
Rule-Tolerant Verification Algorithms for

Completeness of Chinese-Chess
Endgame Databases

Haw-ren Fang

Department of Computer Science,
University of Maryland, Maryland, USA

hrfang@cs.umd.edu

Abstract. Retrograde analysis has been successfully applied to solve
Awari [6], and construct 6-piece Western chess endgame databases [7].
However, its application to Chinese chess is limited because of the spe-
cial rules about indefinite move sequences. In [4], problems caused by the
most influential rule, checking indefinitely1, have been successfully tack-
led by Fang, with the 50 selected endgame databases were constructed
in concord with this rule, where the 60-move rule was ignored. A con-
jecture is that other special rules have much less effect on staining the
endgame databases, so that the corresponding stain rates are zero or
small. However, the conjecture has never been verified before. In this
paper, a rule-tolerant approach is proposed to verify this conjecture.
There are two rule sets of Chinese chess: an Asian rule set and a Chinese
rule set. Out of these 50 databases, 24 are verified complete with Asian
rule set, whereas 21 are verified complete with Chinese rule set (i.e., not
stained by the special rules). The 3 databases, KRKCC, KRKPPP and
KRKCGG, are complete with Asian rule set, but stained by Chinese
rules.

1 Introduction

Retrograde analysis is widely applied to construct databases of finite, two-player,
zero-sum and perfect information games [8]. The classical algorithm first deter-
mines all terminal positions, e.g., checkmate or stalemate in both Western chess
and Chinese chess, and then iteratively propagates the values back to their pre-
decessors until no propagation is possible. The remaining undetermined positions
are then declared as draws in the final phase.

In Western chess, as well as many other games, if a game continues endlessly
without reaching a terminal position, the game ends in a draw. However, in
Chinese chess, there are special rules other than checkmate and stalemate to
end a game. Some positions are to be treated as wins or losses because of these
rules, but they are mistakenly marked as draws in the final phase of a typical
retrograde algorithm. The most influential special rule is checking indefinitely.
1 Another name of the concept of checking indefinitely is perpetual checking.

H.J. van den Herik et al. (Eds.): CG 2004, LNCS 3846, pp. 129–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 H.-r. Fang

In [4], 50 selected endgame databases in concord with this rule were successfully
constructed. In this paper, a rule-tolerant verification algorithm is introduced to
find out which of these databases are stained by the other special rules.

The organization of this paper is as follows. Section 2 gives the background
as the previous works. Section 3 describes the special rules in Chinese chess.
Section 4 abstracts these special rules and formulates the problems. Section 5
presents the rule-tolerant algorithms for verifying the completeness of Chinese-
chess endgame databases. Section 6 gives the conclusion and suggests two future
lines of work. Experimental results are given in the Appendix.

2 Background

Retrograde analysis is applied to the two-player, finite and zero-sum games with
perfect information. Such a game can be represented as a game graph G = (V, E)
which is directed, bipartite, and possibly cyclic, where V is the set of vertices
and E is the set of edges. Each vertex indicates a position. Each directed edge
corresponds to a move from one position to another, with the relationship of
parent and child respectively. In Chinese chess, a position is an assignment of a
subset of pieces to distinct addresses on the board with a certain player-to-move.
Positions with out-degree 0 are called terminal positions.

2.1 A Typical Retrograde Algorithm

Definition 1. A win-draw-loss database of a game graph G = (V, E) is a func-
tion, DB : V → {win,draw, loss}. Each non-terminal position u ∈ V satisfies
the following constraints.

1. If DB(u) = win, then ∃(u, v) ∈ E such that DB(v) = loss.
2. If DB(u) = loss, then ∀(u, v) ∈ E, DB(v) = win.
3. If DB(u) = draw, then ∃(u, v) ∈ E such that DB(v) = draw, and ∀(u, v) ∈

E, (DB(v) = draw) ∨ (DB(v) = win).

Definition 1 draws the most fundamental game-theoretical constraints that a
win-draw-loss database must satisfy. A classical retrograde algorithm for con-
structing a win-draw-loss database consists of three phases: initialization, prop-
agation, and the final phase.

1. In the initialization phase, the win and loss terminal positions are assigned to
be wins and losses, respectively. They are checkmate or stalemate positions
in Chinese chess.

2. In the propagation phase, these values are propagated to the their parents,
until no propagation is possible.

3. The final phase is to mark undetermined positions as draws.

In the propagation phase, if an undetermined position has a child being a loss,
it is assigned as a win to satisfy constraint (1) in Definition 1. If an undetermined

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 131

position have all children as wins, it is assigned as a loss to satisfy constraint (2).
The process continues until no update is possible. The remaining undetermined
positions are marked as draws in the final phase. These marked draws satisfy
constraint (3). This is a very high level description of retrograde algorithms.
In practice, it is usually implemented as: whenever a position has its status
determined, it propagates the result to its parents.

Retrograde analysis cannot apply to the whole game graph of Chinese chess,
G = (V, E), on a physical computer, because the graph is too big. Therefore,
the algorithm is applied to a subgraph G′ = (V ′, E′), which satisfies ∀u ∈ V ′,
(u, v) ∈ E ⇒ ((v ∈ V ′) ∧ ((u, v) ∈ E′)). The subgraph is typically partitioned
into multiple endgame databases according to the numbers of different pieces
remaining on the board. To simplify the notation and without losing generality,
this subgraph is also called the Chinese-chess game graph throughout this paper.

