of the facial displays in the infant COPE database more 
completely. In section 3, we outline the two experimental protocols, designated A and 
B, used in the earlier studies. In section 4, we compare SVM classification rates  
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reported in the two studies, along with baseline PCA and LDA rates. We then present 
the results of a new study that varies the size of the sample pool. We conclude the 
paper, in section 5, by pointing out some limitations in our current work and by offer-
ing suggestions for future research. 

2   The Infant COPE Database 

The Infant COPE Database, described more completely in [1] and [2], contains 204 
facial images of 26 neonates experiencing the pain of a heel lance and three nonpain 
stressors: transport from one crib to another (a stressor that triggers crying that is not 
in response to pain), an air stimulus on the nose (a stressor that provokes eye 
squeeze), and friction on the surface of the heel (a stressor that produces facial ex-
pressions of distress that are similar to the expressions of pain). In addition to these 
four facial displays, the database includes images of the neonates in the neutral state 
of rest.  

Fig. 1 provides two example sets of the five neonatal expressions of rest, cry, air 
stimulus, friction, and pain included in the Infant COPE database. Of the 204 images 
in the database, 67 are rest, 18 are cry, 23 are air stimulus, 36 are friction, and 60 are 
pain. 

 
    Rest                   Cry                 Air Stimulus       Friction             Pain        

Fig. 1. Examples of the five facial expressions in the Infant COPE database 

The data collection process complied with the protocols and ethical directives for 
research involving human subjects at Missouri State University and St. John’s Health 
System, Inc. Informed consent was obtained from a parent, usually the mother in 
consultation with the father. Most parents were recruited in the neonatal unit of a St. 
John’s Hospital sometime after delivery. Only mothers who had experienced uncom-
plicated deliveries were approached. The subjects were born in a large Midwestern 
hospital in the United States of America. All neonates used in the study were Cauca-
sian, evenly split between genders (13 boys and 12 girls), and in good health. The 
interested reader is referred to [1] and [2] for more information on the data collection 
design. 
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3   Evaluation Protocols  

In [1] and [2], images of the five facial expressions in the Infant COPE database were 
grouped into two categories: pain and nonpain. The set of nonpain images combined 
the rest, cry, air stimulus, and friction images and contained a total of 144 images. 
The set of pain images consisted of the remaining 60 images. 

The evaluation protocol used in the first study, designated here as protocol A, fo-
cused on facial expression representation. The two classes of pain and nonpain facial 
expressions included representative images of all 26 subjects. Using a cross-validation 
technique, classification was a four step process. In step 1, the images were randomly 
divided into ten segments. In step 2, nine out of the ten segments were used in the 
training session. The remaining segment was used in testing, and an average classifi-
cation score was obtained from the testing set of images. In step 3, steps 1 and 2 were 
repeated ten times. Finally, in step 4, the ten classification scores were averaged to 
obtain a final performance score for each classifier.  

In the second study, we trained the classifiers on one set of subjects and tested 
them on another. Using protocol B, twenty-six experiments were performed, one for 
each subject. The facial images of 25 subjects formed the testing set, and the images 
of the remaining subject formed the testing set. The 26 classification scores were 
averaged to obtain a final performance score for each classifier.  

4   Experimental Results  

In this section, we compare the SVM performance results reported in the first two 
studies. We also introduce a new set of experiments designed to determine whether 
the performance differences in the earlier studies are due to sampling error.  

SVMs with five kernels (linear, RBF, polynomial degree 2, polynomial degree 3, 
and polynomial degree 4) were assessed using protocols A and B. The regularization 
parameter, C, used in the SVM experiments was determined using a grid search. 
Since the recognition rates in our experiments were not significantly different in terms 
of different values for C, we adopted the regularization parameter C=1. The band-
width parameter in SVM using RBF kernels was also optimized using a grid search. 
For comparison purposes, baseline PCA and LDA using the sum of absolute differ-
ences, or L1 distance metric, were also evaluated.  

The SVM, PCA, and LDA experiments were processed in the MATLAB environ-
ment under the Windows XP operating system using a Pentium 4 – 2.80 GHz proces-
sor. SVM was implemented using the OSU SVM Classifier MATLAB Toolbox de-
veloped by Ohio State University. 

The general experimental procedures used in all our experiments can be divided 
into the following stages:  preprocessing, feature extraction, and classification. In the 
preprocessing stage, the original images were cropped, rotated, and scaled. Eyes were 
aligned roughly along the same axis. The original 204 images, size 3008 x 2000 pix-
els, were also reduced to 100 x 120 pixels. In the feature extraction stage, facial fea-
tures were centered within an ellipse and color information was discarded. The rows 
within the ellipse were concatenated to form a feature vector of dimension 8383 with 
entries ranging in value between 0 and 255. PCA was then used to reduce the  
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dimensionality of the feature vectors further. The first 70 principle components re-
sulted in the best classification scores. Finally, in the classification stage, the feature 
vectors were used as inputs to the classifiers. 

Table 1 compares the average classification scores obtained using the two proto-
cols. Referring to Table 1, the average classification score for PCA was 80.36% and 
for LDA 80.32%. SVM, as expected, outperformed both PCA and LDA, except in the 
case of RBF kernel. Given previous reports in facial expression classification using 
SVM (see, for instance, [8]), we did not expect the RBF kernel performance to be as 
low as it was. An SVM with polynomial degree 3 provided the best recognition rate 
of 88.00% in the experiments using protocol A. An SVM with linear kernel provided 
the best recognition rate of 82.35% using protocol B.  

Table 1. Comparison of SVM classification rates using protocol A and B  

Type of svm Protocol A   Protocol B Average (A & B) 
Linear 83.67% 82.35% 83.01% 
Polynomial degree = 2 86.50% 79.90% 83.20% 
Polynomial degree = 3 88.00% 80.39% 84.20% 
Polynomial degree = 4 82.17% 72.06% 77.12% 
RBF   70.00% 70.10% 70.05% 
PCA with L1 distance 80.33% 80.39% 80.36% 
LDA with L1 distance 83.67% 76.96% 80.32% 

 

There are several possible explanations for the kernel performance differences in 
the two studies. The most likely cause for the discrepancy is sampling error due to the 
small number of images in the sample pool. The average performance of the SVMs 
using the two kernels, for instance, is very close, the difference being only 1.18%. 
However, since the data in the training sets used in the two sets of experiments differ 
only in a few inputs (approximately 15%), we questioned this assumption. 

To determine if the difference in kernel performance is the result of sampling error, 
we performed new experiments that varied the size of the sample pool. We did this by 
comparing SVM classification of pain expressions to each of the other four facial 
displays. This resulted in pool sizes of 83 images for pain versus air stimulus, 78 
images for pain versus cry, 96 images for pain versus friction, and 127 images for 
pain versus rest. Only protocol A was used in these experiments, as splitting expres-
sions for each subject (protocol B) resulted in pool sizes that were too small for  
training.  

Tables 2-4 present the results of the new set of experiments. The average perform-
ance of the four experiments using SVM with a linear kernel is 85.51%, and the aver-
age performance of SVM with a polynomial kernel of degree 3 is 87.74%. The differ-
ence in kernel performance (2.23%) is half that in [1] (4.33%), which also used proto-
col A. This leads us to believe that sample error is most likely the cause of kernel 
performance differences. As far as neonatal facial expressions are concerned, the 
results of the new set of experiments suggest that there is no significant classification 
difference in SVMs using a linear kernel versus a polynomial kernel of degree 3  
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Table 2. Pain vs. Air stimulus 

Method Classification score
Linear 90.00% 
Polynomial degree = 2 77.78% 
Polynomial degree = 3 83.33% 
Polynomial degree = 4 78.89% 
RBF   66.67% 

Table 3. Pain vs. Cry 

Method Classification score
Linear 71.25% 
Polynomial degree = 2 78.75% 
Polynomial degree = 3 80.00% 
Polynomial degree = 4 76.25% 
RBF   75.00% 

Table 4. Pain vs. Friction 

Method Classification score
Linear 90.00% 
Polynomial degree = 2 96.00% 
Polynomial degree = 3 93.00% 
Polynomial degree = 4 92.00% 
RBF   60.00% 

Table 5. Pain vs. Rest 

Method Classification score
Linear 90.77% 
Polynomial degree = 2 84.62% 
Polynomial degree = 3 94.62% 
Polynomial degree = 4 86.15% 
RBF   53.85% 

Kernel. This conclusion is consistent with [8], which examined SVM expressing clas-
sification performance using a number of adult facial databases. 

5   Conclusion 

This paper reports new experiments intended to explore performance differences in 
two pervious studies that investigated SVM classification of neonatal pain expres-
sions using the Infant COPE database. This database contains 204 photographs of 26 
neonates (age 18-36 hours) experiencing the acute pain of a heel lance and three non-
pain stressors.  
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The SVM classifiers were trained and tested using images divided into two sets: 
pain and nonpain. Two separate evaluation protocols, designated in this paper as A 
and B, were also used. Protocol A, described in [1], assumes that samples of neonates 
are available for customizing the classifier. Representative expression samples of all 
26 subjects were thus included in both the training and the testing sets. Protocol B, 
described in [2], assumes that the classifiers will be trained on one sample and tested 
on another. The facial images of 25 subjects formed the training set, and the images of 
the remaining subject formed the testing set. A total of 26 experiments were thus 
performed using protocol B, one for each subject. An SVM of polynomial kernel 
degree 3 obtained the best classification score of 88.00% using protocol A, and an 
SVM with a linear kernel obtained the best classification score of 82.35% using  
protocol B. 

We assumed that the difference in kernel performance was due to sample error. A 
set of new experiments that varied the size of the sample pool was performed to test 
our assumption. In these experiments, which used protocol A, the average perform-
ance of SVM with a linear kernel was 85.51%. With polynomial kernel of degree 3 it 
was 87.74%. The difference in kernel performance is half that reported in [1], which 
also used protocol A. This leads us to believe that there is no significant performance 
difference using SVM with a linear kernel and polynomial kernel of degree 3.  

We would like to conclude this paper with some general remarks concerning the 
limitations, future directions, and significance of our research in neonatal pain  
classification.  

There are a number of limitations in our current work. First, these studies use two-
dimensional still photographs and do not consider the dynamic and multidimensional 
nature of facial expressions. The classification rates reported in these two studies, 
however, are consistent with facial expression classification rates reported using video 
displays of adult facial expressions. For example, [9] reports classification rates be-
tween 88%-89%. Second, we have yet to explore facial shape information in the facial 
displays. Third, the focus thus far has been on acute pain. We have not examined 
facial expressions in reaction to repeated pain experiences. 

In terms of future directions, we are working on addressing the limitations noted 
above. We are currently collecting video data of neonates experiencing additional 
stressors and two types of pain: acute and repeated pain. We are also working on 
experiments that incorporate shape information. In addition, we are examining the 
classification performance of a number of neural network architectures. For instance, 
the performance rate of NNSOA, a neural network simultaneous optimization algo-
rithm, using protocol B is reported in [2]. 

Finally, in terms of significance, we expected that the performance of SVMs in the 
first study that used protocol A would be better than SVMs in the second study that 
used protocol B. What we did not know is how well SVM performance would hold up 
using protocol B. SVM results compare well, and the classification rates in both stud-
ies indicate a high potential for applying standard face recognition technology to this 
problem domain. We believe the results of the SVM experiments encourage further 
explorations using more sophisticated face recognition technologies. 
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Abstract. In this paper, we implement hand gesture recognition system using 
fuzzy algorithm and neural network for Post PC (the embedded-ubiquitous en-
vironment using blue-tooth module, embedded i.MX21 board and smart gate-
notebook computer). Also, we propose most efficient and reasonable hand ges-
ture recognition interface for Post PC through evaluation and analysis of per-
formance about each gesture recognition system. The proposed gesture recogni-
tion system consists of three modules: 1) gesture input module that processes 
motion of dynamic hand to input data, 2) Relational Database Management 
System (hereafter, RDBMS) module to segment significant gestures from input 
data and 3) 2 each different recognition module: fuzzy max-min and neural 
network function recognition module to recognize significant gesture of con-
tinuous / dynamic gestures. Experimental result shows the average recognition 
rate of 98.8% in fuzzy max-min module and 96.7% in neural network recogni-
tion module about significantly dynamic gestures. 

1   Introduction 

The Post PC refers to a wearable PC that has the ability to process information and 
networking power. The Post PC that integrates sensors and human interface technolo-
gies will provide human-centered services and excellent portability and convenience 
[1]. The Post PC service natural user interface, so user can get more convenient and 
realistic information service and also includes sensor technology such as haptic and 
gesture device. The haptic technology can analyze user's intention distinctly, such as 
finding out whether user gives instruction by intention, judging and taking suitable 
response for the user’s intention. There are many specific technologies under this 
category, such as gesture realization, action pattern grasping, brow realization, living 
body signal realization, and hand movement [2], [3]. 

In this paper, we implemented systems that recognizes significant dynamic gesture 
of user in real-time and anytime-anywhere manner using fuzzy algorithm and neural 
network. Also, we propose most efficient and reasonable hand gesture recognition 
interface for Post PC through evaluation and analysis of performance (whole size of 
system, the processing speed-recognition time and recognition rate etc.) about each 
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gesture recognition system. The proposed gesture recognition system consists of three 
modules: 1) gesture input module that processes motion of dynamic hand to input 
data, 2) RDBMS module to segment significant gestures from input data, and 3) 2 
each different hand gesture recognition module: fuzzy max-min and neural network 
recognition module to recognize significant gesture of continuous / dynamic gestures 
and to enhance the extensibility of recognition. 

2   Hand Gesture Input Module and RDBMS Module 

In this paper, we develop an input method by which human can convey idea rapidly, 
and can express various intentions via dynamic hand gestures. The focus of this study 
is to suggest a way to capture user’s intention easily and to take suitable response for 
the user’s intension. Especially, we will apply this system for the Post PC and its 
platform. Also, we use 5 DT Company’s 5th Data Glove System (wireless) which is 
one of the most popular input devices in haptic application field. It can sense data of 
hand gesture. 5th Data Glove System is basic gesture recognition equipment that can 
capture the degree of finger stooping using fiber-optic flex sensor and acquires data 
through this. Also, because it has pitch and roll sensor inside, the pitch and roll of 
wrist can be also recognized without other equipment possible. In order to implement 
gesture recognition interface, this study choose 15 basis hand gestures through prior-
ity "Korean Standard Sign Language Dictionary [4]” analysis. And 9 overlapped 
gestures are classified as pitch and roll degree. Thus, we developed 24 significant 
gesture recognition models. Fig. 1 shows a classification of basis hand gesture used in 
this study.  

 

Fig. 1. The classification of basis hand gesture 

The captured dynamic gesture data of various users is transmitted to embedded 
i.MX21 board and server (Oracle 10g RDBMS) through smart gate (notebook com-
puter). The gesture data transmitted to server is used to as a training data for gesture 
recognition model by Oracle 10g RDBMS's SQL Analytic Function. And, gesture 
data that is transmitted to embedded i.MX21 is used as the input to fuzzy and neural 
network recognition module for significant gesture recognition. The architecture of 
gesture input module is shown in Fig. 2.  
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Fig. 2. The architecture of gesture input module 

We can use a file-system or spreadsheet programs such as Ms-Office Excel to train 
and construct the recognition model database. But this approach has several disadvan-
tages. First, many tedious manual steps for data processing, including data inserting, 
updating and deleting, may cause a lot of trial and error. And, as the database size 
increases, it takes a lot of time to process the data. Moreover, the administrative 
works for the source code, data management and manageability are burdens for the 
analysis. In order to overcome the above disadvantages, we adopt an RDBMS tech-
nology for database management. The RDBMS is used to classify stored gesture 
document data from gesture input module into valid gesture record set and invalid 
record set (that is, status transition record set) and to efficiently analyze valid record 
set. In particular, we found that the SQL language, which is the standard language for 
managing and analyzing data saved in RDBMS, can be greatly helpful in the analysis 
and segmentation of input gesture data. The analytic function features, which are 
recently introduced in the SQL language, perfectly provide the analysis power for 
gesture validity analysis. Fig. 3 shows segmentation result of the input data using the 
analytic function in SQL. 

 

Fig. 3. The segmentation of input data by Analytic Function of SQL 
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3   Fuzzy Max-Min Module for Hand Gesture Recognition 

The fuzzy logic is a powerful problem-solving methodology with a myriad of applica-
tions in embedded control and information processing. Fuzzy provides a remarkably 
simple way to draw definite conclusions from vague, ambiguous or imprecise infor-
mation. Fuzzy Logic is a paradigm for an alternative design methodology which can 
be applied in developing both linear and non-linear systems for embedded control and 
has been found to be very suitable for embedded control applications [5]. Also, fuzzy 
logic is used in system control and analysis design, because it shortens the time for 
engineering development and sometimes, in the case of highly complex systems, is 
the only way to solve the problem and is a structured, model-free estimator that ap-
proximates a function through linguistic input/output associations and Fuzzy Logic 
provides a simple way to arrive at a definite conclusion based upon vague, ambigu-
ous, imprecise, noisy, or missing input information.  

In a fuzzy set, all the elements have their grades of membership to that set. This 
concept would make it possible to give strong flexibility to the conventional set con-
cept. Also, The standard set of truth degrees is the real interval [ 0,1 ] with its natural 
ordering  ( 1 standing for absolute truth , 0 for absolute falsity ) ; but one can work 
with different domains , finite or infinite , linearly or partially ordered [6]. Namely, 
fuzzy set defines membership of its elements from U:  [0, 1] and in fuzzy set theory 
the membership grade can be taken as a value intermediate between 0 and 1 although 
in the normal case of set theory membership the grade can be taken only as 0 or 1. 

The Fuzzy Logic System(hereafter, FLS) consists of the fuzzy set, fuzzy rule base, 
fuzzy reasoning engine, fuzzifier, and defuzzifier and the design of a FLS includes the 
design of a rule base, the design of input scale factors, the design of output scale fac-
tors, and the design of the membership functions. Also, because each fuzzy relation is 
a generalization of relation enemy ordinarily, the fuzzy relations can be composed. 
The fuzzy max-min CRI for fuzzy relation that is proposed in this paper is defined in 
Fig. 4. 

The training and recognition model by the RDBMS is used with input variable of 
fuzzy algorithm (fuzzy max-min composition), and recognizes user's dynamic gesture 
through efficient and rational fuzzy reasoning process. Therefore, we decide to take  
 

 

Fig. 4. Fuzzy Max-Min CRI (Direct Method) 
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the characteristics of gesture input data as the average value over repeated experiment 
result values, where the repetition number is controlled by several parameters. Input 
scale factors transform the real inputs into normalized values, and output scale factors 
transform the normalized outputs into real values. Also, we decide to give a weight to 
each parameter and do fuzzy max-min reasoning through comparison with recogni-
tion model constructed using RDBMS module. The proposed membership function of 
the fuzzy set is defined as in the following formula (1) and Fig. 5 describes the for-
mula (1) pictorially (if express membership functions partially in case fuzzy input 
variable is various: “S” in Korean Standard Sign Language Dictionary). 

≤<+−
−

−
≤<

≤<+−
−

=
qxt1t)(x

t)(q
1

txs1

sxp1s)(x
p)(s

1

tzμ

 

(1) 

If compare easily, “S” in Korean Standard Sign Language Dictionary is hand ges-
ture that corresponds to rock in game of "scissors-rock kerchief”. The hand gesture of 
all three types about "S" is currently shown in the Fig. 5: 1) first case of “S” is that 
holds up thumb finger on the index and middle finger in state of the other all fingers 
stoop naturally (where, This gesture is defined as "THUMB_UP" for hand motion), 2) 
second case of “S” is that holds up the thumb finger on index finger (where, This 
gesture is defined as "THUMB_OUT"), and 3) finally, “S” is that puts the thumb in 
the remainder stooped 4 fingers (where, This gesture is defined as "THUMB_IN"). 
And according to stooping degree (spread-extend, stoop and normal) of the thumb, we 
prescribed 9 kinds of hand actions about each hand motions. 

 

 

Fig. 5. The fuzzy membership functions 
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4   Neural-Network Module for Hand Gesture Recognition 

An Artificial Neural Network (hereafter, ANN) is an information processing para-
digm that is inspired by the way biological nervous systems, such as the brain, proc-
ess information and is configured for a specific application, such as pattern recogni-
tion or data classification, through a learning process. Neural networks, with their 
remarkable ability to derive meaning from complicated or imprecise data, can be used 
to extract patterns and detect trends that are too complex to be noticed by either hu-
mans or other computer techniques [7]. Also, neural network is a powerful data mod-
eling tool that is able to capture and represent complex input/output relationships. The 
true power and advantage of neural networks lies in their ability to represent both 
linear and non-linear relationships and in their ability to learn these relationships 
directly from the data being modeled. ANN is composed of a large number of highly 
interconnected processing elements working in unison to solve specific problems and 
the most common neural network model is the multilayer perceptron (MLP). The 
proposed algorithm for perceptron training and Generalized Delta Rule (hereafter, 
GDR) for weight conversion process are defined as in the following formula (2).  
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The gesture data is repeatedly presented to the neural network. With each presenta-
tion, the error between the network output and the desired output is computed and fed 
back to the neural network. The neural network uses this error to adjust its weights 
such that the error will be decreased. This sequence of events is usually repeated until 
an acceptable error has been reached or until the network no longer appears to be 
learning. 

 

 

Fig. 6. The basic concept of gesture recognition system using neural network 
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The captured dynamic gesture data of various users is transmitted to embedded 
i.MX21 board and saved as a document (text type). The significant hand gesture data 
(in analog format) of users is then fed into a neural network that has been trained to 
make the association between the gesture data and a weight value that corresponds to 
the gesture recognition model by RDBMS. The output from the neural network is 
then calculated by weight value's summation and this is result of user's dynamic ges-
ture recognition. The basic concept of gesture recognition system using neural net-
work is shown in Fig. 6.  

5   Experiments and Results - Performance Evaluation 

Experimental environment consists of blue-tooth module with i.MX21 board under 
embedded LINUX and implemented wireless-ubiquitous environment. This can be 
analyze by one method to solve conditionality in space, complexity between transmis-
sion mediums (cable elements), limitation of motion and incommodiousness on use 
soon in wire transmission method. In the proposed 2 recognition system, gesture input 
module uses blue-tooth module for wireless communication. And for RDBMS-based 
segmentation module, we use Oracle 10g RDBMS. The operating system platform is 
LINUX. 5th Data Glove System transmits 7 kinds of data (5 gesture data, 2 Pitch & Roll 
data) to embedded i.MX21 board via smart-gate notebook computer with transmission 
speed of maximum 19,200 bps in case of blue-tooth module.  

The proposed fuzzy gesture recognition system’s file size is 141 Kbytes and it can 
calculate 200 samples per seconds on Wearable Personal Station (hereafter, WPS)-
embedded i.MX21 board. The overall process of recognition system consists of three 
major steps. In the first step, the user prescribes user’s hand gesture using 5th Data 
Glove System (wireless), and in the second step, the gesture input module captures 
user's data and change characteristics of data by parameters, using RDBMS module to 
segment recognition model. In the last step, it recognizes user's dynamic gesture 
through a fuzzy reasoning process and a union process in fuzzy min-max recognition 
module, and can react, based on the recognition result, to user via speech and graphics 
offer. And also the appropriately segmented data becomes the input data for fuzzy 
max-min recognition module. Finally, the calculated fuzzy value for gesture recogni-
tion is used as a judgment for user action. The process of automatic human gesture 
recognition is shown in Fig. 7.  

The proposed neural network gesture recognition system’s file size is 215 Kbytes and 
it can calculate 175 samples per seconds on WPS. The overall system process of train-
ing module using neural network are as following: 1) after initialization of critical 
value and Connection weight, input training pattern and target pattern by RDBMS, 2) 
calculate output of R layer's PE, and compare target output and actuality output and 3) 
if target output and actuality output are same, it end training. Otherwise, train last 
pattern after error control. Also, The overall system process of recognition module 
using neural network are as following: 1) After it loading connection weight, and 
input  recognition pattern using 5th Data Glove System, 2) it calculate output results, 
and after compare with the recognition rate, remember maximum value, 3) If number 
of trained pattern conforms, it display recognition result. The process of gesture train-
ing and recognition in neural network recognition system are shown in Fig. 8 and Fig. 9. 
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Fig. 7. The flow-chart of fuzzy gesture recognition system 

 

Fig. 8. The flow-chart of training module Fig. 9. The flow-chart of recognition module 

 
Experimental set-up is as follows. The distance between server (Oracle 10g 

RDBMS) and smart-gate is about radius 10M's ellipse form. As the gesture, we move 
5th Data Glove System to prescribed position. For every 20 reagents, we repeat this 
action 10 times. Experimental result, Fig. 10 shows the average recognition rate of 
98.8% in fuzzy max-min module and 96.7% in neural network recognition module 
about significantly dynamic gestures. Also, Fig. 11 shows the average recognition 
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Fig. 10. The average recognition rate 

 

Fig. 11. The average recognition time 

time of 0.16 seconds in fuzzy max-min module and 0.23 seconds in neural network 
recognition module about each recognition models. The root causes of errors between 
recognition of gestures are various: that is, imprecision of prescribed actions, user's 
action inexperience, and the changes in experiment environment physical transforma-
tion at 5th Data Glove System fiber-optic flex sensor.  

6   Conclusions 

The Post-wearable PC is subset of ubiquitous computing that is the embedding of 
computers in the world around us. In this paper, we implemented the hand gesture 
recognition interface that can recognize the dynamic gesture of the user in real-time 
manner under wireless integrated environment using blue-tooth module. In this paper, 
through analysis and evaluation of performances such as recognition rate, recognition 
time(processing speed of system) and recognition system's whole size about 2 each 
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gesture recognition systems, we could certify that gesture recognition system using 
fuzzy algorithm is reasonable and effective gesture recognition module than using 
neural network  in the Post PC. In the future, by integrating hand gesture recognition 
system with other haptics such as smell, taste, hearing and sight, we would like to 
develop advanced multi-modal HCI technology. 
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Abstract. Ubiquitous computing is a new era in the evolution of computers. Af-
ter the mainframe and PC (personal computers) phases, the phase of ubiquitous 
computing device begins. In this paper, we implement and evaluate glove-based 
HCI (Human Computer Interaction) methods using fuzzy algorithm and neural 
network for post PC in the ubiquitous computing. Using glove, we implement 
hand gesture recognition systems for the wearable PC. One system uses combi-
nation of fuzzy algorithm and RDBMS (Relational Database Management Sys-
tem) module, the other system uses neural network. Both systems are imple-
mented on the platform of minimized wearable computer (based on i.MX21). 
After implementation, we conduct some performance evaluation in the mobile 
condition. And then we discuss strength and weakness of each method. Finally, 
we suggest possible improvements methods for HCI based on the wearable 
computers in the mobile condition. 

1   Introduction 

The idea of ubiquitous computing first arose from contemplating the place of today's 
computer in actual activities of everyday life. Ubiquitous computing is about net-
worked microprocessors embedded in everyday objects: not just cellular phones and 
home appliances but also books, bookshelves, bus stops and bathtubs - all talking to 
each other over wireless links. Hundreds of internet enabled computers per human 
being, none of them resemble a conventional keyboard and monitor [1][2]. 

A common focus shared by researchers in mobile, ubiquitous and wearable com-
puting is the attempt to break away from the traditional desktop computing paradigm. 
Computational services need to become as mobile as their users [3][4][5].  

In this paper, we implement gesture recognition systems using fuzzy algorithm and 
neural network for wearable PC. And then, we conduct efficiency test comparing two 
systems. Most of the applications using wearable computers need user’s mobility. For 
this reason, we evaluate the performance of gesture recognition systems at the posture 
of repose and at the posture of movement, respectively. After that, we analyze the 
problems of the implemented systems and suggest improving HCI method for wear-
able computers. 
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2   Implementation of Gesture Recognition Systems 

In this paper, we use 5DT’s Data Glove for hand gesture input device. This device is 
one of the most popular input devices in gesture recognition application field. And, 
we also use Motorola’s i.MX21 ADS board for wearable PC platform, using this 
platform we minimized the size of the platform for the purpose of handiness. Fig. 1 
and Fig.2 shows Motorola’s i.MX21 ADS board and minimized wearable PC plat-
form, respectively. 

Actual size of the platform which we used in this paper is as small as name card. 
Using these device and platform, we implemented 24 significant gestures recognition 
systems.  

 

 

Fig. 1. i.MX21 ADS Board 

 

Fig. 2. Minimized wearable PC platform   ( based on i.MX21 ADS board) 
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Gesture signals from the glove are consists of 9 bytes packet and has the following 
structure: header, finger1, finger2, finger3, finger4, finger5, pitch, roll and checksum. 
The header value is always 0x80 (128 in decimal). For the purpose of indicating 
user’s gesture, each finger value is ranged from 0 to 255. Low value indicates in-
flexed finger, and a high value indicates flexed finger. According to the different 
user’s hand size, gesture signals to the same gesture may different. To meet this prob-
lem effectively, following formula (1) software calibration could be used. 
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2.1   Gesture Recognition System Using Fuzzy Algorithm 

Fig. 3 shows whole configuration of the proposed gesture recognition system using 
Fuzzy algorithm. The captured dynamic gesture signals of various users using glove 
are transmitted to the minimized wearable PC platform and server (Oracle 10g 
RDBMS) at the same time. The transmitted signals to the server are used for training 
data for gesture recognition model by Oracle 10g RDBMS's SQL Analytic Function. 
And, transmitted signals to the minimized wearable PC platform are inputted to the 
fuzzy recognition module for significant gesture recognition.  

The fuzzy max-min CRI for fuzzy relations which is proposed in this paper is 
shown in Fig. 4.  

Our gesture recognition system endows weight value to the gesture signals and 
handles fuzzy max-min reasoning through the process of comparing recognition  
 

 

Fig. 3. Configuration of proposed gesture recognition system using Fuzzy algorithm 
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model constructed in RDBMS module. The proposed position function of fuzzy set is 
defined as in the following formula (2). 
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Fig. 4. Fuzzy Max-Min CRI (Direct Method) 

 

Fig. 5. Conceptual diagram of gesture recognition system using Multi Layer Perceptron 
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2.2   Gesture Recognition System Using Neural Network 

In this paper, we implement gesture recognition system using multilayer perceptron 
and generalized delta rule on the basis of minimized wearable PC platform. Concep-
tual diagram of whole system is shown in Fig. 5.  

We use Levenberg-Marquardt Back-Propagation (LM-BP) learning algorithm. 
Learning algorithm used in this paper is shown in formula (3). 
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3   Experiments and Results 

The most important thing to HCI method for wearable computer is accurate recogni-
tion of user’s intention, because most of users have a tendency to move when they use 
wearable computers. For this reason, we analyzed the recognition rate of gesture rec-
ognition systems according to user’s walking velocity. 20 subjects and 15 gestures 
were selected for the test. As the user’s walking velocity increased, wearing condition 
of the glove grows from bad to worse. Fig. 6 shows the configuration of our 
experiments.  

Fig. 7 shows recognition rate according to walking velocity. As shown in Fig. 7, as 
the user’s walking velocity increased, average recognition rate of implemented ges-
ture recognition system falls off. These results come from the change of glove wear-
ing condition.  

 
Fig. 6. Configuration of conducted experiments 
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Fig. 7. Recognition rate according to walking velocity 

4   Conclusions 

Future computing environments promise to break the paradigm of desktop computing. 
To do this, new trends of wearable computer need convenient and easy user interface 
in mobile condition [5][6][7].  

In this paper, we implemented gesture recognition systems using glove as a novel 
HCI method for wearable computer. And then, we conducted efficiency test in mobile 
condition. Though, our experiment results show somewhat lower recognition rate in 
mobile condition, these kinds of methods could be used effectively in mobile condi-
tion, ubiquitous computing and wearable computing. 

To improve the accuracy of user interface using glove in mobile condition, the 
problems result from the different hand size should be solved. We hope that our ef-
forts in this field encourage other researchers to focus more on HCI methods for 
wearable computers.  
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Abstract. The method of speaker normalization has been known as the success-
ful method for improving the speech recognition at speaker independent speech 
recognition system. This paper propose a new power spectrum warping ap-
proach to making improvement of speaker normalization better than a fre-
quency warping. The power spectrum warping uses Mel-frequency cepstral of 
Mel filter bank in MFCC. Also, this paper proposes the hybrid VTN combined 
the power spectrum warping and a frequency warping. Experiment of this paper 
did a comparative analysis about the recognition performance of the SKKU 
PBW DB applied each the power spectrum is 3.06%, and hybrid VTN is 4.07% 
word error rate reduction as word recognition performance of baseline system.  

1   Introduction 

Generally speech recognition system intends spoken independent system to depend on 
restrictive training model. In this case speech recognition system is made worse per-
formance because of all speakers not considering vocal form variation [1]. Speaker 
normalization method designed complement for this problem and various papers are 
introduced several method. Especially speech recognition system based HMM is 
shown performance improvement. Normalizing variation of vocal shape is VTN 
(VTN; Vocal Tract Normalization) that is closely related to vocal length variation of 
each speaker. Vocal length has difference according to sex distinction. Since the vocal 
tract length can vary from approximately 13cm for adult females to over 18cm for 
adult males, formant center frequencies can vary by as much as 25% between speak-
ers. A speech spectrum frequency warping method use for VTN and this method have 
introduced a lot of papers. The method easily realized MFCC feature analysis through 
linear warping of frequency axis in MFB [2][3]. 

This paper proposed power spectrum warping method that has good recognition per-
formance better than existing intra-speaker normalization. The proposed power spec-
trum warping is similar to existing frequency warping, that MFCC feature analysis ad-
justs MBF.  Existing frequency warping method warp frequency axis of MFB while the 
proposed power spectrum warping method warp power spectrum axis of MFB. 

Also, this paper proposed hybrid VTN that combines frequency warping method 
and power spectrum warping method. Existing frequency warping method deals with 
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two important points. The first point estimates warping factor. The second, recogni-
tion procedure deals with efficiently estimated warping factor. The proposing power 
spectrum warping and hybrid VTN consider two important factors. The power spec-
trum warping factor for estimation is used the maximum likelihood method in general 
used frequency warping. The multiple-pass procedure method is used recognition 
procedure for training in generally used frequency warping.  

We proposed to recognition of performance evaluation that we used speech DB of 
Korean word unit. Each recognition performance comparison and analysis based on 
recognition performance of base line system and frequency warping system that we 
evaluate performance of intra-speaker normalization.  

2   Frequency Warping 

In this chapter, broadly known frequency warping method for speaker normalization 
deals with introduced content from Li Lee and L.Weilling  [2]. 

Frequency warping method is representative method of vocal track length normali-
zation that decreases speech signal variation of each speaker.  

2.1   MFB for Frequency Warping  

Generally, vocal track normalization is performed through feature vector variation in 
front end. Especially frequency warping method based spectrum analysis in speech 
feature vector analysis method that it implements easily using MFCC [4]. Frequency 
warping is normalization method of vocal track length variation with frequency axis 
warping. This method executes frequency axis warping to adjust MFB in MFCC pro-
cedure process [5][6]. According to frequency warping factor, warped form of Mel 
frequency is shown Fig. 1. If the warping factor value is  less than 1, this case is the 
same to extend frequency area of spectrum. If the warping factor value is  more  
 

 

 
Fig. 1. Linear frequency vs. linear warping Mel 
requency (dot line: maximum warping 
Mel(=1.12), dot-dash line: base Mel(=1.00), 
dash line: mini-mum warping Mel(=0.88)). 
dash line: mini-mum warping Mel(=0.88)). 

 

 
Fig. 2. Inear frequency vs. piecewise linear 
warping Mel frequency (dot line: maxi 
mum warping Mel(=1.12), dot-dash line: 
base Mel(=1.00), dash line: mini-mum 
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than 1, this case is the same to compress extend frequency area of spectrum.  If fre-
quency area extends above line in Fig.1, MFB area has effect out of part in original 
spectrum area. If frequency area compress below line in Fig.1, MFB area have prob-
lem not including all kind of information in original spectrum area. A piecewise linear 
warping method is devised to solve the problem that generally linear warping is 
known to show more robust speech recognition performance. Fig. 2 is shown that Mel 
frequency is applied to piecewise linear warping method. In this paper, we used 
piecewise linear warping for frequency warping procedure. It is shown MFB proce-
dure part in general MFCC procedure that is follow as formula (1).  

][][][
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kMkSlS
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k
l

=

=

⋅=        l = 0,1,…, L-1 (1) 

Where ][kS  is power spectrum, ][kM l  is mel triangle filter, L  is mel triangle 

band-pass filter number, K  is resolution of FFT. Piecewise linear warping is fol-
lowed as formula (2). 
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2.2   Estimation of Frequency Warping Factor 

One of important things in frequency warping method look for frequency factor that 
are to decide normalization of vocal track for specification speaker. Estimation of 
frequency factor is to decide vocal track length normalization factor. Frequency warp-
ing factor can be presented by rate of a standard vocal track length and specification 
speaker vocal track length. In generally, vocal track length is in inverse proportion to 
frequency warping factor. We present estimation of frequency warping factor by 
mathematical model. First of all, feature vector about speaking of baseline is not ap-
plied to frequency warping factor that is followed as formula (3). 

)}(...,),0({ TxxX iii =  (3) 

)}(...,),0({ TxxX iii
ααα =       (4)   

Where i  is utterance speaker, T  is total number of feature vector. Feature vector 
from applied frequency warping is executed formula (2) in 2.1 section. Feature vector 
from applied frequency factor is fallowed as formula (4). In addition a mark of all 
kinds of recognition candidate words (transcription set) is fallowed as (6).  

The optimal frequency factor of speaker i  gets to adjust maximum likelihood 
method in decoding step as formula (6).  
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Optimum frequency warping factor a about HMM acoustic model and all kind  of 
recognition candidate words w can be define maximum likelihood of warped utter-
ance feature vector.  A of searching area for optimal frequency warping factor defines 
using 25% difference of adults vocal track length variation that is followed as  
formula (7). 

2.3   Recognition Processing of Frequency Warping  

In front of section, we introduced how to estimation of optimum frequency warping 
factor. This section applies to optimum frequency warping factor form utterance 
speech of speaker I that deals with speech recognition processing parts. 

This part is demanded effective processing because it is affected by recognition 
performance and processing time. This paper considers multiple-pass processing 
method for effective recognition processing. Estimation method of warping factor 
based mixture for processing time improvement of recognition processing introduce a 
lot of paper while this method shows low recognition performance less then multiple-
pass processing method. Multiple-pass processing applied frequency warping consists 
of three steps that is followed as next.  

We train HMM decoding about feature vector of not warped utterance speech that 
gets candidate word ω  of the highest score.  We estimate optimum frequency warp-

ing factor a using formula (6) about each frequency warping factor α̂ applied feature 

vector
α
iX .We decide the final recognition word w executing again step1 about opti-

mum frequency warping factor a applied feature vector
α̂
iX . 
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3   Power Spectrum Warping 

In this paper, we deal with power spectrum warping method that proposed paper 
freshly for performance improvement of speaker normalization. Power spectrum 
warping have similar mechanism to existing frequency warping method that can real-
ize how to adjusting of MBF in MFCC. The proposed power spectrum warping is 
similar to existing frequency warping, that MFCC feature analysis adjusts MBF. In 
general, we can confirm to show up different spectral envelope and formant because 
vocal track shape variation according to speaker in same word utterance. Especially 
formant position and spectral envelope of man and woman confirm easily difference 
that is shown Fig. 3.  Existing frequency warping method performs spectrum informa-
tion warping of frequency axis emphasis on formant position information of speech 
spectrum for each speaker of vocal track normalization. The other side, spectrum 
warping method performs normalization of each speaker spectral envelope and for-
mant position because power spectrum warping is applied to Mel scale power spec-
trum axis warping of speech spectrum.  
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Fig. 3. Male and female LPC spectrum 
analysis of utterance /a/ (dash line: female, 
dot line: male) 

Fig. 4. Mel filter bank number vs. weight 
value of power spectrum (dash line: maxi-
mum warping weight value(=1.12), dot-dash 
line: base weight value(=1.00), dot line: 
minimum warping weight value(=0.88), the 
number of filter bank = 24 ) 

3.1   Power Spectrum Warping for MFB 

Power spectrum warping can normalize vocal track variation by power spectrum 

warping of each mel filter bank (MFB). Power spectrum warping factor β  in MFB is 
applied to linear warping function. That result graph of function is followed as Fig. 4. 

Compared frequency warping, first case β  less than 1, this case affect to compress 
frequency axis and the other case effect to extend frequency axis.  

Linear warping function of power spectrum warping )(lwβ  expresses formula that 
is followed as formula (10).    

We substitute linear warping function of formula (10) for doing power spectrum 
warping in DCT processing of MFCC.  

For effective possessing, warping function )(lwβ  subtract out of log that is writ-
ten as formula (11).  
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3.2   Estimation of Power Spectrum Warping Factor  

Frequency warping is in inverse proportion ratio of warping factor according to vocal 
track length and power spectrum warping is in proportion ratio of warping factor ac-
cording to vocal track length. Processing of power spectrum warping factor estima-
tion is the same processing of frequency warping factor estimation. Feature vector 

β
iX  from applied power spectrum factor is fallowed as formula (13).  
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(15) 

Optimum power spectrum warping factor B of frequency warping can get using 
maximum likelihood in HMM decoding that is followed as formula (14). Searching 
area to decide optimum power spectrum warping factor is same searching area of fre-
quency warping that is followed as formula (15).  

3.3   Recognition Processing of Power Spectrum Warping Factor  

This section deals with recognition processing part applying optimum power spec-

trum warping factor β̂  to deal with in front of section from utterance speaker of 

speaker i . This part of 2.3 section apply to multiple-pass same speech recognition 
processing part of frequency warping. Multiple-pass processing applied power spec-
trum warping is consisted of three steps that are followed as next.  

(1) We train HMM decoding about feature vector of not warped utterance speech 

that gets candidate word ω̂  of the highest score.   

(2) We estimate optimum power spectrum warping factor α  using formula (14) 

about each power spectrum warping factor a applied feature vector
β
iX . 

(3) We decide the final recognition word ω̂  executing again step1 about opti-

mum power spectrum warping factor β̂  applied feature vector
β̂
iX . 

4   Hybrid VTN 

This chapter deals with hybrid VTN that combine frequency warping method and 
power spectrum warping of chapter 3. We propose second time hybrid VTN for per-
formance improvement of speaker normalization.  

4.1   Estimation of Hybrid VTN Warping Factor  

Warping processing of MFB in MFCC to train hybrid VTN equals to definite fre-
quency warping of section 2.1 and power spectrum warping of section 3.1.  
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Hybrid VTN can estimate optimum hybrid VTN warping factor γ̂  considering two 

methods. Two methods of optimum warping factor estimation deal with content in 
section 2.2 and 2.3. But this paper estimate in serial two optimum warping factors 

( βα ˆ,ˆ ) because two warp factors coincident to estimate is required a lot of calcula-
tion. First, estimation of hybrid VTN warping factor γ  estimates optimum warping 

factor of frequency warping. And next estimation train to estimate optimum warping 
factor of power spectrum warping. In this way, reason in order of decision is localized 
only warping of vocal track length (formant center frequency) for vocal track nor-
malization to frequency warping while power spectrum warping consider not only but 
also spectrum envelop normalization. Optimum hybrid VTN warping factor γ̂  of 

speaker i  is followed as formula (16). 

4.2   Recognition Processing of Hybrid VTN  

In front of section, we deal with how to estimate optimum hybrid VTN warping factor 

γ̂ . In this section, we explain recognition processing part applying to optimum hy-

brid VTN warping factor γ̂  from speaker i . Recognition processing of hybrid VTN 
apply to multiple-pass same speech recognition processing part of 2.3 section and 3.3 
section. 

(1) We train HMM decoding about feature vector iX of not warped utterance 

speech that gets candidate word w~  of the highest score.   
(2) First, we estimate optimum frequency warping factor α a using formula (17a) 

about each frequency factor a applied feature vector iX α . And then we apply 

to optimum frequency warping factor a using about each frequency factor α̂  

applied power spectrum iX α̂ . We estimate optimum power spectrum warping 
factor a using formula (17b) about each power spectrum factor a applied fea-

ture vector iX βα ,ˆ
. At the last, we apply to formula (17a) and (17b) and then 

we define optimum hybrid VTN warping factor r. 
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(3) We decide the final recognition word ω̂  executing again step1 about opti-

mum hybrid VTN warping factor γ̂  applied feature vector i
rX
)

. 

 

 

Fig. 5. HMM recognition procedures for hybrid VTN 

5   Experimental Results 

This paper using baseline system is consisted of as after. First of all, front end com-
poses of basic feature vector including 12 order MFCC feature vector and energy fea-
ture vector. 

Also we use whole 39 order feature vector applied first order and second order dif-
ferential coefficient for considering dynamic property of speech signal. Next time 
codebook generation of VQ(vector Quantization) use general LBG algorithm. The 
Number of codeword for considering codebook size of VQ and implication of speaker 
normalization consider 256 and 512. Component density of output probability in 
HMM model consists of 256 and 512 having acoustic model. We use Korean word 
speech DB, SKKU PBW for HMM acoustic model and training. SKKU PBW (Pho-
netical Balanced Word) DB consist of 1001 of word spoken each sixty male and fe-
male. Table 1 is content of each DB to use training. Whole SKKU PBW DB is  
 

Table 1. Korean speech DB for training   

  Speakers Utterances Training 
SKKU PBW 60/60 1001 30/15 

 
 

ωωλω γ forXP ii ,),(maxargˆ ˆ=  (18) 
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Table 2. Korean speech DB for recognition testing - No contains training speech DB 

  Speakers Utterances Testing 

SKKU PBW 60/60 1001 30/30 

Table 3. Performance of speaker normalization procedures(word error rates(%), SKKU PRW) 

Codebook Size Baseline α  β  γ  

256 15.40 12.00 10.00 8.70 

512 10.07 8.01 7.02 6.00 

sampled 11.025k. Half of whole speech DB use to training, the reminder DB use to-
recognition experiment. SKKU PBW DB using recognition performance experiment 
is shown Table 2. Recognition experiment result about speaker normalization method 
of introduced three methods in this paper is shown Table 3.  

It seems that recognition experiment results of Table 3, Difference of Codebook 
size in VQ is shown different word error rate. We analyzed recognition performance 
of speaker normalization with 512 codebook size that baseline system not applied 
speaker normalization is shown the heist error rate 10.07% and existing frequency 
warping well-known vocal track normalization is shown high error rate 8.01%. And 
suggesting power spectrum warping is approximately 1.00% higher than existing fre-
quency warping that is error rate 7.02%. Therefore proposing power spectrum warp-
ing gets more excellent existing frequency warping. Second proposing hybrid VTN in 
this instance is 4.07% of word error rate less than baseline system and 2.01% of word 
error rate less than existing frequency. And that is 1.02% of word error rate less than 
power spectrum warping. In this results, hybrid VTN get excellent speaker normaliza-
tion property because hybrid VTN using frequency warping and power spectrum 
warping at once. Therefore power spectrum warping proposed this paper get perform-
ance of speaker normalization more excellent existing frequency warping and con-
nected two methods VTN get  more robust speaker normalization than others speaker 
normalization. 

6   Conclusions 

This paper introduced well-known frequency warping for present speaker normaliza-
tion, new proposing power spectrum warping, and connected two methods hybrid 
VTN. We compared recognition performance of each speaker normalization method 
using Korea speech DB (SKKU PBW) and we analyzed each speaker normalization 
property. According to recognition experiment results, proposing power spectrum 
warping has 1.00% word error rate reduction as word recognition performance of 
existing frequency warping. Power spectrum warping method gets more excellent 
frequency warping. Also, hybrid VTN has most robust speaker normalization prop-
erty and hybrid VTN has 4.07% word error rate reduction as word recognition per-
formance of baseline system. Hybrid VTN has 2.01% word error rate reduction as 
word recognition performance of existing frequency warping. However processing 
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time of hybrid VTN is one and half more than before because hybrid VTN is con-
nected two speaker normalization methods.  Processing time of hybrid VTN will im-
prove to need study on fast hybrid VTN.  
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Abstract. In the context of inductive inference Solomonoff complexity
plays a key role in correctly predicting the behavior of a given phe-
nomenon. Unfortunately, Solomonoff complexity is not algorithmically
computable. This paper deals with a Genetic Programming approach
to inductive inference of chaotic series, with reference to Solomonoff
complexity, that consists in evolving a population of mathematical ex-
pressions looking for the ‘optimal’ one that generates a given series of
chaotic data. Validation is performed on the Logistic, the Henon and the
Mackey–Glass series. The results show that the method is effective in ob-
taining the analytical expression of the first two series, and in achieving
a very good approximation and forecasting of the Mackey–Glass series.

Keywords: Genetic programming, Solomonoff complexity, chaotic series.

1 Introduction

Inductive Inference is a fundamental problem both in science and engineering. Its
aim is to find a functional model of a system, in symbolic form, by determining its
fundamental properties from its observed behavior. This model is a mathematical
idealization that is used as a paradigm of the system, and it is chosen to well fit
the experimental data according to a chosen evaluation criterion.

In [1], Solomonoff supposed that the observed data of a given phenomenon
can be encoded by means of a string x of symbols on a given alphabet. Then,
the Inductive Inference problem can be faced either by searching the shortest
computer program u that provides the string x as output or by estimating the
a priori probability of all the programs that generate x as output. Moreover,
differently from Kolmogorov [2], rather than emphasizing the shortest program
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u which will produce exactly x, Solomonoff considers all programs u which will
cause a universal Turing machine to produce output having x as a prefix and such
that no proper prefix of u will produce x. Hence, the Inductive Inference system
described above has to look for a program (functional expression) that has the
highest a priori probability, i.e., that with the shortest length. Unfortunately, this
task is not algorithmically computable, i.e., for any string (sequence of data) x
defined on a given alphabet it is not possible to compute the program u with the
highest a priori probability that yields x as output. In other words, the Solomonoff
complexity is not a recursive function, i.e., it is not in the class of algorithmically
computable functions. It should be noted that all the programs generating strings
with x as prefix have to be considered, in that the aim is to consider x as an
encoding of observed data related to a given phenomenon. Besides, the string x can
be simply a substring (prefix) of a string with either finite or infinite length. This
is why it is impossible to consider only programs providing as output the string
x, since other descriptions of a phenomenon could be neglected, e.g. programs
that generate strings whose length is larger and that have x as prefix. The above
discussion holds true independently of the kind of dynamics exhibited by the
phenomenon. However, while for simple dynamics, such as deterministic linear
ones, the Inductive Inference problem seems to be somehow approachable, the
problem gets an additional twist if we consider chaotic series. In fact, we can
wonder whether the series generated by chaotic dynamics are complex or not.
In this respect there exists a relation between Shannon entropy and algorithmic
complexity [3]. Given that chaotic dynamics strongly depend on both the initial
conditions and the system parameters, chaotic systems produce algorithmically
complex sequences. As a consequence, the problem of Inductive Inference cannot
be solved at all both in theory and in practice. Nonetheless, for real applications
we can obtain approximations by making use of heuristic procedures.

This paper deals with a Genetic Programming (GP) approach [4] to Inductive
Inference of chaotic series with reference to Solomonoff complexity. This consists
in evolving a population of functional expressions that fit given series of data
while looking for the ‘optimal’ one, i.e. the one with the ‘shortest length’. The
validation is effected on the Logistic, the Henon and the Mackey–Glass series.

2 Genetic Programming Approach

Starting from the above considerations we, very naturally, turn to evolutionary
methods. In fact, evolutionary algorithms work on populations of individuals
rather than on single solutions, thus searching the problem space in a parallel
manner. In such a way, the above difficulties can be effectively reduced. It should
be noted that since evolutionary algorithms hopefully give a good approximation,
but do not guarantee the convergence to the global optimum in finite time, the
drawback is to obtain an approximation of the solution. However, this drawback
can be drastically reduced by setting a sufficiently high number of generations.

GP [4] is well suited for our aim. It should perform a search for functional
expressions that fit all the data, while minimizing their length. However,
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particular attention must be devoted to the genetic generation and preservation
of valid programs in order to overcome the possible lack of closure property GP
is subject to, i.e, possible lack of closure property. To this aim, many researchers
have presented GPs making use of grammars. Whigham, as an example, created
a GP based on Context–Free Grammars (CFGs) [5]. He used derivation trees
of CFGs as genotypes, the phenotypes being the programs generated by those
trees. He also showed that CFGs are an efficient approach to introduce bias into
evolutionary process.

Following [5], our GP is based on expression generator that provides the
starting population with a set of programs different in terms of size, shape and
functionality. The expression generator is implemented by means of a CFG which
ensures the syntactic correctness of the programs. Evaluation procedure divides
series into four consecutive intervals: seed (IS), training (IT ), validation (IV )
and prediction (IP ). IS is the set of the initial series values which are given as
seed to the expressions to be evaluated. IT is the set of values on which the fitness
is actually evaluated: the sequence of values obtained as output for this interval
is compared to real series values so as to compute fitness of the individual. IV

is the set used to select the overall best expression at the end of the inference
process, while IP contains the values forecasted by the expressions.

2.1 Encoding and Genetic Operators

The genotypes are functional expressions which state dependence of a value of
the series on the previous ones and are encoded as derivation trees of the adopted
CFG. This kind of encoding is very appealing in that the actions performed by
the genetic operators can be easily implemented as simple operations on the
derivation trees. In fact, crossover operates by randomly choosing a nonterminal
node in the first individual to be crossed and then by randomly selecting the
same nonterminal node in the second individual. Finally, it swaps the derivation
subtrees. If a corresponding nonterminal node cannot be found in the second
parent, the crossover has no effect. Mutation works by randomly choosing a
nonterminal node in the offspring and then the corresponding production rule is
activated in order to generate a new subtree, thus resulting either in a complete
substitution (macro–mutation) or in variation of a leaf node (micro–mutation).

2.2 Fitness Function

The fitness is the sum of two weighted terms. The former accounts for the
difference between computed and actual series values on IT , while the latter
is proportional to the number of nodes of the derivation tree:

F (p) =
1
σ2

1
lIT

∑
i∈IT

|p(i) − si|2 + wNp (1)

where p is the program to evaluate, σ is the standard deviation for the series,
lIT is the length of IT , p(i) is the value computed on the i–th point and si its
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actual value, w is the weight of the term related to program complexity. Np is
the number of nodes making up the derivation tree for p.

It is to note that the number of nodes Np of a particular tree is inversely
tied to the a–priori probability of generating p according to the chosen CFG.
The higher the number of nodes which constitute a tree the lower the a–priori
probability of generating it. The scale factor w takes on very small values and
its aim is to allow that, during the first phase of expression discovery, the error
term is predominant. So the algorithm is free to increase the tree length in such
a way to ease the search towards the exact match of the series. Then, the system
will exploit the obtained solutions to achieve shorter and shorter expressions.
Even if the usage of a penalty term can seem trivial, it should be noted that no
smarter techniques exist to face this problem. In fact, the only actual alternative
would require the computation of the SC function which is not computable.

As mentioned before, IV set allows us to select the overall best program
discovered during the entire inference process. Therefore, at each generation for
all the individuals in the population, the difference V of output values from IV

values is then evaluated and this is added to the term relating to complexity, so
as to obtain a performance index P :

P (p) = V (p) + wNp, V (p) =
1
σ2

1
lIV

∑
i∈IV

|p(i) − si|2 (2)

Hence, the result of a run is the individual with the best performance index
achieved in all the generations making up the run.

3 Experimental Findings

The system has been tested on three chaotic series, namely the Logistic, the
Henon and the Mackey–Glass ones. The series have been recursively generated
starting from a set of seeds by means of their generating equations.

Any program execution is determined by a set of parameters, among which
those related to evolutionary process and those specifying widths of intervals the
series is divided into. Another important parameter is the weight w present in (1)
and related to program complexity: it should be chosen so as to favor evolution
of simpler individuals, while also allowing creation of programs complex enough
to adhere to the original series.

For any series 10 runs with different random seeds have been carried out
with the same parameters. We have used a population size of 500, a tournament
selection mechanism with size of 5, a crossover operator taking place with a 100%
probability and a mutation operator (with 30% probability) which distinguishes
between macro– and micro–mutations, applying them with probabilities equal to
30% and 70% respectively. The maximum number of generations allowed for all
the runs is set to 2000. After a preliminary tuning, the parameter w has been set
to 10−4. For the Logistic and the Henon series a maximum tree depth of 10 has
been considered and we have set widths for IS , IT , IV and IP to 10, 70, 10 and
10 respectively. Table 1 shows the grammar used for all the series considered.
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Table 1. The grammar used for the runs

Rule no. Rule
1 S → f(t) = E
2 E → f(t − E) | f(t − N) | (EOE) | R | t
3 O → + | − | ∗ | /
4 R → 0 | 0.10 | . . . | 3.90| 4
5 N → 1 | 2 | . . . | lS

3.1 Logistic Series

The standard form of the so called logistic function is given by: f(t) = μ·t·(1−t),
where μ is the growth rate when the equation is being used to model population
growth in a biological species.

R. May in 1976 introduced the Logistic series as an example of a very simple
nonlinear equation being able to produce very complex dynamics [6]:

f(t) = μ · f(t− 1) · (1 − f(t− 1)) (3)

μ is the growth rate.
While the initial conditions don’t matter, this series behaves in a way that

depends on the value of μ. In particular:

– Extinction. If μ < 1 then limt→∞ f(t) = 0.
– Fixed point. If 1 < μ < 3 the series tends to a single value. It is not important

how it reaches this value, but generally it oscillates around the fixed point.
Unlike a mass spring system, the series generally tends to rapidly approach
fixed points.

– Periodic. The system alternates between 2 states for μ = 3. For values
greater than 3.44948, the system alternates among 4 states. The system
jumps between these states, while it does not pass through intermediary
values. The number of states steadily increases in a process called period
doubling as μ grows.

– Chaotic. In this state, the system can evaluate to any position at all with no
apparent order. The system undergoes increasingly frequent period doubling
until it enters the chaotic regime at about 3.56994. Below μ = 4 the states
are bound between [0, 1], above 4 the system can evaluate to [0,∞]. A period
of 3 surprisingly appears for 3.8284 < μ < 3.8415.

For the experiments we have used μ = 3.5.
In all runs the same solution (see (3)) with a derivation tree of 17 nodes has

been obtained, apart from a possible swap between the terms. In the best case
the solution has been achieved in 27 generations, and on average in 176.

As in the most time–consuming run (Fig. 1 (left)), the evolution consists of
two distinct phases. The former is characterized by search for an expression
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Fig. 1. Most time–consuming run for Logistic (left) and Henon (right) series

which better and better approximates the series. In this phase, larger and larger
expressions are found which provide lower and lower errors on IT . This takes
place until about generation 120. The latter phase, instead, begins when an exact
yet complex solution emerges, and consists in achieving other shorter solutions.
At the end of this phase, at about generation 360, the optimal solution is
obtained. Even though this “simplification” is an effect of the evolution process,
which tends to favor simpler solutions, it has a behavior very similar to that
which could be obtained by a human. In fact, in all the runs GP has been able
to discover intermediate solutions equivalent to (3). Once such solutions have
emerged, then, GP has evolved them towards the optimal one.

3.2 Henon Series

Henon series is a 2–D iterated map with chaotic solutions proposed by M. Henon
(1976) [7] as a simplified model of the Poincare map for the Lorenz model:{

f(t) = 1 + g(t− 1) − a · f2(t− 1)
g(t) = b · f(t− 1)

(4)

where a and b are (positive) bifurcation parameters. The parameter b is a measure
of the rate of area contraction (dissipation) and the Henon series is the most
general 2–D quadratic map with the property that the contraction is independent
of f and g. For b = 0, Henon series reduces to the quadratic map, which is linked
to the Logistic series. Bounded solutions exist for the Henon series over a range
of a and b values, and some yield chaotic solutions. Numerical evidence of chaotic
behavior can be found for a = 1.4 and b = 0.3 and such values have been used
for the experiments.

Only in the 40% of the 10 runs, effected with the same parameters as the previ-
ous series, the canonical solution (see (4)) has been obtained, apart from a possi-
ble swap between the terms, thus confirming a greater difficulty in discovering the
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Henon law with respect to the Logistic one. In fact the Henon series strongly
depends on the boundary conditions (seeds). In the best case, the solution has
been achieved in 153 generations, and on average in 289. In the remaining runs,
however, a good approximation has been achieved. The evolution evidences two
phases as described for the Logistic series (see Fig. 1 (right)).

3.3 Mackey–Glass Series

Mackey–Glass series was proposed by Mackey and Glass in [8] and aims to
describe blood cells generation in a patient with leukemia:

d

dt
z(t) = a

z(t−Δ)
1 + [z(t−Δ)]c

− bz(t) (5)

where a, b, c and Δ are constant values. Value of Δ plays a key role in series
behavior, since attractor dimension depends on it. For Δ < 4.53 the system
reaches a stable equilibrium (fixed–point attractor), for 4.53 < Δ < 13.3 a cyclic
behavior is obtained, for 13.3 < Δ < 16.8 the series shows a double cycle. Since
chaotic behavior is achieved for Δ > 16.8, we shall make reference to Δ = 17,
a = 0.2, b = 0.1 and c = 10, thus in a chaotic regime. The data series have been
generated by using the Runge–Kutta Method of the 4–th order with a sampling
rate of 6.

After a tuning phase, the maximum tree depth chosen is 15. Length for IS

has been set equal to 50, that for IT +IV to 420, 30% of which to be used as IV ,
and that for IP to 30. With respect to the previous series, some complications
take place here. In fact, none of the runs achieves an error equal to zero on IT .
However, in each run expressions with a good approximation of the series have
been obtained. The program with the best P obtained is the following:

f(t) = f(t− 50) +
(−2.35 · (−2.91 · ((f(t− 50) − f(t− 34)) · −2.77)))

t
(6)

Table 2 reports the results, while Fig. 2 shows the behavior on IT and IV (left)
and IP (right). A simple analysis of the solution evidences that, although the
task difficulty, GP has been able to discover the underlying period Δ. In fact,
50 is close to Δ · 3, while 34 = Δ · 2.

Table 2. Results achieved on Mackey–Glass series with Δ = 17

Best Average
Generation 1047 864
Nodes 30 49
Fitness F 0.198050 0.271610
Validation V 0.222835 0.270765
Performance Index P 0.231835 0.285495
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Fig. 2. Behavior of the best program on IT , IV and IP (Mackey–Glass series)

4 Conclusion and Future Works

The problem of Inductive Inference of chaotic series has been faced by taking
into account the Solomonoff complexity.

Our GP has proved capable of finding the exact expression of the Logistic and
Henon series, while pursuing appealing computational strategies. As regards the
Mackey–Glass series, GP has been able to discover an expression that, making
use of the actual period Δ, provides a good approximation of the data.

An interesting result of the experiments is that the complexity of the series
in terms of program length increases from Logistic (17) to Henon series (23) and
from this latter to Mackey–Glass series (30), in accordance with what would be
supposed by looking at their generating expressions.

Further investigations concern the idea of evaluating the a priori probability
according to Solomonoff and of using it in the fitness function.
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Abstract. Particle Swarm Optimization (PSO) is a heuristic optimiza-
tion technique showing relationship with Evolutionary Algorithms and
strongly based on the concept of swarm. It is used in this paper to face
the problem of classification of instances in multiclass databases. Only a
few papers exist in literature in which PSO is tested on this problem and
there are no papers showing a thorough comparison for it against a wide
set of techniques typically used in the field. Therefore in this paper PSO
performance is compared on nine typical test databases against those of
nine classification techniques widely used for classification purposes. PSO
is used to find the optimal positions of class centroids in the database
attribute space, via the examples contained in the training set. Perfor-
mance of a run, instead, is computed as the percentage of instances of
testing set which are incorrectly classified by the best individual achieved
in the run. Results show the effectiveness of PSO, which turns out to be
the best on three out of the nine challenged problems.

Keywords: Particle Swarm Optimization, Classification.

1 Introduction

In this paper we examine the ability of Particle Swarm Optimization (PSO) [1]
[2], heuristic technique for search of optimal solutions based on the concept of
swarm, to efficiently face classification [3] [4] of multiclass database instances.

There exist in literature a few papers in which PSO is compared, respectively,
against a Genetic Algorithm and a Tree Induction algorithm [5] for classification
in databases and against K-means [6] for clustering, yet there are no papers
showing a wide comparison against a wide set of techniques typical for this
problem. Therefore in this paper we wish to evaluate PSO efficiency in
classification by facing nine typical test databases and by comparing results
against those achieved by nine well–known classification techniques.
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Paper structure is as follows: Section 2 describes PSO basic scheme, while
Section 3 illustrates our PSO version applied to classification problem. Section 4
reports on the database faced, the results achieved, the comparison against nine
typical classification techniques and some a posteriori considerations. Finally
Section 5 contains our conclusions and future works.

