
An Improved Safety Solver for Computer Go

Xiaozhen Niu and Martin Müller

Department of Computing Science,
University of Alberta, Edmonton, Canada
{xiaozhen, mmueller}@cs.ualberta.ca

Abstract. Most Go-playing programs use a combination of search and
heuristics based on an influence function to determine whether territories
are safe. However, to assure the correct evaluation of Go positions, the
safety of stones and territories must be proved by an exact method.

The first exact algorithm, due to Benson [1], determines the uncondi-
tional safety of stones and completely surrounded territories. Müller [3]
develops static rules for detecting safety by alternating play, and intro-
duces search-based methods.

This paper describes new, stronger search-based techniques including
region-merging and a new method for efficiently solving weakly depen-
dent regions. In a typical final position, more than half the points on the
board can be proved safe by our current solver. This almost doubles the
number of proven points compared to the 26.4% reported in [3].

1 Introduction

This paper describes recent progress in building a search-based solver for proving
the safety of stones and territories. The main application is late in the game,
when much of the board has been partitioned into relatively small areas that are
completely surrounded by stones of one player. In previous work [3], the analysis
of such positions was done by a strict divide and conquer approach, analyzing one
region at a time. The current solver implements several techniques that relax this
strict separation approach. One technique merges several strongly related regions
into a single one for the purpose of search. Another technique deals with how to
search separately a set of weakly dependent regions in order to prove the safety
of the union of all these regions.

This paper is organized as follows: the remainder of the introduction describes
the terminology and previous work. Section 2 provides a formal framework for
the safety prover, and Section 3 describes the solver: it gives an overview of the
steps in the proving algorithm, describes the new technique of region merging
and introduces the concept of weakly dependent regions. Section 4 deals with
search enhancements, and Section 5 describes the experimental setup and results,
followed by conclusions and future work in Section 6.

1.1 Preliminaries: Terminology and Go Rules

Our terminology is similar to [1, 3], with some additional definitions. Differences
are indicated below. A block is a connected set of stones on the Go board. Each

H.J. van den Herik et al. (Eds.): CG 2004, LNCS 3846, pp. 129 –1 , 2006.
c© Springer-Verlag Berlin Heidelberg 2006

7

98 X Niu and M Müller

block has a number of adjacent empty points called liberties. A block that loses
its last liberty is captured, i.e., removed from the board. A block that has only
one liberty is said to be in atari. Figure 1 shows two black blocks and one white

block. The small black block contains two stones, and has five liberties (two
marked A and three marked B).

A A

B B

B B

Fig.1. Blocks, basic regions and merged
regions

Given a color c, let A¬c be the set
of all points on the Go board which
are not of color c. Then a basic re-
gion of color c (called a region in [1,
3]) is a maximal connected subset of
A¬c. Each basic region is surrounded
by blocks of color c. In this paper, we
also use the concept of a merged region,
which is the union of two or more ba-
sic regions of the same color. We will
use the term region to refer to either a
basic or a merged region. In Figure 1
A and B are basic regions and A ∪ B
is a merged region.

We call a block b adjacent to a region r if at least one point of b is adjacent to
one point in r. A block b is called interior block of a region r if it is adjacent to r
but no other region. Otherwise, if b is adjacent to r and at least one more region
it is called a boundary block of r. We denote the set of all boundary blocks of a

region r by Bd(r). In Figure 1, the black block is a boundary block of the
basic region A but an interior block of the merged region A ∪ B. The defender
is the player playing the color of boundary blocks of a region. The other player
is called the attacker.

Our results are mostly independent of the specific rule set used. As in previous
work [1, 3], suicide is forbidden. Our algorithm is incomplete in the sense that it
can only find stones that are safe by two sure liberties [3]. This excludes cases
such as conditional safety that depends on winning a ko, and also less frequent
cases of safety due to double ko or snapback. The solver does not yet handle
coexistence in seki.

