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Abstract. This paper investigates methods for estimating potential ter-
ritory in the game of Go. We have tested the performance of direct meth-
ods known from the literature, which do not require a notion of life and
death. Several enhancements are introduced which can improve the per-
formance of the direct methods. New trainable methods are presented
for learning to estimate potential territory from examples. The train-
able methods can be used in combination with our previously developed
method for predicting life and death [25]. Experiments show that all
methods are greatly improved by adding knowledge of life and death.

1 Introduction

Evaluating Go positions is a difficult task [7,17]. In the last decade the game of
Go1 has received significant attention from AI research [5,16]. Yet, despite all
efforts, the best Go programs are still weak. An important reason lies in the lack
of an adequate full-board evaluation function. Building such a function requires
a method for estimating potential territory. At the end of the game territory is
defined as the intersections that are controlled by one colour. Together with the
captured or remaining stones, territory determines who wins the game. For final
positions (where both sides have completely sealed off the territory by stones
of their colour) territory is determined by detecting and removing dead stones
and assigning the empty intersections to their surrounding colour. Recently we
have developed a system that learns to detect dead stones and that scores final
positions at the level of at least a 7-kyu player [23]. Even more recently we have
extended this system so that it is now able to predict life and death in non-final
positions too [25].

In this paper we focus on evaluating non-final positions. In particular we deal
with the task of estimating potential territory in non-final positions, which is
much more difficult than determining territory in final positions. We believe
that for both tasks predictions of life and death are a valuable component. We
investigate several possible methods to estimate potential territory based on the

1 For general information about the game including an introduction to the rules readers
are referred to gobase.org [22].
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predictions of life and death and compare them to other approaches, known from
the literature, which do not require an explicit notion of life and death.

The remainder of this paper is organised as follows. First, in section 2 we
define potential territory. Then, in section 3 we discuss five direct methods for
estimating (potential) territory as well as two enhancements for supplying them
with information about life and death. In section 4 we describe trainable methods
for learning to estimate potential territory from examples. Section 5 presents
our experimental setup. Then, in section 6 we present our experimental results.
Finally, section 7 provides our conclusion and suggestions for future research.

2 Defining Potential Territory

The game of Go is played by two players, Black and White, who consecutively
place a stone of their colour on an empty intersection of a square grid. At the
start of the game the board is empty. During the game the moves gradually
divide the intersections between Black and White. In the end the player who
controls most intersections wins the game. Intersections that are controlled by
one colour at the end of the game are called territory.

During the game human players typically try to estimate the territory that
they will control at the end of the game. Moreover, they often distinguish between
secure territory, which is assumed to be safe from attack, and regions of influence,
which are unsafe. An important reason why human players like to distinguish
secure territory from regions of influence is that, since the secure territory is
assumed to be safe, they do not have to consider moves inside secure territory,
which reduces the number of candidate moves to choose from.

In principle, secure territory can be recognised by extending Benson’s method
for recognising unconditional life [2], such as described in [15] or [24]. In practice,
however, these methods are not sufficient to predict accurately the outcome of the
game until the late end-game because they aim at 100 per cent certainty, which
is assured by assumptions like losing all ko-fights, allowing the opponent to place
several moves without the defender answering, and requiring completely enclosed
regions. Therefore, such methods usually leave too many points undecided.

An alternative (probably more realistic) model of the human notion of se-
cure territory may be obtained by identifying regions with a high confidence
level. However, finding a good threshold for distinguishing regions with a high
confidence level from regions with a low confidence level is a non-trivial task
and admittedly always a bit arbitrary. As a consequence it may be debatable
to compare heuristic methods to methods with a 100 per cent confidence level.
Subsequently the debate continues when comparing among heuristic methods,
e.g., a 77 per cent versus a 93 per cent confidence level (cf. Figure 1).

In this paper, our main interest is in evaluating positions with the purpose of
estimating the score. For this purpose the distinction between secure territory
and regions of influence is relatively unimportant. Therefore we combine the two
notions into one definition of potential territory.
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Definition 1. In a position, available from a game record, an intersection is
defined as potential territory of a certain colour if the game record shows that
the intersection is controlled by that colour at the end of the game.

