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Abstract. In complex games with a high branching factor, global alpha-
beta search is computationally infeasible. One way to overcome this
problem is by using selective goal-directed search algorithms. These goal-
directed searches can use relevancy zones to determine which part of the
board influences the goal. In this paper, we propose a general method
that uses these relevancy zones for searching for compound goals. A
compound goal is constructed from less complex atomic goals, using the
standard connectives. In contrast to other approaches that treat goals
separately in the search phase, compound goal search obtains exact re-
sults.

1 Introduction

In complex games with a high branching factor, such as the Asian game of
Go, global alpha-beta search is computationally infeasible. Therefore, there has
recently been some research towards local searches.

Local searches can be obtained by splitting the global search into several
independent local searches. This approach is successfully adopted by Müller
using decomposition search in the endgame [5]. Unfortunately, in the middle
game it is rare to find isolated regions which are not influenced by other regions.
Therefore, other notions of locality have been proposed which are more suitable
for the middle game.

One way to preserve locality is by using selective goal-directed search algo-
rithms [1,3,6]. This approach has been successfully adopted to several sub-games
of Go, such as capturing a string of stones, connecting two strings of stones, and
making life for a group. These goal-directed searches can use relevancy zones
to determine which part of the board influences the goal. However, searches for
such elementary goals cannot be used for solving more complex problems or for
evaluating game positions. For instance, in Figure 1, there are two white stones
with only one liberty. If Black is to move, he1 can capture one of them, but then
the other stone can escape. The question then arises how he should play in order
to capture both stones. As we will see, Black can capture both stones by play-
ing a ladder break on the crossing of both ladders. Cazenave and Helmstetter
1 In this article, when ‘he’ and ‘she’ are both possible, ‘he’ is used.

H.J. van den Herik et al. (Eds.): CG 2004, LNCS 3846, pp. 113–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



114 J. Ramon and T. Croonenborghs

Fig. 1. A double ladder

[4] made a start on combining several goals into one search by considering the
proof of the connection of two goals A and C using the proofs of the connections
between A and B and between B and C.

In this paper, we propose a general method that searches with compound
goals. A compound goal is a more complex goal, that is built from simpler
atomic goals. Searching using compound goals is especially interesting when the
atomic goals used are more or less independent, but not completely. In contrast
to other approaches that treat local goals separately in the search phase (such
as planning approaches [7]), compound goal search obtains exact results. The
technique presented here is a generalization of [4] on transitive connections, as
we treat compound goals which are arbitrary combinations (using conjunction,
disjunction, and negation) of arbitrary atomic goals (not only connections but
also, e.g., capturing and living).

The remainder of this paper is organized as follows. Section 2 reviews se-
lective goal-directed search algorithms and introduces the terminology used in
this paper. Next, in Section 3 we explain how we construct compound goals,
using atomic subgoals. In Section 4 our experiments and analyses can be found.
Finally, in Section 5 we present our conclusions and ideas for further work.

2 Searching for Atomic Goals

In this section the basics of selective goal-directed search algorithms are reviewed
and the used terminology is introduced.

In games such as Go, locality is important, as the board is large and at the
same time intermediate goals can be formulated using information of only a small
local area. Special algorithms have been developed recently. The important idea
in these algorithms is that one can be very selective on the candidate moves
by only considering those that could potentially prevent a negative result that
follows when no move (a nullmove) is played. To human Go players too, it is
common knowledge that “my opponent’s point is my point”.

A goal is formulated for a particular player. He is called the attacker or max.
The opponent is called the defender or min (he should try to prevent max from
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reaching the goal). For a particular goal G we will denote max by max(G)
and min by min(G). Some common examples of goals in increasing order of
complexity include the capture goal (max should capture a particular block of
stones), the connection goal (max should connect two of his blocks), the life
goal (max should make life for a given set of blocks) and the invade goal (max

should make a living group somewhere in a given area).
The order of a move is an important concept. Generally speaking it indicates

how directly the move can realize the goal. A max move of order n indicates
that the goal can be reached, if it is followed by n successive moves of max

2. By
using this notion of the order of a move, the search can be kept local by limiting
the order of the moves to be searched. A max move of order 0 reaches the goal
directly. A move of a higher order n is a move such that if min passes, max can
play a move of order at most n − 1. For the capture goal, ladders are moves of
order 1 and a geta (net) has order at least 2.