2.2 Retrograde Analysis for Chinese Chess

The classical retrograde analysis requires that a game which does not end in a
terminal vertex must end in a draw. Otherwise, problems may occur in the final
phase. In Western chess, a game which continues endlessly without reaching a
terminal vertex is judged to be a draw. In Chinese chess, however, such a game
may end in a win or loss. These positions are sometimes mistakenly marked as
draws in the final phase. As a result, the draw declaration can only safely be
applied to the Chinese-chess endgame databases with only one player having
attacking pieces [2,9].

Assuming both players play flawlessly, a position is called stained by some
special Chinese-chess rule, if the game ends differently (i.e., win-draw-loss status
changes) when this rule is ignored. A database is stained if it has one or more
stained positions. In contrast, a database is complete if all the positions in it have
the correct win-draw-loss information. The most influential special rule to stain
the endgame databases is checking indefinitely. In [4], 50 endgame databases
were successfully constructed in concord with this rule. All the recorded win
and loss positions in the databases are verified as correct. However, the marked
draws in the databases are possibly stained by other special rules. Therefore, a
database is complete, if all the marked draws are not stained. The main theme
of this paper is to investigate whether there are positions marked as draws in
the databases and whether they are stained by the special rules.

3 Special Rules in Chinese Chess

In Chinese chess, the two sides are called Red and Black. Each side has one
King, two Guards, two Ministers, two Rooks, two Knights, two Cannons, and
five Pawns, which are abbreviated as K, G, M, R, N, C and P, respectively2. The
pieces Rooks, Knights, Cannons and Pawns are called attacking pieces since they

2 The English translation of the Chinese names differs by author.

132 H.-r. Fang

can move across the river, the imaginary stream between the two central hori-
zontal lines of the board. In contrast, Guards and Ministers are called defending
pieces because they are confined to the domestic region3.

In addition to checkmate and stalemate, there are various rules of indefi-
nite move sequences to end a game. They are called special rules in this paper.
An indefinite move sequence is conceptually an infinite move sequence. In real
games, it is determined by the threefold repetition of positions in a finite move
sequence [1, page 20, rule 23, page 65, rule 3].

3.1 Chinese and Asian Rule Sets

There are two rule sets of Chinese chess: an Asian rule set and a Chinese rule
set. The differences are generally about the special rules other than checking
indefinitely. In both Asian and Chinese rule sets, there are dozens of detailed
special rules and sub-rules. Some rules are exceptions of some others. Because
they are very complicated, we attempt to verify the completeness of a given
endgame database via a rule-tolerant approach, instead of formulating all these
rules.

All the special rules discussed in this paper refer to the rule book [1], in which
pages 1–46 describe the Chinese rule set, and pages 47–119 describe the Asian
rule set. Readers do not require this book to follow this paper. However, this
rule book keeps to be cited to confirm that the theory is correct. The rules of
checking indefinitely and mutual checking indefinitely are well studied in [3,4].
We focus on the other special rules.

3.2 The Rules of Chasing Indefinitely

In Chinese chess, chasing indefinitely is forbidden. The general concept is that
a player cannot chase some opponent’s piece continuously without ending [1,
page 21, page 64]. The term chase is defined similarly to the term check, but
the prospective piece to be captured is not the King but some other piece. For
example in Figure 1(a) with Red to move, the game continues cyclically with
moves Re0-e2 Ng2-f0 Re2-e0 Nf0-g2, etc. Red loses the game since he4 is forced to
chase the Black Knight endlessly. Here and throughout this paper, a player is said
to be forced to play the indicated moves, if he will lose the game by making any
other moves because of the rules of checkmate, stalemate or checking indefinitely.

In some cases, chasing is allowed. For example, the Kings and the Pawns are
allowed to chase other pieces [1, page 22, rule 27, page 65, rule 9]. In Figure 1(b)
with Red to move, the game continues cyclically with moves Rb0-c0 Pb1-c1
Rc0-b0 Pc1-b1, etc. Although Black chases the Red Rook endlessly, the game
ends in a draw because the chaser is a Pawn. Besides, some types of chasing

3 The notation and basic rules of Chinese chess in English can be found in the
ICGA web page http://www.cs.unimaas.nl/icga/games/chinesechess/, and in
FAQ of the Internet news group rec.games.chinese-chess, which is available at
http://www.chessvariants.com/chinfaq.html.

4 In this paper we use ’he’ when ’he’ and ’she’ are both possible.

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 133

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(a)

��
����
��

��
����
��

��K
��R

�K

�N

�P

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(b)

��
����
��

��
����
��

��K��R

�K

�P �P �P

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(c)

��
����
��

��
����
��

��K

��R
�K

�G
�G

�C

Fig. 1. Examples to illustrate the special rules

indefinitely is allowed under the Asian rule set, but forbidden by the Chinese
rules. For example, it is allowed in the Asian rule set to endlessly chase one piece
every other move and chase another piece at the moves in between [1, page 103,
rule 32], whereas it is forbidden by the Chinese rules [1, page 24, rule 28.12]. An
example is given in Figure 2(c). The rules of chasing indefinitely may also stain
the endgame databases.

3.3 Summary of Special Rules

An indefinite move sequence is composed of two semi-sequences: one consists of
the moves by Red and the other has the moves by Black. A semi-sequence is
classified as being allowed or forbidden by the special rules. In the 50 endgame
databases in concord with checking indefinitely, only marked draws are possi-
bly stained. Therefore, special rules about allowed semi-sequences of moves can
be ignored. In the Asian rule set, a forbidden semi-sequence of moves is ei-
ther checking indefinitely or chasing indefinitely [1, page 64–65]. In the Chinese
rule set, a forbidden semi-sequence of moves consists of three types of moves:
checking, chasing, and threatening to checkmate [1, page 21]. A threatening-to-
checkmate move means that a player attempts to checkmate his opponent by a
semi-sequence of checking moves. A semi-sequence of moves is allowed if it is not
forbidden. According to [1, page 20, rule 24, page 64, section 2], the special rules
applied to an indefinite move sequence are summarized as follows.