Although it is not our main interest, it is possible to use our estimates of
potential territory to provide a heuristic estimate of secure territory. This can be
done by focusing on regions with a high confidence level, by setting an arbitrarily
high threshold. In subsection 6.3 we will present results at various levels of
confidence so that our methods can be compared more extensively to methods
that are designed for regions with a high confidence level only.

3 Direct Methods for Estimating Territory

In this section we present five direct methods for estimating territory (subsec-
tions 3.1 to 3.5). They are known or derived from the literature and are easy to
implement in a Go program. All methods assign a scalar value to each (empty)
intersection. In general, positive values are used for intersections controlled by
Black, and negative values for intersections controlled by White. In subsection
3.6 we mention two immediate enhancements for adding knowledge about life
and death to the direct methods.

3.1 Explicit Control

The explicit-control function is obtained from the ‘concrete evaluation function’
as described by Bouzy and Cazenave [5]. It is probably the simplest possible eval-
uation function and is included here as a baseline reference of performance. The
explicit-control function assigns +1 to empty intersections which are completely
surrounded by black stones and −1 to empty intersections which are completely
surrounded by white stones, all other empty intersections are assigned 0.

3.2 Direct Control

Since the explicit-control function only detects completely enclosed intersections
(single-point eyes) as territory it performs quite weak. Therefore we propose
a slight modification of the explicit-control function, called direct control. The
direct-control function assigns +1 to empty intersections which are adjacent to a
black stone and not adjacent to a white stone, −1 to empty intersections which
are adjacent to a white stone and not adjacent to a black stone, and 0 to all
other empty intersections.

3.3 Distance-Based Control

Both the explicit-control and the direct-control functions are not able to recog-
nise larger regions surrounded by (loosely) connected stones. A possible alterna-
tive is the distance-based control (DBC) function. Distance-based control uses
the Manhattan distance to assign +1 to each empty intersection which is closer
to a black stone, −1 to each empty intersection which is closer to a white stone,
and 0 to all other empty intersections.
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3.4 Influence-Based Control

Although distance-based control is able to recognise larger territories a weakness
is that it does not take into account the strength of stones in any way, i.e., a
single stone is weighted equally important as a strong large block at the same
distance. A way to overcome this weakness is by the use of influence functions,
which were already described by the early researchers in computer Go, Zobrist
[26] and Ryder [20], and are still in use in several of today’s Go programs [8,9].

In this paper we adopt Zobrist’s method to recognise influence; it works as
follows. First, all intersections are initialised by one of three values: +50 if they
are occupied by a black stone, −50 if they are occupied by a white stone, and
0 otherwise. (It should be noted that the value of 50 has no specific meaning
and any other large value can be used in practice.) Then the following process
is performed four times. For each intersection, add to the absolute value of the
intersection the number of neighbouring intersections of the same sign minus the
number of neighbouring intersections of the opposite sign.

3.5 Bouzy’s Method

It is important to note that the repeating process used to radiate the influence
of stones in the Zobrist method is quite similar to the dilation operator known
from mathematical morphology. This was remarked by Bouzy [3] who proposed
a numerical refinement of the classical dilation operator which is similar (but
not identical) to Zobrist’s dilation.

Bouzy’s dilation operator Dz works as follows. For each non-zero intersection
which is not adjacent to an intersection of the opposite sign, take the number of
neighbouring intersections of the same sign and add it to the absolute value of the
intersection. For each zero intersection with positive adjacent intersections only,
add the number of positive adjacent intersections. For each zero intersection with
negative adjacent intersections only, subtract the number of negative adjacent
intersections.

Bouzy argued that dilations alone are not the best way to recognise territory.
Therefore he suggested that the dilations should be followed by a number of
erosions. This combined form is similar to the classical closing operator known
from mathematical morphology.

To do this numerically Bouzy proposed the following refinement of the classi-
cal erosion operator Ez. For each non-zero intersection subtract from its absolute
value the number of adjacent intersectionswhich are zero or have the opposite sign.
If this causes the value of the intersection to change its sign the value becomes zero.