1.2 Previous Work on Safety of Blocks and Territories

Benson’s algorithm for unconditionally alive blocks [1] identifies sets of blocks and
basic regions that are safe, even if the attacker can play an unlimited number of
moves in a row, and the defender never plays. Müller [3] defines static rules for
detecting safety by alternating play, where the defender is allowed to reply to each
attacker move. [3] also introduces local search methods for identifying regions
that provide one or two sure liberties for an adjacent block. Experimental results
for a preliminary implementation in the program Explorer were presented for
Benson’s algorithm, static rules, and a 6-ply search.

..

An Improved Safety Solver for Computer Go 99

Van der Werf implemented an extended version of Müller’s static rules to
provide input for his program that learns to score Go positions [6]. Vilà and
Cazenave developed static classification rules for many classes of regions up to
a size of 7 points [7]. These methods have not been implemented in our solver
yet.

1.3 Contributions

The main contributions of this paper are as follows.

– A new method to merge regions and a search technique to prove that a
merged region provides two sure liberties.

– A new divide-and-conquer analysis of weakly dependent regions.
– A greatly improved αβ search routine for finding 2-vital regions (defined in

Subsection 2.1), with improvements in move ordering, evaluation function,
and pruning by recognizing forced moves.

– An improvement that takes external eyes of boundary blocks into account
during the search.

2 Establishing the Safety of Blocks and Territories

Below we describe three definitions (in 2.1) and discuss the recognition of safe
regions (in 2.2).

2.1 Definitions

The following definitions, adapted from [3], are the basis for our work. They
are used to characterize blocks and territories that can be made safe under
alternating play, by creating two sure liberties for blocks, and at the same time
preventing the opponent from living inside the territories. During play, the liberty
count of blocks may decrease to 1 (they can be in atari), but they are never
captured and ultimately achieve two sure liberties.

Regions can be used to provide either one or two liberties for a boundary
block. We call this number the Liberty Target LT (b, r) of a block b in a region
r. A search is used to decide whether all blocks can reach their liberty target in
a region, under the condition of alternating play, with the attacker moving first
and winning all ko fights.

Definition: Let r be a region, and let Bd(r) = {b1, . . . , bn} be the set of
boundary blocks of r. Let ki = LT (bi, r) , ki ∈ {1, 2}, be the liberty target of
bi in r. A defender strategy S is said to achieve all liberty targets in r if each bi

has at least ki liberties in r initially, as well as after each defender move.
Each attacker move in r can reduce the liberties of a boundary block by at

most one. The definition implies that the defender can always regain ki liber-
ties for each bi with his next move in r. The following definition of life under
alternating play is analogous to Benson’s.

100

Definition: A set of blocks B is alive under alternating play in a set of
regions R if there exist liberty targets LT (b, r) and a strategy S that achieves
all these liberty targets in each r ∈ R and

∀b ∈ B
∑

r∈R

LT (b, r) ≥ 2

Note that this construction ensures that blocks will never be captured. Ini-
tially each block has two or more liberties. Each attacker move in a region r
reduces only liberties of blocks adjacent to r, and by at most 1 liberty. By the
invariant, the defender has a move in r that restores the previous liberty count.
Each block in B has at least one liberty overall after any attacker move and two
liberties after the defender’s local reply.

It is easy to adapt this definition to the case where blocks have sure external
liberties outside of R. The sum of liberty targets for such blocks can be reduced
to 1, if the block has one sure external liberty, or 0, if the block is already safe.

Definition: We call a region r one-vital for a block b if b can achieve a liberty
target of one in r, and two-vital if b can achieve a target of two.

2.2 Recognition of Safe Regions

The attacker cannot live inside a region surrounded by safe blocks if there are no
two non-adjacent potential attacker eye points, or if the attacker eye area forms
a nakade shape. Our current solver uses a simple static test for this condition as
described in [3].

3 Methods for Processing Regions

We describe the structure of the safety solver (3.1), region merging (3.2), weakly
dependent regions (3.3), and other improvements to the solver (3.4).

3.1 The Structure of the Safety Solver

Our safety solver includes five sub-solvers.

Benson solver – implements Benson’s classic algorithm to analyze uncondi-
tional life.

Static solver – uses static rules to recognize safe blocks and regions under
alternating play, as described in [3]. No search is used.

