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Abstract. We present several new results on the impartial two-person
game Kayles. The original version is played on a row of pins (“kayles”).
We investigate variants of the game played on graphs. We solve a pre-
viously stated open problem in proving that determining the value of a
game position needs only polynomial time in a star of bounded degree,
and therefore finding the winning move - if one exists - can be done in
linear time based on the data calculated before.

1 Introduction

Studying combinatorial games may show new interesting algorithmic challenges
and may lead to precise problems in complexity theory. Games as models for a
diverse set of practical problems attract researchers in mathematics and com-
puter science. Combinatorial games are intrinsically beautiful with interesting
features and a theory whose study also provides entertainment on its own.

Many relations between graph theory and combinatorial game theory exist.
Like many other games that are being played on graphs, the versions of Kayles
we are going to investigate are played on graphs too.

Kayles is a combinatorial game played by two persons who move alternately.
Both players can make any move for all game positions. Therefore the game is
impartial. On the contrary for example chess is partizan: White can only move
white pieces, and Black can only move black pieces. All information about a
position is known to both players at any time. There are no chance moves, i.e.,
no randomization generated by a dice for example is involved.

When playing Kayles on a graph choosing one vertex will remove this vertex
and all its neighbors from the graph. Thus the game played on a finite graph
is obviously of bounded play. In every move at least one vertex will be taken
(this might disconnect the graph in several components), and therefore the game
must terminate in time linear in the size of the initial position.
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We only consider games of normal type, which means a player loses if he1 is
unable to make a move, opposed to the misere version where the last player to
move loses.

All these features of the game make it possible to analyze it with the Sprague-
Grundy theory [5,1]. Grundy has shown that there exists a function G : P → Z
from the set of possible game positions P into the set of integers Z with the
following properties.

For any terminal position P we have G(P ) = 0. For any other position P ,
G(P ) can always be calculated (inductively, starting from the terminal positions).
Hereby a position P will take as its value the smallest non-negative integer,
called the minimal excluded value (mex), different from all values of G(Qi),
where position Qi can be reached from position P by one single move.

The value of a disjunctive combination of games is the Nim-sum of the values
of the components. The Nim-sum is obtained as the sum of the binary represen-
tations of the values added together using the XOR (eXclusive OR) operation,
denoted by the commonly used symbol ⊕.

If G(P ) is a positive integer, then the game position P can be won by the first
player; otherwise the second player can win.

This paper is organized as follows. In Section 2, we give background informa-
tion to the game we are analyzing. Also different variants will be mentioned. In
Section 3, we describe an algorithm how to find a winning move, and show that
it always can be found in polynomial time. Determining that there is no winning
move in a particular position can be done in polynomial time, too. In Section 4
and Section 5, we present how differences in the underlying sequences affect the
sequences of the star game. We close with conclusions and some open problems
in Section 6.

2 Background

Below we provide some history on Kayels (2.1) and discuss Kayles on Graphs
(2.2).

2.1 History of Kayles

The game Kayles was introduced by Dudeney and independently also by Sam
Loyd, who originally called it ’Rip Van Winkle’s Game’. It was supposed to
be played by skillful players who could either knock down exactly one or two
adjacent pins (“kayles”) out of a row of pins [3].

We could also think of starting with one heap (or several heaps) of beans,
and give the following description of the rules. Each player, when it is his turn
to move, may take 1 or 2 beans from a heap, and, if he likes, split what is left
of that heap into two smaller heaps [1]. This game is well studied and the value
of every game position can be determined in constant time [1].

1 In this contribution ’he’ is used when both ’he’ and ’she’ are possible.
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2.2 Kayles on Graphs

Node-Kayles, a variant of the original Kayles, is played on a graph G = (V, E)
with n nodes in the node set V and m edges in the edge set E.

In this paper we will mainly consider the variant in which a move consists of
selecting a node v and thereafter removing it and all its neighbors N(v) from
the graph. In case of a directed graph, only those vertices w ∈ V will be called
neighbors that can be reached using a directed edge e = (v, w) from node v
to node w. In addition, we will look at a variant that is closer to the original
Kayles: either one single node or a node together with an arbitrary neighbor can
be taken away.