2 Particle Swarm Optimization

PSO reveals itself very effective in facing multivariable problems in which any
variable takes on real values. It has roots in two methodologies. Its links to
Artificial Life in general, and with bird flocks, fish schools and swarm theory
in particular are very evident. Nonetheless, PSO is also tied to Evolutionary
Computation, namely to Genetic Algorithms (GA) [7] and to Evolutionary
Programming [8].

PSO is based on a swarm of n individuals called particles, each representing
a solution to a problem with N dimensions. Its genotype consists of 2 · N
parameters, the first N representing the coordinates of particle position, and
the latter N its velocity components in the N–dimensional problem space. From
the evolutionary point of view, a particle moves with an adaptable velocity within
the search space and retains in its own memory the best position it ever reached.
The parameters are changed when going from an iteration to the next one as
described below.

Velocity vi(t + 1) of i-th particle at next step t + 1 is a linear combination
of current velocity vi(t) of i-th particle at time t, of the difference between the
position bi(t) of the best solution found up to this time by i-th particle and
current position pi of i-th particle, and of the difference between best position
ever found in the population bg(t) and that of i-th particle pi(t):

vi(t+1) = w ·vi(t)+c1 ·U(0, 1)⊗(bi(t)−pi(t))+c2 ·U(0, 1)⊗(bg(t)−pi(t)) (1)

where ⊗ denotes point–wise vector multiplication, U(0, 1) is a function that
returns a vector whose positions are randomly generated by a uniform
distribution in [0, 1], c1 is the cognitive parameter, c2 is the social parameter,
and w is the inertia factor whose range is [0.0, 1.0]. Velocity values must be
within a range defined by two parameters vmin and vmax.

An improvement to original PSO is in w not being kept constant during exe-
cution; rather, starting from a maximal value wmax, it is linearly decremented as
the number of iterations increases down to a minimal value wmin as follows [9]:

w(t) = wmax − (wmax − wmin) · t

Tmax
(2)

where t and Tmax are the current and the maximum allowed number of iterations
respectively.

The position of each particle at next step is then evaluated as the sum of its
current position and of the velocity obtained by eq. (1):

pi(t+ 1) = pi(t) + vi(t+ 1) (3)
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These operations are repeated for Tmax iterations or until some other stopping
criterion gets verified. A typical convergence criterion is constituted by
achievement of a minimal desired value of error with respect to optimal solution
(of course, where this minimal fitness value is known a priori).

PSO pseudocode is the following:

Algorithm 1. PSO Algorithm
begin

for each particle
initialize particle position and velocity

while (maximal number of iterations is not reached) do
for each particle

calculate fitness value ψi(t)
if (ψi(t) is better than best fitness value ψ(bi(t)) in particle history)

then ψ(bi(t)) = ψi(t) and take current particle as new bi(t)
if necessary update the global best particle during execution bg(t)
for each particle

calculate particle velocity based on eq. (1)
update particle position based on eq. (3)

update the inertia factor based on eq. (2)
end

It should be noted that the algorithm is nonelitist.

3 PSO Applied to Classification

Given a database with C classes and N parameters, classification problem can be
seen as that of finding the optimal positions of C centroids in an N -dimensional
space, i.e. that of determining for any centroid its N coordinates, each of which
can take on, in general, real values. With these premises, the i-th individual of
the population is encoded as it follows:

(p 1
i , . . . ,p

C
i ,v 1

i , . . . ,v
C

i ) (4)

where the position of the j–th centroid is constituted by N real numbers
representing its N coordinates in the problem space:

p j
i = {pj

1,i, . . . , p
j
N,i} (5)

and similarly the velocity of the j-th centroid is made up of N real numbers
representing its N velocity components in the problem space:

v j
i = {vj

1,i, . . . , v
j
N,i} (6)

Then, any individual in the population consists of 2 ·C ·N components, each
of which is represented by a real value.
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The fitness function ψ is computed as the sum on all training set instances
of euclidean distance in N -dimensional space between generic instance xj and
the centroid of the class CL it belongs to according to database (p CLknown(xj)

i ).
This sum is divided by DTrain, which is the number of instances composing the
training set. In symbols, i-th individual fitness is given by:

ψ(i) =
1

DTrain
·

DTrain∑
j=1

d
(
xj ,p

CLknown(xj)
i

)
(7)

When computing distance, any of its components in the N–dimensional space
is normalized with respect to the maximal range in the dimension, and the sum
of distance components is divided by N . With this choice, any distance can range
within [0.0, 1.0], and so can ψ. Given the chosen fitness function, the problem
becomes a typical minimization problem.

Performance of a run, instead, is computed as the percentage %err of
instances of testing set which are incorrectly classified by the best individual
(in terms of fitness) achieved in the run.

4 Experiments and Results

PSO is used to face a set of nine databases well known in literature taken from
UCI database repository [10], and its results are compared against those provided
by nine classical classification techniques.

The databases faced and their features are listed in alphabetical order in
Table 1. In it for each database total instance number (D), number of classes
into which it is divided (C) and number of parameters composing each instance
(N) are reported.

We have chosen the classification techniques used for the comparison within
the Waikato Environment for Knowledge Analysis (WEKA) system release
3.4 [11]. Namely, we have taken into account the following ones: MultiLayer
Perceptron Artificial Neural Network (MLP)[12], Radial Basis Function Artificial
Neural Network (RBF)[13], KStar [14], Bagging [15], MultiBoostAB [16], Naive
Bayes Tree (NBTree)[17], Ripple Down Rule (Ridor) [18] and Voting Feature
Interval (VFI) [19].

Parameter values used for any technique are those set as default in WEKA.
PSO parameters have been set as follows: n = 50, Tmax = 1000, vmax = 0.05,

vmin = −0.05, c1 = 2.0, c2 = 2.0, wmax = 0.9, wmin = 0.4.

Table 1. Properties of examined databases

Card Diabetes Glass Heart Horse Iris Wdbc Wdbc-I Wine

D 690 768 214 303 364 150 569 699 178
C 2 2 6 2 3 3 2 2 3
N 51 8 9 35 58 4 30 9 13
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Table 2. Achieved results in terms of %err

PSO BAYES MLP RBF KSTAR BAG- MULTI NB RIDOR VFI
NET ANN GING BOOST TREE

Card 22.84 12.13 13.81 43.29 19.18 10.68 12.71 16.18 12.65 16.47
Diabetes 22.55 25.52 29.16 39.16 34.05 26.87 27.08 25.52 29.31 34.37

Glass 41.69 29.62 28.51 44.44 17.58 25.36 53.70 24.07 31.66 41.11
Heart 17.46 18.42 19.46 45.25 26.70 20.25 18.42 22.36 22.89 18.42
Horse 40.98 30.76 32.19 38.46 35.71 30.32 38.46 31.86 31.86 41.75
Iris 2.63 2.63 0.00 9.99 0.52 0.26 2.63 2.63 0.52 0.00

Wdbc 5.73 4.19 2.93 20.27 2.44 4.47 5.59 7.69 6.36 7.34
Wdbc-I 2.87 3.42 5.25 8.17 4.57 3.93 5.14 5.71 5.48 5.71
Wine 4.44 0.00 2.22 6.43 1.11 4.21 11.11 0.00 5.77 0.00

Each database has been split into a training set, made up by the former 75%
of the database instances, and a testing one, constituted by the remaining 25%.

Table 2 shows the results achieved by the 10 techniques on each of the nine
databases with respect to %err. For any problem the best value obtained among
all the techniques is reported in bold, whereas the worst one is in italic. PSO
results are averaged over 10 runs differing in the starting seed provided in input
to random number generator. MLP, RBF, Bagging, MultiBoostAB and Ridor
are based on a starting seed so also for them 10 runs have been carried out by
varying this value. Bayes Net, KStar and VFI, instead, do not depend on any
starting seed, so ten runs have been carried out as a function of a parameter
typical of the technique (alpha for Bayes Net, globalBlend for KStar and bias for
VFI). NBTree, finally, depends neither on initial seed nor on any parameter, so
only one run has been performed on any database.

PSO execution times vary with database sizes, and range from a minimum
of six seconds per run (for Iris) up to a little more than one minute (for Card)
on a pc with 1.6–GHz Centrino processor. Thus times are comparable with
those of the other technique, which range from 2-3 seconds up to 4-5
minutes.

It can be seen from results shown in Table 2 that PSO is never the worst
technique, and is the best one in three cases (Wdbc-I, Heart and Diabetes).
Particularly, PSO shows good performance when the problem has two classes:
in fact PSO is the best for three out of the five such problems. As regards the
other two two-class problems, instead, performance is not brilliant. It can be
noted that If we take into account the product P = D ·N we can see that the
two-class problems are ordered in increasing order as it follows: Diabetes (6144),
Wdbc-I (6291), Heart (10105), WDBC (17070), Card (35190). On them PSO
gets ranked in positions 1, 1, 1, 6, 9, respectively. So, some relationship between
P and PSO performance might exist.

As for the three- and the six–class problems PSO performance is less striking.
For example, on two easy problems like Iris and Wine it does not reach 0%, as
several techniques do. Also on Horse and Glass PSO is in the second half of the
rank. The three-class problems can be ordered based on P value, obtaining: Iris
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Fig. 1. Typical behavior of best and average fitness as a function of the number of
iterations

(600), Wine (2314), Horse (21112). On them PSO gets ranks 6, 7, 9, respectively.
Also in this case this might seem to imply some relation between P and PSO
performance. For Glass P = 1926, and PSO rank is 8.

This leads us to suppose that PSO efficiency shows some limitation as the
number of classes increases. For a given number of classes, as P increases so
does the difficulty for PSO. This shall be a research issue for our next papers.

From an evolutionary point of view, in Fig. 1 we report the behavior of
a typical run in terms of best individual fitness and average fitness in the
population as a function of the number of iterations. The execution shown is
the run number 1 carried out on database Card.

As it can be seen, PSO shows a first phase of about 100 iterations in which
fitness decrease is very strong, starting from 1.0477 for the best and 1.1301 for
the average, and reaching about 0.5557 for the best and 0.5574 for the average.
A second phase follows, lasting about 80 iterations, in which decrease is slower,
and the two values tend to become closer and closer, until they reach 0.5199 and
0.5207 respectively. From now on decrease in fitness values is slower and slower,
and those two values become more and more similar. Finally, at iteration 1000
the two values are 0.5182 and 0.5184.

As described above for a specific run and for a specific database is actually
true for all runs carried out and for all databases, and is probably a consequence
of the good setting of parameters chosen, which allows a very fast decrease in
the first iterations, differently from standard settings such as those related to
minimal and maximal values for velocities.
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5 Conclusions and Future Works

By considering the results achieved on nine typical databases, it can be concluded
that PSO can be suitably used to face classification problem. For some test
databases, it turns out to be better than nine techniques widely used in this
field. Execution times are of the same order of magnitude as those of the nine
techniques used.

Future works will aim to shed light on its quality and limitations in this field,
and to find possible ways to overcome those limitations. It can be noted that
PSO model used is the standard one, which does not allow to use techniques
such as fitness sharing in Evolutionary Algorithms. We plan to work on this
issue to improve PSO performance.

Firstly, we plan to endow PSO with fitness sharing, aiming to investigate
whether this helps in improving performance. Moreover we intend to add to PSO
some mutation mechanisms similar to those present in Evolutionary Algorithms.
With the same aim we will implement an elitist PSO, in which the velocity of
each individual is updated by taking into account the best element found in all
iterations performed up to the current one, rather than that present in current
iteration only.
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Abstract. In this paper we exploit multi-objective genetic algorithms to identify 
Takagi-Sugeno (TS) fuzzy systems that show simultaneously high accuracy and 
low complexity. Using this approach, we approximate the Pareto optimal front 
by first identifying TS models with different structures (i.e., different number of 
rules and input variables), and then performing a local optimization of these 
models using an ANFIS learning approach. The results obtained allow deter-
mining a posteriori the optimal TS system for the specific application. Main 
features of our approach are selection of the input variables and automatic de-
termination of the number of rules. 

1   Introduction 

Takagi-Sugeno (TS) fuzzy systems [1] have been widely used in regression, classifi-
cation and control problems. Genetic algorithms (GA’s) have been frequently applied 
to their identification. Typically, after having decided the system structure, e.g., based 
on either uniform partitioning or clustering of the input space, GA’s are used to fine 
tune the system parameters [2]. In this paper we adopt a different approach: first we 
use GA’s just to assess the TS system structure, then we resort to a local search strat-
egy to fine tune the system parameters, using an ANFIS learning strategy [3]. So 
doing, we identify different TS structures, with different numbers of rules and input 
variables. In order to compare these structures with each other based not only on their 
accuracy, but also on their complexity, we use a Multi-Objective Genetic Algorithm 
(MOGA), which provides an approximation of the Pareto optimal front, consisting of 
a set of non-dominated solutions. The user can then select a posteriori, from a variety 
of Pareto optimal solutions, the solution with the best compromise between desired 
accuracy and complexity level for the specific application. 

2   TS Fuzzy System 

Let X = {X1, …, XF} be the set of input variables. Let Uf, f = 1..F, be the universe of 

variable Xf and let Pf = { },1 ,,...,
ff f TA A , f = 1..F, be a fuzzy partition of Uf. The generic 

TS fuzzy rule used in this paper is defined as: 
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Rm: IF X1 is 
,11, mj

A  and … and XF is 
,, m FF jA  THEN 1( ,..., )m m Fy f X X=  (1) 

where fX  represents a generic input variable, 
,, m ff jA  identifies which fuzzy set 

among the fT  fuzzy sets defined on the universe Uf has been selected for Xf in rule 

Rm, and 1( ,..., )m Ff X X  is a real function, typically expressed as 

1 ,1 1 , , 1( ,..., ) ...m F m m F F m Ff X X p X p X p += + + +  and ,1 , 1,...,m m Fp p + ∈ ℜ . 

The TS fuzzy system has been implemented by using a variant of the Adaptive 
Network-based Fuzzy Inference System (ANFIS) model proposed by Jang [3]. The 
neurons of the first layer of an ANFIS network represent the membership functions 
associated with each linguistic term 

,, m ff jA  and compute the membership degree 

,, ( )
m ff j fA x  of the input value fx  to fuzzy set 

,, m ff jA . The first layer contains 

1

F

f
f

T T
=

=  neurons, one for each possible fuzzy set defined on the universe Uf. In the 

classical approach, the input universes are uniformly partitioned. The neurons of the 
second layer model the antecedents of the TS rules and compute the activation de-

grees 
,,

1

( )
m f

F

m f j f
f

w A x
=

= ∏  by implementing the and operator through the product. The 

number M of neurons is equal to the number of rules which can be generated by com-
bining all possible fuzzy sets. By simple mathematical considerations, we obtain 

1

F

f
f

M T
=

= ∏ . The neurons of the third layer normalize the activation degrees by com-

puting 

1

m
m M

m
m

w
v

w
=

= . The neurons of the fourth layer represent functions fm and com-

pute the output of each rule as ( )1,...,m m Fy f x x= . The neuron of the fifth layer com-

putes the output of the TS system by summing the rule outputs as follows: 
1

M

m
m

y y
=

= . 

The learning phase of ANFIS tunes simultaneously the antecedent and consequent 
parameters using a hybrid learning method: once the antecedent parameters have been 
computed by adopting the gradient method, the consequent parameters are determined 
by the Kalman filter. Typically, the ANFIS structure is a priori determined, using 
either uniform partitioning or clustering of the input space. In the former case, all the 
first layer nodes are linked to all the second layer nodes, while in the latter case fewer 
connections are needed since only rules corresponding to clusters are taken into ac-
count. In this paper we explore a new approach. We do not search for a unique opti-
mal TS structure, but for a set of optimal structures characterized by different num-
bers of rules. This allows us to select the TS structure which best balances the accu-
racy rate on the training set and the system complexity. To this aim, we exploit a 
multi-objective genetic algorithm. The algorithm explores all the space of possible 
solutions and computes the optimal solution for a few different TS structures, as ex-
plained next. 
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2.1   The Multi-objective Genetic Algorithm Approach 

First, we fix the number fT  of fuzzy sets which partition each input linguistic variable 

fX  (note that the number of fuzzy sets can be different from an input variable to 

another). Second, we create a uniform partition Pf ={ ,1fA , …, , ff TA }, f = 1..F, for 

each variable fX . Third, we generate all the possible rules in the form (1) consider-

ing all the possible fuzzy sets in the F partitions. The number of these rules is 

1

F

f
f

M T
=

= ∏ . The rules in (1) assume that all the input variables are used to define the 

region of the input space determined by the antecedent of the rule. Actually, some 
input variables could be irrelevant or even misleading. It is therefore desirable to be 
able to select the input variables that do contribute to define the input region. To this 
aim, we introduce a further fuzzy set, denoted ,0fA , for each partition: ,0fA  has a 

membership function equal to 1 on the whole universe. This means that the statement 

,0f fX is A  does not affect the computation of the activation degree. In other words, 

for the specific rule, the variable fX  is not taken into account. The terms ,0fA  allow 

us to generate rules including  only a subset of the input variables, thus implicitly 
performing a sort of feature selection. The number of rules which can be produced is 

now 
1

( 1) 1
F

f
f

M T
=

= + −∏  (note that we have excluded the rule that combines only ,0fA  

terms). The M rules represent the solution space. A TS system will be composed of a 
subset of the possible rules. To identify the structure of a TS system, therefore, means 
to identify the subset of rules, and consequently of input variables, which contribute 
to generate the TS system.  

To explore the solution space through a multi-objective genetic algorithm, we de-
scribe each possible solution through a chromosome composed of M bits: each bit is 
associated with one of the possible M  rules. If the jth bit is set to 1, then the corre-
sponding jth rule is part of the TS system; otherwise, it is not. An input variable 
which is not included in at least one rule is eliminated. In this way we perform a se-
lection of the inputs. Furthermore, our approach can determine the number of rules 
automatically. The TS structure determined by the chromosome is used to build an 
ANFIS network: as described above, the rules of the TS system are used to initialize 
the membership function parameters in the neurons of the first layer and to set the 
connections between the neurons of the first and the second layers. The ANFIS learn-
ing tunes the membership function parameters of the antecedents and computes the 
consequent parameters by minimizing the mean square error between the desired 
output and the TS system output. As we require that both the system accuracy and 
complexity are considered, we use a multi-objective genetic algorithm.  

Multi-objective genetic algorithms solve optimization problems characterized by 
multiple objectives. Each chromosome is associated with a vector of N fitness values, 
where each value typically expresses the fulfillment degree of a different objective. 
Since the different objectives are often conflicting, typically there does not exist a 
unique solution able to optimize all the objectives. On the contrary, there exists a 
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trade-off surface, denoted as the Pareto optimal front, which contains all the optimal 
solutions. To compare different solutions the concept of dominance is introduced. A 
solution x associated with a fitness vector u dominates a solution y associated with a 
fitness vector v if and only if, { }1,..., , i ii N u v∀ ∈ ≤  and { }1,..., : i ii N u v∃ ∈ < , where 

iu  and iv are the ith element of vectors u and v, respectively. 

To generate the Pareto front, we used the Pareto Archived Evolutionary Strategy 
(PAES), proposed in [4]. PAES uses a mutation operator to generate new candidate 
solutions and an archive of non-dominated solutions, which form the Pareto optimal 
front. At each iteration, a new solution, denoted by m, is generated from the current 
solution, denoted by c, by using the mutation operator which randomly adds or deletes 
a rule. The solutions m and c are compared with each other: the dominated one is 
eliminated while the dominating one, if not dominated by any solution contained in 
the archive, is inserted into the archive. The possible archived solutions dominated by 
the newly inserted solution are discarded. 

PAES terminates after a given number Z of iterations or when no solution is in-
serted into the archive for a number G of iterations, with G < Z. On PAES termina-
tion, the archive contains the set of solutions which compose the Pareto optimal front. 
Each solution is a TS system. The exploration of the space can be restricted to a sub-
space of interest by forcing constraints on the minimum and maximum number of 
rules and the minimum and maximum number of terms in the antecedent of the rules. 
This allows reducing the learning time of ANFIS and consequently shortening the 
execution of PAES.  

3   Experimental Results 

We tested our approach on two well-known datasets, namely Miles per Gallon (MPG) 
and Pima Indians Diabetes (Pima), obtained from the UCI Machine Learning Reposi-
tory database (available via anonymous ftp at ftp.ics.uci.edu). As regards the MPG 
dataset, the goal is to predict the automobile fuel consumption on the basis of eight 
characteristics. After removing patterns with missing values, the data set was reduced 
to 392 entries. This dataset was divided into a training set and a test set, both made of 
196 patterns. We used only six characteristics, namely number of cylinders, dis-
placement, horsepower, weight, acceleration, model year as inputs, and mpg as out-
put. We did not use origin and car name characteristics, since they are not numerical. 
As regards the Pima dataset, the goal is to predict whether a Pima Indian individual is 
diabetes positive or negative, on a basis of eight attributes. It is composed of 768 
samples, 500 belonging to the positive class (65.10%) and the remaining 268 to the 
negative class (34.90%). We randomly split them into a training set of 500 patterns 
and a test set of 268, with the same class distribution.  

We performed 2000 PAES iterations on the MPG dataset, with 100 ANFIS (local) 
iterations, a uniform partition with 2 fuzzy sets for each input variable, a maximum 
number of 7 rules, and membership functions of generalized bellman type. The time 
required was 42 minutes and 3 seconds on a 2Ghz Pentium IV with 1Gbyte RAM. 
The results are shown in Figure 1, where Rules, Inputs and Terms specify the 
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 Rules Inputs Terms 

a 2 1 2 

b 3 2 3 

c 4 2 6 

d 4 4 7 

e 4 5 10 

f 5 3 8 

g 6 3 9 

h 4 6 11 

i 5 3 10 

j 6 5 14 
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Fig. 1. Approximated Pareto front on training and test sets (MPG dataset) 

numbers of rules, input variables and linguistics terms actually used in the TS system. 
In particular, in the solution denoted c, we obtained better results than in [5], using the 
same number of inputs (2) and the same number of ANFIS iterations (100).  

Figure 2 reports the results obtained running PAES for 2500 iterations on the Pima 
dataset, with 50 ANFIS (local) iterations, a uniform partition with 3 fuzzy sets for 
each input variable, a maximum number of 10 rules, and membership functions of 
generalized bellman type. The classification into classes 1 and 0, for positive and 
negative samples, respectively, has been performed by rounding the TS system out-
put. The time required was 42 minutes and 25 seconds on the same machine used in 
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Fig. 2. Approximated Pareto front on training and test sets (Pima dataset) 
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the first experiment. We observe that our classification performance is comparable to 
that obtained in [6], where a 2-input, 3-rule TS fuzzy system was employed, for a 
total of 4 linguistic terms: 24.2% classification error on the training set and 23% on 
the test set. 

The choice of the TS system to be used among all possible alternatives in the 
Pareto front is demanded to the user, who has to balance the optimisation of the ob-
jectives with his/her specific requirements. Obviously, the user has to consider that 
the increase in the number of parameters leads to improve accuracy on the training 
set, but, as shown in Figures 1 and 2, may decrease accuracy on the test set (well-
known overfitting problem). The choice of the TS system could be automated by 
using both a training set and a validation set. The Pareto front is generated by apply-
ing PAES to the training set. Then, for each TS system in the Pareto front, the accu-
racy on the validation set is computed. The optimal choice might be the TS system 
which guarantees the best accuracy on the validation set.  

4   Conclusions 

In this paper we have applied a Multi-Objective Genetic Algorithm to approximate 
the Pareto optimal front when the objectives are the TS complexity and accuracy. 
During the genetic exploration, a local optimization has been performed using the 
ANFIS local search strategy. We obtain an approximated Pareto front, which allows 
us to choose a posteriori the best compromise between accuracy and complexity. Our 
approach automatically selects the input variables by eliminating those that do not 
contribute to define the input space. 
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Abstract. Modern pharmacology, combining pharmacokinetic, phar-
macodynamic, and pharmacogenomic data, is dealing with high dimen-
sional, nonlinear, stiff systems. Mathematical modeling of these systems
is very difficult, but important for understanding them. At least as im-
portant is to adequately control them through inputs - drugs’ dosage
regimens. Genetic programming (GP) and neural networks (NN) are al-
ternative techniques for these tasks. We use GP to automatically write
the model structure in C++ and optimize the model’s constants. This
gives insights into the subjacent molecular mechanisms. We also show
that NN feedback linearization (FBL) can adequately control these sys-
tems, with or without a mathematical model. The drug dosage regimen
will determine the output of the system to track very well a therapeutic
objective. To our knowledge, this is the first time when a very large class
of complex pharmacological problems are formulated and solved in terms
of GP modeling and NN modeling and control.

1 Introduction

In the last years, detailed data about the complex molecular interactions be-
tween drugs and organism become available. The differential genes expression,
induced by drugs, can be investigated by microarray techniques [1]. This phar-
macokinetic (PK), pharmacodynamic (PD), and pharmacogenomic (PG) data
allow conceptual and mathematical models building. This models are important
for understanding pharmacological systems. Unfortunately, modeling this very
high dimensional nonlinear stiff control systems is a difficult task. At least as
important is to be able to adequately control them through inputs, which are
drugs with different dosage regimens, even with a limited understanding - a gray
or black box approach. The final goal is optimizing and individualizing med-
ical therapy in the presence of various degrees of knowledge and uncertainty.
Mathematical modeling requires detailed knowledge of the mechanisms involved
and the estimation of numerous parameters; it is a tedious, expensive, and time
consuming process. This probably explains the law impact of this approach on
clinical practice, even for simple models.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 178–187, 2006.
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We investigate genetic programming [2] and neural networks [3] as alternative
techniques for this tasks. In our approach, genetic programming uses informa-
tion, about the distribution and elimination of the drug (pharmacokinetics),
and about cellular and molecular processes’s inputs and outputs (pharmaco-
dynamics), to automatically and simultaneously write the mathematical model
structure, and calibrate and optimize the model’s constants. The end result is a
bug free computer model written in computer programming languages like C++
or Java. These models provide a quantitative descriptions of drug(s) pharma-
cogenomics. Also, because the vast diversity of genes are usually regulated by
drugs via a limited array of mechanisms, these mechanisms can be identified
from the resulted mathematical models.

This is a reverse engineering methodology, based on the mappings from the
computer programs to the mathematical models, and from the mathematical
models to the conceptual models describing the molecular mechanisms. It gives
insights into the subjacent molecular mechanisms of complex pharmacogenomic
systems starting from data. On the same time, this approach address a very dif-
ficult pharmacological problem: treatment individualization. If individual phar-
macological or pharmacogenomic data are used, the resulted models are individ-
ual pharmacological models; the values of the pharmacological parameters are
individual values not mean values.

Neural networks are nonlinear, adaptive, independent of modeling assump-
tions, fault tolerant, universal, and operate in real time. Feedback linearization
is one of the most important nonlinear control design strategy [4]. It may results
in linearizations which are valid for large operating regions of the system, as
opposed to a local Jacobian linearization. In a previous study, we obtained the
best published result in a cancer chemotherapy problem using neural networks
feedback linearization [5]. This motivates this study and the use of multilayer
perceptrons (MLP), instead of other possible neural networks like radial basis
functions or dynamical neural networks [4]. In our protocol, neural networks
feedback linearization can be applied to complex pharmacological systems, with
or without the aid of a conceptual or mathematical model. The established drug
dosage regimen will determine the output of the pharmacological system to track
very well a therapeutic objective, modeled as a reference signal. To the best of
authors knowledge, this is the first time when a very large class of complex phar-
macological problems are formulated and solved in terms of genetic programming
modeling and neural networks modeling and control.

2 Pharmacological Systems

2.1 Pharmacogenomic Data

For illustrating the proposed methods, we use published microarray pharma-
cogenomic data [7]. Forty-three male rats weighing 225 to 250 g received a single
intravenous bolus dose of 50 mg/kg methylprednisolone (MPL), a synthetic cor-
ticoid. Rats were sacrificed and liver, an important action site for corticoids,
excised at 17 time points over 72 hours. Four untreated rats were sacrificed at
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0 hours as controls. RNAs from individual livers were used to investigate 8000
genes with Affymetrix GeneChips. Cluster analysis revealed six temporal pat-
terns consisting of 197 responsive probes representing 143 genes.

2.2 Pharmacological Mathematical Models

Pharmacokinetics, the relationship between time and plasma concentration, can
be simply described as what the body does to the drug. The clinical interpreta-
tion of pharmacokinetic results requires another set of information, the relation-
ship between plasma concentrations (or doses) and effect, or pharmacodynamics.
This can be described as what the drug does to the body.

Pharmacological models, combining pharmacokinetic and pharmacodynamic
models of pharmacogenomic data, are usually nonlinear, high dimensional, stiff
control systems. Our investigations show that the vast majority of pharmaco-
logical systems, irrespective of drugs formulation and routes of administration,
are affine. For affine systems, the control input, represented by the drugs with
their dosage regimens for pharmacological systems, appears linearly in the state
equation:

ẋ = f(x) +
m∑

j=1

gj(x)uj

yi = hi(x) (1)

where x = [x1, . . . ,xn] ∈ �n is the state vector, f(x), g1(x), . . . , gm(x) are differ-
entiable vector fields, and h1(x), . . . ,hp(x) are smooth functions, all defined on an
open set of �n; the system hasm inputs {u1, . . . , um} and p outputs {y1, . . . , ym}.
This is a key aspect of the neural networks feedback linearization approach to
pharmacological systems proposed in this study. Feedback linearization converts
a nonlinear system into an equivalent linear system through co-ordinate transfor-
mation [4]. Feedback linearization is easier to apply to affine systems and more
powerful. It is distinguished from Jacobian linearization offering linearizations
valid for a larger operating space. By eliminating nonlinearities, conventional
linear control techniques can be applied [4].

Pharmacological Mechanistic Blocks. Pharmacokinetics deals with a math-
ematical description of the rates of drug movement into, within and exit from
the body. Rate processes in the field of pharmacokinetics are usually zero order,
first order, or Michaelis-Menten (nonlinear) kinetics. These rate processes can
be described mathematically by the following PK blocks :

1. Zero order kinetics: dX/dt = −k ; rate processes are described by the rate
constant alone.

2. First order kinetics: dX/dt = −kX , where k is a rate constant and X is the
amount or concentration of the drug remaining to be transferred.

3. Michaelis-Menten kinetics: dX/dt = −(VmX)/(Km + X), where Vm is a
maximum rate and Km is the Michaelis constant.
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A PK model is the algebraic sum of the corresponding PK blocks, resulting in
one ore more ordinary differential equations. The PK block corresponding to the
drug input is usually zero order or first order - affine systems.

A pharmacodynamic model attempts to relate drug concentration, ideally at
the site of action of the drug, to some pharmacological effect. The pharmacolog-
ical effects of the drug can be described mathematically by the following, most
used, PD blocks [6]:

1. Linear model: E = S · Ce+ E0
2. Log-linear model: E = S · log(Ce) + E0
3. Ordinary Emax model: E = E0 + Emax · Ce/(Ce + EC50)
4. Ordinary inhibition Emax model: E = E0 − Emax · Ce/(Ce + EC50)
5. Sigmoid Emax model (Hill): E = E0 + Emax · Cn

e /(C
n
e + ECn

50)
6. Sigmoid inhibition Emax model (Hill): E = E0 − Emax · Cn

e /(C
n
e + ECn

50)

whereE is the effect variable,E0 is the baseline effect, Emax is the maximum drug
induced effect,EC50 is the plasma concentration at 50% of maximal effect, S is the
slope of the line relating the effect to the concentration, Ce is the concentration
to which the effect is related, and n is the sigmoidicity factor (Hill exponent).

Methylprednisolone Pharmacokinetics and Pharmacodynamics. The
PK of the drug is described [7] by the following biexponential equation:

Cp = C1 · exp(−λ1 · t) + C2 · exp(−λ2 · t) (2)

where Cp is the plasma concentration of the drug, C1 = 39, 130 ng/ml, C2 =
12, 670 ng/ml, λ1 = 7.54 h−1, and λ2 = 1.20 h−1 are the coefficients for intercepts
and slopes. Note that (2), apparently not composed by the above PK blocks, is
just the integrated form of an equation following the usual pattern.

The cellular mechanisms of the corticosteroids pharmacogenomics [7] are
briefly described. Unbounded methylprednisolone in blood freely diffuse into the
cytoplasm of liver cells and quickly binds to the cytosolic receptor and activate it.
The activated drug-receptor complex rapidly translocates in the nucleus were it
binds to the glucocorticoid responsive element in the target DNA and alter rates
of transcription of target genes. Binding of the activated drug-receptor complex
results in decreased transcription and reduced levels of receptor mRNA. The
mRNA translocates to the cytoplasm were is translated to protein. This further
decreases the free receptor cytosolic density. The drug-receptor complex in nu-
cleus may dissociate from the target DNA and return to the cytosol. Part of the
receptors may be degraded, whereas the rest may be recycled.

A PD model, describing the drug receptor dynamics in rat liver, after drug
administration, was proposed in [7]:

dmRNAR

dt
= ks Rm ·

(
1 − DR N

IC 50Rm+DR N

)
− kd Rm ·mRNAR (3)

dR

dt
= ks R ·mRNAR + Rf · kre ·DR N − kon ·D · R − kd R · R (4)
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dDR

dt
= kon ·D · R − kT ·DR (5)

dDR N

dt
= kT ·DR − kre ·DR N (6)

where symbols represent the plasma concentration of the drug (D), the recep-
tor mRNA (mRNAR), the free cytosolic receptor density (R), cytosolic drug-
receptor complex (DR), and drug-receptor complex in nucleus (DR N); the rate
constants include zero-order rates of receptor mRNA synthesis (ks Rm = 2.90
fmol/g liver/h) , the first-order rates of receptor mRNA degradation (kd Rm =
0.11 h−1), receptor synthesis (ks R = 1.19 h−1) and degradation (kd R = 0.0572
h−1), translocation of the drug-receptor complex into the nucleus (kT = 0.63
h−1), the second-order rate constant of drug-receptor association (kon = 0.00329
l/nmol/h), the concentration of DR N at which the synthesis rate of receptor
mRNA drops to 50% of its baseline value (IC50 Rm = 26.2 fmol/mg of pro-
tein), and Rf = 0.49 is the fraction of free receptor being recycled. The baseline
were defined in [7] using the following equations: kdRm = ksRm/mRNA0

R and
ksR =

(
R0/mRNA0

R

)·kdR , wheremRNA0
R = 25.8 (fmol/g liver) and R0 = 540.7

(fmol/mg protein) are the baseline values of receptor mRNA and free cytosolic
receptor density.

A careful examination of the above equations can reveal two very important
aspects, for our genetic programming and neural networks feedback linearization
approaches:

1. This complex model is an algebraic sum of PK and PD blocks.
2. The system is affine, the input D, the plasma concentration of the drug,

appears linearly in the state equations.

Methylprednisolone Pharmacogenomics. Binding of the activated drug-
receptor complex to the target DNA induces or represses several genes. We in-
vestigate two of the six mathematical models proposed in [7] to describe different
patterns of gene expression in rat liver, after methylprednisolone treatment. The
first model was selected because is typical and the second one because it is the
most complex. In the first model, the synthesis and degradation of target RNA
(normalized as ratio to control), without drug administration, was assumed as
follows:

dmRNA

dt
= ks m − kd m ·mRNA (7)

The mRNA level was assumed to be at steady-state at time 0 in control animals,
yielding the following baseline equation: ks m = kd m ·mRNA0. Baseline level
of mRNA0 was fixed to 1 for the most genes.

Model I. The induced production of mRNA was described as follows:

dmRNA

dt
= ks m · (1 + S ·DR N) − kd m ·mRNA (8)

where the increase of transcription rate ks m is proportional with DR N with
the constant of proportionality S.
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Model II. mRNA with induced degradation in cytosol and secondarily induced
transcription by biosignals (BS) was described as follows:

dmRNA

dt
= ks m · (1 + SBSm ·DR N) − kd BSm ·mRNABS (9)

dBSr

dt
= ks BS ·mRNABS − kd BS · BSr (10)

dmRNA

dt
= ks m · (1 + Sm s ·BSr) − kd m · (1 + Sm d ·DR) ·mRNA (11)

where mRNABS is the mRNA of the regulatory biosignals and BS represents
their levels, both normalized as ratio to control. ks BSm is the rate of BS mRNA
synthesis, kd BSm is the rate of BS mRNA degradation, ks BS is the rate of
mRNA translation to BS, and kd BS is the rate of BS protein degradation.
The stimulation of BS transcription is proportional with DR N with a pro-
portionality constant SBSm. The stimulation of mRNA synthesis is propor-
tional with BS with a proportionality constant Sm s; this stimulation is also
present at baseline condition. The cytosolic mRNA degradation is regulated
by DR and Sm d is the corresponding stimulation factor. At time 0 (9), (10),
and (11) yield the following baseline equations: ks BSm = kd BSm ·mRNA0

BS ,
ks BS =

(
BS0

r/mRNA0
BS

)·kd BS , and ks m = kd m ·mRNA0/(1+Sm s ·BS0
r ),

were mRNA0
BS and BS0

r are the baseline values of normalized BS mRNA and
protein levels, which were fixed as 1.

Examining the last two models one can see again that the models are algebraic
sums of PK and PD blocs, and are affine. The input DR N , the intranuclear
concentration of the drug-receptor complex, appears linearly in the equation.

To conclude this section, one can investigate only the pharmacokinetic of
a drug (e.g., (2)), or can combine the pharmacokinetics with the pharmaco-
dynamics ((3) - (6)), or even combine the PK and PD descriptions with the
pharmacogenomic description ((8), or (9) - (11)) in a PK-PD-PG model, as we
did. The models’ complexity will increase but they will still be algebraic sums
of PK and PD blocks, and affine. This is why we believe that our approach is
very general.

3 Genetic Programming Automatically Modeling

Genetic Programming [2], breeds computer programs to solve problems by exe-
cuting the following three steps:

1. Generate randomly an initial population of compositions of functions and
terminals (see below) appropriate to the problem.

2. Iteratively perform the following substeps (a generation) on the population
of programs until the termination criterion has been satisfied:
(a) Execute each program in the population and assign it a fitness value

using the problems fitness measure.
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(b) Create a new population of programs by applying the following (most
usual) operations to program(s) selected from the population with a
probability based on fitness.
i. Reproduction: Copy the selected program to the new population.
ii. Crossover: Create a new program for the new population by recom-

bining randomly chosen parts of two selected programs.
iii. Mutation: Create one new program for the new population by ran-

domly mutating a randomly chosen part of the selected program.
3. Designate the individual program with the best fitness as the runs result.

This result may be a solution (or approximate solution) to the problem.

The functions may be standard arithmetic or programming operations, stan-
dard mathematical functions, logical functions, or domain-specific functions. The
terminals are variables and parameters. The major preparatory steps for GP con-
sist in determining the set of terminals, the set of functions, the fitness measure,
the parameters for the run, the method for designating a result, and the criterion
for terminating a run.

We use a linear version of steady state genetic programming [8]. In linear
GP, computer programs are represented as a single sequence of instructions and
data, as opposed to binary tree representations, for example. Linear genetic
programming is unrelated to linear programming.

It starts with a population of 500 randomly generated computer programs.
Then, it selects at random four programs and measures how well each of them
maps the inputs to the output. The inputs, measurable in principle, but obtained
by simulating the PK-PD-PG model in our study, are: the plasma concentra-
tion of the drug, the receptor mRNA, the free cytosolic receptor, the cytosolic
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Fig. 1. Left: Neural networks feedback linearization tracking results for the combined
pharmacokinetic, pharmacodynamic, and pharmacogenomic model; the resulted drug
dosage regimen determine the system to follow closely the desired therapeutic objective.
Right: The outputs of the combined pharmacokinetic, pharmacodynamic, and phar-
macogenomic models generated by genetic programming and the ”measured” mRNA.
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drug-receptor complex, the drug-receptor complex in nucleus, the mRNA and
protein level of intermediate regulators. The output is the mRNA of the corre-
sponding gene. The two best programs win the tournament. They are copied and
transformed into two new programs via crossover and mutation with frequency
50% and 95%, respectively. These programs replace the two loser programs from
the tournament in the population of programs. GP repeats these steps until it
has written a satisfactory program. The performance measure R2 was 0.99 (the
maximum is 1) for test data after 30 minutes and about 20,000,000 programs
evaluation on a PC Pentium IV, at 3.2 GHz, and 2Gb RAM (see Fig. 1).

4 Neural Networks Feedback Linearization

Multilayer perceptrons (MLP) have been successfully used in optimizing cancer
chemotherapy [5]. Neural networks feedback linearization can be applied to com-
plex pharmacogenomics systems to find adequate drug(s) dosage regimens (see
[9] for a more detailed treatment). We use input-output feedback linearization
[4], in which the output becomes a linear function of a new control input. There
are two distinct situations:

1. When a mathematical model exists, neural networks feedback linearization
is applied to the input-output data resulting from model simulations.

2. When only experimental data are available, a neural networks model of the
system is first identified from the set of input-output data pairs; it consists
in two MLP corresponding to the two function f and g in (1).

The input is the plasma concentration of the drug, and the output is the mRNA
of the target genes. The proposed methods are applied to both experimental data
and to simulation data. In simulation, a random input, between zero and the max-
imal value of plasma concentration of the drug, is injected into the PK-PD-PG
model at random intervals of time. The model structure is the standard Nonlin-
ear Autoregressive-Moving Average (NARMA) model, adapted to the feedback
linearization of affine systems - the controller input is not contained in the non-
linearity. We want the system output to follow a reference trajectory which is a
mathematical formulation of a therapeutic objective. To determine the model or-
der, we use the lag-space method [10]. As experimental data we arbitrary select a
gene from microarray data [7]. We use regularization and early stopping to avoid
over-training, and we start with different random initial conditions to avoid end-
ing in ”bad” local minima. The number of hidden layers is one for all neural net-
works. The number of neurons in the hidden layer, of the two MLPs, is 5 and 3,
respectively, for experimental data. For simulated data, both MLPs have 7 neu-
rons. The activation functions are tangent hyperbolic for the hidden layer and lin-
ear in the output layer for all NN. The training algorithm is Levenberg-Marquardt.
We investigate the prediction errors by cross-validation on a test set. We use the
NARMA-L2 [11] version of input-output feedback linearization. Tracking results,
of the proposed neural networks feedback linearization methods, applied to the
PK-PD-PG model, are shown in Fig. 1.



186 A. Floares

5 Conclusions

Genetic programming and feedback linearization using neural networks are ap-
plied to model and control the most complex nonlinear pharmacological systems.
The goal is to develop powerful but easy to use methods for optimizing and indi-
vidualizing medical therapy, in the presence of variate degrees of knowledge and
uncertainty. The genetic programming and neural networks proposed methods
can be applied to data, without a mathematical or even a conceptual model.

When a mathematical model exists, the neural networks methods can be ap-
plied to simulated data. In both situations the neural networks protocol is the
same - identify a neural model and design a neuro-controller. Feedback lineariza-
tion has a strong theoretical foundation, is simple, and gives a linear control low,
valid everywhere in the space of admissible inputs and outputs. As we show, most
pharmacological systems are affine. For affine systems feedback linearization is
particularly simple to apply and powerful.

Starting from data, a mathematical model, expressed in a programming lan-
guage like C++ or Java, can be automatically generated, without bugs, with our
genetic programming approach. As we show, even very complex pharmacoge-
nomic models are build by summing pharmacokinetic and pharmacodynamic
blocks. Knowing this, greatly helps checking if genetic programming is identi-
fying the correct model structures from data, reflecting the molecular reality.
This models, giving insights into complex molecular mechanisms involved, are
preferred to a black box neural networks model, when understanding is the main
goal. investigation. The investigation of differential gene expressions, induced by
drugs, when combined with powerful computational intelligence methods, repre-
sents a strong foundation for optimizing and individualizing medical therapies.
The genetic programming and neural networks feedback linearization protocols
allow the elaboration of drug dosage regimens, which determine the pharmaco-
logical systems to follow the desired therapeutic objectives, without the aid of
mathematical models, which are difficult to build for such complex data.
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Abstract. The paper introduces a generalization of the fuzzy logic connectives
AND and OR. To define the logical connectives different t-norms and t-conorms
are used. To generalize the t-norms (t-conorms) the Ordinal Sums are introduced.
To learn the parameters of the builded Ordinal Sums and the of weights of the
connectives the Genetic Algorithms are applied. Two experiments using both
synthetic and benchmark data are made. From one hand, a 2-dimensional clas-
sification problem to show the behavior of the approach is considered and on the
other hand the Zimmermann-Zysno data set to show the capability of the model
is analyzed.

Keywords: Fuzzy Logic Connectives, t-norms (t-conorms), Ordinal Sums, Ge-
netic Algorithms, Experiments with Logic Connectives.

1 Introduction

The semantics of logic operators (logic connectives) in fuzzy sets is enormously rich.
Some of the most recent conceptual developments along this line involve uninorms
[5, 6, 12] nullnorms [1, 4] and ordinal sums [3] of t-norms, just to name a few pursuits.
Logic operators are the crux of the fundamentals of the fuzzy sets or granular com-
puting in general. Quite commonly, more advanced models of logic connectives come
with a suite of adjustable parameters whose role is to customize the operator to available
experimental data. This flexibility should come hand in hand with a viable method of
optimizing these parameters. Subsequently, the optimization should be efficient enough
and supported through some architectural realizations of the operators. This tendency
is quite visible in case of Neural Network (NN) implementations of AND and OR op-
erators with weights, AND/OR logic hybrids [6] and ordinal sums [3]. In this paper
we focus our attention to study a NN-based model of logical connectives [9, 10]. The
logical connectives AND and OR are defined using different t-norms and t-conorms.
We generalize these norms by using Ordinal Sums (OSs) [3]. To learn the parameters
of the OSs and the weights of the connectives we use Genetic Algorithms (GAs) [3].

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 188–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Logic-Based Neurons and Ordinal Sums

In this section we briefly remind the two basic types of logical-based neurons. A con-
nective can be conveniently regarded as multivariable nonlinear transformations be-
tween unit hypercubes, say [0, 1]n → [0, 1]. The AND neuron aggregates input signals
(membership values) x = [x1,x2, . . . ,xn] by first combining them individually with the
connections (weights) w = [w1, w2, . . . , wn] ∈ [0, 1]n and afterwards globally ANDing
these results (see figure 1a),

y = AND(x,w) (1)

i.e.,
y = Tn

i=1(xiswi) (2)

where t- and s-norms (t-conorms) are used to represent the AND and OR operation,
respectively.

The structure of the OR neuron is dual to that reported for the AND neuron (see
figure 1b), namely,

y = OR(x,w) (3)

i.e.,
y = Sn

i=1(xitwi) (4)

On the other hand we have that a triangular norm (t-norm for short) is a function t :
[0, 1]2 → [0, 1] which is commutative, associative, non-decreasing in both components,
and satisfies the boundary condition t(x, 1) = x for each x ∈ [0, 1]. Given a t-norm, its
dual t-conorms is defined by the De Morgan’s relationship that is s(x, y) = 1 − t(1 −
x, 1 − y).

Now we also mark that for every natural number n ≥ 2 the n-ary extension tn
i=1 :

[0, 1]n → [0, 1] of a t-norm is recursively defined as [3, 7]

tn+1
i=1 (x1,x2, . . . ,xn+1) =

{
t(x1,x2) if n = 1
t(tn

i=1(x1,x2, . . . ,xn),xn+1), if n > 1 (5)

Finally we stress that an important way to construct new t-norms from given ones is
that of an ordinal sum (OS) [3, 11, 7]:
let I = {]αk,βk[}k∈K be a non-empty countable family of pairwise disjoint open

a) b)

Fig. 1. AND/OR neurons: a) AND neuron of equation 1; b) OR neuron of equation 2
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subintervals of [0, 1] and let F = {tk}k∈K be a family of corresponding t-norms, then
the ordinal sum {〈αk,βk, tk〉}k∈K is the function T : [0, 1]2 → [0, 1] defined by

T(x, y,F , I) =
{
αk + (βk − αk) · tk( x−αk

βk−αk
, y−αk

βk−αk
) if x, y ∈ [αk,βk]

min(x, y) otherwise
(6)

which is always a t-norm. We also remark that ordinal sums of t-conorms are defined
in the same way as OSs of t-norms, only replacing min by max [7].

3 Ordinals Sums and GAs

In the previous section we showed how to construct new t-norms from given ones using
OSs. In this section we show how to apply OSs to define the t-norms and t-conorms of
the equation 2 (or 3) and how to learn the parameters using Genetic Algorithms (GAs).
In this case the equation 2 becomes

y = T̂n
i=1(xiŝwi) (7)

where t̂- and ŝ-norms are used to represent AND and OR operation, respectively, and
are obtained by using OSs. In details for a t-norm (for t-conorms is equivalent) we have

T̂ = T(xi, wi,F , I) (8)

where from equation 6 we have that F = {tk}k∈n and I = [αk,βk]k∈m [3]. In the
same way we formulate the equation 4

y = Ŝn
i=1(xi t̂wi). (9)

In figure 2 we show a possible mapping obtained using an OS and considering two
variables x and y. The parameterm denotes the number of segments sk = βk −αk (see
equation 6).

Now we have to mark that the GA is a stochastic global search method that mimics
the metaphor of natural biological evolution [3, 2, 8].
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From one hand one of the main problems that we have to apply a GA is to define the
structure of a chromosome. In our case, if we define m to be the number of intervals
of the OS, we mark that in equation 7 (or equation 9) the parameters to learn are the
t-norms t̃i (i = 1, . . . ,m) and the t-conorms s̃i, the size of the subintervals ṽt

i of the
t-norms and the subintervals ṽs

i of the t-conorms, respectively. Moreover we have also
to learn the weights w = [w1, w2, . . . , wK ] of the connections (whereK is the number
of the input neurons). Then to determine the best parameters we define the structure of
a single chromosome in the following manner

t̃1 t̃2 . . . t̃m ṽt
1 ṽ

t
2 . . . ṽt

m s̃1 s̃2 . . . s̃m ṽs
1 ṽ

s
2 . . . ṽs

m w1 w2 . . . wK

where the values are defined in the [0, 1] range.
If we denote n to be the number of known t-norms (for the t-conorms the following

procedure is the same) then from the values of the chromosomes we associate a known
t-norm (tk with k = 1, 2, . . . , n) in this way

t̃j ∈
[
k − 1
n

,
k

n

]
→ tk (10)

where j ∈ 1, 2, ...,m.
Moreover, to determine the size of the subintervals we normalize each value in this way

vt
i =

ṽt
i∑m

j=1 ṽ
t
j

(11)

On the other hand another problem is to define the fitness function. In our experi-
ments the fitness function is defined by using a 2-norm (‖.‖2). If we suppose to have
two n-dimensional vectors x = [x1,x2, . . . ,xn] and y = [y1, y2, . . . , yn], respectively,
then the fitness function using a 2-norm becomes (Sum-of-Squares Error (SSE))

J = min
1
2
‖o− t‖2

2 (12)

where t = [t1, t2, . . . , tn] is a n target vector with values ti and o = [o1, o2, . . . , on] is
a vector where oi is the objective function estimated as follows

oi = T(xi, yi,F , I). (13)

From equation 10 we have that F = {tk}k∈n and I = [αk,βk]k∈m. We mark that
αk+1 = βk = αk + sk and α1 = 0. For more details on the other operators and
parameters needed for a GA process see [3, 2, 8]

4 Experimental Results

In this section we show some results obtained applying the approach described in sec-
tion 3. We use the following t-norms (and the respective dual t-conorms):

tM(x, y) = min(x, y)
tP(x, y) = xy
tL(x, y) = max(0,x + y − 1)

tW(x, y) =
{

min(x, y), if max(x, y) = 1
0, otherwise

(14)
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Fig. 3. Data set and classification: a) two classes with Gaussian distributions; b) SLP decision
boundary

a) b)

Fig. 4. AND neuron decision boundary: a) one norm; b) two norms

a) b)

Fig. 5. OR neuron decision boundary: a) one norm; b) two norms

Aim of the first experiment is to explain the behavior of the proposed connectives to
accomplish classification. We consider a 2-dimensional data set composed by two sep-
arated classes having both Gaussian distributions (fig. 3a). We also compare the AND
and OR neurons with a Single Layer Neural Network (SLNN) with a linear output.
In figure 3b we plot the decision boundary obtained applying the SLNN. In this case
we obtain a SSE of 0.04. On the other hand in figure 4 we plot the decision boundaries
obtained using the AND connective. In detail in figure 4a we plot the decision boundary
obtained using equation 7 by using one norm and in figure 4b by using two norms.

Moreover in figure 5 we show the same experiment but using the connective de-
scribed by equation 9. We have to note that both the SSEs are closed to 0 but we also
note that using more than one norm in the OS we obtain a better result. This is clearer
in the next experiment.

In the second experiment we study a data set coming from Zimmermann and Zysno
[13]. It consists of 24 pairs of membership values A(x) and B(x) along with the exper-
imentally collected results of their aggregation (fig. 6). Also in this case we apply the
AND and OR neurons varying the number of t-norms and t-conorms. In figure 7 we
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Fig. 6. Data set: Zimmermann and Zysno data set

a) b) c) d)

Fig. 7. AND neuron decision boundary: a) one norm (SSE 0.0950); b) two norms (SSE 0.0888);
c) three norms (SSE 0.0950); d) four norms (SSE 0.090)

a) b) c) d)

Fig. 8. OR neuron decision boundary: a) one norm (SSE 0.0558); b) two norms (SSE 0.0341); c)
three norms (SSE 0.0361); d) four norms (SSE 0.035)

plot the results obtained by using an AND neuron. In these figures from a to d we plot
the results obtained using one, two, three and four norms, respectively. We also obtain
that the SSEs are of 0.0950, of 0.0988, of 0.0950 and of 0.090, respectively. In figure 8
we plot the results obtained by using an OR neuron. In this case the SSEs are of 0.0558,
0.0341, 0.0361 and 0.035, respectively.

We conclude that using the t-norms and t-conorms to build the connectives we
achieve a more complex decision boundary. The decision boundary can be automati-
cally defined by the proposed approach directly from the data. This is also confirmed
by the different experimental results that we obtained using other data sets. We also
have to note that about the Zimmermann-Zysno data set by using more than one t-norm
(t-conorms) we achieve better results in the case of the OR connective.

5 Conclusion

In this paper we introduced a NN-based model of logical connectives. The logical con-
nectives AND and OR have been defined using different t-norms and t-conorms. These
norms have been generalized using Ordinal Sums (OSs). To learn the parameters of the
OSs and the weights of the connectives we used GAs.
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From the experiments that we made and from the results that we presented in the
paper we noted that using OSs we achieve a better result than using one norm both on
classification tasks and on the approximation of the Zimmermann-Zysno data set.

We stress that using GAs the learning process permits automatically to discover the
norms and the weights of the connections from the data.

We also mark that the connectives obtained using different t−norms (and/or t-
conorms) permit to obtain a more complex decision boundary than a single neuron.
Could be noted that a similar boundary, using NNs, can be obtain only using more than
one layer.

Moreover we stress that the logical connectives also permit to generalize the infer-
ence systems in a fuzzy logic framework.

In the next future the authors focus their attention to validate and to generalize the
model to obtain a two layer NN for a complex inference system and to use GAs to
generalize the uninorms.
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Abstract. We have developed and continue to enhance automated intelligent 
software that performs the tasks and decision making which now occurs by the 
personnel manning watch stations in the Combat Direction Center (CDC) and 
Task Force Combat Center (TFCC), on-board aircraft carriers and other Navy 
ships. Integrating information from various sources in a combat station is a 
complex task; disparate sources of information from radars, sonars, and other 
sensors are obtained by watch station surveillance guards, who must interpret it 
and relay it up the chain of command. The Intelligent Identification Software 
Module (IISM) alleviates some of the burden placed on battle commanders by 
automating tasks like management of historical data, disambiguating multiple 
track targets, assessing threat levels of targets, and rejecting improbable data.  
We have knowledge engineered current CDC/TFCC experts and designed IISM 
using C++ and SimBionic, a visual AI development tool. IISM uses multiple 
soft computing techniques including Baysian inference and fuzzy reasoning. 
IISM is interfaced to the Advanced Battle Station (ABS) for use on many US 
Navy sea vessels. 

1   Introduction 

The Combat Direction Center (CDC) and Task Force Combat Center (TFCC) on-
board aircraft carriers and other ships must be manned with dozens of highly trained 
technical and tactical personnel [1]. The reason for this is the complexity of the 
weapon systems and associated information, as shown by the high-level organization 
of it in Figure 1. The combat areas consist of people; computers; and displays;  
and the arrows (in the figure) roughly correspond to information flow  
between combat areas and from sensors, to combat areas and from combat areas to 
weapons/countermeasures. CDC/TFCC operation is complicated by a large number of 
sensors, weapons and countermeasures. These operations will only become more 
complicated as additional sensors, weapons, and even war-fighting areas are added. 
Furthermore, through the Cooperative Engagement Capability (CEC), each ship can 
use the sensors and weapons on other ships thus adding additional combat areas, 
sensors, and weapons.   

A naval commander must make complex decisions based on limited or noisy 
information.  In partially observable and adversarial environments it is vital to keep  
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Fig. 1. Weapon System High Level Overview 

track of an approximate model of the world that simultaneously maintains multiple 
hypotheses about the world state [2]. These hypotheses facilitate reasonable decisions 
to take in response to the hostile environment.  

To ameliorate the complexity of these systems, Stottler Henke has developed the 
Intelligent Identification Software Module (IISM) that performs the tasks and decision 
making which now occurs by the human manning that watch station, such as tracking 
objects that merge and later split up, maintaining history of possible tracks for an 
object, assessing threat level, rejecting “insane” data, and handling errors. 

IISM is interfaced to the Advanced Battle Station (ABS) for use on many US 
Navy ships. Given tracking data and time stamps from the Advanced Battle Station 
(ABS), IISM updates the history list of tracking and identification data, rejects 
nonsense tracks, compares recent history to past patterns of activity, alerts the 
commander when necessary, and provides customizable identifications of targets as 
well as the threat level of each target.  IISM is also capable of correcting errors and 
recovering snap-shot and history data after unforeseen catastrophes. 

We have knowledge engineered current CDC/TFCC experts and determined that 
the cognitive processes being utilized were reproducible with Artificial Intelligence 
techniques [3]. We determined the types of tasks performed and the knowledge 
required for those tasks. A breadth of positions was important to keep the 
representation schema truly general. We designed the general CDC/TFCC knowledge 
representation schema and then an intelligent CDC/TFCC equipment control, 
monitoring, processing, and fusion system. From knowledge engineering and the 
schema, we designed and implemented IISM using C++ and SimBionic, a visual AI 
development tool that can help in the development of fuzzy, Bayesian and other AI 
techniques. 

2   IISM Input / Output Description and Functional Overview 

Human tactical decision making in warfare scenarios can be described with the 
simplified diagram shown in Figure 2. Imperfect information about the current state  
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of the world is gathered by a diverse set of sensors. These sensors can be in several 
modes, may be off ship, and may be human in nature. The human decision-maker 
receives the sensor data through a communication or perception processes. Based on 
that information he makes decisions to take actions that affect the objects in the world 
over which he has direct control. These might include CDC/TFCC display systems, 
airborne platforms, weapon systems, communications, and sensors. 

On a highly conceptual level, IISM’s task can be viewed as a classification 
problem of the threat level assigned to individual entities, e.g. ships, present in the 
scenario. Maintaining a consistent and reasonably approximate model of several 
entities’ attributes that are only partially perceivable implies the task of track handling 
and analysis. The latter is exploited in IISM to: 1) determine the identity of an entity 
(or some degree of certainty about it), 2) perform path analysis of entities and (3) 
infer abstract conclusions regarding the behavior of entities on the basis of their 
movement over time. Stated another way, both positive and negative evidence is 
tracked to form multiple, possibly competing hypotheses. Conclusions about these 
hypotheses are inferred for tracks through the process of elimination reasoning. 

IISM stores and reasons about incoming track data in a flexible and customizable 
manner as defined by the control logic defined in SimBionic (see below). During this 
processing, IISM checks the quality of incoming messages, it updates its history of 
vessel movements (tracks) and IDs and performs threat assessment of units. This 
functionality is presently performed by trained watch-standing personnel aboard 
ships. It requires reasoning about whether the perceptions align with the internal 
model of the world and how insane (i.e. misaligned) perceptions are treated.  

Insane and noisy data handling 
Insane data can arise through an incorrect model or faulty perceptions, and special 
care must be taken in order to extract hints to potential threats instead of discarding 
them just like incorrect perceptions are discarded. The IISM reasoning functionality is 
performed in three subsequent steps in IISM’s Insanity Checker: (1) Threat 
processing marks a unit as a potential threat in case insane perceptions are indicating 
this. (2) Data Neglect Checking takes account of an erroneous internal model caused 
by sensor noise and updates the model with the insane update. (3) Inconsistency with 
ID checking keeps track of harmless, but questionable/suspicious pieces of 
information and thus allows reasoning about temporally dispersed perceptions.  
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Track Hypothesis Handling 
Instead of keeping a flat organization of unit ID hypotheses, IISM uses a hierarchical 
approach to refine an ID hypothesis as needed, such as in the case of determining the 
exact type of the enemy’s unit. IISM assigns each hypothesis a particular certainty 
level that describes its reliability. When we get new data we use a Bayesian network 
update to keep track of the proper certainties for each track hypothesis. When the 
certainty for one of multiple hypothesis of a track is changed, or when a new 
hypothesis for a track arrives, an update algorithm is called on that track. This update 
algorithm uses the hyperbolic arctangent adjustment algorithm on each certainty to 
propagate the change made by the additional information. This algorithm runs 
through every hypothesis that is related to the changed one, updating each certainty 
according to Bayesian rules. These rules update the certainties based on the prior 
values and how closely they are related to the other related certainties. 

Example Situation 
Figure 3, shows an area around the Persian Gulf and provides an idea of how cluttered 
the environment being monitored and assessed can be. 

 

Fig. 3. Example of Density of Contacts that Need Monitoring and Assessing 

Let’s examine a situation where two surface tracks (track 1 & 2) are first detected, 
both traveling at a high speed (50 knots). At this point, IISM would already inference 
a subset of platform types based on their speed. Later these two tracks split up.  Track 
2 later merges with track 3, which had previously been IDed (identified) as an Iranian 
Houdong Fast Patrol Boat.  These tracks (2 & 3) soon split up; at this point IISM does 
NOT know which of the tracks (2 or 3) is the formerly identified Iranian Houdong 
Fast Patrol Boat.  Therefore, IISM will keep both sets of past information and use new 
information to improve its hypothesis on what each boat is.  As can been seen even 
with this simple scenario, the situation is very fluid and multiple hypotheses must be 
tracked and re-evaluated as new information is obtained. 
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3   SimBionic 

SimBionic is a visual framework that simplifies the authoring of simulated behaviors 
or algorithms. SimBionic’s framework consists of a canvas depicting algorithms as a 
finite state machine (FSM) graph, a palette of geometric objects and glyphs, and a 
dictionary of actions and predicates. 

SimBionic employs four programming constructs; 1) actions, which define all the 
different actions the algorithms can perform; 2) algorithms (also referred to as 
behaviors) that string together actions and conditional logic; 3) predicates, which set 
the conditions under which each action and algorithm will happen; and 4) connectors, 
which control the order in which conditions are evaluated, and actions and algorithms 
take place.  

These four constructs allow one to create algorithms that range from simple 
sequences to complex conditional logic. Via SimBionic’s authoring canvas, see 
Figure 4 (left image), users can visually create algorithms by drawing actions and 
invoke algorithms (represented as rectangles) and conditions (represented as ovals) to 
interact in both simple and complex combinations via connectors (represented as 
arrow-shaped lines with priority numbers). This canvas also allows users to assign 
arbitrary expressions and comments to these elements. 

 

 

Fig. 4. SimBionic Authoring Environment & Trigger_NearByEnemy Behavior 

SimBionic extends the usual notion of finite state machines by making it possible 
for states to refer to other finite state machines hierarchically, to define modular 
algorithms that can be combined powerfully.  SimBionic software also provides four 
extensions that increase the power and expressiveness of the basic engine: global and 
local variables, interrupt transitions, “blackboards” for sharing knowledge among 
finite state machines, and polymorphic indexing for run-time selection of algorithms. 