1-Vital solver – uses search to recognize regions that are 1-vital for one or
more boundary blocks. As in [3] there is also a combined search for 1-vitality
and connections in the same region, that is used to build chains of safely
connected blocks.

X Niu and M Müller..

An Improved Safety Solver for Computer Go 101

Generalized 2-Vital solver – uses searches to prove that each boundary block
can reach a predefined liberty target. For safe blocks, the target is 0, since
their safety has already been established using other regions. Blocks that
have one external eye outside of this region are defined as external eye blocks.
For these blocks the target is 1. For all other non-safe blocks the target is
2 liberties in this region. All the search enhancements described in the next
section were developed for this solver.
The 2-Vital solver in [3] could not handle external eye blocks, it would try
to prove 2-vitality for all non-safe boundary blocks.

Expand-vital solver – uses searches to prove the safety of partially surrounded
areas, as in [3]. This sub-solver can also be used to prove that non-safe stones
can connect to safe stones in a region.

The basic algorithm of the safety solver is as follows.

1. The static solver is called first. It is very fast and resolves the simple cases.
2. The 2-Vital solver is called for each region. As a simple heuristic to avoid

computations that most likely will not succeed, searches are performed only
for regions up to size 30.

3. The Expand-vital solver is called for regions that have some safe boundary
blocks. The safety of those blocks has been established by using other regions.
Our previous solver in [3] only used the steps so far.

4. (New) Region merging. After the previous steps, all the easy-to-prove safe
basic regions have been found. In this step the remaining unproven related
regions are merged. For each small-enough merged region (up to size 14
in the current implementation) the generalized 2-Vital solver is called. The
mechanism is described in detail in Subsection 3.2.

5. (New) Weakly dependent regions. A new algorithm deals with weakly de-
pendent regions. In this step both the 1-Vital solver and the 2-Vital solver
are used. A detailed description is given in Subsection 3.3.

6. (New) As in step 3, the Expand-vital solver is called for those regions for
which one or more new safe boundary blocks have been found.

3.2 Region Merging

B

A

Fig. 2. Two related regions

One of the major drawbacks of our pre-
vious solver is that it processes basic
regions one by one and ignores the pos-
sible relationship between them. Fig-
ure 2 shows an example of two related
regions. The previous solver treats re-
gions A and B separately, and nei-
ther region can be solved. However the
merged region A∪B can be solved eas-
ily.

The first algorithm step scans all
regions and merges all related regions.

102

Two regions are defined as related if they have a common boundary block. After
the merging step, the 2-Vital solver is used to recognize safe merged regions.

This method can solve simple cases such as the one in Figure 2. However,
since merging all related regions usually creates a very large merged region, the
search space often becomes too large.

To improve the locality of search, we distinguish between strongly depen-
dent regions, which share more than one common boundary block, and weakly
dependent regions with exactly one common boundary block.

Our current solver uses a two-step merging process. In the first step, strongly
dependent basic regions are merged. In the second step groups of weakly depen-
dent regions are formed. A group can contain both basic regions and merged
regions computed in the first step. Figure 3 shows an example.

B E

A

C D

X Y F

Fig. 3. Strongly and weakly dependent regions

In this figure, there are total of 6 related black regions A, B, C, D, E, and F.
Since the huge outside region contains surrounding white stones that are already
safe, we do not need to consider the huge outside region.

A complete merge of all six regions yields a combined new region with size
32, which is too large to be fully searched. Two-step merging creates the follow-
ing result: The first step identifies connected components of strongly dependent
regions and merges them. A, B and C are strongly dependent and are merged
into a new region R1 = A∪B ∪C. Next D and E are merged into R2 = D ∪E.
Region F is not strongly dependent on any other region and is not merged. The
second step identifies weak dependencies between R1, R2 and F and builds the

group. R1 and R2 are weakly dependent through block , and R2 and F are

weakly dependent through block . The result is a group of weakly dependent
regions {R1, R2, F} with region sizes of 15, 14 and 3 respectively. The regions
within a group are not merged but searched separately, as explained in the next
section.