1. If only one player checks the other indefinitely, the player who checks loses
the game.

2. Otherwise, if only one semi-sequence of moves is forbidden and the other is
allowed, the player who played the forbidden semi-sequence of moves loses.

3. Otherwise, the game ends in a draw.

With the above summary, both mutual checking indefinitely and mutual chas-
ing indefinitely result in a draw. The example in Figure 1(c) with Red to move
illustrates the difference between the Asian and the Chinese rule sets. The game

134 H.-r. Fang

continues cyclically with moves Rc8-c7 Ge8-d7 Rc7-c8 Gd7-d8, etc. Red is forced
to check every other move and chases at the moves in between. It is allowed by
the Asian rules [1, page 64, rule 2] but forbidden by the Chinese rules [1, page
21, rule 25.2].

4 Problem Formulation

Below we formulate the problem to be solved more precisely. In 4.1 we deal with
abstracting the special rules and in 4.2 we describe a rule-tolerant approach.

4.1 Abstracting Special Rules

Denote the Chinese-chess game graph by G = (V, E). For ease of discussion, we
assume V contains the illegal positions, in which the own King is left in check,
and E includes the moves to these illegal positions. Given a position v ∈ V ,
we define v ∈ V to have the piece assignment on the board the same as that
of v but with a different player-to-move. The boolean function check : E →
{true, false} is to indicate whether the edge (u, v) is a checking move. In other
words, check((u, v)) = true if and only if the next mover in v can capture the
opponent’s King immediately.

Definition 2. In an infinite sequence of moves (v0, v1), (v1, v2), etc., the first
mover loses the game because of the rule of checking indefinitely, if

1. ∀ even i, check((vi, vi+1)) = true.
2. ∀n ≥ 0, ∃ odd j > n, such that check((vj , vj+1)) = false.

In addition, the game results in a draw because of mutual checking indefinitely
if, ∀i ∈ N ∪ {0}, check((vi, vi+1)) = true.

Note that this definition ignores the 60-move rule. Two semi-sequences of indef-
inite moves are (v0, v1), (v2, v3), etc. and (v1, v2), (v3, v4), etc.

We use the boolean function threaten :E→{true, false} to indicate whether
a given move is threatening to checkmate. It is defined by threaten((u, v))= true
if the own King in u is not in check and the next mover in v can checkmate his
opponent with a semi-sequence of checking moves, assuming both players play
flawlessly. If the next mover in u is in check, the move (u, v) is generally to get
out of check and not counted as an attempt to checkmate the opponent.

Before defining a chasing move, we need to define the capturing move. A
direct capturing move has a capturing piece and a captured piece other than the
King5. Two direct capturing moves are treated the same if they have the same
capturing piece and captured piece. A move (u, v) is called a chasing move, if v
has a capturing move which u does not have and after the capturing move from
v, the own King of v is not in check (i.e., not an illegal position) [1, page 24,
rule 29]. The boolean function chase∗ : E→{true, false} is defined to indicate

5 The cases of capturing a protected piece and indirect capturing are omitted here but
will be discussed in Subsection 4.2.

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 135

whether a given edge (u, v) is a chasing move. The boolean function chase :E→
{true, false} is to indicate whether a given edge is a forbidden chasing move.
Note that (chase((u, v)) = true) ⇒ (chase∗((u, v)) = true). The definition
of mutual and non-mutual chasing indefinitely is similar to that of mutual and
non-mutual checking indefinitely in Definition 2, but replacing check((u, v)) by
chase((u, v)). For the Asian rule set, we assume that the given database to be
verified is in concord with checking indefinitely and mutual checking indefinitely,
such as the 50 endgame databases in [4]. Therefore, we may focus only on chasing
indefinitely in the verification algorithms for the Asian rules.

Definition 3. Let the boolean function forbid : E → {true, false} indicate
whether a given move is forbidden. Then,

1. Asian rules: forbid((u, v)) := chase((u, v)).
2. Chinese rules: forbid((u, v)) := check((u, v)) ∨ threaten((u, v)) ∨ chase((u, v)).

If a semi-sequence of indefinite moves (v0, v1), (v2, v3), etc. is forbidden, then ∀
even i, forbid((vi, vi+1)) = true.

4.2 A Rule-Tolerant Approach

There is a problem we need to face. The value of chase((u, v)) may depend on the
other moves in a move sequence. Sometimes we cannot determine chase((u, v))
without inspecting the other moves in the move sequence. We call such a move
path-dependent. For example, usually Pawns are allowed to chase; therefore,
chase((u, v)) = false if the chasing piece is a Pawn. However, with the Chi-
nese rule set, if the opponent plays a forbidden semi-sequence of moves at the
same time, then chase((u, v)) = true with the piece to chase being a Pawn [1,
page 32, rule 11]. Another example in the Asian rule set is: indefinitely chasing
one piece every other move and chasing another piece at the moves in between
is allowed [1, page 103, rule 32]. As a result, forbid((u, v)) is path-dependent.
Nevertheless, check((u, v)), threaten((u, v)), chase∗((u, v)) and forbid∗((u, v))
are path-independent.

A rule-tolerant approach is proposed as follows. Let the boolean function
f(s) indicate whether a given semi-sequence of moves s is forbidden. Instead
of programming the function f(s), we look for another boolean function f∗(s)
satisfying (f(s) = true)⇒ (f∗(s) = true). In other words, if we know f∗(s) =
false, we can safely declare s is not a forbidden semi-sequence of moves. If a move
sequence is composed of two semi-sequence of moves satisfying f∗(s) = false, the
game is verified as a draw. If all positions marked as draws in a given database
DB are verified as draws, then the database can be declared complete, assuming
only marked draws are possibly stained.