IISM uses the SimBionic visual AI code generator platform to instantiate 
intelligent modules that track target paths, assess threat, and identify targets. For 
example, the Trigger_NearByEnemy behaviour found in IISM, see Figure 4 (right 
image), is a schema for interacting with the possible enemy labelled RED, within 
some predefined distance.  This behaviour is called when tracking data of the target 
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are consistent with type RED and calculated “distance” from own ship.   It invokes an 
action to contact the target by messaging.  Other more complicated behaviours are 
invoked for identifying targets as friend or foe, for tracking specific targets over time, 
and for rejecting nonsense/insane data. 

4   IISM Detailed Capabilities 

IISM has been implemented using C++, and SimBionic.  SimBionic can output its 
behaviors as C++ code for fast execution.  IISM utilizes this facility to create a fast 
executing AI-based solution.  Not all of the major capabilities or requirements utilize 
SimBionic, so listed first are those major capabilities or requirements that do not 
exploit SimBionic, and then those that do are described. 
 
Intelligent Tactical Memory 
One of the important functions that humans currently provide in the CDC/TFCC is 
that of intelligent memory and IISM mimics this capability.  This memory includes all 
track attributes (position, velocity, ID information, etc.) along with a time stamp for 
each.  Current ship systems do not keep, in a readily recalled format, the trajectory 
and ID history of each track.  IISM fulfills this purpose. 

 
System Independence 
If tactical decision systems go down, IISM will continue to remember (and update 
from other sources if possible) the current tactical picture. This memory function is 
important for rebuilding the tactical picture.  IISM is set up to take inputs from 
multiple sources. 

 
IISM Reliability 
IISM is required to be very robust, never crashing and able to run around the clock 
without requiring reboots. To handle the cases of hardware failure, IISM constantly 
backs up its memory to disk and automatically restore it upon start up.  

 
Human Computer Interaction (HCI) 
Most of the HCI occurs through the Advanced Battle Station (ABS). This way watch 
station personnel do not need to learn anything new, the information will appear in the 
same manner as if the current human decision makers had provided the information. 

4.1   SimBionic Supported Capabilities 

SimBionic is used to support IISM’s core capabilities of automating the task of 
intelligent track analysis. The track’s position and velocity with historical 
information, if any, regarding position, velocity, proximity and other interactions with 
other platforms is analyzed by IISM to estimate the probability of hostile intentions of 
and assess the threat posed by the track. Whenever a track significantly changes its 
velocity, analysis is made to determine if the maneuver warrants a change in the 
current ID estimate.  Considerations include existing ship and air lanes, motion 
toward or away from blue forces or the assets that they are protecting, whether tracks 
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appear to be cooperating, and attacks.  For example, consider two tracks proceeding 
together at high speed.  One breaks off and mingles with local fishing traffic.  Later 
the other attacks.  IISM will warn the watch stander about the other track.  If the 
attack track has merged with other tracks, IISM will notify the user of which ones are 
possible enemy.  IISM can reason from process of elimination as the non-enemy 
tracks are IDed to identify the remaining possibilities. 

For example, the Track Id Processing Behavior (TIPB) is a hierarchal decision tree 
to classify the track into one of the ID categories (BLUE, RED, GRAY, WHITE) with 
a given certainty level by analyzing current information as well as historical 
information of the track, see Figure 5 (left image). TIPB has 3 top-level behaviors: 
Surface Track Behavior for analyzing surface tracks, Air Track Behavior for 
analyzing air tracks and Undersea Behavior for analyzing undersea tracks. When 
IISM receives new updates for the track it runs through TIPB. 

 

 

Fig. 5. Track Id Processing Behavior& Surface Track Id Processing 

Now looking at the Surface Track Behavior, see Figure 5 (right image), it consists 
of five behaviors: 

• ClassifyCERT 
• ClassifyPROB  
• ClassifyPOSSHIGH  
• ClassifyLogical 
• ClassifyPOSSLOW 

The analysis of the information starts with ClassifyCERT and goes through 
ClassifyPOSSLOW if the track cannot be classified by any of the behaviors. 

The following details some of the reasoning techniques used to perform the 
intelligent track analysis. 
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Track History Maintenance 
Memory is also used to correlate previous tracks with new track information.  A 
complete track history is kept, which allows IISM (or a human operator) to quickly 
determine if the track's ID is ambiguous because of a track merge or ID swap.  
Several mistakes, during naval exercises, caused by merges and swaps resulted in the 
targeting of several neutral, and even blue, platforms.  Such mistakes during exercises 
cause commanders to limit their own options during future exercises or real missions.  
They are much less likely to use a weapon like the Harpoon, since they lack faith in 
their own ID picture.  Although these problems are rare during random or benign 
scenarios (tracks don't normally pass that close to each other), a real adversary will go 
out of his way to try to create them.  E.g., a terrorist attacking platforms under US 
protection would try to mingle, possibly several different times, with commercial 
platforms, such as fishing boats and merchant traffic.  IISM has algorithms 
implemented with SimBionic that will handle the most complex set of merge/split 
scenarios (e.g. platforms merging with several different platforms and each other at 
separate times) logically and correctly.  These algorithms already outperform humans 
in their ability to determine the possible IDs of tracks involved in several merges. 

Historical Comparison 
A track’s history is kept in varying levels of detail, depending upon its age.  IISM will 
remember all tactical data (to different levels of detail, minutes, hours, days, months, 
or even years before) and compare the current data, events, and situation to the recent 
or distant past.  IISM will retrieve tracks similar to the current one and make 
recommendations accordingly.   

Multiple Competing Hypotheses for ID 
IISM keeps simultaneous competing hypothesis for each track as to the type/hull of 
the platform and its country of ownership.  It will track both positive and negative 
evidence and reach both positive and negative conclusions. IISM explicitly keeps 
track of all possible hypotheses and the associated likelihoods for each track.  
Initially, a track can be anything, but incoming evidence impacts the certainties of 
each hypothesis.  Positive ID information, such as a good visual ID, eliminates the 
competing hypotheses until the track is involved with a merge, at which time the 
resulting tracks each contain all the hypotheses of both tracks that merged. 

Hierarchy of possible ID values 
For both dimensions of ID information, IISM will include a hierarchy (from general 
to specific) of possible ID values.  E.g.:  

• Blue – UK, Combatant – frigate – FFG-7 – Specific platform; or  
• White – Merchant, Cargo Carrier – Ship Class – Specific Hull 

ID is often hierarchical with the goal of determining the most precise value that is 
worthwhile.  Thus while an ID of White Merchant might be adequate, a Red 
Combatant may need to be IDed more precisely, perhaps as Chinese Houdong Fast 
Patrol Boat.  These hierarchical symbols interact with the competing hypotheses 
described above.  Thus, if the only competing hypotheses for a track are Gray 
Destroyer and Red fast patrol boat, and information is received that it has a speed 
greater than is possible for a destroyer, then IISM will conclude it is red. 
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Sanity Checking 
When new data is received, before the track information is updated, the new data is 
compared to the recent history to make sure it makes sense and is at least physically 
possible.  Any inconsistencies are reported, and to the degree practical, automatically 
resolved.  This sanity checking function occurs for red, blue, gray, and white forces.  
IISM compares the current position/velocity to the last reported position for that track 
and determines if it is physically possible, given the platform type.  If not, it 
determines if it is most likely a spurious data point, that the assigned track type is 
wrong,  that a completely different platform as been assigned the same track number, 
or that the reported position of a friendly track is incorrect.  It then recommends the 
appropriate action.  

Fuzzy Reasoning 
Classify Logical of the surface track behavior is an example of the fuzzy reasoning 
used by IISM. It will analyze the trajectory of the track to try and classify what kind 
of platform it is. Please refer to Figure 6. 

In this behavior, first the turnRadius and Weight of the track is estimated based on 
the history of the trajectory. Next these numbers are converted into one of three fuzzy 
values, representing  heavy, light, or middle weights, and small, middle, and large 
turn radii. The reason we use fuzzy values for the calculations is because this 
algorithm now becomes much more robust in the presence of noise or other negative 
 

 

Fig. 6. Classify Logical Fuzzy Reasoning Behavior 
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factors. Finally, the platform type is recommended with various fuzzyConfidence 
levels depending on the fuzzy values. For example, if we have a low weight and high 
turn radius, we are PROB small light platform, and similarly if we are high weight 
and low turn radius we are POSHIGH large platform. The reason the large is only 
poshigh while the small is prob is because a large ship cannot move quickly, but a 
small ship can, thus we are more confident a ship is small when it moves quickly than 
that a ship is large when it moves slowly. This kind of intuitive reasoning is only 
possible via fuzzy reasoning. 

 
Process of Elimination Reasoning 
IISM employs logic and the process of elimination in making ID decisions.  For 
example, IISM may know one combatant is out in a particular area where several 
other tracks are present.  Even though every track seems to have low probability of 
being a combatant based on their behavior, a higher probability bias is used since one 
of them must be the combatant.  The process of elimination is used to determine the 
most likely tracks to investigate first. 

5   Conclusion 

IISM is an AI module that alleviates the burdens placed on battle commanders by 
tracking sometimes ambiguous target signals, storing and handling past target data, 
assessing threat levels of targets, filtering out insane data, as well as robustly 
recovering from crashes and errors. IISM’s rule-based logic is used to compute track 
IDs, estimate threats, and notify users of alert conditions; its probabilistic hypothetical 
reasoning system keeps track of multiple track hypotheses based on the fusion of 
evidence from multiple sources, and uses statistical algorithms to find correlations 
between track movements. IISM is a seamless enhancement to the current Advanced 
Battle Station, providing enhanced reasoning without the need for any user to learn a 
new system. By applying multiple soft computing techniques including Bayesian 
inference and fuzzy reasoning, as well as other AI techniques, including polymorphic 
finite-state-machines, IISM is performing as well as or better than Navy personnel. 
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Abstract. In this work we present a MATLAB implementation of a
fuzzy controller with Conditionally Firing Rules (CFR). The perfor-
mance of Mamdani-Assilian, Takagi-Sugeno-Kang and CFR inferences
are compared and analyzed on two test examples.

1 Introduction

A fuzzy controller with Conditionally Firing Rules (CFR) was introduced in [8]
as a generalization of Mamdani-Assilian (MA) controller [6], using an inference
rule that is not compositional [11]. This extension was motivated by the effort
of optimally fitting the behaviour of the controller with respect to the meaning
of the fuzzy rule base, since MA controllers represent the rule base only roughly,
with some distortion.

Both theoretical and practical arguments support the expectation that CFR
controller allows a better performance without changing the rule base [8, 7, 9].
Thus CFR may improve the quality of control while keeping the same computa-
tional complexity as MA inference. Moreover, in [1] it is proved that the action
of CFR inference can be implemented by integrating hardware circuits designed
for MA controllers with crisp input variables.

However, in tackling real-world problems several issues should be taken into
account and MA controllers are not the only possible choice. For instance, the
efficiency of Takagi-Sugeno-Kang (TSK) inference [10] is witnessed by its use in
many control applications. Consequently, it is not easy to have prior knowledge
on which fuzzy inference system (MA, TSK, or CFR) could have the best per-
formance on a given problem. To quickly test different inferences on the same
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problem, here we extend the MATLAB Fuzzy Logic Toolbox including CFR
among its inference options.

In this work we discuss some practical issues related to this software imple-
mentation, and then we analyze the performance of the three fuzzy inference
systems on two different test problems.

2 MATLAB Implementation of CFR Inference

In this section we describe a MATLAB implementation of CFR inference, ex-
tending the preexistent Fuzzy Logic Toolbox.

Any reference to MATLAB and its toolboxes can find exhaustive explanation
at www.mathworks.com. Details of the software implementation and the simula-
tions are freely available on request to the authors. The reader is referred to [8]
for all the theoretical issues related to the following algorithm and a detailed
treatment of the background information.

2.1 The Controller with Conditionally Firing Rules

Let X and Y denote the input and the output space of a controller, respectively.
For a set Z, we denote by F(Z) the set of all fuzzy subsets of Z. The support of a
fuzzy set A ∈ F(Z) is SuppA = {z ∈ Z : A(z) > 0}. A fuzzy set is called convex
if all its α-cuts are convex sets. For fuzzy subsets A1, . . . , An of the same universe,
Z, their convex hull is the smallest (w.r.t. the pointwise ordering) convex fuzzy
set C ∈ F(Z) satisfying Ai(z) ≤ C(z) for all z ∈ Z, i ∈ {1, . . . , n}. A fuzzy set is
called normal if it attains the value 1 at some point. For x ∈ Z, let χx ∈ F(Z)
denote a singleton (crisp value), i.e., χx(z) = 1 if z = x and χx(z) = 0 if z �= x,
for all z ∈ Z.

The expert’s knowledge may be expressed by a rule base of the form

if x ∈ Xi then y ∈ Yi ,

where Xi ∈ F(X) are antecedents and Yi ∈ F(Y ) are consequents, i ∈ {1, . . . , n}
(see [3]).

The desirable properties a fuzzy controller should satisfy from a mathematical
point of view are described in [8]. In our present context, when only crisp inputs
are considered, those desiderata can be specialized as follows:

[Int1] Let x∗ ∈ X be a crisp input. If Xi(x∗) = 1 for a fixed i, then the output
coincides with the respective consequent, i.e., Y ∗ = Yi.

[Int2] For each crisp input x∗ ∈ X , the output Y ∗ is not contained in all conse-
quents, i.e., Y ∗ �≤ min

j≤n
Yj .

[Int3] For each crisp input x∗ ∈ X , the output Y ∗ belongs to the convex hull of
consequents Yi of all rules such that x∗ ∈ Supp (Xi) (i.e., all firing rules).

According to [8], in rather typical situations many fuzzy controllers do not admit
to satisfy [Int1], [Int2] and [Int3] simultaneously. This is the principal motivation
for the introduction of CFR controller as a generalization of MA controller.
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An effective calculation of the output of a MA controller is given by

Y ∗(y) = max
i≤n

T (D(χx∗ , Xi), Yi(y)) , (1)

where T is a fixed t-norm modelling a fuzzy conjunction [4], and

D(χx∗ , Xi) = sup
x∈X

T (χx∗(x), Xi(x)) = Xi(x∗) (2)

is the degree of overlapping of χx∗ and Xi.
MA controller is generalized to CFR controller by rescaling the membership

degrees in both input and output spaces and replacing the degree of overlapping
D(χx∗ , Xi) in (1) by the degree of conditional firing of the ith rule. Using the
rescaled membership functions χx∗ ◦ � and Xj ◦ � for a proper choice of the
increasing bijection � : [0, 1] → [0, 1], the latter is defined as

Ci =
D(χx∗ ◦ �,Xi ◦ �

)
max
j≤n

D(χx∗ ◦ �,Xj ◦ �
) =

�(Xi(x∗))
max
j≤n

�(Xj(x∗))
. (3)

Therefore, we have the following:

Theorem 1. [8–Theorem 3] Let Θ = (Xi, Yi)n
i=1 be a rule base satisfying the

following properties:

[C1] “normality”: each Xi is normal,
[C2] “covering of antecedents”: inf

x∈X
max
i≤n

Xi(x) > 0 ,

[C3] “significance of consequents”: ∀i ∈ {1, . . . , n} : Yi �≤ min
j �=i

Yj .

Let c < 1 and let �: [0, 1] → [0, 1] be any increasing bijection satisfying

[C4] “disjointness of antecedents”: D(Xi ◦ �,Xj ◦ �) ≤ c whenever i �= j.

Then, for any increasing bijection σ: [0, 1] → [c, 1], the input-output corre-
spondence f :F(X) → F(Y ) of the CFR controller satisfies properties [Int1],
[Int2] and [Int3].

2.2 The Algorithm

The input of the algorithm is:

– A rule base Θ satisfying properties [C1], [C2] and [C3] of Theorem 1.
– An increasing bijection � : [0, 1] → [0, 1] and a constant 0 ≤ c < 1, satisfying

property [C4] of Theorem 1.
– An increasing bijection σ : [0, 1] → [c, 1]. To extend the inverse of σ to the

whole interval [0, 1], we use its pseudoinverse δ(t) that is equal to σ−1(t) if
t ≥ c and to 0 otherwise.

– A t-norm ⊗.
– A crisp value x∗ ∈ X .
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The output is a membership function Y ∗ ∈ F(Y ), which will be defuzzi-
fied by one of the classical methods available in the Fuzzy Logic Toolbox. The
implemented algorithm [8] can be summarized as follows:

1. Rescale the membership degrees in the input space by �, that is �(Xi(x)),
x ∈ X , i ∈ {1, . . . , n}.

2. Rescale the membership degrees in the output space by σ, that is σ(Yi(y)),
y ∈ Y , i ∈ {1, . . . , n}.

3. Calculate the degree of overlapping Di = �(Xi(x∗)), for every i ∈ {1, . . . , n}.
4. Calculate the degree of conditional firing, Ci(z) = Di/maxj≤n Dj , for every

i ∈ {1, . . . , n}.
5. Calculate the output Y ∗(y) = δ(maxi≤n(Ci(z) ⊗ σ(Yi(y)))).

To keep the numerical complexity of the changes of scale as low as possible,
we set �(t) = tr with r ∈ R+ and σ(t) = (1 − c) · t + c with c ∈ [0, 1[. The
optimal values of r and c are determined by an optimization algorithm, in this
case PSOA [5].

2.3 The Graphical Interface

By the introduction of some MATLAB m-functions and the rewriting of some
C-language routines used inside the Fuzzy Logic Toolbox, the Fuzzy Inference
System (FIS) Editor is extended to include CFR inference as a new option in
the choice of the inference type.

After its selection, the CFR structure can be imported from the disk or from
the MATLAB workspace, or can even be created from scratch: the fields to
be filled are now the same of the standard FIS structure plus the new fields
Rho constant and Sigma constant, while a t-norm can be selected from the
field AND operator. Moreover, the control surface and the graphs of the inserted
CFR structure can be generated and depicted. Appropriate warning dialog boxes
appear when the inserted values do not satisfy the criteria mentioned in the
previous subsection.

3 Examples and Comparison with Other Fuzzy
Controllers

In this section we analyze the performance of MA, TSK and CFR inference on
two classical examples: the ball on beam and the inverted pendulum.

In all the previous works [8, 1, 7, 9], CFR was always compared with MA only,
while in this work the comparison is extended to TSK as well. The three infer-
ence systems process the same rule base in different ways but, whereas MA and
CFR share also the same antecedent and consequent membership functions, the
consequents of TSK need to be properly defined to get a meaningful comparison.
Here the membership constant functions of TSK consequents are determined as
the centroids of the output membership functions of the original MA and CFR
systems.
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The examples are developed inside the MATLAB Simulink framework. In
particular, we have modified the C S-functions in the Fuzzy Logic Toolbox to
process and simulate CFR inference model and to reduce the simulation time.
In both examples, we chose to use the minimum t-norm and the centroid de-
fuzzification method. For the sake of readability, we collect and depict all the
simulation results in Appendix A.

3.1 Ball on Beam

The goal of this control problem is to achieve and stabilize a desired position of
a ball on a plate by changing the angle of the plate.

The system accepts two inputs (position and velocity of the ball) and produces
one output (angle of the plate). The input and output membership functions for
MA and CFR and the rule base are fixed beforehand and are shown in Fig. 1.

Fig. 1. Ball on beam: membership functions for variables position, velocity, angle, and
the corresponding rule base

The results of our simulations are depicted in Fig. 3, 4, 5 and 6. The main
parameter we consider is the transient time: by comparing the three inference
systems we obtain a transient time of 83 seconds for MA, 70 for TSK and 81 for
CFR.

Note that TSK inference shows the best transient time but it is obtained
through a velocity overshoot (while in MA and CFR the velocity varies mono-
tonically and smoothly). Moreover, the equilibrium state is characterized by
oscillations of higher frequency and amplitude. All these conditions could not
be physically feasible in real problems, or imply higher energy consumption and
mechanical stress.

In this simple example, apart from a smaller transient time, CFR does not
show any greater improvement than MA, which is instead more evident in the
next (more complex) example.

3.2 Inverted Pendulum

The inverted pendulum consists of a pole hinged on a cart moving on a track.
The controller’s goal is to avoid the pole falling by exerting force on the left or
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Fig. 2. Inverted pendulum: membership functions for variables angle, angular velocity,
cart position, cart velocity and force

on the right of the cart, without moving it outside the track. The system accepts
four inputs (pendulum angle, angular velocity, cart position, cart velocity) and
produces one output (the force applied to the cart in order to balance the pen-
dulum). Also in this case the membership functions for MA and CFR are fixed
beforehand, for both input and output space and are shown in Fig. 2. The rule
base is composed by 24 = 16 rules, that is, by all possible combinations, since
there are 16 output membership functions.

The performance of the inverted pendulum is mainly measured by the result
of pendulum angle (Fig. 7) that, in order to keep a balanced rest state, has to
be equal or close to zero.

From Fig. 7 and 10 it is possible to notice that the transient time of MA
controller is equal to 7 seconds, while those of TSK and CFR are both equal to
3 seconds. Anyway, once the equilibrium state is reached, CFR controller exhibits
a much more stable behavior, since oscillations amplitude is lower compared to
MA and TSK (see Fig. 8).

Figure 9 shows that MA keeps the cart continuously moving around the equi-
librium point, while TSK and CFR tend to stop it. In addition, CFR exhibits
the lowest frequency of oscillation.

Finally, Fig. 11 shows that using CFR inference the cart velocity varies mono-
tonically and smoothly after its transient time, while it oscillates when using MA
and TSK controllers.

4 Conclusions

In this work we have presented the first simulation results of a MATLAB imple-
mentation of CFR controller, which integrates CFR inference in the Fuzzy Logic
Toolbox, thus giving the chance to easily use it in comparison with the built-in
inference systems (MA and TSK).

The application of this software on two examples (ball on beam and inverted
pendulum) have been shown and discussed. The advantages of CFR, especially in
terms of smoother responses, tend to emerge with the increase of the complexity
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of the examples. Though the results of these simulations are not yet statistically
significant, this work gives some indications that could be confirmed by further
experiments on more complex examples and by the software optimization.

Acknowledgments. We thank Antonella Valerio, who gave a valuable contri-
bution to the development of this software during a stage at STMicroelectronics,
and Francesco Pirozzi (STMicroelectronics) for discussions on this work.
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A Simulation Results

A.1 Ball on Beam
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Fig. 3. Angle: simulation results using MA, TSK and CFR inference
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Fig. 4. Position: simulation results using MA, TSK and CFR inference
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Fig. 6. Position (dashed line) and velocity around the transient time point,
for MA, TSK and CFR systems

A.2 Inverted Pendulum
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Fig. 7. Pendulum angle: simulation results using MA, TSK and CFR inference
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Fig. 8. Pendulum angle: oscillations amplitude (zoom) of MA, TSK and CFR
inference
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Fig. 9. Cart position: simulation results using MA, TSK and CFR inference
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Fig. 10. Angular velocity: simulation results using MA, TSK and CFR infer-
ence
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Fig. 11. Cart velocity: simulation results using MA, TSK and CFR inference
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Abstract. For high-throughput screening of genetically modified plant
cells, a system for the automatic analysis of huge collections of micro-
scope images is needed to decide whether the cells are infected with fungi
or not. To study the potential of feature based classification for this
application, we compare different classifiers (kNN, SVM, MLP, LVQ)
combined with several feature reduction techniques (PCA, LDA, Mutual
Information, Fisher Discriminant Ratio, Recursive Feature Elimination).
We achieve a significantly higher classification accuracy using a reduced
feature vector instead of the full length feature vector.

1 Introduction

Recent biomolecular methods produce large amounts of raw data exceeding all
limitations of currently used manual or semiautomatic analysis. To study resis-
tance mechanisms of crop plants against fungi a high-throughput screening of
genetically modified cells is performed and the desired automated process should
be able to analyse an immense number of microscope images without human in-
teraction. An overview of computerized cell image analysis can be found in [1].
Automated classification of cell images – from a medical point of view – has
been documented in e.g. [20,15,18] and the recognition of plankton images from
an underwater video microscope system has been described in [16].

This paper focuses on a feature based classification of biological objects which
have been previously segmented in high-resolution microscope images. The bio-
logical relevant object [14] to be automatically detected is a so called hausto-
rium – a complex object consisting of a “waist” with “fingers” (see Fig. 1 for
some typical samples). In the underlying processing pipeline, regions of interest
containing relevant biological cells (more precisely, genetically transformed cells
characterized by a greenish blue dye) are extracted from the acquired images [9].
Next, these individual transformed cells are checked for potential haustoria, us-
ing advanced image segmentation methods [11,10]. This step leads to a rather

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 215–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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HAU
HAU

HAU
HAU

Fig. 1. Three different regions of interest containing biologically relevant cells extracted
from original microscope images. The segmented objects inside those cells have to be
classified into haustoria (marked by “HAU” in the sketches) and other objects. As can
clearly be seen, the contrast may be rather poor and the objects differ very much in
colour, shape, size and orientation.

large number of objects which might be either haustoria or similar image struc-
tures being any other objects. Because this segmentation does not provide a
sufficiently correct recognition of haustoria, classification has to be done to dis-
tinguish between real haustoria and similar objects.

Since the objects stand out only slightly against the background, the ob-
ject recognition has to be rather sophisticated. Furthermore, the objects differ
in colour, shape, size, and orientation (see Fig. 1). Thus, for example, template
based approaches or any solution requiring model assumptions or a-priori knowl-
edge will not be suitable. A common and very flexible approach is to extract a
number of features from labeled examples for all different object classes (here:
haustorium or not) from the image and to perform training and classification
subsequently. Since the impact of particular features often depends strongly on
the subsequent classification method – a fact that is often highly underestimated,
both the feature selection and the classification have to be considered together.
By means of the above mentioned quite challenging real-world application of
haustoria recognition, this paper investigates a number of common statistical
and neural network based classification methods in conjunction with several
common feature selection algorithms and comes up with some expected results
but also some maybe unanticipated ones.

2 Feature Generation

A total number of 38 features is generated, characterizing shape as well as colour
and texture. An overview of the features is given in table 1. During the segmen-
tation procedure described in [11], a contrast enhancement is done using the
morphological top-hat operations. Features can be extracted from the original
or the enhanced images: the average colour values of every object were mea-
sured in RGB and HSV from both image versions and texture features were also
calculated for original and enhanced image.

From the objects curvature [12] the normalized multiscale bending energy
NMBE can be calculated. This measure is 1 for a circle and larger for every other,
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Table 1. Overview of features from different categories which were generated for
classification purposes. The texture and colour features were calculated from both
the original and the morphological contrast enhanced image.

Category Feature Number Comment
Simple

geometric
Area 1

Roundness metric 1 R = 4πF
U2

Shape Hu-Moments 7 [8]
Granlund-Descriptors 7 [6]
NMBE 1 [3]

Texture Contrast 2 [5]
Correlation 2
Energy 2
Homogeneity 2

Colour RGB 3
RGB (enhanced) 3
HSV 3
HSV (enhanced) 3

Other CSAT 1 see text
Total 38

more ’twisted’ object, independent of its size. Before calculating the curvature,
the contour is smoothed using a Gaussian function with σ = 1.5. We constructed
another feature, CSAT, which is calculated from the enhanced image by counting
each object’s pixels with saturation value = 1.

3 Feature Selection

Dimensionality Reduction with PCA and LDA
Principal component analysis (PCA) and linear discriminant analysis (LDA)
are two common techniques for feature reduction. While the PCA provides axes
with maximal variance, the aim of the LDA is to find vectors which maximize the
separability of predefined classes. More precisely, a vector d is obtained such that
the ratio of the between-class variance to the within-class variance is maximized.
This criterion C can be expressed as

C =
dT B d

dT W d
,

with B being the between-class covariance matrix and W the within-class co-
variance matrix. The best discriminant vector d1 is provided by

W−1 B d1 = λd1 ,

where d1 is the eigenvector of W−1B associated with the largest eigenvalue. It is
well known as the Fisher linear discriminant. However, if K classes were defined,
at most K−1 eigenvectors exist. To obtain an orthogonal set of more than K−1
vectors, a method proposed in [4] was applied.
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Three different techniques for feature selection were used: the recursive feature
elimination as a method of measuring the influence of features on the weight
vector of the classifier, the mutual information to quantify correlation between
several features and classes as well as the Fisher’s discriminant ratio to rate
individual features.

Recursive Feature Elimination
The RFE [7] is a different version of the Sequential Backward Selection [17]. It
can be performed with classifiers which rely on minimizing a cost function of a
weight vector w, e.g. γ(w) = 1

2w
Tw for a support vector machine. The idea is

to quantify the influence of the feature i by measuring the absolute value of the
weight wi. The process consists of the following steps:

– Train the classifier (optimize the weight vector w with respect to γ(w)).
– Compute the ranking criteria ci = (wi)2 for all i.
– Remove the feature j with smallest ranking criterion cj.

The result of this algorithm is a feature ranking, but the top ranked (most
recently eliminated) features are not necessarily the ones that are individually
most relevant, only their combination in terms of a feature vector allows an
assessment of their relevance [7].

Mutual Information
Mutual information MI(X, Y ) is a measure of relative entropy between the
joint probability p(x, y) of two random variables X, Y and the product of their
marginal probabilities p(x)p(y) [2]:

MI(X, Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

In the context of classification the mutual information for features υi and classes
ωj is given as:

MI(υi,ωj) = p(υi,ωj) log
p(υi,ωj)

p(υi)p(ωj)

To evaluate the feature υi, the MI-values for all classes ωj weighted with their
priors p(ωj) are summarized:

MI(υi) =
∑

ωj ∈Ω

p(ωj) MI(υi,ωj) .

Fisher Discriminant Ratio
The FDR can be used to quantify the separability capabilities of individual
features [17]. For the two class case, the FDR of feature υ is given as

FDR(υ) =
(μυ1 − μυ2)

2

σ2
υ1 + σ2

υ2
,

where μυ1 is the mean and συ1 the variance of class 1 and μυ2 the mean and
συ2 the variance of class 2 corresponding to the feature υ.
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4 Results

After applying the mentioned selection techniques, feature rankings can be cal-
culated. The rankings reflect the diversity of the selection methods. In our ex-
periments the RFE rates the colour features very high, whereas the Mutual
Information tends to place form attributes on top of the list.

Table 2. Classification accuracies (with standard deviations) measured using the full
sized feature vector. Most classifiers show similar, moderate performance. LVQ fails
classification if the feature vector is used with full length.

Classifier KNN3 kNN5 kNN7 SVM
RBF2

SVM
POLY3

MLP LVQ

Classification
accuracy

0.90
± 0.05

0.90
± 0.05

0.90
± 0.05

0.89
± 0.05

0.86
± 0.06

0.88
± 0.05

0.56
± 0.08

Table 3. Classification accuracies achieved with reduced dimensionality. The combi-
nations of feature reduction techniques and classifiers with best results are shown. All
classifiers show an improved accuracy compared to classification using feature vectors
with full length. The values of SVM-RBF2, SVM-POLY3 and LVQ are significantly
increased.

Classifier kNN3 kNN5 kNN7 SVM
RBF2

SVM
POLY3

MLP LVQ

Reduction
method

FDR RFE RFE RFE LDA LDA LDA

Dimensionality 18 22 21 19 5 36 7
Classification

accuracy
0.92

± 0.05
0.93

± 0.04
0.93

± 0.04
0.95

± 0.03
0.92

± 0.04
0.90

± 0.05
0.91

± 0.05

kNN3 kNN5 kNN7 SVM_RBF2 SVM_POLY3 MLP LVQ
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Fig. 2. Comparison of classification accuracies achieved with reduced feature vectors
and feature vectors with full size. All classifiers benefit from feature reduction.
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Fig. 3. Comparison of different feature reduction techniques combined with several
classifiers. SVM-POLY3 and LVQ achieve their greatest values with a low dimensional
feature vector, calculated with LDA, while the kNN5 classifier and the SVM-RBF
reach their maxima with a medium sized feature vector, containing features obtained
by recursive feature elimination. Some combinations could not be calculated due to
bad convergence. The kNN3 and kNN7 classifier behave similar like kNN5 and are not
drawn for clearness reasons.

To get an impression of the performance on our dataset we use different
classifiers: a k-nearest-neighbor classifier (k = {3, 5, 7}), a multilayer perceptron
with two hidden layers (12 neurons in the first and 3 in the second hidden
layer), learning vector quantization (16 neurons in the hidden layer) and support
vector machines with polynomial (n = 3) kernel and also with a radial base
function (σ = 2) [19]. The specified parameters are the result of preselection and
optimization.

Our sample set consists of 364 annotated micrographs of single plant cells. It
was split into training- and test sets using 10-fold cross validation. To compare
the results of several classification results on one sample set, the corrected re-
sampled t-test [13], which takes into account the variability due to the choice of
the training sets, is used.
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Table 2 shows the results using the feature vector of full length (38 features).
The classification accuracies of kNN, SVM-RBF2 and the MLP are similar in
the range between 0.88 and 0.90. LVQ shows very poor performance.

The situation changes considerably when the feature reduction algorithms are
applied. The achieved classification accuracies are shown in figure 3 as a function
of the feature vector size. The classifiers respond differently to the reduction
techniques: LVQ and the SVM with POLY3 kernel show great improvements
with LDA-transformed input data. The accuracy of the kNN classifier and the
SVM with RBF kernel can be enhanced using the RFE-selected features1.

5 Conclusion

For the automatic classification of microscope images of plant cells we studied
the influence of feature selection and -reduction techniques on several classifiers.
Using reduced feature vectors the classification accuracy of learning vector quan-
tization, a support vector machine with a radial base function and also with a
polynomial kernel could be significantly improved compared to the classification
accuracy achieved with a feature vector of full length. In our tests, the highest
accuracy (95%) was obtained by a support vector machine with RBF-kernel in
conjunction with recursive feature elimination.
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Abstract. We present an evolutionary approach to the search for ef-
fective vaccination schedules using mathematical computerized model
as a fitness evaluator. Our study is based on our previous model that
simulates the Cancer - Immune System competition activated by a tu-
mor vaccine. The model reproduces pre-clinical results obtained for an
immunoprevention cancer vaccine (Triplex) for mammary carcinoma on
HER-2/neu mice. A complete prevention of mammary carcinoma was
obtained in vivo using a Chronic vaccination schedule. Our genetic algo-
rithm found complete immunoprevention with a much lighter vaccination
schedule. The number of injections required is roughly one third of those
used in Chronic schedule.

1 Introduction

Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice was
attempted using various immunological strategies, including cytokines, non-
specific stimulators of the immune response, and HER-2/neu specific vaccines
made of DNA, proteins, peptides, or whole cells. Most approaches achieved a
delay of mammary carcinogenesis, but a complete prevention of tumor onset
was not attained, particularly in the most aggressive tumor models.

A new vaccine, called Triplex, was proposed in [6]. The vaccine combined
three different stimuli for the immune system. The first was p185neu, protein
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product of HER-2/neu, which in this system is at same time the oncogene driving
carcinogenesis and the target antigen. p185neu was combined with the two non
specific adjuvants, allogeneic class I major histocompatibility complex (MHCI)
glycoproteins and interleukin 12 (IL-12). Allogeneic MHCI molecules stimulate a
relatively large fraction of all T cell clones, up to 10% of the available repertoire.
IL-12 is a cytokine normally produced by antigen presenting cells (APC) such
as dendritic cells (DC) to stimulate T helper cells and other cells of the immune
system, such as natural killer cells (NK) [2].

A complete prevention of mammary carcinogenesis with the Triplex vaccine
was obtained when vaccination cycles started at 6 weeks of age and continued
for the entire duration of the experiment, at least one year (chronic vaccina-
tion). One vaccination cycle consisted of four intraperitoneal administrations
of non-replicating (mitomycin-treated) vaccine cells over two weeks followed by
two weeks of rest [4]. Other tested vaccination schedules were unable to prevent
mammary carcinogenesis. Triplex is an immunoprevention vaccine: in vivo ex-
periments have shown that the vaccine is no more effective after the solid tumor
formation.

The question whether the chronic protocol is the minimal vaccination protocol
yielding complete protection from tumor onset, or whether a lower number of
vaccination cycles would provide a similar degree of protection, is still an open
question.

Finding an answer to this question via a biological solution would be too
expensive in time and money as it would require an enormous number of exper-
iments, each lasting at least one year.

For this reason we developed an accurate model [9] of immune system re-
sponses to vaccination. We performed in silico experiments considering a large
population of individual mice. Each individual mouse is characterized by a se-
quence of uniformly distributed random numbers which will determine the prob-
abilistic events. As showed in [9], comparison with in vivo experiments shows
excellent agreement.

Our evolutionary approach uses the model and its computer implementation
described above as a fitness evaluator to find a schedule which controls the
growth of cancer cells by a minimal number of vaccine injections.

The paper is organized as follows. In section 2, we describe in depth our
algorithm. Section 3 will provide computational results and, in Section 4, we
will give conclusions and final remarks.

2 The Genetic Algorithm

Evolutionary Algorithms have been applied with satisfactory results to a very
long list of hard combinatorial problems. A complete description or enumera-
tion of such results is, per se, a hard problem. The interested reader can found
extensively review in [3, 7].

The approach we present in this paper differs from ”standard” GA applica-
tions as we use a simulator to compute a parameter of the fitness function. To
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our best knowledge, very few applications 1 use a complete simulator in a genetic
algorithm and no applications of this type exist in cancer immunoprevention.

Each chromosome in the population represents a vaccine schedule. It is a
binary string of 1200 bits, in which each gene represents a timestep in which
is possible to inoculate a vaccine injection. One timestep is equal to 8 hours of
mouse’s life. If the i-th gene is expressed (respectively not expressed), i.e. the i-th
bit is set to 1 (respectively the i-th bit is set to 0), then a vaccination has to be
administered at timestep i (respectively no vaccination has to be administered
at timestep i). We decide to set a population formed by 40 chromosomes.

The selection operator used is tournament selection [5]. Reproduction uses
uniform crossover.

Mutation acts as follows: first a gene subject to mutation is chosen with
probability p = 1/gn, where gn represents the number of chromosome’s genes;
second the chosen gene is setted to 1 with probability p = 1/ps and to 0 with
probability p = 1 − (1/ps), where ps represents the population size.

Elitism is used on two specific elements of the population: i) best fitness
element; ii) second best fitness element.

Results showed in [9], fully justify the usage of the SimTriplex simulator for the
definition of a good fitness function. SimTriplex simulator computes the main
biological entities of the cancer - immune system competition. If the number
of cancer cells overcomes 105, then the simulator recognizes the solid tumor
formation (carcinogenesis) and simulation ends at the reached time. We will
refer to this time as mice survival time. An effective vaccination must reach a
mice survival time of 1200 timesteps, i.e. 400 days.

In setting up a fitness function we must take into account two fundamental and
competing requirements: i) any schedule must be an effective one, i.e. the mice
survival time must reach 400 days; ii) the best schedules must have a minimal
cardinality, i.e. they must provide mice survival with the minimum number of
vaccine injections.

Any evolutionary approach which just takes into consideration the first re-
quirement, will produce populations of individuals very rich of ones, thus, not
minimal. If instead, we take into consideration just the second requirement, we
will have populations of individuals full of zeroes, and thus very likely we will
obtain a non effective schedule. Any fitness function therefore must be, at least,
a two-variables function of type f(n, s, . . .) where n is the number of injections,
and s is the number of timesteps survived by the mouse. Also, f must satisfy
the following two properties:

f(n, s, · · ·) < f(n, s′, · · ·) if s > s′ (1)
f(n, s, · · ·) > f(n′, s, · · ·) if n > n′ (2)

We restrict ourself the simple case of a two variable function and we chose
the following function:

1 The only one we found is reported in http://www.cs.ucl.ac.uk/staff/P.Bentley/
WLBEC1.pdf
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f(n, s) =
n2

s
(3)

which meets the properties (1) and (2). Obviously, the fitness function (3) has
to be minimized.

Determining the quality (fitness) of each chromosome involves the use of the
SimTriplex simulator which takes a non negligible amount of time. In particular,
the simulator returns the timesteps survived by the mouse with the proposed
therapy coded by the chromosome.

3 Results

In setting the computer experiments, we randomly chose 10 virtual mice over the
100 of the first sample set we used in [9]. Each run of the GA took about 36 hours
on a 686-class PC machine. All the 10 virtual mice gave similar, but obviously not
identical, results. They all got complete prevention of mammary carcinoma with
19 vaccine injections, against the 59 required by Chronic vaccination schedule.
Figure 1 shows the effect of Chronic vaccination schedule for one of the chosen
mice. For the same mouse the GA suggested schedule is shown in figure 2.

This shows, as in Chronic vaccination schedule, an initial burst of cancer cells.
This effect is due to the time-lag of vaccine effect [9]. Chronic schedule then
controls the growth of cancer cells with regular successive vaccine injections.
Our GA was not required to do this, so a second burst of cancer cells appears
in GA proposed schedule. This is a reasonable minimum from the point of the
view of the GA. One could argue if this is also reasonable for mice safety. In this
specific case we notice that both the cancer cells maximum in the GA suggested
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Fig. 1. Cancer cells dynamics. Cancer cells controlled by CHRONIC vaccination sched-
ules. Red ticks above x axis represent the timing of vaccine administration. Saturation
limit indicates that a solid tumor is formed, i.e. the number of cancer cells in the
simulated space becomes greater than 105.
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Fig. 2. Cancer cells dynamics. Cancer cells controlled by genetic algorithm proposed
vaccination schedules. Red ticks above x axis represent the timing of vaccine admin-
istration. Saturation limit indicates that a solid tumor is formed, i.e. the number of
cancer cells in the simulated space becomes greater than 105.

schedule are lower than the Chronic schedule maximum. So in this case the GA
suggested schedule is safer than the Chronic one. However this could not be
the case for other mice. This suggests that more requirements should be added
to the GA fitness function. Those requirements must obviously be biologically
driven.

4 Conclusion and Future Work

We have presented an evolutionary algorithm which turns out to be efficient in
finding effetctive therapies for protecting virtual mice from mammary carcinoma.

One of the major novelties of our algorithm, is the usage of a simulator to
compute a parameter of the fitness function. To our best knowledge, very few
applications use a complete simulator in a genetic algorithm and no applications
of this type exist in cancer immunoprevention.

Future work will see a GRID/parallel implementation of our GA that can be
used to perform a large number of simulated experiments which suggest key in
vivo experiments on a small set of schedules which take into account biological
or clinical constraints.
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Abstract. When applied to genomic data, many popular unsupervised explo-
rative data analysis tools based on clustering algorithms often fail due to their
small cardinality and high dimensionality. In this paper we propose a wrapper
method for gene selection based on simulated annealing and unsupervised clus-
tering. The proposed approach, even if computationally intensive, permits to se-
lect the most relevant features (genes), and to rank their relevance, allowing to
improve the results of clustering algorithms.

1 Introduction

Unsupervised explorative data analysis using clustering algorithms provide an useful
tool to explore data. In the case of genomic data, that are often characterized by small
cardinality and high dimensionality (e.g., in the case of gene expression data obtained
from DNA microarrays) this approach can fail, as many clustering algorithms suffer
from being applied in high-dimensional spaces (each dimension or feature correspond-
ing in our case to a gene expression data), as clustering algorithms often seek for areas
where data is especially dense. Moreover, some (or most) genes are not relevant for
the clustering learning task and a gene (feature) selection procedure could highlight the
relevant genes and improve the clustering results at the same time [11, 14, 2].

Feature selection algorithms can be broadly divided into two categories [3, 10]: filters
and wrappers. Filters evaluate the relevance of each feature (subset) using the data set
alone, while wrappers invoke the learning algorithm to evaluate the quality of each
feature (subset). Both approaches, filters and wrappers, usually involve combinatorial
searches through the space of possible feature subsets. Anyway, wrappers are usually
more computationally demanding, but they can be superior in accuracy when compared
with filters.

Most of the literature on feature selection pertains to supervised learning, and not
much work has been done for feature selection in unsupervised learning [13, 6, 11, 8,
14, 2].

In this paper we propose a wrapper approach to gene selection in clustering of gene
expression data. The combinatorial search is performed using the Simulated Annealing
(SA) method [9] which is a global search method technique derived from Statistical
Mechanics and based on the Metropolis algorithm [12], while the learning algorithm
is the Fuzzy C-Means (FCM) that is one of most popular clustering algorithms (for a
detailed description of the FCM see [1]).
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c© Springer-Verlag Berlin Heidelberg 2006



230 M. Filippone, F. Masulli, and S. Rovetta

In the next section we describe the proposed SA algorithm for gene selection. In
Sect. 3 an evaluation index of gene relevance is presented. Sect. 4 describes the exper-
imental validation of our method on the data set by Golub et al. [7]. Conclusions are
presented in Sect. 5.

2 SA for Gene Selection

The method for feature selection we propose makes use of Simulated Annealing (SA)
technique [9] that is a global search method technique derived by Statistical Mechanics.

SA is based on the Metropolis algorithm [12] that has been proposed to simulate
the behavior and small fluctuations of a system of atoms starting from an initial con-
figuration, by the generation of a sequence of iterations. In the Metropolis algorithm
each iteration is composed by a random perturbation of the actual configuration and the
computation of the corresponding energy variation (ΔE). If ΔE < 0 the transition is
unconditionally accepted, otherwise the transition is accepted with probability given by
the Boltzmann distribution:

P(ΔE) = exp

(−ΔE
KT

)
(1)

where K is the Boltzmann constant and T the temperature.
In SA this approach is generalized to the solution of general optimization prob-

lems [9] by using an ad hoc selected cost function (generalized energy), instead of the
physical energy. SA works as a probabilistic hill-climbing procedure searching for the
global optimum of the cost function. The temperature T takes the role of a control pa-
rameter of the search area (while K is usually set to 1), and is gradually lowered until
no further improvements of the cost function are noticed. SA can work in very high-
dimensional searches, given enough computational resources.

In Tab. 1, a detailed description of the proposed Simulated Annealing Feature Selec-
tion (SAFS) algorithm is presented.

The system state (configuration) is represented by a binary mask g =
(
g1, g2, . . . , gq

)
,

where each bit gi (with i = 1, . . . , q) corresponds to the selection (gi = 1) / deselection
(gi = 0) of a feature (if we want to select a set of s features, at each time only s bits
will be set to 1). The initialization of the vector mask g (Step 2) is done by generating
s integer numbers with uniform distribution in the interval [1, q] and setting the corre-
sponding bits to 1 of g and the remaining ones to 0. A perturbation or move (Step 5c)
is done by switching 2 × r bits of g, by randomly selecting r bits set to 0 and r bits set
to "1", and flipping their values.

The unsupervised clustering (Steps 3 and 5d) is performed in the sub-space of se-
lected features defined by the vector mask g. After each run of the unsupervised cluster-
ing algorithm we can obtain an evaluation of E as a function of either the cost function
associated to the clustering algorithm, clustering validation indexes [4], or, when the
data set is labeled, the Representation Error (RE) defined as the percentage of data
points belonging to the same cluster sharing the same label.

The initial value of temperature T is obtained as the average value of ΔE computed
over an assigned number p of random perturbations of the mask g.
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Table 1. Simulated Annealing Feature Selection (SAFS) Algorithm

1. Assign s (number of features to be selected), r (number of bits to be switched for
making a move), T (initial temperature of the system), α (cooling parameter), fmax

(maximum number of iteration at each T), hmin (minimum number of success for
each T), c (number of clusters), m (fuzzification parameter);

2. Initialize g at random (binary mask);
3. Perform unsupervised clustering and evaluate the generalized system energy E;
4. do
5. Initialize f = 0 (number of iterations), h=0 (number of success);

(a) do
(b) Increment number of iterations f ;
(c) Perturb mask g;
(d) Perform unsupervised clustering and evaluate the generalized system energy

E;
(e) Generate a random number rnd in the interval [0,1];
(f) if rnd < P(ΔE) then

i. Accept the new g mask;
ii. Increment number of success h;

(g) endif
(h) loop until h ≤ hmin and f ≤ fmax;

6. update T = αT ;
7. loop until h > 0;

SAFS is a very computational intensive algorithm, but it is able to work with every
kind of features (e.g., continuous, ordinal, binary, discrete, nominal).

It is worth noting that each time we run the SAFS algorithm we can find a sub-
optimal sub-set of s features from the original q. In principle, different independent
runs of SAFS can lead to different sub-sets of s features.

3 Ranking Feature Relevance

SA is an algorithm implementing a stochastic time-varying dynamical system where the
state vector evolves in the direction of the minima of the generalized energy function.

In our case during the evolution of the SAFS algorithm the bits set in the state vector
g will be related to the more relevant features (genes) with increasing probability.

The features more relevant in cluster discrimination should appear soon in the set of
bits set to 1 and will be more frequent in the following iterations of the algorithm.

In order to estimate the relevance of features, we can include in the SAFS an aging
algorithm. To this aim,we can define a vector r =

(
r1, r2, . . . , riq

)
. At Step 2 of the

SAFS algorithm, we set ri = 1/q ∀i. Every time a perturbation is accepted (Step 5.f),
according to the Boltzmann distribution, we update r using this formula:
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r = γr + g (2)

where γ is the aging constant chosen in the interval [0,1], and then we normalize the
vector r using the following constraint:

N∑
i=1

ri = 1 (3)

At the end of the SAFS the vector r tells us how long each feature has belonged to it in
the last few successful moves of the algorithm. We give then to vector r an interpretation
as vector of feature relevances.

Table 2. Parameters choice

Meaning Symbol Value

Number of random perturbations of g used to p 10000
estimate the initial value of T
Number of features to be selected s 20
Number of bits to be switched for making a move r 3
Cooling parameter α 0.9
Aging constant γ 0.98
Maximum number of iteration at each T fmax 10000
Minimum number of success for each T hmin 1000
FCM algorithm repetitions for each move l 5
Number of clusters c 2
Fuzzification parameter m 2

4 Experimental Validation

The method was tested on the publicly available Leukemia data by Golub et al. [7]. The
Leukemia problem consists in characterizing two forms of acute leukemia, Acute Lym-
phoblastic Leukemia (ALL) and Acute Mieloid Leukemia (AML). The original work
proposed both a supervised classification task (“class prediction”) and an unsupervised
characterization task (“class discovery”). Here we obviously focus on the latter, but we
exploit the diagnostic information on the type of leukemia to assess the goodness of the
clustering obtained.

The data set contains 38 samples for which the expression level of 7129 genes has
been measured with the DNA microarray technique (the interesting human genes are
6817, and the other are controls required by the technique). These expression levels
have been scaled by a factor of 100. Of these samples, 27 are cases of ALL and 11 are
cases of AML. Moreover, it is known that the ALL class is in reality composed of two
different diseases, since they are originated from different cell lineages (either T-lineage
or B-lineage). In the data set, ALL cases are the first 27 objects and AML cases are the
last 11. Therefore, in the presented results, the object identifier can also indicate the
class (ALL if id ≤ 27, AML if larger).Using those data (with dimensionality q = 7129),
Golub et al. [7] selected a set of 50 most relevant genes.
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Table 3. The ten most relevant genes found in a run ranked in order of relevance

Name Description

M33680_at 26-kDa cell surface protein TAPA-1 mRNA
J03801_f_at LYZ Lysozyme
X04085_rna1_at Catalase EC1.11.1.6 5’flank and exon 1 mapping

to chromosome 11, band p13 (and joined CDS)
S71043_rna1_s_at Ig alpha 2=immunoglobulin A heavy chain allotype 2

{constant region, germ line} [human, peripheral
blood neutrophils, Genomic, 1799 nt]

M19722_at FGR Gardner-Rasheed feline sarcoma viral v − f gr
oncogene homolog

AB002332_at KIAA0334 gene
M10942_at Metallothionein-Ie gene (hMT-Ie)
HG2238-HT2321_s_at Nuclear Mitotic Apparatus Protein 1, Alt. Splice Form 2
S34389_at HMOX2 Heme oxygenase (decycling) 2
M96956_at TDGF1 Teratocarcinoma-derived growth factor 1
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Fig. 1. Representation Error versus the size (v) of gene subsets

We describe here the results obtained using the SAFS algorithm. In the implementa-
tion of SAFS we used as the clustering algorithm the Fuzzy C-Means (FCM) [1] that is
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one of most popular clustering algorithms. Moreover, as the Leukemia data base con-
tains is labeled, we used the Representation Error (RE) as an evaluation the generalized
energy E.

It is worth noting that the FCM is an unstable algorithm, as his results depend not
only from even small perturbations of the data set, but also from the initialization of
his parameters (i.e., number of clusters c, clusters centroids yk and fuzziness parameter
m). For this reason at the beginning of the SAFS algorithm (Step 3) and for each per-
turbation (Step 5c) of SAFS we run the FCM l = 5 times and we choose the solution
corresponding to the minimum of the generalized energy E.

SAFS has been implemented in R-language (http://www.r-project.org/) under Linux
operating system. On a Pentium IV 1900 Mhz personal computer a complete running
of SAFS least about 10 hours (involving the run of about one million FCMs).

We done 10 independent runs of SAFS using the assumptions in Tab. 2. For each run
we obtained a different sets of 20 genes giving a RE = 0, containing at the least one
gene found by Golub et al. [7]. In Tab. 3, we list the ten must relevant genes found in a
run.

Adding the relevance vectors r obtained in the 10 runs, the genes ranked at positions
1, 2, 4 are contained also in the set selected in unsupervised way by Golub et al. [7].
This is a symptom of a strong redundancy in the features of the data set.

In Fig. 1, we show the Representation Error (RE) computed using subset of genes
including the v most relevant ones. As shown, at least the 17 most relevant genes must
be considered in clustering in order to obtain RE = 0.

5 Conclusions

In this paper we have proposed a wrapper method for selecting features based on simu-
lated annealing technique [9] and FCM algorithm [1]. The proposed approach, even if
computationally intensive, permits to select the most relevant features (genes), and to
rank their relevance, allowing to improve the results of clustering algorithms.

On the 7129-dimensional Leukemia data set by Golub et al. [7] the proposed feature
selection method is able to find for each run a subset of 20 genes, that is sufficient to
perform FCM clustering algorithm with null Representation Error.

It is worth noting that the proposed algorithm can work with every kind of features
(e.g., continuous, ordinal, binary, discrete, nominal). Moreover, the proposed feature
selection approach using simulated annealing can be used also with other learning ma-
chines, not only for unsupervised clustering, but also for supervised classification, re-
gression, etc.
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Abstract. Data produced by mass spectrometer (MS) have been using in pro-
teomics experiments to identify proteins or patterns in clinical samples that may
be responsible of human diseases. Nevertheless, MS data are affected by errors
and different preprocessing techniques have to be applied to manipulate and gath-
ering information from data. Moreover, MS samples contain a huge amount of
data requiring an efficient organization both to reduce access time to data, and to
allow efficient knowledge extraction. We present the design and the implementa-
tion of a database for managing MS data, integrated in a software system for the
loading, preprocessing, storing and managing of mass spectra data.

1 Introduction

Mass spectrometry (MS) data are produced by a ionization process on biological sam-
ples. Each spectrum contains a large number of (m/z) data, thus that analysis by manual
inspection is not feasible. Such problem is much more evident when information has to
be obtained by comparing thousands of different spectra, for instance to capture pro-
teins profiles responsible of human diseases. Each spectrum is generated mostly in raw
flat file, managed by file system thus that applying data management knowledge can
be limited by data format. Moreover, mass-spectrometry based experiments comprise
more phases that may require data manipulation. Extracting information from single
samples is not a simple task if data are organized in raw data. The problem becomes
more complex when experiments involve hundreds of spectra forming huge amount of
data. with each spectrum reported in a flat file, often instrument dependent, managed
by file systems.

In this paper we are interested in studying the problem of storing and manipulation of
spectra data. In particular we focus on designing and implementing of a spectra database
for loading, storing and querying spectra obtained by a MALDI TOF spectrometer.
We report the results of our study obtained in the contest of a proteomics project for
early detection of cancer, which requires the manipulation of huge amount of spectra
to cluster data identifying peaks in a spectrum whose profiles classify diseases. The
proposed database architecture offers a loading interface to extract data from text file,
allows an efficient solution for storing treated spectra in the same database, and offers
an API for preprocessing functionalities. Preprocessing such as, noise reduction and
calibration is required before using extracting knowledge based algorithms (e.g., data
mining). Obviously applying pre-processing using database management framework
results in improved efficiency. Pre-processed data are associated to the original sample
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c© Springer-Verlag Berlin Heidelberg 2006



SpecDB: A Database for Storing and Managing Mass Spectrometry Proteomics Data 237

taking trace of experiments. Our relational model based database called SpecDB allows
to : (i) read spectra data from flat files and loading in the database; (ii) manage spectra
data to maintain consistent data, (iii) support preprocessing of spectra data, and finally
(iv) allow to store for each spectrum its historical manipulation, adding a temporal
dimension to our database. The proposed database is part of MS-analyzer, a system
designed and implemented to support proteomics experiments using MALDI spectra
data [6]. Our database is organized in such a way that each spectrum is stored in a set
of relations each containing portion of the spectrum according to a predefined window
of mass/charge values, while a main MS-spectrum relation maintains the organization
in single spectrum, improving data management.

Companies supporting biomedical activities, are defining new modules for treatment
of mass spectra data (see [2], [10]). Most of them left spectra management to the file
system, storing only the files physical locations in the database. For instance [18] stores
the physical address of the .txt file. Research communities are working on the idea of
creating an MS data repository. The Proteomics Standard Initiative (PSI)[17] is work-
ing on the definition of an XML based standard to represent proteomics experiments,
mzData format for capturing peak list information, with the aim of uniformly represent
different formats into one. In such paper we focus on the storing of MS data in a re-
lational model; however we are working in a framework that includes also data in the
XML format [5].

2 Related Works

Recently there has been an increasing interest of computer scientists in studying biolog-
ical problems, defining environments supporting biological experiments [15, 3], defin-
ing methods for biological data integration [14] and designing information extraction
methods. Often the results contain lots of data mixed to noise and irrelevant data, that
cannot be filtered out without automatic supports.

Most of the companies supporting biomedical activities through new technologies,
are defining new modules for treatment of mass spectra data. For instance, the Ap-
plied Biosystems company, one of the leader producing mass spectrometers [2], offers
LIMS an integrated interface that allows to design and implement an application using
workflows. In particular it supports phases of proteomics experiments: sample prepa-
ration, protein separation (using for instance 2D gel), data analysis and visualization,
modules for protein identifications from spectra. It supports querying publicly avail-
able databases for protein identifications. Nevertheless it is not yet available any MS
data repository that allows users to create and manipulate local owned spectra database.
Data are still managed by file system. Similarly, SampleManager [10] integrates data
obtained both by bio-clinical instruments and by Electronic Patient Records, but no
database support is given to the MS spectra data.

Most of the existing products offer commercial database management systems to
model mass spectrometer experiments, storing meta-information such as experiments,
results, laboratory, but spectra management are left to the file system, storing only the
physical locations of spectra files in the database. For instance the suite offered by
[18] stores the physical address of the file containing raw data. Data are then loaded
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whenever is necessary, and managed in main memory. Such approach does not allow
any data management and indexing, limiting experimental tests that need comparing
several data, as for instance required by data mining approaches.

Recently, research communities are working on the idea of creating an MS data
repository to store experiments similarly on what offered by publicly available data sets
(as PDB [11]). For instance, the Proteomics Standard Initiative (PSI) is working on the
definition of an XML based standard format, the mzData, to represent proteomics ex-
periments, where also meta information on mass spectrometer experiments is reported
[17]. XML data format allows accessing data of different repositories in a similar way,
while value pairs related to spectrum are compressed and contained in a single element.
Moreover [17] proposes mzData data format for capturing peak list information, with
the aim of uniformly represent different formats into one. Still, no repository proposi-
tions have been reported for defining centralized or distributed data storage for mzData.
The IBM studied the definition of a platform for MS experimental storing in [13], for
monitoring and managing bioinformatics experiments. In such framework, particular
interest is given to the mass spectra data management, even coming from MALDI MS
or from LC/MS spectrum analysis.

Database community is treating MS data as interesting data sets: [7] presents a label-
ing technique for adding labels to each spectra about ions expected chemical species,
but no attentions have been given for data managements. MS data contains lots of in-
formation, that is hard to manage in plain text formats.

3 Mass Spectrometry Data

Mass Spectrometry (MS) is a technique more and more used to identify macromolecules
in a compound. The mass spectrometer is an instrument designed to separate gas phase
ions according to their m/Z (mass to charge ratio) values. The MassSpectrometry pro-
cess [1] [12] can be decomposed in four sub-phases: (i) Sample Preparation (e.g. Cell
Culture, Tissue, Serum); (ii) Proteins Extractions; (iii) ICAT protocol (optional); and

Fig. 1. Mass Spectrum of a Biological Sample
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Fig. 2. Spectrum Generation Phases

Fig. 3. Mass Spectrum Loaded in a Text Raw Data

(iv) Mass Spectrometry processing. In Figure 2, is reported a simple representation
of the spectrum generation phases. Mass Spectrometry output is represented, at a first
stage, as a (large) sequence of value pairs, where each pair contains a measured inten-
sity, which depends on the quantity of the detected biomolecules, and a mass to charge
ratio (m/z), which depends on the molecular mass of detected biomolecules. The large
number of (m/z) data justifies the dimension of each output associated to an analyzed
sample. Indeed, MALDI-TOF output are in order of 10 MB of flat files: analysis by
manual inspection is not feasible.

Figure 1 shows an example of spectrum, and Figure 3 a snapshot of data represen-
tation. In some applications, such as identification of proteins, research has focused on
obtaining a list of significant peaks, each of which represents a peptide. Such problems
is usually performed by experts that know the instruments: up to 80% of peaks in a
spectrum maight be unsignificant in researching interesting peaks. Such preprocessing
phase cannot be performed automatically manipulating flat files. The complexity of the
problem increases when several spectra have to be compared or need to be preprocessed
to be compared. In this simple case manipulating data as flat files is an hard task. In data
mining processes, used to extract information from collections of thousands of samples,
and that require high input/output rate, managing data using database management fa-
cilities is mandatory.

Mass spectra require preprocessing phases. For instance one of the more frequent
preprocessing phase consists in aligning a set of spectra with respect to their m/z axes,
i.e. peaks are aligned to be comparable. Our approach, as we present in the following,
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allows to perform preprocessing phases, such as normalization, binning, alignment etc.,
(see [6] for more details) and allows to store preprocessed data in the database.

4 SpecDB: Data Model and Architecture

Raw mass spectra are not complex data, they are couples of real numbers (raw data).
Nevertheless, complexity derives from the fact that each spectrum contains thousands
of values, stored in flat files with average space occupancy of 5 Mbytes: problems occur
in case of manipulation (e.g., preprocessing) of large set of spectra. Even available data
mining tools such as [16] are limited by manipulating large amounts of data. In our
proposal, data are reported in a relational database where spectra are stored in a set
of relations. The database is realized on a MySQL [8] database management system.
Data are loaded through a Java loading interface that dump data from text files in the
database.

Main requirements for a spectra database are the following:

– supporting efficient storing and retrieval of data (single spectrum, set of spectra and
portions of spectra);

– supporting import/export functions (e.g. loading of raw spectra available in differ-
ent text files, exporting of spectra in XML mzData data);

– offering query/update functions able to enhance performance of data preprocessing
and analysis (e.g. avoiding full main memory processing). Such functions could
be offered through a set of specialized APIs, for instance range queries could be
used to implement basic preprocessing techniques as aggregation of peaks, such as
binning and data reduction.

4.1 Data Model

In Figure 4, we report the conceptual organization of data that have to be contained in
SpecDB database. The main entity MassSpectrum represents the set of spectra, each
represented by a unique identifier, the m/z value and the corresponding intensity value,
information on date and experimental details (laboratory, operator etc). The self-
reference relation indicate that each spectrum may be associated to other spectra gener-
ated by preprocessing it. This allows to populate the database by considering all spectra
obtained by experiments or manipulated in preprocessing operation required by data
treatments. Treatment entity represents manipulation and preprocessing techniques that
have been applied to data. The entity spectrometer gives information on the instruments,
while SampleOrigin contains information on data origins and biological sample.

Once spectra are loaded, from text files they are loaded into Mass spectrum table
(see Figure 5). To otimize data management, values of intensity for each spectrum may
be reported in a relation associated to range of m/z axes.