The common boundary block between two weakly dependent regions has both

internal and external liberties relative to each region. For example, for block
and R2 = D ∪ E, the liberty Y is internal and the liberty X is external.

X Niu and M Müller..

An Improved Safety Solver for Computer Go 103

3.3 Weakly Dependent Regions

We distinguish between two types of weak dependencies. In type 1, the common
boundary block has more than one liberty in each region. For example, in Figure
4 the shared boundary block of regions A and B has more than 1 liberty in each
region. In type-1 dependencies, our search in one region does not consider the
external liberties of the common block.

A B

Fig. 4. First type of weakly dependent
regions

In type-2 weak dependencies, the
common boundary block has only one
liberty in at least one of the regions.

In Figure 3 black block has only 1
liberty in both regions R1 and R2. We
need to consider the external liberties
for the common block because moves
in one region might affect the result of
the other. However, we do not want to
merge these two regions because of the
resulting increase in problem size.

The pseudo code in Figure 5 de-
scribes the method for processing
groups of weakly dependent regions.

for each weakly dependent group G
if (total size of all regions in G < 14) // 14 is a constant determined empirically

rG = merge all regions in G;
call 2-vital solver for rG

else
for each region r ∈ G

for each shared boundary block b between r and another region r2 ∈ G
do a 1-vital search for b in r2;

reduce liberty target for all successfully tested boundary blocks to 1
take unproven (1-vital search not successful) blocks as special blocks;
generate external moves for special blocks (for both attacker/defender);
call 2-vital solver for r.

Fig. 5. Search for weakly dependent groups

3.4 Other Improvements to the Solver

The following further enhancements were made to the solver since the version
described in [3].

Improved static solver – the static solver contains a more complete imple-
mentation of the concepts in [3] than the preliminary version used in the
1997 experiments. Its performance is about 3 to 4 % better on the same test
set. See Subsection 5.1 for detailed results.

104

External eyes of blocks – if a boundary block of a region r has one sure
liberty elsewhere, this information is stored and used in the search for r by
lowering the liberty target for that block.

Time limit instead of depth limit – the previous experiments used a fixed-
depth 6-ply search. The current solver uses a time limit instead, which allows
it to search much deeper.

4 Search Enhancements

Below we discuss move generation and move ordening (in 4.1) and evaluation
functions (in 4.2).

4.1 Move Generation and Move Ordering

In this work, we focus on proving that a region and its boundary blocks are
safe. Therefore we have concentrated our efforts on generating and ordering the
defender’s moves. For the attacker, all legal moves in the region plus a pass
move will be generated. When processing weakly dependent regions as described
in Subsection 3.3, extra moves outside of the region might be generated for either
attacker or defender. For details of this procedure please see [5]. The attacker is
allowed to recapture immediately a ko. Therefore, the attacker will always win
a ko-fight inside a region.

The solver utilizes Explorer’s generic αβ search engine which implements
standard move-ordering techniques such as (1) trying the best move from a
previous iteration first and (2) killer moves. There is currently no game-specific
move ordering or pruning for the attacker. For the defender, the following safe
forward-pruning technique is used: when a boundary block of a region is in atari,
only moves that can possibly avert the capturing threat, such as extending the
block’s liberties or capturing the attacker’s adjacent stones are generated. If no
forced moves are found, all legal moves for the defender are generated.

For ordering the defender’s moves, both a high-priority move-motivation de-
tector and a normal scoring system are used. The motivation detector analyzes
the purpose of the attacker’s previous move, and classifies the situation as one
of three priorities.

1. The attacker’s move is close to one of the empty cutting points.
2. The attacker’s move extends one or more cutting blocks.
3. Other attacker moves.

For priority-1 and priority-2 positions, a set of high-priority moves according
to the attacker’s motivation is generated first. For priority 1, most likely the
attacker is trying to cut, so the cutting points close to this move, as well as the
cutting points’ 8 neighbor points, have high priority. For priority 2, most likely
the attacker is trying to expand its own cutting block. Capturing this block is
an urgent goal for the defender. Therefore, all liberties of this block are given
high priority. The number of adjacent empty points is used to order liberties.