Generally speaking, a relevancy zone is a set of intersections that supports a
proof. When a search engine needs to prove a tactical goal, it has to remember
all the reasons that are responsible for the result of that search. This collection
of intersections is called the relevancy zone or trace of that search.

To illustrate the use of relevancy zones, the double ladder example from the
previous section is repeated. Figure 2 shows the same position as Figure 1, but
this time the relevancy zones are included. A triangle indicates an intersection
that belongs to the relevancy zone, obtained by the local search which goal is
to capture the left white stone. The squares indicate the intersections from the
relevancy zone of the local search for the right white stone. The intersection of
both relevancy zones are the points marked by a circle.

Fig. 2. A double ladder, including the relevancy zones

Relevancy zones have several uses. We mention two of them. First, as a proof
remains valid as long as the intersections of its relevancy zone remain unchanged,
it is natural for a playing program to store the relevancy zone of a proof together
with the result, so it knows when it has to recompute the status of the goal.
Second, if it is proved that for a certain order no move exists that reached the
2 Definitions differ somewhat among the different articles in literature.



116 J. Ramon and T. Croonenborghs

goal, one can use the relevancy zone of that proof as the set of candidate moves
in a new search for moves of a higher order.

Different relevancy zones can be obtained by proving the same tactical goal,
e.g., when proving that a block cannot be captured in one move, one only needs
to add two liberties of that block (arbitrarily) to the relevancy zone. Ideally and
not considering memory constraints, one could use a tree-like representation for
a relevancy zone that entails the minimal relevancy zone, obtained by browsing
through the tree. Currently, only one of the proofs is used as the relevancy zone
for that search. This still obtains correct results, but it can be less efficient. (It
can be necessary to recalculate the search, just because the “wrong” liberty is
added.)

We distinguish between two subsets of a relevancy zone: the positive rele-
vancy zone (denoted Rzone+), containing all points such that when they remain
unchanged, the result for the associated search cannot become better than the
previously computed result for max and the negative relevancy zone (denoted
Rzone−) of all points such that when they remain unchanged the obtained result
can not get worse for max. To illustrate this distinction, consider the position
in Figure 3, where the goal is to capture the white group, so the black player
is max and White is min. The outcome for the search is Won for the player to
move. The markings indicate the relevancy zone, the circles indicate the Rzone+-
relevancy zone, which contain the intersections that can make the result better
for Black (max) and the triangles indicate the Rzone−-relevancy zone, inter-
sections that, when changed, can make the result worse for Black (better for
White). The two rectangles indicate the only intersections that belong to both
Rzone+ and Rzone−.

Fig. 3. Illustration of Rzone+ and Rzone−

One of the selective local search algorithms described in literature is lambda
search [6]. Lambda trees are limited by the order of the moves (in lambda search,
a λi attacking move threatens to do a λi−1 move if the defender passes).
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Abstract Proof Search [1] is based on similar ideas. However, the search can
be both bounded by the depth and the order of the moves. Also, candidate
moves cannot only be generated from the relevancy zones of lower order or lower
depth searches, but also from goal and game specific hard-coded knowledge. The
advantage of the latter is that often smaller sets of candidate moves can be used.
Unfortunately, coding the knowledge turns out to be a quite cumbersome task
which can only be done with some confidence for the lower order moves. For
higher order moves, later versions of abstract proof search fall back on relevancy
zones.

Several generalizations of abstract proof search have been proposed. Among
these there is Iterative Widening and General Threats Search. Iterative widen-
ing [2] works in an analogous way as iterative deepening in that it performs an
iteration of searches of increasing complexity by trying the most plausible can-
didate moves in the earlier searches and gradually considering more candidates
resulting in ’wider’ trees. Generalized Threats Search [3] is a generalization of
the above algorithms.

In this paper we will use an implementation of abstract proof search (with
the different generalizations) called Tail, which was originally created by T.
Cazenave and further extended in collaboration. The search algorithm is imple-
mented in a generic goal-independent way. For each goal, a number of methods
have to be specified; the most important ones are those listed in Table 1.