4.2 Architecture and Functions

We integrated our system in MS-Analyzer, an integrated environment to manage MS
proteomics experiments. In particular, MS-Analyzer provides an integrated tool able to
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Fig. 4. Conceptual organization of Data

Fig. 5. Mass_Spectrum Relations with some Spectra

monitor and manage each phase of a proteomics experiments that uses mass spectrome-
ter: sample collection (e.g. serum, tissue, cell line), sample preparation and storing (e.g.
ICAT protocol), mass spectrometry processing, data preprocessing, through data mining
algorithms. The target is to provide support in extracting information form thousands
of spectra associated to a population presenting genetic attitude in developing breast
cancer [4]. Figure 6 reports the architecture of MS-Analyzer. MS-Analyzer provides
the following functions:

1. MS proteomic data acquisition, getting raw spectra produced by different Mass
Spectrometers. Spectra are locally stored in file system and using the SpecDB load-
ing function, raw data are dumped into SpecDB.

2. MS proteomic data pre-processing that gets spectra from SpecDB, and applies dif-
ferent pre-processing techniques. Preprocessed data are also dumped in SpecDB.

3. MS proteomic data preparation, that gets MS preprocessed spectra and prepare
them to be given in input to different kind of data mining tools. E.g. WEKA data
mining tool requires that MS spectra being organized in a unique file containing a
metadata header (ARFF).
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Fig. 6. MS-Analyzer Tool

Fig. 7. SpecDB textual Interface

4. Data Mining analysis: this phase allows to select different data mining tasks (e.g.
classification, clustering, pattern analysis), different data mining algorithms and
tools (e.g. Q5, C5, K-means, ect.), loading data from SpecDB and to give them as
input to the chosen data mining tools.

Preprocessing are relevant processes whenever is necessary to prepare spectra data
for information extraction (e.g. Subtract Base Line, Peak identification, Normalization
of intensities, Peak Alignment, Binning), some of which can be optional, and stores data
in an efficient manner into a Pre-processed Spectra Repository (PSR). Pre-processing
can be applied to one spectrum or to many spectra. In latter case use of SpecDB im-
proves performances than using files. The idea is to provide a set of database APIs that
allow efficient preprocessing, in such a way, preprocessing can be thought as a basic
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database function.The current version presents a simple textual interface as the one pre-
sented in Figure 7 used to perform access and preprocessing functions on MS data.

5 Experiments

We tested the SpecDB database by loading 280 MB of raw data (text files) containing
500 spectra (see [9]). The average time of loading has been of 1675 milliseconds, and
have been loaded almost 20 thousands of records. First simple experiment shows that
loading data from flat files is linear in number of loaded spectra (see Figure 8).

Fig. 8. Loading Spectra in SpecDB

We report a simple script for querying data using a filter, creating a new spectrum.

FilterSpectrum(MassSpectrum ms, Double mz[]){
/*create a new spectrum*/

Q1=insert into Mass_Spectrum (id,father,treatment,...)
values (ms.id(),ms.father(),ms.treatment(),...)
for(int i=0; i<mz.length; i++){
/*select (mz, intensity) */

Q2=select * from Couple
where mass_spectrum=’ms.father()’ and mz=’mz[i]’

while(next){
/*insert Q2 results*/
Q3=insert into Couple (mass_spectrum, mz, intensity)
values(’id’,’Q2.mz’,’Q2.intensity’)
}//end while

}//end for
}//end filterSpectrum

Such simple method is useful when is required to compare portion of spectra filtered
with respect to m/z windows, or when comparing spectra from similar biological sam-
ples. The filtering operation has an execution time that depends on the m/Z values used
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as filter parameters. Time filtering is in the range comprised between 40 ms for single
value and 300 ms for more than 10 filter values.

We now report a simple experiment on normalization performed directly using text
interface of Figure 7. The normalization of spectra data consists in reducing peak values
with respect to the maximum peak. The script in pseudo code that can be directly used
on SpecDB, is as follows.

Normalization(Mass_Spectrum ms){
/*select max intensity*/

Q1=select max(intensity) from Couple
where mass_spectrum=ms.getFather()

/*create New Spectrum*/
Q2=insert into Mass_Spectrum (id,father,treatment,...)
values(ms.getId(),ms.getFather(),ms.getTreatment(),..)
/*Normalize*/

Q3=select * from Couple where mass_spectrum=ms.getFather()
while(next()){

Q4=insert into Couple (mass_spectrum, mz, intensity)
values(ms.getId(),Q3.mz,(Q3.intensity/maxIntensity))
}//end while

}//end Normalizzation

We remind that once data are preprocessed, they are loaded into the database as a
new spectrum keeping trace of the original spectrum (id Father in the relation of Fig-
ure 4). Preprocessing is much more efficient using SpecDB than using single flat files.
Normalization procedure is performed in 1400 milliseconds, on one spectrum of 15.000
average records. Moreover such normalization may be realized for several spectra con-
sidering the normalization with respect to the maximum value of peak for all spectra.
We plan to report complete comparison of performance measures of preprocessing by
using SpecDB and file system based data.

6 Conclusion

We propose a relational data base system, SpecDB, to store data and to support prepro-
cessing functions. SpecDB is part of MS-Analyzer, an integrated platform for monitor-
ing and managing proteomics experiments from sample preparation to MS data genera-
tion, storing and preprocessing. We are improving the architecture of SpecDB architec-
ture to manage mzData, the XML based format for spectra, and we are improving the
API for further functions.

Acknowledgments. This work is partially supported by the COFIN 2003 project titled
Hereditary breast cancer: genetics and proteomics, funded by MIUR.
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Abstract. Aim of this work is to apply a novel comprehensive data mining
machine learning tool to preprocess and to interpret gene expression data. Fur-
thermore, some visualization facilities are provided. The data mining framework
consists of two main parts: preprocessing and clustering-agglomerating phases.
To the first phase belong a noise filtering procedure and a non-linear PCA Neu-
ral Network for feature extraction. The second phase is used to accomplish an
unsupervised clustering based on a hierarchy of two approaches: a Probabilistic
Principal Surfaces to obtain the rough regions of interesting points and a Fisher-
Negentropy information based approach to agglomerate the regions previously
found in order to discover substructures present in the data. Experiments on gene
microarray data are made. Several experiments are shown varying the threshold,
needed by the agglomerative clustering, to understand the structure of the ana-
lyzed data set.

1 Introduction

Scientists have been successful in cataloguing genes through genome sequencing
projects, and they can now generate vast quantities of gene expression data using mi-
croarrays. However, due to the sheer size of the data sets involved, and to complexity
of the problems to be tackled, the biological community has so far had less success
in understanding how genes and proteins are connected and how they operate within
networks. Such challenges call for novel approaches to data mining and understanding
heavily relying on artificial intelligence tools.

In this work we propose a new approach, based on a solid mathematical formalism,
able to cluster noisy gene expression data with missing data points. The method, which
provides a graphical user friendly interface for several data visualization options, rep-
resents an automatic procedure to discover, with no a priori assumptions, the number of
clusters present in the data.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 246–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The method was tested against the microarray data set of cell cycle in yeast Saccha-
romyces Cerevisiae made publicly available by [6]. The Spellman data set consists of
four synchronization experiments (alpha factor arrest, elutriation and arrest of CDC15
and CDC28 temperature-sensitive mutants) which were performed for a total of 73 mi-
croarrays during cell cycle. A detailed description of the data set can be found in [6].

The work is presented as follows: in Section 2 we introduce the methods for the
preprocessing step, while in Section 3 the NEC approach is detailed. Section 4 describes
the experimental results and, finally, conclusions, in Section 5 close the paper.

2 Preprocessing Phase

Microarray data have a very noisy nature, and thus preprocessing plays a fundamen-
tal role. We used a two step preprocessing phase: a preliminary noisy gene filtering,
followed by a non-linear PCA features extraction.

The first step of the preprocessing phase is the filtering of the genes with high noise–
to–signal ratio. This requires a reliable noise estimation which was achieved by exploit-
ing the periodicity of the input data set [1]. From our analysis we have that the 0.5
threshold was found to be a reasonable value for the noise–to–signal ratio. It is worth
observing, as a further a posteriori check of the validity of our rejection method, that
most of the genes used in the Spellman analysis pass our test.

The second step of preprocessing is the features extraction process that is based on a
non-linear PCA method which allows to obtain the eigenvectors from unevenly sampled
data. This approach is based on the STIMA algorithm described in [4,7,8].

3 NEC Approach

The preprocessed data represent the input to the NEC algorithm. As mentioned before,
our clustering model is composed by two phases hierarchically organized: a preliminary
unsupervised clustering approach and an agglomerative method.

I Phase: Clustering Algorithm
The approach that we consider at the first stage is the Probabilistic Principal Surfaces
(PPS) method: a latent variable model which has been shown to be very effective for
data mining purposes [1,3]. PPS defines a non-linear, parametric mapping y(x;W)
from a Q-dimensional latent space (x ∈ RQ) to a D-dimensional data space (t ∈ RD),
where normally Q < D. The mapping y(x;W) (defined continuous and differentiable)
maps every point in the latent space to a point into the data space.

Since the latent space is Q-dimensional, these points will be confined to a Q-
dimensional manifold non-linearly embedded into the D-dimensional data space. Sub-
stantially, the PPS approach builds a constrained mixture of Gaussians and the EM
algorithm can be used to estimate the parameters of the model.

If Q = 3 is chosen, a spherical manifold [1] can be constructed using a PPS with
nodes arranged regularly on the surface of a sphere in R3 latent space, with the latent
basis functions evenly distributed on the sphere at a lower density. After a PPS model is
fitted to the data, several visualization possibilities are available for analyzing the data
points [1].
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II Phase: Agglomerative Information
The information that we use to merge clusters (rough regions) is the Fisher’s discrim-
inant and Negentropy: on one hand, the Fisher’s linear discriminant is a classification
method that projects high-dimensional data onto a line and performs classification in
this one-dimensional space [2]. The projection maximizes the distance between the
means of the two classes while minimizing the variance within each class. We have
to note that the Fisher discriminant aims to achieve an optimal linear dimensionality
reduction. It is therefore not strictly a discriminant itself, but it can easily be used to
construct a discriminant.

The Fisher criterion for two classes is given by

JF (w) =
wTSBw
wTSWw

(1)

where SB is the between-class covariance matrix and SW is the total within-class co-
variance matrix.

On the other hand, the definition of Negentropy JN is given by

JN (x) = H(xGauss) −H(x), (2)

where xGauss is a Gaussian random vector of the same covariance matrix as x and H(.)
is the differential entropy. We note that the Negentropy can also be interpreted as a
measure of non-Gaussianity.

The classic method of approximate Negentropy is using higher-cumulants, through
the polynomial density expansions [5].

However, such cumulant-based methods sometimes provide a rather poor approxi-
mation of the entropy.

A special approximation is obtained if one uses two functionsG1 and G2, which are
chosen so that G1 is odd and G2 is even. Such a system of two functions can measure
the two most important features of non-Gaussian 1-D distributions. The odd function
measures the asymmetry, and the even function measures the dimension of bimodality
vs. peck at zero, closely related to sub- vs. supergaussianity. Classically, these features
have been measured by skewness and kurtosis, which correspond to G1(x) = x3 and
G2(x) = x4.

Then the Negentropy approximation of equation 2

JN (x) ∝ k1E{G1(x)}2 + k2(E{G2(x)} − E{G2(υ)})2 (3)

where υ is a Gaussian variable of zero mean and unit variance (i.e. standardized), the
variable x is assumed to have also zero mean and unit variance and k1 and k2 are
positive constants. We note that choosing the functions Gi that do not grow too fast,
one obtains more robust estimators. See [5] for more details on this kind of functions.

NEC Algorithm
In order to agglomerate the regions found by PPS, we combine the Fisher’s discriminant
and the Negentropy information in a measure that we call JNEC:

JNEC(X) = αF JF (w) + αNJN (X) (4)

where αF and αN are two defined constants and w is the Fisher’s direction.
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Algorithm 1. NEC Algorithm
1: Begin initialize dt, ĉ = c, Di ← Xi, i = 1, . . . , c
2: for i = 1 to ĉ-1 do
3: for j = 1 to ĉ do
4: calculate the Fisher’s direction between Di and Dj and project the data on it
5: calculate the JNEC information
6: if JNEC < dt then
7: merge the clusters Di and Dj and recursively all the clusters previously selected
8: end if
9: end for

10: end for
11: return c̃ new clusters
12: End

The only a priori information is a dissimilarity threshold (dt in the following). We
suppose to have c multi-dimensional regions Xi with i = 1, . . . , c that have been de-
fined by the clustering approach. The NEC algorithm is described in Algorithm 1.

4 Experimental Results on Microarray Data

In this section we show the results obtained using our approach on a microarray data
set of cell cycle in yeast Saccharomyces Cerevisiae [6,1]. After the noisy gene filtering,
the non-linear PCA is used to extract the first eigenvector (8-dimensional) of the auto-
correlation matrix of the overall 2445 genes that passed the filtering procedure, for each
of the 4 microarray experiment, so obtaining 32 features. Then a PPS model with 98
latent variables is trained on the 2445× 32 preprocessed data set. After the completion
of the training phase we projected the data into the latent space for visualization pur-
poses. Figure 1a shows the projection of genes which belong to some relevant clusters
(clusters found after the agglomerating phase).
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found after the agglomerating phase): front view. A similar image can be produced for the back
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Fig. 2. 45 clusters error bars plot showing the prototype behavior and standard deviation. On the
horizontal axes is reported, for each of the 4 microarray experiments, the 8-dim. parameter vector
extracted by nonlinear PCA. For each subplot the cluster number and the number of genes in it
contained are reported.
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Fig. 3. 20 cluster error bars plot showing the prototype behavior and standard deviation. On the
horizontal axes is reported, for each of the 4 microarray experiments, the 8-dim. parameter vector
extracted by nonlinear PCA. For each subplot the cluster number and the number of genes in it
contained are reported.

The structure of the data set can be deeply analyzed using the NEC approach by
plotting the number of clusters found by the algorithm varying the threshold (dt). We
note that in this case the threshold is chosen with a step of 0.05. From figure 1b it is
worth noting that, even though the data set is noisy, we are able to discover two main
substructures corresponding to the plateaus on 45 and 20 clusters, respectively. In this
way we identify the points of stability to understand the structure of the data set and the
meaningful number of clusters.

For each discovered cluster, we computed a prototype defined as the mean of the data
points within it, and the standard deviation with respect to the prototypes. The resulting
error bars plots are shown in figure 2 and figure 3 for 45 and 20 clusters, respectively.

From the two figures we note that we mainly have one cluster with noise and all
the other with a structured shape. We also note, from the confusion matrices calculated
between both the agglomerations, that the NEC algorithm is stable since merge only
regions with high noise.
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5 Conclusion

We have presented an unsupervised tool for preprocessing, visualization and clustering.
The clustering procedure is based on a novel approach hierarchically conceived, i.e.
a hierarchy of two unsupervised clustering algorithms, called by us NEC. The first
algorithm is based on a Probabilistic Principal Surfaces approach and the second one
on an agglomerative clustering based on both Fisher and Negentropy information.

We note that since the NEC clustering does not use non-parametric estimation of
the distribution it is very fast and very stable. In fact, in many cases the non-parametric
estimation could give worse results depending on the values assigned to the parameters.

Moreover, we stress that applying the approach on microarray data of cell cycle we
could obtain, in an unsupervised and simple way, biological information from the data.
Furthermore, it is highlighted that using the NEC approach, varying the agglomerative
threshold we can study the structure of the data set and to choose the right number of
clusters.

In the next future the authors will focus their attention on the validation of the found
clusters from a biological point of view, i.e. using biological p-values of our clusters
by using the GOTerm Finder tool from the Saccharomyces Cerevisiae database and to
apply the approach on different biological data sets.
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Abstract. In Supervised Learning it is assumed that is straightforward
to obtained labeled data. However, in reality labeled data can be scarce or
expensive to obtain. Active Learning (AL) is a way to deal with the above
problem by asking for the labels of the most “informative” data points.
We propose a novel AL method based on wavelet analysis, which pertains
especially to the large number of dimensions (i.e. examined genes) of mi-
croarray experiments. DNA Microarray expression experiments permit
the systematic study of the correlation of the expression of thousands of
genes. We have applied our method on such data sets with encouraging
results. In particular we studied data sets concerning: Small Round Blue
Cell Tumours (4 types), Leukemia (2 types) and Lung Cancer (2 types).

Keywords: active learning, wavelets, microarray data.

1 Introduction to Active Learning

The idea that a large set of labeled data is available for training a classifier under
a supervised regime is often wrong. Data labeling can be a time consuming and
expensive process. For instance in the microarray experiments in biology, a large
data set is produced which represents the expression of hundreds or thousands
genes (i.e. production of RNA) under different experimental conditions (see [1]
for an overview of microarray experiments), labeling exhaustively all the experi-
mental samples can be very expensive or simply impossible. An alternative would
be to start with a small set of labeled data, which may be easy to obtain, then
to train a classifier with supervised learning. At this point a query mechanism
pro-actively asks for the labels of some of the unlabeled data; whence the name
active learning. The query implements a strategy to discover the labels of the
most “informative” data points.

� The work presented in this paper has been undertaken in the framework of the
OPTOPOIHSH project (PLHRO/0104/04 - Development of knowledge-based Vi-
sual Attention models for Perceptual Video Coding) funded by the Cyprus Research
Promotion Foundation, Framework Programme for Research and Technological De-
velopment 2003-2005.
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The concept of Active Learning is hardly new, an important contribution is
in [2], where optimal data selection techniques for feedforward neural networks
are discussed. In addition the authors show how the same techniques can be used
for mixtures of Gaussians and locally weighted regression. An information based
approach for active data selection is presented in [3]. In particular three different
techniques for maximising the information gain are tested on an interpolation
problem. In yet another approach, the geometry of the learning space is derived
by computing the Voronoi tessellation, and the queries request the labels of data
points at the borders of Voronoi regions [4]. The concept of active learning has
also been realised in the context of Support Vector Machines for text classifica-
tion in [5]. The method is based on selecting for labeling, data points that reduce
the version space (the hyperplanes that separate the data) as much as possible.
In sect. 2 we discuss about the use of wavelet analysis in bioinformatics, then in
sect. 3 we present our proposed algorithm on wavelet based active learning. In
sect. 4 we present the experimental setting and the results. In sect. 5 we elabo-
rate on certain choices we made and especially, in the use of wavelets. Finally,
in sect. 6 we present conclusions and future work.

2 Wavelets as Data Mining in Bioinformatics

Wavelets have been widely used in signal processing for more than 20 years. More-
over, their usefulness has also been proved in the domain of data mining [6] as well
as in the biomedical domain [7]. The main advantage of the wavelets with respect
to the Fourier transforms, is that they allow the localisation of a signal in both the
time and frequency domains. From the point of view of mathematics, a function
can be represented as an infinite series expansion in terms of a dilated and trans-
lated version of a basis function called the mother wavelet. For practical purposes,
we can use the discrete wavelet transform, which removes some of the redundancy
found in the continuous transform. In the experiments that we consider we have a
small number vectors (microarray experiments), where the dimensions of each vec-
tor (genes involved) are an order of magnitude greater than the number of vectors
(see [8] for overview of computational methods for microarray data). In particular
a data set from a microarray experiment has the form of a two dimensional matrix
X. Let, xi be a row vector of X, and xi=(xi,1,xi,2 . . .xi,L). The index i refers to the
microarray experiment or time step and itsmaximumvalue is relatively small, up to
100.On the other hand eachdimension represents the expression level (i.e. theRNA
that has been produced) of a specific gene in a specific experiment. A characteris-
tic property of microarray which differentiates them from most of the other data is
that the number of samples is small when compared to the number of dimensions.
Because of this property each sample can be considered as a time series.

3 Wavelet Based Active Learning

It is presumed that we have a pool of labeled and unlabeled multidimensional
data, and that the number of dimensions is far greater than the number of data.
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The purpose is to reduce the error of a classifier (built with a labeled training
set), by selectively asking for the labels of the unlabeled data.

We propose an algorithm which implements a query strategy based on wavelet
analysis, and it can be informally stated as: find two data items, one from the
testing set of the classifier and the other from the pool of unlabeled data, such
that their distance is minimal and the item from the testing set is from the worst
performing class (in terms of the Root Mean Square Error). Perform that com-
putation on multiple levels of wavelet analysis, which possibly returns multiple
candidates from the unlabeled pool. Then apply a voting scheme and choose the
best unlabeled data item from the pool. Next, we present formally the algorithm:

1. Train the classifier with the labeled data.
2. Perform 1D, discrete wavelet transform on each labeled and unlabeled data

item, from scale S1 up to Slog2(L), where L is the number of dimensions.
Here greater index in scale denotes lower resolution of wavelet analysis and
S1 denotes the original signal.

3. Active Learning step: Form a query to ask for the label of an unlabeled
datum: Let class k is the class with the worst classification error and let Xk

be the set of data classified, by the current classifier, to class k . Let also
xk,i ∈ RL be the i -th signal in Xk. By xSr

k,i we denote signal xk,i at scale
Sr , r ∈ {0 , .., log2 (L)}. If U is the set of unlabeled data and uj ∈ RL, is the
j -th signal in U, represented at scale Sr by uSr

j , then the following criterion
is used to select the next candidate datum uξ at scale Sr:

ξSr = arg min
j

{min
i

‖uSr
j − xSr

k,i‖2} (1)

where uSr
j denotes that the comparison is made at scale Sr . It is possible

(though not necessary) that uSr

ξ �= uSl

ξ r , l ∈ {0 , .., log2 (L)}, r �= l.
4. The previous step is performed for all Sr, which produces a series of

uS1
ξ . . . u

Slog2(L)

ξ (2)

5. Assign weights to all uSr

ξ , where each weight is reversely proportional to the
eucledian distance of uSr

ξ from its closest xSr

k,i

6. All uS1
ξ . . . u

Slog2(L)

ξ vote according to a weighted majority voting scheme.
7. The label of winner from the previous voting uSr

ξ is requested, and the datum
is entered into the training data set, and the classifier is retrained with the
updated training set.

8. The algorithm terminates, when the user decides that the overall classifier’s
performance is good enough, or when there can be no more labels.

The rationale of the algorithm, is to query for labels to the data that are
closest to the worst performing data in terms of the classification error. Asking
at multiple scales, implies that the similarity that it is sought must be present
at multiple resolutions; and thus more impervious to noise.
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4 Experiments

We have used datasets from 3 labeled microarray experiments. The first data set
was obtained from “The Microarray Project cDNA Library” (http://research.
nhgri.nih.gov/microarray/Supplement/). The second and third data sets were
obtained from the Gene Expression Datasets collection (http://sdmc.lit.org.sg/
GEDatasets).

The first data set is about Small Round Blue-Cell tumours (SRBCT), inves-
tigated with cDNA microarrays containing 2308 genes, over a series of 63 exper-
iments. The 63 samples included tumour biopsy material and cell lines from 4
different types: 23 Ewing’s sarcoma (EWS), 20 rhabdomyo sarcoma (RMS), 12
neuroblastoma (NB) and 8 Burkitt’s lymphoma (BL). There are also available
20 samples (6 EWS, 3 BL, 6 NB and 5 RMS) for testing [9].

The provenance of the second data set stems is also from oligonucleotide mi-
croarrays, with a view of distinguishing between acute lymphoblastics leukemia
(ALL) and acute meyeloid leukemia (AML). The training data set consisted of
38 bone morrow samples (27 ALL, 11 AML) from 7130 human genes. The test
data set consisted of 34 samples (20 ALL, 14 AML) [10].

The third data set also stems from a microarray experiment and consists
of lung malignant pleural mesothylioma (MPM) and adenocarcinoma (ADCA)
samples [11]. The training set consists of 32 samples (16 MPM and 16 ADCA)
each class) from 12534 human genes. The test set consists of 149 samples (15
MPM and 134 ADCA).

He have split the data sets into training, pool and testing subsets. The first
is used for training the classifier. Under the active learning regime a query asks
for the labels of specific data from the pool. The testing subset is used for
independent control (see Table 1). The best datum (according to the query
asked) receives a label and it is subsequently integrated into the training data
set. The results reported in Fig. 1 depict the testing set error and are averages
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Table 1. Data Sets characteristics and Performance

Description Cumulative Query Error
Data set Training Pool Test # dimensions Random Distance Wavelet
SRBC 13 52 20 2308 7.4655 7.7540 7.2860
Leukemia 19 19 34 7130 3.6385 4.0050 3.5556
Lung 16 16 117 12534 1.9301 2.1144 1.8165

over 100 experiments. In each experiment the whole data set is shuffled while
the number of training, pool and test sets remains the same.

As a classifier, we have used a Support Vector Machine (with a polynomial
kernel of degree 3), primarily for practical reasons; our smallest data set has 2308
dimensions and training a multilayered perceptron would take a prohibitively
long time. Training on all data sets always resulted in learning 100% of the
training sample.

The experimental setting aims to compare the reduction of the classification
error on the testing set by comparing three different query types. Each query
type progressively asks for the labels of all data in the pool. Next, we present
the three query types (the Wavalet Distance Query is what we proposed):

Random Query. For comparison only: The next datum uξ to be included in
the training data set is selected from the pool at random.

Distance Query. The selected datum (from the pool) is the one which min-
imises: ‖uξ − xk,i‖, without applying any wavelet transformation. k denotes
the category where the classifier has the highest Root Mean Square Error
(RMSE), i is the index of the datum x, and x is selected from the testing
subset.

Wavelet Distance Query. The proposed method: Apply the criterion of dis-
tance query at all scales of wavelet analysis. The winner from each scale
votes according to a weight that is reversely proportional to the minimum
distance. We have applied a 1D discreet wavelet (Daubechies family order
2) transform up to scale log2(L), where L is the number of dimensions and
x is selected from the testing subset.

The results are summarised in Fig. 1 and in Table 1 where the cumulative
query error is reported over all pool data for all three data sets (lower values are
better). For all data sets the wavelet based active learning method outperformed
the two other methods.

All experiments were carried out on the Matlab 6.5 platform, with the OSU
SVM classifier and the Wavelet toolboxes.

5 Discussion

The signals we consider are made of the expression levels of genes. The task we
are addressing is that of supervised learning, by active (on the part of classifier)
selection of the training samples. The signal is not assumed to be stationary, thus
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the frequencies extend over limited regions of the signal. The wavelet transform
offers the best trade off between localisation and extraction of frequencies. Let
us assume that the wavelet transform was not applied, and the best datum was
selected from the pool for labeling, based on the proximity to another datum of
known label. Proximity, can be defined in terms of euclidean/mahalanobis etc.
distance. This would impose a certain structure on data belonging in the same
category (i.e. categories are spheres/ellipsoids) which of course is not necessarily
the case. Naturally, data of the same category must have something in common,
but this common property has to been “mined”. With this work, we advocate
that the intrinsic properties of each datum are hidden in its frequencies and
their location. This analysis has to proceed at different scales, because higher
frequencies tend to be shorter in duration than lower frequencies, subsequently
lower frequencies can be resolved in frequency.

To enforce the claim that wavelet analysis is necessary to detect the most
similar object; i.e. it is better to look at multiple scales than at a single scale, it
is interesting to observe the data of Fig. 1, where the selection based on minimum
distance at largest scale is even worse than selecting at random.

Principal Component Analysis (PCA) is widely used in statistics and ma-
chine learning. In many cases the data dimensions are highly correlated with
each other; PCA can transform the dataset in such a way that the new dimen-
sions are uncorrelated, then the new dimensions with the lowest variance could
be discarded. The assumption of PCA is that the intrinsic data dimensionality
is lower that the original dimensionality. In the problem domain we have consid-
ered each dimension is the expression level of a gene, and whereas some of the
dimensions are expected to be related there is no guarantee that they are lin-
early related. Concomitant to that is that if the data distribution is not gaussian
like, PCA being a linear transformation will not be of much use. Therefore, a
better choice in the vein of PCA is to implement and experiment with non-linear
extensions of PCA.

6 Conclusions and Future Work

We have designed a method for active learning with a weighted wavelet based
voting scheme and we evaluated the method on three datasets from microarray
experiments with encouraging results —the wavelet distance query outperformed
all other methods. It is interesting to observe that the simple distance query
performs on average worse than random choice.

We intent to apply our proposed method on a larger number of microar-
ray data sets to test experimentally its validity. In particular the Gene Expres-
sion Datasets collection contains a large number of microarray data sets (see
http://sdmc.lit.org.sg/GEDatasets).

An important issue is the choice of the unlabeled data item to be included in
the training set, in our case we have devised a weighted voting scheme, however
there are also other good choices such as considering only the scale with the
lowest entropy which have to be investigated.
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We also need to investigate the role of the wavelet. In particular we have
use the Daubechies order 2 (db2)—an orthogonal wavelet. What would be the
result of a biorthogonal wavelet? It remains to test it experimentally. However,
in the experiments we conducted the Haar wavelet underperformed when com-
pared to db2. Moreover, the characteristics of the microarray experiments, might
lead us to design a new wavelet to fit the problem of active learning. Another
important issue is that the order of the components in the data vectors is not
important, they represent expression levels of genes, therefore a rearrangement
of the components might lead to improved results.

Finally, we have not taken advantage of the characteristics of the Support
Vector Machine in particular we have not considered the separating hyperplanes
that are produced. This could suggest a way of improving the active learning
query.
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Abstract. Semi-supervised methods use a small amount of labeled data
as a guide to unsupervised techniques. Recent literature shows better
performance of these methods with respect to totally unsupervised ones
even with a small amount of side-information This fact suggests that
the use of semi-supervised methods may be useful especially in very
difficult and noisy tasks where little a priori information is available.
This is the case of biological datasets’ classification. The two more fre-
quently used paradigms to include side-information into clustering are
Constrained Clustering and Metric Learning. In this paper we use a Met-
ric Learning approach as a preliminary step to fuzzy clustering and we
show that Semi-Supervised Fuzzy Clustering (SSFC) can be an effective
tool for classification of biological datasets. We used three real biological
datasets and a generalized version of the Partition Entropy index to val-
idate our results. In all cases tested the metric learning step produced a
better highlight of the datasets’ clustering structure.

Keywords: Semi-Supervised Learning, Fuzzy Clustering, Adaptive Met-
ric, Validity Index.

1 Introduction

In Computational Biology, recent techniques as Microarray Chips produce a
wealth of data that need to be analyzed and interpreted. In such experiments,
the level of mRNA expression of thousands of genes in a cell is simultaneously
measured in various experimental conditions. The result is usually presented in
form of a matrix, whose columns are the various experimental conditions (time
evolution, case/control, etc) and whose rows are the genes fragments spotted
on the chips. Pattern Analysis and Machine Learning methods are extensively
used to gain insights into biological phenomena and to extract genetic informa-
tion coded in the DNA chips [5], [6],[9], [10], [14]. Thanks to the application
of automatic classification methods, successful results in the understanding of
genes roles and interactions have been reached , although there is no literature’s
agreement on a general method that would work outside the tested datasets.
Due to the complexity of the underlying phenomena, the results of functional
genomics experiments are very hard to be validated without the aid of a well
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trained expert of the field. Hence we believe that a fundamental step towards the
availability of new and more powerful tools to analyze this kind of data is the
inclusion in automatic procedures of a priori knowledge, supplied by the field’s
experts.

In many biological experiments, often there are genes that are biologically
known to be involved in the same process under certain conditions. Using con-
ventional unsupervised classification techniques this information is lost, produc-
ing poor results due to the algorithms’ inability to recognize genes’ correlations
that are evident for an expert of the field. Such an expert may be able to indi-
cate explicitly at least a reduced list of genes known to be “similar” and some
others genes known to be “dissimilar” in a given experiment. A way to use this
a priori substantive knowledge is tweaking the metric, as a preliminary step to
clustering, in such a way that genes declared to be “similar” fall into the same
cluster and genes declared to be “dissimilar” fall into different ones.

Often a metric is suitable for some data and completely unsuitable for other, or
worse it’s suitable for some variables or experiments and completely inadequate
for others on the same data. One solution could be to manually “adapt” the
metric to the data or to automatically “learn” from data a metric that respects
some constraints. If constraints are formulated by a user in a way that expresses
his substantive knowledge of the phenomenon under study, the metric can be
thought as representing a way to include an a priori information into the analysis
performed. This can be done as a preliminary step to many classification and
clustering algorithms.

The two more frequently used paradigms to include side-information into
clustering are Constrained Clustering [12],[16] and Metric Learning [1], [3], [4],
[7], [13], [15]. In the former case the objective function of a clustering algo-
rithm is modified to include a penalty for wrongly classified points, while in
the latter a suitable metric that makes similar points be closer and dissimilar
points be farther away is learned prior to clustering. Among previous works in
metric learning methods, in [15] a Mahalanobis distance is learned using con-
vex optimization. This is a very effective approach, although severely limited
in application to real data by the computational complexity O(d6). In [7] the
metric is learned considering pairs of samples belonging to the same class and
the computational complexity is reduced to O(d3) showing similar the. In [3]
a k-means family algorithm that joins metric learning and clustering in the
same step is proposed. It is more general with respect to [7] and [15] because
it considers a different metric for each cluster and so allows for clusters of dif-
ferent shape. In the Semi-Supervised Fuzzy Clustering (SSFC) here proposed,
we use a two step approach, separating metric learning from clustering. We
also use a different metric for each cluster and we generalize further to fuzzy
clustering. Optimization in the learning step in this case is done through an
heuristic.

In this paper we show the efficacy and the benefits of learning a metric that
respects some user-defined constraints as a preliminary step to clustering, using
three real biological dataset and the well known fuzzy c-means algorithm. Results
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are validated compared to fuzzy c-means with classical euclidean metric and
through a generalized version of the Partition Entropy index [2]. Membership
distribution shows a clear improvement in detecting the clustering structure for
all tested cases.

2 Method

2.1 Fuzzy c-Means with Euclidean Metric

Fuzzy Clustering is a partition-optimization technique that aims to group data
based on their similarity in a non-exclusive manner, that is permitting each sample
to belong to more than one group. The strength of each sample’s belonging to each
group is measured through a function, called membership that has values between
0 and 1 and that sums to 1 on all clusters. Values closer to 1 indicate a stronger
belonging of that sample to that cluster. There are various algorithms with which
grouping can be performed and one of the most used is the fuzzy c-means [2].

Main known limitations of the fuzzy c-means are that:

– it can remain trapped in local optima;
– the number of clusters and the amount of fuzziness are free parameters;
– all clusters are of hyperspherical form;
– it produces in every case a grouping, even if the data have no clustering

structure.

Its objective function is:

Jb =
c∑
i

N∑
j

d(xj ,mi)μb
ij (1)

where μij are the membership, mi are the cluster centroids and b is the overlap
parameter.

2.2 Fuzzy c-Means with Learned Metric

The algorithm used is a two steps approach: In the first step we use the a priori
information to “tweak” the metric dAi

dAi
(x, y) = [(x − y)TAi(x − y)]

1
2 (2)

To gain more generality and more flexibility, we considered a different matrix
for each cluster Ai i = 1, ..., c. To define a criterion for the metric we demand
that samples declared to be “similar” have small squared distance and samples
declared to be “dissimilar” have high squared distance. Let us call Si and Di

respectively the sets of similar points and the set of dissimilar points in the i-th
cluster, then we pose a set of c constrained problems [15]:
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min
Ai

∑
(xk,xl)∈Si

||xk − xl||2Ai
(3)

subject to
∑

(xk,xl)∈Di

||xk − xl||Ai
≥ K, and Ai ≥ 0. (4)

where i = 1 . . . c andK > 0 is an arbitrary constant, the constraint term captures
the notion of between-cluster dissimilarity whereas the functional to minimized
captures the notion of within-cluster similarity. Here, as in [15], we use K = 1. It
can be easily shown that the problems (4) are equivalent, under the assumption
of diagonal matricesAi, to the minimization of the following c convex functionals:

g(Ai) =
∑

(xi,xj)∈S

||xi − xj ||2Ai
− log(

∑
(xi,xj)∈D

||xi − xj ||Ai
) (5)

The Netwon-Raphson method has been adopted in [15], it leads to an O(d6)
algorithm, where d is the dimension of data. In our case, the problem is even
more complex as we have a set of c such problems, moreover in microarray
experiments, the data dimension can reach several thousands, therefore here we
adopted a stochastic search based minimization algorithm based on the well-
known Simulated Annealing (SA) [11] method.

Then we calculate the fuzzy c-means clustering with the more general distance
metrics calculated in the previous step.

J∗
b =

c∑
i

N∑
j

dAi
(xj ,mi)μb

ij (6)

The convergence of the fuzzy c-means algorithm is independent from the
change in the distance function if the distances are all positive and the prototypes
are calculated according to the minimization of the objective function [2].

2.3 Cluster Validity Measures

In a well defined fuzzy clustering the first memberships should be much higher
than the others, reflecting scarce ambiguity and good model’s matching to the
data structure. Considering the list of sorted memberships for each sample it is
obvious that a more pronounced asymmetry towards higher values indicates a
better defined clustering [8]. There are various possibilities to express quantita-
tively this fact. If we assimilate membership to probabilities it is possible to use
the Entropy Index as a quantitative measure of asymmetry. The mean value on
the whole dataset of the Entropy Index is known as Partition Entropy [2] and
has the following form:

PE =
1
N

c∑
i

N∑
j

μij loga μij (7)

where N is the number of points in the dataset, μij are the membership and
c is the clusters’ number. Lower values indicate more asymmetric partitions.
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This is a well-known index based only on memberships’ values that shows an
increasing trend with the number of clusters, mainly because the membership
tends to spread over clusters. One way to enhance index’s sensitivity to higher
memberships’ values and to avoid this limitation is to raise the memberships
to the power p and to normalize the new values so that they sum to one. The
higher the power, the higher index’s sensitivity.

PEmp =
1
N

c∑
i

N∑
j

μ̂p
ij loga μ̂

p
ij (8)

Where μ̂p
ij are memberships raised to power p and normalized.

a) b)

c) d)

e) f)

Fig. 1. Boxplots of ordered memberships of the three datasets analyzed. On the left
data are clustered with conventional FCM and on the right data are clustered with our
algorithm. Figures a) and b) are referred to the Sporulation dataset; figures c) and d)
to the Rat dataset; figures e) and f) to the Yeast dataset.
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3 Results

The three dataset used are:
– The Yeast dataset, downloaded from the UCI Machine Learning reposi-

tory. It has 1484 rows and 10 columns of attributes that are a series of
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Fig. 2. Plots of PEm Validity Index for conventional fuzzy c-means (dotted line) and
for SSFC (solid line) on the three datasets analyzed, in function of power p
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measurements to establish the localization site of proteins. Last column is
the localization site.

– The Rat dataset is the data set of Wen, Fuhrman, Michaels, Carr, Smith,
Barker and Somogyi that measures the mRNA expression levels of 112 genes
during rat central nervous system development from embryonic through
postnatal to adult stage (9 stages). Last column is the functional classifi-
cation of genes.

– The Sporulation dataset is the Spellmann dataset of Yeast expression levels.
It has 6118 rows and 86 columns. We selected only the 477 rows that we
know to be Cell-cycle regulated and the 7 columns of g/r ratios.

Boxplots of sorted memberships for all dataset tested are shown in figure 1, in
the case of conventional fuzzy c-means and in the case of SSFC. As we can see, in
all cases our modified fuzzy c-means algorithm produces more asymmetric mem-
berships. We can see that the ordered memberships are much more asymmetric
in the case of the “learned” metric to prove a much more evident clustering
structure on the data. This is particularly evident for the Yeast dataset (1 e)
and f)) an it’s a bit more attenuated for the Rat dataset (1 c) and d)). It is less
evident in the Sporulation dataset (1 a) and b)) but however there is still an
improvement.

In all cases tested we have plotted the PEm indexes’ values versus the power
p from 1 to 10 in 0.1 steps, comparing the two algorithms, classical fuzzy c-
means and SSFS (Fig.2). As we can see the power p affects index performances
and makes it much more sensible to dataset clustering structure. Specifically,
in the Sporulation case, classical index PE fails in highlight the distribution
improvement due to the metric learning, while starting from the power of 2 the
modified index PEm reaches the task. In all tested cases, the index PEm reflects
distribution improvement due to metric learning and seems to be more reliable
and sensible with respect to the original index PE.

4 Conclusions and Future Work

We have shown the efficacy of using side information in unsupervised techniques.
Learning a metric that respects some user-defined constraints as a preliminary
step to clustering improves clearly its performance, extending utilization possi-
bilities to more difficult tasks without substantial changes to the technique. We
used three real biological dataset to validate our method and the well known
fuzzy c-means algorithm. In all tested cases there is an advantage in using side
information that can be quantified through a generalized version of the Par-
tition Entropy index. Membership distribution shows a clear improvement in
detecting the clustering structure for all tested cases. Future work is in joining
metric learning to the clustering step and in studying more complex distance
functions.
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Abstract. A combination of gene ranking, dimensional reduction, and
recursive feature elimination (RFE) using a BP-MLP artificial neural
network (ANN) was used to select genes for DNA microarray classifi-
cation. Use of k-means cluster analysis for dimensional reduction and
maximum sensitivity for RFE resulted in 64-gene models with fewer in-
variant and correlated features when compared with PCA and mimimum
error. In conclusion, k-means cluster analysis and sensitivity may be
better suited for classifying diseases for which gene expression is more
strongly influenced by pathway heterogeneity.

1 Introduction

Artificial neural networks (ANNs) have been applied to DNA microarray data
through several approaches. Tarca et al used ANNs to normalize cDNA microar-
ray data and demonstrated a reduction in both intensity-dependent bias and
spatial-dependent bias[1]. The agreement between regulatory motifs and func-
tional classes of Saccharomyces cerevisiae genes in clusters based on Euclidean
distance, correlation, and mutual information was found to be lower than ANN-
derived clusters[2]. Using expression data for cardiovascular disease, Tham et al
reported that an ANN approach provided promising prediction results[3]. The
remaining clinical papers on ANNs focused on diagnostic classification of several
types of cancer such as leukemia, lymphoma, lung cancer, prostate cancer, and
various neurological malignancies [4-9].

The goal of this paper was to assess correlation and differential expression
among features identified through a combination of methods involving gene
ranking, dimensional reduction, and recursive feature elimination (RFE). Com-
parisons are provided describing the amount of between-gene correlation in
64-gene models as a function of dimensional reduction and RFE methods. Also
provided is the proportion of genes among the 64-gene models with significant
between-class differential expression.
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2 Methods

2.1 Simulated Data Set

Let the matrix E of gene expression profiles have dimension G × A, where G is
the number of genes (g = 1, 2, . . . , G) and A is the number of microarrays (a =
1, 2, . . . , A). A simulated data set with 400 genes and 20 arrays was generated
with expression values distributed normally as N(μ, σ2) as shown in Table 1.
Symmetry in the simulated expression values was preserved among the 2 classes
in order to prevent bias in the sensitivity for a particular class.

Table 1. Description of 400 simulated genes for 20 arrays

Simulated genes
Class A(10 arrays) Class B(10 arrays)

# Genes Odd arrays Even arrays Odd arrays Even arrays
40 N(0,1) N(0,1) N(0,1) N(0,1)
20 N(5,1) N(5,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(5,1)
20 N(5,1) N(5,1) N(-5,1) N(-5,1)
20 N(-5,1) N(-5,1) N(5,1) N(5,1)
20 N(5,1) N(0,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(0,1)
20 N(5,1) N(-5,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(5,1) N(-5,1)
20 N(5,1) N(-5,1) N(5,1) N(0,1)
20 N(5,1) N(0,1) N(5,1) N(-5,1)
20 N(5,1) N(-5,1) N(5,1) N(-5,1)
20 N(2.5,1) N(0,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(2.5,1) N(0,1)
20 N(2.5,1) N(-2.5,1) N(0,1) N(0,1)
20 N(0,1) N(0,1) N(2.5,1) N(-2.5,1)
20 N(2.5,1) N(-2.5,1) N(2.5,1) N(0,1)
20 N(2.5,1) N(0,1) N(2.5,1) N(-2.5,1)
20 N(2.5,1) N(-2.5,1) N(2.5,1) N(-2.5,1)

2.2 Empirical Data Sets

We used two empirical data sets available in the public domain. The first was
published by Hedenfalk et al [10] on BRCA1 and BRCA2 mutations with 3170
genes and 15 arrays comprising 2 classes (7 arrays for BRCA1 and 8 arrays
for BRCA2 ). The second was published by Khan et al [9] on childhood small
round blue-cell tumors (SRBCT) with 2308 genes and 63 arrays comprising 4
classes (23 arrays for EWS-Ewing Sarcoma, 8 arrays for BL-Burkitt lymphoma,
12 arrays for NB-neuroblastoma, and 20 arrays for RMS-rhabdomyosarcoma).

2.3 Gene Ranking

We applied non-parametric independent k-sample statistical tests and ranked
genes based on their significance level. For the 2-class simulated and Hedenfalk
et al data sets, we applied the Mann-Whitney test to rank genes based on signifi-
cance. The Mann-Whitney test approximates the Gini diversity index commonly
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used for feature selection[11]. While all of the 400 simulated genes were used, we
applied a cutoff criterion of p ≤ 0.2 for the 3170 original genes in the Hedenfalk
et al data set and identified 967 genes. For the 4-class Khan et al data set with
2308 original genes, we used the independent k-sample Kruskal-Wallis ANOVA
test to rank genes and applied a cutoff p ≤ 0.01. This led to 898 gene expression
profiles. Tail probabilities for parametric t-tests applied to the Hedenfalk et al
data resulted in 1191 genes with p ≤ 0.20 and 920 genes for F-tests applied to
the Khan et al data for which p ≤ 0.01. Parametric test results were not used
for gene ranking, but stored for bookkeeping.

2.4 Dimension Reduction with K-Means Cluster Analysis

In addition to gene ranking and use of p-value cutoffs, we applied k-means clus-
tering and principal components analysis (PCA) for dimension reduction in order
to minimize effects from the curse of dimensionality[12]. For k-means clustering,
let k (k=1,2,. . . ,K) be the the kth cluster of a clustering, and K the total
number of clusters. The optimal value of K is determined by cycling through
values of K = 2, 3, ...,

√
G. This is performed as follows. For K clusters, the total

within-cluster sum-of-squares is

SSW (K) =
K∑

k=1

Gk∑
g=1

‖xgk − mk‖, (1)

where xgk is the row vector containing expression values for gene g in cluster k
over the A arrays and mk is the mean vector for Gk genes in cluster k, and ‖.‖
is the Euclidean distance. For the same K clusters, the smallest between-cluster
distance is

d(K) = min
1≤k<l≤K

‖mk − ml‖, (2)

and the score function for a set of K clusters is

SK =
d(K)

SSW (K)
. (3)

After evaluating the score function SK for values of K ranging from 2 to
√
G,

the optimal value of K is

Kopt = max
2≤K≤√

G
{SK} . (4)

Once Kopt is determined, the k-means algorithm is rerun using Kopt clusters.
K-means clustering results in a A × K M matrix of k-means centers. For each
gene, determine the k-means score which maps the gene back to the center k as

zgk =
‖xg − mk‖ − μk

σk
k = 1, 2, . . . ,K, (5)

where xg is the standardized expression vector for gene g, mk is the mean vec-
tor for center k, ‖xg − mk‖ is the Euclidean distance between expression for
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gene g and center k, and μk and σk are the average and standard deviation
of distances ‖xg − mk‖ between all genes and center k. This was repeated
for each cluster center to yield a G × K Z matrix of k-means scores. Since
the scores are standard normal distributed, the bulk of scores will be centered
around zero and genes with the smallest or greatest distance from the cluster
center will yield greater scores. For the simulated data set, we identified 12
centers (i.e., Kopt=12). For the Hedenfalk et al breast cancer data, we iden-
tified 30 centers, whereas for the Khan et al SRBCT data, we identified 28
centers.

2.5 Dimension Reduction with PCA

During PCA, the top 10 eigenvalues were extracted from the G×G correlation
matrix R. The array by component (A×P ) F matrix of PC scores is determined
with the matrix of standardized expression values (standardized with mean and
s.d. over the genes) as follows

F
A×P

= Z
A×G

W
G×P

. (6)

In order to map genes back to the arrays via the principal components, the
matrix of PC score coefficients was obtained using the matrix operation

W
G×P

= L
G×P

(L′L)−1

P×P

, (7)

where L is the loading matrix reflecting the correlation between each gene expres-
sion profile and the extracted PC scores. The top 10 PC’s were always extracted
from the gene by gene correlation matrix and used for training. Orthogonal
rotations were not performed.

2.6 ANN Training During Recursive Feature Elimination

Recursive feature elimination (RFE) was based on a BP-MLP ANN with one hid-
den layer. The ANNChip computer program (http://www.chipst2c.org) was used
for RFE and included 8-fold cross-validation and leave-one-out testing where ar-
rays were randomly assigned to 8 validation groups. Each validation group was
selected singly resulting in a single ANN model in which the remaining 7/8 of
arrays were used for training. During leave-one-out testing, array 1 was left out
of models 1-8, array 2 left out of models 9-16, etc., so that each array was left
out during 8 models. Table 2 summarizes the input data sets with the number
of samples and genes, the reduction methods and derived matrices used to feed
the ANN during RFE, and the total number of models used based on 8-fold
cross-validation with leave-one-out testing.

Selection of Genes Based on Maximum Sensitivity. In order to gauge
the influence of each gene on the classification, target outputs t̂gc for each gene
were calculated during the last sweep of every model using the last known weights
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Table 2. ANN training during recursive feature elimination (RFE) and ANN model
summary for 8-fold cross-validation with leave-one-out testing

Reduction Training Network ANN
Data method Samples Genes matrixa size modelsb

Simulated k-means 20 400 M
20×12

12-5-2 160

PCA 20 400 F
20×10

10-4-2 160

Hedenfalk et al k-means 15 967 M
15×30

30-12-2 120

PCA 15 967 F
15×10

10-4-2 120

Khan et al k-means 63 898 M
63×28

28-11-4 504

PCA 63 898 F
63×10

10-4-2 504

a Matrices from reduction results were used for training the ANN during RFE.
b Number of models equal to 8 validation groups times number of samples.

and setting the input nodes xi equal to either the 1 ×K row vector of k-means
scores zg for each gene or the 1 × P row vector wg of PC score coefficients for
each gene. It warrants noting that the ANN was not retrained here, but rather
gene-specific values of t̂gc were determined by applying the last known weights to
gene-specific row vectors of Z or W, which map the genes back to the original
M and F matrices used for training. The average gene-class-specific sensitivity
of each gene was then determined as

Sg
c =

1
n

n∑
i=1

∂t̂gc
∂xi

(8)

where g is the gene, c is the class, n is the number of input nodes based on n = K
and x = zg if the ANN was trained with k-means centers based on M, or n = P
and x = wg if the ANN was trained with PC scores based on F. The partial
derivative ∂t̂gc/∂xi is determined via the chain rule, by first differentiating t̂gc
w.r.t. hidden layer outputs, vj , and then input row values, xi, given by

∂t̂gc
∂xi

=
∑

j

∂t̂gc
∂vj

∂vj

∂xi

=
∑

j

dt̂gc
dyc

∂yc

∂vj

dvj

duj

∂uj

∂xi

=
∑

j

⎛⎜⎜⎜⎝
exp(yc)

(∑
l

exp(yl) − exp(yc)
)

(∑
l

exp(yl)
)2 who

jc

e−uj

(1 + e−uj )2
wih

ij

⎞⎟⎟⎟⎠
(9)

Class-specific sensitivities for each gene were summed over all models and then
sorted in descending order. Genes at the top of the sort were selected as the best
predictors based on gene-class-specific sensitivity. The list of genes was divided
equally into genes with the greatest sensitivity for discriminating each class.
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For example, for a list of 8 genes and 2 classes, the 4 genes with the greatest
sensitivity for discriminating class 1 were used along with the 4 genes with the
greatest sensitivity for discriminating class 2.

Selection of Genes Based on Minimum Error. In addition to RFE based
on sensitivity, we also calculated the gene-class-specific mean square error during
the last sweep, Eg

c = 0.5(t̂gc − tc)2, using the recomputed values of t̂gc described
above. Analogously, we derived lists of genes for which each class was represented
equally by genes having the lowest gene-class-specific MSE.

2.7 Generating Lists of Selected Genes

A modular approachwas employed for generating the list of genes identified during
RFE. Lists were divided uniformly into genes that best discriminated each out-
come class, depending on whether the selection criterion was minimum gene-class-
specificMSEormaximumgene-class-specific sensitivity.The total number of genes
in a list was based on powers of 2 multiplied by the number of classes, such that the
list was uniformly loaded with genes that best discriminated each class.

2.8 ANN Training with Selected Gene Expression Profiles

After recursive feature identification, we trained the ANN models with the ac-
tual standardized values of expression for the identified genes. For example,
for 64 genes (features) and 2 outcome classes a 64-26-2 network was employed,
where the number of hidden nodes is equal to 40% of the number of input

Table 3. ANN training input using standardized expression profiles of genes selected
during recursive feature elimination (RFE). 8-fold cross-validation with leave-one-out
testing used.

Reduction RFE Training Network ANN
Data method method Samples Genes(n) matrixa size modelsb

Simulated k-means min(Eg
c ) 20 2,4,8,16,32,64 E

20×n
n-0.4n-2 160

max(Sg
c ) 20 2,4,8,16,32,64 E

20×n
n-0.4n-2 160

PCA min(Eg
c ) 20 2,4,8,16,32,64 E

20×n
n-0.4n-2 160

max(Sg
c ) 20 2,4,8,16,32,64 E

20×n
n-0.4n-2 160

Hedenfalk et al k-means min(Eg
c ) 15 2,4,8,16,32,64 E

15×n
n-0.4n-2 120

max(Sg
c ) 15 2,4,8,16,32,64 E

15×n
n-0.4n-2 120

PCA min(Eg
c ) 15 2,4,8,16,32,64 E

15×n
n-0.4n-2 120

max(Sg
c ) 15 2,4,8,16,32,64 E

15×n
n-0.4n-2 120

Khan et al k-means min(Eg
c ) 63 4,8,16,32,64 E

63×n
n-0.4n-4 504

max(Sg
c ) 63 4,8,16,32,64 E

63×n
n-0.4n-4 504

PCA min(Eg
c ) 63 4,8,16,32,64 E

63×n
n-0.4n-4 504

max(Sg
c ) 63 4,8,16,32,64 E

63×n
n-0.4n-4 504

a Training matrix of standardized gene expression E based on genes sorted by RFE method.
b Number of models equal to 8 validation groups times number of samples.
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nodes. During runs with actual gene expression profiles, we assessed accuracy,
the proportion of between-gene correlation coefficients that were significant
(p ≤ 0.01 and p ≤ 0.05), and the proportion of genes in the list that had
significant parametric test statistics (p ≤ 0.05) during the original gene rank-
ing calculations. Table 3 lists the gene expression data used for training the
ANN.

3 Results and Discussion

The choice for using non-parametric Mann-Whitney U and Kruskal-Wallis tests
for gene ranking should have a minimal effect on the observed results. Li et al
assessed the effect of 8 different feature selection statistics on SVM outcome and
determined that for more than 150 microarray-based genes the variation in per-
formance was small[13]. Figure 1 illustrates the average and standard deviation
of sensitivity for different types of simulated expression profiles based on dimen-
sional reduction by k-means clustering and PCA. K-means resulted in near-zero
values of sensitivity for genes with lower within-class variation of expression,
such as N(5:1)|N(0;1), N(0:1)|N(5;1), N(5:1)|N(-5;1), and N(-5:1)|N(5;1). How-
ever, for PCA genes N(0;1)|N(5,1) and N(-5;1)|N(5;1) showed large negative
values of sensitivity. For these genes, PCA inflated sensitivity that was not de-
tected by k-means. One can notice in Figure 1 that, for the remainder of genes
with larger differential entropy, k-means resulted in greater sensitivity when com-
pared with PCA. Another disadvantage of PCA is that orthogonal projections
may have nothing to do with class discrimination. Moreover, the bulk of data in-
cluding noise and outlier patterns that often load on the lower components (>3)

Average gene-specific sensitivity for class A

-0.4 -0.3 -0.2 -0.1 0.0 0.1

N(0;1)|N(0;1)
N(5;1)|N(0;1)
N(0;1)|N(5;1)

N(5;1)|N(-5;1)
N(-5;1)|N(5;1)

N(5;1)_N(0;1)|N(0;1)
N(0;1)|N(5;1)_N(0;1)

N(5;1)_N(-5;1)|N(0;1)
N(0;1)|N(5;1)_N(-5;1)

N(5;1)_N(-5;1)|N(5;1)_N(0;1)
N(5;1)_N(0;1)|N(5;1)_N(-5;1)

N(5;1)_N(-5;1)|N(5;1)_N(-5;1)
N(2.5;1)_N(0;1)|N(0;1)
N(0;1)|N(2.5;1)_N(0;1)

N(2.5;1)_N(-2.5;1)|N(0;1)
N(0;1) | N(2.5;1)_N(-2.5;1)

N(2.5;1)_N(-2.5;1)|N(2.5;1)_N(0;1)
N(2.5;1)_N(0;1)|N(2.5;1)_N(-2.5;1)

N(2.5;1);N(-2.5;1)|N(2.5;1)_N(-2.5;1)

k-means 
PCA

Fig. 1. Average and standard deviation of sensitivity, Sg
c , for class A
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A

DC

B

Fig. 2. Expression profiles of top 64 simulated genes identified after gene reduction
with k-means or PCA followed by recursive feature elimination (RFE). (A) Dimension
reduction with k-means cluster analysis and RFE based on minimum MSE. (B) K-
means and maximum sensitivity. (C) PCA and minimum MSE. (D) PCA and maximum
sensitivity. Red lines denote genes with significantly different (p ≤ 0.05) expression
levels between class A and B. Blue lines represent genes for which differential expression
is not significantly different at the 0.05 level.

contribute less to discerning the classes. The advantage of PCA dimensional re-
duction is that more genes with lower within-class variation will be identified,
driving up the accuracy.

Table 4 shows that, at the 0.01 level of significance, RFE based on k-means di-
mensional reduction along with maximum sensitivity resulted in the least amount
of between-gene correlation for all 3 data sets and the least proportion of signif-
icantly differentially expressed genes for the 2-class data sets. In Figure 2B, one
can visualize for simulated expression profiles that for k-means and sensitivity
only 17% (0.172 from Table 4, row 2) of genes in a 64-gene model had signif-
icantly different expression. On the other hand, PCA with sensitivity (Figure
2D) resulted in 81% of the genes in a 64-gene model that had significantly differ-
ent expression. The smaller proportion of significant between-gene correlation of
expression due to k-means and sensitivity can also be noticed in Figure 3 for all
data sets, and in particular for the Hedenfalk et al breast cancer data for which
the proportion of significant (p ≤ 0.01) between-gene correlation coefficients
was 0.138.

Genes that are strongly differentially expressed and correlated may be co-
regulated by shared upstream signaling molecules. A classifier based on such
genes may have greater misclassification when pathway heterogeneity is impor-
tant for classification. We have shown that, for the data considered, an ANN
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Table 4. Recursive feature elimination (RFE) results for 64-gene ANN models includ-
ing classification accuracy, proportion of significant positive between-gene correlation,
and proportion of parametric tests significant among the 64 genes during original gene
ranking. ANNs were fed with actual standardized expression values for the 64 genes
after they were identified with RFE.

Data RFE r > 0 r > 0 Signif
Data set reduction method Accuracy p ≤ 0.01a p ≤ 0.05 genesb

Simulated
K-means

min(Eg
c ) 1.000 0.492 0.492 1.000

max(Sg
c ) 0.976 0.328 0.467 0.172

PCA
min(Eg

c ) 1.000 0.492 0.492 1.000
max(Sg

c ) 1.000 0.341 0.371 0.813

Hedenfalk et al
K-means

min(Eg
c ) 1.000 0.322 0.404 0.969

max(Sg
c ) 0.962 0.138 0.266 0.515

PCA
min(Eg

c ) 0.967 0.197 0.325 0.703
max(Sg

c ) 0.900 0.177 0.284 0.641

Khan et al
K-means

min(Eg
c ) 0.963 0.235 0.293 1.000

max(Sg
c ) 0.960 0.200 0.270 1.000

PCA
min(Eg

c ) 0.996 0.239 0.295 1.000
max(Sg

c ) 0.998 0.301 0.359 1.000

aProportion of 2016 between-gene correlation coefficients (i.e., n(n − 1)/2) for 64 gene expression
profiles with p ≤ 0.01.

bProportion of 64 genes with significant parametric test (t-test or F-test) during original gene
ranking.

Khan et al

Simulated

Hedenfalk et al

K-means, min(MSE) K-means, max(sens) PCA, min(MSE) PCA, max(sens)

Fig. 3. Plot of significant between-gene correlation for 64-gene models. ANNs trained
with standardized expression profiles for 64 genes identified during recursive feature
elimination (RFE). Red denotes significant (p ≤ 0.01) positive correlation, whereas
blue signifies significant negative correlation.

classifier based on k-means dimensional reduction and sensitivity for RFE can
result in accuracy levels exceeding 90% with fewer invariant and correlated fea-
tures. K-means cluster analysis coupled with sensitivity for RFE may increase
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detection of patients with pathway heterogeneity, which may not be tackled as
well by RFE with minimum error or dimensional reduction with PCA.
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Abstract. An open problem in gene expression data analysis is the eval-
uation of the performance of gene selection methods applied to discover
biologically relevant sets of genes. The problem is difficult, as the entire
set of genes involved in specific biological processes is usually unknown
or only partially known, making unfeasible a correct comparison between
different gene selection methods. The natural solution to this problem
consists in developing an artificial model to generate gene expression
data, in order to know in advance the set of biologically relevant genes.
The models proposed in the literature, even if useful for a preliminary
evaluation of gene selection methods, did not explicitly consider the bi-
ological characteristics of gene expression data. The main aim of this
work is to individuate the main biological characteristics that need to be
considered to design a model for validating gene selection methods based
on the analysis of DNA microarray data.

1 Introduction

Analysis of gene expression data may be performed at different levels, ranging
from the analysis of differential expression of genes, to unsupervised and super-
vised analysis of sets of genes and tissues [1].

An important related problem is to determine the subset of genes involved
in the biological process under examination. Such problem is generally referred
to as gene selection and several statistic and machine learning techniques have
been proposed in literature to face with it [2–4].

Unfortunately, the entire set of genes involved in specific biological processes
is usually unknown or only partially known, and as a consequence the evaluation
of the real effectiveness of gene selection methods is very difficult and in many
cases unfeasible.

Several models have been proposed to simulate gene expression data, in order
to make available synthetic gene expression data for classification, clustering
and gene selection problems [5, 6]. Even if these models may be in principle
helpful to test gene selection methods, their main limitation consists in a drastic
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modelling simplification, without sufficiently taking into account the biological
characteristics of gene expression data.

In this paper we address the problem of the analysis of the specifications
needed to properly model the biological characteristics of gene expression data.
In particular, the main concerns of this work are the relationships between the
biological and modelling issues involved in the design of a flexible tool to generate
synthetic gene expression data. To this end we performed an analysis of the gene
expression literature to individuate structural commonalities in gene expression
data. The design and the implementation of an artificial model will allow us to
properly evaluate the performance of clustering and gene selection methods, as
all subsets of the simulated genes involved in simulated biological processes will
be known in advance.

2 Profiles and Expression Signatures

The main goal of gene selection methods is to find sets of genes significantly
related to a specific functional status (e.g. diseased vs. healthy). In the bio-
molecular literature sets of biologically relevant and differentially expressed genes
are named expression signatures [7–11].

To our knowledge the term expression signature has been introduced by Al-
izadeh et al. [7], to characterize gene expression patterns found by gene expres-
sion profiling. More precisely this term refers to a group of genes coordinately
expressed in a given set of specimens and in a specific physiological or patho-
physiological condition.

The correlation between the mRNA levels of the genes is due to the underly-
ing regulatory system, by which the same set of transcription factors and binding
sites may be directly or indirectly shared by the genes belonging to the same
expression signature. Hence a gene expression signature indicates a cluster of
coordinately expressed genes, whose coordination reveals the fact that they par-
ticipate to the same biological process (and hence they are controlled by the
same set of regulation factors); indeed they are usually named by either the cell
type in which their component genes are expressed, or by the biological process
in which their component genes are known to function.

From this standpoint the overall expression profile of a patient can be inter-
preted as a collection of gene expression signatures that reveal different biological
features of the analyzed sample [7].

2.1 Gene Expression Signatures in Human Diseases

Expression signatures has been mainly discovered and analyzed in gene expres-
sion profiles of diseases. For instance, the expression profiling of B-cell malig-
nancies through hierarchical clustering, revealed expression signatures related to
cell-proliferation, to lymph-nodes, T-cells, Germinal Centre B-cells (GCB) and
others [7].