For all variants of Kayles considered we will only investigate normal play,
i.e., the first player unable to move loses. Schaefer proved that the problem
to determine which player has a winning strategy for Node-Kayles played on
arbitrary graphs is PSPACE-complete [7]. Bodlaender and Kratsch investigated
the game on special classes of graphs, which include graphs with a bounded
asteroidal number, cocomparability graphs, circular arc graphs, and cographs,
and showed that the problem is polynomial time solvable in these cases [2].

In this paper we will describe how to find the value of a game position in
polynomial time for stars. This solves an open problem in [2]. A star is an
acyclic connected graph with one distinguished node, the center of the star. The
center may have any degree ∆, all other nodes have degree at most 2, i.e., they
lie on paths emanating from the center, so-called rays.

We will denote a star of degree ∆ by Sl1,l2,...,l∆ , where the li are natural
numbers and stand for the length of ray i. Naturally rays of zero-length can
be neglected. A degenerated star consisting of only one vertex has degree 0.
Degenerated stars of degree one or two form a simple path only. In case of
degree one the path length is l1 + 1; for the degree-two case we have a path of
length l1 + l2 + 1.

Kano considered stars where rays always have length 1 [6]. Furthermore in
his game not vertices will be removed but any number of edges whereby these
edges must belong to the same star. Kano gave some results on double-stars and
on forks. A double-star is a graph obtained from two stars by joining their two
centers by a new edge, and a fork is defined to be a graph which is obtained from
a star and a path by joining the center of the star to one of the end vertices of
the path by a new edge.

Node-Kayles has the same characteristics as Dawson’s Chess where two pha-
lanxes of Pawns are facing each other just one row apart. The Pawns step forward
and capture diagonally as usual in chess. But capture is obligatory so queening
is not possible. The winner is the last player to move. (In the original version by
Dawson the last player to move loses [1].)

Both games have the same octal encoding .137. Octal encoding is used to
describe different variants of take-and-break games, see Table 1 [5,1]. In that
sense, .137 means: one single vertex can only be removed if it has no outgoing
edges (anymore). Two vertices can only be removed if they form one connected
component or if after their removal the remaining part of that connected com-
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Table 1. Interpretation of Code Digits

Value of Condition for removal of k beans
digit dk from a single heap.

0 Not permitted.
1 If the beans removed are the whole heap.
2 Only if some beans remain and are left as a single heap.
3 As 1 or 2.
4 Only if some beans remain and are left as exactly two non-empty heaps.
5 As 1 or 4 (i.e., not 2).
6 As 2 or 4 (i.e., not 1).
7 Always permitted (i.e., 1 or 2 or 4).

ponent is still connected. For three vertices we have more possibilities. We are
allowed to remove them if the remaining vertices are left in at most two con-
nected components.

The Grundy values for Node-Kayles have the periodicity 34.
The 34 values for n ≡ 0, 1, 2, . . . , 33 (mod 34) are
(8, 1, 1, 2, 0, 3, 1, 1, 0, 3, 3, 2, 2, 4, 4, 5, 5, 9, 3, 3, 0, 1, 1, 3, 0, 2, 1, 1, 0, 4, 5, 3, 7, 4),
with the following seven exceptions.

• G(n) = 0 when n = 0, 14, 34;
• G(n) = 2 when n = 16, 17, 31, 51.

3 A Step into the No Man’s Land

Fraenkel mentioned that there lies a huge no man’s land between the polynomial
time 0.137 and the PSPACE-hard Node-Kayles [4]. To explore a part of that no
man’s land we take a look at the stars first. Node-Kayles played on stars will be
called Star-Kayles for short.

We can characterize the possible moves in Star-Kayles as follows.

1. Choosing the center vertex of the star will remove ∆ + 1 vertices, and split
the star in up to ∆ simple paths. It seems difficult to denote this game in
the octal notation, or any other analogous polynomial notation.