Table 1. Methods to specify for each goal

Method Description
do move(move,color) perform a move and

necessary updates to the goal status
undo move() retract a move
eval(colortomove,Rzone+,Rzone−) evaluates the current position w.r.t.

the goal and the player who moves first
max moves(order,Rzone+,Rzone−) returns the candidate moves for max

up to order order
min moves(order,Rzone+,Rzone−) returns the candidate moves for min

up to order order

We denote the application of a method M of some goal G in some position
P with G.M [P ](args), where args are the arguments. We will denote the rele-
vancy zones of that call, i.e., the set of all intersections which may not change for
the result of the method call to remain valid, with Rzone+

(
G.M [P ](args)

)
and

Rzone−
(
G.M [P ](args)

)
. One important method is the evaluation function. It

either returns Won, Ko, Lost, or Unknown. The first three values are termi-
nal, which means that the search can be stopped in nodes where these values are
obtained. In this paper we do not make a distinction between the different kinds
of ko. There can be several heuristic levels in Unknown, according to the belief
of the evaluation function in the possibility to reach the goal. We will denote
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these with Unknowni (i ∈ R) where higher values of i are more desirable for
max.

3 Compound Goals

In the previous section we have discussed existing work on searching atomic
goals. In this section we explain how one can search for compound goals, mainly
using the same search algorithms.

We start with defining a language that allows one to build more complex
goals from atomic ones. Therefore one can use the three standard connectives:
conjunction, disjunction, and negation. These complex goals are constructed
as new goals, by defining the functions listed in Table 1, so that any search
algorithm (for instance those described in the previous section) can be used to
compute the outcome. We start with the simplest operator: the negation.

3.1 Negation

The negation of a goal is the inverse goal, where a player tries to prevent his
opponent from achieving the basic goal. We define it more accurately below.

Definition 1. Let G be a goal. Then not(G) is a goal, called the negation of
G, such that max(not(G)) = min(G) and min(not(G)) = max(G). Moreover,
for every position P , G.eval[P ](c) = Won ⇔ not(G).eval[P ](c) = Lost,
G.eval[P ](c) = Lost ⇔ not(G).eval[P ](c) = Won and G.eval[P ](c) = Ko ⇔
not(G).eval[P ](c) = Ko

The implementation of the necessary methods to be able to search for not(G)
given the methods for the basic goal G is in theory straightforward. Table 2
gives a summary. Note that because the roles of max and min are switched in
the inverse goal, the roles of Rzone+ and Rzone− also need to be reversed.

Table 2. Methods for the negation of a goal

Method Implementation
not(G).max moves(order, Rzone+, Rzone−) G.min moves(order, Rzone−, Rzone+)
not(G).min moves(order, Rzone+, Rzone−) G.max moves(order, Rzone−, Rzone+)

However, there are a number of additional requirements on the basic goal
in order for this schema to work. In particular, the evaluation function should
be sufficiently accurate in returning the value Lost. Indeed, for the existing
approaches, evaluation functions are often implemented asymmetric. It is im-
portant to return Won in positions where the goal is reached, but if Unknown

is returned instead of Lost in positions where the basic goal cannot be reached
anymore, the search will take longer. However, it will still succeed in the same it-
erative deepening iteration. If the evaluation function is able to detect the Lost
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status early enough and the basic goal can be disproved by the original search
algorithm then the negation of the goal can be proved efficiently. However, for a
number of goals detecting the Lost status is more difficult than detecting the
Won status. For instance, for the capture goal, the status is Won if the block
to capture is removed from the board. Many playing programs assume that a
block cannot be (easily) captured when its number of liberties is above some
threshold, but even a block with tens of liberties can be dead. Hence, detecting
that a block cannot be captured may require to recognize life.

3.2 Conjunction

A conjunction of two goals is the goal in which max is trying to achieve both
goals. Below it is defined more accurately.

Definition 2. Let A and B be goals such that max(A) = max(B). Then A ∧ B
is a goal, called the conjunction of A and B, such that max(A ∧ B) = max(A)
and min(A ∧ B) = min(A) = min(B). Moreover, for every position P ,

– if (A ∧ B).eval[P ](c) = Won, then max can win both A and B if c moves
first;

– if (A ∧ B).eval[P ](c) = Ko, then max can win both A and B by winning a
ko, if c moves first;

– if (A ∧ B).eval[P ](c) = Lost, then if c moves first, it is not possible for
max to win both A and B, even not by winning a ko.