X Niu and M Müller..

An Improved Safety Solver for Computer Go 105

All moves in priority-3 positions and all remaining moves in priority-1 and
priority-2 positions are sorted according to a score that is computed as a weighted
sum

Move score = f1 ∗ LIB + f2 ∗ NDB + f3 ∗ NAB + f4 ∗ CB + f5 ∗ AP.

The formula uses the following five features.

1. Liberties of this defender’s block (LIB).
2. Number of neighboring attacker’s blocks (NAB).
3. Number of neighboring defender’s blocks (NDB).
4. Capture bonus (CB): 1 if an opponent block is captured, 0 otherwise.
5. Self-atari penalty (AP): -1 if move is self-atari, 0 otherwise.

The following set of weights worked well in our experiments: f1 = 10, f2 =
30, f3 = 20, f4 = 50, f5 = 100.

4.2 Evaluation Functions

Heuristic Evaluation Function – The evaluation function in [3] used only
three values: proven-safe, proven-unsafe and unknown. Since most of the nodes
during the search evaluate to unknown, we can improve the search by using a
heuristic evaluation to differentiate nodes in this category. The heuristics are
based on two observations.

1. An area that is divided into more subregions is usually easier to evaluate as
proven-safe for our static evaluation function.

2. If the attacker has active blocks with more than 1 liberty, it usually means
that the attack still has more chances to succeed.

Let NSR be the number of subregions and NAB be the number of the at-
tacker’s active blocks. Then the heuristic evaluation of a position is calculated
by the formula

eval = f1 ∗ NSR + f2 ∗ NAB, f1 = 100, f2 = −50

Exact Evaluation Function – The exact evaluation function recognizes po-
sitions that are proven-safe or proven-unsafe. A powerful function is crucial to
achieve good performance. However, there is a tradeoff between evaluation speed
and power. In our evaluation function there are two types of exact static evalu-
ations, HasSureLiberties() and StaticSafe(). HasSureLiberties() is a quick static
test to check whether all boundary blocks of a region have two sure liberties
and the opponent cannot live inside the region. StaticSafe(), is a simplified sta-
tic safety solver which takes the subregions created by the search into account.
Because it has to compute regions, StaticSafe() is much slower than HasSureLib-
erties(). The relative speed of the two methods varies widely, but 5 to 10 times
slower is typical. We use the following compromise rule: If the previous move
changes the size of a region by more than 2 points, then StaticSafe() is used.
Otherwise, the quicker HasSureLiberties() is used. In contrast, [3] used only a
weaker form of HasSureLiberties().

106

5 Experimental Setup and Results

The safety solver described here has been developed as part of the Go program
Explorer [2]. To compare the performance of our current solver with the pre-
vious solver [3], our test set 1 is the same, the problem set IGS 31 counted from
the Computer Go Test Collection [2]. The set contains 31 problems. Each of
them is the final position of a 19 × 19 game played by human amateur players.

We also created an independent test set 2. It contains 27 final positions
of games by the Chinese professional 9 dan player ZuDe Chen. Both sets are
available at http://www.cs.ualberta.ca/∼mmueller/cgo/general.html.

All experiments were performed on a Pentium 4 with 1.6 GHz and a 64MB
transposition table. The following abbreviations for the solvers and enhance-
ments are used in the tables.

Benson – Benson’s algorithm, as in [3].
Static-1997 – static solver from [3].
Search-1997 – search-based solver, 6-ply depth limit, from [3].
Static-2004 – current version of static solver.
M1 – a basic 2-liberties search, similar to the one in [3].
M2 – M1 + consider external eyes of blocks as in Subsection 3.4.
M3 – M2 + region merging method as in Subsection 3.2.
M4 – M3 + move ordering and pruning as in Subsection 4.1.
M5 – M4 + improved heuristic and exact evaluation functions as in Subsection