Independent Component Analysis performed on gene expression data from
ovarian cancer tissues found gene expression signatures representing potential
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pathophysiological processes in ovarian tissue samples [8]. Expression profiling
of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children,
identified two signatures associated with metastatic RMS, responsible for most
of the fatal outcome of this disease [11], while two way hierarchical clustering
analysis identified several expression signatures expressed in different types of
bladder carcinoma [9].

Expression signatures have been also identified in species other than humans
and in contexts not related to tumoral differentiation. For instance comparative
functional genomics based on shared patterns of regulations across orthologous
genes identified shared expression signatures of aging in orthologous genes of D.
melanogaster and C. elegans [10].

Summarizing, expression profiles and expression signatures seem to be well-
established biological structures that characterize gene expression data.

2.2 Characteristics of Gene Expression Signatures

In this section we discuss the main characteristics of gene expression signatures.

Differential Expression and Co-expression. Differential expression analy-
sis of single genes, even if it may be useful to identify specific genes involved
in biological processes [12], cannot capture the complexity of tightly regulated
processes, crucial for the proper functioning of a cell.

Correlations between gene expression levels have been observed [13, 7], reflect-
ing the fact that in most biological processes genes are co-regulated. As recently
observed, not all changes in co-regulation are manifested by up or down regula-
tion of individual genes, and we need to explicitly consider interactions between
genes to discover patterns in the data [14].

Hence, we need sets of co-regulated genes, that is expression signatures, to
reveal functional relationships between genes.

Gene Expression Signatures as a Whole Rather Than Single Genes
Contain Predictive Information. Many times is the signature taken as a
whole that seems to contain predictive information for a biologically meaningful
identification of tissue samples. For instance, it was found an expression signa-
ture of 8 upergulated and 9 downregulated genes associated with metastasis in
different types of adenocarcinoma: none of these genes represents a marker, but
it is the signature as a whole that represents a ”collective marker” of tumor
metastasis [15].

In other works [15, 14] it has been shown that in some cases relevant differences
are subtle at the level of individual genes but coordinate in gene expression
groups.

Genes May Belong to Different Gene Expression Signatures at the
Same Time. Many genes may be involved in a number of distinct behaviours,
depending on the specific conditions of the tissue. From this standpoint they may
belong to different expression signatures [16]. Indeed each gene may be influenced
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by several transcription factors, each of which influences several genes [8]. More-
over many underlying conditions in a given sample may concur to define a gene
expression signature (e.g. tumorigenesis, angiogenesis, apoptosis) [17].

Expression Signatures May be Independent of Clinical Parameters.
An expression signature of 153 genes can be used to correctly classify hepatocel-
lular carcinoma (HCC) intra-hepatic metastasis from metastatic-free HCC [18].
This expression signature, that embeds high predictive information, has been
shown to be independent of tumor size, tumor encapsulation and patient age,
and also very similar to that of their corresponding metastases.

Several other works showed that a bio-molecular characterization of tumours
can discover different subtypes of malignancies, not detectable with traditional
morphological and histopathological features (see e.g. [7, 2]).

Different Gene Expression Profiles May Share Signatures and May
Differ Only for Few Signatures. It has been shown that gene expression
signatures may be shared and partially expressed in different gene expression
profiles [7, 15, 18].

For instance, it has been shown that Diffuse Large B-Cell Lymphoma (DL-
BCL) subgroups (GCB-like and activated B-like DLBCL) share most of the
expression signatures but they differ mainly for two signatures (GCB and acti-
vated B-cell signatures) partially expressed respectively in germinal centre B-cell
and activated peripheral blood B cell [7].

Moreover, hierarchical clustering, in the space of a 128 genes signature of meta-
static adenocarcinoma nodules of diverse origin, showed two clusters of primary
tumors that were highly correlated with metastatic ones: this fact, together with
a differential overall survival in primary adenocarcinoma tumors showed that this
gene expression signature is present in subpopulation of primary tumors [15].

Hence gene expression profiles of functionally different tissues may share ex-
pression signature and differ only for a subset of expression signatures. These
expression signatures may be also partially expressed (that is, not all the genes
belonging to the expression signature are over-expressed or under-expressed),
reflecting functional alterations in diseased patients.

3 Biological and Modelling Issues

In light of the characteristics of gene expression signatures (Sect. 2.2), in this sec-
tion we discuss the relationships between the biological and modelling issues we
need to consider to design an artificial model for gene expression data synthesis.
Schematically, we identified the following main items:

1. Expression profiles may be characterized as a set of gene expression sig-
natures. A set of gene expression signatures defines a functional group of
samples. The model should allow us to define expression profiles in terms
of expression signatures, with a large flexibility with respect to the number
and gene composition of the synthetic expression signatures.
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2. Expression signatures are interpreted in the literature as a set of coexpressed
genes. These genes may be overexpressed and underexpressed with respect to
the other genes and with respect to a particular condition. Accordingly, in the
model, each expression signature should be defined as a set of overexpressed
or underexpressed genes, that is genes with gene expression levels above or
below a given threshold. The model should define a signature active if its
genes are coordinately over(under)expressed.

3. Expression signatures may be defined either by the overall available knowl-
edge about bio-molecular processes (e.g. by Gene Ontology categories) or
may be discovered through statistical and machine learning methods. The
model should permit to define arbitrary signatures, in order to allow us a
large range of applications in different biological contexts.

4. Genes may belong to different signatures at the same time. As a consequence
the model should allow us to assign the same gene to different signatures.

5. The model should permit to select from few few units to few hundreds of
genes for each gene expression signatures, as the number of genes within a
signature usually vary within this range.

6. Apart from technical variation (that in principle should be detected and can-
celed by proper design and implementation of bio-technological experiments
and suitable pre-processing procedures [19]), gene expression is biologically
variable also within functional classes (conditions) [20]. The model should
reproduce the variation of gene expression data. Variation of single genes
may be simulated sampling from a predefined distribution. Our preliminary
analysis of gene expression data showed that gene expression values are close
to be normally distributed, but it would be useful to analyze a larger number
of gene expression data to properly evaluate this item.

7. Not always expression signatures show large variations of gene expression
levels: some signatures may present modest but coordinate variation. The
model should be sufficiently flexible to allow small variations of coexpressed
genes, and to this end it should include tunable parameters of the gene
distributions.

8. Not all the genes within a signature may be expressed in all samples. More-
over gene expression variation between individuals may introduce variation
into expression signatures. The model should permit to introduce flexibility
in the number of genes that can be underexpressed or overexpressed, as well
as to introduce individual variability within a functional group.

9. Different expression profiles may differ only for few signatures, that is dif-
ferent functional groups may share the same (or very similar) expression
signatures. The model should allow to define an expression profile as a set of
signatures and to define other functional groups in terms of subsets of pre-
viously defined signatures, eventually modifying or adding new signatures.

10. Some signatures may be only partially expressed within a particular expres-
sion profile. The model should be sufficiently flexible to allow us to define
an expression profile in several ways: (a) a set of active signatures; (b) a set
of randomly active signatures; (c) a set of randomly active signatures with
a set of ”mandatory” active signatures.
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4 Conclusions

In this paper we analyzed the biological issues underlying the modelling of an
artificial system for simulating gene expression data.

We identified the expression signatures as a major common biological struc-
ture in gene expression data and we provided the biological specifications to
develop an artificial model for gene expression data synthesis.

The next step of this works consists in developing and implementing a bio-
logically motivated gene expression data generation model, to properly evaluate
the performance of gene selection methods.
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Abstract. We present an application of BioDCV, a computational en-
vironment for semisupervised profiling with Support Vector Machines,
aimed at detecting outliers and deriving informative subtypes of patients
with respect to pathological features. First, a sample-tracking curve is
extracted for each sample as a by-product of the profiling process. The
curves are then clustered according to a distance derived from Dynamic
Time Warping. The procedure allows identification of noisy cases, whose
removal is shown to improve predictive accuracy and the stability of de-
rived gene profiles. After removal of outliers, the semisupervised process
is repeated and subgroups of patients are specified. The procedure is
demonstrated through the analysis of a liver cancer dataset of 213 sam-
ples described by 1993 genes and by pathological features.

Keywords: statistical learning, semisupervised classification, feature se-
lection, Support Vector Machines, functional genomics, DNA microarray.

1 Introduction

BioDCV is a software set-up for the predictive molecular profiling of gene expres-
sion data. It implements complete validation schemes on distributed computing
resources such as clusters and virtual GRID facilities [1]. Complete validation is a
methodology for correctly assessing predictive accuracy in gene expression stud-
ies. It requires intensive resampling and replication of the classification processes
in order to control for selection bias [2].

Here we apply the BioDCV system to liver cancer profiling, considering a rela-
tively large dataset endowed with a description of some pathological features [3].
This study is based on the method recently introduced in [4] for semisupervised
pattern discovery from functional genomics data. Given a basic classification
task and a complete validation scheme, we showed that subtyping and outlier
detection may be derived from a sample-by-sample analysis of errors at different
feature sets and for different resamplings.

In the case of the liver cancer dataset [3], the basic task was the discrimination
of patients from control cases. Answering this biological question is a relatively
easy problem on this dataset since estimated predictive error is close to 3%.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 284–289, 2006.
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Questions such as subtyping for response to treatment are typically much more
difficult to answer. Semisupervised learning has been proposed in particular for
predicting survival [5]. The dataset of the Sese study includes more than 100
positive samples of different age, sex and previous exposure to diseases or phys-
iological states potentially correlated to liver cancer. The availability of several
covariate features of pathological relevance provides a challenging opportunity
for subtype discovery methods, with applications for the search of biomarkers in
a very interesting class of studies. In this study, we apply semisupervised profil-
ing to remove selected patterns, as proposed in [6,7]. Both predictive accuracy
as well as the stability of the resulting gene signature are improved. Moreover,
we analyze the subtypes derived according to the expression data in conjunction
with the available pathological information.

The structure of the paper is as follows: We first describe the main charac-
teristics of the BioDCV system and the semisupervised approach in Section 2.
Data and original classification task are discussed in Section 3. Outlier detection
and list stability are discussed in Section 4, with comments in Section 5.

2 Semisupervised Profiling with BioDCV

The BioDCV system [1] implements the E-RFE complete validation setup de-
veloped at ITC-irst for predictive profiling of gene expression data [8]. BioDCV
is portable from single workstations to local Linux clusters and virtual GRID fa-
cilities. It is written in C and interfaced with the SQLite database management
library (http://www.sqlite.org). Note that learning, tuning and evaluation
tasks may be replicated for up to a few millions of models in complete validation
setup. We use SQLite to support concurrent access and transactions and manage
results and parameters in a distributed environment during this high-throughput
process. The main engine of BioDCV is the libml library, a C toolbox for learn-
ing problems which includes the Support Vector Machine (SVM) classifiers ap-
plied in this study. BioDCV also runs within the Egrid (http://www.egrid.it)
computational infrastructure, based on Globus/EDG/LCG2 middleware and in-
tegrated as an independent virtual organization within Grid.it, the INFN pro-
duction grid. Part of the computation described in this paper was performed on
a local computing facility (an Open Mosix cluster of 26 bi-processor units and
one data server).

The semisupervised procedure implemented in BioDCV is based on an anal-
ysis of the effect of the feature selection and ranking process for each individual
sample. Given a complete validation setup (such as the one described in [8]),
for each sample s we define the sample-tracking profile as the function of the
number of features k as Es(k) = W (s, k)/N(s), where N(s) is the number of
runs in which s belongs to the test set and W (s, k) is the number of runs in
which s belongs to the test set and it is wrongly classified when the model is
built with k features. The sequences Es(k) may be studied as an estimate of the
classification error as a function of the size of the feature set. Sample-Tracking
curves of easy-to-classify points quickly reach zero, while curves not far from the
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Fig. 1. Examples of sample-tracking profiles from the liver cancer dataset: a easy-to-
classify point (left) and an outlier (right)

no-information error rate should correspond to hard-to-classify points. A pro-
file lying systematically above the no-information error rate indicates a typical
outlier behaviour. A complete description and examples of the sample-tracking
procedure may be found in [4]. Examples for the liver cancer dataset used in this
study are shown in Fig. 1.

The response to the supervised classification task is then used to drive a sec-
ondary unsupervised pattern discovery process. Similar classification responses
may be aggregated by a hierarchical clustering technique. In this study we
adopted Dynamic Time Warping (DTW) as the distance, with weight config-
uration (1, 2, 1). The use of DTW for the analysis of gene expression time series
was recently introduced in [9]. This distance is more suited than Euclidean met-
ric in curves comparison, because it takes morphology into account instead of
just evaluating the pointwise distance of the vectors [10].

3 Data and Classification Task

The liver dataset originally analysed in [3] consists of 213 cases described by
1993 genes. The classification problem consists in the discrimination between
the 107 samples extracted from tumors (liver cancer patients) and the 106 con-
trol samples. Several binary features of interest for the pathology are available:
sex, age> 65, positive to Hepatitis virus-type B, or to virus-type C, presence of
cirrhosis, Child score (A or B). Linear SVMs are used for classification (regular-
ization parameter C = 100) and the feature ranking method is E–RFE (reverting
to standard RFE in the last 100 steps). Results (average test set error ATE and
confidence intervals) are reported in the columns in the left block of the table
included in Fig. 2. On the MPBA cluster, the computing time of a complete val-
idation experiment with 400 replicated runs is 216 minutes, plus 91 minutes on a
single unit for the semisupervised analysis (a single non-parallelizable process).

4 Outlier Detection and List Stability

The sample-tracking curves were aggregated with respect to DTW distance by
hierarchical clustering with the hclust algorithm (average link) from the stats
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Complete dataset Shaved dataset
Feat. ATE CI ATE CI

1 27.7 (26.9,28.6) 24.3 (23.6,25.0)
2 24.3 (23.5,25.3) 20.4 (19.5,21.6)
3 21.8 (21.0,22.8) 15.4 (14.6,16.4)
4 18.4 (17.8,19.1) 11.4 (10.9,11.9)
5 16.6 (16.1,17.3) 9.9 (9.4,10.4)

10 12.7 (12.3,13.1) 5.9 (5.6,6.2)
20 8.9 (8.6,9.3) 3.4 (3.2,3.7)
50 5.8 (5.5,6.1) 1.8 (1.6,2.0)

100 4.8 (4.5,5.0) 1.5 (1.3,1.6)
1000 3.1 (2.9,3.4) 1.5 (1.4,1.7)
1993 3.2 (3.0,3.5) 1.5 (1.3,1.7)
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Fig. 2. Predictive error (ATE: average test error) for the liver cancer dataset on the
complete dataset of 213 samples (solid line) and on the shaved dataset of 198 samples
after outlier removal (dashed line). Bars indicate bootstrap studentized confidence
intervals (.95 level).

package in the R system [11]. The analysis of the sample-tracking profiles de-
tected 15 outliers. The BioDCV system was applied again after removing the
outliers. The improved ATE scores on the shaved dataset are reported in the
right block of the table in Fig. 2.

For stability analysis, we compared the ranked gene lists before and after the
removal of outliers. For the two cases, the genes ranked in the top h positions
in the 400 lists were listed and ordered for number of extractions (Exts). After
outlier removal, the number of genes extracted at least once (Exts greater than
1) is smaller. The best genes are extracted more frequently, and they have lower
position means and standard deviations. A comparison for the best 10 genes
is detailed in Table 1 for h = 20: Exts resulted greater than 1 for 330 genes
instead of 427. The resulting groups of samples were then analyzed in terms of
their pathological features. Clustering of the liver cancer cases is displayed in
Fig. 3. The analysis of clinical data for the cluster-1 subgroup is provided in
Fig. 4 (left) in comparison with the aggregated values of all the 98 liver cancer
cases. All subjects in cluster-1 are positive to Virus C and negative to Virus B.

Table 1. Multiplicity of extraction (Exts.), position mean and standard deviation
(S.D.) of the best 10 genes extracted in the top h = 20 positions before and after
removing outliers

h = 20 - Complete h = 20 - Shaved
Pos. Gene Exts. Mean S.D. Pos. Gene Exts. Mean S.D.

1 GS201 260 9 5.5 1 GS3244 356 5.6 4.4
2 GS1324 212 8.4 5.8 2 GS6094 336 5.9 4.3
3 GS1686 204 6.2 6.1 3 GS201 276 8.9 4.8
4 GS3244 198 8.7 5.9 4 GS1686 264 5.8 5.2
5 GS6094 194 8.7 6.1 5 GS10759 248 8.6 5.1
6 GS11601 194 9.7 5.9 6 GS1710 235 10.1 5.4
7 GS11954 187 7.5 5.9 7 GS11954 232 7.2 5.5
8 GS3097 163 11.3 4.9 8 GS2954 232 9.6 4.9
9 GS2375 152 10.8 4.8 9 GS1324 214 10.4 6

10 GS10424 145 11.2 5.2 10 GS2303 212 7.5 6.2
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Fig. 3. DTW based clustering of the sample-tracking profiles of the positive samples
in the shaved liver cancer dataset
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N V-B V-C A S C-A C-B Cir
132 0 1 1 1 1 0 0
19 0 1 1 1 0 1 1
45a 0 1 1 1 0 1 1
47a 0 1 1 1 1 0 1
106a 0 1 0 1 0 1 1
93a 0 1 0 1 1 0 0
98a 0 1 1 1 1 0 1
116 0 1 0 0 1 0 1
% 0 100 62 88 62 38 75

All % 18 65 47 80 73 26 51

Fig. 4. DTW based clustering of the sample-tracking profiles of the cluster-1 subgroup
(left) and description of clinical features of the corresponding samples (right): name
(N), virus-type B (V-B) and C (V-C), age> 65 (A), sex (S), child score A (C-A) and B
(C-B), and presence of cirrhosis (Cir). The last two lines show the percentage of values
equal to 1 in the cluster-1 subgroup and in all the positive samples.

They belong mostly to the elderly group. Note that they are all males but for
sample 116. This subject is detected as a singleton by the DTW-based clustering
focused on this subgroup (Fig. 4, right).

5 Conclusions

With BioDCV and the concept of sample-tracking profiles, the high-throughput
structure of complete validation schemes for gene profiling may be reused to
support new models of semisupervised analysis. The availability of covariate
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features of pathological relevance provides a challenging opportunity for subtype
discovery methods, with applications for the search of biomarkers in a very
interesting class of studies.
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Abstract. We propose a new method for the construction of nearest
prototype classifiers which is based on a Gaussian mixture approach
interpreted as an annealed version of Learning Vector Quantization.
Thereby we allow the adaptation of the underling metric which is useful
in proteomic research. The algorithm performs a gradient descent on
a cost function adapted from soft nearest prototype classification. We
investigate the properties of the algorithm and assess its performance on
two clinical cancer data sets. Results show that the algorithm performs
reliable with respect to alternative state of the art classifiers.

Keywords: classification, learning vector quantization, metric adapta-
tion, mass spectrometry, proteomic profiling.

1 Introduction

During last years proteomic1 profiling based on mass spectrometry (MS) became
an important tool for studying cancer at the protein and peptide level in a high
throughput manner. MS based serum profiling is under development as a po-
tential diagnostic tool to distinguish patients with cancer from normal subjects.
Reliable classification methods which can cope with typically high dimensional
characteristic profiles constitute a crucial part of the system. Thereby, a good
generalization ability and interpretability of the results are highly desirable.

Kohonen’s Learning Vector Quantization (LVQ) belongs to the class of su-
pervised learning algorithms for nearest prototype classification (NPC) [2]. It
relies on a set of prototype vectors (also called codebook vectors) which are
adapted by the algorithm according to their respective classes. Thus, it forms a
very intuitive local classification method with very good generalization ability

� Corresponding author.
1 Proteome - is an ensemble of protein forms expressed in a biological sample at a

given point in time [1].
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also for high dimensional data [3] which constitutes an ideal candidate for an
automatic and robust classification tool for high throughput proteomic patterns.

However, original LVQ is only heuristically motivated and shows instable be-
havior for overlapping classes. Recently a new method, Soft Nearest Prototype
Classification (SNPC), has been proposed by Seo et al. [4] based on the formu-
lation as a Gaussian mixture approach which yields soft assignments of data. We
adapt this algorithm by introducing local and global relevance learning to SNPC
and apply it to profiling of mass spectrometric data in cancer research. The ap-
proach is well suited to deal with high dimensional data focusing on optimal class
separability. Further, it is capable to determine relevance profiles of the input
which can be used for identification of relevant data dimensions. Interestingly,
strong dimensionality independent large margin generalization bounds hold for
this method. In addition, the relevance weights may be taken as indicators for
biomarkers in the underlying biological data. We demonstrate the abilities of
SNPC-R for two cancer data sets: the Wisconsin Breast Cancer (WBC)[5] and
a leukemia data set (LEUK) provided by [6].

Now, we introduce the concept of LVQ first. The SNPC is reviewed in sec-
tion 2 followed by the generalization to Self Adapted Soft Nearest Prototype
Classification with Relevance Learning (SNPC-R). Subsequently, we report the
application results in comparison to other well known state of the art methods
as Supervised Relevance Neural GAS (SRNG) as introduced in [7] and Support
Vector Machines (SVM) as introduced in [8]. We conclude by a short discussion
of the method and show the benefits of the metric adaptation.

2 Soft Nearest Prototype Classification

Usual learning vector quantization is mainly influenced by the standard algo-
rithms LVQ1. . .LVQ3 introduced by Kohonen [2]. Several derivatives have been
developed to ensure faster convergence, a better adaptation of the receptive fields
to optimum Bayesian decision, or an adaptation for complex data structures, to
name just a few [9, 10, 4]. Standard LVQ does not possess a cost function in the
continuous case; it is based on the heuristic to minimize misclassifications using
Hebbian learning. The first version of learning vector quantization based on a
cost function, which formally assesses the misclassifications, is the Generalized
LVQ (GLVQ) [11]. We will use GLVQ resp. its extension SRNG as introduced
in [7] for comparison in this article.

Now, we introduce the basic notation for LVQ schemes. Inputs are denoted by
v with label cv ∈ L. Assume L is the set of labels (classes) with #L = NL and
V ⊆ RDV a finite set of inputs v. LVQ uses a fixed number of prototypes (weight
vectors, codebook vectors) for each class. Let W = {wr} be the set of all code-
book vectors and cr be the class label of wr. Furthermore, let Wc= {wr|cr = c}
be the subset of prototypes assigned to class c ∈ L. The classification of vector
quantization is implemented by the map Ψ as a winner-take-all rule, i.e. a stim-
ulus vector v ∈ V is mapped onto that neuron s ∈ A the pointer ws of which is
closest to the presented vector v,
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Ψλr

V→A : v �→ s (v) = argmin
r∈A

dλr
(v,wr) (2.1)

with d (v,w) being an arbitrary distance measure, usually the standard euclidean
metric. The neuron s is called winner or best matching unit. The subset of
the input space Ωr = {v ∈V : r = ΨV →A (v)} which is mapped to a particular
neuron r according to (2.1), forms the (masked) receptive field of that neuron.
Standard LVQ training adapts the prototypes such that for each class c ∈ L, the
corresponding codebook vectors Wc represent the class as accurately as possible,
i.e. the set of points in any given class Vc = {v ∈V |cv = c}, and the union Uc =⋃

r|wr∈Wc

Ωr of receptive fields of the corresponding prototypes should differ as
little as possible. This is either achieved by heuristics as for LVQ1. . . LVQ3 [2],
or by the optimization of a cost function related to the mismatches as for GLVQ
[11] and SRNG as introduced in [7].

Soft Nearest Prototype Classification (SNPC) has been proposed as alterna-
tive stable NPC learning scheme. It introduces soft assignments for data vectors
to the prototypes which have a statistical interpretation as normalized Gaus-
sians. In the original SNPC as provided in [4] one considers as the cost function

E (S,W) =
1
NS

NS∑
k=1

∑
r

uτ (r|vk)
(
1 − αr,cvk

)
(2.2)

with S = {(v, cv)} the set of all input pairs, NS = #S, and W =
{(wr, cr)} whereby cr is the class label of wr, as before. The value αr,cvk

equals one if cvk
= cr. uτ (r|vk) is the probability that the input vector vk

is assigned to the prototype r. A crisp winner-takes-all mapping (2.1) would
yield uτ (r|vk) = δ (r = s (vk)).

In order to minimize (2.2) in [4] the variables uτ (r|vk) are taken as soft
assignment probabilities. This allows a gradient descent on the cost function
(2.2). As proposed in [4], the probabilities are chosen as normalized Gaussians

uτ (r|vk) =
exp
(
−d(vk,wr)

2τ2

)
∑

r′ exp
(
−d(vk,wr′ )

2τ2

) (2.3)

whereby d is the distance measure used in (2.1). Then the cost function (2.2)
can be rewritten as

Esoft (S,W) =
1
NS

NS∑
k=1

lc ((vk, cvk
) ,W) (2.4)

with local costs

lc ((vk, cvk
) ,W) =

∑
r

uτ (r|vk)
(
1 − αr,cvk

)
(2.5)

i.e., the local error is the sum of the assignment probabilities αr,cvk
to all proto-

types of an incorrect class, and, hence, lc ((vk, cvk
) ,W) ≤ 1. Because the local
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costs lc ((vk, cvk
) ,W) are continuous and bounded, the cost function (2.4) can be

minimized by stochastic gradient descent using the derivative of the local costs:

'wr =

⎧⎨⎩
1

2τ2uτ (r|vk) · lc ((vk, cvk
) ,W) · ∂dr

∂wr
if cvk

= cr

− 1
2τ2uτ (r|vk) · (1 − lc ((vk, cvk

) ,W)) · ∂dr
∂wr

if cvk
�= cr

(2.6)

where
∂lc

∂wr
= −uτ (r|vk)

(
(1 − αr,cvk

) − lc ((vk, cvk
) ,W)

)
· ∂dr
∂wr

(2.7)

This leads to the learning rule

wr = wr − ε (t) · 'wr (2.8)

with learning rate ε (t) fulfilling
∑∞

t=0 ε (t) = ∞ and
∑∞

t=0 (ε (t))2 < ∞ as usual.
All prototypes are adapted in this scheme according to the soft assignments.
Note that for small bandwidth τ , the learning rule is similar to LVQ2.1.

A window rule like for standard LVQ2.1 can be derived for SNPC, too, which
is necessary for numerical stabilization [2],[4]. The update is restricted to all
weights for which the local value ηr = lc ((vk, cvk

) ,W) · (1 − lc ((vk, cvk
) ,W))

is less than a threshold value η with 0 ( η < 0.25.

3 Relevance Learning for SNPC

Like all NPC algorithms, SNPC heavily relies on the metric d, usually the stan-
dard euclidean metric. For high dimensional data as occur in proteomic patterns,
this choice is not adequate since noise present in the data set accumulates and
likely disrupts the classification. Thus, a focus on the (priorly not known) rele-
vant parts of the inputs, the biomarkers, would be much more suited. Relevance
learning as introduced in [12] offers the opportunity to learn metric parameters
which account for the different relevance of input dimensions during training.
In analogy to the above learning approaches we include this relevance learning
idea into SNPC leading to SNPC-R. Instead of the standard metric d (vk,wr)
a metric incorporating adaptive relevance factors dλ (vk,wr) is included into
the soft assignments (2.3), whereby the component λk of λ is usually chosen as
weighting parameter for input dimension k. The relevance parameters λ can be
adjusted according to the given training data, taking the derivative of the cost

function, i.e.
∂lc((vk,cvk),W)

∂λ using the local cost (2.5):

∂lc ((vk, cvk
) ,W)

∂λj
=

∂

∂λj

⎡⎣∑r exp
(
−dλ(vk,wr)

2τ2

)
·
((

1 − αr,cvk

))
∑

r′ exp
(
−dλ(vk,wr′ )

2τ2

)
⎤⎦ (3.1)

= − 1
2τ2

∑
r

uτ (r|vk) · ∂d
λ
r

∂λj
·
((

1 − αr,cvk
− lc ((vk, cvk

) ,W)
))

(3.2)

with subsequent normalization of the λk.
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We would like to emphasize that SNPC-R can also be used with individual
metric parameters λr for each prototype wr or with a classwise metric shared
within prototypes with the same class label cr as it is done here, referred as
localized SNPC-R (LSNPC-R). If the metric is shared by all prototypes, LSNPC-
R is reduced to SNPC-R. The respective adjusting of the relevance parameters
λ can easily be determined in complete analogy to (3.2).

It has been pointed out in [3] that NPC classification schemes which are based
on the euclidean metric can be interpreted as large margin algorithms for which
dimensionality independent generalization bounds can be derived. Instead of the
dimensionality of data, the so-called hypothesis margin, i.e. the distance, the hy-
pothesis can be altered without changing the classification on the training set,
serves as a parameter of the generalization bound. This result has been extended
to NPC schemes with adaptive diagonal metric in [7]. This fact is quite remark-
able, since DV new parameters, DV being the input dimension, are added this
way, still, the bound is independent of DV . This result can even be transferred
to the setting of individual metric parameters λr for each prototype or class such
that a generally good generalization ability of this method can be expected. De-
spite from the fact that (possibly local) relevance factors allow a larger flexibility
of the approach without decreasing the generalization ability, they are of par-
ticular interest for proteomic pattern analysis because they indicate potentially
semantically meaningful positions.

4 Experiments and Applications

In the following we give experimental results for the application of both SNPC
and SNPC-R for two data sets in comparison to SRNG and SVM. Thereby,
for SNPC, the usual Euclidean distance is applied whereas in case of SNPC-
R, the weighted Euclidean metric as distance measure dλ(v,w) =

∑
λi(vi −

wi)2 is used whereby the factors λ are global (SNPC-R) or attached to the
singular classes (LSNPC-R). This choice allows a direct interpretation of the
relevance parameters as a weighting of importance of the spectral bands for
cancer detection, which may give a hint for potential biomarkers. The WBC data
set consists of 100 training samples and 469 test data, whereby for the training
samples exactly half the data set is to cancer state. The spectra are given as
30-dimensional vectors. For a detailed description of the data including facts
about preprocessing we refer to [5]. The second data set LEUK was generated
by [6]. It was obtained by spectral analysis of blood plasma of patients suffering
from cancer and control probands. A mass range between 2 to 20kDa was used.
The spectra were first processed using the standardized workflow as given in
[13]. After preprocessing the spectra are obtained as 145-dimensional vectors.
The data set consists of 74 cancer and 80 control samples.

For classification, we use 8 prototypes for WBC data and 4 prototypes for
LEUK data. The classification results are given in Tab. 1. Clearly, metric adap-
tation significantly improves the classification accuracy. The relevance profiles
are depicted in Fig. 1. High relevance values refer to greater importance of the
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Table 1. Classification accuracy for the two cancer data sets

SNPC SNPC-R LSNPC-R SRNG SVM
train test train test train test train test train test

WBC 98% 85% 95% 91.4% 94% 92% 98% 86% 98% 96%
LEUK 94% 100% 96% 100% 96% 100% 98% 100% 100% ≈ 100%

Fig. 1. Relevance profiles for the WBC (left) and LEUK (right) data set using SNPC-R

respective spectral bands for classification accuracy and, therefore, hints for po-
tential biomarkers. We see that SNPC-R is capable to generate a suitable classi-
fication model which leads to prediction rates above 91%. The results are better
than those obtained by ordinary SNPC. The results are reliable in comparison
with SVM and SRNG. Besides the good prediction rates obtained from SNPC-R
we get additional information from the relevance profiles. For metrics per class
we get specific knowledge on important input dimensions per class.

5 Conclusion

We extended the usual SNPC by relevance learning as one kind of metric adap-
tation. We derived an adaptation dynamic for metric adaptation and prototype
adjustment according to a gradient descent on a cost function. This cost func-
tion is obtained by appropriate modification of the SNPC. As demonstrated,
this new soft nearest prototype classification with relevance learning can be effi-
ciently applied to the classification of proteomic data and leads to results which
are competitive to results as reported by alternative state of the art algorithms.

Acknowledgment. The authors are grateful to U. Clauss and J. Decker both
Bruker Daltonik GmbH Leipzig for support by preprocessing of the prostate
cancer data set.
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Abstract. Computing methods that allow the efficient and accurate processing 
of experimentally gathered data play a crucial role in biological research. The 
aim of this paper is to present a supervised learning strategy which combines 
concepts stemming from coding theory and Bayesian networks for classifying 
and predicting pathological conditions based on gene expression data collected 
from micro-arrays. Specifically, we propose the adoption of the Minimum De-
scription Length (MDL) principle as a useful heuristic for ranking and selecting 
relevant features. Our approach has been successfully applied to the Acute Leu-
kemia dataset and compared with different methods proposed by other re-
searchers. 
 
Keywords: Bayesian Classifiers, Gene-Expression Data Analysis, Feature Se-
lection, MDL. 

1   Introduction 

In the growing field of bio-informatics, new technologies, like the so-called Micro-
arrays [1], provide thousands of gene expression data on a single cell in a simple and 
fast-integrated way. In contrast with data sets from other fields, a typical Micro-array 
data-set has a large number of genes (>5000) and a small number of samples (<100) 
requiring a large amount of computational effort. 

Since little is currently known about how gene expression values differentiate a 
pathological condition from a normal one, one could take advantage from the statisti-
cal power of such a number of gene expression data, but the amount of information 
makes the inference computationally intractable by classic statistical procedures. 
However, we can expect that not all the genes will carry relevant information. Thus, 
the process of selecting the most important ones is a useful technique for promoting 
faster learning of classification models whose essence is to deal efficiently with the 
automatic classification of new subjects. If such a learning is obtained directly by the 
data, without using in some way any parallel information not included in them, the 
procedure is deemed to be unsupervised. In contrast, a supervised learning approach 
analyzes patient’s gene expression measurements and the related diagnosis provided 
by a pathologist that assigns each particular subject to already defined pathological 
classes. 
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The aim of this paper is to present a supervised learning strategy which combines 
concepts stemming from coding theory and Bayesian networks for classifying and 
predicting pathological conditions based on gene expression data collected from mi-
cro-arrays. Specifically, we propose the adoption of the Minimum Description Length 
(MDL) principle [2] as a useful heuristic for ranking and selecting relevant features. 
We first apply MDL principle for assigning weights to each feature, based on a pro-
cedure that is independent from the classification task. Then, the feature selection is 
accomplished by  progressively choosing the features step by step. At each step, a 
Bayesian classifier is built on the selected subset of features and new features are 
entered one by one, until no improvement in accuracy results.  

Our approach has been applied to the Acute Leukemia dataset [3] and compared 
with different methods proposed in other works [4] [5]. 

The paper is organized as follows. Section 2 illustrates the feature selection heuris-
tics and provides some insight on Bayesian classifiers. Our experimental results are 
presented in Section 3. A comparison with other learning approaches is discussed in 
Section 4. Section 5 briefly presents some related works about the correlation between 
genes and Acute Leukemia. Finally, conclusions and future work are outlined in  
Section 6. 

2   The Learning Strategy 

We propose a learning strategy that looks for a trade-off between a high predictive 
accuracy of the classifier and a low cardinality of the selected feature subset. Our 
central hypothesis is that a good feature subset contains features that are highly corre-
lated with the class to be predicted, yet uncorrelated with each other. 

Generally, methods for feature selection can be classified as wrappers and filters. 
Wrappers are tuned to a specific learning algorithm since they conduct the search for 
a good subset of features using the classifier itself to evaluate the merit of the subset. 
Filters only look at intrinsic characteristics of the data and rank features leaving the 
final choice to the user. Wrappers give good results, but, in practice, may be too slow 
on datasets containing many features. While more practical, filters don’t select explic-
itly the set of features because they result unable in handle both redundant and irrele-
vant features. 

Based on information theory, the MDL principle [2] provides our operational sup-
port in that it states that the best theory to infer from training data is the one that  
minimizes the length (i.e. the complexity) of the theory itself and the length of the 
data encoded with respect to it. In particular, MDL can be employed as a criteria to 
judge the quality of a classification model.  

The motivation underlying the MDL method is to find a compact encoding of the 
training data (u1, …, uN). To this end we adopt the following MDL measure [7]:  

MDL = log2(m) – 
=

N

1i
i2 )( )u(plog           (1) 
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where m is the number of potential candidate models and p(ui) is the model predicted 
probability assigned to the training instance ui. The first term in Equation 1 represents 
how many bits we need to encode the specific model (i.e. its length), and the second 
term measures how many bits are needed to describe the data based on the probability 
distribution associated to the model.  

This approach can be applied to address the problem of feature selection, by con-
sidering each feature as a simple predictive model of the target class. As described in 
[6], we rank each feature according to its description length, that reflects the strength 
of its correlation with the target. In this context, the MDL measure is given by [10]: 

MDL  =  
−

−+

j

j
2

1C

1CN
log  –  

=j

N

i
ji

j

p
1

2 )(log           (2) 

where Nj is the number of training instances with the j-th value of the given feature, C 
is the number of target class values, and pji is the probability of the value of the target 
class taken by the i-th training instance with the j-th value of the given feature (esti-
mated from the distribution of target values in the training data). As in the general 
case (Eq. 1), the first term expresses the encoding length, where we have one sub-
model for each value of the feature, while the second gives the number of bits needed 
to describe the data, based on the probability distribution of the target value associ-
ated to each sub-model. 

However, once all features have been ordered by rank, no a priori criterion is avail-
able to choose the cut-off point beyond which features can be discarded. To circum-
vent this drawback, we adopt a wrapper approach that starts with building a classifier 
on the set of the n-top ranked features. Then, we sequentially add a new feature to this 
set, and build a new classifier until no improvement in accuracy is achieved. 

Our approach compares two different classifiers derived from Bayesian Networks, 
i.e. the Naïve Bayes (NB) and the Adaptive Bayesian Network (ABN). 

NB is a very simple Bayesian network consisting of a special node (i.e. the target 
class C) that is parent of all other nodes (i.e. the features or attributes, A1, …, An) that 
are assumed to be conditionally independent, given the value of the class (Fig. 1). The 
NB network can be “quantified” against a training dataset of pre-classified instances, 
i.e. we can compute the probability associated to a specific value of each attribute, 
given the value of the class label. Then, any new instance can be easily classified 
making use of the Bayes rule. Despite its strong independence assumption is clearly 
 

 

 
 

Fig. 1. The structure of a Naive Bayes network 
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unrealistic in several application domains, NB has been shown to be competitive with 
more complex state-of-the-art classifiers [7][8][9]. 

In the last years, a lot of research has focused on improving NB classifiers by re-
laxing their full independence assumption. One of the most interesting approaches is 
based on the idea of adding correlation arcs between the attributes of a NB classifier. 
On these “augmenting arcs” are imposed specific structural constraints [7] [8], in 
order to maintain computational simplicity on learning. The algorithm we evaluate, 
the Adaptive Bayesian Network (ABN) [10], is a greedy variant, based on MDL, of 
the approach proposed in [8].  

In brief, the steps needed to build an ABN classifier are the following. First, the at-
tributes (predictors) are ranked according to their MDL importance. Then, the net-
work is initialized to NB on the top k ranked predictors (A1, A2,…, Ak), that are 
treated as conditionally independent. Next, the algorithm attempts to extend NB by 
constructing a set of tree-like multi-dimensional features. 

Feature construction proceeds as follows. The top ranked predictor is stated as a 
seed feature, and the predictor that most improves feature predictive accuracy, if any, 
is added to the seed. Further predictors are added in such a way to form a tree struc-
ture, until the accuracy does not improve. Using the next available top ranked predic-
tor as a seed, the algorithm attempts to construct additional features in the same man-
ner. The process is interrupted when the overall predictive accuracy cannot be further 
improved or after some pre-selected number of steps.  

The resulting network structure consists of a set of conditionally independent 
multi-attribute features, and the target class probabilities are estimated by the product 
of feature probabilities. Interestingly, each multi-dimensional feature can be ex-
pressed in terms of a set of if-then rules enabling users to easily understand the basis 
of model predictions. 

3   Experimental Study Cases 

We tested the proposed approach on the Acute Leukemia dataset [3], which consists 
of 72 samples (38 training samples, 34 testing samples) each described by 7129 at-
tributes (genes for which a quantitative expression level was measured). The patho-
logical classes (targets) to be predicted are AML (acute myeloid leukemia) and ALL 
(acute lymphoblastic leukemia). 

As a preprocessing step, we ranked all the 7129 attributes using MDL scoring. Ta-
ble 1 shows the top 20 attributes. 

Then, we performed two series of experiments for learning both NB and ABN clas-
sifiers on the 38 samples of the training set. We started with the set of the first 10 
predictors of Table 1, and added the following attributes, one by one, feeding them to 
both NB and ABN classifiers, until no further improvement in accuracy was achieved.  

Their predictive accuracy has been evaluated by  the rate of correct predictions on 
the 34 samples of the test set. Table 2 shows the accuracy of NB and ABN classifiers 
with 10, 15 and 20 predictors. Note that the classifiers built with 15 and 20 predictors 
result in the same accuracy. Table 3 shows the confusion matrices and, interestingly, 
the only errors of both classifiers consist in the misclassification of AML samples (i.e. 
3 samples for NB and 2 for ABN). 
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Table 1. MDL top-ranked genes 

1.   APLP2   (L09209_s_at) 11.   PPGB   (M22960_at) 
2.   LYN   (M16038_at) 12.   Azurocidin (M96326_rna1_at) 

3.   p62   (U46751_at) 13.   Rhesus   (HG627-HT5097_s_at) 
4.   CD36   (M98399_s_at) 14.   FAH   (M55150_at) 
5.   Zyxin   (X95735_at) 15.   CST3   (M27891_at) 

6.   Adipsin   (M84526_at) 16.   LGALS3   (M57710_at) 
7.   LTC4S   (U50136_rna1_at) 17.   CAB3b   (L27584_s_at) 
8.   CD33   (M23197_at) 18.   ME491   (X62654_rna1_at) 

9.   LEPR (Y12670_at) 19.   SNRPN   (J04615_at) 

10. CHRNA7   (X70297_at) 20.   CTSD   (M63138_at) 

Table 2. Overall accuracy of NB and ABN classifiers (10, 15, 20 predictors) 

 10 15 20 
NB 0.853 0.912 0.912 
ABN 0.882 0.941 0.941 

Table 3. Confusion matrix  for NB and ABN classifiers with 15 predictors 

 NB ABN 
 ALL AML rate ALL AML rate 
ALL 20 0 100% 20 0 100% 
AML 3 11 78.6% 2 12 85.7% 

4   Discussion 

In this section, we compare our results with different approaches [4][5] in analyzing 
the Acute Leukemia dataset. Specifically, in [4] a supervised approach is proposed, 
where a subset of 50 informative genes (25 most highly correlated with AML and 25 
most highly correlated with ALL) has been selected. In [5] an unsupervised approach 
is adopted, where a first subset of 178 statistically relevant genes has been considered, 
then PDDP clustering and K-means algorithms have been applied to the 72 samples, 
resulting in two clusters (AML and ALL). A final gene-pruning step results in only 7 
significant genes out of 178 . 

The following observations can be made.  

Both [4] and [5] carried out the selection of a limited number of genes by statis-
tical methods, where the choice of a more or less arbitrary cut-off threshold is a major 
drawback. 

Interestingly, 12 of the genes shown in Table 1 are among the 25 genes most 
highly correlated with AML in [4].  No genes in Table 1 are among the 25 most 
highly correlated with ALL in [4]. In Table 4 we evaluate the MDL ranking order for 
each AML predictor reported in [4]. The ranking is high for most genes, suggesting  
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                      Table 4. MDL ranking of AML predictors proposed in [4] 

Gene MDL rank Gene MDL rank Gene MDL rank 

M55150 14 X17042 54 M57710 16 

X95735 5 Y00787 53 M69043 35 

U50136 7 M96326 12 M81695 52 
M16038 2 U46751 3 X85116 33 

U82759 28 M80254 39 M19045 38 

M23197 8 L08246 25 M83652 41 

M84526 6 M62762 104 X04085 47 

Y12670 9 M28130 20   

M27891 15 M63138 20   
 

that both MDL measure and high statistical correlation with AML give similar results 
in detecting genes whose informative content is the highest. The situation is different 
for ALL, since our MDL scoring gives quite a low ranking (only 2 genes in the first 
50 positions, 5 in the first 100) of the 25 genes most highly correlated with ALL 
found in [4]. 

Conversely, only 2 of the 7 significant predictors in [5] are among the 15 genes 
sufficient in our approach (Table 5). A plausible explanation is that in our approach, 
as well as in [4], features are ranked based on their correlation with the target class, 
while in [5] feature selection is carried out through a principal component analysis, 
designed to select the linear combinations of variables with higher intersubject co-
variances. 

Since the number of predictive variables is large relative to the available sample, 
the unsupervised learning approaches may be affected by over-fitting. To account for 
this, we have trained and tested both NB and ABN classifiers using the 7 predictors 
reported in [5]. The resulting accuracy on the test set is 88% for both NB and ABN. 
Comparison with Table 2 indicates that for both NB and ABN a larger number of top 
ranked genes does improve accuracy, while, if such a number needs to be reduced,  
 

Table 5. MDL ranking of predictors proposed in [5] 

Gene MDL rank 

M11147 70 

M19507 159 

M27891 15 
M96326 12 

Y00433 1202 

Y00787 53 

Z19554 1321 
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NB benefits from external gene selection. This result also seems to suggest that over-
fitting is not a major concern in [5] and that, on the contrary, different subsets of 
genes can be used to build classifiers of similar accuracy. 

Finally, the number of correct predictions on the test dataset is 32 out of 34 for 
our ABN classifier with 15 predictors, to be compared with 29 out of 34 obtained in 
[4], and with 70 out of 72 reported in [5] (all samples). 

5   Related Work 

Several authors have reported many genes statistically correlated to AML/ALL, i.e. 
cathepsin D [11][12], integrins [12], zyxin [4]: cathepsin D is a lysosomal enzyme 
functionally correlated to Cystatin C, an inhibitor of cysteine proteinases, mostly 
cathepsins; integrins associate with the actin cytoskeleton near the adhesion plaques; 
zyxin, 5th in MDL ranking, is a phosphoprotein that is concentrated at adhesion 
plaques and along the actin filament bundles near where they insert at the adhesion 
plaques [13]. Thus, integrins, zyxin and vimentine might be different actors or aspects 
in the process we aim to identify. In particular, CST3 Cystatin C, the most significant 
gene in [5], here ranked as the 15th, was identified as discriminant also in [14] [11] 
[15] on the basis of the same database via different methodological approaches. 

6   Conclusions 

A learning strategy which combines concepts stemming from coding theory and 
Bayesian networks has been successfully applied in predicting ALL-AML leukemia 
distinction based on gene expression data collected from micro-arrays. Our experi-
mental results confirm that gene expression data combined with powerful learning 
algorithms can lead to excellent diagnostic models, even with very modest sample 
size. In particular, by a selection heuristic based on MDL, we identify a subset of 
predictive genes which differently overlaps with other subsets presented in literature. 
This supports the hypothesis that even disjoint subsets of genes can provide evidence 
of the same  pathological conditions. An interesting problem not addressed here is the 
correlation among genes in the same and different subsets and we plan to investigate 
it in a future work. 
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Abstract. The inherently multidimensional problem of evaluating the
complexity of an image is of a certain relevance in both computer sci-
ence and cognitive psychology. Computer scientists usually analyze spa-
tial dimensions, to deal with automatic vision problems, such as feature-
extraction. Psychologists seem more interested in the temporal dimension
of complexity, to explore attentional models. Is it possible, by merging
both approaches, to define an more general index of visual complexity?
We have defined a fuzzy mathematical model of visual complexity, using
a specific entropy function; results obtained by applying this model to
pictorial images have a strong correlation with ones from an experiment
with human subjects based on variation of subjective temporal estima-
tions associated with changes in visual attentional load, which is also
described herein.

Keywords: Fuzzy sets, image analysis, complexity, entropy, mental
clock, internal clock.

1 Introduction

The problem of evaluating the complexity of an image is of a certain relevance to
both cognitive and computer science studies, although in broader contexts the
general problem of visual complexity measurement is ill-defined. The evaluation
of visual complexity is useful in understanding relations among different levels
of the recognition process and it is also of interest to real applications such as
image compression and information theory.

The Computer Science approach to visual complexity is generally space-based:
local feature extraction and selection plus global statistical parameter estimation
are employed to quantify complexity from the point of view of a rational agent.
Nevertheless, complexity is not only relevant to the stimulus’ spatial properties,
but, as an emerging factor affecting the human perceiver’s cognitive operations,
it can also involve the temporal dimension. The recent Mental Clock Model [1],
developing an intuition by Ornstein [2], relies on the simple hypothesis that the
subjective passing duration is affected by a hypothetical internal clock which
tends to modify its speed according to the attentional load of the current task.
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These biases in the subjective time evaluation allow us to indirectly determine
the visual complexity of stimuli, by comparing (under the same experimental
conditions) their perceived durations.

Is it possible to define a fuzzy model of complexity that encompasses both
approaches, leading to the calculation of a true visual index of complexity?

We have defined such a fuzzy model, based on local and global spatial fea-
tures of the image and a definition of entropy. We chose an entropic measure
because information theory and several branches of statistics have been proven
to be powerful tools in quantifying the infinitesimal differences between two
probability density functions. Entropic distances have been used successfully for
image comparison and object matching problems in query by content applica-
tions, showing their ability to grasp the pictorial visual content [3]. For each
image we computed its fuzzy index of complexity using the adopted model.

The results from this fuzzy model were compared, using proven data analysis
techniques, with the ones obtained by an experiment on subjective estimate
of the perceived time, performed while the subjects were exposed to pictorial
stimuli of increasing complexity.

2 The Entropic Model of Visual Complexity

To create a mathematical model of the visual complexity based on spatial pa-
rameters we have reviewed many of the local and global features from literature.
Global features are suited to derive single values from the general properties of
an image. Local features are needed to take into account classical verbal expla-
nations for the meaning of complexity: many versus few, curved and/or detailed
versus linear and planar, complex textures versus flat areas. Using local features
also helps reducing ambiguities in results.

2.1 Local Features Extraction

Points of interest may be identified by using local operators. We chose two well-
known local features: the image edges [4, 5], and the local symmetries computed
by the Discrete Symmetry Transform (DST ) [6]. Edge detectors highlight image
zones with abrupt changes in luminosity level, associated with surface discon-
tinuity. The rationale is straightforward: the more edges, the more objects (or
the more surfaces), and a greater perceived complexity. DST extracts zones of
the image in which the local gray levels show a high degree of radial symmetry
(where the degree of locality depends on the radius of the local window used).
It is interesting to note that points of interest detected by DST appear to be
related with points to which shifts of gaze are directed performed by humans
watching the same image. Apart from the natural attraction of symmetry, this
also means that the more the points of interest in an image, the more complex
the image is perceived as. More specifically, DST computes local symmetries of
an image based on a measure of axial moments of a body around its center of
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gravity. In the image case, the pixels inside a circular window are considered
as point masses, with their mass expressed by their gray value g. Details of the
algorithm can be found in [6]

2.2 An Entropic Measure of Complexity

We are now interested in a global algorithm that can output a single value
for each filtered images, while preserving its class of complexity. We decided
to investigate the usefulness for this task of the fuzzy entropic distance func-
tions detailed in [3]. There are plenty of reasons for considering these functions
among many others usually employed in this kind of task: first, a soft com-
puting approach using fuzzy values seems appropriate when we are trying to
describe a situation where binary logic is too strict. As for the entropic distance
function, we can reformulate our main question from “How complex is this im-
age?” to “What is the distance of this image from the simplest possible image
in the defined feature space?”. This approach leads to the use of standard dis-
tance functions, which respect the usual properties of identity, symmetry and
triangular inequality, augmented by entropic functions. We chose the following
functions:

G0(η) = − 1
log(2) × (η log(η) + (1 − η) log(1 − η). [7]

G1(η) = 2
√

e
e−1

(
ηe1−η − ηeη−1

)
, G2(η) = 4η(1 − η)

where, η = 1
n

∑n
i=1 |hi|, and hi are the gray levels of the image pixels normal-

ized in the range [0,1]. It can be easily shown that Gj(j = 0, 1, 2) satisfies the
properties of a distance function, and it takes values in the interval [0, 1]. For
each Gj function, the first 15% of input values is mapped to more then half
the range of output values. Most of the image would have a complexity index
in the first quartile, so we expected to obtain a better classification through
the expansion of exactly this range of input values. We considered three com-
plexity classes of images, three different filters, and three entropy distance func-
tions. In Table 1 we show the mean value for each category. It is easy to see
that all choices of functions and filters give results in line with our expecta-
tions, with a slightly better performance obtained by the use of function G2 and
the symmetry filter without thresholding. Note that the reported values of en-
tropy are normalized in the interval [0, 1] with the same procedure described in
Section 3.

Table 1. Results from filtering and applying entropy functions to all images in our
pool, and then taking mean values for each category

G0 G1 G2

I II III I II III I II III

Edge detection 1 0.60 0 1 0.39 0 1 0.48 0
Local Symmetry 1 0.45 0 1 0.39 0 1 0.49 0

Thresholded Symmetry 1 0.42 0 1 0.39 0 1 0.34 0
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3 The Experiment on Perceived Time

We devised an experiment to demonstrate that a subjective measure of the
perceived time can be used as an indirect measure of the complexity of an image.
We asked a number of volunteers to observe some images on a computer screen,
and recorded their perceived duration of the observation.

We run two sets of experiments, one in University of Surrey’s CVSSP group
(50 individuals) and the other in the Dipartimento di Psicologia dell’Università
di Palermo (15 individuals). In order to minimize the cultural bias, all experi-
mental subjects had university backgrounds. Participants were part of the staff
and undergraduate students, on a volunteering basis, without any knowledge
of our research’s aims. Privacy of the subjects was taken care of according to
the Italian law on personal data; only initials, age and gender were recorded for
each subject.

Fig. 1. Examples of test images, classified by intuitive complexity: high complexity
(top); medium complexity (middle); low complexity (bottom)

The experiments were held in a dim light room to reduce visual distraction,
giving time to the participant for darkness adaptation. All the usual ergonomic
precautions, such as using a quasi-soundproof room, were taken, and the subject
was allowed to choose their own preferred position and visual angle. The images
were presented full screen. The software used was home-made using the mul-
timedia programming environment Macromedia Dreamweaver 2004 MX on an
Apple Macintosh computer with a TFT LCD monitor. The chosen images were
computer scans of paintings, divided in three categories representing different
levels of visual complexity, based on the presence or absence of certain classes of
features and cue points. Figure 1 shows examples of painting used in this study.

Each image were presented for a fixed period of time (90 secs.), with no tempo-
ral clues; the experiment also had a controlled design in order to minimize side
effects: lights dimmed and uniform, subject alone in a soundproof room. The
subject was alerted to focus their attention on the contents of the displayed im-
ages. The images used for the experiments were chosen according to the intuitive
hypothesis that the complexity of a scene increases with the number of objects
and their relative position, and with its overall structure [8]. The chosen images
were paintings, divided in three categories representing different levels of visual
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Table 2. Mean and Normalized Time Estimation

Class I Class II Class III
μ̂T 61.74 73.38 85.15
σ̂T 33.05 38.09 41.14
nT 0 0.49 1

complexity. Here the estimate time perceived by each subject is reported. We
consider it as a subjective measures of complexity for the three categories of im-
ages introduced above. In the following it will be denoted as {(t(i)T )|i = I,II,III}.
The sample mean value and the variance of the perceived time (μ̂T , σ̂T ) are re-
ported in Table 2. It is evident that the mean perceived time decreases with the
complexity of the image. In order to compare the perceived time with the objec-
tive measure of complexity, and to highlight our interest in relative differences
between estimations made by the same subject when watching different images,
the following normalized time measures are introduced:

n
(i)
T =

t
(i)
T − μ̂min

μ̂max − μ̂min
for i = I,II,III

where μ̂min = min
i=I,II,III

{μ̂(i)
T } and μ̂max = max

i=I,II,III
{μ̂(i)

T }, and 0 ≤ n
(i)
T ≤ 1.

The proposed normalization allows us a better comparison with the results
obtained from the mathematical model, carried out in the next section. In this
context, 0 and 1 have no strict numerical significance, but should be interpreted
more like subjective degrees of complexity, which suits best with our fuzzy model.

Results are in agreement with our model of time perception: complex images
(category I) produce shorter time estimations than images in category II and
the same is true for categories II and III.

4 Comparison of Measures and Data Validation

As shown by comparing the entries of Tables 1 and 2, our experimental data
match those of the mathematical model. In fact, images with a high entropic
complexity index generate, on average, a shorter estimation of the perceived
time. Therefore, category I has the shortest evaluations and category III the
longest. The strong anti-correlation between the entropic measure of complexity
and the mental clock is shown in Figure 2. The values of Gs are the averages of
those in Table 1.

We carried out a strict validation of the results using proven data analysis
methods in order to ascertain the relation between data and model, minimizing
the effects derived from the use of mean values and the cardinality of the dataset.
To verify that a correlation between the experimental data and the mathematical
results exists, we calculated the coefficient of correlation between the results
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CategoryI
0

G0 G1 G2 estimated time

model experiment

II III

Fig. 2. Anti-correlation between the estimate of the mental clock and the measure of
complexity via entropy functions

from the experimental data and the complements of the entropic measures of
complexity using Spearmans’ ρ. Even in the worst case, the probability of data
and model sequences being correlated is more than 0.98. To confirm that the
correlation is not due to the size of the data-set, we carried out many non-
parametric bootstrap tests, using 10,000 virtual sets. In each test the difference
between the mean obtained from the data and by the bootstrap method was
under 10−4. As we worked mostly with mean values, we also used the jackknife
technique, re-calculating the results as many times as the number of images
in our set, leaving out one image each time; all jackknife sets had the same
distribution of values, with small numeric differences.

5 Conclusions

In this paper we detailed an fuzzy model of visual complexity. This model fits
well with a subjective measure of complexity, based on perceived time. From a
theoretical viewpoint we verified a strong correlation between spatial and tem-
poral dimensions of complexity. Our results support the possibility to include
the human information processing into the standard measure of visual complex-
ity. Future work will be devoted to improve our experiment with more image
categories.
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demic/Plenum Publishers, New York, 2000.

2. R. E. Ornstein: The Psychology of Consciousness. Freeman and Company, San Fran-
cisco, 1972.
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Abstract. A new method that automatically detects and segments
brain tumors in 3D MR images is presented. An initial detection is per-
formed by a fuzzy possibilistic clustering technique and morphological
operations, while a deformable model is used to achieve a precise seg-
mentation. This method has been successfully applied on five 3D images
with tumors of different sizes and different locations, showing that the
combination of region-based and contour-based methods improves the
segmentation of brain tumors.

1 Introduction

Brain tumor segmentation from MR images is a challenging task that involves
various disciplines including medicine, MRI physic, radiologist’s perception, and
image analysis based on intensity and shape. The literature is rich with tech-
niques for segmenting normal brain structures, but many of these methods fail
in the presence of a pathology. Actually the techniques that are intended for
tumors leave significant room for increased automation, applicability and accu-
racy. In brain tumor studies, existence of abnormal tissues is most of the time
easy to detect but accurate and reproducible segmentation and characterization
of abnormalities still remain a challenging task.

Let us briefly summarize existing work, classically divided into region-based
and contour-based methods. In the first class, a tumor segmentation method
using knowledge based and fuzzy techniques was proposed by Clark et al. [2].
This method has two drawbacks. First, it requires multichannel images such
as T1, T2 and PD. Furthermore a training phase prior to segmenting a set of
images is necessary. Other methods are based on statistical pattern recognition
techniques. Kaus et al. [6] have proposed a method for automatic segmenta-
tion of small brain tumors using a statistical classification method and atlas
registration. Moon et al. [9] have also used the EM algorithm and atlas prior
information for automatic tumor segmentation. These methods fail in the case of
large deformations in the brain and they also require multichannel images (T1,
T2, PD and contrast enhanced images) for classification. Prastawa et al. [12]
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consider the tumor as an outlier and use a statistical classification for rough
segmentation and then geometric and spatial constraints for final segmentation.
The fuzzy connectedness method was proposed by Moonis et al. [10] for tumor
segmentation. In this semi-automatic method, the user must select the region of
the tumor. The calculation of connectedness is achieved in this region and the
tumor is delineated in 3D as a fuzzy connected object containing the seed points
of the tumor that were selected by the user. Other methods such as data fusion
[1], atlas based [4] and transformation [13] methods have been developed, with
similar drawbacks.

In contour-based methods, Lefohn et al. [7] have proposed a semi-automatic
method for tumor segmentation by level sets. The user selects the tumor region
and after the deformation process, he adapts the level set parameters. Zhu and
Yang [15] introduce an algorithm using neural networks and a deformable model.
Their method processes each slice separately and is not a real 3D method. Ho
et al. [5] have proposed level set evolution with region competition for tumor
segmentation. Their algorithm uses two images (T1-weighted with and without
contrast agents) and calculates a tumor probability map using classification,
histogram analysis and the difference between the two images, and then this map
is used as the zero level of the level set evolution. The deformable methods suffer
from the difficulty of determining the initial contour, and tuning the parameters.

In this paper we propose a fully-automatic method that is a combination of
region-based and contour-based methods. It does not require any user supervi-
sion, works in 3D and on standard routine T1 aquisitions. It combines a fuzzy
classification method (FPCM) [11], morphological operations and a parametric
deformable model, thus taking advantages of both approaches while cancelling
their drawbacks. The method is detailed in Section 2, and results are presented
in Section 3.

2 Tumor Segmentation Procedure

A preliminary stage consists of brain segmentation. For this purpose, a robust
method using histogram scale-space analysis and morphological operations [8] is
applied. This method first calculates statistical parameters of the main classes
of tissues, which will be used in the classification procedure. After extracting
the brain, the histogram based Fuzzy Possiblistic C-Mean method is used for
rough segmentation of the tumor. This rough segmentation is used as the initial
surface of a deformable model for the final precise tumor segmentation.

2.1 Classification Using FPCM and Morphological Operations

Fuzzy Possibilistic c-Means was introduced by Pal et al. [11] for classification. It
is a combination of Fuzzy c-Means and Possibilistic c-Means algorithms. In data
classification, both membership and typicality are mandatory for data structures
interpretation. FPCM computes these two factors simultaneously. FPCM solves
the noise sensitivity defect of FCM and also overcomes the problem of coincident
clusters of PCM. The objective function of FPCM is:
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Jm,η(U,T, V ;X) =
c∑

i=1

n∑
k=1

(um
ik + tηik)‖Xk − Vi‖2 (1)

where m > 1, η < 1, 0 ≤ uik ≤ 1, 0 ≤ tik ≤ 1,
∑c

i=1 uik = 1, ∀k, ∑n
k=1 tik =

1, ∀i, Xk denotes the characteristics of a point to be classified (here we use grey
levels), Vi is the class center, c the number of classes, n the number of points to
be classified, uik the membership of point Xk to class i, and tik is the possibilistic
typicality value of Xk associated with class i.

In order to detect and label the tumor we use a histogram based FPCM
that is faster than the classical FPCM implementation. Since the process of the
brain extraction provides an estimation of the cerebro spinal fluid (CSF), white
matter (WM) and gray matter (GM) radiometric characteristics, we exploit this
information to overcome the classifical initialization problem, i.e. the algorithm
is initialized with class centers which are very close to the final ones. We classify
the extracted brain into five classes, CSF, WM, GM, tumor and background (at
this study stage we do not consider the edema). To obtain the initial value of the
class centers, we use the results of histogram analysis in the extraction step. We
have used the mean of the CSF, WM and GM (mG , mW and mC) (calculated
in brain extraction step) as the centers of their classes. For background, the
value zero is used. To select the tumor class we assume that the tumor has the
highest intensity among the five classes (this is the case in our study where we
are interested in hyper-intensity pathologies such as full-enhancing tumors).

Several binary morphological operations (opening, erosion, largest component
selection, etc.) are then applied to the tumor region in order to correct misclas-
sification errors. The results of this step for two images are shown in Figure 1.