Lemma 1. Define the boolean function forbid∗ : E → {true, false} as follows.

1. Asian rules: forbid∗((u, v)) := chase∗((u, v)).
2. Chinese rules: forbid∗((u, v)) := check((u, v)) ∨ threaten((u, v)) ∨ chase∗((u, v)).

136 H.-r. Fang

A semi-sequence of moves (v0, v1), (v2, v3), etc. is called suspiciously forbidden
if, forbid∗((vi, vi+1)) = true for all even i. If a semi-sequence of moves is not
suspiciously forbidden, it is an allowed semi-sequence of indefinite moves.

Proof. By Definition 3 and (chase((u, v)) = true) ⇒ (chase∗((u, v)) = true),
(forbid((u, v)) = true)⇒ (forbid∗((u, v)) = true). A forbidden semi-sequence
of moves (v0, v1), (v2, v3), etc. satisfies that ∀ even j, forbid((vj , vj+1)) = true.
If it is not suspiciously forbidden, then ∃ even i such that forbid∗((vi, vi+1)) =
false, which implies forbid((vi, vi+1)) = false. A contradiction.
�

In both Chinese and Asian rule sets, capturing a protected piece is usually
considered as not a capturing move [1, page 24, rule 29.3, page 108, rule 35]. We
call them nullified capturing moves in this paper. The general concept of a pro-
tected piece p is that, if p is captured by some opponent’s piece q, the player of p
can capture q back immediately without exposing the own King in check [1, page
24, rule 29.4, page 107, rule 34]. It has an exception in the Asian rule set: chasing
a protected Rook by Knights and Cannons is forbidden [1, page 86, rule 20]. It
is also true in the Chinese rule set because the chaser attempts to gain from cap-
turing [1, page 21, rule 25.3, page 24, rule 29.1]. The key for being rule-tolerant is
(chase((u, v)) = true) ⇒ (chase∗((u, v)) = true). The function chase∗((u, v))
is defined by the chasing moves of u and v. Ignoring nullified capturing moves of
v remains rule-tolerant, because chase∗((u, v)) has a greater chance to be true.
The problem occurs only when u has a nullified capturing move, which remains a
capturing move but not nullified in v. Figure 2(c) gives such an example. In the
Appendix, nullified capturing moves are taken into account in the experiments.
It is also shown that ignoring this rule in the verification algorithms does not
change the conclusion from the experiments on the 50 endgame databases.

All the Asian rules are taken into account in the rule-tolerant approach, but we
do ignore two Chinese rules about forbidden moves in the current experiments.
(a) One is indirect capturing. It means that a move does not capture a piece
immediately, but will capture some opponent’s piece after a semi-sequence of
checking moves made by the capturing player [1, page 24, rule 29.1]. (b) The
other is capturing an insufficiently protected piece. It means that the player can
gain after a sequence of capturing moves by both players [1, page 24, rule 29.3].
It is an exception of chasing a protected piece, i.e., capturing a protected piece
is usually not counted as a capturing move, unless the capturing player can gain
some piece after a sequence of capturing moves. The function chase∗((u, v)) is
defined by the chasing moves of u and v. With the Chinese rule set, problems
may occur when v has a capturing move of case (a) or (b) which u does not
have. These two rules require substantial programming. For case (a), all the
finite semi-sequences of checking moves ending with capturing moves need to
be considered. For case (b), the order of the capturing needs to be taken into
account. Cases mixed with (a) and (b) are even more complicated.

If a player can win the game by either checkmate or stalemate, the position
is already correctly marked by a typical retrograde algorithm. If a player can
win the game by checkmate, stalemate, or the rule of checking indefinitely, then
the position is already correctly marked by a checking-indefinitely-concordant

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 137

retrograde algorithm by Fang [4]. Given a database from [4], our consideration
deals with the positions in which some player can win the game only by special
rules other than checking indefinitely, assuming both players play flawlessly.
The experiments are on the 50 endgame databases in [4]; each has at most three
attacking pieces (except KRKPPP which has four) remaining on the board and a
database size less than 1GB. Usually, it requires several attacking pieces to form
an indefinite move sequence of cases (a) or (b). Therefore, the effect because of
ignoring the two Chinese rules in the experiments tends to be very minor.

5 Rule-Tolerant Verification Algorithms

Given a checking indefinitely concordant database of Chinese chess, in which
the marked win and loss positions have correct information, we need to foresee
if any of the marked draws may be mistaken because of the special rules. To
achieve this goal, suspicious move patterns of special rules are defined (in 5.1),
computed (in 5.2), and verified (in 5.3).

5.1 Suspicious Move Patterns of Special Rules

For the ease of discussion, we assume there is an attacking side and the other side
is defending. The attacking side tries to win the game by forcing the defending
side play the forbidden semi-sequence of moves, whereas the defending side tries
to avoid such a semi-sequence.

Definition 4. Given a win-draw-loss database DB of the Chinese-chess game
graph G = (V, E), a suspicious move pattern of special rules is a subgraph of G,
denoted by G∗ = (V ∗, E∗), with V ∗ being partitioned into V ∗

A and V ∗
D according

to whether the next mover is attacking or defending. G∗ satisfies the following
constraints.