We first propose a simple, static implementation of a compound goal con-
struction for the conjunction goal that does not need search for the atomic goals
independently (in 3.2.1). In a second step we will then discuss a dynamic imple-
mentation for A∧B that performs local search for the goals A and B individually
(in 3.2.2). Finally, we discuss the correctness of the conjunction goal search (in
3.2.3).

3.2.1 Static Functions
Below we discuss two types of static functions, viz. a static evaluation function
and static candidate move generation.

A static evaluation function

We will denote the static evaluation function of the conjunction goal with (A ∧
B).evals. For the case min moves first, we define it by

(A ∧ B).evals[P ](min) = A.eval[P ](min) ∧ B.eval[P ](min)

where Table 3 gives the conjunction of two position evaluations.
The values in this table are only valid in the case that the two evaluations

are independent. With min to move, this means that the actual static evalu-
ation differs from the values of the “raw” evaluation function when the eval-
uation functions for A and B detect Won or Ko before this status has ac-
tually been realized on the board. The remaining “aji” (latent possibilities of
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min in the remaining proof of the realizability of the evaluation) of one goal
could prevent the winning by max of the other goal in the case the relevancy
zones (Rzone−)of A.eval[P ](min) and B.eval[P ](min) overlap. In that case
(A ∧ B).evals[P ](min) should return a (high) Unknown value to urge deeper
search.

Furthermore, it is noteworthy that the mathematical intuition of conjunctions
(taking the minimum of two values) is not applicable to the case of ko. Indeed, if
both A and B evaluate to Ko, then usually A∧B evaluates to Lost as max can
not win two ko fights at the same time, and A ∧ B evaluates only to Ko if both
ko fights are in fact the same ko fight and max can win (lose) both A and B by
winning (losing) this one ko. Even the conjunction of A.eval[P ](min) = Ko and
B.eval[P ](min) = Won can turn into (A ∧ B).evals[P ](min) = Lost instead
of the expected Ko in the (rare) case that B could only be won in double ko,
providing an infinite source of ko threats for min to win the goal A.

We define the static evaluation function for the case where max moves first,
by

(A ∧ B).evals[P ](max) = (1)
(
A.eval[P ](min) ∧ B.eval[P ](max)

)
∨

(
A.eval[P ](max) ∧ B.eval[P ](min)

)

where the disjunction E1 ∨ E2 of two evaluations E1 and E2 can be found in
Table 3.

Table 3. Conjunction and disjunction of two independent evaluations

E1 E2 E1 ∧ E2 E1 ∨ E2

Won Won Won Won

Won Ko Ko (or Lost) Won

Won Lost Lost Won

Won Unknownj Unknownj Won

Ko Won Ko (or Lost) Won

Ko Ko Lost (or Ko) Won (or Ko)
Ko Lost Lost Ko (or Won)
Ko Unknownj Unknownj−c Unknownj+c

Lost Won Lost Won

Lost Ko Lost Ko (or Won)
Lost Lost Lost Lost

Lost Unknownj Lost Unknownj

Unknowni Won Unknowni Won

Unknowni Ko Unknowni−c Unknowni+c

Unknowni Lost Losti Lost

Unknowni Unknownj Unknownmin(i,j) Unknownmax(i,j)

The actual static evaluation function also differs here from the “raw” case
when one of the conjunctions evaluates to Lost and the relevancy zones of the
local searches overlap. In this case Unknown is returned, so that the “global”
search for the compound goal continues.
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Static candidate move generation

When the atomic goals are not searched individually, the union of the candidate
moves generated by the atomic goals have to be taken as the candidate moves
for the compound goal. So,

(A ∧ B).max moves[P ] = A.max moves[P ] ∪ B.max moves[P ]
(A ∧ B).min moves[P ] = A.min moves[P ] ∪ B.min moves[P ]

3.2.2 Dynamic Functions
Below we discuss tow types of dynamic functions, viz. a dynamic evaluation
function and dynamic candidate move generation.

A dynamic evaluation function

The evaluation function for the conjunction goal can be much more accurate
by using local search to the components of this compound goal. This allows to
prune much faster.