The operators Ez and Dz are then combined by first performing d times Dz

followed by e times Ez . Bouzy suggested the relation e = d(d − 1) + 1 because
this becomes the unity operator for a single stone in the centre of a sufficiently
large board. He further recommended to use the values 4 or 5 for d.

The reader may be curious why the number of erosions is larger than the
number of dilations. The main reason is that (unlike in the classical binary case)
Bouzy’s dilation operator propagates faster than his erosion operator. Further-
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more, Bouzy’s method seems to be more aimed at recognising secure territory
with a high confidence level than Zobrist’s method (the intersections with a lower
confidence level are removed by the erosions). Since Bouzy’s method leaves many
intersections undecided it is expected to perform sub-optimal at estimating po-
tential territory, which also includes regions with lower confidence levels (cf.
subsection 6.3). To improve the estimations of potential territory it is therefore
interesting to consider an extension of Bouzy’s method for dividing the remaining
empty intersections. A natural choice to extend Bouzy’s method is to divide the
undecided empty intersections using distance-based control. The reason why we
expect this combination to be better than only performing distance-based con-
trol directly from the raw board is that radiating influence from a (relatively)
safe base, as provided by Bouzy’s method, implicitly introduces some under-
standing of life and death. (It should be noted that extending Bouzy’s method
with distance-based control is not the only possible choice, and extending with
for example influence-based control provides nearly identical results.)

3.6 Enhanced Direct Methods

The direct methods all share one important weakness: the lack of understanding
life and death. As a consequence, dead stones (which are removed at the end of
the game) can give the misleading impression of providing territory or reducing
the opponent’s territory. Recognising dead stones is a difficult task, but many
Go programs have available some kind of (usually heuristic) information about
the life-and-death status of stones. We have this information, provided by our
recently developed system which has been trained to predict life and death for
non-final positions [25].

Here we mention two immediate enhancements for the direct methods. (1) The
simplest approach to use information about life and death for the estimation of
territory is to remove dead stones before applying one of the direct methods. (2)
An alternative sometimes used is to reverse the colour of dead stones [4].

4 Trainable Methods

Although the direct methods can be improved by (1) removing dead stones, or
(2) reversing their colour, neither approach seems optimal, especially because
both lack the ability to exploit the more subtle differences in the strength of
stones, which would be expressed by human concepts such as ‘aji’ or ‘thickness’.
However, since it is not well understood how such concepts should be modelled,
it is tempting to try a machine-learning approach to train a general function
approximator to provide an estimation of the potential territory. For this task
we have selected the Multi-Layer Perceptron (MLP). The MLP has been used
on similar tasks by several other researchers [10,11,12,21], so we believe it is a
reasonable choice. Nevertheless it should be clear that any other general function
approximator can be used for the task.

Our MLP has a feed-forward architecture which estimates potential territory
on a per intersection basis. The estimates are based on a local representation
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which includes features that are relevant for predicting the status of the intersec-
tion under investigation. In this paper we test two representations, first a simple
one which only looks at the raw configuration of stones, and second an enhanced
representation that exploits additional information about life and death.

For our experiments we exploit the fact that the game is played on a square
board with eight symmetries. Furthermore, positions with Black to move are
equal to positions with White to move provided that all stones reverse colour.
To simplify the learning task we remove the symmetries in our representation by
rotating the view on the intersection under investigation to one canonical region
in the corner, and reversing the colours if the player to move is White.

4.1 The Simple Representation

The simple representation is characterised by the configuration of all stones in
the region of interest (ROI) which is defined by all intersections within a pre-
defined Manhattan distance of the intersection under investigation. For each
intersection in the ROI we include the following feature.

– Colour: +1 if the intersection contains a black stone, −1 if the intersection
contains a white stone, and 0 otherwise.

The simple representation will be compared to the direct methods because it
does not use any explicit information of life and death (although some knowledge
of life and death may of course be learned from examples) and only looks at
the local configuration of stones. Since both Zobrist’s and Bouzy’s method (see
above) are diameter limited by the number of times the dilation operator is used,
our simple representation should be able to provide results which are at least
comparable. However, we actually expect it to do better because the MLP might
learn some additional shape-dependent properties.