1. ∀u ∈ V ∗, DB(u) = draw.
2. ∀(u, v) ∈ E∗ with u ∈ V ∗

D, forbid∗((u, v)) = true.
3. ∀u ∈ V ∗

D, ((u, v) ∈ E) ∧ (DB(v) = draw))⇒ ((u, v) ∈ E∗).
4. ∀u ∈ V ∗, ∃(u, v) ∈ E∗, i.e., out-degree is at least 1.

Constraint (1) is because only positions marked as draws are possibly stained.
Constraint (2) ensures the defending side play suspicious forbidden moves all the
time inside the pattern. Constraint (3) makes the defending side unable to quit
the pattern without losing the game. Constraint (4) keeps the pattern indefinite.

Lemma 2. Given a win-draw-loss database for the Chinese-chess game graph
G, and any two suspicious move patterns of special rules G∗

1 = (V ∗
1 , E∗

1) and
G∗

2 = (V ∗
2 , E∗

2) having the same attacking and defending sides, G∗ = (V ∗
1

⋃
V ∗

2 ,
E∗

1

⋃
E∗

2) is also a suspicious move pattern of special rules.

138 H.-r. Fang

Proof. The graph G∗ clearly satisfies constraints (1) and (4). ∀u ∈ V ∗
1 (or V ∗

2),
if the next mover in u is defending, no more edges going out of u are added in
the union. Therefore, constraints (2) and (3) are satisfied.
�
Theorem 1. Given a win-draw-loss database of Chinese chess, there exist two
unique maximum suspicious move patterns of special rules. In one of them, Red
is the attacking side, whereas in the other, Black is the attacking side.

Proof. Since the game graph G = (V, E) of Chinese chess is finite, the number
of suspicious move patterns of special rules is finite, with a given win-draw-loss
database of Chinese chess. Denote these move patterns with Red as attacking
side by G∗

i = (V ∗
i , E∗

i) for i = 1, 2, . . . , n. By Lemma 2, G∗ = (
⋃n

i=1 V ∗
i ,

⋃n
i=1 E∗

i)
is a suspicious move pattern of special rules. It is maximum since V ∗

j ⊆
⋃n

i=1 V ∗
i

and E∗
j ⊆

⋃n
i=1 E∗

i for j = 1, 2, . . . , n. The proof is completed by swapping the
attacking and defending sides.
�

Given a win-draw-loss database of Chinese chess in concord with checking
indefinitely from [4], each forbidden semi-sequence of indefinite moves is inside
one of the two maximum patterns, assuming that both players, based on the
given win-draw-loss database, play flawlessly to avoid playing and force each
other to play a suspiciously forbidden semi-sequence of indefinite moves. By
Lemma 1, a forbidden semi-sequence of moves must be suspiciously forbidden.
Therefore, if these two maximum suspicious move patterns of special rules are
empty, then the given database is complete. The discussion proves the following
theorem.

Theorem 2. Given a win-draw-loss database DB of Chinese chess in concord
with checking indefinitely, if both maximum suspicious move patterns of special
rules are empty, then database DB is complete.

5.2 Computing the Maximum Suspicious Move Patterns

Lemma 3. Given a win-draw-loss database for the Chinese-chess game graph
G = (V, E), the two maximum suspicious move patterns of special rules G∗ =
(V ∗, E∗) are induced subgraphs of G, i.e., ∀(u, v) ∈ E, (u, v ∈ V ∗) ⇒ ((u, v) ∈
E∗).

Proof. Given (u, v) ∈ E, if the next mover of u is the defending side, the state-
ment is true by constraints (1) and (3) in Definition 4. If the next mover of u is
the attacking side, the statement is true because the graph G∗ is maximum.
�

By Lemma 3, if we know V ∗ with a given win-draw-loss database DB, then
G∗ = (V ∗, E∗) can be determined as an induced subgraph of G = (V, E). Define
V = {u : (u ∈ V) ∧ (DB(u) = draw)} and G = (V , E) as an induced subgraph
of G, i.e., E := {(u, v) : ((u, v) ∈ E) ∧ (u, v ∈ V)}. Then G∗ is a subgraph of G
because of constraint (1) in Definition 4. The algorithm to compute V ∗ consists
of two phases: initialization and pruning. The first phase is to compute suspicious
win and loss candidate sets W and L respectively, such that V ∗ ⊂ W

⋃
L. The

pseudo-code of initialization phase is as follows.

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 139

W ← ∅, L← ∅
for all u ∈ V with the next mover of u as the defending side do

if ∀(u, v) ∈ E, forbid∗((u, v)) = true then
L← L

⋃{u}
∀(w, u) ∈ E, W ←W

⋃{w}
end if

end for
The second phase is to prune unqualified candidates in W and L by an itera-

tive process, until no pruning is possible. If a suspicious loss candidate u ∈ L has
a child v ∈ V but v /∈ W , then u does not satisfy constraint (3) in Definition 4
and therefore is pruned. If a suspicious win candidate in W does not have a
child in L, then it does not satisfy constraint (4) and therefore is pruned. This
observation suggests the following algorithm.

repeat
{Prune unqualified suspicious loss positions.}
for all u ∈ L do

if ∃(u, v) ∈ E such that v /∈ W then
L← L− {u}

end if
end for
{Prune unqualified suspicious win positions.}
for all v ∈ W do

if ∀(v, u) ∈ E, u /∈ L then
W ←W − {v}

end if
end for

until No more pruning is possible.
When no more pruning is possible, the subgraph of G induced by W

⋃
L satis-

fies all constraints in Definition 4. Therefore, it is the maximum suspicious move
pattern of special rules G∗ = (V ∗, E∗), i.e., V ∗ = W

⋃
L. Swapping the attacking

and defending sides, we obtain the other maximum suspicious move pattern. Some
strategies, such as children counting, can be applied to improve efficiency.