For every node P in the search for A ∧ B, the first call to a method of the
goal A ∧ B performs internally a search for the goals A and B with c moving
first. If A.eval[P ](c) and B.eval[P ](c) respectively return Unknown, for both
c = max and c = min, this does not mean that potentially four independent
searches have to be performed since to determine the set of candidate moves
for min, the standard algorithm already does a search with max moving first
(in order to obtain the relevancy zone). We will denote the results of these
searches with A.search[P ](colortomove) and B.search[P ](colortomove) and
the corresponding relevancy zones with Rzone+

(
A.search[P ](colortomove)

)
,

Rzone−
(
A.search[P ](colortomove)

)
, Rzone+

(
B.search[P ](colortomove)

)
, and

Rzone−
(
B.search[P ](colortomove)

)
. These local searches will either return a

more informative value (Won, Ko, or Lost) or will still return Unknown. The
latter means that a deeper local search is needed. If searching more deeply for
the local goal is too expensive, so will the search for A∧B be. This would mean
that it is better to return Unknown from the node P in the search for A ∧ B
rather than expanding it further. Of course, if A ∧ B is searched using iterative
deepening, in deeper iterations, more time can be allocated to the local searches.

Once both local searches are finished the function discussed in the previous
paragraph is used to combine both results. As pointed out, if the relevancy zones
of the two local searches overlap, the compound goal evaluates to Unknown

and deeper search is needed, by continuing the global search algorithm with the
compound (conjunction) goal.

Using the information of the local searches, the appropriate intersections
can be added to Rzone+

(
A ∧ B.search[P ](colortomove)

)
and Rzone−

(
A ∧

B.search[P ](colortomove)
)
, so that one is able to construct hierarchies of goals.
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Dynamic candidate move generation

If max moves need to be generated, this means that the evaluation function for
max moving first (Equation 1) leads to Unknown. In the game of Go, passing is
allowed and hence eval[P](max) will always be higher or equal to eval[P](min),
so one can concentrate on the eval[P](min) evaluation. Further, because the
individual goals are searched, one can find the proofs for the outcomes of these
individual goals in the different relevancy zones.

Based on the results of A.eval[P](min) and B.eval[P](min), the set of candi-
date max moves can be obtained. If both these atomic goals evaluate to Lost,
this means that max has to play a move that changes the result of both sub
searches and therefore has to play a move from the intersection of the Rzone+

of each atomic goal. If one of the above searches evaluates to Won, the max

moves are those played on the intersections from the Rzone+ of the other goal.
Moreover, candidate moves for max that do not allow max to win either goal

A or B individually will be pruned away immediately by the local searches for
goals A and B. In this way, one can hope that only a very small set of candidate
moves for max will remain.

In a min node, whatever min does, max can win both goals independently.
This is a consequence of the fact that after the local search for the goals inde-
pendently, the node has not been pruned. So, min has to try a move in

Rzone−
(
A.search[P ](min)

)
∪ Rzone−

(
B.search[P ](min)

)

that makes miai of preventing max’s win in A and B. In many cases, a move in
Rzone−

(
A.search[P ](min)

)
∩ Rzone−

(
B.search[P ](min)

)
will work for min, so

these moves can be tried first.
While in [4] for the case of transitive connections, it is argued that some

candidates for min are not in the union of the relevancy zones as described
above. But as will be shown in the next paragraph, the fact that this union of
relevancy zones is sufficient follows from the definitions of relevancy zones and
conjunction goal.

We illustrate this with the same example as in [4]. In the position in Figure 4a,
we consider the connection of A and B and the connection of B and C. Figure 4b
contains the Rzone−-zones, the circles denote Rzone−

(
A − B.search[P ](min)

)
,

the triangles Rzone−
(
B − C.search[P ](min)

)
, and the rectangles the intersec-

tion of the two. White 1 is a working move for min, which does not belong to
the relevancy zone of the proof of either connection and subsequently is not
considered as a candidate move. If White plays 1, Black cannot protect against
2 and 3 simultaneously. But this does not necessary mean that white 1 should
indeed be a candidate move. Point 1 will appear in the Rzone−(A ∧ B) though,
when the search for the compound goal (transitive connection) is continued, 2 is
tried and Black defends at 1 against this by capturing the stone. As [4] already
points out, 3 is also a working move on itself belonging to the intersection of
the relevancy zones of both connections. Moreover, 3 is the only (and real) move
that prohibits the transitive connection. So locally, 1 is a sente move against
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the connection, but not a threat that should be included in the set of candidate
moves for min. Figure 4c shows a slightly modified example, where the move
at 3 in the original example is solved for Black and consequently white 1 is no
longer a working move.