4.2 The Enhanced Representation

We enhanced the simple representation with features that incorporate explicit
information about the life-and-death status of stones. Of course, we used our
recently developed system for predicting life and death [25]. The most straight-
forward way to include the predictions of life and death would be to add these
predictions as an additional feature for each intersection in the ROI. However,
preliminary experiments showed that this was not the best way to add knowl-
edge of life and death. (The reason is that adding features reduces performance
due to peaking phenomena caused by the curse of dimensionality [1,14].) As an
alternative which avoids increasing the dimensionality we decided to multiply
the value of the colour feature in the simple representation with the estimated
probability that the stones are alive. (This means that the sign of the value of
an intersection indicates the colour, and the absolute value indicates some kind
of strength.) Consequently, the following three features were added.

– Edge: encoded by a binary representation (board=0, edge=1) using a 9-
bit string vector along the horizontal and vertical line from the intersection
under investigation to the nearest edges.
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– Nearest colour: the classification for the intersection using the distance-based
control method on the raw board (black=1, empty=0, white=−1).

– Nearest alive: the classification for the intersection using the distance-based
control method after removing dead stones (black=1, empty=0, white=−1).

5 Experimental Setup

In this section we discuss the data set used for training and evaluation (5.1) and
the performance measures used to evaluate the various methods (5.2).

5.1 The Data Set

In the experiments we used our collection of 9×9 game records which were origi-
nally obtained from NNGS [18]. The games, played between 1995 and 2002, were
all played to the end and then scored. Since the original NNGS game records only
contained a single numeric value for the score, the fate of all intersections was
labelled by a threefold combination of GnuGo [13], our own learning system,
and some manual labelling. Details about the data set and the way we labelled
the games can be found in [23].

In all experiments, test examples were extracted from games played in 1995,
training examples were extracted from games played between 1996 and 2002. In
total the test set contained 906 games, 46,616 positions, and 2,538,152 empty
intersections. It is remarked that the 1995 games were also left out of the training
set used for learning to predict life and death [25].

5.2 The Performance Measures

Now that we have introduced a series of methods (combinations of methods are
possible too) to estimate (potential) territory, an important question is: how
good are they? We attempt to answer this question (in section 6) using several
measures of performance which can be calculated from labelled game records
(see section 5.1). Although game records are not ideal as an absolute measure
of performance (because the people who played those games surely have made
mistakes) we believe that the performance averaged over large numbers of unseen
game records is a reasonable indication of strength.

Probably the most important question in assessing the quality of an evalu-
ation function is how well it can predict the winner at the end of the game.
By combining the estimated territory with the (alive) stones we obtain the so-
called area score, which is the number of intersections controlled by Black minus
the number of intersections controlled by White. Together with a possible komi
(which compensates the advantage of the first player) the sign of this score de-
termines the winner. Therefore, our first performance measure Pwinner is the
percentage of positions in which the sign of the score is predicted correctly.

Our second performance measure Pscore uses the same score to calculate the
average absolute difference between the predicted score and the actual score at
the end of the game.
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Both Pwinner and Pscore combine predictions of stones and territory in one
measure of performance. As a consequence these measures are not sufficiently in-
formative to evaluate the task of estimating potential territory alone. To provide
more detailed information about the errors that are made by the various meth-
ods we also calculate the confusion matrices (see section 6.1) for the estimates
of potential territory alone.

Since some methods leave more intersections undecided (by assigning empty)
than others, for example because they may have been designed originally for
estimating secure territory only, it may seem unfair to compare them directly
using only Pwinner and Pscore. As an alternative the fraction of intersections
which are left undecided can be considered together with the performance on
intersections which are decided. This typically leads to a trade-off curve where
performance can be improved by rejecting intersections with a low confidence.
The fraction of intersections that are left undecided, as well as the performance
on the decided intersections is directly available from the confusion matrices of
the various methods.