2. Removing a vertex adjacent to the star center will split the star into either
∆ − 1 or ∆ simple paths. Thereby either three or only two vertices will be
removed (if the corresponding ray had only length 1).

3. Choosing the second next vertex to the center of a ray will leave a star of
degree ∆ − 1 and (a possibly empty) simple path.

4. For any other vertex we will get a star of the same degree with one ray
shortened accordingly to the position of the chosen vertex as well as a simple
path (possibly empty again).

As the smallest representative for non-degenerated stars we choose stars of
degree 3. This saves time and space for computations, but the following argu-
ments can easily be extended to higher degrees. Sl1,l2,l3 denotes a star with rays
of length l1, l2, and l3, respectively.
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3.1 A Star s Born

Let us begin with the simplest star. The center appears first and then three rays
will be sent out from the center. First we want to find the Grundy values for the
class of stars Sl1,1,1.

For l1 = 1 the whole star can be removed in one move by choosing the center
vertex (case (1) above). Therefore this situation is a winning position for the first
player. Choosing any other of the vertices (2) will always have the same outcome,
namely two single vertices. Adding up their values will of course result in a zero-
game. No other configuration can be achieved and therefore G(S1,1,1) = 1.

For l1 = 2 we have more possibilities:
Removing the center vertex (1) will leave one single vertex, Grundy value 1.
Choosing the vertex of ray r2 or r3 (2) will leave a simple path of length 2 and
a single vertex. Adding up these two components will result in a zero-game.
We will also get the value 0 when choosing the first vertex of r1 (2), because
only two single vertices remain.
The last choice (3) will remove ray r1 completely, and therefore leave a degen-
erated star behind with one center vertex and two rays of length 1 each. This is
actually a simple path of length 3. Its Grundy value is 2.
Now we can determine the mex of these values, which is 3.

We will continue to determine the Grundy values of the stars Sl1,1,1 in this
way. Since the first move on a larger star may split it into a smaller one, it is
best to compute the Grundy values iteratively for increasing values of l1.

We analyze all four cases of star-decompositions mentioned above occurring for
the stars Sl1,1,1.

1. Removing the center will just leave a simple path of length l1 − 1, whose
value is G(l1 − 1).

2. Choosing the first vertex of one of the rays r2 or r3 leaves a simple path of
length l1 and a single vertex. The value of this position is G(l1) ⊕ G(1) =
G(l1) ⊕ 1.
Choosing the first vertex of r1 leaves two single vertices and a simple path of
length l1−2, i.e., a position of value G(l1−2)⊕G(1)⊕G(1) = G(l1−2)⊕0 =
G(l1 − 2).
To include into this more general description the case S1,1,1 we assume that
G(k) = 0 for k ≤ 0.

3. Choosing the second vertex of ray r1 leaves two simple paths with length
l1 − 3 and 3 with value G(l1 − 3) ⊕ G(3) = G(l1 − 3) ⊕ 2.

4. When choosing the very last vertex of ray r1 we get a position of value
G(Sl1−2,1,1). For all other vertices (along r1) the set of all possible values is

l1−1⋃

i=2

(G(Sl1−i,1,1) ⊕ G(i − 3)).

To write all possible cases in a more compact way let us define the Grundy values
for stars with non-positive length of ray r1:

I
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• G(S0,1,1) = G(3) = 2;
• G(S−1,1,1) = G(1) ⊕ G(1) = 0;
• G(S−2,1,1) = G(0) ⊕ G(0) = 0.

Removing the vertex of one of the rays r2 or r3 (case 2) leads to a game value
of G(l1)⊕ 1 (actually it could also be denoted by G(Sl1,−1,1)). In all other cases,
we get game value

l1+1⋃

i=1

(G(l1 − i) ⊕ G(Si−3,1,1)).

Next we prove that the class of stars Sl1,1,1 is ultimately periodic. The proof is
very similar to the proof of the ultimate periodicity of the game 0.137 itself given
in [1]. The fundamental idea is that the calculations of Nim-sequences is made
easier by using a Grundy scale. Figure 1 shows such a scale being used for the
computations of our star classes (a more detailed description follows below.) In
general, successive values are written on squared paper and the arrowed entry is
computed as the mex of all (or sometimes some accordingly to the game chosen)
preceding entries. Then the scale is moved on one place. A very nice tool to do
calculations of such kind (and many more) is the Combinatorial Game Suite by
Aaron Siegel [8].