4.2.
M6 – full solver, M5 + weakly dependent regions as in Subsection 3.3.

5.1 Experiment 1: Overall Comparison of Solvers

Table 1. Search improvements in test set 1

Version Safe points Safe blocks Safe regions
Benson 1,886 (16.9%) 103 (9.2%) 204 (25.4%)
Static-1997 2,481 (22.2%) 168 (15.0%) N/A
Search-1997 2,954 (26.4%) 198 (17.6%) N/A
Static-2004 2,898 (25.9%) 212 (18.9%) 321 (40.0%)
M1 4,017 (35.9%) 326 (29.0%) 404 (50.4%)
M2 4,073 (36.4%) 330 (29.4%) 406 (50.6%)
M3 5,029 (44.9%) 444 (39.5%) 495 (61.7%)
M4 5,070 (45.3%) 451 (40.2%) 498 (62.1%)
M5 5,396 (48.2%) 484 (43.1%) 519 (64.7%)
M6 (Full) 5,740 (51.3%) 523 (46.6%) 548 (68.3%)
Perfect 11,191 (100%) 1,123 (100%) 802 (100%)

Table 1 shows the results
for all methods listed
above for test set 1. The
set contains 31 full-board
positions with a total of
31 × (19 × 19) = 11,191
points, 1,123 blocks and
802 regions. For methods
M1–M6, a long time limit
of 200 seconds per re-
gion was used. For results
with shorter time limits,
see Experiment 2.

Table 2 shows the
results for all methods
listed above for test set 2. This test set contains a total of 27 × (19 × 19)
= 9,747 points, 1,052 blocks and 742 regions.

X Niu and M Müller..

An Improved Safety Solver for Computer Go 107

Table 2. Search improvements in test set 2

Version Safe points Safe blocks Safe regions
Benson 1,329 (13.6%) 106 (10.1%) 160 (21.6%)
Static-2004 2,287 (23.5%) 188 (17.9%) 251 (33.8%)
M1 3,244 (33.3%) 273 (25.9%) 320 (43.1%)
M2 3,305 (33.9%) 278 (26.0%) 325 (43.8%)
M3 4,079 (41.9%) 380 (36.1%) 409 (55.1%)
M4 4,220 (43.3%) 394 (37.5%) 420 (56.7%)
M5 4,594 (47.1%) 440 (42.0%) 455 (61.4%)
M6 (Full) 4,822 (49.5%) 483 (45.9%) 481 (64.9%)
Perfect 9,747 (100%) 1,052 (100%) 742 (100%)

In results of test set 1,
the current static solver
performs similarly to the
best 1997 solver. Adding
search and adding re-
gion merging yield the
biggest single improve-
ments in performance,
about 10% each. The
heuristic evaluation func-
tion and weakly depen-
dent regions add about
3% each. Other meth-
ods provide smaller gains

with these long time limits, but they are essential for more realistic shorter times,
as in the next experiment.

Results for test set 2 are a little bit worse than for test set 1, but that is
true even for the baseline Benson algorithm. Our conclusion is that test set 2 is
just a little bit harder, and the performance of the solver is comparable to its
performance on test set 1.

5.2 Experiment 2: Detailed Comparison of Solvers

This experiment compares the six search-based methods M1–M6 in more detail
on test set 1. The static solver can prove 321 out of 802 regions safe. Our best
solver M6 can prove 548 regions with a time limit of 200 seconds per region. The
remaining 254 regions have not been solved by any method.

A total of (548–321) = 227 regions can be proven safe by search. To further
analyze the search improvements, we divide these regions into four groups of
increasing difficulty, as estimated by the CPU time used.

Group 1, very easy (regions 322–346) – this group contains 25 regions. Most
regions in this group have small size, less than 10. All methods M1–M6 solve all
25 regions quickly within a time limit of 0.1s (0.2s for M1).

Group 2, easy (regions 347–408) – this group contains 62 regions. Figure 6
shows two examples. Table 3 shows the number of regions solved by each method
with different time limits. The number in braces is the difference between two
methods. The performance of M1 and M2 is not convincing. By using region
merging, M3 solves all 62 regions within 0.5s. The more optimized methods M4–
M6 solve all within 0.1s. Region merging drastically improves the performance
of solving these easy regions.