6 Experimental Results

We tested the performance of the various methods and in this section we present
our experimental results. They are subdivided as follows: performance of direct
methods in 6.1; performance of trainable methods in 6.2; comparing different
levels of confidence in 6.3; and performance over the game in 6.4.

6.1 Performance of Direct Methods

The performance of the direct methods was tested on all positions from the
labelled test games. The results for Pwinner and Pscore are shown in Table 1. In
this table the columns ‘remain’ represent results without using knowledge of life
and death, the columns ‘remove’ and ‘reverse’ represent results with predictions
of life and death used to remove or reverse the colour of dead stones.

To compare the results of Pwinner and Pscore it is useful to have a confidence
interval. Unfortunately, since positions of the test set are not all independent, it
is non-trivial to provide exact results. Nevertheless it is easy to calculate lower
and upper bounds, based on an estimate of the number of independent positions.
If we pessimistically assume only one independent position per game an upper
bound (for a 95% confidence interval) is roughly 3% for Pwinner and 1.2 points
for Pscore. If we optimistically assume all positions to be independent a lower
bound is roughly 0.4% for Pwinner and 0.2 points for Pscore. Of course this is only
a crude approximation which ignores the underlying distribution and the fact
that the accuracy increases drastically towards the end of the game. However,
given the fact that the average game length is around 50 moves it seems safe to
assume that the true confidence interval will be somewhere in the order of 1%
for Pwinner and 0.4 points for Pscore.

More detailed results about the estimations (in percentages) for the empty
intersections alone are presented in the confusion matrices shown in Table 2. The
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Table 1. Average performance of direct methods

Pwinner (%) Pscore (points)

Predicted dead stones remain remove reverse remain remove reverse

Explicit control 52.4 60.3 61.8 16.0 14.8 14.0
Direct control 54.7 66.5 66.9 15.9 12.9 12.7
Distance-based control 60.2 73.8 73.8 18.5 13.8 13.9
Influence-based control 61.0 73.6 73.6 17.3 12.8 12.9
Bouzy(4,13) 52.6 66.9 67.5 17.3 12.8 12.8
Bouzy(5,21) 55.5 70.2 70.4 17.0 12.3 12.4
Bouzy(5,21) + DBC 63.4 73.9 73.9 18.7 14.5 14.6

fraction of undecided intersections and the performance on the decided intersec-
tions, which can be calculated from the confusion matrices, will be discussed in
subsection 6.3. (The rows of the confusion matrices contain the possible predic-
tions which are either black (PB), white (PW), or empty (PE). The columns
contain the actual labelling at the end of the game which are either black (B),
white (W), or empty (E). Therefore, correct predictions are found on the trace,
and errors are found in the upper right and lower left corners of the matrices.)

The difference in performance between (1) when stones remain on the board
and (2) when dead stones are removed or reversed colour underlines the impor-
tance of understanding life and death. For the weakest direct methods reversing
the colour of dead stones seems to improve performance compared to only re-
moving them. For the stronger methods, however, it has no significant effect.

The best method for predicting the winner without understanding life and
death is Bouzy’s method extended with distance-based control to divide the re-
maining undecided intersections. It is interesting to see that this method also
has a high Pscore which would actually indicate a bad performance. The reason
for this is instability of distance-based control in the opening, e.g., with only one
stone on the board it assigns the whole board to the colour of that stone. We
can filter out the instability near the opening by only looking at positions that
occur after a certain minimal number of moves. When we do this for all positions
with at least 20 moves made, as shown in Table 3, it becomes clear that Bouzy’s
method extended with distance-based control also achieves the best Pscore. Our
experiments indicate that radiating influence from a (relatively) safe base, as pro-
vided by Bouzy’s method, outperforms other direct methods probably because
it implicitly introduces some understanding of life and death. This conclusion
is supported by the observation that the combination does not perform signif-
icantly better than for example influence-based control when knowledge about
life and death is used.