2.2 Refinement Using a 3D Deformable Model

To obtain an accurate segmentation, a parametric deformable method, that has
been applied successfully in our previous work to segment internal brain struc-
tures [3], is used. The segmentation obtained from the previous processing is
transformed into a triangulation using an isosurface algorithm based on tetra-
hedra and is decimated and converted into a simplex mesh X. The evolution of
the deformable surface X is described by the following dynamic force equation:

γ
∂X
∂t

= Fint(X) + Fext(X) (2)

where Fint is the internal force that specifies the regularity of the surface and
Fext is the external force that drives the surface towards image edges. The chosen
internal force is:

Fint = α∇2X − β∇2(∇2X) (3)

where α and β respectively control the surface tension (prevent it from stretch-
ing) and rigidity (prevent it from bending) and ∇2 is the Laplacian operator. It
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(a) (b) (c) (d)

Fig. 1. Results obtained in the classification step for two 3D images. (a) One axial slice
of extracted brain. (b) Result of FPCM classification. (c) Result of the thresholding.
(d) Result after morphological operations.

is then discretized on the simplex mesh using the finite difference method [14].
In our case, the external force is derived from image edges. It can be written as:

Fext = v(x, y, z) (4)

where v is a Generalized Gradient Vector Flow (GGVF) field introduced by Xu et
al. [14]. A GGVF field v is computed by diffusion of gradient vector of a given edge
map and is defined as the equilibrium solution of the following diffusion equation:

∂v

∂t
= g(‖∇f‖)∇2v − h(‖∇f‖)(v −∇f) (5)

v(x, y, z, 0) = ∇f(x, y, z) (6)

where f is an edge map and the functions g and h are weighting functions which
can be chosen as follows: {

g(r) = e−
r
κ

2

h(r) = 1 − g(r)
(7)

To compute the edge map, a linear spatial filtering which is usually associated
to Canny-Deriche edge detector is applied. Our experience shows that the GGVF
is not sensitive to parameter k and we set it to k = 0.05 for all cases. The
parameters involved in Fint were set to α = 0.25 and β = 0.0. Again the same
parameters were used for all tests.
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(a) (b) (c) (d)

Fig. 2. Results obtained on four 3D images (obtained with the same parameters).
(a) One axial slice of the original 3D image. (b) Result of the extracted brain and
classification. (c) Final contour, superimposed on the axial slice. (d) Final contour,
superimposed on a sagittal slice.



3D Brain Tumor Segmentation 317

Fig. 3. Results obtained on one 3D image (256 × 256 × 22 voxels and obtained with
the same parameters). (a) One axial slice of the original 3D image. (b) Result of the
extracted brain and classification. (c) Final contour, superimposed on the axial slice.
(d) Final contour, superimposed on a sagittal slice.

3 Results and Conclusion

We applied our algorithm to five different real 3D T1-weighted MR images (256×
256× 124 voxels and 256× 256× 22 voxels). They exhibit tumors with different
sizes and at different locations. We obtained good results for the five datasets
without changing any parameter. The segmentation results of five datasets are
shown in Figures 2 and 3.

We developed a hybrid algorithm using contour-based and region-based meth-
ods to segment brain tumors in 3D MR images. It exploits the advantages of
fuzzy classification for automating the algorithm and the good quality segmenta-
tion result of deformable models to improve the segmentation. This is achieved
by combining the FPCM classification method, morphological operations and
a parametric 3D deformable model. Application on several datasets with dif-
ferent tumor sizes and different locations shows that this method works auto-
matically with high quality of segmentation, and is robust to inter-individual
variability for the all types of fully enhancing tumors. More tests are however
necessary to further validate the approach. For quantitative evaluation of the
results of segmentation, unfortunately there are not any standard images or
methods. One way consists in comparing the results with manual segmenta-
tions. We are preparing these images for further evaluations with the help of
medical experts.

Future work aims at assessing spatial relations to other structures around the
tumor. Also we are extending this method for detecting several tumors in the
brain and segmenting the edema.

Acknowledgments. We would like to thank Professor Desgeorges at Val-de-Grâce
hospital for providing the images and his medical expertise. The image used in
Figure 3 was provided by the Center for Morphometric Analysis at Massachusetts
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Abstract. Humans are very efficient in the analysis, exploration and representa-
tion of their environment. Based on the neurobiological and cognitive principles 
of human information processing, we develop a system for the automatic identi-
fication and exploration of spatial configurations. The system sequentially se-
lects "informative" regions (regions of interest), identifies the local structure, 
and uses this information for drawing efficient conclusions about the current 
scene. The selection process involves low-level, bottom-up processes for sen-
sory feature extraction, and cognitive top-down processes for the generation of 
active motor commands that control the positioning of the sensors towards the 
most informative regions. Both processing levels have to deal with uncertain 
data, and have to take into account previous knowledge from statistical proper-
ties and learning. We suggest that this can be achieved in a hybrid architecture 
which integrates a nonlinear filtering stage modelled after the neural computa-
tions performed in the early stages of the visual system, and a cognitive reason-
ing strategy that operates in an adaptive fashion on a belief distribution. 

1   Introduction 

In many application contexts, intelligent systems are confronted with problem of 
using their resources in the most efficient way for extracting a maximum amount of 
information from their current environment. Here we consider a system for the 
analysis, representation and exploration of spatial scenes. Biological vision systems 
have evolved an efficient design for solving this task, and this design has also been 
adapted for artificial vision systems in the context of “active vision“ [1][2]. First, the 
pattern recognition capabilities are concentrated in a small region of the visual field, 
the central fovea, whereas the periphery has only limited optical resolution and 
processing power. With a static eye, one can hence only see a small spot of the 
environment with good quality, but this spot can be rapidly moved with fast saccadic 
eye movements of up to 700 deg/sec towards all the "relevant" regions of a scene. 
Second, there exists an efficient process which controls the selection of these 
informative regions. The selection is determined by both bottom-up processes, which 
extract the salient local features in a scene, and by cognitive top-down processes, 
which are determined by the memory, internal states and current tasks [3] [4]. 
Togther, this system allows for drawing efficient conclusions about a current scene 
and the environment. 
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2   Maximizing the Information Gain 

A basic principle in the development of our system is the maximization of the infor-
mation that the system can extraxt from the environment. This is achieved on two in-
teracting processing levels (Fig. 1). On the bottom-up level, sensory feature extraction 
is achieved by neural operators that are optimized with respect to the efficient exploi-
tation of the statistical redundancies in natural scenes (for review see, e.g., [5],[6]). 
For the cognitive level, we have developed a top-down strategy which guides the sys-
tem’s explorative actions towards those regions of the environment which have the 
greatest potential for changing the current internal belief distribution of the system. 
The two processing levels interact in three parallel streams, two bottom-up streams 
and one top-down stream. In the first bottom-up stream, nonlinear neurons of the 
early sensory processing stage provide information about all salient locations that 
could possibly be of interest for the exploration. In the other bottom-up stream, those 
salient regions which are selected by the top-down strategy are analysed by a set of 
orientation-selective wavelet filters. This results in a feature vector for each fixated 
region, and a combination of these feature vectors and the associated motor com-
mands yields the sensorimotor features, which are the basic elements of the scene rep-
resentation. This is in contrast to classical computer vision approaches, even in active 
vision, which typically operate on purely sensory data. 

The sensorimotor features induce a belief distribution on a hierarchically structured 
representation of scene hypotheses. A belief-based reasoning strategy operates on this 
hierarchical structure and selects the optimal top-down command, i.e., the motor ac-
tion towards this salient position, which currently promises to maximize the informa-
tion about the given environment. 

 

Fig. 1. Hybrid System Architecture 
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3   Nonlinear Neural Processing 

The sensory processing stage of our system consists of a wavelet-like image decom-
position by size- and orientation-specific filters and of nonlinear operators which 
model the extraclassical receptive field properties of cortical neurons. The spatial 
resolution is maximal in the centre and lower in the periphery. The sensory system 
has two functions: (i) identification of a-priori informative locations (salient features) 
within the scene, which can be a potential goal of saccadic fixations (cf. [7]), and (ii) 
provision of high-resolution information about the actually fixated local pattern. 

Regarding the potential fixation candidates we conducted a statistical investigation 
of experiments on eye movements of human subjects on natural scenes. Analysis of 
the fixated regions in terms of polyspectra (a generalization of the power spectrum 
[8]) revealed a clear bias to fixate image regions with frequency components of  
multiple orientations (e.g. image regions with curved edges, junctions, or occlusion 
patterns) [9]. Formally, these highly informative local patterns can be defined as  
intrinsically two-dimensional (i2D-) signals, and the framework of Volterra-Wiener 
systems [10] can be employed to design i2D-selective operators [6]. The response of a 
quadratic Volterra system can be described as 

2121112122 )()(),()( xxxxxxxxx dduuhu −⋅−⋅=  (1) 

where h2(x) is the kernel of the system [10]. The critical condition for the selectivity 
to i2D signals can be imposed as condition on the spectral kernel H2(f) (the Fourier 
transform of h2(x)) as 

212102,2,1,1)2,1( )(22 xfyfyfxfyfxfyfxfHH ⋅=⋅∀==ff  
(2) 

The resulting operators mimic the nonlinear extraclassical receptive field effects of 
neurons in the visual cortex [6][11]. With respect to the image statistics, they perform 
a higher-order whitening strategy [6]. The susceptibility to noise is reduced by the 
band limitation (low spatial resolution). The result is similar to the saliency  
computation used in [7], although the latter is based on an iterative center-surround 
modification of linear filter outputs, whereas our operators provide a direct nonlinear 
processing. Two examples of the resulting nonlinear feature maps (saliency maps) are 
shown in Fig. 2. 

 

Fig. 2. Potential fixation candidates (salient features) as derived from non-linear i2D-selective 
neural operators. Left: application to a cubic object in a VR environment we use for spatial 
navigation tasks. Right: application to a more complex natural image. 
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The second function of the sensory processing stage is the provision of a sensory 
characterization of the fixated image regions. At each fixated location the outputs of a 
set of orientation-selective wavelet-like filters are used to compute a visual sensory 
feature vector v. The sensory feature vectors v1 and v2 at the start and the end of the 
eye movement, together with the eye movement motor data e are combined into the 
sensorimotor feature vector s=[v1, e, v2]. Via a coarse coding this s is assigned to one 
of the sensorimotor feature classes Si, which are the basic elements of the scene  
representation. 

4   Uncertain Sensorimotor Features and Belief Combination 

A sensorimotor feature Si usually supports one or more scene hypotheses Hk with a 
certain degree of belief mi(Hk). In order to express this belief and to combine the be-
lief induced by a number of sensorimotor features the “Belief Theory” of Shafer is 
used [12]. In this theory the frame of discernment θ  is the set of all possible singleton 
hypotheses in the domain, in our system the set of all individual scenes that are con-

sidered. The resulting hypotheses space θ2  comprises all possible subsets Hk of θ . 
The heart of the theory is the Dempster Rule of Combination. This rule can be used to 
update the current belief m(Hk) in a hypothesis Hk by incoming evidence mi(Hl) about 
a hypothesis Hl as induced by a sensorimotor feature Si as: 

∅≠∈∀ kk HH ,2θ :2, θ∈nl HH ( ) 1*)()( −

=∩
∗= KHmHmHm nil
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In using this normalization K we assume a closed world in which all possible hy-
potheses are known. For the alternative case of an open world assumption Smets [13] 
has shown the advantages of omitting this normalization. The suggested information 
gain principle is independent of the respective normalization assumptions and can 
work with or without it. 

In our case the hypotheses space θ2  is reduced to a strict hierarchy T. Each non-
leaf element corresponds to a scene class and each leaf element corresponds to an in-
dividual scene (or more precisely to the finest scene class). In order to combine the m-
values in such a strict hierarchy we are using an approximation of the Dempster rule 
for tree-like knowledge structures [14]. The current belief mT(Hk) is the combination 
of the basic belief masses mTi(Hk) [13] which correspond to those yet selected sen-
sorimotor features Si that induce belief for a hypothesis Hk in the hierarchy T. In this 
calculation one has to consider all those combinations of hypotheses Hl and Hn in the 
hierarchy which have Hk as intersection. It should be noted that one sensorimotor fea-
ture Si usually induces belief mTi  not only for one but for several different hypotheses 
Hk in T, i.e. a sensorimotor feature Si induces a basic belief assignment mTi which 
supports a number of scene classes and/or individual scenes Hk to different degrees of 
belief mTi(Hk). 
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The basic belief mass mTi(Hk) is learned while the system generates fixation se-
quences on one or more training scenes. The "knowledge base" of the system, i.e. the 
information about all analyzed scenes, is continuously updated using all sensorimotor 
features Si that result from the fixation sequences and the respective scene hypotheses 
Hk. The knowledge base consists of a matrix M = {xik}, where each row i is associated 
with a sensorimotor feature Si and each column k is a ssociated with a scene hypothe-
sis (or scene class hypothesis) Hk. Each element of M relates sensorimotor features Si 
and possible hypotheses Hk by the “relative frequency” of Si selected in a scene Hk of 
the hierarchy: 

( ) ( ) =∈∀

l
il

ik
kik x

x
HrTH :  (4) 

where xik is the frequency of a certain sensorimotor feature Si selected on a scene Hk 

and Σxil is the sum over all occurences of Si in all yet analyzed scenes. We have 

shown that [ ]1,0: →Tr  corresponds to a basic belief assignment (bba) [ ]1,02: →θm  
of the Dempster-Shafer theory [15]. 

5   A Hybrid Inference Strategy IBIG 

The basic principle of our strategy IBIG (Inference by Information Gain) is to deter-
mine those data which, when collected next, would yield the largest information gain 
with respect to the actual belief distribution in the hypotheses space [16]. Applied to 
scene analysis the inference strategy determines the region of interest that promises 
the maximum information gain with respect to all activated scene hypotheses [15].  

The information gain is calculated in the following way: a potential belief 

)(ˆ kTi Hm is calculated separately for each sensorimotor feature iŜ , i.e., for each 

[v1, e, v2] that is compatible with the currently fixated pattern v1 , the saliency map of 

the potential targets v2, and the eye movement e. For each such iŜ , (i) all hypotheses 

Hk that can be influenced by this iŜ  are determined, (ii) the potential beliefs 

)(ˆ KTi Hm  are calculated according to the Dempster rule of combination for hierarchi-

cal hypotheses trees, and (iii) the potential information gains Ii(Hk) are determined. by 
the absolute difference between the current belief mT(Hk) of a scene hypothesis Hk in 
the hierarchy and the potential belief )(ˆ kTi Hm  that could be reached for this hypothe-

sis due to iŜ : )(ˆ)()( kTikTki HmHmHI −= . In a final step, the iŜ with the maxi-

mum )( ki HI is selected and determines the next eye movement. 

6   Discussion 

Let us describe one cycle of the resulting system behaviour (a screenshot of the sys-
tem is shown in Fig. 3). Assume a region of interest in the scene has been determined. 
The fovea is then directed towards this location by a saccadic movement. The wavelet  
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Fig. 3. Screen dump of the system analysing a butterfly from a hierarchical taxonomy of butter-
flies which are categorized depending on the profile and pattern of the wings. On the left side 
the candidate fixations based on i2D-selective features are marked. The right side shows the 
output of the nonlinear operator with an overlaid fixation sequence. The tree of hierarchical 
representation is shown at the bottom. 

vector at this new foveal position and the vector at the previous position are combined 
with the motor data into the sensorimotor feature Si. This sensorimotor feature is used 
to update the current belief distribution in the knowledge base. IBIG then considers 
the remaining candidate targets, as derived from the nonlinear i2D-selective neural 
operator (only those sensorimotor features are considered whose stored pre-saccadic 
feature vector is consistent with the actual feature vector at the given foveal position, 
and whose relative target position is within the spatial range of one of the candidate 
locations.). From the set of possible targets it selects the one that promises the maxi-
mum information gain, i.e. the maximum change of the current belief situation, and a 
new saccade is initiated towards this location. This cycle is repeated until a sufficient 
belief threshold for one of the hypotheses is reached. 

In conclusion, we have developed a system for the analysis of a spatial environ-
ment. It is a hybrid system that combines sensory filtering operations with an adaptive 
cognitive reasoning strategy. All modules are designed according to the principle of 
maximum information gain. The resulting architecture is able to cope with the typical 
incompleteness and uncertainty in sensory input data and provides an efficient repre-
sentation and processing of spatial configurations. 
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Abstract. Nowadays, the processing of KANSEI information is very important 
in intelligent computing field. Particularly, it is very interesting in image 
retrieval to deal with human's KANSEI. In this paper, we use natural language 
for the representation of KANSEI, including the image structure of Human's 
idea, which we can not observe. And then, a KANSEI-Adjective is used as a 
natural language querying method: In other words, this paper presents the 
image retrieval based on KANSEI. We propose the background image retrieval 
based on KAC (KANSEI-Adjective of Color) to represent the sensibility of 
color. Our method for processing of KANSEI information is the measure of 
similarity by using the adaptive Lesk algorithm in WordNet. In our 
experimental results, we are able to retrieve background images with the most 
appropriate color in term of the query’s feeling. Furthermore, the method 
achieves an average rate of 63% user's satisfaction.  

1   Introduction 

KANSEI in Japanese means by sensibility that is to sense, recall, desire and think of 
the beauty in objects [1]. KANSEI is expressed usually with emotional words for 
example, beautiful, romantic, fantastic, comfortable etc [2]. The concept of KANSEI 
is strongly tied to the concept of personality and sensibility. KANSEI is an ability  
that allows humans to solve problems and process information in a faster and  
personal way. 

The processing of KANSEI information is very important in intelligent computing 
field. Particularly, it is very interesting in image retrieval to deal with human's 
KANSEI. So many investigators give a trial of using KANSEI for image retrieval. 
However, the research in this area is still under its primary stage because it is difficult 
to process emotion or sensibility of human. KANSEI is the Knowledge based on 
individual experience and distinct from each person. 

The existing image retrieval system is capable of understanding the semantics of 
visual information based on generic features such as color, texture and shape, and it is 
well within the realm of the technically possible [3]. However, we focus on image 
retrieval based on KANSEI which is more intelligent than that based on content.  

In order to apply KANSEI methods to image retrieval, Hayashi et al. [4] attempted 
to train a neural network to predict human KANSEI with impression words that 
                                                           
* Corresponding author. 
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would be evoked by outdoor scenery images. Shibata et al. [5] defines KANSEI 
methods as “discriminated subjective interpretation which can be categorized as 
groups of adjectives.” They emphasize the contrast between psychology and computer 
science, proposing KANSEI methods as the means to join the two. Their research 
goal is to develop an image retrieval system for street landscapes based on the 
KANSEI model. Kobayashi made a relation between color and language at the 
researching of color image standardization and Haruyoshi expresses a language that a 
lot of color included the image at the questionnaire in Japan [6] [7]. Color Wheel Pro 
explains meaning 9 based color including a Red and local color. And then, Hewlett-
Packard defines the color meaning at 20 colors in the USA. In the Republic of Korea, 
IRI develop the I.R.I adjective image scale at a visual and symbol of Korean's 
KANSEI [8]. 

The image retrieval system based on KANSEI has emerged as a promising yet 
challenging research area in the past few years. However, as yet, no existing system is 
capable of completely understanding the KANSEI of color information. In this paper, 
we propose the image retrieval based on KANSEI of color. We experiment the 
background image retrieval based on KANSEI-Adjective to represent the sensibility 
of color. 

2   The Proposed Architecture 

KANSEI information of color. First of all, we need KANSEI information of color. 
Because the definition of color by human is subjective and ambiguous, most of the 
researchers used SD (Semantic Differential) technique through replication or 
statistics. In this paper, we use 20 colors that are defined “The meaning of color” by 
HP as KANSEI database of fig.1 [9]. The table lists vocabularies that express 
KANSEI about each of the color. In this paper, we named the meaning of color 
“KAC”.  

 

 
Color KAC(KANSEI-Adjective of Color) 

Lavender enchanting, nostalgic, delicate, floral, sweet, fashionable 

Blue 
true, healing, tranquil, stabile, peaceful, harmonic, wise, trustable, calm, 
confidential, protective, secure, loyal 

Fuchsia hot, sensual, exciting, bright, funny, energetic, feminine 

Fig. 1. “The Meaning of Color” of Hewlett-Packard Co  

Relationship of adjectives for similarity measure. We can cover that various 
queries including KANSEI on the basis of the WordNet. We take advantage of 
WordNet that is a kind of lexical database [10]. In this paper, we put forward method 
of using Adjective in WordNet. We use 4 relations (attribute, also see, similar to, 
pertainym of) for similarity measure between KAC and query. We show the 4 
relations as follows. 
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Table 1. Various relationships for similarity measure 

Relationship Adjectives 
Attribute 650 
Also see 2,714 

Similar to 22,492 
Pertainym of 4,433 

 

Similarity Measure between Query and KAC. We use the adaptive Lesk algorithm 
put forward by Banerjee and Pedersen for query of extension. As Lesk’s algorithm 
disambiguates a target word by selecting the sense whose dictionary gloss shares the 
largest number of words with the glosses of neighboring words, it only uses 4 
relations for similarity measure between adjectives [11].  

The original Lesk algorithm compares the glosses of a pair of concepts and 
computes a score by counting the number of words that are shared between them. 
This scoring mechanism does not differentiate between single word and phrasal 
overlaps and effectively treats each gloss as a bag of words. For example, it assigns a 
score of 3 to bank2: (sloping land especially beside a body of water) and lake: (body 
of water surrounded by land), since there are 3 overlapping words: land, body, water. 
Note that stop words are removed, so of is not considered an overlap. 

However, there is a Zipfian relationship between the lengths of phrases and their 
frequencies in a large corpus of text [12]. The longer the phrase is, the less likely it is 
to occur multiple times in a given corpus. A phrasal n–word overlap is a much rarer 
occurrence than a single word overlap. Therefore, we assign an n word overlap the 
score of n2. This gives an n–word overlap a score that is greater than the sum of the 
scores assigned to those n words if they had occurred in two or more phrases, each 
less than n words long. This is true since the square of a sum of positive integers is 
strictly greater than the sum of their squares. That is, (a0 + a1 + ... + an) 

2 > a0
2 + a1

2+ 
... + an

2, where ai is a positive integer. For the above gloss pair, we assign the overlap 
land a score of 1 and body of water a score of 9, leading to a total score of 10. 

Table 2. Tracing example between words 

Synset1: friendly#a#1  
Synset2: peaceful#a#1 
Functions: also glos - also glos : 47 
Overlaps: 1  "of" 1  "characterized by" 1  "characterized by friendship and good will" 2  
"to" 4  "or"  
Functions: also glos - glos : 3 
Overlaps: 1  "by" 2  "or"   
Functions: also glos - sim glos : 20 
Overlaps: 1  "of" 1 x "conducive to" 1  "and" 1  "characterized by" 1 "nature" 2  "to" 1  
"disposed to" 1  "inclined" 2  "or"  
Overlaps: 1  "of" 2  "the" 1  "by" 1  "and" 1  "not" 3  "or"   
Functions: sim glos - glos : 4 
Overlaps: 1  "by" 1  "not" 2  "or"   
Functions: sim glos - sim glos : 10 
Overlaps: 1  "of" 1  "by" 1  "and" 3  "a" 1  "disposed" 1  "not" 2  "or" 
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Table 2 shows tracing the result of similarity measure between KAC and query 
using the adaptive Lesk algorithm. The following table shows similarity measure 
using semantic relation between friendly#a#1 and peaceful#a#1. Here, also indicates 
also see relation between senses of word and then sim is similar to relation. For 
example, the overlap value is calculated using also see relation among grosses of 
synset1 and synset2. It is sum of square of overlapped words using the adaptive Lesk 
algorithm. It is calculated 1 "of", 1 "characterized by", 1 "characterized by 
friendship and good will", 2 "to", 4×"or". Result is 12+22+62+2+4=47. When we 
calculate, we consider the words whose values less than 100 are insignificant words 
such as article, adjunction and so on. So we just select more than 100 values from 
calculated values.  

The following table shows the result of similarity measure between KAC and 
Query.  

Table 3. Similarity measure between KAC and Query 

Similarity  according to Query 
KAC 

Warm Energetic Alterative Fortunate Interest Peaceful 
Optimistic 28 38 7 21 26 27 
Dynamic 49 175 20 49 55 50 

Excite 68 25 11 18 54 26 
Sexy 54 64 24 43 57 60 

Intense 58 52 14 43 83 65 
Aggressive 59 57 18 29 52 61 
Powerful 69 23 15 46 57 38 
Energetic 43 673 13 32 39 62 
Vigorous 19 122 12 11 20 28 
Elegant 45 63 21 35 44 61 

Rich 24 25 10 21 17 26 
Mature 198 17 12 28 57 34 
Healing 23 11 251 9 32 23 
Peaceful 49 62 22 31 57 712 

Wise 43 44 11 37 42 43 
Calm 27 20 14 14 24 139 

Protective 49 39 27 35 66 44 
Secure 47 40 15 51 111 56 
Loyal 18 22 9 22 32 24 

Natural 39 34 16 31 49 46 
Lucky 25 12 14 80 46 17 

Hopeful 30 23 13 133 16 23 
Successful 65 37 18 142 71 48 
Generous 23 20 15 8 29 30 
Romantic 45 14 10 9 33 23 

Soft 63 52 14 46 63 59 
Delicate 51 40 23 24 54 48 
Sweet 52 33 10 38 67 40 

Friendly 92 62 23 58 67 103 
Tender 137 44 21 53 198 84 

Hot 1284 80 33 77 115 88 
Sensual 21 16 10 16 21 18 
Bright 52 41 12 39 55 39 
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3   Experimental Procedures and Results 

We did the experiment for retrieval of background image based on KANSEI. The 
experiment performed to evaluate the matching of color through similarity measure 
between the query and KAC. We use backgrounds images of Microsoft Co, as 
database included 481 images.  

In this experiment, we propose 1) this method to extract dominant color using color 
histogram of background images, then, 2) normalize the extracted color based on 20 
colors “meaning of color” by Hewlett-Packard Co. Next phase is 3) the measure 
similarity between KAC and user’s query using the adaptive Lesk algorithm. Using 
these results, we 4) match most adaptive color and retrieve the background images. 

 
 
 
 

 

 

Fig. 2. Phases of experiment 

We know the following result in a process of experiment. It indicates how the color 
is matching with KANSEI vocabulary by using result of similarity measure. Also, we 
know that selected KAC is the best matching with query. So, table 4 shows us the 
final results of matching adaptive colors to vocabulary’s feeling in term of user’s 
query.  

Table 4. Result of matching colors 

Query Similarity KAC Color Query Similarity KAC Color 

1284 Hot Fuchsia 198 Tender Light pink 
198 Mature Burgundy 115 Hot Fuchsia Warm 
137 Tender Light pink

Interest 
111 Secure Blue 

673 Energetic Bright red 712 Peaceful Blue 
673 Energetic Fuchsia 139 Calm Blue Energetic 
175 Dynamic Bright red

Peaceful 
120 Tranquil Blue 

251 Healing Blue 142 Successful Green 
Alterative 

251 Healing Green 
Fortunate 

133 Fortunate Green 

 

Fig. 3 shows the result of running the query with KANSEI relativity and color. It 
retrieves background images including suitable color which represents KANSEI about 
“energetic” query and “peaceful” query. And the O/X checkboxes showed in the 
figure are an implement for measure of user’s satisfaction. Also we measure the 
satisfaction of antonym query for evaluation. 

 Query 
(KANSEI-Vocabulary) 

Result 
(Image based on KANSEI) 

The Measure of Similarity 

Matching Color according 
to Similarity Measure  

Analysis of color histogram 

Normalization  
using Dominant Color 

Background-Image Data 
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Fig. 3. Results of “energetic” query and “peaceful” query 

We exclude KANSEI about texture, shape, pattern and so on as low-level features of 
visual information, and only concentrate on the processing method of KANSEI about 
color. We just measure user's satisfaction for evaluation of image retrieval based on 
KANSEI since KANSEI information retrieval is hard to measure accuracy. We 
experiment the image retrieval according to any 30 queries (KANSEI- Vocabulary)  
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Query
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n

User Satisfaction Antonym of  query

 

Fig. 4. Graph of evaluation in term of query 

and then measure satisfaction to 50 people-oriented. In this experiment, user's 
satisfaction indicates much difference from 31% to 89% according to KANSEI. The 
reason of difference is that KANSEI strongly depends on personal disposition. 

In this fig.4, the wave-blue line stands for the rate of user satisfaction when the 
users query the certain words. And the wave-red line indicates the rate for satisfaction 
of the antonymous meanings of the corresponding words. The later rate was also 
obtained by checking the O/X checkboxes based on the query results in the last step.  
We can see that there is the distinguish difference between these two rate. It manifests 
that our method proposed for query is more efficient and accurate. 

In experimental result, our method achieves an average rate of 63% user's 
satisfaction. Our result is not so high because background image includes objects, 
shape, pattern and texture (not only color). 

4   Conclusions 

In this paper, we proposed a method of measuring similarity between KAC and user’s 
query. On the basis of this method, we show how to retrieve background images 
based on KANSEI. In result, we retrieve most appropriate image by human’s 
KANSEI and also achieves user's satisfaction. Our research means to use similarity of 
adjective on WordNet as lexical Ontology and applying KANSEI Information to 
image retrieval. 

In our future works, we will expand the range of visual information (not only 
color) and will study the relation between visual information and KANSEI based 
intelligent computation methods. 

Acknowledgement 

This work was supported by the Korea Research Foundation Grant. (KRF-2004-042-
D00171). 



 KANSEI-Based Image Retrieval Associated with Color 333 

References 

1. Hideki Yamazaki, Kunio Kondo, “A Method of Changing a Color Scheme with KANSEI 
Scales,” Journal for Geometry and Graphics, vol. 3, no. 1, pp.77-84, 1999 

2. Shunji Murai, Kunihiko Ono and Naoyuki Tanaka, "KANSEI-based Color Design for City 
Map," ARSRIN 2001, vol. 1, no. 3, 2001 

3. A.Ono, M. Amano, M. Hakaridani, T. Satou, M. Sakauchi, “A fiexible Content-based 
Image Retrival System with Combined Scene Description Keyword,” Proceeding of 
Multimedia 96, pp.201-208, 1996 

4. Hayashi, T., Hagiwara, M, “An image retrieval system to estimate impression words from 
images using a neural network”, 1997-IEEE International Conference on Systems, Man, 
and Cybernetics-Computational Cybernetics and Simulation, vol 1, 150-5, IEEE, New 
York, NY, 1997 

5. Shibata, T., Kato, T, “KANSEI image retrieval system for street landscape discrimination 
and graphical parameters based on correlation of two images”, IEEE-SMC’99 Conference 
Proceedings-1999 IEEE International Conference on Systems, Man, and Cybernetics, , vol 
6, 247-52, IEEE, Piscataway, NJ, 1999 

6. Kobayshi Singenobu, “Color Image Scale,” Kodansha America, 1990 
7. Haruyoshi Nagumo, “Color Image Chart,” Chohyung Publishing Co., 2000 
8. I.R.I, “Adjective Image Scale”, http://www.iricolor.com/04_colorinfo/colorsystem.html 
9. Hewlett-Packard, “The Meaning of Color”, http://www.hp.com/united-states/public/color/ 

meaning.html 
10. George A. Miller, “WordNet: a lexical database for English,” Communications on the 

ACM, 1995 
11. S. Banerjee, T. Pedersen, "An adapted Lesk algorithm for word sense disambiguation 

using WordNet," In Proceedings of the Third International Conference on Intelligent Text 
Processing and Computational Linguistics, Mexico City, pp. 136–145, 2002 

12. S. Banerjee, T. Pedersen, "Extended gloss overlaps as a measure of semantic relatedness," 
In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, 
Acapulco, pp. 805–810, 2003 



Mass Detection in Mammograms Using
Gabor Filters and Fuzzy Clustering

M. Santoro, R. Prevete, L. Cavallo, and E. Catanzariti�

Department of Physical Sciences, University of Naples Federico II,
INFN, Section of Naples

{santoro, ezio, prevete}@na.infn.it

Abstract. In this paper we describe a new segmentation scheme to
detect masses in breast radiographs.

Our segmentation method relies on the well known fuzzy c-means
unsupervised clustering technique using an image representation scheme
based on the local power spectrum obtained by a bank of Gabor filters.

We tested our method on 200 mammograms from the CALMA
database. The detected regions have been validated by comparing them
with the radiologists hand-sketched boundaries of real masses. The re-
sults, evaluated using ROC curve methodology, show that the greater
flexibility and effectiveness provided by the fuzzy clustering approach
benefit from an image representation that combine both intensity and
local frequency information.

1 Introduction

Developing and testing new segmentation schemes that can be successfully ap-
plied to mammographic images is a big challenge motivated by the significant
increase, during the last few years, of the demand for computerized medical
imaging systems in radiology [1]. This is due mostly to the institution of radi-
ological screening programs for early diagnosis of cancer in most industrialized
countries.

At present, mammograms, i.e. X-ray images of the breast, are considered the
best method for screening wide groups of asymptomatic women for an effective
early detection of breast cancer. These screening programs are generating a large
number of mammograms which must be interpreted by a limited number of
expert radiologists. Therefore, computerized systems have been developed to
aid radiologists working in mammography to assess correct diagnosis. The goal
of these systems is to focus the radiologist’s attention on suspicious areas.

Masses are one of the classic mammographic signs of malignancy. They are
regions of the breast that appear “different” from other areas of the same (or
opposing) breast. They generally exhibit poor image contrast and are largely
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similar to the surrounding breast tissue which is also not uniform. This fuzzy
nature exhibited by mammographic images has led to the use of fuzzy image
processing techniques for their interpretation. In this paper we propose an un-
supervised fuzzy segmentation scheme to detect masses in mammograms based
on single image decomposition.

2 Background

Any automatic system for the detection of malignant masses can be conceptually
schematized as follows. After a preprocessing stage in which all the uninteresting
areas of the mammogram, such as the identifying label, are filtered out from the
image, a two step procedure is generally applied: first, the breast region is fully
examined in search of suspected zones. At this early stage the aim is to detect
solitary areas of the breast which appear different from other areas, i.e., areas
where tissues seem to divert from normality. Since most masses show as regions
with homogeneous gray level intensity, this first step is usually handled as a
typical texture segmentation problem. Textural features are extracted from the
breast region and different classes of texture patterns are detected on the basis
of such features. The result of this first step is the segmentation of the breast
image in the so called ROI’s, regions of the image requiring further analysis. At
this point, a strong sensitivity is requested but a weak specificity is tolerated.

At the second step, ROI’s so detected are further processed to filter out those
regions not likely to correspond to masses. False positives can be reduced by using
computationally inexpensive criteria based, for example, on area, circularity or
contrast. This phase is meant to increase the specificity, i.e., to lower the number
of regions not likely to correspond to mass tissue.

A comparison can be made at this stage, in which corresponding views of the
right and left breast are inspected in search of asymmetric densities which might
indicate the possible presence of masses.

Many approaches skip either step 1 or step 2 or they do not explicitly distin-
guish them. Quite often, both steps are skipped by image analysis algorithms
but the job of identifying ROI is left to an expert radiologist who manually draw
mass boundaries.

3 The Algorithms

The first step in the mass detection process is the segmentation of the breast im-
age in suspicious and normal regions. Once a suspicious region is found it is easier
to proceed with the analysis because, as we pointed out in the previous para-
graph, masses found within a mammogram often will have enough distinguishing
characteristics to be classified as masses. However, the detection of suspicious
regions is a harder task because most masses exhibit poor image contrast and
may be highly connected to surrounding normal tissue. Therefore, in order to do
that, we need powerful local textural descriptors capable of detecting the struc-
tural properties of the image at different levels of resolution both in the spatial
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Fig. 1. The pipeline of our segmentation scheme

and in the spatial-frequency domain. Our approach employs the class of analytic
functions known as Gabor Elementary Functions. Gabor filters have been shown
to be very effective by several medical imaging algorithms. They were used, for
example, by Ferrari et al. [2] to detect global signs of asymmetry in the fibro-
glandular discs of the left and right mammograms of a given subject, by Cen
et al. [3] for the registration of 3-D ultrasound images and by us [4] to detect
clustered microcalcifications in mammograms. Due to the great variability in the
textural appearance of both the pathologic tissue and the normal breast pattern
no prior knowledge about the imaged domain is assumed, hence, an unsupervised
scheme of processing must be used. In our approach, the Fuzzy C-means clus-
tering algorithm [5] was employed. A fuzzy segmentation method retains more
information from the original image than classical segmentation methods. As far
as the number of classes is concerned, we experimentally increased the number
of clusters until the class of candidate masses would stand-up quite clearly from
the clusters representing different types of textural tissue. The overall work–flow
of our segmentation scheme is shown in figure 1

3.1 Feature Extraction and Gabor Filters

In order to extract textural features we convolved the mammographic images
with a 2–D version of Gabor filters. Such filters are linear and local and their
convolution kernel is the product of a Gaussian with a plane–wave function.
A 2–D Gabor filter acts as a local band–pass filter with optimal joint localiza-
tion properties in the spatial and in the spatial–frequency domain. The analytic
function h(x, y) that represents these filters is:
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h(x, y) = g((x − x0)′, (y − y0)′)e2πi(u0(x−x0)+v0(y−y0)) (1)

where:
g(x, y) =

1
2π√σxσy

e
− 1

2
x

σx

2+ y
σy

2

(2)

is a two-dimensional Gaussian centered on the origin and scaled by widths σx

and σy, and (x′, y′) = (xcosϕ+ysinϕ,−xsinϕ+ycosϕ) represent the coordinates
in the rotated reference system X ′O′Y ′.

Typically, when a Gabor filtering approach is adopted, the image is filtered
with a set of filters of different preferred orientations and spatial frequencies that
cover appropriately the spatial frequency domain. The results of such convolu-
tions are then joined to form a vector whose components are the pixel feature
vector sets. In essence, we choose the bank of Gabor filters in such a way that
their central frequency form a lattice sampling the spatial frequency plane [4].
A uniform covering of the frequency half-plane with minimal overlapping at the
extremes of their bandwidths is obtained by a sampling rate that, in a polar
reference system, is constant with respect to the orientation, and logarithmic
with respect to the spatial frequency.

The main difficulty to directly use the feature vectors thus obtained is the high
dimensionality of such vectors, which typically have from 12 to 40 components
[6]. A clustering algorithm using the complete feature vectors will be very slow
and could not be used effectively in a CAD system.

Several approaches have been proposed in literature to decrease the dimen-
sionality of Gabor feature vector. We follow the approach proposed by Jain in [6]
We compute the texture local energy for each pixel in the convolved images. The
use of spatial context allows us to reduce the spatial resolution of the images
which leads to a lesser number of feature vectors to be clustered.

An optional post–processing step, in which the responses of filters correspond-
ing to the different orientations are merged together for each value of the spatial
resolution, permits a further reduction of the number of features. In the case of
mammograms this procedure proved effective in reducing computational overload.

3.2 Fuzzy C-Means Clustering

Fuzzy C-Means is an iterative clustering algorithm developed by Dunn in 1973 [5]
and improved by Bezdek in 1981 [7].

It is considered a fuzzy version of the more famous k-means algorithm because
it allows feature vectors to belong to multiple clusters, with varying degrees of
membership. It represents a significant improvement with respect to the problem
of erroneous classifications of vectors. Since each vector belongs to many classes,
it does not introduce a large bias as is the case with k-means.

The main difference between k-means and fuzzy c-means is the objective
function: F =

∑k
i=1
∑n

j=1(wij)m‖x(j)
i − cj‖2.

The function contains the multiplicative terms (wij)m corresponding to the
membership values. Each (wij)m can be considered an element of a membership
matrix U and represents the degree of membership, in the range [0; 1], of a feature
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vector xi to the fuzzy cluster cj . The exponent m, called fuzzifier, determines
the level of cluster fuzziness. A large m results in smaller memberships and
hence, in fuzzier clusters. Usually good values of m are chosen on the base of
some prior domain knowledge or on the base of experimental trials.

A problem with a pixel–based approach to image segmentation is the difficulty
to introduce context dependent information into the segmentation scheme. Usu-
ally, post–processing procedures are separately applied to the segmented image.
During the last few years, however, some attempts have been made to introduce
contextual information in the point–by–point segmentation scheme. We studied
two variations of the fuzzy clustering approach and we evaluated their effective-
ness with respect to the standard FCM in the context of our image domain.

The first algorithm we considered was the Spatially Guided Fuzzy C-Means
[8], where spatial information, in the form of geometrical shape description which
can vary from local intensity neighborhood to a more extended shape model, is
introduced during the construction of the cluster prototypes. In this way, both
the spectral and spatial neighborhoods of a pixel determine the pixel contribu-
tion to a cluster prototype. Results reported in [8] with this augmented fuzzy
clustering approach show more homogeneous regions and less spurious pixels.

The second alternative we explored was the algorithm proposed in [9], the
Bias Corrected Fuzzy C-Means. In such algorithm the objective function of the
standard FCM algorithm is modified in order to compensate for spatial inhomo-
geneities and to allow the labeling of a vector to be influenced by the labels in
its immediate neighborhood. The neighborhood effect acts as a regularizer and
biases the solution toward piecewise-homogeneous labeling. Such a regulariza-
tion is reported to be effective in the segmentation of images corrupted by salt
and pepper noise, as is the case in medical images.

A qualitative evaluation of preliminary results (not shown here) obtained
by applying the proposed segmentation scheme to several images formed by
combining different textures patches from Brodatz database showed that, among
the three algorithms we implemented, Fuzzy C-Means performed the best.

The bad performance of Spatially Guided Fuzzy C-means can be schematically
explained by the fact that, in our approach, each feature vector already contains
information from the pixel spatial neighborhoods. Therefore, it can be argued
that the further dependency from the spatial context introduced by the SG–
FCM causes erroneous aggregations leading to oversized regions. Bias–Corrected
Fuzzy C–means also wrongly segments the image. In fact, most of the noise in
the original image has been removed by the smoothing filter we had applied
when computing the texture local energy.

On the basis of the above sketched considerations, we decided to choose FCM
for performing clustering.

4 Experimental Results

To test our algorithm we used the CALMA database of mammographic im-
ages [10] that was developed in the frame of a national collaboration, supported
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Fig. 2. On the top you can see three mammographic images. On the bottom there are
the corresponding segmented images.

by the Italian National Institute for Nuclear Physics, between several Italian
Universities and some hospitals. We selected 200 images corresponding to the
cranio–caudal projection.

Due to the ill-defined textural characteristics of candidate mass regions and to
the great variability in the textural appearance of the normal breast pattern, a
segmentation of the breast image in two classes, normal and abnormal, is bound
to fail. We experimentally set to six the number of clusters for the clustering
algorithm. Figure 2 shows the results of the segmentation on two sample images.
The detected ROIs, corresponding to the cluster with the highest response in
the texture local energy, are shown in red.

Our system has detected 193 of 219 total masses, with an efficiency of 88%.
The total number of detected ROIs is 966, 773 of which are false positive; and
thus we obtained an average of less than 4 false positives per image.

4.1 Discussion

In order to reduce the number of ROIs, we classified them as either mass or
normal tissue on the basis of four different global parameters: its absolute di-
mension (in pixels), its relative dimension with respect to the dimension of the
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(a) Single parameters (b) JRDI

Fig. 3. ROC curves measuring the performances of our segmentation scheme

breast (again in pixels), its mean intensity and, finally, its relative intensity with
respect to the average intensity of the breast tissue. We let the threshold value
for these parameters vary and then we calculated the sensibility (se = TP

TP+FN )
and the specificity (sp = TN

TN+FP ).
In order to classify a ROI as true/false positive or true/false negative, we

check if the ROI drawn by the radiologist intersects the ROIs found by our
algorithm, and also if the normalized area of the intersection is greater than a
fixed threshold value.

Automatically detected ROIs that satisfy the above conditions are considered
true positive, while the others are marked as false positive. We consider false
negatives the ROIs detected by the radiologist but not detected by our system.
Table 1 shows the areas under the ROC curves for the four above mentioned
parameters. The ROC curves are shown and compared in fig. 3(a).

The best accuracy has been obtained using the relative dimension parameter.
However, if we consider only the higher levels of sensitivity, the curve correspond-
ing to the relative mean intensity parameter is more effective. We found best to
combine them by defining a new paramenter, called joint relative dimension and
intensity or (JRDI), that is a weighted sum of the two. In such a way, we obtained
an area under the ROC curve equal to 0, 808± 0, 018 (see fig. 3(b) for the curve).

These results are very promising compared to some other recent results ob-
tained in the same field [11, 10].

Table 1. Area under the ROC curves for each parameter

Parameter Area
absolute dimension 0, 762 ± 0, 020
relative dimension 0, 767 ± 0, 020
mean intensity 0, 583 ± 0, 022
relative mean intensity 0, 733 ± 0, 020
JRDI 0, 808 ± 0, 018
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5 Conclusions

In this paper we have presented a new segmentation scheme to detect suspi-
cious areas in breast radiographs. The scheme relies on the well known unsu-
pervised clustering technique called fuzzy c-means that overcomes some of the
main drawbacks of the standard k-means algorithm by allowing each sample
point to belong to all clusters at the same time. Every single pixel has a de-
gree of membership to each cluster: the objective function, to be minimized at
each iteration of the algorithm, is the Euclidean distance between the sample
points and the cluster centers, weighted by the corresponding membership values.
Clustering is performed using image features based on the local power spectrum
obtained by a bank of Gabor filters. We found that the greater flexibility and
effectiveness provided by the fuzzy clustering approach benefited from a mul-
tiresolution image representation combining both local intensity and frequency
information.

One of the main problems to cope with when using Gabor filters is the spec-
ification of an appropriate set of parameters. In fact, the number of filters can
range from twelve to about forty, depending on the granularity of the sampling in
the local-power spectrum. Indeed, the larger the number of filters the greater is
the accuracy of the image representation. However, a larger number of convolu-
tion filters leads necessarily to an unacceptable computational effort that could
make our system useless for the radiologist. Moreover, it could turn out that
good parameters set for one dataset could prove less effective with a different
one. We had in mind both problems while designing the algorithm.

As far as the computational complexity is concerned, it depends on the num-
ber and the size of the convolution kernels, which in turn depend on the linear
dimensions and the modulating frequencies of Gabor functions. Therefore, one
is confronted with the problem of assigning specific values to these parameters,
with the goal of covering the spatial and spatial–frequency domains as uniformly
as possible while keeping the computation manageable. As for the orientation
ϑ, we considered Gabor filters at an angle Δϑ = 45 degree apart from each
other. We found out that a finer resolution in the orientation ϑ does not lead
to a significant refinement of segmentation results; rather, a separation among
orientations smaller than 30 degrees produces more noise and worse results. Fi-
nally, although other choices are possible, in actual computations we decided to
take the square module of the symmetrical and antisymmetrical response of each
Gabor filter. Only four convolutions were thus required for each given spatial
resolution, in fact, ϑ and ϑ + π differ only in sign. As for the spatial resolution,
for each assigned orientation, the standard deviation σ assumes the values 1, 2
and 4. These values were selected on the basis of the size of the structures of in-
terest in the mammograms. Given the average dimensions of breast masses, the
program needs to detect intensity changes in the image plane occurring in the
range of 0.5 to 4-5 cm. Each image in the CALMA dataset is 2656x2067 pixels
large with a resolution of 0.085 cm, thus the size of the filters we used, combined
with a down-sampling of the image by a factor of 10 in the pre-processing stage,
provide us with such desired resolution.
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By using the minimum set of filters the time necessary to segment each image
in the CALMA database ranges approximately from 4 minutes up to a maxi-
mum of 8 minutes, depending on the ratio between the size of the breast region
detected and the image size. This is a good performance if we consider that no
code optimization has been made yet and that an average time of more than one
patient per hour is quite good in the actual context of mammographic screening
programs.

We would like to add a final consideration regarding the robustness of the pro-
posed approach. Images contained in the CALMA database have been collected
by different hospitals using different machines. As a result, CALMA images are
quite heterogeneous in their visual characteristics and, therefore, they repre-
sent a good testing ground for CAD programs. However, we have not tested
our program extensively on images from different databases. As for the depen-
dence of the parameter values on image resolution, one could think of adding a
module that automatically set both the proper range of filter sizes and the down-
sampling factor on the basis of the actual spatial resolution of the images being
used and the approximate size of the objects to be detected. This information
is always available to the radiologists that can easily set the needed parameters
at the beginning of the analysis.

As we already mentioned, the results obtained with our approach have proved
quite encouraging compared to other recent classification systems that use the
same database [11, 10] .
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Abstract. In this paper, we propose a new Chaotic MultiAgent System
(CMAS) for image segmentation. This CMAS is a distributed system
composed of a set of segmentation agents connected to a coordinator
agent. Each segmentation agent performs Iterated Conditional Modes
(ICM) starting from its own initial image created initially from the ob-
served one by using a chaotic mapping. However, the coordinator agent
receives and diversifies these images using a crossover and a chaotic mu-
tation. A chaotic system is successfully used in order to benefit from the
special chaotic characteristic features such as ergodic property, stochastic
aspect and dependence on initialization. The efficiency of our approach
is shown through experimental results.

Keywords: Image Segmentation, Markov Random Field, MultiAgent
Systems, Genetic Algorithms, Chaotic System.

1 Introduction

In this work, we are interested in image segmentation based on Markov Ran-
dom Field (MRF) model [11, 2, 7, 8, 15]. We cite the two main algorithms: the
Besag’s ICM [2] and the Simulated Annealing (SA) [11, 16]. Starting with a sub-
optimal configuration, the ICM maximizes the probability of the segmentation
field by deterministically and iteratively changing pixel classifications. The ICM
is computationally efficient [8], but it strongly depends on the initialization.
Theoretically, SA always converges to the global optimum [11], but it remains a
computationally intensive method for the image segmentation compared to ICM
[8]. Other image segmentation approaches using Genetic Algorithms (GAs) are
reported in [1, 3, 5, 18].

Richard et al. [24] have used a MultiAgent System (MAS) for image process-
ing concerning the high level vision task which is Magnetic Resonance Imaging
brain scans interpretation. Also, Duchesnay et al. [9] have proposed a (MAS)
application for image segmentation.
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In this paper, we propose a new Chaotic MultiAgent System (CMAS) for
image segmentation. This CMAS is a distributed system composed of a set of
segmentation agents connected to a coordinator agent.

In the initialization of the CMAS, each segmentation agent creates an initial
image from the observed one using K-means and a chaotic mapping. In the
evolution cycle of the CMAS, each segmentation agent performs ICM starting
from its own initial image, then transmits this image, the segmented one and
the fitness function value to the coordinator agent. This latter, receives the
messages, saves the best of segmentations, performs a crossover and a chaotic
mutation, then retransmits the new initial images to the different agents for
another segmentation cycle.

In chaotic systems and heuristics literature, we find only few papers dealing
with hybrid heuristic in a chaotic system [6, 23]. In the paper [6], the authors
apply the neural network heuristic. They have proposed the chaotic SA with
the transiently chaotic neural network, as an approximation method, in order to
cope with the combinatorial optimization problems. Recently, Ji Mingjun et al.
[23] have proposed an application of chaotic attractor in SA. The characteristic
features of chaotic systems allow without ambiguity the improvement of the SA
efficiency [23].

In the CMAS, a chaotic mapping is introduced as a new agent behavior in
order to improve the efficiency of the CMAS. Indeed, differing from classical
probabilistic behaviors, chaos phenomena are a set of unpredictable behaviors.
In fact, we benefit from the special chaotic characteristic features such as er-
godic property, stochastic aspect and dependence on initialization. These fea-
tures allow to this approach to escape the local optimum and converge to a
global one.

The organization of this paper is as follows. After this brief introduction, the
section 2 presents the related concepts. In the section 3, we describe the steps of
the CMAS. Preliminary results are reported in the section 4. Several conclusions
are drawn in the last section.

2 Related Concepts

An image S = {1, .., t, ..,MN} specifies the grey levels for all pixels in an
MN−lattice (MN = M×N), where t is called a site. The true and the observed
images are represented by the MN -random vectors:X =(X1, . . . , Xt, . . . , XMN ),
Xt ∈ {1, . . . ,C}, Y = (Y1, . . . , Yt, . . . , YMN ), Yt ∈ {0, . . . , 255}. Let Ω be the set
of all possible configurations. The observed image is obtained by adding Gaussian
noise process to the ideal image [8]. A neighborhood system NS = (Ni ⊂ S, i ∈
S) is a subset collection Ni of S according to: (1) i /∈ Ni and (2) j ∈ Ni ⇔ i ∈ Nj .
A clique c is a set of points which are all neighbors to each other: ∀r, t ∈ c, r ∈ Nt.
Let X = (X1, . . . , XMN ) ∈ Ω. X is a MRF with respect to NS if:

1. ∀x ∈ Ω : P (X = x) > 0
2. ∀t ∈ S x ∈ Ω : P (xi/xj , j ∈ S − {i}) = P (xi/xj , j ∈ Ni)
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X is a MRF on S with respect to NS if and only if P (X = x) is a Gibbs
distribution defined by the a-priori probability P (X = x) = e−U(x)/Z where
Z =

∑
x∈Ω

e−U(x) is the partition function and U(x) is the energy function:

U(x) =
MN∑
t=1

∑
r∈Nt

θrδ(xt,xr) (1)

where θr are the clique parameters, δ(a, b) = −1 if a = b, 1 if a �= b.
The a-posteriori probability P (x/y) is a Gibbs distribution given by: P (x/y)=

e−U(x/y)/Zy where Zy is the normalization constant and U(x/y) is the energy
function [15] given in equation 2:

U(x/y) =
MN∑
t=1

[ln(
√

2Πσxt) +
(yt − μxt)2

2σ2
xt

+
∑
r∈Nt

(βδ(xt,xr))] (2)

where β is a positive model parameter that controls the homogeneity of the
image regions.

3 The Chaotic MAS for Image Segmentation

In this work, we define a new MRF model-based distributed system for image
segmentation.

In fact, there is potential risk that distributed evolutionary design process can
be attracted to a local minimum, especially when small sizes of subpopulations
are used with good individuals as initial parents [20]. However, this danger can
be avoided by using random initialization [20], which coincides exactly with
our approach. Chaos is utilized as a random number generator, because it was
realized that one could take advantage of the intrinsic features of a chaotic system
and turn them in to an aperiodic sequence of random numbers.

3.1 The Chaotic System

Among the various non linear mappings considered by researchers, the simplest
so-called logistic map, which exhibiting order-to-chaos transitions (see equation
3). So, the one-dimensional logistical map is introduced as follows:

zk+1 = f(μ, zk) = μzk(1 − zk), zk ∈ [0, 1], k = 0, 1, . . . (3)

where zk is the variable value z at the kth iteration and μ is so-called bifurcation
parameter of the system.

In the equation 3 (see Fig. 1), the variable zk represents the extinction rate
where 0 represents extinction and 1 the maximum viable population. The bifur-
cation parameter μ represents the growth rate of the population.

According to the equation 3, we assume that the higher the scale of the growth
rate, the higher the size of the population.
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Fig. 1. The logistic mapping and the second new chaotic mapping from chaotic neuron.
μ = 4, k = 300, z0 = 0.01,η = 0.9 and γ = 5.

Fig. 2. The chaotic initialization of CMAS

The second chaotic system used in the chaos simulated annealing [23] is de-
rived from chaotic neuron [23, 25] and produced by a new chaotic map defined
in the equation 4.

zk+1 = ηzk − 2tanh(γzk)exp(−3z3
k), η ∈ [0, 1], k = 0, 1, . . . (4)

where z represents the internal state of the neuron, η is a damping factor
of nerve membrane and the second term of the equation 4 given by f(zk) =
2tanh(γzk)exp(−3z3

k) is a non-linear feedback. So, we generate the initial solu-
tion according to a chaotic mapping by using the equation of the second chaotic
map (see equation 4) instead the equation 3.

We use the extreme sensitivity of chaos to the starting values [22] in the
initialization of the CMAS. In the chaotic initialization (see Fig. 2), we create
an initial configuration by using K-means and perturbing certain site labels
according to a chaotic mapping.

The application of chaos in SA proved its superiority and obtained very good
results in [23], by escaping local optima. In the SA using the new chaotic map (see
equation 4) gains in precision, but consumes more time to converge compared to
the SA using logistic map (see Fig. 1) which spends relatively less CPU time [23].
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Let x0 = (x0
1, . . . ,x

0
s, . . . ,x

0
MN ) be an initial image created by using K-means.

This initial image will undergo chaotic perturbation by applying the formula 5
as follows:

For a given site s selected randomly with a probability of 0.005 the site label
x0

s ∈ {1, ..,C} is created by using the formula:

x0
s = α*C ∗ zks

, + (1 − α)*C ∗ wks
, (5)

For a given z0, the different chaotic variables zks
, s = 1, 2, . . . ,MN are gener-

ated by the logistic map (see equation 3) and for a given w0, the different chaotic
variables wks

, s = 1, 2, . . . ,MN are generated by the new chaotic map 4, where
ki is an integer created randomly in the set {1, . . . , 400} and α is a parameter
in the interval [0, 1].

In fact, the use of chaos as a random number generator was realized, so that
one could take advantage of the intrinsic features of a chaotic system and turn
them into an aperiodic sequence of random numbers [21].

3.2 The Genetic Operators

The population is a set of initial images created from the observed one. Let A
be an individual of the population. A gene corresponds to a site label A[i, j] ∈
{1, 2, . . . ,C}, which the alphabet corresponds to the label set {1, 2, . . . ,C}. Each
individual is encoded as a chromosome called a genotype, and each chromosome
is evaluated with a measure of fitness via the energy function given in equation 2.

Let A be a chromosome and i1, i2 ∈ {1, . . . , N}, j1, j2 ∈ {1, . . . ,M}, where
i1 < i2 and j1 < j2. Let P be a rectangle of the image A limited by the points
(i1, i2) and (j1, j2) defined by: P = {Ai,j ∈ A/i1 ≤ i ≤ i2, j1 ≤ j ≤ j2}. We can
show that each part P of A is evaluated by the U(P/y) =

∑i2
i=i1

∑j2
j=j1

U(Ai,j/y),
where y is the observed image. The genetic operation of reproduction is based
on the Darwinian principle of reproduction and survival of the fittest [12, 14, 17].

The crossover combines, randomly with a probability of 0.9, the genetic ma-
terial of two parent chromosomes as initial images to produce offsprings corre-
sponding to new initial images, which will be used by the segmentation agents
(see Fig. 3). For each mating, the crossover positions are selected randomly as
numbers of lines and numbers of columns (see Fig. 3).

The mutation is a rare but extremely important event in GA. When a site
label is mutated, it is randomly selected with a probability of 0.005 and replaced
with another category from the alphabet by using the same process as that of
initialization (see Fig. 4).

3.3 The CMAS Architecture

We consider k segmentation agents connected to a coordinator agent as pre-
sented in Figure 5. These cooperating agents contract in a common action after
identifying a common goal.
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Fig. 3. The two parents represent the initial images and the two offspring are the new
initial images. i1, i2 are the cross line points and j1, j2 are the cross column points.

Fig. 4. Two sites mutation of an initial image. (i1, j1) , (i2, j2) are the sites of mutation.

Fig. 5. Communication network of the CMAS
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The CMAS intensively attempts to find the best segmentation by genetically
breeding of a population of starting images.

The CMAS for image segmentation operates as follows:

– 1. Initialization: Each segmentation agent creates an initial image from
the observed one by using K-means and a chaotic perturbation.

– 2. Each segmentation agent: Performs ICM starting from its own initial
image which sent together with the segmented one and its fitness to the
coordinator agent.

– 3. The coordinator agent:
• receives the messages from the agents,
• compares the Best-Segmentation with the current one and saves the best

one in the variable Best-Segmentation with its fitness in the variable U∗.
• performs randomly a crossover on peers initial images, applies a chaotic

mutation and retransmits the new offsprings to the different agents.
– 4. The process repeats: The steps 2 and 3 until a stability of the system.

4 Experimental Results

We present both synthetic and real results of the CMAS compared with the
ICM. We assume an isotropic second-order Ising model, so in equation 1, θ1 =
θ2 = θ3 = θ4 = β. We have used one value of β which is kept constant through
each segmentation. The segmentation is evaluated by both visual examination
and energy function. The observed y is the same starting discrete data for all
algorithms. These experiments are performed by using Builder C++ 6 on a
Pentium 4, CPU 2.66 GHz with 256 MB.

Figure 6 shows two noisy synthetic images. In the up sub-figure, it can be
seen that different regions are better segmented by CMAS than by ICM (see
Table 1), despite the interference and the thinness of some regions. Also, in the
down sub-figure 6, the CMAS extracts better the circles than ICM in spite of
the degradation of the image.

Fig. 6. Segmentation of 64 × 64 noisy synthetic scenes. (a) true images (b) noisy syn-
thetic images, (c) ICM results, (d) CMAS results. CMAS Iterations=100 and α = 1.
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Table 1. Minimal values of energy functions and parameters

Experiment Approach U(x∗/y)/MN
the up sub Figure 6.(c) ICM −3.378
the up sub Figure 6.(d) CMAS −4.528
the down sub Figure 6.(c) ICM −3.6615
the down sub Figure 6.(d) CMAS −4.7351
the Figure 7.(b) ICM −3.9488
the Figure 7.(c) CMAS −4.3494
Figure 7.(e) ICM −2.5936
Figure 7.(f) CMAS −4.0297

Fig. 7. A two-class segmentation of sonar images involving: (a) a rock shadows, and (b)
a cylindrical object shadows. CMAS iterations=100 and α = 0. (a) real sonar image,
(b) ICM result of (a), (c) CMAS result of (a), (d) real sonar image, (e) ICM result of
(d), (f) CMAS result of (d).

In figure 7.(a), the cast shadow of a manufactured object has a geometric
shape. The CMAS result is better than the ICM one. In the two-class segmenta-
tion of a sonar image involving a rock shadows (see Fig. 7.(d)), dissimilar to the
cast shadow of the cylinder (see Fig. 7 (a)), the ICM do not allow to eliminate
the speckle noise effect.

5 Conclusion

We have introduced a cooperative chaotic approach for image segmentation.
The competition/cooperation activity of the different agents is achieved to in-
sure that this process accedes to the best segmentation. ICM is a deterministic
optimization method based on a descent gradient strategy. In fact, the CMAS
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increases the possibilities to find good segmentations across a number of parallel
ICM processes, each one starting from its own sub-optimal image.

The autonomous agents of the CMAS provide modularity in which one agent
does not need to have a precise knowledge of the internal structure of others in
order to add a new behavior to the system.

A new scheme for generating good pseudo-random numbers based on the
composition of chaotic maps is introduced. In fact, we have applied a chaotic
map in CMAS in order to benefit from chaotic characteristics such as ergodic
property and sensitivity dependence on initialization phase.

Both synthetic and real images have been used to assess the validity and
performance of the approach. Experimental results are very encouraging which
demonstrate the feasibility, the convergence and the robustness of the method.
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Abstract. We establish in this paper the link between the two main
approaches for fuzzy mathematical morphology, based on duality with
respect to complementation and on the adjunction property, respectively.
We also prove that the corresponding definitions of fuzzy dilation and
erosion are the most general ones if a set of classical properties is required.

1 Introduction

Extending mathematical morphology to fuzzy sets was addressed by several au-
thors during the last years. Some definitions just consider grey levels as mem-
bership functions, or use binary structuring elements. Here we restrict ourselves
to really fuzzy approaches, where fuzzy sets have to be transformed according to
fuzzy structuring elements. Initial developments can be found in the definition of
fuzzy Minkowski addition [1]. Then this problem has been addressed by several
authors independently, e.g. [2,3,4,5,6,7,8,9]. These works can be divided into two
main approaches. In the first one [2], an important property that is put to the
fore is the duality between erosion and dilation. A second type of approach is
based on the notions of adjunction and fuzzy implication, and was formalized in
[8]. The aim of this paper is twofold. First, we will clarify the links between both
approaches (which are summarized in Section 2) and establish the conditions of
their equivalence (Section 3). Then, in Section 4, we will prove that the defini-
tions of dilation and erosion in these approaches are the most general ones if
we want them to share a set of classical properties with standard mathematical
morphology.

2 Summary of the Two Main Approaches

Let us first briefly recall the two main approaches. Fuzzy sets are defined on a
space S, through their membership functions from S into [0, 1]. The set of fuzzy
sets on S is denoted by F , and ≤ is the partial ordering defined by μ ≤ ν ⇔
∀x ∈ S, μ(x) ≤ ν(x). This defines a lattice (F ,≤).
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2.1 Fuzzy Morphology by Formal Translation Based on t-Norms
and t-Conorms

The first attempts to build fuzzy mathematical morphology were based on trans-
lating binary equations into fuzzy ones, as developed in [2]. This translation is
done term by term, by substituting all crisp expressions by their fuzzy equiva-
lents. For instance, intersection is replaced by a t-norm, union by a t-conorm,
sets by fuzzy set membership functions, etc.

An important property that was put to the fore in this approach is the
duality between erosion and dilation. We consider here morphological dilation
and erosion, i.e. based on a structuring element.