5.3 Verification Algorithms

By Theorem 2, if both the maximum suspicious move patterns of special rules
are empty, then the given database DB is complete. This verification algo-
rithm is called rule-tolerant because of the tolerance between boolean functions
chase∗((u, v)) and chase((u, v)). If these two maximum suspicious move patterns
are small enough, we may inspect the positions inside the patterns with a rule
book to see if they are truly stained by the special rules. Besides, we may try
trimming the maximum move patterns by reducing the tolerance.

Lemma 4. Assume we are given a path-independent boolean function chase∗ :
E → {true, false}, which satisfies (chase((u, v)) = true) ⇒ (chase∗((u, v)) =
true) ⇒ (chase∗((u, v)) = true) for all (u, v) ∈ E, where G = (V, E) is

140 H.-r. Fang

the Chinese-chess game graph. Define the boolean function forbid∗ : E →
{true, false} based on chase∗ in a similar way to forbid∗(u, v) in Lemma 1.
The resulting maximum suspicious move pattern G∗ is a subgraph of G∗ in The-
orem 1, with given the same win-draw-loss database. All forbidden indefinite
semi-sequences of moves are inside G∗, with the assumption that both players
play flawlessly.

Proof. For all (u, v) ∈ E, (forbid∗((u, v)) = true) ⇒ (forbid∗((u, v)) = true),
because (chase∗((u, v)) = true) ⇒ (chase∗((u, v)) = true). Therefore, a sus-
picious move pattern based on chase∗ is also suspicious based on chase∗. The
resulting maximum suspicious move pattern G∗ based on chase∗ is a subgraph of
G∗ based on chase∗. With the fact (chase((u, v)) = true) ⇒ (chase∗((u, v)) =
true) for all (u, v) ∈ E, the last statement is true by the discussion similar to
the proof of Lemma 1 and Theorem 2.
�

The function chase∗((u, v)) is obtained from chase∗((u, v)) by excluding some
path-independent allowed moves. The algorithm in Subsection 5.2 requires the
boolean function forbid∗((u, v)) being path-independent. Therefore, we need to
keep function chase∗((u, v)) being path-independent when reducing the toler-
ance. The closer chase∗((u, v)) to chase((u, v)), the smaller the tolerance, and
the smaller the maximum suspicious move patterns we may obtain.

Theorem 3. Given a win-draw-loss database with marked draws possibly stained
and the attacking side specified, the maximum suspicious move pattern of special
rules with the Asian rule set is a subgraph of that with the Chinese rule set,
assuming they use the same function chase∗((u, v)).

Proof. By the definition of forbid∗((u, v)) in Lemma 1, a suspiciously forbidden
semi-sequence of moves with the Asian rule set is also suspiciously forbidden
with the Chinese rule set. Therefore, a suspicious move pattern of special rules
with the Asian rule set is also suspicious with the Chinese rule set, which implies
this theorem.
�

By Theorem 3, if both maximum suspicious move patterns are empty with the
Chinese rule set, then they are also empty with the Asian rule set, and therefore
the given win-draw-loss database is complete with both the Asian and Chinese
rule sets.

6 Conclusion and Future Work

Retrograde analysis has been successfully applied to many games. In Chinese
chess, its application is confined to the endgames with only one player having
attacking pieces. Other endgame databases were not perfectly reliable because of
the existence of special rules. In the experiments with the 50 endgame databases
in concord with checking indefinitely in [4], 24 and 21 endgame databases with
both players having attacking pieces are verified complete with the Asian and
Chinese rule sets, respectively. The 3 endgame databases, KRKCC, KRKPPP

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 141

and KRKCGG, are complete with the Asian rule set but stained by the Chinese
rules, as shown in the Appendix. Two suggested future directions of work are
listed below.

1. Knowledgeable encoding and querying of endgame databases. For
the endgame databases verified to be complete, we may extract and condense
the win-draw-loss information into physical memory via the approach by
Heinz [5]. The result can improve the present Chinese-chess programs.

2. Construction of complete endgame databases. For those stained by
the special rules other than checking indefinitely, further work is required
for the Chinese-chess endgame databases with complete information.

Acknowledgement

The author would like to thank Tsan-sheng Hsu for his suggestion to tackle
this problem, and Shun-Chin Hsu for sharing his experience of programming
threatening to checkmate.

References

1. China Xiangqi Association. The Playing Rules of Chinese Chess. Shanghai Lexicon
Publishing Company, 1999. In Chinese.

2. H.-r. Fang, T.-s. Hsu, and S.-c. Hsu. Construction of Chinese Chess endgame
databases by retrograde analysis. In T. Marsland and I. Frank, editors, Lecture
Notes in Computer Science 2063: Proceedings of the 2nd International Conference
on Computers and Games, pages 96–114. Springer-Verlag, New York, NY, 2000.

3. H.-r. Fang, T.-s. Hsu, and S.-c. Hsu. Indefinite sequence of moves in Chinese Chess
endgames. In J. Schaeffer, M. Müller, and Y. Björnsson, editors, Lecture Notes in
Computer Science 2063: Proceedings of the 3rd International Conference on Com-
puters and Games, pages 264–279. Springer-Verlag, New York, NY, 2002.

4. H.-r. Fang, T.-s. Hsu, and S.-c. Hsu. Checking indefinitely in Chinese-chess
endgames. ICCA Journal, 27(1):19–37, 2004.