At first glance the results presented in this subsection could lead to the ten-
tative conclusion that for a method which only performs N dilations to estimate
potential territory the performance keeps increasing with N ; so the largest pos-
sible N might have the best performance. However, this is not the case and N
should not be chosen too large. Especially in the beginning of the game a large
N tends to perform significantly worse than a restricted setting with 4 or 5 di-



90 E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uiterwijk

Table 2. Confusion matrices of direct methods

B W E

PB 0.78 0.16 0

PW 0.1 0.88 0

PE 48.6 49.3 0.13
Explicit control

B W E

PB 0.74 0.04 0

PW 0.04 0.82 0

PE 48.7 49.5 0.14
dead stones removed

B W E

PB 0.95 0.09 0.01

PW 0.07 1.2 0.01

PE 48.4 49.0 0.12
dead colour reversed

B W E

PB 15.4 4.33 0.02

PW 3.16 14.3 0.01

PE 30.9 31.6 0.1
Direct control

B W E

PB 16.0 3.32 0.02

PW 2.56 15.2 0.02

PE 30.9 31.7 0.09
dead stones removed

B W E

PB 16.6 3.44 0.02

PW 2.75 16.3 0.03

PE 30.0 30.6 0.08
dead colour reversed

B W E

PB 36.0 11.6 0.05

PW 6.63 31.0 0.03

PE 6.86 7.71 0.06
Distance-based control

B W E

PB 38.2 10.4 0.06

PW 6.21 34.3 0.06

PE 5.09 5.55 0.02
dead stones removed

B W E

PB 38.0 10.3 0.05

PW 6.21 34.1 0.05

PE 5.29 5.87 0.04
dead colour reversed

B W E

PB 37.4 12.2 0.07

PW 7.76 33.3 0.04

PE 4.25 4.79 0.03
Influence-based control

B W E

PB 38.4 10.5 0.06

PW 7.02 35.3 0.06

PE 4 4.47 0.02
dead stones removed

B W E

PB 38.4 10.5 0.06

PW 7.11 35.4 0.06

PE 3.98 4.46 0.02
dead colour reversed

B W E

PB 17.7 1.82 0.02

PW 0.83 15.4 0.01

PE 30.9 33.1 0.11
Bouzy(4,13)

B W E

PB 21.2 1.86 0.03

PW 1.06 19.9 0.03

PE 27.2 28.5 0.07
dead stones removed

B W E

PB 21.2 1.9 0.03

PW 1.16 20.1 0.03

PE 27.0 28.3 0.08
dead colour reversed

B W E

PB 19.0 1.87 0.02

PW 0.81 15.8 0.01

PE 29.6 32.6 0.1
Bouzy(5,21)

B W E

PB 23 1.98 0.03

PW 1.13 20.8 0.04

PE 25.3 27.5 0.07
dead stones removed

B W E

PB 22.9 1.99 0.03

PW 1.17 20.7 0.03

PE 25.3 27.6 0.08
dead colour reversed

B W E

PB 37.9 12.1 0.05

PW 6.51 32.4 0.03

PE 5 5.73 0.05
Bouzy(5,21) + DBC

B W E

PB 39.0 11.0 0.06

PW 6.3 34.8 0.06

PE 4.12 4.5 0.02
dead stones removed

B W E

PB 38.9 10.9 0.05

PW 6.32 34.6 0.05

PE 4.28 4.74 0.03
dead colour reversed

lations such as used by Zobrist’s method. Moreover, a too large N is a waste of
time under tournament conditions.

6.2 Performance of Trainable Methods

Below we present the results of the trainable methods. All architectures were
trained with the resilient propagation algorithm (RPROP) developed by Ried-
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Table 3. Average performance of direct methods after 20 moves

Pwinner (%) Pscore (points)