In our case we can also use Grundy scales. However, on the first scale we
only write the Grundy values for 0.137. We can do this for a few numbers at
the beginning first, and then just append more if needed. We fix this scale on
the table. Our second scale will carry the Grundy values for our stars in reverse
order. It will be shifted step by step to the right. The Grundy value for the
star we are calculating will always be written into the first empty cell to the
left of the already computed values. For an illustration see Figure 1. The arrow
indicates the next value to be determined.

With this picture in mind we can easily transfer the proof given for 0.137 to
our class of stars. We keep on calculating game values until two complete periods
p lie between the last irregularity of 0.137, which is already known to be i1 = 51,

0 1 1 2 0

01234

G(Sl1,1,1)100213

⊕⊕⊕⊕
G(l1)

−1

−1 −2 l1

⊕
0

43210l1

Fig. 1. Calculating G(Sl1,1,1) in Star-Kayles
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and the last observed irregularity of our star class, which we call i2. As at most
three nodes can be cut out of a ray we calculate t = 3 additional values. So the
last value that needs to be computed to verify that the period persists is

G(i1 + i2 + 2p + t).

This gives the following ultimately periodic sequence for
l1 ≡ 0, 1, 2, . . . , 33 (mod 34): (2, 9, 3, 15, 14, 1, 9, 4, 4, 14, 5, 13, 4, 0, 8, 1, 2, 4,
8, 5, 13, 2, 4, 8, 5, 9, 4, 12, 8, 6, 9, 9, 0, 8); Table 2 shows the first 374 game
values of that class; S310,1,1 is the last irregular value.

Table 2. Game values for the star class Sl1,1,1. (A table entry gives the game value
for l1 = row-header + column-header.).

l1 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33

0 1 3 0 0 1 1 4 0 5 1 1 0 0 3 1 2 0 0 1 2 2 3 3 5 2 4 3 3 2 2 1 0 0 2
34 1 3 0 0 1 7 4 4 6 5 7 0 0 3 1 2 0 0 1 2 2 4 3 5 6 4 7 3 6 2 1 0 0 2
68 1 3 0 8 1 9 4 2 8 5 9 4 0 3 1 2 0 0 1 2 2 4 8 5 6 4 7 8 6 9 1 0 0 2
102 1 3 0 8 1 9 4 4 8 5 9 4 0 8 1 2 0 0 1 2 2 4 8 5 9 4 12 8 6 9 9 0 0 2
136 1 3 0 8 1 9 4 4 14 5 13 4 0 8 1 2 0 0 1 2 2 4 8 5 9 4 12 8 6 9 9 0 0 2
170 1 3 0 8 1 9 4 4 14 5 13 4 0 8 1 2 4 0 1 2 2 4 8 5 9 4 12 8 6 9 9 0 8 2
204 9 3 0 8 1 9 4 4 14 5 13 4 0 8 1 2 4 0 1 2 2 4 8 5 9 4 12 8 6 9 9 0 8 2
238 9 3 0 8 1 9 4 4 14 5 13 4 0 8 1 2 4 0 1 2 2 4 8 5 9 4 12 8 6 9 9 0 8 2
272 9 3 0 8 1 9 4 4 14 5 13 4 0 8 1 2 4 0 5 2 2 4 8 5 9 4 12 8 6 9 9 0 8 2
306 9 3 15 8 1 9 4 4 14 5 13 4 0 8 1 2 4 8 5 13 2 4 8 5 9 4 12 8 6 9 9 0 8 2
340 9 3 15 14 1 9 4 4 14 5 13 4 0 8 1 2 4 8 5 13 2 4 8 5 9 4 12 8 6 9 9 0 8 2

3.2 The Magic Number of the Game .137 s 34

When we just gave the proof of the ultimate periodicity of the class Sl1,1,1 we
did this with the implicit understanding that Star-Kayles has the same period
as the basic game. This is indeed the fact and not too surprising as the only
difference in this variant to the original game occurs in splitting the star by
either removing the center or one of its neighbors. All other moves only break
rays which is similar to breaking a row in the original game.