5. E. A. Heinz. Knowledgeable encoding and querying of endgame databases. ICCA
Journal, 22(2):81–97, 1999.

6. J.W. Romein and H.E. Bal. Awari is solved. ICCA Journal, 25(3):162–165, 2002.
7. K. Thompson. 6-piece endgames. ICCA Journal, 19(4):215–226, 1996.
8. H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van Rijswijck. Games solved:

Now and in the future. Artificial Intelligence, 134:277–311, 2002.
9. R. Wu and D.F. Beal. Fast, memory-efficient retrograde algorithms. ICCA Journal,

24(3):147–159, 2001.

Appendix: Experimental Results on the 50 Endgame
Databases

Before verifying the completeness of a given endgame database as the Chinese-
chess game graph is split, we need to verify all its supporting databases. If any of
the two maximum suspicious move patterns of the special rules are non-empty, we

142 H.-r. Fang

may inspect whether these suspicious positions are stained by the special rules. An
endgame database is not complete, if it has positions truly stained. If both max-
imum suspicious move patterns of the special rules of a given endgame database
are empty or all the suspicious positions are inspected to be not stained, then the
endgame database is verified as complete, assuming all its supporting databases
are complete. The overall procedure to verify a given endgame database includes
verifying all its supporting databases in bottom-up order.

The experiments are performed on the 50 endgame databases in concord with
checking indefinitely in [4]. Table 1 lists the statistics for the Asian rule set. It pro-
vides the number of positions for each maximum suspicious move patterns. There

Table 1. Statistics of max suspicious patterns of 50 endgame databases, Asian rules

Database Comp- Number of Positions Ignore Protecting Consider Protecting

Name lete legal draw Red attack Black attack Red attack Black attack
KRCKRGG N 252077421 147261943 6152 517 5573 170

KRCKRG N 141001563 66005451 90775 54 88632 156

KRCKRM N 209431807 103902489 22361 974 21948 1214

KRCGGKR N 256862617 34156099 271110 23970 269839 23970

KRCGKR N 142232812 14112951 54040 354 54324 354

KRCMKR N 210030190 23470723 58314 8865 29958 8865

KRCKR N 31012335 9108171 4132 0 3917 0

KRNKRGG N 251181481 103598842 20739 2428 16096 2196

KRNKRG N 138660209 15453492 7877 977 7356 1142

KRNKRM N 204263530 29396541 11220 2254 9342 2915

KRNKR N 30118362 2936309 453 192 449 192

KRPKRG N 84330363 35495583 31558 58 25360 187

KRPKRM N 124050578 44636393 23584 1218 18256 1334

KRPKR N 18443469 2635006 975 0 930 0

KRKNN N 16300026 4621246 357 0 363 344

KRKNC N 33568194 596093 296 162 296 162

KRKCC Y 17300976 1409308 0 0 0 0

KRKNPGG N 168307887 2123952 427 382 427 382

KRKNPG N 92456806 112434 0 237 0 237

KRKNPM N 136200539 466627 0 492 0 492

KRKNP N 20011890 20026 0 79 0 79

KRKPPP Y* 103676439 1179271 111 72 111 24

KRKPPGG Y* 52598998 947571 0 61 0 61

KRKPPMM Y 122221940 2211873 0 0 0 0

KRKPPG Y* 28498574 53263 0 26 0 26

KRKPPM Y 41658907 107613 0 0 0 0

KRKPP Y 6084903 8187 0 0 0 0

KNPKN N 21682338 4889447 17760 0 17746 0

KNPKCG N 100076040 40930099 1917 0 1899 0

KNPKCM N 149719630 67281695 7970 0 7142 0

KNPKC N 22364304 6387677 268 0 301 0

KCPKC Y 22956705 20094132 0 0 0 0

KRGGKR Y 2997932 1840528 0 0 0 0

KRGKR Y 1628603 966336 0 0 0 0

KRMKR Y* 2389472 1370793 29 144 29 144

KRKR Y 348210 193950 0 0 0 0

KRKNGGMM N 63684381 33604025 83 0 83 0

KRKNGGM Y 21879507 719210 0 0 0 0

KRKNGMM N 35195142 4703606 1605 0 1622 0

KRKNGG Y 3221138 6498 0 0 0 0

KRKNGM Y 12032732 27288 0 0 0 0

KRKNMM Y 7654095 121216 0 0 0 0

KRKNG Y 1762807 3275 0 0 0 0

KRKNM Y 2605497 5200 0 0 0 0

KRKN Y 380325 609 0 0 0 0

KRKCGG Y 3322727 1379102 0 0 0 0

KRKCMM Y 7913097 2969808 0 0 0 0

KRKCG Y 1820350 2462 0 0 0 0

KRKCM Y 2694400 91748 0 0 0 0

KRKC Y 393327 7479 0 0 0 0

Rule-Tolerant Verification Algorithms for Chinese-Chess Endgame Databases 143

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(a)

��
����
��

��
����
��

��K
��R

�K

�P
�P

�P

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(b)

��
����
��

��
����
��

��K

��R

�K

�G

�P

�P

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(c)

��
����
��

��
����
��

��K
��R

�K

�N

�N

Fig. 2. (a)(b) Suspicious positions not stained by the special rules. (c) A game ends
differently under the Asian and Chinese rule sets.

are two experiments on eachdatabase.One ignores the rule of capturing aprotected
piece discussed in Subsection 4.2, and the other takes it into account. Although the
statistics differ, the conclusion does not change with this rule ignored. An endgame
database with a non-empty maximum suspicious move pattern but verifiedas com-
plete is denoted by Y*. The statistics exclude illegal positions. Two conjugate po-
sitions (i.e., piece assignment on the board is the same as each other in the mirror)
are treated as the same one and counted only once.