Predicted dead stones remain remove reverse remain remove reverse

Explicit control 55.0 66.2 68.2 16.4 14.5 13.3
Direct control 57.7 74.9 75.3 16.1 11.6 11.3
Distance-based control 61.9 82.1 82.1 16.4 9.6 9.7
Influence-based control 63.6 82.1 82.2 16.0 9.5 9.6
Bouzy(4,13) 56.7 77.9 78.3 17.2 10.4 10.5
Bouzy(5,21) 58.6 80.3 80.5 16.9 9.9 10
Bouzy(5,21) + DBC 66.7 82.2 82.3 15.5 9.6 9.7

miller and Braun [19]. The non-linear architectures all had one hidden layer
with 25 units using the hyperbolic tangent sigmoid transfer function. (Prelimi-
nary experiments showed this to be a reasonable setting, though large networks
may still provide a slightly better performance when more training examples are
used.) For training, 200,000 examples were used. A validation set of 25,000 ex-
amples was used to stop training. For each architecture the weights were trained
three times with different random initialisations, after which the best result was
selected according to the performance on the validation set. (Note that the val-
idation examples were taken, too, from games played between 1996 and 2002.)

We tested the various linear and non-linear architectures on all positions from
the labelled test games. Results for Pwinner and Pscore are presented in Table 4,
and the confusion matrices are shown in Table 5. The enhanced representation,
which uses predictions of life and death, clearly performs much better than the
simple representation. We further see that the performance tends to improve
with increasing size of the ROI. (A ROI of size 24, 40, and 60 corresponds to the
number of intersections within a Manhattan distance of 3, 4, and 5 respectively,
excluding the centre point which is always empty.)

It is interesting to see that the non-linear architectures are not much better
than the linear architectures. This seems to indicate that, once life and death
has been established, influence spreads mostly linearly.

Table 4. Performance of the trainable methods

Architecture Representation ROI Pwinner (%) Pscore (points)

linear simple 24 64.0 17.9
linear simple 40 64.5 18.4
linear simple 60 64.6 19.0
non-linear simple 24 63.1 18.2
non-linear simple 40 64.5 18.3
non-linear simple 60 65.1 18.3
linear enhanced 24 75.0 13.4
linear enhanced 40 75.2 13.3
linear enhanced 60 75.1 13.4
non-linear enhanced 24 75.2 13.2
non-linear enhanced 40 75.5 12.9
non-linear enhanced 60 75.5 12.5
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Table 5. Confusion matrices of trainable methods

B W E

PB 40.5 13.6 0.08

PW 6.7 33.8 0.05

PE 2.3 2.9 0.01
Simple, linear, roi=24

B W E

PB 41.5 14.2 0.08

PW 5.8 33.2 0.05

PE 2.1 2.9 0.01
Simple, linear, roi=40

B W E

PB 42.0 14.6 0.08

PW 5.3 32.6 0.04

PE 2.2 3.1 0.01
Simple, linear, roi=60

B W E

PB 40.5 13.6 0.07

PW 6.4 33.3 0.05

PE 2.6 3.5 0.02
Simple, non-linear,

roi=24

B W E

PB 41.4 14.0 0.08

PW 5.8 33.0 0.04

PE 2.4 3.3 0.02
Simple, non-linear,

roi=40

B W E

PB 41.8 14.2 0.0759

PW 5.5 33.0 0.04

PE 2.2 3.2 0.01
Simple, non-linear,

roi=60

B W E

PB 40.5 11.7 0.06

PW 7.0 36.4 0.07

PE 2.0 2.3 0.01
Enhanced, linear, roi=24

B W E

PB 40.6 11.6 0.06

PW 6.8 36.3 0.07

PE 2.1 2.5 0.01
Enhanced, linear, roi=40

B W E

PB 40.6 11.6 0.06

PW 6.6 36.2 0.07

PE 2.2 2.6 0.01
Enhanced, linear, roi=60

B W E

PB 40.3 11.4 0.06

PW 6.8 36.2 0.06

PE 2.4 2.7 0.01
Enhanced, non-linear,

roi=24

B W E

PB 40.4 11.3 0.06

PW 6.8 36.4 0.06

PE 2.4 2.7 0.01
Enhanced, non-linear,

roi=40

B W E

PB 40.2 10.9 0.06

PW 6.8 36.6 0.07

PE 2.5 2.9 0.01
Enhanced, non-linear,

roi=60

6.3 Comparing Different Levels of Confidence

The MLPs are trained to predict positive values for black territory and negative
values for white territory. Small values close to zero indicate that intersections
are undecided and by adjusting the size of the window around zero, in which
we predict empty, we can modify the confidence level of the non-empty clas-
sifications. If we do this we can plot a trade-off curve which shows how the
performance increases at the cost of rejecting undecided intersections.