3.3 Dynamic Programming and Memoization

Having calculated all values of the class Sl1,1,1 as far as necessary we take a look
at the class Sl1,2,1. The only difference is that we need to include two further
values before we can determine the mex of the set, G(l1 +1+1) and G(l1)⊕G(2).
These positions arise from either removing the second vertex of r2 or the first
and only vertex of r3. Furthermore, choosing the center vertex will now leave a
game position consisting of two simple paths with value G(l1 − 1) ⊕ G(1).

The situation becomes different when we start to examine Sl1,3,1. For the
first time we need to consider values of stars that do not lie in the same class.
Choosing the last vertex of r2 will leave us with a star of the class Sl1,1,1. Here

I
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memoization comes into play. Having stored all the values of our former compu-
tations we simply look up the desired value.

To show which former values are needed to calculate the value of any star
Sl1,l2,l3 we shall generalize the star decomposition.

1. Choose the center vertex:
G(l1 − 1) ⊕ G(l2 − 1) ⊕ G(l3 − 1).

2. Choose the first vertex of any ray:
For each i ∈ {1, 2, 3}, and i �= j �= k �= i ∈ {1, 2, 3}
G(li − 2) ⊕ G(lj) ⊕ G(lk).

3. Choose the second vertex of any ray:
For each i ∈ {1, 2, 3}, and i �= j �= k �= i ∈ {1, 2, 3}
G(li − 3) ⊕ G(lj + lk + 1).

4. Choose any other vertex:
For each i ∈ {1, 2, 3}, and i �= j �= k �= i ∈ {1, 2, 3}
li+1⋃

l=4

(G(li − l) ⊕ G(Sl−3,lj ,lk)).

After defining

• G(S0,l2,l3) = G(l2 + l3 + 1) = 2,
• G(S−1,l2,l3) = G(l2) ⊕ G(l3), and
• G(S−2,l2,l3) = G(l2 − 1) ⊕ G(l3 − 1),

we can again state a more compact formula for (1) – (4):

For each i ∈ {1, 2, 3}, and i �= j �= k �= i ∈ {1, 2, 3}
li+1⋃

l=2

(G(li − l)⊕G(Sl−3,lj ,lk)).

We remark that the term for case (1) will appear three times in the above union
of all values. Taking the mex of the union of all those sets will give us the game
value G(Sl1,l2,l3) for any star Sl1,l2,l3 . Based on this approach we can use dynamic
programming to find the Grundy value of any star. Given that the values of all
stars smaller than the considered star have already been calculated it takes only
O(n) time to find its value, whereby n is the size of the star.

Observation
While using memoization we only need to store the values of stars Sl1,l2,...,l∆ ,
where l1 ≥ l2 ≥ . . . ≥ l∆. This comes from the fact that we are only interested
in the combinatorial structure of the graph, and therefore all permutations of
rays are isomorphic in our viewpoint.

3.4 Leaving the Orbit

While looking at all the data and comparing ultimately periodic sequences of
different star classes we first thought that there might be one last exceptional
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star, after which all other stars can be evaluated by looking at ultimately periodic
sequences. However, we had to realize that we could not find that last irregularity.
Instead, we observed a constant growth of the last irregular value with the growth
of the ray lengths. Therefore we will now investigate the relation between the
last irregular value and the ray lengths of the stars.
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Fig. 2. Last irregular values of the star class Sl1,l2,1

As an example we look at all classes with a fixed ray length l3 = 1 and
arbitrary ray length for r1 and r2 (see Figure 2). The diagram shows all last
irregular values (vertical axis) of the sequences as a function of the length l2 of
the second ray (horizontal axis). A detailed look at all values is not necessary. The
aim is to point out that nearly all of these classes become ultimately periodic,
while for a few classes the last irregularity will not stop to grow.