a. original example b. example with Rzone−

c. modified example

Fig. 4. A counterexample for generating candidate moves for min

While it seems that a great deal of search should be performed to determine
the status of a conjunction of goals, several optimizations can be applied. First,
if a player moves outside the relevancy zone of one of both goals, the status of
that goal does not change, and local search for that goal is not necessary in the
next search node. Second, one can try to simplify the search by first trying those
moves that minimize the intersection of the relevancy zones of the subgoals.

3.2.3 Correctness of the Conjunction Goal Search
Local searches are abstract proof searches. It only returns a terminal result
(Lost,Won) if this is the correct result. When a result involving ko is returned,
it is possible that a deeper search still obtains a ‘better’ result (Won instead of
KoWon, or Lost instead of KoLost).
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To prove the correctness of the proposed compound search algorithm, we
must show that all candidate moves are correctly generated and the evaluation
function is correct. When the evaluation function returns a value which is not in
the Unknown range, it is correct that this result can be obtained (this follows
from the definition and the properties of the local abstract proof searches). Still,
it could be that a ‘better’ (non-ko instead of ko) result can be obtained if local
searches are searched deeper and change from non-ko to ko.

We show that all necessary candidate moves are generated. With this we mean
that there is no move which is not considered as candidate move and could yield
a better result for either player. In the above subsection on dynamic candidate
move generation using the relevancy zones of the local searches, we already
showed that in the case none of the local searches evaluates to Unknown, the
set of candidate moves is correct. In the case one of the local searches evaluates
to Unknown, a correct and complete set of candidate moves cannot be derived.
Still, if the global search gives a solution with a principal path of nodes where
no subgoals evaluated to Unknown, the result is correct. In the other case, one
can get a more certain answer by deepening the local searches in the principal
path that returned Unknown, or by iterating the global search and adding in
nodes with subgoals returning Unknown, the appropriate relevancy zones of
the search starting in this node in the previous global iteration, to the set of
candidate moves.

3.3 Disjunction

A disjunction of two goals is a goal where max tries to realize at least one of
both goals. Defining a disjunction of goals is possible using the classical laws of
logic.

Definition 3. Let A and B be goals such that max(A) = max(B). Then A ∨ B
is a goal, called the disjunction of A and B, such that

A ∨ B = not
(
not(A) ∧ not(B)

)

This shows in fact that the properties of a disjunction of goals will be dual
to the properties of a conjunction of goals. Of course, in practice a direct imple-
mentation without the negations turns out to be faster.

4 Experiments

In this section we will present experiments in order to evaluate our compound
goal search and compare it with existing methods.

In order to make our implementation to solve compound goals we had first to
construct basic goals producing good relevancy zones, also for goals that cannot
be solved in a few moves. This provided an interesting opportunity to evaluate
the use of relevancy zones as compared to hard coded knowledge. The use of
relevancy zones does not mean that no hard coded knowledge is used. Some
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minimal goal-dependent knowledge is used. In the capture goal, for instance,
the fact is used that one needs to play on a liberty to capture a block in 1 move.
However, we use no move selection based on knowledge of the games or heuristics
for move ordering.

4.1 Atomic, Relevancy-Based Games

In several experiments, it seems to turn out that search using hard coded know-
ledge is often faster, while search using relevancy zones solves more problems. Ta-
ble 4 gives an impression of the results for different thresholds for the maximum
nodes allowed for three datasets. These datasets were provided by T. Cazenave
and contain problems from games amongst computer programs together with
some artificial problems. For two of them the goal is to capture an opponent
string or defend a friendly string from capturing. These datasets contain 144
and 75 problems. In the third dataset of 90 problems, the goal is to connect two
friendly strings or disconnect two opponent strings.