Group 3, moderate (regions 409–495) – this group contains 87 regions. Figure
7 shows two examples. Table 4 contains the test results. In this group, the search
enhancements drastically improve the solver. M1 and M2 solve few problems. M3

108

Fig. 6. Two examples of easy problems in group 2. Left: merged white region, size 10.
Right: basic white region, size 11.

Table 3. Search results for Group 2, easy (62 regions)

Version M1 M2 M3 M4 M5 M6

T=0.1s 0 23 38 62 62 62
T=0.5s 29 (+29) 31 (+8) 62 (+24)
T=1.0s 39 (+10) 40 (+9)
T=5.0s 43 (+4) 42 (+2)
T=10s 43 (+0) 44 (+2)
T=50s 43 (+0) 49 (+5)
T=200 seconds 43 (+0) 49 (+0)

Solved 43 49 62 62 62 62

X Niu and M Müller..

Fig. 7. Two examples of moderate problems in group 3. Left: merged white region, size
16. Right: basic white region, size 19. One white block has an external eye.

An Improved Safety Solver for Computer Go 109

Table 4. Search results for Group 3, moderate (87 regions)

Version M1 M2 M3 M4 M5 M6

T=0.1s 0 0 0 0 0 23
T=0.5s 0 0 14 (+14) 14 (+14) 10 (+10) 37 (+14)
T=1.0s 0 6 (+6) 33 (+19) 33 (+19) 38 (+28) 59 (+22)
T=5.0s 0 6 (+0) 38 (+5) 38 (+5) 68 (+30) 87 (+28)
T=10s 0 8 (+2) 38 (+0) 40 (+2) 87 (+19)
T=50s 0 10 (+2) 73 (+35) 79 (+39)
T=200 seconds 13 (+13) 17 (+7) 79 (+6) 82 (+3)

Solved 13 17 79 82 87 87

Table 5. Search results for Group 4, hard (53 regions)

Version M1 M2 M3 M4 M5 M6

T=0.1s 0 0 0 0 0 0
T=0.5s 0 0 0 0 0 0
T=1.0s 0 0 0 0 0 0
T=5.0s 0 0 0 0 0 0
T=10s 0 0 0 0 11 (+11) 11 (+11)
T=100s 0 0 15 (+15) 17 (+17) 21 (+10) 28 (+17)
T=200 seconds 5 (+5) 5 (+5) 17 (+2) 20 (+3) 33 (+12) 53 (+25)

Solved 5 5 17 20 33 53

6 Conclusions and Future Work

The results of our work on proving territories safe are very encouraging. Using
a combination of new region-processing methods and search enhancements, our
current safety solver is significantly faster and more powerful than the solver in
[3]. However, most large areas with more than 18 empty points remain unsolvable

0.1s, as opposed to 0 for M5. All 87 regions are solved within 5s. In this category
M6 outperforms all other methods.

Group 4, hard (regions 496–548) – this group contains the 53 regions that
are solved in 5 to 200 seconds by M6. Figure 8 shows three examples. Table 5
contains the test results. This group includes 20 weakly dependent regions that
cannot be solved by M1 to M5. Many of these problems take more than a minute
even with M6. They represent the limits of our current solver.

can solve 79 regions, but more than half of them need more than 10 seconds.
The evaluation function drastically speeds up the solver. M5 solves all regions
within 10 seconds. M6, using weakly dependent regions, solves 23 regions within

due to the size of the search space. Figure 9 shows an example. Although this
region has only 18 empty points, our current solver cannot solve it within 200
seconds and a 14-ply search. In order to handle larger areas, it can be improved
in the following areas.

110

(a) Merged white region, size 17.

(b) Two weakly dependent white regions, size 11 and 9.

(c) Three weakly dependent white regions, size 13, 14 and 2.

Fig. 8. Three examples of hard problems in group 4

Fig. 9. Unsolved region, size 18

X Niu and M Müller..

An Improved Safety Solver for Computer Go 111

Move generation – more Go knowledge could be used for safe forward prun-
ing. Instead of generating all legal moves, in many cases the program could
analyze the attacker’s motivations and generate refutation moves. Move or-
dering and pruning for the attacker should also be investigated.