In Figure 2(a), the game continues cyclically with moves Rb1-a1 Pb2-a2 Ra1-
b1 Pa2-b2, etc. In Figure 2(b), the game continues indefinitely with moves Ke2-
d2 Pd1-e1 Kd2-e2 Pe1-f1 Ke2-f2 Pf1-e1, etc. In both games, Red is forced to
chase indefinitely. However, both are allowed because the chaser is a King or a
Pawn [1, page 22, rule 27, page 65, rule 9]. In Figure 2(c), the game continues
indefinitely with moves Ke2-d2 Nc1-b3 Kd2-e2 Nb3-c1, etc. Red is forced to
chase the two Black Knights iteratively. It is allowed under the Asian rule set
but forbidden by the Chinese rules [1, page 24, rule 28.12, page 103, rule 32].

A forbidden semi-sequence of moves under the Asian rule set is generally also
forbidden under the Chinese rule set. To verify the completeness in Chinese rules,
we may focus on the endgame databases complete with the Asian rule set. Table 2
lists the statistics of the experimental results for the Chinese rule set. It includes all
the endgame databases complete with the Asian rule set. An endgame database
complete with the Asian rule set but stained by the Chinese rules is denoted by
N*. Examples are KRKCC, KRKPPP, and KRKCGG. Figure 3(a) illustrates a
KRKCCendgame stained only by the Chinese rules. The game continues cyclically
with the moves Ke2-f2 Ce6-f6 Kf2-e2 Cf6-e6, etc. Black is forced to check every
other move, and threatens to checkmate at all moves in between. In Figure 3(b),
the game continues indefinitely with the moves Rb8-c8 Pc1-b1 Rc8-c9 Kf9-f8 Rc9-
b9 Pb1-c1, etc. Red is forced to play a semi-sequence of indefinite moves which
consists of checking and chasing moves. In Subsection 3.3, Figure 1(c) illustrates
another example of a KRKCGG endgame stained only by the Chinese rules.

In Chinese chess, Cannon requires an additional piece to jump over to capture.
In KNPKC endgames, Red seems unlikely to force Black to play forbidden chas-

144 H.-r. Fang

Table 2. Statistics of max suspicious patterns of 35 endgame databases, Chinese rules

Database Comp- Number of Positions Ignore Protecting Consider Protecting

Name lete legal draw Red attack Black attack Red attack Black attack
KRKNN N 16300026 4621246 372 76 378 344

KRKCC N* 17300976 1409308 602 0 602 0

KRKNPGG N 168307887 2123952 1187 382 1188 382

KRKNPG N 92456806 112434 348 237 348 237

KRKNPM N 136200539 466627 725 519 725 519

KRKNP N 20011890 20026 116 79 116 79

KRKPPP N* 103676439 1179271 129 781 129 268

KRKPPGG Y* 52598998 947571 0 68 0 68

KRKPPMM Y 122221940 2211873 0 0 0 0

KRKPPG Y* 28498574 53263 0 35 0 35

KRKPPM Y 41658907 107613 0 0 0 0

KRKPP Y 6084903 8187 0 0 0 0

KNPKN N 21682338 4889447 18116 0 18092 0

KNPKCG N 100076040 40930099 12979 0 11227 0

KNPKCM N 149719630 67281695 10407 0 9410 0

KNPKC N 22364304 6387677 2838 0 1060 0

KCPKC Y 22956705 20094132 0 0 0 0

KRGGKR Y 2997932 1840528 0 0 0 0

KRGKR Y 1628603 966336 0 0 0 0

KRMKR Y* 2389472 1370793 29 144 29 144

KRKR Y 348210 193950 0 0 0 0

KRKNGGMM N 63684381 33604025 83 0 83 0

KRKNGGM Y 21879507 719210 0 0 0 0

KRKNGMM N 35195142 4703606 1687 0 1708 0

KRKNGG Y 3221138 6498 0 0 0 0

KRKNGM Y 12032732 27288 0 0 0 0

KRKNMM Y 7654095 121216 0 0 0 0

KRKNG Y 1762807 3275 0 0 0 0

KRKNM Y 2605497 5200 0 0 0 0

KRKN Y 380325 609 0 0 0 0

KRKCGG N* 3322727 1379102 0 891 0 891

KRKCMM Y 7913097 2969808 0 0 0 0

KRKCG Y 1820350 2462 0 0 0 0

KRKCM Y 2694400 91748 0 0 0 0

KRKC Y 393327 7479 0 0 0 0

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(a)

��
����
��

��
����
��

��K
��R

�K
�C
�C

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(b)

��
����
��

��
����
��

��K

��R

�K

�P
�P �P

a b c d e f g h i
0

1

2

3

4

5

6

7

8

9

(c)

��
����
��

��
����
��

��K

��N

��P�K�C

Fig. 3. Positions (a)(b) stained only by the Chinese rules and (c) stained by both rule
sets

ing moves indefinitely, because Black has only one Cannon and the King. Note
that Kings are allowed to chase. However, Figure 3(c) illustrates a surprising
example. The game continues cyclically with the moves Nc6-b8 Ke8-e7 Nb8-c6
Ke7-e8, etc. Black loses the game because he chases a red Pawn indefinitely.

	Introduction
	Background
	A Typical Retrograde Algorithm
	Retrograde Analysis for Chinese Chess

	Special Rules in Chinese Chess
	Chinese and Asian Rule Sets
	The Rules of Chasing Indefinitely
	Summary of Special Rules

	Problem Formulation
	Abstracting Special Rules
	A Rule-Tolerant Approach

	Rule-Tolerant Verification Algorithms
	Suspicious Move Patterns of Special Rules
	Computing the Maximum Suspicious Move Patterns
	Verification Algorithms

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