Let εB(X) denote the erosion of the set X by B, defined by x ∈ εB(X) ⇔
Bx ⊆ X , where Bx denotes B translated at point x. The translation of this
expression into fuzzy terms leads to a natural way to define the erosion of a
fuzzy set μ by a fuzzy structuring element ν, as:

∀x ∈ S, εν(μ)(x) = inf
y∈S

T [c(ν(y − x)), μ(y)], (1)

were T is a t-conorm and c a complementation. This corresponds to a degree
of inclusion of ν, translated at x, in μ. The dual of erosion in the crisp case
is δB(X) = (εB̌(Xc))c, where B̌ denotes the symmetrical of B with respect to
the origin. Accordingly, by duality with respect to the complementation c, fuzzy
dilation is then defined by:

∀x ∈ S, δν(μ)(x) = sup
y∈S

t[ν(x − y), μ(y)], (2)

where t is the t-norm associated to the t-conorm T with respect to the com-
plementation c. This definition of dilation corresponds to the translation of the
following set equivalence: x ∈ δB(x) ⇔ B̌x ∩ X �= ∅ ⇔ ∃y ∈ S, y ∈ B̌x ∩ X .
The fuzzy dilation at x is expressed as the degree of intersection of ν translated
at x and μ, which is dual of the degree of inclusion used for the erosion. These
forms of fuzzy dilation and fuzzy erosion are very general, and several definitions
found in the literature appear as particular cases, such as [5,3,10] (see e.g. [2,11]
for a comparison).

Finally, fuzzy opening (respectively fuzzy closing) is simply defined as the
combination of a fuzzy erosion followed by a fuzzy dilation (respectively a fuzzy
dilation followed by a fuzzy erosion), by using dual t-norms and t-conorms.

The detail of properties of these definitions can be found in [2]. Most properties
of classical morphology are satisfied whatever the choice of t and T . But in order to
get true closing and opening, i.e. which are extensive (respectively anti-extensive)
and idempotent, a necessary and sufficient condition on t and T is t[b,T (c(b), a)]
≤ a, which is satisfied for Lukasiewicz t-norm and t-conorm for instance.

2.2 Fuzzy Morphology Using Adjunction and Residual Implications

A second type of approach is based on the notions of adjunction and fuzzy
implication. Here the algebraic framework is the main guideline, which contrasts
with the previous approach where duality was imposed in first place.
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Fuzzy implication is often defined as [12]: Imp(a, b) = T [c(a), b)]. Fuzzy in-
clusion, as used in the previous approach, and therefore fuzzy erosion, is related
to implication by the following equation: I(ν, μ) = infx∈S Imp[ν(x), μ(x)].

This suggests another way to define fuzzy erosion (and dilation), by using
other forms of fuzzy implication. One interesting approach is to use residual
implications: Imp(a, b) = sup{ε ∈ [0, 1], t(a, ε) ≤ b}. This provides the following
expression for the degree of inclusion: I(ν, μ) = infx∈S sup{ε ∈ [0, 1], t(ν(x), ε) ≤
μ(x)}. This definition coincides with the previous one for particular forms of t,
typically Lukasiewicz t-norm.

The derivation of fuzzy morphological operators from residual implication has
been proposed in [4], and then developed e.g. in [7]. One of its main advantages
is that it leads to idempotent fuzzy closing and opening. This approach was
formalized from the algebraic point of view of adjunction in [8]. It has then been
used by other authors, e.g. [9]. This leads to general algebraic fuzzy erosion and
dilation. Let us detail this approach. A fuzzy implication I is a mapping from
[0, 1]× [0, 1] into [0, 1] which is decreasing in the first argument, increasing in the
second one and satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. A fuzzy
conjunction is a mapping from [0, 1]× [0, 1] into [0, 1] which is increasing in both
arguments and satisfies C(0, 0) = C(1, 0) = C(0, 1) = 0 and C(1, 1) = 1. If C is
also associative and commutative, it is a t-norm. A pair of operators (I,C) are
said adjoint if:

C(a, b) ≤ c⇔ b ≤ I(a, c). (3)

The adjoint of a conjunction is a residual implication.
Fuzzy dilation and erosion are then defined as:

∀x ∈ S, δν(μ)(x) = sup
y∈S

C(ν(x − y), μ(y)), (4)

∀x ∈ S, εν(μ)(x) = inf
y∈S

I(ν(y − x), μ(y)). (5)

Note that (I,C) is an adjunction if and only if (εν , δν) is an adjunction on the
lattice (F ,≤) for any ν.

Opening and closing derived from these operations by combination have all
required properties, whatever the choice of C and I. Some properties of dilation,
such as iterativity, require C to be associative and commutative, i.e. a t-norm.
This will be further investigated in Section 4.

3 Links Between Both Approaches

3.1 Dual vs Adjoint Operators

If C is a t-norm, then the dilation in the second approach is exactly the same
as the one obtained in the first approach. To understand further the relation
between both approaches for erosion, we define

Î(a, b) = I(c(a), b).
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Then Î is increasing in both arguments, and if I is further assumed to satisfy
I(a, b) = I(c(b), c(a)) and I(c(I(a, b)), d) = I(a, I(c(b), d)), then Î is commu-
tative and associative, hence a t-conorm. In the following, in order to simplify
notations we simply take c(a) = 1−a which is the most usual complementation,
but the derivations and results hold for any c.

Equation 5 can be rewritten as:

εν(μ)(x) = inf
y∈S

Î(1 − ν(y − x), μ(y)),

which corresponds to the fuzzy erosion of the first approach. The adjunction
property can also be written as:

C(a, b) ≤ c⇔ b ≤ Î(1 − a, c).

However, pairs of dual t-norms and t-conorms are not identical to pairs of
adjoint operators. Let us take a few examples. For C = min, its adjoint is
I(a, b) = b if b < a, and 1 otherwise (known as Gödel implication). But the
derived Î is the dual of the conjunction defined as C(a, b) = 0 if b ≤ 1− a and b
otherwise. Conversely, the adjoint of this conjunction is I(a, b) = max(1 − a, b)
(Kleene-Dienes implication), the dual of which is the minimum conjunction.
Lukasiewicz operators C(a, b) = max(0, a+ b− 1) and Î(a, b) = min(1, a+ b) are
both adjoint and dual, which explains the exact correspondence between both
approaches for these operators. Table 1 summarizes the differences between dual
and adjoint operators.

Table 1. A few dual and adjoint operators: dual and adjoint are generally not identical,
except in the case of Lukasiewicz operators (among these examples)

conjunction dual t-conorm adjoint implication I Î

min(a, b) max(a, b)
b if b < a

1 otherwise
(Gödel)

b if b < 1 − a

1 otherwise

0 if b ≤ 1 − a

b otherwise

b if b < 1 − a

1 otherwise
max(1 − a, b) (Kleene-Dienes) max(a, b)

max(0, a + b − 1) min(1, a + b) min(1, 1 − a + b) (Lukasiewicz) min(1, a + b)

3.2 Equivalence Condition

The first main result of this paper is expressed in the following theorem.

Theorem 1. The condition for dual t-norms and t-conorms leading to idempo-
tent opening and closing (i.e. t(b,T (1−b, a)) ≤ a) is equivalent to the adjunction
property between C and I for t = C and T = Î.
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Proof. Let us assume that the adjunction property is satisfied for t = C and
T = Î, i.e.

t(a, b) ≤ c⇔ b ≤ T (1 − a, c). (6)

Applying this property to the tautology T (1 − b, a) ≤ T (1 − b, a) leads directly
to:

t(b,T (1 − b, a)) ≤ a. (7)
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Fig. 1. Illustration of some morphological operations on a one-dimensional example.
(a) Initial fuzzy set and fuzzy structuring element. (b) Dilations using the minimum,
Lukasiewicz and Kleene-Dienes conjunctions. (c) Erosions using the maximum and
Lukasiewicz t-conorms. (d) Opening using max-min, Lukasiewicz and Kleene-Dienes
operators.
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Let us now assume that we have the property expressed by Equation 7 for
dual operators. If b ≤ T (1 − a, c), then since t is increasing, we have t(a, b) ≤
t(a,T (1 − a, c)) which is less than c by Eq. 7. This implies t(a, b) ≤ c.

Since t and T are dual, Eq. 7 is equivalent to 1−T (1− b, 1−T (1− b, a)) ≤ a,
and, by exchanging the roles of 1 − a and a and then of a and b, to T (1 −
a, t(a, b)) ≥ b.

Now, if t(a, b) ≤ c, since T is increasing, we have T (1−a, t(a, b)) ≤ T (1−a, c).
Since the first term is greater than b, this implies b ≤ T (1 − a, c). �
This new result completes the link between both approaches by showing that du-
ality and adjunction are generally not compatible, and that in case dual operators
lead to true opening and closing, the condition on these operators is equivalent
to the adjunction property. This means that in case duality and adjunction are
compatible, the two approaches lead exactly to the same definitions.

3.3 Illustrative Example

In order to show the influence of the choice of the conjunctions, t-conorms,
implications, we illustrate a few operations on a one-dimensional example in
Figure 1. Dilation, erosion and opening are performed using different operators.
When using adjoint operators, opening is a “true” opening (i.e. increasing, anti-
extensive and idempotent). It is clear in this figure that when using min and
max for instance, which are dual but not adjoint, opening is not anti-extensive
(it is not idempotent either, but it is increasing). On the contrary, using Kleene-
Dienes adjoint operators, the opening is anti-extensive (Figure 1 d). However,
other properties of erosion and dilation are lost, due to the weaker properties of
the conjunction with respect to the ones of t-norms. These aspects will be further
investigated in Section 4. The results obtained with Lukasiewicz operators are
in this case very close to the original fuzzy set. However, all properties of all
operations hold when using these operators.

4 General Forms of Fuzzy Morphological Dilation and
Erosion

The second main result of this paper establishes the general form of fuzzy dilation
and erosion, in order to satisfy a set of properties. Let δν(μ) be a morphological
dilation. Let us consider the following general form of δ:

δν(μ)(x) = g(f(ν(x − y), μ(y)), y ∈ S), (8)

where f is a mapping from [0, 1]× [0, 1] in [0, 1] and g is a mapping from [0, 1]S

into [0, 1] (the result is then a fuzzy set).

Theorem 2. The compatibility of fuzzy dilation with classical dilation in case
ν is crisp, its increasingness, and the commutativity with the supremum lead to
the only possible form of δ:

δν(μ)(x) = sup
y∈S

t(ν(x − y), μ(y))
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where t is a conjunction. If the commutativity (δν(μ) = δμ(ν)) and iterativity
(δνδν′(μ) = δδν(ν′)(μ)) properties are also required, then t has to be a t-norm.

From this dilation, a unique erosion such that (εν , δν) is an adjunction is
derived:

εν(μ)(x) = inf
y∈S

I(ν(y − x), μ(y)),

where I is the adjoint of t.
If duality is required, Î has to be the dual of t.

Proof. Let g1 be the version of g applying on one variable only. Most results
are derived by considering constant membership functions. Increasingness of δ
implies that g1.f should be increasing in μ and ν. If ν is crisp, the compatibility
with classical dilation implies that ∀a ∈ [0, 1], g1.f(1, a) = a. Therefore g1.f is a
conjunction.

Further properties such as commutativity and iterativity imply g1.f be com-
mutative and associative, respectively, i.e. it should be a t-norm.

It is easy to prove that g1 has to be a bijection (one to one mapping). It follows
that f(1, a) = g−1

1 (a). Let μ′(y) = g−1
1 (μ(y)). The compatibility with classical

morphology implies supy∈S μ(y) = g(g−1
1 (μ(y)), y ∈ S), i.e. supy∈S g1(μ′(y)) =

g(μ′(y), y ∈ S). Therefore δν(μ)(x) = supy∈S g1.f(ν(x − y), μ(y)). From the
properties of t-norms, this form commutes with the supremum.

From a dilation δν , a general result on adjunctions guarantees that there
exists a unique erosion εν such that (εν , δν) is an adjunction, and it is given by:

εν(μ) =
∨

{μ′, δν(μ′) ≤ μ}.
We have the following equivalences, by denoting g1.f = t and I the adjoint of t:

δν(μ′) ≤ μ ⇔ ∀x ∈ S, δν(μ′)(x) ≤ μ(x)
⇔ ∀x, y ∈ S, t(ν(x − y), μ′(y)) ≤ μ(x)
⇔ ∀x, y ∈ S, μ′(y) ≤ I(ν(x − y), μ(x))
⇔ ∀y ∈ S, μ′(y) ≤ inf

x∈S
I(ν(x − y), μ(x))

Since εν is the supremum of μ′ verifying this equation, we have: εν(μ)(y) =
infx∈S I(ν(x − y), μ(x)).

Now, if duality is required between εν and δν with respect to complementa-
tion, it is straightforward to show that t and Î have to be dual operators.

Having both duality and adjunction is possible under the conditions ex-
pressed in Theorem 1. �
In [3], a similar approach was developed for deriving a general form of fuzzy
inclusion (from which fuzzy erosion is derived). Since weaker properties are re-
quired, this approach leads to the use of weak t-norms and t-conorms (they are
not associative and do not admit 1 (respectively 0) as unit element, in gen-
eral). Properties of morphological operators are then weaker (no iterativity can
be expected, no compatibility with classical morphology), and this is therefore
somewhat less interesting from a morphological point of view. Our approach
overcomes these drawbacks.
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5 Conclusion

This paper exhibits the exact conditions to have a convergence between the two
main approaches for fuzzy morphology. Although the underlying principles are
not compatible in general, it is interesting to note that in case they are consis-
tent, then both approaches are equivalent. Furthermore, they provide the most
general forms in order to satisfy a set of reasonable properties as in classical
morphology. These two new results clarify the status of different forms of math-
ematical morphology.
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Abstract. We propose an innovative segmentation algorithm based on
mathematical morphology operators. This definition is based on a mor-
phological and fuzzy pattern-matching approach, and consists in compar-
ing an object to a fuzzy landscape representing the degree of satisfaction
of an affinity relationship. It has good formal properties, it is flexible, it
fits the intuition, and it can be used for structural pattern recognition
under imprecision. Moreover, it also applies in 3D and for fuzzy objects
issued from images.

1 Introduction

The spatial arrangement of objects in images provides important information
for recognition and interpretation tasks, in particular when the objects are em-
bedded in a complex environment like in medical images. Relationships between
objects, in particular for image segmentation purposes, can be described in terms
of affinity between them, and it is the aim of this paper to address the problem
of defining such relationships. From our every day experience, it is clear that
any all-or-nothing definition leads to unsatisfactory results in several situations,
even of moderate complexity. Fuzzy approaches are all the most interesting when
imprecision in images has to be taken into account. Indeed, the representation
of image regions as spatial fuzzy sets is useful to take into account the impreci-
sion inherent to images. Several different image segmentation methods have been
proposed in literature in the past [6]. In this paper we propose a new approach
based on mathematical morphology [3].

In the present work, we show how the shape of objects in the image can be
utilized to define a new segmentation algorithm. This method has been inspired
on a work about fuzzy relative position between objects according to morpho-
logical operators [1]. Indeed, this algorithm is based on the concept of affinity.
Affinity is a fuzzy relation defined between pixels of the image and its goal is to
capture the grade of their "hanging togetherness".

The paper is organized as follows: Section 2 is dedicated to the basic concepts,
specifically inherently to the fuzzy affinity; Section 3 presents how affinity can

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 362–368, 2006.
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be used with some morphological operators for the formulation of a segmenta-
tion algorithm; Section 4 describes the proposed algorithm, finally Section 5 the
performances evaluation.

2 Fuzzy Affinity

Let us represent the image domain by S and let S = (S, f) be a fuzzy scene,
where f is the pixel intensity function. We define a fuzzy relation κ in S, with its
membership function μκ; we would want κ to be such that μκ(c, d) is a function
of V (c, d), that is the neighbours of both c and d and of f(c) and f(d), that is
the intensity features. We can use the following functional form for μκ,

μκ(c, d) = g(μψ(c, d), μφ(c, d)). (1)

ψ and φ respectively represent the homogeneity-based and the object-feature-
based components of affinity and μψ and μφ the respective membership functions.
The strenght of relation ψ indicates the degree of local hanging togetherness of
spels because of their intensity similarities. The strenght of relation φ indicates
the degree of local hanging togetherness of pixels because of the similarity of
their features values to some(specified) object feature. The function g can be
considered as a fusion operator; we have chosen an average type fusion operator,
which achieves a compromise between both pieces of information:

g =
√
μφμψ . (2)

For the homogeneity-based affinity, we assume the following expression:

μψ(c, d) = Wψ(|f(c) − f(d)|). (3)

In our work, μψ is assumed as a Gaussian function with zero mean:

Wψ(x) = e
x2

2k2
ψ ,withx = |f(c) − f(d)|.

The treatment of μφ is somewhat different from that of μψ. We consider the
object feature as well as background feature to formulate μφ. We use an object
membership function Wo, as well as background membership function Wb, to
capture the idea of membership of any pixel to the respective regions and then
combine them to obtain μφ.

For our purpose, we choose them as Gaussian functions. Namely, we set

Wo(x) = e
(x−mo)2

2k2
o and Wb(x) = e

(x−mb)2

2k2
b .

Finally, we consider any points c and d to have a high object-feature-based
affinity only if both c and d have high object membership (i.e., the value of
Wo) and both have low background membership (i.e., the value of Wb). The
functional form chosen to reflect this strategy is as follows:

μφ(c, d) =

{
1 , if c = d

Wo(c,d)
Wo(c,d)+Wb(c,d) , otherwise (4)
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where

Wo(c, d) = min[Wo(f(c)),Wo(f(d))], (5)

and
Wb(c, d) = max[Wb(f(c)),Wb(f(d))]. (6)

3 Segmentation Algorithm

Let us consider an image, whose domain is indicated by S, and a set of reference
objects in it Oi, for i = 1, 2, ..., n where n is the number of desired objects.
These objects could be considered as binary or fuzzy. In the last case a specific
fuzzy relation oi

1 is defined on each of them, as indicated in Section 3.1; the
related membership function μoi(c) indicates, for some pixel c ∈ S, the degree
of satisfaction of the specific fuzzy relation oi.

In order to establish the relationships between the binary or fuzzy objects
Oi and S for segmentation purpose, we choose the following approach:

1. We first define a fuzzy “landscape" μfi , around the reference objects Oi, as
fuzzy sets such that the membership values of each point, that is μfi , corre-
sponds to the degree of satisfaction of the fuzzy relation κ defined before.

2. We then compare S to the fuzzy landscapes μfi in order to evaluate how well
a specific object Oi matches S. This is done using a fuzzy pattern-matching
approach.

3.1 Definition of the Fuzzy Landscape

The goal of the definition of the fuzzy landscape is to point out the relations of
affinities between pixels of the image.

The definition of the fuzzy landscape can be adapted to binary and fuzzy ob-
jects; for our purpose, we have only considered fuzzy objects. The fuzzy objects
have been defined by means of a specific fuzzy relation oi, “degree of member-
ship to a specific manually selected object Oi". The membership function
μoi , for each of the selected objects Oi, has been defined by means of a Gaussian
funtion whose mean and variance are related to the mean and variance of the pix-
els of the selected regions of the image. So, given an objectOi

2, each point c ∈ S is
characterized by its “degree of affinity with objectOi". The affinity relation is
the one defined before, indicated by κ. As pointed in Section 4, we compute several
different affinity relations κi, one for each of the object Oi we want to segment.

1 Oi and oi are two different notations: the first one indicates the reference objects
while the last one the fuzzy relations defined on them.

2 In our application, an operator selects, on a display of a slice of the scene, for each ob-
ject Oi, a region of the object and a region of the background using a mouse-controlled
brush.
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(a) MRI (b) fuzzy landscape
of (a)

Fig. 1. Illustration of the concept of the fuzzy landscape of a MRI image: (a) original
image, (b) fuzzy landscape of (a)

In establishing the fuzzy landscape μfi of a specific object Oi, in fuzzy case,
we choose a method that combines directly μoi , describing the membership to
some Oi, with the strenght of affinity μκ [1]. In fuzzy terms the following holds:

μfi(c) = maxd∈Supp(Oi)t[μoi(c), μκi(c, d)], (7)

where t is a t-norm. This definition can be adapted to the case of multiple
objects, in that case μκ(c, d) is simply replaced by μ

(i)
κ (c, d), for i = 1, 2, ...n.

In Fig.1(a) and Fig.1(b) is illustrated the concept of fuzzy landscape. It is an
interesting rapresentation of the fuzzy landscape for MRI image. Fig.1(a) shows
an original a MRI image, Fig.1(b) represents the fuzzy landscape according to
the fuzzy relation “degree of affinity to the gray matter". It’s clear that
points of Fig.1(b) that are embedded in the gray matter have high membership
values (white pixels of the images).

3.2 Fuzzy Pattern Matching

The fuzzy landscape defined before allows us to define objects in the image based
on some specific characteristic of affinity. The process of objects extraction, for
segmentation purpose, is determined by means of the evaluation of the degree
of matching between S and the fuzzy landscape of the objects Oi obtained from
the previous step.

Let us denote by μS the membership function of S, which is a function
of S in [0, 1], where S is the image domain. An appropriate tool for defining
the degree of matching of S with respect to each fuzzy landscape μfi is the
fuzzy pattern-matching approach [2]. Following this approach, the evaluation of
the matching between two possibility distributions consists of two numbers, a
necessity degree Π and a possibility degree N . Π and N are computed for each
object Oi, i = 1, . . . , n, according to the following expressions:

Πi(x) = supy∈S t[μfi(y − x), μS(y)] ∀x ∈ S (8)
Ni(x) = infy∈S T [μfi(y − x), 1 − μS(y)] ∀x ∈ S (9)
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where t is a t-norm (fuzzy intersection) and T a t-conorm (fuzzy union) [3]. In
the crisp case, these equations reduce to:

Πi(x) = supy∈S μfi(y) ∀x ∈ S (10)
Ni(x) = infy∈S μfi(y) ∀x ∈ S (11)

The possibility and necessity can be interpreted in terms of fuzzy matheatical
morphology, since the possibility is equal to the dilation of μS by μfi , while the
necessity is equal to the erosion [3].

4 The Proposed Algorithm

In this section we review the main steps of the proposed segmentation algorithm.
As first step, the user must select on the image, for each of the objects Oi he

desires to segment, an object and a background region. These regions are used
as statistical samples of training for the computation of the parameters of the
affinity, that is mo and mb for the mean and κo, κb and κψ for the standard
deviation.

The second step is represented by the computation of the fuzzy landscapes
μfi for each of the the desired objects Oi. We propose here a fast algorithm for
computing them.

The algorithm consists in performing two passes on the image, one in the
conventional sense, and one in the opposite sense. For each point c, we store the
point Q = O(c) from which the maximum affinity is obtained. For a point c,
we don’t consider all points in Oi as for exhaustive method, but only those of
neighbourhood of c. Specifically, we compute the fuzzy landscape as:

μfi(c) = maxd∈V (c)t[μfi(O(d)), μS(O(d))],

where V (c) denotes the neighbourhood of c. Let dc be the point d for which the
maximum affinity value is obtained

dc = argmaxd∈V (c)t[μfi(O(d)), μS(O(d))]

Then, we set: O(c) = O(dc).
As final result of the second step, each point c of the image is characterized by

its membership, its degree of affinity with each of the manually selected objects
Oi, that is μfi(c), ∀c ∈ S and ∀i = 1, 2, ...n. Then, as pointed before in Section 3,
the fuzzy landscapes of the objects are matched with S. This is realized by means
of the computation of the values Πi and Ni. As in the computation of the fuzzy
landscape, this is realized ∀c ∈ S and ∀i = 1, 2, ...n. The computation of Πi(c)
and Ni(c), as regards fuzzy case, is realized as indicated in (10) and (11). The
final decision is to assign a point c ∈ S to an object for which it has the maximum
degree of matching.

The computational time of the algorithm is O(cncn), where c is the number
of pixels, nc = |V (c)|, that is the number of neighbours of c, and n the number
of objects being extracted. This algorithm is quite fast with respect to the one of
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the Fuzzy Connectednees in [7]. Even if the computational time is quite similar
(O(c(n + 1))) the differences are in operational costs, that is in terms of ms.

Below we propose the final image segmentation algorithm:

1. Estimate parameters for affinity.
2. for each object i do
3. for each pixels c do
4. compute μfi(c) according to (7);
5. for each object i do
6. for each pixels c do
7. compute gi(c) = Πi(c)+Ni(c)

2 according to (10) and (11);
8. for each pixels c find
9. pi = argmax gi(c);

10. Output pi.

5 Experimental Results

In order to evaluate the experimental results of the algorithm, we have tested
it segmenting MRI images. Based on [4], we have used 100 MRI images of the
IBSR (http://www.cma.mgh.harvard.edu/ibsr/). The results obtained by this
algorithm have been compared to the results of the Fuzzy Connectedness seg-
mentation algorithm [7]. We have used the SSIM-INDEX algorithm in order to
evaluate the degree of similarity between the original signal (groundtruth) and
the distorted signal (segmented image), [9].

In Fig.2(b) is shown an example of segmentation. The groundtruth is shown
in Fig.2(c), while the original images in Fig.2(a).

In Table 1(a) are shown the results obtained by the proposed algorithm on
the 100 MRI images of the IBSR. Each row of the tables reports the results of 5
images. We obtain a 90% of similarity that is comparable with results achieved
on the same data set by similar algorithms based on fuzzy connectivity [5].

(a) (b) (c)

Fig. 2. Segmentation obtained by the proposed algorithm: (a) original image , (b)
segmented image, (c) groundtruth
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Table 1. Performances evaluation

Images - SSIM-INDEX
1-5 0.9691 0.9621 0.9616 0.9474 0.9227
6-10 0.9130 0.8992 0.9079 0.8905 0.8882
11-15 0.8806 0.8790 0.8718 0.8675 0.8522
16-20 0.8564 0.8493 0.8524 0.8541 0.8698
21-25 0.8781 0.8610 0.8676 0.8598 0.8465
26-30 0.8572 0.8481 0.8515 0.8595 0.8605
31-35 0.8606 0.8673 0.8768 0.8709 0.8787
36-40 0.8743 0.8908 0.8979 0.9082 0.9147
41-45 0.9263 0.9238 0.9318 0.9330 0.9379
46-50 0.9335 0.9425 0.9453 0.9482 0.9593

Mean 0.8942

(a) SSIM-INDEX of the proposed algorithm
for the first 50 images.
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Abstract. Document image analysis represents one of the most rele-
vant topics in the field of image processing: many research efforts have
been devoted to devising automatic strategies for document region clas-
sification. In this paper, we present a peculiar strategy to extract nu-
merical features from segmented image regions, and their employment
for classification purposes by means of the KERNEL system, a partic-
ular neuro-fuzzy framework suitable for application in predictive tasks.
The knowledge discovery process performed by KERNEL proved to be
effective in solving the problem of distinguishing between textual and
graphical components of a document image. The information embedded
into sample data is organised in form of a fuzzy rule base, which results
to be accurate and comprehensible for human users.

1 Introduction

The goal of document processing is to convert document into more usable form,
composed of text and graphics. Proper detection and recognition of text in the
document images allows for better compression of documents, querying for spec-
ified words, or reediting the document. A document image, usually obtained by
scanning or photographing the original document, is first divided into regions
which are then classified as text or graphics. To classify document regions cor-
rectly, a set of features must be firstly extracted from each region. Successively,
a classification mechanism has to be applied in order to distinguish between text
and graphics, on the basis of the examination of the extracted features [1].

Many different methods for document image classification have been proposed
throughout the last few years, which use different feature sets for classification
tasks: spline wavelet decomposition [2], classification of features such as shape
and area of connected components [3], or Delaunay triangulation [4] to mention
only a few.

In this paper, starting from the investigation of segmented document images,
we propose a neuro-fuzzy approach for image region classification. In particular,
Hough transform is applied for region skew detection and a Power Spectral
Density (PSD) analysis of a projection of a region along skew angle is performed.
The classification is based on the shape and location of the prominent peaks in
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PSD spectrum vector. Additionally, connected components are extracted from a
region and their shape properties such as area, perimeter, first and second order
moments are calculated. Weighted averages of those values extend the feature
vector to increase the classification accuracy.

In order to accomplish the region classification process, the extracted infor-
mation is involved in a knowledge discovery process, based on the employment of
KERNEL, a particular neuro-fuzzy system developed for dealing with classifica-
tion and regression tasks. The idea is to present a set of heterogeneous features
to the system, in order to obtain a fuzzy rule base which could provide accurate
knowledge organisation and readable information for human understanding. As
we are going to detail in the following, the knowledge discovery process per-
formed by KERNEL is based on successive learning steps of a particular neural
network, the neuro-fuzzy network, which realises a suitable hybridisation be-
tween connectionist learning and fuzzy logic. The application of KERNEL to
the region classification problem, based on the analysis of properly identified
input features, produced satisfactory results both in terms of accuracy and com-
prehensibility of the obtained base of knowledge.

The paper is organised as follows. In section 2 we detail the feature extraction
process we adopted in our research; section 3 briefly presents the KERNEL
system and finally section 4 is devoted to the illustration of experimental results
and conclusive remarks.

2 Feature Extraction for Region Description

The general process of document image analysis can be decomposed into three
distinct phases. Firstly, a document image should be segmented into regions,
then a feature extraction process should be performed to successively classify
each obtained region as text or graphics. The research activity described in this
paper assumes that a database of segmented images is available, from which a
set of numerical features has to be extracted. They are employed to classify each
region of the document image by means of the KERNEL system.

The first step of the feature extraction process consists in detecting the region
skew angle, which is important for correct classification of text regions. A text
line is a group of characters, symbols and words, that are adjacent and through
which a straight line can be drawn. The dominant orientation of the text lines
determines the skew angle. The region skew angle φ is determined by means
of the Hough transform: it can be identified as the angle for which the Hough
transform of an image region has the maximum value [5,6,7]. Successively, an
evaluation of the projection of the document region along φ is performed, in
order to obtain the projection vector vp. The elements of vp codify the informa-
tion deriving from the analysed region. Particularly, for a text region, vp should
exhibit regular, high frequency sinusoidal-like shape, with peaks and valleys cor-
responding to the text lines and the interline spacings, respectively. In contrast,
when a graphic region is considered, such regularities cannot be observed.

To measure the periodicity of the vector vp, a Power Spectral Density (PSD)
analysis is performed. In fact, for large text regions, the PSD coefficients show
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a significant peak around the frequency value corresponding approximately to
the number of text lines. For graphic regions, the spectrum presents only 1
or 2 peaks around the lowest frequency values. As a result, a vector vpsd is
calculated as PSD of the Fourier Transform of the vector vp [1]. In most cases,
the number of the components of the PSD spectrum vector vpsd appears to be
too high for a direct use in classification tasks. Therefore, we resolved to extract
information from vpsd by reducing its dimensionality. Particularly, we divide
vpsd into 7 intervals, whose lengths correspond to a scaled Fibonacci sequence,
with multiplying factor two (i.e., 2, 4, 6, 10, 16, 26, 42). In this way, we are
able to exploit most of information, since it is accumulated in the first part
of the spectrum. For each interval, the maximum value of vpsd is derived: all
these values (normalised with respect to the highest one) represent the first 7
components of the feature vector vf , which will be employed for the successive
region classification stage.

To increase classification accuracy, a further step of additional feature extrac-
tion is devoted to evaluate some statistical information, concerning the connected
components in the analysed region. In practice, a set of connected components (i.e.,
single characters, words, or graphics) is obtained from a binarisation of the consid-
ered region. Then, for each component, the averages of the shape ratios (namely,
the ratio between the squared perimeter and the area of the component) and the
averages of the second order momenta, along horizontal and vertical axes, are eval-
uated. In this way, the information embedded into the feature vector vf can be
extended with 3 additional values, corresponding to each computed average.

At the end of the overall feature extraction process, all the regions of the
segmented document image can be represented as 10-components feature vectors.
They are employed as input data of the KERNEL system, for classification
purposes, as detailed in the next section.

3 Classification of Image Regions by the KERNEL
System

In this section we are going to briefly overview the peculiar system employed
to perform the classification of the image regions, namely the KERNEL system.
KERNEL is a particular neuro-fuzzy system, designed to derive from input data
a form of structured knowledge, expressed in terms of fuzzy rules, which can be
employed to tackle classification or regression problems. A summary description
of the system is presented, addressing the reader to some previous publications
of ours for further details [8,9].

Combining the neural learning capabilities with the readability of fuzzy rules,
the system performs a knowledge discovery process to generate a fuzzy inference
model adopting fuzzy rules of the following type:

IF x1 is Ak
1 AND . . .AND xn is Ak

n THEN y1 is b1k AND . . .AND ym is bmk,

where x = (x1, . . . ,xn) is the input variable vector, y = (y1, . . . , ym) is the
output variable vector, Ak

i are fuzzy sets and bjk are fuzzy singletons, with
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reference to the k-th rule (k = 1, . . . ,K). Fuzzy sets Ak
i are defined by Gaussian

membership functions μik(xi) = exp(−(xi − cik)2/σ2
ik), where cik, σik are the

centres and the widths of the Gaussian functions, respectively. Indicating by
μk(x) =

∏n
i=1 μikxi the activation strength of the k-th rule, the final output of

the predictive model can be obtained by: yj = (
∑K

k=1 μk(x)bjk)/(
∑K

k=1 μk(x)),
(j = 1, . . . ,m).

This fuzzy inference model is encoded into a specific neural network, whose
topology reflects the parameters and the organisation of the fuzzy rule base.
The neuro-fuzzy network is composed of three layers: in the first layer nodes
are collected in K groups (corresponding to the K rules), each composed of n
units (corresponding to the n fuzzy sets of every rule). These nodes estimate the
values of the Gaussian membership functions. The second layer is composed of
K units (corresponding to the K rules of the fuzzy model). Each node evaluates
the fulfilment degree of every rule, and the nodes of the third layer supply the
final output of the system.

The neuro-fuzzy network described above constitutes the core of the KERNEL
system, which is organised into three distinct components. The first component
extracts knowledge from data in the form of a fuzzy rule base. The basis for this
process of knowledge extraction consists in a clustering of input data, performed
by an unsupervised learning of the neuro-fuzzy network. The second component
improves the accuracy of the fuzzy rule base, performing a supervised learning of
the neuro-fuzzy network. The third component enhances the comprehensibility of
the fuzzy rule base, reducing the number of rules (through a structure reduction
of the neural network) and adjusting the configuration of the input membership
functions via a genetic algorithm.

In the course of the experimental session concerning the image region classi-
fication, the input vector x, involved in the fuzzy inference model, corresponds
to the ten-dimensional feature vector vf , derived during the feature extraction
process. The output vector y is related to the classes of the classification task
(textual and graphical regions).

4 Experimental Results and Conclusive Remarks

To test the effectiveness of the presented methodology, we employed the Docu-
ment Image Database available from the University of Oulu [10]. This database
includes 233 images of articles, scanned from magazines and newspapers, books
and manuals. The images vary both in quality and contents: some of them con-
tain text paragraphs only (with Latin and Cyrillic fonts of different sizes), while
others contain mixtures of text, pictures, photos, graphs and charts. Moreover,
only the minority of the documents is characterised by Manhattan page layout.

From those document images, 306 graphic regions and 894 text regions have
been extracted and automatically labelled, according to the information included
in the database. After applying the feature extraction process to the entire set
of document regions, we built up a dataset comprising 1200 samples that was
successively partitioned into a training and test set, each one of 600 samples.
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The proportion between graphic and text regions into the training and test sets
reflects the original ratio characterising the overall dataset. The employment of
the KERNEL system, for executing the classification phase, has been realised
on the basis of the training process of a neuro-fuzzy network with 10 inputs
(corresponding to the components of the input vector vf ) and 2 outputs (related
to the two classes involved in the tasks). During the first step, the unsupervised
learning stage produced an initial fuzzy rule base comprising 12 rules. They were
successively refined in terms of accuracy during the second learning step. Finally,
the overall comprehensibility of the knowledge has been enhanced by reducing
the complexity of the fuzzy rule base (namely, the number of involved fuzzy rules
which decreased from 12 to 8) and adjusting the Gaussian membership function
configurations. In table 1 the classification results are reported for each of the
derived fuzzy models, both for training and test set, together with the number of

(a) (b)

Fig. 1. Classification results obtained for two sample images. Dark regions have been
classified as text, while light regions have been classified as graphics.

Table 1. Classification results provided by each one of the derived fuzzy predictive
models

number of % classification

rules Training set Test set

Initial fuzzy rule base 12 95.71 93.53

Refined fuzzy rule base 12 95.80 93.60

Final fuzzy rule base 8 95.48 92.72
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involved rules. As it can be observed, the obtained results are quite satisfactory
in terms of accuracy and the final knowledge optimisation step contributed to
determine a simpler and more comprehensible fuzzy rule base.

As guidelines for future work, the overall methodology could be further
enhanced by improving the angle detection step during the feature extraction
process (introducing more appropriate interpretations of Hough transform).
Moreover, the KERNEL system could be able to produce more accurate results,
by introducing some additional features (related to the texture properties of a
region).
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Abstract. Intelligent Knowledge Capsule was designed for the func-
tions of knowledge acquisition,Memory retention and Knowledgeretrieval.
Specially in this paper, focusing on Knowledge Retrieval process Associa-
tive Priming Knowledge Extraction mechanism is designed. A hierarchi-
cal associative memory including long term memory, short term memory
and synonym net for keyword is established and using this structure
Associative Priming Knowledge Extraction mechanism is processed. We
apply this mechanism to virtual memory and test the retrieving process.

1 Introduction

As a result of many brain researches, it is known that human being does not see
the real images in the world but sees the virtual images made by selected input
data and previous stored knowledge in his brain. Most of living things as well as
human being have similar mechanisms. Living things have evolved this ability to
survive because it is only way for small brain to process huge information of the
outside. For this reason, various talents appear in the functions of living things.
The capability of a living thing depends on how well the memory is structured
and has a good mechanism for knowledge acquisition, retention and retrieval.

Generally living things reacts on the familiar stimulus very easily. Especially
in the case of data which is in enclosing circumstance, it is easy to activate the
associative priming knowledge stored in the memory.

As the information technologies are developing quickly,information circum-
stance is getting more complex and data are piling up in a huge scale. Facing
this situation, the importance of developing more intelligent system is becoming
high. However there is a difficulty for processing the synonyms or similar con-
cepts to keyword used for knowledge retrieval.It is not an efficient way to include
all the synonym of keywords in the memory and cause waste of memory. In this
case it is desirable to manage the synonym net in a separate way.

For this reason, as one of efforts for developing an intelligent system Intelligent
Knowledge Capsule was designed for processing the functions of knowledge ac-
quisition, memory retention and knowledge retrieval. In this paper, we describe
the structure of Intelligent Knowledge Capsule and its main functions shortly
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because it is introduced in the previous papers. Focusing on Knowledge retrieval
we design the flexible structure of associative memory including short term /long
term memory for efficient knowledge extraction and propose Associative Prim-
ing Knowledge Extraction mechanism considering synonym net. In the last step,
We apply this mechanism to virtual memory and test the retrieving process.

2 Intelligent Knowledge Capsule Design

2.1 The Structure of Intelligent Knowledge Capsule

Intelligent knowledge capsule is designed for data acquisition, selection, storing
and extraction.

As shown in Fig. 1, This system consists of Learning memory, Rule base, and
Episode memory. They are related to the others according to their association.
The memory is constructed by information acquisition process. The obtained
data from the knowledge environment come into Input Interface and are tem-
porarily stored in Temporary memory. They are selected and distributed by the
basic mechanism. For autonomous learning mechanism. Learning engine receives
the training data of the special domain and process its learning mechanism.
Episode memory stores the event oriented facts with the information of time
and location and memorize them according to the flow of events sequentially.
Memory Index which composed of Short term memory Index and Long term
memory Index is used for efficient knowledge retrieval.

Fig. 1. The structure of Knowledge capsule

2.2 Knowledge Acquisition: Learning in KLN

Knowledge Learning Frame has the Hierarchical structure and also has KLN
(Knowledge Learning Net) module which consists of modular Neural networks
representing the domain knowledge for the autonomous learning process as
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Fig. 2. Knowledge learning frame

shown in Figure 2[1]. These domains are connected to the corresponding ar-
eas in the other layers vertically and related with the associative relation in the
association module.The observed mixed input data are selected and distributed
to the corresponding NN(Neural Network) in the Selection/Distribution module
by filtering function Fi, which is the criteria for determining the state of firing.

Fi = P (Ci|e1, e2, . . . , en) =
n∏

k=1

(Ci|ek) (1)

where Ci denotes a hypothesis for disease class and ek = e1, . . . , en denotes a
sequence of observed data. Fi can be obtained by calculating the belief in Ci.
If filtering factor Fi is over the threshold, qi, (Fi ≥ qi) , the corresponding class is
fired. The corresponding KLN of the fired class starts the learning or perception
mechanism and produces the output. The values of the cells that don’t belong to
the activated class, are filtered and cleared. The structure of NN is three layered
neural network trained by BP learning algorithm[3].

2.3 Association

Association level consists of nodes and arcs. one node have knowledge and con-
nected to other nodes with an arc of associative relation. Knowledge nodes are
connected to their neighbors according to their associative relations horizon-
tally and connected to NN of the previous layer vertically. Their relations are
represented by the relational graph as shown in Figure 3.

Association are formed in the classical paradigm. System have a bias for asso-
ciating stimuli that are likely to be related in the environment. The system is also
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Fig. 3. Knowledge graph in Association level

sensitive to the likelihood of an association between the two stimuli(associative
bias). It is might be characterized as forming a statistical inference. Bayesian sta-
tistical models for inference about probabilistic relationships consider not only
the data but also prior beliefs about what relationships are likely. The funda-
mental relationship in Bayesian statistics is

PosteriorBelief = PriorBelief ∗ Evidence
That is,

P (h|e) =
P (e|h)P (h)

p(e)

Associative strength,Rij , between Ci and Cj in the knowledge graph is rep-
resented by Bayesian Posterior belief and calculated by equation (2).

Rij = P (ai|aj)D (2)

where D is the direction arrow, D = 1or − 1 , i = 1, . . . , n, j = 1, . . . , n.

The relation is characterized by the associative strength of relation which is
not fixed but changed by incoming evidence.

Table 1. Associative list

node1 Relation strength node2

C1 IS-A 1.0 C2

C1 IS-A 1.0 C3

C2 MADE-OF 0.9 C3

C3 AFFECT 0.7 C4

C4 SELF 0.0 NULL

C3 AFFECT 0.3 C5

C5 SELF 0.0 NULL
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The knowledge graph of Figure 2. is transformed to Associative list of Table 1
for the efficient memory management.

3 Associative Priming Knowledge Extraction Mechanism

3.1 Associative Memory Structuring for Efficient Retrieving

In this section, Associative memory in Intelligent knowledge capsule for efficient
knowledge retrieving is designed. Figure 4 shows modules take charge of structur-
ing associative memory and its knowledge extraction mechanism. After keyword
coming from Input interface is checked in synonym net of temporary memory,
representative keyword(R-keyword) substitutes for the coming keyword and re-
lation between coming keyword and R-keyword is checked. Then R-keyword is
propagated to Associative memory through Gate and used for knowledge extrac-
tion mechanism.

As shown in Figure 5, Associative memory has a hierarchical structure which
consists of short-term memory, long-term memory and forgetting pool. The as-
sociative knowledge is represented as a knowledge graph associated with nodes
and relations. The knowledge activated very frequently or knowledge regarded as
an important one is stored in short-term memory and old knowledge which does
not be frequently used is stored in long-term memory. The knowledge which is
not useful any more is discarded in Forgetting pool. These three types of mem-
ory are connected to vertically and has a flexible characteristics that knowledge
nodes and their association moves and are changed periodically. The node which
does not be activated frequently in short-term memory can move to long-term

Fig. 4. Modules for knowledge extraction in Intelligent knowledge capsule
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Fig. 5. The structure of associative memory including synonym net

memory and the node activated very frequently can move to short-term mem-
ory. Some node in short-term memory is connected to node in long-term memory
with the activating degree of long-term memory, Vij and some node in long-term
memory is connected to the node with forgetting degree,Fij , in Forgetting pool.

3.2 Synonym Net

One of big trouble things in information processing is the problem of synonyms.
There can be many expression called as ”synonyms” for representing same mean-
ing. One keyword has not only synonyms but also words which is not exactly
matched and has very similar meaning. If memory contains all the words includ-
ing synonyms and similar expressions as a keyword, there may occur complex
problem and waste of memory. For preventing this problem and developing the
efficient mechanism, it is necessary to figure out efficient mechanism for memory
maintenance.

Fig. 6. Synonym net
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So, in this section ’synonym net’ which represents the group of synonyms
is proposed. Synonym net has one representative keyword(R-keyword),its syn-
onyms and its similar word in group. On the basis of R-keyword, synonyms
and similar words are connected to R-keyword with relational strength which
represents how far it is from R-keyword as shown in Figure 6.

If one keyword comes through Input Interface, it is checked in synonym net
how much related to R-keyword and the value of relation is stored in Tempo-
rary memory for Associative Priming Knowledge Extraction mechanism. After
checked, R-keyword substitutes for coming keyword and is propagated to short-
term memory in Associative memory for Knowledge Retrieval.

3.3 Associative Priming Knowledge Extraction Mechanism

It is known that memory records become more available when associated infor-
mation is in the environment. The ability of a cue to make associated informa-
tion more available is referred to as associative priming. The associative priming
knowledge in memory reacts on the coming keyword very easily.

In this section this system performs Associative Priming Knowledge Extrac-
tion mechanism using the structure of associative memory. It consists of four
steps, i.e, Synonym net search, Short-term memory search, Long-tern memory
search and Forgetting pool search.

Taking one keyword, this system processes Associative Priming Knowledge
Extraction mechanism and produces the related extracted knowledge using the
following algorithm.

Algorithm 1. Associative Priming Knowledge Extraction algorithm

STEP 1: Input the Keyword.

Synonym net search:
STEP 2: Search the corresponding keyword in synonym net.
STEP 3 : If (not found)

Print (”There is no corresponding keyword!”)
Else (found)
calculate the relational strength to R-Keyword;
R-keyword = Keyword;

Short-term memory Search:
STEP 4: Search the corresponding R-keyword in the Associative list of short

term memory
STEP 5 : If (not found)

Print (”There is no corresponding keyword!”)
Else (found)
associative-knowledge-extraction;
If(longterm-wanted != n)
goto STEP 8 ;
Else(longterm-wanted)
Long-term memory Search;
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Long-term memory Search:
STEP 6: Search the corresponding R-keyword in the Associative list of short

term memory
STEP 7: If (not found)

Print (”There is no corresponding keyword!”)
Else (found)
associative-knowledge-extraction;
If(longterm-wanted != n)
goto STEP 8;
Else(longterm-wanted)
Long-term memory Search;

associative-knowledge-extraction:
next=associative-list;
i = found-i;
while( (next.node2[i]!= null) and (i !=N))
{ Put next.node1[i] to F-list;
Put next.R[i] to F-list;
Put next.node2[i] to F-list ;
i=i+1; }

STEP 8: Stop.

Fig. 7. Example of virtual memory

4 Experiments

This system is applied to the virtual memory as shown in Figure 7 and tested the
process of Associative Priming Knowledge Extraction. Figure 8 shows the results
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of Knowledge retrieval considering synonym search, short-term memory search
and Long-term memory search from Associative Priming Knowledge Extraction
mechanism. As shown in the results, It is found that this extraction algorithm
works successfully and can retrieve the correct data.

As it is shown in the experiment output, the structure of memory is very
flexibly designed and data can be extracted by the reactive level.

Fig. 8. The retrieved knowledge extracted by Associative Priming Extraction algorithm

5 Conclusion

We proposed knowledge capsule which has a hierarchical structure and many
functions of selection, learning,storing and data extraction. Based on this knowl-
edge structure, it has a flexible memory and Associative Priming Extraction
mechanism. We designed the concept of Synonym net and the structure of as-
sociative memory including Short-term memory, Long-term memory and For-
getting pool and proposed Associative Priming Knowledge Extraction algo-
rithm. We tested associative knowledge retrieval function with virtual mem-
ory. As a result of experiments, we could find this system has a flexible mem-
ory and can produce the extracted data according to the reactive level. This
function is applicable to build the flexible memory in intelligent brain
system.
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Abstract. As the information circumstance is getting more compli-
cated, the requirements for implementing the efficient intelligent sys-
tem adopting human brain functions is getting high. We focus on the
function of Reticular Activating System which takes charge of infor-
mation selection.In this paper we designed Reticular Activating System
with Positive/Negative masking in the associative memory and Think-
ing chain extraction mechanism specially implemented for flexible mem-
ory structure. The proposed Reticular Activating system has Knowledge
acquisition, selection, storing, reconfiguration and retrieving part. P/N
masking mechanism for flexible memory is specially designed and tested
with virtual memory.

1 Introduction

The greatest ability of human brain consists not in simply storing the information
but in thinking something from his memory. Every memory groups together with
other memory and is configured harmoniously. It depends on integrated activity
of whole memory. It is known that human being does not see real images of the
world but actually perceives virtual images made in his brain. The reason why
human being should see the virtual image in the brain is that perceiving virtual
images made of selected data is one of the efficient ways for processing huge data
in the world. The best way of putting the huge world in a small human brain
is information selection, forming the virtual images with selected information
and efficient processing. Reticular Activating System in the brain is known as a
system which selects the information coming from the outside. As the computer
technologies are developing very quickly, the information society is getting more
complicated and enclosed by huge data environment.

On the other hands, human thinking way depends on the deferent viewpoints.
A person who has positive viewpoints has a positive thinking way and a per-
son who has negative viewpoints has a negative thinking way. The aspects of
viewpoints are very important in the information processing because the results
of thinking and their actions are different. It means that thinking chain and
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direction of inference are changed by the viewpoint. The thinking way has a key
of acting characteristics in human beings. These processing ability may be an
efficient way for human being to survive in a difficult complex environments.

As the computer technologies are developing very quickly, the information so-
ciety is getting more complicated and enclosed by huge data environment. In this
huge data circumstance, the requirement of efficient intelligent systems adopt-
ing human brain functions is getting high. For making more flexible intelligent
system, we consider the factors of different viewpoints because ,in the case of
human thinking way, the results of thinking depends on personal characteristics
and thinking view points, i.e. positive thinking way or negative thinking way.

For the purpose of implementing these functions , Reticular Activating Sys-
tem was designed in the previous paper[8]. In this paper, we introduce the main
functions of designed Reticular Activating system first, focus on the design of as-
sociative memory configuration and describe Thinking chain extraction retrieved
by Positive/Negative masking in detail. Positive/Negative(P/N) masking is spe-
cially designed in this system. This system is implemented by following three
step design.

Reticular Activating System: The structure and main function of Reticular
Activating System is described.

Reconfiguration of associative memory: knowledge is stored in associative
memory according to the associative relations.

Positive/Negative Masking: In this step, the associative knowledge net
masked by Positive/Negative masking vector is produced.

Positive/Negative thinking chain retrieval: thinking chain is retrieved from
the associative knowledge net activated by P/N signal.

Inference/ Decision making: Using the retrieved thinking chain, Inference
or Decision making step are made.

In the last step, Thinking chain retrieval process from the associative memory
is experimented with virtual memory design . We tested the variation of thinking
chain extraction in two aspects of P/N switching and level extraction.

2 Reticular Activating System

2.1 The Structure of Reticular Activating System

In this section Reticular Activating System which can select and store the
information was designed. As shown in Fig.1, this system has a hierarchical
structure and it consists of Knowledge acquisition, Selection and Storing to
Memory.

First,Knowledge acquisition part has multi modular NN(neural Network)s
and perform the learning process with the training data according to the cate-
gories. It uses BP(Back Propagation) algorithm. The output nodes of Modular
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Fig. 1. Associative memory frame

NN are connected to nodes in Associative layer which has logical network con-
nected by associative relations. Its learning mechanism is described in the paper
[1] in detail.

Second, Reticular Activating layer has a knowledge net which consists of
nodes and their associative relations. The nodes in knowledge net are connected
to the nodes of Associative layer vertically. The importance value is assigned to
the connection weight of this vertical relation. Selection module performs select-
ing process with these values of associative relations and vertical relations using
the criteria given by Meta Knowledge.

Third, Storing to Memory consists of two part of Knowledge Reconfiguration
and storing the values for NN. In Reconfiguration, the selected nodes and rela-
tions are reconfigured and stored in memory. The knowledge net is performed
by attaching nodes centering around common node. After reconfiguration the
centering node is connected to index which is used in searching process. In the
case of polysemy, the common node is connected by On/Off switching to mul-
tiple knowledge net. The another part of memory is storing the values for NN.
After finishing the learning process of modular NN, this system stores the val-
ues of category, parameters and weight matrix. These stored values are used for
perception, inference and knowledge retrieval.

Reticular Activating System performs the functions of Learning, Selection ,
memory reconfiguration and Knowledge retrieval as these three parts collabo-
rates on a work interactively.

2.2 Structuring Associative Memory

Structuring Associative memory is made by configuring the knowledge net which
consists of nodes and arcs. Each knowledge node is connected to others with
associative relational strength as shown in Figure 2. For efficient information
processing,the graph of Knowledge net is represented as associative list of Table
1. Associative list is used for retrieving the Thinking chain.
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Fig. 2. Knowledge net in associative memory

Table 1. Associative list

node1 Relation node2

Root 1.0 a1

a1 0.7 a2

a1 0.8 a6

a1 0.2 a9

a2 0.5 a3

a2 0.2 a4

a3 0.9 a5

a4 0.3 a5

a5 0.0 null

a6 0.5 a7

a6 0.9 a8

a7 0.0 null

a8 0.7 a10

a9 0.1 a10

a10 0.0 null
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2.3 Reconfiguration of Associative Memory

In this section ,Selection, Storing and Knowledge Retrieval of Reticular Activat-
ing System are described. This system has a same structure of multi modular
NN ,learning and functions of Associative layer as explained in the paper [1].
As shown in figure 3, the nodes of reticular layer are connected each other with
Associative relation , Rij horizontally and are also connected to the nodes in
Associative layer with connection weight Rij vertically.

Fig. 3. Reticular Activating Layer

The connection weights Rij and Sij are used for selecting when Meta knowl-
edge gives a criteria.

Storing Criteria:

Vi ≥ 0.5, Rij ≥ 0.5

If Meta knowledge gives a following storing criteria, the nodes and relations
satisfying this criteria are selected. The selected nodes and relations are reconfig-
ured by attaching the related nodes centering common node [7]. This centering
common node is connected to the index node in Index layer and used for search-
ing as a keyword.

3 Positive/Negative Masking

3.1 The System Flow of P/N Masking Mechanism

As one of implementing Positive thinking and Negative thinking way, we de-
signed P/N masking mechanism. First we define ” P/N masking” as a frame for
retrieving Positive/Negative Thinking chain.
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Figure 4 shows the system flow of P/N mechanism. The knowledge coming
from I/O interface is connected to other knowledge by its associative strength
and stored in associative memory. Associative memory provides an important
basic frame for extracting the thinking chains. If control signal arrives in P/N
switch, P/N switch works. P/N switch takes part in controlling the masking
type, That is, Positive masking or Negative masking. If one masking type is
selected, the related knowledge net is activated according to P/N signal and the
associative Thinking chains are retrieved. The extracted Thinking chains are
used for inference and decision making process.

Fig. 4. The system flow of P/N masking mechanism

3.2 P/N Masking

The main function of P/N masking is retrieving Thinking chains related to differ-
ent thinking points. For implementing this mechanism, we designed P/N masking
mechanism. P/N masking is made by masking P/N vector to the connected as-
sociative strength in Knowledge net. Due to this function, the interpretation of
associative memory can be always changing and associative memory maintains
a flexible storage.

P vector/N vector is defined as a vector for P/N masking. P vector and N
vector are represented as:

P = [pij ], N = [nij ] (1)

After P/N masking, associative strengths are changed by equation (2).

R′
ij = Rij ∗ pij ..IfPswitch,R′

ij = Rij ∗ nij ..IfNswitch (2)
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4 Positive/Negative Thinking Chain Retrieval

After P/N masking finished,Thinking chain can be extracted. Thinking chain is
defined as thinking flows retrieved from the memory in this paper.

Thinking chain extraction mechanism is : System takes one keyword and
searches the corresponding data in Associative list. If it is found,Forward-
chaining and Backward-chaining process are started from the found keyword
in Associative list. The related Thinking chains are extracted using Forward/
Backward chaining process.

Thinking chain extraction algorithm is as follows.

Algorithm 1 : Thinking chain extraction algorithm

STEP 1: Input the Keyword.
STEP 2: Search the corresponding keyword

in the Associative list
STEP 3 : If (not found)

Print (”There is no corresponding keyword!”)
Else (found)
forward-chaining;
backward-chaining;

STEP 4: Output the retrieved Thinking chain.
Print F-list

forward-chaining;
next=associative-list;
i = found-i;
while( (next.node2[i]!= null) and (i !=N))
{ Put next.node1[i] to F-list;
Put next.R[i] to F-list;
Put next.node2[i] to F-list ;
i=i+1; }

backward-chaining;
next=associative-list;
i = found-i;
while( (next.node2[i]!= null) and (i !=0))
{Put next.node1[i] to B-list;
Put next.R[i] to B-list;
Put next.node2[i] to B-list ;
i=i-1; }

STEP 5: Stop.

4.1 Inference and Decision Making

Using the retrieved Thinking chains, Inference and Decision making process can
be made in an appropriate ways. These Thinking chains can produce the answer
for query.
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5 Experiments

P/N masking mechanism is applied to virtual memory. The knowledge net shown
in Figure 2 was used for testing P/N Masking process and Thinking Chain
extraction algorithm. P vector and N vector for P/N masking is as follows.

P = [1.0, 1.0, 0.0, 0.7, 1.0, 0.8, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

N = [1.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.9, 0.0, 1.0]

After P/N masking was applied, knowledge net masked by P/N vector in
Figure 5 was obtained.

Fig. 5. The changed knowledge net masked by P/N vector

Table 2 shows changed values of associative strength of Knowledge net and
the retrieved results of Thinking chains from the knowledge net masked by P/N
masking and Figure 6 depicts the result of Thinking chain extraction. As a re-
sult,it was found that Thinking chains controlled by Positive/ negative thinking
way were extracted successfully.

6 Conclusion

In this paper, we propose Reticular Activating system which has functions of
selective reaction, learning and inference. This system consists of Knowledge
acquisition, selection , storing and retrieving part. Reticular Activating layer is
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Table 2. The changed associative strengths by P/N masking

ai - aj Rij P RP
ij N RN

ij

0-1 1.0 1.0 1.0 1.0 1.0

1-2 0.7 1.0 0.7 0.5 0.4

1-6 0.8 0.0 0.0 1.0 0.8

1-9 0.2 0.7 0.1 0.0 0.0

2-3 0.5 1.0 0.5 0.0 0.5

2-4 0.2 0.8 0.2 0.0 0.0

3-5 0.9 1.0 0.9 0.0 0.0

4-5 0.3 1.0 0.3 0.0 0.0

5-5 0.0 1.0 0.0 0.0 0.0

6-7 0.5 0.0 0.0 1.0 0.5

6-8 0.9 0.0 0.0 1.0 0.9

7-7 0.0 0.0 0.0 1.0 0.0

8-10 0.7 0.0 0.0 0.9 0.6

9-10 0.1 0.0 0.0 0.0 0.0

10-10 0.0 0.0 0.0 1.0 0.0

Fig. 6. Retrieved thinking chain by P/N masking

connected to Meta knowledge in the high level of this system and takes part in
Data Selection. Reconfiguration and Positive/Negative(P/N) masking Switching
mechanism in knowledge net are specially designed. We applied this system to
the virtual memory and tested P/N masking mechanism.

As a result of testing, we could find that it can extract the related thinking
chains efficiently. It is expected that Reticular Activating system , the concept
of its P/N masking and Thinking chain extraction can contribute to implement
flexible associative memory and efficient retrieval mechanism.
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Abstract. Biological system has a very efficient immunity system which
selects important signals and protects its body. The functions of immu-
nity system can be successfully adopted to design an intelligent system
in the information society. Accordingly in this paper Immunity based
system which can select the important data from a large amount data
is proposed . we define filtering factor as a criterion for reacting and se-
lecting the data. This system is designed to have learning, perception &
inference and Data extraction and to have an additive learning mecha-
nism for the new obtained important information. This system is applied
to the area for the analysis of customer’s tastes and its performance is
analyzed and compared

1 Introduction

The Biological system has a very efficient immunity system which can select
an important data and protect its body. It does not make all the input data
from the outside an object of information processing. If one should process all
the obtained information in the internal part, one could not hold out any longer
because of the overload for processing As the internet environment is developing,
the requirement of information filtering is getting high. Immunity based systems
are self-maintenance systems learned from and inspired by the immune system.
It deals with information related to the system itself, and not with data from
outside the system as typically exemplified by a pattern classifier that processes
data not relevant to the pattern classifier itself. Thus Immunity based system
deals with the self-related data or more specifically, challenges to the survivability
of the system such as faults of the system, noise in the control signal, malicious
attacks against the system and so on [1]. For making more intelligent system
in the information society it is necessary to implement the automatic filtering
system where concept of immunity system is adopted. Accordingly in this paper,
we propose the modeling of immunity based system considering filtering factor.
This system was designed to have learning, perception & inference and Data
extraction and to have an additive learning mechanism for including the new
important information.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 395–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



396 J. Shim

2 Immunity-Based Systems

An immunity based system is one that involves a self-maintenance system. This
property is placed in an axiomatic position in defining Immunity based system.
In addressing first point, it is obvious that the system must be distributed into
components capable of evaluating each other. Another important property of
Immunity based system is that the system, that is the self incorporates com-
ponents capable of evaluating or interacting with each other. Because of their
mutual evaluation and interaction characteristics, normal components of the sys-
tem(the self) and faulty ones(the nonself) constitute an ad hoc network formed
on the spot depending on the situations in which the system is applied. To over-
come the second point, immunity based system incorporates an adaptive system
by diversity and selection. This may not provide an optimal solution, but instead
a feasible one.

The immune system uses similar solutions, suitably amplified and modified, for
similar problems. Immunity based system has the following three properties:

o self maintenance system with monitoring not only of the nonself but also of
the self

o distributed system with autonomous components capable of mutual evalu-
ation on adaptive system with diversity and selection

In selecting tasks for Immunity system, the following are worth mentioning:

o Immunity based system is meant for a specific task : the self-nonself recogni-
tion. The task of self-nonself discrimination is neither a kind of pattern recogni-
tion nor classification. Both pattern recognition and classification deal with data
not related system itself. Further, both pattern and classes must be beforehand.

o In self-nonself discrimination, there is a trade-off between misidentifying
self as nonself and vice versa (i.e., false positive and false negative in terms of
detection theory).

The ultimate goal is Immunity based system based on the organic view of the
immune system pioneered by Metchinikoff, Jerne and Burnet. That is, Immunity
system is formalized as a system whose interdependency is so strong that any other
entities not in harmony with the system will be eliminated by the self-organizing
and maintenance process. However , this goal has not been attained yet.

2.1 Self-maintenance System

For Immunity based system to be self-maintenance systems, two remarks are in
order. First, the self-maintenance property of Immunity based system comes from
the self-nonself discrimination problem that the Immunity based system faces.
Immunity based system must deal with challenges that affect the system itself,
not with data that can be defined without referring to the system. This Immunity
based system characteristics is consistent with Tauber’s view on nonself from
the viewpoint of immunological self. ’ Most saliently, the network ’knows’ only
itself, and it is in the perturbation of the system that reaction occurs ,i.e. not to
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the ’foreign’ but to the ’disturbance’ of the system itself. Second, the problems
addressed by the Immunity based system are not a pattern classification where
the matter is only mapping to a number of classes, but problems related to a
specific dichotomy between ’the self’ and ’others’. This dichotomy between the
self and others is not simply a classification with two classes, but is qualitative
at a different level (meta level) from classes captured at the same level.[1]

3 The Modeling of Immunity-Based System Considering
Filtering Factor

Biological system takes an important input signals selected by filtering. During
the process only information reacted by the corresponding receptive cell can be
passed and the other things are discarded. But we can not exclude the possibility
that new important information which has an important effect on the percep-
tion and inference may be included in the discarded data. To be an efficient
system, it should have a flexible function adaptive to a new environment. The
new mechanisms for reaction made by receptive cell and increment learning for
new obtained data are proposed in this paper.

3.1 Receptive Field for Information Filtering Personal Preference

Fig. 1 shows the structure of proposed system. This system consists of Recep-
tive field, Learning module and Associative Map. Receptive field is described in
detail. Receptive field has reactive cells, the area of new cells and Filtering gate.

Fig. 1. Receptive Field
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The filtering gate is connected to Associative Map and controlled by system and
regulates the reactive degree. Input data propagated from the input layer react
on the receptive cells and are filtered by filtering gate connected to the receptive
cells.