All star classes can be grouped in 34 equivalence classes by taking the modulo
of the ray length l2. Table 3 shows all ultimately periodic sequences of star classes
with the third ray fixed to length 1, and the second ray has length 1 (mod 34).
For greater values of l2 there is no change anymore in the ultimately periodic
sequence.

Most of these equivalences actually become ultimately periodic. However,
the star classes Sl1,l2,1 with l2 ≡ 7, 15, 18, 27, 29, 32 (mod 34) do not show this
behavior. Instead, the last irregularity will grow with the length l2 of the second
ray (as depicted in Figure 2). To give an explanation we prove an easy lemma
first.
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Table 3. Ultimately periodic sequences of star classes for l3 = 1 and l2 ≡ 1 (mod 34)

l2 ultimately periodic sequence

1 9 3 15 14 1 9 4 4 14 5 13 4 0 8 1 2 4 8 5 13 2 4 8 5 9 4 12 8 6 9 9 0 8 2
35 1 14 0 11 18 1 9 0 17 14 14 19 4 18 6 2 15 0 8 18 2 16 3 21 1 24 23 3 13 2 10 19 0 18
69 1 14 0 8 1 1 10 0 24 14 26 23 0 3 1 2 20 0 22 2 2 3 3 16 25 17 27 3 28 2 1 0 0 23
103 1 14 0 11 1 1 31 0 25 10 28 23 0 25 1 2 24 0 18 2 2 3 3 32 1 23 27 3 21 6 14 0 0 18
137 1 33 0 27 32 1 33 0 24 40 33 33 0 18 1 2 21 0 32 2 2 3 3 32 1 23 33 3 15 6 30 0 0 23
171 1 40 0 36 39 1 40 0 36 37 33 34 0 35 1 2 38 0 32 2 2 3 3 36 1 34 38 3 15 6 33 0 0 29
205 1 40 0 34 18 1 35 0 25 10 28 40 0 34 1 2 24 0 18 2 2 3 3 40 1 24 23 3 26 6 14 0 0 25
239 1 37 0 36 41 1 42 0 25 10 28 44 0 35 1 2 20 16 47 2 2 3 3 21 1 28 23 3 17 6 14 0 0 43
273 1 36 0 47 41 1 42 0 25 10 28 47 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
307 1 35 0 34 41 1 35 0 25 10 28 44 0 34 1 2 20 16 48 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
341 1 35 0 34 47 1 35 0 25 10 28 48 0 34 1 2 20 16 49 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
375 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
409 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
443 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
477 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
511 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
545 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34
579 1 35 0 34 47 1 35 0 25 10 28 28 0 34 1 2 20 16 46 2 2 3 3 21 1 28 23 3 17 6 14 0 0 34

Lemma 1. Let l2 and l3 be fixed lengths of rays r2 and r3, and w. l. o. g. l2 ≥
l3. For all l2 greater than all last irregularities of all classes involved in the
calculation of the Grundy-values of stars with ray r1 of length i from 1 up to
l2 − 1 we get G(Si,l2,l3) = G(Si,l2+34,l3).

Proof. The values G(Si,l2,l3) and G(Si,l2+34,l3) for all i = 1, . . . , l2 − 1 will be
looked up as G(Sl2,i,l3) and G(Sl2+34,i,l3). As l2 is greater than the last irregu-
larity of this class and this class also has period 34 these two values must be
equal. �	

We observe that after passing this last irregularity the sequence will also be-
come ultimately periodic. But for special classes the last irregularity keeps on
growing with the lengths of the rays. Therefore we can never find an ultimate,
huge star whose sequence builds the ultimately periodic sequence for the se-
quences of earlier stars. Furthermore, our calculations show that the classes that
reveal the feature of a growing last exception are not the same for different val-
ues of l3; not even values for values of l3 that lie in the same equivalence class
modulo 34.