In Figure 1 two such trade-off curves are shown for the simple MLP and the
enhanced MLP, both non-linear with a ROI of size 60. For comparison, results for
the various direct methods are also plotted. It is shown that the MLPs perform
well at all levels of confidence. Moreover, it is interesting to see that at high
confidence levels Bouzy(5,21) performs nearly as good as the MLPs.

Although Bouzy’s methods and the influence methods provide numerical re-
sults, which could be used to plot trade-off curves, too, we did not do this because
they would make the plot less readable. Moreover, for Bouzy’s methods the lines
would be quite short and uninteresting because they already start high.

6.4 Performance over the Game

In the previous subsections we looked at the average performance over complete
games. Although this is interesting, it does not tell us how the performance
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Fig. 1. Performance at different levels of confidence

changes as the game develops. Below we consider the performance changes and
the adequacy of the MLP performance.

Since all games do not have equal length, there are two principal ways of look-
ing at the performance. First, we can look forward from the start, and second,
we can look backward from the end. The results for Pwinner are shown in Figure
2a looking forward from the start and in Figure 2b looking backward from the
end. We remark that the plotted points are between moves and their associ-
ated performance is the average obtained for the two directly adjacent positions
(where one position has Black to move and the other has White to move). This
was done to filter out some distracting odd-even effects caused by the alternation
of the player to move. It is shown that the MLP using the enhanced represen-
tation performs best. However, close to the end Bouzy’s method extended with
distance-based control and predictions of life and death performs nearly as good.
The results for Pscore are shown in Figure 2c looking forward from the start and
in Figure 2d looking backward from the end. Also here we see that the MLP
using the enhanced representation performs best.

For clarity of presentation we did not plot the performance of DBC, which is
rather similar to Influence-based control (IBC) (but over-all slightly worse). For
the same reason we did not plot the results for DBC and IBC with knowledge
of life and death, which perform quite similar to Bouzy(5,21)+DBC+L&D.

It is interesting to observe how good the simple MLP performs. It outperforms
all direct methods without using life and death. Here it should be noted that the
adequate performance of the simple MLP could still be improved considerably, if
it would be allowed to make predictions for occupied intersections too, i.e., remove
dead stones. (This was not done for a fair comparison with the direct methods.)
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Fig. 2. Performance over the game

7 Conclusion and Future Research

We have investigated several direct and trainable methods for estimating po-
tential territory in the game of Go. We tested the performance of the direct
methods, known from the literature, which do not require an explicit notion of
life and death. Additionally, two enhancements for adding knowledge of life and
death and an extension of Bouzy’s method were presented. From the experiments
we may conclude that without explicit knowledge of life and death the best di-
rect method is Bouzy’s method extended with distance-based control to divide
the remaining empty intersections. If information about life and death is used
to remove dead stones this method also performs well. However, the difference
with distance-based and influence-based control becomes small.

Moreover, we presented new trainable methods for estimating potential ter-
ritory. They can be used as an extension of our system for predicting life and
death. Using only the simple representation our trainable methods can estimate
potential territory at a level outperforming the best direct methods. Experiments
showed that all methods are greatly improved by adding knowledge of life and
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death, which leads us to conclude that good predictions of life and death are the
most important ingredients for an adequate full-board evaluation function.

Future Research

Although our system for predicting life and death already performs quite well,
we believe that it can still be improved significantly. The most important reason
is that we only use static features, which do not require search. Incorporating
features from specialised life-and-death searches should improve predictions of
life and death as well as estimations of potential territory.

Previous work on learning to score final positions [23] indicated that our sys-
tem for predicting life and death scales up well to the 19×19 board. Although we
expect similar results for estimating potential territory, additional experiments
should be performed to validate this claim.

In this paper we estimated potential territory based on knowledge extracted
from game records. An interesting alternative for acquiring such knowledge may
be obtaining it by simulation using, e.g., Monte Carlo methods [6].
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