Table 4. Comparing search using (mainly) relevancy zones to search using hard-coded
knowledge. For different thresholds and for ‘maximum nodes to traverse’, the timings
of both methods and the number of correctly solved problems is given.

goal test set nodes/problem hard-coded relevancy zones
time(s) solved time(s) solved

capture 1 1000 0.57 57% 0.64 51%
20000 1.18 57% 2.96 57%
200000 1.85 58% 11.41 82%

2 1000 0.27 33% 0.25 32%
20000 0.50 35% 1.47 44%
200000 0.77 35% 5.72 50%

connect 1 1000 0.56 58% 0.66 68%
20000 1.24 60% 0.77 68%
200000 3.98 68% 0.78 68%

4.2 Compound Goals

Now we move to compound goals. However, there seems to be no large dataset
on compound goals available. We will therefore limit our discussion to a smaller
set of hand-constructed and real-game problems. Most problems from games are
transitive connection problems from [4]. In future work, we will collect a larger
dataset of problems from games requiring compound goal techniques.

Table 5 lists a number of compound goals problems. We consider basically
two methods to solve compound goals. The first one is the method described up
to now. The second (naive) one is a method without search local to one of the
subgoals. Candidate moves are just the union of the candidate moves proposed
by the separate goals. This is about the best guess one can do without using
relevancy zones and using no local search. As can be seen, for some problems
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a. capture(A)∨ connect(B,C) b. capture(A)∧ capture(B)

c. capture(A)∨ connect(B,C) d. not( connect(A,B)∧ connect(B,C))

e. not( connect(A,B)∧ connect(B,C)) f. not( connect(A,B)∧ connect(B,C))

g. not( connect(A,B)∧ connect(B,C)) h. connect(A,B)∧ connect(B,C)

Fig. 5. Compound goal problems
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the naive method works and is much faster. However, on several problems the
naive method fails, i.e., it does not find a correct solution (a.o. due to missing
candidate moves). Also, the naive method is not guaranteed to produce correct
results. Of course, instead of this naive method one could try to take a safe
approximation of the correct set of candidate moves, but this is very difficult
because the complexity rapidly blows up as unnecessary candidates are added.

Table 5. Compound goals problems. Timings are given in seconds.

goal dynamic static
1 (Figure 1) capture(D3)∧capture(M3) (Won) 0.14 timeout
2 (Figure 5a capture(A)∨ connect(B,C) (Won) 0.39 timeout
3 (Figure 5b capture(A)∧ capture(B) (Won) 0.10 timeout
4 (Figure 5c capture(A)∨ connect(B,C) (Won) 0.39 timeout
5 (Figure 5d not( connect(A,B)∧ connect(B,C)) (Won) 1.12 0.01
6 (Figure 5e not( connect(A,B)∧ connect(B,C)) (Won) 1.12 0.01
7 (Figure 5f not( connect(A,B)∧ connect(B,C)) (Won) 1.62 0.01
8 (Figure 5g not( connect(A,B)∧ connect(B,C)) (Lost) 0.15 wrong
9 (Figure 5h connect(A,B)∧ connect(B,C) (Won) 0.55 0.03

5 Conclusions and Further Work

We proposed a general method for searching for compound goals. While existing
techniques can guess good moves quite fast for such goals, our compound goal
search technique is more accurate. Also, it is more general than existing tech-
niques. Hence it allows one to determine accurately the status of a larger area
on the board than existing methods. We considered atomic goals and three con-
nectives to combine them: negations, disjunction, and conjunction. The binary
connectives depend on correct computation of relevancy zones of their subgoals.

There are several directions of further work. First, a more accurate treatment
of ko could make the search algorithm much more valuable in real games. When
combining goals, it can be important to know what kind of ko is the local result
of each of the subgoals.

Second, we have limited our discussion to the main logical operators (nega-
tion, conjunction, and disjunction). However, other operators may be useful. For
instance, consider the problem of making a maximal number of points in some
area (e.g., during an invasion). Then, the subgoal would return a real value in-
stead of the logical values Lost, Won, and Ko considered here. Combining such
goals would be much more similar to decomposition search.

Finally, a more memory-intensive approach could avoid much recomputation.
In our current approach, a global transposition table is used. However, it would
be interesting to consider local transposition tables for every subgoal, which store
also relevancy zones. This would probably save much computation, while if care
is taken would still fit easily into current memory capacity.
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