We define reactive degree for selecting the outside data as filtering factor.
In the first step, the system takes the values for filtering factor from experts
and allocate the readjusted values to the nodes in Associative map and con-
nected filtering gate. The readjusted value of filtering factor, Fi, calculated by
the following equation 1.

Fi =
Ri

Max(Ri)
(1)

Where Ri is
0 ≤ Ri ≤ 1

3.2 Additive Learning

In information filtering mechanism, only data filtered through receptive cell are
accepted and other data are discarded. But important information may be in-
cluded in the discarded data. It is important to find these data and to include
them in the learning process. As shown in fig.1, new cells are included in Re-
ceptive field. They take part in selecting the new important data by estimating
their appearing frequency, Ai ( eq. 2).

Ai = P (Ni|E) (2)

Where Ni is the number of appearing and E is the evidence of data in the new
cell. This system takes the selected data in the new cells and starts additive
learning mechanism.

3.3 Additive Learning Mechanism

The proposed mechanism for additive learning does not start the learning process
again from the beginning point but performs the learning algorithm using the
weight values set in the previous learning step. It allocates the random values to
the new connection formed by additional new nodes. The following Algorithm 1
shows additive learning mechanism.

Algorithm 1: Additive Learning

STEP 1: Prepare the training data in forms of input-output pairs.
Selection:

STEP 2: Select the new important data by estimating their appearing fre-
quency,

Ai = P (Ni|E)

STEP 3: Connect the new nodes to the previous structure.
STEP 4: Assign the weight values stored in WM(Weight Matrix).
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STEP 5: Assign the random values to the new connections. Learning:
STEP 6: Get the input data, Ii.

Filtering:
STEP 7: Get the values of Ri for personal preference and calculate Fi.

Fi =
Ri

Max(Ri)

STEP 8 : Calculate the reactive value in the receptive field.

Si =
n∑

i=1

Ii · Fi

Learning:
STEP 9: Calculate the output Hj in hidden layer.

Hj =
1

1 + e−
n
i=1 W1ijSi

STEP 10: Calculate the actual output,y′
1, y

′
2, · · · , y′

n

yj =
1

1 + e−
n
i=1 W2ijSi

STEP 11:Calculate the error between the desired output,d1, d2, · · · , dn and ac-
tual output,y′

1, y
′
2, · · · , y′

n.

E =
(d− y)2

2

STEP 12: IF (E > ε) THEN goto Learning ELSE goto STEP 14
STEP 13: Adapt the weights propagating the error backward to Inference layer

and input layer. Goto STEP 9.

ΔW2ij = ηδ2ijHi

ΔW1ij = ηδ1ijHi

STEP 14: stop

4 Perception & Inference and Data extraction

4.1 Associative Map

Associative Map consists of nodes and their associative relations shown in Fig.2.
Each node has a value of filtering factor for reactivating the data from outside
in receptive field. The filtering factors are store in filtering matrix B as following
Table 1. They are transformed to the Associative Matrix (AM) in Table 2.
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Fig. 2. Relational Graph

Table 1. Filtering Value

A1 A2 A3 A4 A5

F1 F2 F3 F4 F5

Table 2. Associative Matrix(AM)

A1 A2 A3 A4 A5

A1 1 R12 0 0 R15

A2 −R12 1 R23 R24 −R52

A3 0 −R23 1 0 0

A4 0 −R24 0 1 0

A5 −R51 R52 0 0 1

The value of associative relation is calculated by equation 3.

Rij = P (Aj |Ai) ·D (3)

Where D is the direction of an arrow,-1,1, and i − 1, 2, · · · , n, j = 1, 2, · · · , n.
AM relations are converted to the following numerical terms

A =

⎡⎢⎢⎢⎢⎣
1.0 1.0 1.0 0.0 0.0
−1.0 1.0 0.7 0.0 0.0
−1.0 −0.7 1.0 0.6 0.3
0.0 0.0 −0.6 1.0 0.0
0.0 0.0 −0.3 0.0 1.0

⎤⎥⎥⎥⎥⎦
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Filtering Matrix, B , is as follows :

B =
[
0.5 0.6 0.7 0.1 0.0

]
4.2 Data Extraction

When Data extraction process is chosen in selection mode, the system starts to
extract the related knowledge distributed in the neural network and Associative
Map. The knowledge for perception is stored in the connection weights and
the facts are connected by their associative relations in Associative Map. Data
extraction mechanism extracts the related facts using this Associative Matrix.
The algorithm of Data extraction is described in Algorithm 2.

Algorithm 2: Data extraction mechanism in AM

STEP 1: Search for associated nodes in the row of the activated node in AM.
STEP 2: IF((not found) AND (found the initial activated node)), Goto STEP

3.
ELSE . Output the found fact.
. Add the found fact to the list of inference paths. Goto STEP 1
STEP 3: STOP

As a result of performing this Data extraction mechanism, inferential paths
are produced :

A1 (R13 1.0) A3 (R34 0.6) A4 Null A1 (R12 1.0) A2 (R23 0.7) A3 Null A2
(R23 0.7) A3 (R35 0.3) A5 Null A3 (R35 0.3) A5 Null

This mechanism can elicit the related facts referring the inferential paths.
More detailed description of this mechanism is provided in the paper[1].

5 Experiments

The proposed system applied to the area for the analysis of customer’s tastes.
We tested this system with 20 input factors and analyzed its results for decision-
making(three types). The raw data was filtered by filtering function as shown
in Fig. 3. Fig. 4 shows the comparison of the case considering filtering fac-
tor and the case without considering filtering. The result of the case consid-
ering filtering is different from the other one. We also tested the performance
of additive learning. In this experiment, the error converging curves are com-
pared. As shown in Figure 5 and Figure 6, the case of using the previous weight
values(Case1) is more efficient than the case of relearning from the beginning
point(Case2). In Case 1, the error was converged after 753 training iteration.
Compared to this test , only 421 iteration was needed for error conversion. Figure
6 shows the result of Data extraction mechanism using the following Associative
Matrix A.
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A =

⎡⎢⎢⎢⎢⎣
1.0 1.0 1.0 0.0 0.0
−1.0 1.0 0.7 0.0 0.0
−1.0 −0.7 1.0 0.6 0.3
0.0 0.0 −0.6 1.0 0.0
0.0 0.0 −0.3 0.0 1.0

⎤⎥⎥⎥⎥⎦

B =
[
0.5 0.6 0.7 0.1 0.0

]
After perception mode was performed, the node A1 was activated and the

inferential paths of the associative knowledge were extracted by Data extraction
mechanism.

Raw data Filtered data

Fig. 3.

Result

Fig. 4.

Error converging curve of case1

Fig. 5.
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Error converging curve of case1 Knowledge extraction

Fig. 6.

6 Conclusion

Immunity based system which can select the important data from a large amount
data is proposed. we define filtering factor as a criterion for reacting and select-
ing the data. This system is designed to have learning, perception & inference
and Data extraction and to have an additive learning mechanism for the new
obtained important information. The proposed system is applied to the area for
the analysis of customer’s tastes and its performance is analyzed and compared.
As a result of testing , we could find that the input data was reacted by filtering
factor and showed the different output. The proposed system was also can be
usefully applied to many areas in the internet environment where the abilities
for obtaining the new knowledge, filtering the data automatically and extracting
the related information are required.
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Abstract. Meta-learning practices concern the dynamical search of the
bias presiding over the behaviour of artificial learning systems. In this
paper we present an original meta-learning framework, namely the Mind-
ful (Meta INDuctive neuro-FUzzy Learning) system. Mindful is based
on a neuro-fuzzy learning strategy providing for the inductive processes
applicable both to ordinary base-level tasks and to more general cross-
task applications. The peculiar organisation of the system allows a suit-
able meta-knowledge management, in order to carry on meta-learning
investigations and to develop life-long learning strategies.

1 Introduction

The applied research in the field of artificial intelligent systems often deals with
empirical evaluations of machine learning algorithms to illustrate the selective
superiority of a particular model. This kind of approach is characterised by a
“case study” formulation that has been recognised and criticised in literature
[1,2]. The selective superiority demonstrated by a learner in a case study appli-
cation reflects the inherent nature of the so-called base-learning strategies, where
data-based models exhibit generalisation capabilities when tackling a particular
task. Precisely, base-learning approaches are characterised by the employment
of a fixed bias, that is the ensemble of all the assumptions, restrictions and pref-
erences presiding over the learner behaviour. This means a restricted domain of
expertise for each learning model, and a reduction in its overall scope of applica-
tion. The limitations of base-learning strategies can be theoretically established:
the no free lunch theorems express the fundamental performance equality of any
chosen couple of learners (when averaged on every task), and deny the superiority
of specific learning models outside the case study dimension [12].

Obviously, if we want to perform pragmatic investigations of particular do-
mains, base-learning approaches represent a quite satisfactory way of proceeding
to obtain adequate results. Whenever we are interested in following a line of re-
search with a broader scope, involving some kind of cross-domain applications,
the resort to somewhat different methodologies is advisable. By focusing the
attention on the role of bias, we characterise the meta-learning approach as
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a dynamical search of a proper bias, that should be able to adapt the learner
behaviour to the particular task at hand. The research field of meta-learning rep-
resents a novel approach aiming at designing artificial learners with enhanced ca-
pabilities, possibly capable of profiting from accumulated past experience [10,11].
In this way, the formulation of the model evaluation could overcome the case
study dimension and the limitations of the base-learning strategies.

The research activity described in this paper takes part in the investigation
on meta-learning, presenting a particular framework based on neuro-fuzzy inte-
gration, namely the Mindful (Meta-INDuctive neuro-FUzzy Learning) system.
The proposed meta-learning framework is organised in order to employ a single
learning scheme, working both as base- and meta-learner. The combination of
neural learning and fuzzy logic allows to derive from data a base of interpretable
knowledge, codified in form of fuzzy rules, which could prove to be effective in
solving any base-level task at hand. Besides the usual base-learning process, the
Mindful system brings forward also a meta-learning activity, where the same
knowledge-based methodology is adopted to examine a set of meta-features de-
scribing the properties of specific tasks. In this way, the meta-learner provides an
explicit meta-knowledge, in terms of fuzzy rules, representing a significant form
of bias to direct the learning process of the base-learner. The Mindful system is
able to prove its appropriateness in retaining the knowledge accumulated during
learning, showing improved performances when tackling new tasks.

The paper is organised as follows. In the next section we are going to introduce
the Mindful system, presenting the underlying hybrid learning framework. The
nature of the involved meta-knowledge and different directions to be followed for
the employment of the system are presented in section 3. Finally, some conclusive
applicability remarks are drawn in section 4.

2 Mindful: A Framework for Meta-INDuctive
Neuro-FUzzy Learning

The central tenet in meta-learning research consists in devising suitable tech-
niques for allowing an artificial learner to modify its bias, in order to better
tackle the tasks under analysis. Therefore, when designing a meta-learning strat-
egy, a proper identification of the involved bias represents a key point, which is
important also for determining the suitable mechanism to direct the learner
behaviour. Our peculiar idea for a meta-learning framework is centred on the
working scheme of an intelligent system that realises a neuro-fuzzy integration. It
represents our proposal for a prototype tool, the Mindful system, which stands
as a candidate for fulfilling the meta-learning requirements.

Our approach differs to some extent from the majority of the meta-learning
schemes proposed in literature. Most of them, in fact, perform a dynamic search
of the learning bias by assimilating the concept of bias with the specific learner,
properly chosen for the task at hand. In this way, several strategies of model com-
bination and model selection have been developed, involving different learners
which constitute a pool of bias-specific candidates. A number of research projects
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produced results in this context; prominent examples include the METAL and
Statlog projects [6,7]. On our part, we aim at employing a single learning scheme,
endowed with the capability of improving its performance: a neuro-fuzzy model
plays the twofold role of base-learner (to tackle ordinary predictive learning
tasks) and meta-learner (to produce some form of meta-knowledge). By doing
so, we characterise our strategy on the basis of a number of key points. Firstly,
the idea of meta-learning is translated to a more qualified level, since it is not
intended as simply picking a learning procedure among a pool of candidates, but
it focuses on a deeper analysis of a learning model behaviour, in order to under-
stand and possibly to improve it. Moreover, the choice for a single learning model
should be suitable to preserve the uniformity of the whole system and to re-
duce its complexity, even in terms of comprehensibility. Finally, the neuro-fuzzy
strategy, applied both at base and meta-level, endows also the meta-learning
procedure with the benefits deriving from the integration of the connectionist
paradigm with fuzzy logic.

In the following, we are going to trace a broad outline of the working scheme
underlying the Mindful system, highlighting the particular nature of the meta-
knowledge involved in the meta-level activity. We shall indicate also different
directions that can be followed to bring the meta-learning system into action.

2.1 The Working Scheme of the Mindful System

The core of the Mindful system is represented by a neuro-fuzzy strategy: it
provides for the inductive process applicable both to the ordinary base-learning
level and to a more general cross-task level. The combination of connectionist
learning with fuzzy logic permits to organise the inductive process in such a
way that, starting from the analysis of observational data, the learning model
is able to produce a fuzzy rule base which eventually codifies the processed in-
formation in a linguistically comprehensible fashion. This is accomplished by
postulating the formal equivalence between the fuzzy rule base and a particular
neural network (the neuro-fuzzy network), reflecting in its topology the structure
of the fuzzy inference system. The learning scheme is articulated in two succes-
sive steps, intended to firstly initialise a knowledge structure and then to refine
the obtained fuzzy rule base. During the first step, a clustering of the input data
is performed by means of an unsupervised learning process of the neuro-fuzzy
network. A rival penalised mechanism is employed to adaptively determine a
proper structure of the network. In this way, an initial knowledge is extracted
from data and expressed in form of fuzzy rules. The base of knowledge is succes-
sively refined during the second step, where a supervised learning process of the
neuro-fuzzy network (based on a gradient descent technique) is accomplished,
in order to attune the parameters of the fuzzy rule base to the numerical data.
The fuzzy inference system codifies the knowledge in fuzzy rules of the form:

IF x1 is Ar
1 AND . . .AND xm is Ar

mTHEN y1 is br
1 AND . . .AND yn is br

n, (1)

where the index r = 1, . . . ,R indicates the r-th rule among the R comprised
into the rule base; Ar

i are fuzzy sets (defined in terms of Gaussian membership
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Fig. 1. The working scheme proposed for the base- and the meta-learner

functions over the input components xi, i = 1, . . . , m); br
j are fuzzy singletons

(defined over the output components yj , j = 1, . . . , n). Here we do not provide
further details concerning the formalisation of the fuzzy inference system (whose
general scheme is comparable to the TSK method of fuzzy inference [9]) and
the learning algorithms, addressing the reader to some other previous works of
ours [3,4]. Instead, in the following section we would like to underline how the
distinct base- and meta-learning practices performed by the Mindful system
are articulated on the basis of the common working scheme described above.

3 Meta-knowledge Characterisation and Directions for
Meta-learning

A couple of learners is involved in the overall activity of the framework, namely
a base-learner Lbase, working on the basis of a training set Tbase, and a meta-
learner Lmeta, employing a training set Tmeta (as depicted in fig. 1). Indeed, while
the learning procedure yielding to the generation of knowledge in form of fuzzy
rules is the same for both learners, the information embedded in the training
sets is quite different. In fact, Tbase = {(xk,yk)}K

k=1 is composed by an ensem-
ble of K instances, arranged as a pair of input-output vectors, which describe a
given base-level task. The meta-training set Tmeta = {(zk,bk)}K′

k=1 is similarly
formalised, but the input vector zk expresses a kind of higher-level task knowl-
edge. Particularly, zk comprises a number of meta-features (general, statistical
and information theoretical measures) which characterise the base-level dataset
describing a particular task. (Actually, these kinds of meta-features appear to be
widely exploited in meta-learning contexts [6]; in [5] we engaged a deeper anal-
ysis oriented to define the most relevant meta-features for task discrimination.)
The output vector bk represents the bias yielding the best learning performances
when applied to Lbase, during the base-level activity addressing the solution of
the task connected with zk. Practically, the bias refers to the configurations of
parameters presiding over the overall learning process; the best configuration
is determined by experimenting at base-learning level. Therefore, while Tbase is
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established on the basis of the problem at hand which Lbase ultimately aims at
solving, the arrangement of Tmeta is empirically performed. However, both the
base- and the meta-learner, being characterised by the same neuro-fuzzy learn-
ing procedure, end up by originating a base of knowledge with fuzzy rules in
the form described in (1). In this way, the meta-knowledge produced by Lmeta

supplies the proper bias for future base-level task analyses.
The introduced working scheme could be differently exploited to give rise to

meta-learning practices: here we delineate a pair of directions which could be
followed to bring the Mindful system into action. Actually, a first approach
consists in employing the system to tackle a number of specific task domains,
retaining the experience accumulated during base-learning applications. This
kind of situation relies on the compilation of a meta-training set which is built
up once and for all at the end of a base-level session of experiments. While
the meta-training set is experimentally derived from base-level task analyses,
the meta-knowledge obtainable from the meta-learning process can be exploited
to determine the proper bias in novel circumstances. In this way, the meta-
knowledge serves as a resource for improving future learning performances in
the same task domains.

This preliminary evaluation should pave the way for a broader approach based
on a life-long learning strategy. In this case, the framework should be capable of
dealing with an incremental meta-training set, possibly enlarging as time goes
by, in order to fit novel task information and to attune the meta-knowledge to
different contexts of real-world problems. Obviously, suitable mechanisms can
be devised for allowing the meta-training set to enlarge whenever the available
meta-knowledge appears to be inadequate for improving the learning perfor-
mances on unseen tasks. In particular, a resort to base-learning activity could
be renewed to update the applicable bias information. By doing so, the Mind-
ful system can act as a self-adaptive learner, even working without compiling
an initial training set. Beginning with no experience at all, the system would
be initially constrained to make use of the few pieces of information it is able
to gather (building up the meta-knowledge little by little, when facing its first
tasks). In other words, Mindful would employ an almost fixed form of bias
at start. As more tasks are observed, however, the system would be able to
use the accumulated meta-knowledge to change its own bias, according to the
characteristics of each task.

4 Applicability Remarks

The realisation of the Mindful system offers the opportunity for exploring the
way for meta-learning practices, with the possibility of following different direc-
tions, in the way they have been delineated in the previous section. The original
aspects characterising the framework among the meta-learning approaches pro-
posed in literature, basically concern the employment of a single learning model
(which has to be directed in its work by performing a dynamic bias search) and
the adoption of a hybrid procedure representing the core of the system (based on
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a neuro-fuzzy approach). In this way, Mindful differentiates from the common
model selection or model combination strategies, and benefits both at base- and
meta-level of activity from the fruitful integration of neural learning capabilities
with fuzzy knowledge representation.

Actually, here we would like to underline how the meta-learning prototype sys-
tem has been preliminary tested, involving a number of synthetic task domains
[4]. Following the first previously described direction, founded on the realisation
of a particular meta-training set, a preliminary session of base-learning experi-
ments helped to identify the best bias configurations applicable in every task do-
main. By extracting the meta-feature vectors from the analysed datasets, a meta-
training set has been established, properly correlating the dataset characterisa-
tions with the identified biases. The hybrid learning procedure has been succes-
sively replied over the meta-training set, to produce a base of meta-knowledge,
in form of fuzzy rules, suitable for use in future task analyses. To evaluate the
meta-knowledge obtained at the end of the meta-learning process, novel tasks
have been considered from the synthetic domains and they have been tackled
employing the bias configuration suggested by the fuzzy (meta-)rules. The final
performance results proved the effectiveness of the derived meta-knowledge, thus
encouraging a more detailed application of the Mindful system in real-world
contexts of life-long learning.
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Abstract. The aim of this work is to prove the efficacy of a Soft Computing 
approach to the problem of generating the best suited mesh for solving a 
differential problem with the Finite Element Method. Using Fuzzy Logic, it is 
possible to introduce a set of linguistic if-then rules reproducing the human 
expert reasoning used for creating the mesh. 

1   Introduction 

The Finite Element Method (FEM) is one of the most used techniques for solving 
Partial Differential Problems. The idea of FEM is to divide the domain of definition 
of the problem into small regions, called elements of the mesh, where an 
approximation of the solution is searched. This approximation converges to the exact 
solution as elements dimensions tend toward zero; obviously, the smaller the elements 
are, the higher their number is. Experience, competence, and high level knowledge, 
guide humans in finding the optimal mesh spacing that brings the approximation error 
to an acceptable level using the smallest number of elements [1], [2], [3]. 

The current numerical approach to the problem of finding the best grid is the mesh 
adaptation strategy. An initial solution is calculated using a first guess grid and the 
approximation error is estimated; reducing the dimensions of the elements with larger 
error values, decreases the overall error in a very efficient way, by modifying the grid 
only where it is needed. This process is iterated until the estimated error is below a 
given threshold or a maximum number of elements is reached [3], [4]. 

In this paper, an alternative solution to this problem is obtained using Soft 
Computing methods, following the works of Manevitz and Givoli. In [1] and [2] they 
tackle the problem of automating the FEM using Expert Systems and Self-Organizing 
Neural Networks respectively for node numbering and mesh placement. In the present 
work, Fuzzy Logic is used for the mesh generation process because it allows 
reproducing the qualitative reasoning typical of humans, by translating numerical 
inputs into linguistic values (such as ‘good’, ‘near’, ‘high’) and by evaluating some if-
then rules in parallel [5]. The translation of FEM expert’s reasoning and rules for 
solving mesh generation problem will be described. The result is the so called metric, 
i.e. a map h :   ℜ+ which specify the dimension of the element in each point of the 
domain . 
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2   Problem Formalization and Algorithm 

Let us consider the Poisson problem with mixed boundary conditions: 
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where u is the unknown solution,  is the viscosity function, D and N are the part of 
the border where, respectively, the Dirichlet boundary condition and the Neuman 
boundary condition are applied [4]. 

Solving this problem with the FEM in an ‘intelligent’ way requires having an 
idea of the general behaviour of the solution over the domain. Where it will be 
smooth, large elements will be required, while elements will be smaller where the 
solution exhibits great changes. An expert of FEM is able to identify a priori the 
regions where it is necessary to have small elements, by simply looking at the 
parameters of the problem and by combining this information with a high-level 
reasoning. 

FEM experts state that elements must be very small where: 

− there is a singularity in the boundary conditions; 
− a point is present where B.C. types are different; 
− the border presents edges with angles lower than 90° and higher than 270°; 
− the forcing function f is high (because it causes high variations in u); 
− the gradient of the viscosity  has a high absolute value. 

 
Geometry and parameters 

Evaluation of Critical Points 

Grid Generation
(support for metric)

Aggregation: Weigthed Minimum 

Boundary Rules Metric 
h  

Domain Rules Metric 
h

 

Fig. 1. Architecture of the proposed algorithm; the output of the last step is the metric 
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The first step of the algorithm is the creation of differential problem using the 
pdetool toolbox of Matlab©. The next step is the evaluation of some Critical Points, 
i.e. points where the types of B.C. are different, B.C. functions have discontinuities or 
the angle of the border of the domain is very big or very small. It is also necessary to 
calculate the gradient of the B.C. functions (g) along the borders, using the local 
tangent vector. With such set of information and some fuzzy rules, the Boundary 
Rules’ Metric h  is generated. The following step is the generation of the Domain 
Rules’ Metric h , which requires the evaluation of the modulus of the forcing function 
f and of the gradient of the viscosity. The two metrics are combined with the 
Weighted Minimum operator, a T-norm that allows mixing the two maps according to 
the distance from the borders (Fig. 1). 

3   Fuzzy Rules and Membership Functions 

There are four sets of fuzzy rules, based on the considerations of FEM experts: 

1. Type rules – for the difference of the type of B.C. in a critical point; 
2. Discontinuity rules – for a discontinuity in B.C. functions; 
3. Connectivity rules – taking into account the angle of the boundary at the segments 

intersections; 
4. Domain rules – for the absolute value of the functions f  and |∇( )|. 

For the first three types of rules, the variables used are the distance from a Critical 
Point, the value of the discontinuity, and  the angle (in degrees) as inputs, and the  
 

 

Fig. 2. Membership functions for Type rules. Distance and Dimension are respectively the input 
and the output of these set of linguistic rules. 
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Fig. 3. Membership functions for Discontinuity and Connectivity rules. DistanceCP, DeltaN, and 
Angle are the input variables, whereas Dimension is the output of these sets of rules. 

 

Fig. 4. Membership functions for Domain rules, with Index and Value as input variables 

dimension of the element as output (Fig. 2 and Fig. 3). For Domain rules, input 
variables are the normalized value of the function respect to its maximum and its 
mean value and an user-defined value called index that states the importance of the 
maximum of the function (Fig. 4). It is possible to notice that membership functions 
are not regular triangular sets, but they are designed according to FEM experts. 
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In Fig. 5 the four rules sets are reported in the usual table format. Fuzzy sets are 
indicated with the capital letters associated to linguistic labels: Z stands for Zero, VS 
for Very Small, G for Great, N for Normal, L for Low, M for Medium, H for High, B 
for Big and so on; in case of angular values, they are fuzzy numbers [5]. It has to be 
noticed than each set of rules is evaluated in parallel and results are combined with a 
T-norm that is the usual product with a linear interpolation, necessary for keeping the 
correct maximum and minimum values of the whole metrics. 

 
d Z VS S N G VG 

h VVS VS S N G VG 

(a) 
 

N 
dCP 

Z S N G 

Z N VS VVS VVS 
S N S S VS 
N N N N S 
G N N N N 

(b) 
 

Value 
Index 

N L M H 

N VB VB VB VB 
L VB VB B M 
M VB B M S 
H B M S VS 

(c) 
 

Angle [°] 
dCP 

0 45 90-180 225 270 315 360 

Z VVS S N S VS VVS VVS 
S VS N N N S VS VS 
N S N N N N S S 
G N N N N N N N 

(d)  

Fig. 5. The four rules sets in the table format. (a) Type Fuzzy Rules (b) Discontinuity Fuzzy 
Rules (c) Domain Fuzzy Rules; (d) Connectivity Fuzzy Rules. As an example, in (c) if the 
function in a point of the domain has a medium value and the importance of the maximum of 
the function is low, the dimension of the element is big. 

4   Numerical Tests 

In order to judge the performances of the algorithm, a session of tests has been 
realized on a simple geometry (a circle) with a lot of different features. A qualitative  
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Fig. 6. Discontinuity in Dirichlet B.C. in (0, ±1) and (1,0) 
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Fig. 7. Different type of B.C. in (0, ±1) 
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Fig. 8. Forcing function f = sin( ·x) · sin( ·y) 

comparison could be made with the grid produced by a Matlab© function that 
performs adaptive triangular mesh generation for the PDE problem, until the 
minimum error value or the maximum number of elements is reached (from Fig. 6 to 
Fig. 11). In each case the metric created (on the right column of figures) is consistent 
with the grid produced by the optimization method (on the left). Where the 
optimization procedure has produced concentrations of small elements, the same 
result is obtained via a soft computing approach, and viceversa. 
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Fig. 9. Viscosity function is  = 0.1 if x < 0 and  = 10 if x > 0 
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Fig. 10. Presence of a convexity in (0, 0) 
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Fig. 11. Mixing all the conditions 

In Fig. 6 it is possible to notice that since the three discontinuities in the Dirichlet 
B.C. have different absolute values, the grid is denser where there is the biggest one; 
on the contrary, the metric produced with the algorithm, has nearly the same values 
around the three Critical Points, thus showing less sensitivity. 

If the geometry has convexities but the other parameters are regular, it is possible 
to show the ability of the algorithm to catch them (Fig. 10). On the same geometry the  
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Fig. 12. Test on a general geometry with mixed boundary conditions (N for Neuman and D for 
Dirichlet conditions); mesh obtained via adaptation methodology 

 

Fig. 13.  Metric produced for the general test case with the proposed Fuzzy Logic approach 

algorithm is evaluated when all the conditions are present: the metric produced is 
consistent with the grid realized using the mesh adaptation method (Fig. 11); other 
tests have been realized, obtaining very good results, but they are not here reported. 

In a more general PDE problem it is possible to judge the rightness of the proposed 
algorithm. In Fig. 12 the domain and the different boundaries for the following test 
case are reported: 
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In Fig. 13 it is possible to recognize the performance of the proposed algorithm. 
The two most important critical points (0, -1) and ~(0.97,-0.23) are identified and the 
value of the metric is very small all around that region. On the other part of the 
domain, the metric is wider, except where there is the maximum value of the forcing 
function (near the point (0.5,0.5)) and where there are other critical points. These 
critical points are localized in the region where there are different types of boundary 
conditions and where convexities of the border are presents. 

5   Conclusions 

In this work the efficacy of the fuzzy approach to the problem of generating a mesh 
for solving a differential problem using the Finite Element Method has been proved, 
comparing the metric produced with grids realized using a standard optimization 
technique. 

The most relevant characteristic of the algorithm is its ability to reproduce the 
human expert reasoning by using fuzzy logic. Whereas the adaptation strategy solves 
the problem iteratively, until a good solution is reached, this soft-computing approach 
evaluates some features of the differential problem and finds a good solution: time 
and computation could be saved because no iterations are required, thus speeding up 
the FEM solving process. 

It has to be noticed that a direct and more effective comparison between a 
traditional mesh adaptation strategy and the fuzzy reasoning approach here described 
will be possible after the conversion of the metric into a mesh, by using a triangle 
meshing algorithm (see [6] for a general survey). 

The main weakness of the method is its dependence on some normalization 
constants derived via heuristics; these constants are necessary to use general 
membership functions, but they are not here reported because of lack of space. 

Another advantage of the algorithm is the possibility to modify the rules by using 
some learning algorithms, widely tested in the Soft Computing field [1], [2], [5]. 
Learning the rules and adapting them to a specific PDE problem would be very 
useful in the first phase of a project. With the classical mesh adaptive methods, 
even if the geometry changes in a little detail, it is necessary to start from the 
beginning to define the grid, trashing all the work done on a similar problem: 
learning would allow maintaining the knowledge acquired in the past into fuzzy 
rules. 
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Abstract. The two dimensional systolic array for multiplication in bi-
nary field GF (2m) with LSB (Least Significant Bit) first algorithm pro-
posed by Yeh et al. has the unfavorable property of bidirectional data
flows compared with that of Wang and Lin which use MSB (Most Signif-
icant Bit) first algorithm. In this paper, by using a polynomial basis with
LSB first algorithm, we present an improved bit parallel systolic array
over GF (2m). Our two dimensional systolic array has unidirectional data
flows with 7 latches in each basic cell. Therefore our systolic array has a
shorter critical path delay and has the same unidirectional data flows to
the multipliers with MSB first scheme.

Keywords: Systolic array, VLSI, fault tolerant architecture, LSB first
algorithm, finite field, data flow.

1 Introduction

Arithmetic of finite fields, especially finite field multiplication, found various ap-
plications in many VLSI architectures. Moreover, arithmetic of GF (2m) is easily
realized in a circuitry using a few logical gates. Some popular multiplication ar-
rays are Berlekamp’s bit serial multipliers [9,10] which use a dual basis, and bit
parallel multipliers of Massey-Omura type [11,12,13] which use a normal basis.
Above mentioned arrays and other traditional multiplication arrays have some
unappealing characteristics. For example, they have irregular circuit designs. In
other words, their hardware structures may be quite different for varying choices
of m for GF (2m), though the multiplication algorithm is basically same for each
m. Moreover as m gets large, the propagation delay also increases. So deteriora-
tion of the performance is inevitable.

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 420–426, 2006.
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A systolic array does not suffer from the above problems. It has a regular
structure consisting of a number of replicated basic cells, each of which has the
same circuit design. So overall structures of systolic arrays are same and not
depending on a particular choice of m for GF (2m). Furthermore since each ba-
sic cell is only connected with its neighboring cells, signals can be propagated
at a high clock speed. Accordingly, the computational delay of the non systolic
arrays in [9,10,11,12,13] is very long when compared with systolic arrays if m is
large. There are systolic arrays using a polynomial basis [1,2,6,8], a dual basis
[3,4,7] and a normal basis [5]. However a standard polynomial basis is preferred
if one considers an array applicable to all finite fields and if one does not want a
basis conversion process. When one uses a polynomial basis to multiply two ele-
ments in a finite field, there are basically two types of multiplication algorithms,
namely, LSB (least significant bit) first scheme and MSB (most significant bit)
first scheme.

To find a systolic arrangement, MSB first scheme is used by Wang and Lin
in [1] and LSB first scheme is used by Yeh et al. in [2]. A design in [2] has a
shorter critical path delay than that of [1] due to increased parallelism among
internal computations. On the other hand, the two dimensional array in [2] has
bidirectional data flows whereas [1] has unidirectional data flows. Note that a
system with unidirectional data flows gains advantages in terms of chip cascad-
ability, fault tolerance, and wafer-scale integration compared with the system
with bidirectional data flows. In this paper, we present a two dimensional sys-
tolic array with unidirectional data flows and show that our array has a shorter
critical path delay while achieving the same unidirectional data flows compared
with that of MSB first scheme. Thus our construction of systolic arrays provides
possible applications for designing fault tolerant architectures [14,15] computing
a power sum, an exponentiation and an inversion, so far most of which have been
designed by using MSB first scheme.

2 LSB First Algorithm

Let GF (2m) be a finite field of 2m elements. Let

F (x) = f0 + f1x + · · · + fm−1x
m−1 + xm ∈ GF (2)[x]

be an irreducible polynomial overGF (2) and let α be any root of F (x). Then α ∈
GF (2m) and {1, α, α2, · · · , αm−1} is a standard polynomial basis over GF (2).
An element A ∈ GF (2m) is uniquely represented by A = a0 +a1α+a2α

2 + · · ·+
am−1α

m−1 for some a0, a1, · · · , am−1 ∈ GF (2). Now let B =
∑m−1

i=0 biα
i and

C =
∑m−1

i=0 ciα
i be other elements in GF (2m). We want to compute the product

sum AB + C by LSB first scheme,

AB + C = C +A

m−1∑
i=0

biα
i = C +

m−1∑
i=0

biAα
i.
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For each i, let

Aαi =
m−1∑
j=0

ui
jα

j .

Then we have

m−1∑
j=0

ui+1
j αj = Aαi+1 =

m−1∑
j=0

ui
jα

j+1

=
m−1∑
j=1

ui
j−1α

j + ui
m−1α

m =
m−1∑
j=1

ui
j−1α

j + ui
m−1

m−1∑
j=0

fjα
j

= ui
m−1f0 +

m−1∑
j=1

(ui
j−1 + ui

m−1fj)αj ,

(1)

Therefore we have

ui+1
j = ui

j−1 + ui
m−1fj, with ui

−1 = 0, 0 ≤ i, j ≤ m− 1, (2)

which implies that Aαi can be recursively computed by the above relation. More-
over for each i, let

m−1∑
j=0

si
jα

j = C +
i−1∑
j=0

bjAα
j .

Then we find

m−1∑
j=0

si+1
j αj = C +

i∑
j=0

bjAα
j = C +

i−1∑
j=0

bjAα
j + biAα

i

=
m−1∑
j=0

si
jα

j + bi

m−1∑
j=0

ui
jα

j

=
m−1∑
j=0

(si
j + biu

i
j)α

j .

(3)

Therefore C +
∑i

j=0 bjAα
j can also be recursively calculated by the relation,

si+1
j = si

j + biu
i
j , 0 ≤ i, j ≤ m− 1. (4)

From the above two observations regarding si
j and ui

j, we deduce that AB+C =∑m−1
j=0 sm

j α
j can be computed by the following algorithm.
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Table 1. Bit-level LSB first algorithm

————————————————————————————————
INPUT: A = m−1

j=0 ajα
j , B = m−1

j=0 bjα
j , C = m−1

j=0 cjα
j

OUTPUT: S = m−1
j=0 sm

j αj /* The result of AB + C. */

(u0
0, u

0
1, · · · , u0

m−1) ← (a0, a1, · · · , am−1)
(s0

0, s
0
1, · · · , s0

m−1) ← (c0, c1, · · · , cm−1) /* Initialize. */
for i = 0 to m − 1 do

for j = m − 1 down to 0 do
si+1

j ← si
j + biu

i
j .

ui+1
j ← ui

j−1 + ui
m−1fj with ui

−1 = 0.
end

end
————————————————————————————————

3 Two Dimensional Systolic Array with Unidirectional
Data Flows

The twodimensional systolic array in [2] needs 7 latches in eachbasic cell. Therefore
it has the same hardware complexity to the array in [1] with MSB first scheme.
On the other hand, [2] has bidirectional data flows whereas [1] has unidirectional
data flows. Since unidirectional data flows is desirable if one wants a fault tolerant
system, most of the systolic arrays [14,15] computing arithmetic operations such as
a power sum, a division, an inversion and an exponentiation are based on the MSB
first scheme in [1]. However, we may construct a unidirectional systolic array using
LSB first scheme without sacrificing the hardware complexity of the basic cell. In

Fig. 1. A circuit of (i, m − j − 1) basic cell where 0 ≤ i ≤ m − 1 and 1 ≤ j ≤ m − 1
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Fig. 2. A circuit of (i, m − 1) basic cell where 0 ≤ i ≤ m − 1

fact, we will present a bit parallel systolic array using LSB first scheme which has
unidirectional data flows and has 7 latches in each basic cell.

In each (i,m− j − 1) basic cell, where 0 ≤ i ≤ m− 1 and 1 ≤ j ≤ m− 1, the
operations

si+1
j−1 ← si

j−1 + biu
i
j−1 and ui+1

j ← ui
j−1 + ui

m−1fj

are simultaneously computed. Also in each (i,m− 1) basic cells, i.e. the cells in
the rightmost column, the operations

si+1
m−1 ← si

m−1 + biu
i
m−1 and ui+1

0 ← ui
m−1f0

are simultaneously computed. The resulting basic cells are shown in Fig. 1 and
2. Notice that we compute two outputs, si+1

j−1 and ui+1
j , simultaneously which

have slightly different orderings from Table 1, where si+1
j , ui+1

j are computed.
This is because we want to optimize the architecture by using only the signal
ui

j−1 instead of using both of the ui
j−1, u

i
j in the computation.

The corresponding systolic array is shown in Fig. 3 for the case m = 4,
where • is a latch (one bit delay element). Our multiplication array supports
pipelined operation with latency 3m and throughput rate 1. After 2m clock
cycles, we have the sequence of outputs,

sm
m−2, s

m
m−1, · · · , sm

0 and sm
m−1,

where AB + C =
∑m−1

j=0 sm
j α

j . We compare our systolic array with other bit
parallel arrays in Table 2. When compared with [1], we have a shorter critical
path delay. Compared with [2], we have unidirectional data flows. Finally, com-
pared with [3], we use a standard polynomial basis. Notice that the dual basis
multiplier in [3] requires extra gates and wiring because of the basis conversion
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Fig. 3. A systolic array computing AB+C using LSB first algorithm with unidirectional
data flows

Table 2. Comparison with other two dimensional systolic arrays

basis AND XOR 3XOR Latch Data Flows Critical
Path Delay

[1] polynomial 2 0 1 7 unidirectional DA+D3X+DL

[2] polynomial 2 2 0 7 bidirectional DA+DX+DL

[3] dual 2 2 0 7 unidirectional DA+DX+DL

Fig. 3 polynomial 2 2 0 7 unidirectional DA+DX+DL

process. In Table 2, AND, XOR denote 2-input AND, XOR gates and 3XOR
denotes a 3-input XOR gate. Also DA, DX and D3X mean the delay time of an
AND gate, a XOR gate and a 3XOR gate respectively.

4 Conclusions

In this paper, we proposed a two dimensional systolic array using LSB first al-
gorithm with unidirectional data flows. Compared with the architectures with
bidirectional data flows, our architecture is more suitable for fault tolerant
systems which require fine wafer-scale integration. Since LSB first algorithm
is always faster than MSB first algorithm due to the reduced critical path delay,
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our construction of the systolic array gives possible applications for designing
other fault tolerant circuits computing an inversion, a division and an exponen-
tiation, so far most of which have been designed by using MSB first algorithm.

Finally, it should be mentioned that the analogue for the bit serial case with
LSB first algorithm is presented in [16], where the proposed architecture has
a shorter critical path delay and comparable area complexity to the bit serial
systolic array [1] with MSB first algorithm.
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& Technology.
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Abstract. We propose a new linear array for multiplication in GF (2m)
which outperforms most of the existing linear multipliers in terms of the
area and time complexity. Moreover we will give a very detailed compari-
son of our array with other existing architectures for the five binary fields
GF (2m), m = 163, 233, 283, 409, 571, recommended by NIST for elliptic
curve cryptography.

Keywords: linear array, VLSI architecture, NIST, elliptic curve cryp-
tography.

1 Introduction

Efficient arithmetic of finite field is a critical factor for a low cost VLSI im-
plementation in many applications such as coding theory and cryptography. In
these applications, a polynomial basis [10,11] is usually preferred over a normal
or a dual basis because of its simple field arithmetic and flexibility of the many
available algorithms. Massy-Omura multiplier [1,2,3] is also one of the most
popular multipliers these days because of simple squaring operation. There is
another type of multiplier called Berlekamp dual basis bit serial multiplier [4].
Though considerable improvements have been made [5,6,7,8] on this multiplier,
it does not seem to get much attention these days for cryptographic purposes
because of long critical path delay and inconvenient basis conversion process.
The multiplication arrays in [5,6,7] do not consider basis conversion and there-
fore have different bases for input and output values, which make it complicated
for practical applications.

Our aim in this paper is to show that a suitably modified linear array from
[4] is excellent also for cryptographic purposes. Our proposed array uses single
basis consistently for input and output values and has a sequential structure (i.e.
parallel in parallel out), which are our salient features that distinguish from pre-
vious results in [5,6,7,8]. Consequently our multiplier has a significantly reduced

I. Bloch, A. Petrosino, and A.G.B. Tettamanzi (Eds.): WILF 2005, LNAI 3849, pp. 427–436, 2006.
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critical path delay and a low area complexity which are superior or comparable
to those of normal or polynomial basis multipliers. We will give a very detailed
comparison of our multiplier with other proposed linear arrays for the five binary
fields GF (2m),m = 163, 233, 283, 409, 571, recommended by NIST (National In-
stitute of Standards and Technology) [9] for elliptic curve cryptography.

2 New Linear Array for Multiplication

Let GF (2m) be a finite field with characteristic two. There exists a basis for
GF (2m) which is a vector space of dimension m over GF (2). Two bases {α0, α1,
· · · , αm−1} and {β0,β1, · · · ,βm−1} of GF (2m) are said to be dual if the trace
map,

T r : GF (2m) → GF (2) with T r(α) = α+ α2 + · · · + α2m−1
, (1)

satisfies T r(αiβj) = δij for all 0 ≤ i, j ≤ m− 1, where δij = 1 if i = j, and zero
if i �= j. It is easy [4] to see that a unique dual basis exists for a given basis.
Also if {β0,β1, · · · , βm−1} is the dual basis of {α0, α1, · · · , αm−1}, then for any
nonzero β ∈ GF (2m),

{β−1β0,β
−1β1, · · · ,β−1βm−1} and {βα0,βα1, · · · ,βαm−1} (2)

are dual to each other. Let {1, α, α2,· · · ,αm−1} be a polynomial basis forGF (2m)
and let

f(X) = f0 + f1X + f2X
2 + · · · + fm−1X

m−1 +Xm

= (X − α)(g0 + g1X + · · · + gm−1X
m−1)

(3)

be the unique irreducible polynomial of α over GF (2), where fi is in GF (2) and
gi is in GF (2m) for all 0 ≤ i ≤ m−1. Then the dual basis of {1, α, α2, · · · , αm−1}
is expressed [5] as {

g0

f ′(α)
,

g1

f ′(α)
, · · · , gm−1

f ′(α)

}
. (4)

The dual basis bit serial multiplier [4] has two serious problems compared with
most of the other multipliers with a normal or a polynomial basis. First it needs
a basis conversion which requires extra circuitry. Second it has a long critical
path delay which is a crucial drawback for cryptographic purposes, especially for
elliptic curve cryptography where one should choose m large. We will show that
these two problems can be solved using suitable data rearrangement and basis
change technique.

Reducing the critical path delay: Since a bit serial architecture usually has
a long critical path delay, we want to modify the architecture to the sequential
architecture using the symmetry of the multiplication table T r(βαi+kx) in [5,6].
Let {γ0, γ1, · · · , γm−1} be the dual basis of {β,βα,βα2, · · · ,βαm−1} where β
will be determined later. Write x, y ∈ GF (2m) as

x =
m−1∑
i=0

[x]iγi and y =
m−1∑
i=0

yiα
i. (5)
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Letting xy =
∑m−1

k=0 [xy]kγk, the dual basis multiplication formula in [5,6] says
that [xy]k =

∑m−1
i=0 yiT r(βαi+kx). That is,

[xy]0 = y0T r(βx) + y1T r(βαx) + · · · + ym−1T r(βαm−1x),

[xy]1 = y0T r(βαx) + y1T r(βα2x) + · · · + ym−1T r(βαmx),
· · ·
· · ·

[xy]m−1 = y0T r(βαm−1x) + y1T r(βαmx) + · · · + ym−1T r(βα2m−2x).

(6)

By defining the column vectors

Y = (y0, y1, · · · , ym−1)T and Z = ([xy]0, [xy]1, · · · , [xy]m−1)T , (7)

as the transposition of the row vectors (y0, y1, · · · , ym−1) and ([xy]0, [xy]1, · · · ,
[xy]m−1) respectively, we have the matrix multiplication Z = AY where the
m by m matrix A = (aij) is defined as aij = T r(βαi+jx), 0 ≤ i, j ≤ m − 1.
The crucial property of the matrix A is that it is symmetric. Note that, in the
bit serial construction of Berlekamp [4], each row vector of A is computed by
a feedback shift register. Since A is symmetric, the column vectors of A are
generated by the same shift register. Therefore we may compute the product xy
sequentially. In other words, letting

Aj = (T r(βαjx),T r(βαj+1x), · · · ,T r(βαj+m−1x))T (8)

be the jth column vector of A with 0 ≤ j ≤ m−1, we compute the multiplication
as follows;

Z = (· · · (((A0y0) +A1y1) +A2y2) + · · · ) +Am−1ym−1. (9)

Note that at the jth clock cycle (0 ≤ j ≤ m−1), Aj is multiplied to the constant
yj and the value Ajyj is added to the partial sum A0y0 + · · ·+Aj−1yj−1 to get
the result A0y0 + · · · + Ajyj which is stored in the register Di, 0 ≤ i ≤ m − 1,
for a partial summation.

Techniques of basis conversion: Let f(X) = 1+Xn1 +Xn2 + · · ·+Xnt +Xm

be the irreducible polynomial of α ∈ GF (2m) with 0 = n0 < n1 < n2 < · · · <
nt < m. Recall that, from the previous expression of f(X) in (3), we have

f(X) = (X − α)
m−1∑
i=0

giX
i =

m−1∑
i=0

giX
i+1 −

m−1∑
i=0

αgiX
i

=
m−2∑
i=0

giX
i+1 −

m−2∑
i=0

αgi+1X
i+1 + gm−1X

m − αg0

=
m−2∑
i=0

(gi − αgi+1)X i+1 + gm−1X
m − αg0.

(10)
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From the above equations, it is straightforward to see that gi−αgi+1 is 1 if there
exists nj such that nj = i+1 and is zero if there is no such nj , since gi−αgi+1 is
the coefficient of X i+1 of the polynomial f(X) = 1+Xn1+Xn2+· · ·+Xnt +Xm.
Therefore using gi − αgi+1 = α−i−1∑

i<nj≤i+1 α
nj , we deduce

gi = α−i−1
∑
nj≤i

αnj = αm−i−1 + α−i−1
∑
nj>i

αnj . (11)

Note that, in [4,5,6,7], two values x and xy are expressed in terms of the basis
{γ0, γ1, · · · , γm−1} and y is expressed with respect to {1, α, α2, · · · , αm−1}.
However, in our paper, we will stick to the basis {γ0, γ1, · · · , γm−1} consistently.
Therefore we need a basis conversion from {γ0, γ1, · · · , γm−1} to {1, α, α2, · · · ,
αm−1} to express y in terms of {1, α, α2, · · · , αm−1} from our initial choice of the
basis {γ0, γ1, · · · , γm−1}. Let γi =

∑m−1
j=0 cijα

j for all 0 ≤ i ≤ m− 1 and let y =∑m−1
i=0 yiα

i =
∑m−1

i=0 [y]iγi be the expression of y with respect to {1, α, α2, · · · ,
αm−1} and {γ0, γ1, · · · , γm−1}, respectively. Then

m−1∑
i=0

[y]iγi = ([y]0, [y]1, · · · , [y]m−1)(γ0, γ1, · · · , γm−1)T

= ([y]0, [y]1, · · · , [y]m−1)(cij)(1, α, α2, · · · , αm−1)T

= (y0, y1, · · · , ym−1)(1, α, α2, · · · , αm−1)T =
m−1∑
i=0

yiα
i,

(12)

where (cij) is a m by m matrix and (γ0, γ1, · · · , γm−1)T (resp. (1, α, α2, · · · ,
αm−1)T ) is the transposition of the row vector (γ0, γ1, · · · , γm−1) (resp. (1, α, α2,
· · · , αm−1)). Thus we have (y0, y1, · · · , ym−1) = ([y]0, [y]1, · · · , [y]m−1)(cij) and
(cij) can be regarded as the basis conversion matrix from {γ0, γ1, · · · , γm−1} to
{1, α, α2, · · · , αm−1}. We define the excess number of the basis conversion to
be ‘the number of nonzero entries of the matrix (cij) minus m’. As long as the
excess number is small, we can get a fairly simple basis conversion. For example,
if the excess number is zero, then the rows of (cij) are the permutated ones of the
identity matrix so that the basis conversion is just a permutation. Now following
the approach in [8], we choose the mysterious constant β ∈ GF (2m) as

β = (αnsf ′(α))−1 (13)

where s = t+1
2 , i.e. ns is the power of the exact middle term of the irreducible

f(X) = 1 +Xn1 + · · · +Xns + · · · +Xnt +Xm. Then using the equation (11),
one can show [8] that the excess number is

∑t
i=s+1 ni −

∑s−1
i=1 ni. For example,

as is showed in [5,8], when f(X) = Xm + Xk + 1 is an irreducible trinomial,
then the excess number is zero and the basis conversion from {γ0, γ1, · · · , γm−1}
to {1, α, α2, · · · , αm−1} is just a permutation. Thus no extra circuitry is needed
in this case. Also when irreducible f(X) is the following special pentanomial
Xm + Xk+1 + Xk + Xk−1 + 1, then we have t = 3, s = t+1

2 = 2 and thus
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the excess number is 2 = (k + 1) − (k − 1) which was already shown in [6].
However for a general irreducible polynomial, the excess number may not be
small and in that case, for each yi which is a linear combination of the signals
[y]0, [y]1, · · · , [y]m−1, the depth and the number of necessary XOR gates of the
XOR tree with respect to yi should be determined precisely. A detailed analysis
leads to the following lemma which explains the basis conversion of y terms at
each coefficients.

Lemma 1. Let γi = αnsgi for all 0 ≤ i ≤ m − 1. Let y =
∑m−1

i=0 [y]iγi =∑m−1
i=0 yiα

i be the expression of y with respect to the bases {γ0, γ1, · · · , γm−1}
and {1, α, α2, · · · , αm−1}, respectively. Then for each 0 ≤ i ≤ m − 1, yi is the
sum of at most s elements of [y]j with 0 ≤ j ≤ m−1. Thus each coefficient yi is
obtained by using an XOR tree of depth at most -log2 s. with at most s−1 XOR
gates. Also the total number of necessary XOR gates to generate y0, y1, · · · , ym−1
using the signals [y]0, [y]1, · · · , [y]m−1 is exactly

∑t
i=s+1 ni −

∑s−1
i=1 ni.

Recall that we have used the basis {γ0, γ1, · · · , γm−1} which is dual to the basis
{β,βα,βα2, · · · ,βαm−1} with β = (αnsf ′(α))−1. From the relations (2,4) and
(13), we easily find that {γ0, γ1, · · · , γm−1} = {αnsg0, · · · , αnsgm−1}, which jus-
tifies the expression of γi in Lemma 1. Because of Lemma 1, we can now precisely
describe the basis conversion using XOR trees. The necessary XOR gates for each
tree can also be determined easily. For example, when one has an irreducible pen-
tanomial f(X) = Xm +Xn3 +Xn2 +Xn1 +1 with 0 = n0 < n1 < n2 < n3 < m,
the total number of necessary XOR gates for the basis conversion is n3 − n1
and each XOR tree, if it exists, is just a single XOR gate with depth one be-
cause t = 3 and s = t+1

2 = 2. That is, among all coefficients y0, y1, · · · , ym−1 of
y =

∑m−1
i=0 yiα

i =
∑m−1

i=0 [y]iγi, exactly n3 − n1 number of yi are the sum of two
elements from the set {[y]0, [y]1, · · · , [y]m−1} and exactly m − n3 + n1 number
of yi are same to some members in {[y]0, [y]1, · · · , [y]m−1}.

3 Main Result with VLSI Realization

All the explanations in the previous section are realized in the circuit arrange-
ment shown in Fig. 1. In Fig. 1, every input of our array is expressed with
respect to the basis {γ0, γ1, · · · , γm−1} = {αnsg0, · · · , αnsgm−1}. The input
y =

∑m−1
i=0 [y]iγi is loaded via XOR trees to the lower shift register so that

the vector in the register has the value (y0, · · · , ym−1), and this vector is cycli-
cally shifted to the left by one position at every cycle. The upper shift register
is loaded with the vector A0 and it is feedback shifted via the relations (6,8),
which is the usual case of Berlekamp multipliers. The area complexity and the
critical path delay of the proposed array are explained in Theorem 2.

Theorem 2. Let f(X) = Xm +
∑t

i=0X
ni be an irreducible polynomial over

GF (2) with 0 = n0 < n1 < · · · < nt < m and let α be a zero of f(X). Write
s = t+1

2 ,β = (αnsf ′(α))−1 and f(X) = (X − α)(
∑m−1

i=0 giX
i). Then, by using

the basis {αnsg0, α
nsg1, · · · , αnsgm−1}, we can construct a linear array for the
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Fig. 1. A new linear array for multiplication in GF (2m) using the basis {αnsg0, · · · ,

αnsgm−1} with s = t+1
2 and f(X) = Xm + t

i=0 Xni = (X − α)( m−1
i=0 giX

i)

multiplication of x and y in GF (2m) with 3m flip-flops, m AND gates, and
m+ t+

∑t
i=s+1 ni −

∑s−1
i=1 ni XOR gates such that

1. An XOR tree for the feed back shift register for the input x needs t XOR gates
with depth of the tree -log2(t + 1).. Also the basis conversion of the input
y costs

∑t
i=s+1 ni −

∑s−1
i=1 ni XOR gates with m XOR trees such that each

XOR tree consists of at most t−1
2 XOR gates with depth -log2(t+ 1). − 1.

2. Our array has a parallel-in parallel-out structure and produces an output of
xy at a rate of one every m clock cycle. The critical path delay of our array
is TA + TX if t = 1 (i.e. trinomial case) and it is -log2(t + 1).TX if t > 1,
where TA and TX are the delay time of a two input AND gate and a two
input XOR gate, respectively.

4 Comparison with Other Linear Arrays

In view of the result in Theorem 2, we may now claim that our proposed linear
array is, in terms of the time and area complexity, superior to most of normal
and polynomial basis multipliers currently used. Detailed comparisons are given
in Table 1 and 2 for the five binary fields [9] recommended by NIST (National
Institute of Standards and Technology) for elliptic curve cryptography. Also in
Fig. 2 and 3, we show explicit circuits for VLSI implementation for the cases
GF (2163) and GF (2233) as examples. Note that the circuits for other fields can
be constructed similarly following Theorem 2.

The critical path delay of [2,3] using a Gaussian normal basis of type k is TA +
(1 + -log2 k.)TX . Also the critical path delay of the polynomial basis multipliers
is TA +TX with LSB first scheme and is TA +2TX with MSB first scheme. On the
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Table 1. Comparison of the critical path delay for the five binary fields

GF (2m) basis GF (2163) GF (2233) GF (2283) GF (2409) GF (2571)

[1] normal TA + 10TX TA + 9TX TA + 11TX TA + 11TX TA + 13TX

[2] normal TA + 3TX TA + 2TX TA + 4TX TA + 3TX TA + 5TX

[3] normal TA + 3TX TA + 2TX TA + 4TX TA + 3TX TA + 5TX

[4,5] dual TA + 8TX TA + 8TX TA + 9TX TA + 9TX TA + 10TX

[10,11] LSB polynomial TA + TX TA + TX TA + TX TA + TX TA + TX

[10] MSB polynomial TA + 2TX TA + 2TX TA + 2TX TA + 2TX TA + 2TX

This paper {αnsgi} 2TX TA + TX 2TX TA + TX 2TX

other hand, our multiplier has a critical path delay TA +TX if f(X) is a trinomial
and 2TX if f(X) is a pentanomial. This implies that our multiplier has a signifi-
cantly shorter critical path delay compared with normal basis multipliers and has
almost the same critical path delay compared with polynomial basis multipliers.
See the difference of the critical path delay for m = 163, 233, 283, 409, 571 shown
in Table 1. It should be mentioned that, since we are dealing with a linear multi-
plier, even a small increment of the critical path delay such as TX results in a total
delay of mTX where m is the size of a field.
Remark: For irreducible polynomials, NIST [9] recommends to use X163 +X7 +
X6+X3+1, X233+X74+1, X283+X12+X7+X5+1, X409+X87+1, X571+X10

+X5+X2+1, respectively. NIST also recommends to use the lowest complexity
Gaussian normal basis for the above fields and they are of type 4, 2, 6, 4, 10,
respectively.
The area complexity of our multiplier is also far lower than that of Massey-Omura
multipliers [1,2,3] and is comparable to that of polynomial basis multipliers.
For a binary field GF (2m) with odd m, the result in [3] shows that the type k
Gaussian normal basis multipliers need k+1

2 m− k−1
2 XOR gates, which is 3

2m− 1
2

for a type II ONB (optimal normal basis) and k+1
2 m− k−1

2 > 5
2m− 5 for other

Gaussian normal bases of type k = 4, 6, 10. On the other hand, our multiplier
needs m + 1 XOR gates when trinomial is used and needs m + 3 + n3 − n1
(< 2m + 3) XOR gates when pentanomial is used. Note that the difference of
the number of necessary XOR gates between our multiplier and the polynomial
basis multipliers comes from the base change of our multiplier and is practically
negligible. We omit the number of necessary AND gates in Table 2 because all
the architectures in the table have almost the same number of AND gates.

Table 2. Comparison of the number of necessary XOR gates for the five binary fields

GF (2m) GF (2163) GF (2233) GF (2283) GF (2409) GF (2571)

[1] 648 464 1692 1632 5700
[2] 649 465 1693 1633 5701
[3] 406 349 988 1021 3136
[4,5] 165 233 285 409 573
[10,11] 166 234 286 410 574
This paper 170 234 293 410 582
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5 Circuits for NIST Recommended Binary Fields

Let us explain how to construct a multiplication circuit for each binary field
GF (2m), m = 163, 233, 283, 409, 571. The recommended irreducible polynomials
[9] for these fields are X163 +X7 +X6 +X3 + 1, X233 +X74 + 1, X283 +X12 +
X7 + X5 + 1, X409 + X87 + 1, X571 + X10 + X5 + X2 + 1, respectively. Since
these polynomials are either trinomials or pentanomials, we will discuss basis
conversion of these polynomials and derive explicit multiplication architectures.
First let us consider the trinomial f(X) = Xm +Xk + 1. Then we get the exact
middle term αns = αk and from the equation (11), we have

αkgi = αk−i−1
∑
nj≤i

αnj = αk−i−1 if 0 ≤ i < k

= αk−i−1(1 + αk) = αk−i−1+m if k ≤ i < m.

(14)

Therefore the basis of our multiplier for the trinomial f(X) = Xm +Xk + 1 is

{αkg0, · · · , αkgm−1} = {αk−1, αk−2, · · · , α0, αm−1, αm−2, · · · , αk}. (15)

Next let us consider the pentanomial f(X) = Xm +Xn3 +Xn2 +Xn1 +1. Then
αns = αn2 and again using the equation (11),

αn2gi = αn2−i−1 if 0 ≤ i < n1

= αn2−i−1(1 + αn1) = αn2−i−1 + αn2−i−1+n1 if n1 ≤ i < n2

= αn2−i−1(αn3 + αm) = αn2−i−1+n3 + αn2−i−1+m if n2 ≤ i < n3

= αn2−i−1αm = αn2−i−1+m if n3 ≤ i < m.

Thus the basis {γ0, · · · , γm−1} = {αn2g0, · · · , αn2gm−1} of our multiplier for the
pentanomial f(X) = Xm +Xn3 +Xn2 +Xn1 + 1 is

{αn2−1, · · · , αn2−n1 , αn2−n1−1 + αn2−1, · · · , α0 + αn1 ,

αn3−1 + αm−1, · · · , αn2 + αn2−n3+m, αn2−n3+m−1, · · · , αn2}. (16)

Example 1. Multiplication in GF (2163) using f(X) = X163+X7+X6+X3+1:
From the equations (16), we have the following basis {γ0, · · · , γ162} for the field
GF (2163),

{α5, α4, α3, α2 + α5, α+ α4, α0 + α3, α6 + α162, α161, α160, · · · , α6}. (17)

Therefore letting y =
∑162

i=0[y]iγi =
∑162

i=0 yiα
i, the basis conversion is

y = [y]0α5 + [y]1α4 + [y]2α3 + [y]3(α2 + α5) + [y]4(α+ α4) + [y]5(α0 + α3)

+ [y]6(α6 + α162) + [y]7α161 + [y]8α160 + · · · + [y]162α6

= [y]5α0 + [y]4α+ [y]3α2 + ([y]2 + [y]5)α3 + ([y]1 + [y]4)α4 + ([y]0 + [y]3)α5

+ ([y]6 + [y]162)α6 + [y]161α7 + [y]160α8 + · · · + [y]6α162,
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Fig. 2. A multiplication circuit using the basis {γ0, · · · , γm−1} = {α6g0, · · · , α6g162}
in GF (2163) with f(X) = X163 + X7 + X6 + X3 + 1 = (X − α)( 162

i=0 giX
i)

and the corresponding circuit for the multiplication is shown in Fig. 2. It should
be mentioned that the same technique can be applied to other fields GF (2283)
and GF (2571) having irreducible pentanomials.

Example 2. Multiplication in GF (2233) using f(X) = X233+X74+1: From the
equation (15), we have the following basis {γ0, · · · , γ232} for the field GF (2233),

{α73, α72, · · · , α0, α232, α231, · · · , α74}. (18)

Thus the multiplication is easily realized in the shift register arrangement shown
in Fig. 3. Note that one can construct a similar circuit for the case GF (2409)
with NIST recommended trinomial f(X) = X409 +X87 + 1.

Fig. 3. A multiplication circuit using the basis {α74g0, · · · , α74g232} in GF (2233) with
f(X) = X233 + X74 + 1 = (X − α)( 232

i=0 giX
i)
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6 Conclusions

In this paper, we proposed a new linear array for multiplication and showed
how to construct explicit multiplication circuits for the five NIST recommended
binary fields GF (2m),m = 163, 233, 283, 409, 571. Table 1 and 2 show that our
linear array has a significantly reduced critical path delay and a lower hard-
ware complexity compared with other existing arrays with normal or polyno-
mial bases. Therefore our proposed linear array can be used in many applica-
tions where VLSI implementation of a low cost and high speed arithmetic unit
is needed.
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Górecki, Przemys�law 369
Guasqui, Pierluigi 172

Hammer, B. 290
Hong, Chun Pyo 420
Hong, Kwang-Seok 129, 139, 146
Hwang, Myunggwon 326

Ihlow, Alexander 215

Jurman, Giuseppe 284

Kasperski, Adam 46, 99
Kerre, Etienne E. 108
Khotanlou, Hassan 312
Kim, Chang Hoon 420
Kim, Dong-Joo 146
Kim, Jung-Hyun 129, 139, 146
Kim, Pankoo 326
Kwon, Soonhak 420, 427
Kwon, Taekyoung 427

Lazzerini, Beatrice 172
Liberati, Diego 297
Linawaty, Maria 205
Lollini, P.-L. 223
Longo, G. 246

Maghooli, K. 32
Manara, Corrado 205
Mangano, G. 246
Maratea, A. 259
Marcelloni, Francesco 172
Martino, Gabriele 362
Mastriani, E. 223
Masulli, Francesco 229
Medina, Jesús 61
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