Evaluation function – our current exact evaluation function is all-or-nothing,
and tries to decide the safety of the whole input area. If the area becomes
partially safe during the search, this information is ignored. However, it
would be very useful in order to simplify the further search. Also, more
research on fine-tuning the evaluation function is needed.

Region processing – we can reduce the search space by treating a large re-
gion as several weakly dependent small sub-regions. Most sub-regions will
be affected only by moves in the sub-region and possibly moves close to the
boundary in other sub-regions. In addition, many strongly related regions
could be treated as weakly related regions in practice. Figure 10, slightly
simplified from position 16 of test set 1, shows an example. By our defini-
tion, regions A . . . H are strongly related, and are merged into a single region
of size 25. However, if the partition were A∪C and B ∪D ∪E ∪ F ∪G∪H
then each merged region would be small and could be solved. In practice,
this happens very often, for example in 7 out of the 31 test positions in
test set 1. Better methods are needed to analyze the relationships between
regions and to process regions more selectively.

Search method – in place of αβ, a modern search algorithm such as df-pn
[4, 8] would probably work well in this domain.

More future work ideas include the following six topics.

A B

D F H

E G

C

Fig. 10. An example of multiple related regions

– Handle special cases such as seki, snapback, double ko.
– Use the solver in Explorer to prove regions unsafe and find successful

invasions, or defend against them.

112

– Compare the performance against heuristic Go programs in borderline cases
where it is hard to judge statically whether a defensive move is necessary.
Such a test would indicate how much the method can improve the playing
strength of Go programs.

– Develop a heuristic version that can find possible weaknesses in large areas.
– Compare the performance with Life and Death solvers such as GoTools [9]

in positions where the safety of territory problem is equivalent to a life-and-
death problem.

– Build a solver for small board Go that utilizes this engine.

References

1. D.B. Benson. Life in the game of Go. Information Sciences, 10:17–29, 1976.
Reprinted in Computer Games, Levy, D.N.L. (Editor), Vol. II, pp. 203-213, Springer
Verlag, 1988.

2. M. Müller. Computer Go as a Sum of Local Games: An Application of Combinatorial
Game Theory. PhD thesis, ETH Zürich, 1995. Diss. ETH Nr. 11.006.

3. M. Müller. Playing it safe: Recognizing secure territories in computer Go by using
static rules and search. In H. Matsubara, editor, Game Programming Workshop in
Japan ’97, pages 80–86, Computer Shogi Association, Tokyo, Japan, 1997.

4. A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD
thesis, University of Tokyo, 2002.

5. X. Niu. Recognizing safe territories and stones in computer Go. Master’s thesis,
University of Alberta, 2004. in preparation.

6. E. van der Werf, H.J. van den Herik, and J.W.H.M. Uiterwijk. Learning to score
final positions in the game of Go. In H.J. van den Herik, H. Iida, and E.A. Heinz,
editors, Advances in Computer Games 10, pages 143 – 158. Kluwer, 2004.

7. R. Vilà and T. Cazenave. When one eye is sufficient: a static classification. In H.J.
van den Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10,
pages 109 – 124. Kluwer, 2004.

8. M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J. van den Herik. An effective two-
level proof-number search algorithm. Theoretical Computer Science, 313(3):511–525,
2004.

9. T. Wolf. The program GoTools and its computer-generated tsume go database. In
H. Matsubara, editor, Game Programming Workshop in Japan ’94, pages 84–96,
Computer Shogi Association, Tokyo, Japan, 1994.

X Niu and M Müller..

	Introduction
	Previous Work on Safety of Blocks and Territories
	Contributions

	Establishing the Safety of Blocks and Territories
	Definitions
	Recognition of Safe Regions

	Methods for Processing Regions
	The Structure of the Safety Solver
	Region Merging
	Weakly Dependent Regions
	Other Improvements to the Solver

	Search Enhancements
	Move Generation and Move Ordering
	Evaluation Functions

	Experimental Setup and Results
	Experiment 1: Overall Comparison of Solvers
	Experiment 2: Detailed Comparison of Solvers

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