3.5 The Milky Way

As we have seen so far, we can calculate the value of a single star using mem-
oization in polynomial time. As already mentioned in the introduction, a game
position composed by a disjunctive combination of several components can be
evaluated as the Nim-sum of them. Therefore a game position consisting of many
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stars is simply the Nim-sum of the Grundy values of all these stars. Hence, com-
puting the value of a game position of several stars needs time polynomial in
their sizes. If the value of the position is zero, then there is no wining move.
For any positive value we know that there exists a winning move. Every star
exhibits only a linear number of decompositions. Therefore, the actual winning
move can be found in linear time after the values of the decompositions have
been calculated.

4 If the World Were Regular

In this section, we try to find out why Node-Kayles exhibits irregularities in its
periodicity of 34, whether this is just an artifact from the underlying Kayles
or whether there are also other reasons. To this purpose, let us assume in this
section that Kayles was periodic without any irregularities. Then, how would
Star-Kayles behave?

If we repeat the same investigations as before, the sequences of the star classes
are looking quite regular. As an example we give Table 4, which shows all dif-
ferent ultimately periodic sequences of star classes with the third ray fixed to
length 1, and the second ray has length 1 (mod 34).

Table 4. Ultimately periodic sequences of star classes for l3 = 1 and l2 ≡ 1 (mod 34)
based on a regular sequence

l2 ultimately periodic sequence

1 9 3 8 8 1 9 4 2 8 5 9 4 0 3 1 2 4 8 5 10 2 3 3 5 5 4 4 8 2 2 9 0 8 2
35 1 16 0 0 1 1 16 0 8 9 1 10 0 3 12 2 0 0 11 2 10 14 3 12 2 9 10 3 2 17 1 0 0 2
69 1 17 0 0 1 1 10 0 16 9 1 18 0 3 16 2 0 0 13 2 22 3 3 19 2 9 24 3 2 2 1 0 0 2
103 1 17 0 0 1 1 32 0 21 9 1 20 0 3 16 2 0 0 13 2 10 3 3 31 2 32 28 3 2 2 1 0 0 2
137 1 17 0 0 1 1 32 0 34 9 1 20 0 3 16 2 0 0 13 2 10 3 3 26 2 17 28 3 2 2 1 0 0 2

Already for l2 = 137 the ultimately periodic sequence has reached the point
where it will not change anymore; for all greater values of l2 with l2 ≡ 1 (mod 34)
we get the same ultimately periodic sequence. The same holds for all other
equivalence classes of l2(mod 34). However, the considerations above were only
for a fixed length 1 of the third ray.

To build a basis for all games on degree-3 stars we need to look at different
lengths of r3 as well. From 2 to 20 we get the same regular behavior. But then
the unexpected happens: if l3 = 21, then there is an irregular value in the class
l2 ≡ 22 (mod 34) which is growing with increasing length l2. There is one very
remarkable point about this: those stars have their last irregular value when l1
is equal to l2.

5 Back to the Roots

After observing the stars in the sky for a while we start to feel the infinity of
the universe: the last irregular value will move farther and farther away as the
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Table 5. Changes in the length of the period of sequences of star classes for l3 = 1.
(A table entry gives the period multiplier for l2 = row-header + column-header.).

l2 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 14
24 1 1 1 1 1 1 1 1 1 1 1 1
36 14 1 14 1 1 1 14 14 1 14 1 1
48 1 5 1 1 1 1 5 5 1 10 14 1
60 1 10 1 1 14 1 10 1 1 10 10 1
72 5 1 1 1 10 1 1 1 10 1 1 10
84 14 1 1 1 1 1 1 5 1 14 1 1
96 1 1 1 70 10 1 1 5 1 5 1 10
108 10 1 10 1 70 1 10 1 1 1 14 1
120 1 1 14 1 1 5 1 1 70 70 70 5
132 1 1 1 1 14 10 1 1 5 70 1 1
144 1 1 1 1 70 10 10 1 1 70 70 10
156 10 1 1 70 1 14 10 1 70 70 70 1
168 10 1 1 70 70 10 10 1 70 70 70 10
180 10 1 1 14 14 10 10 1 70 70 70 1
192 1 1 1 14 1 10 1 1 14 70 14 1
204 10 70 1 14 1 10 1 1 70 70 14 1
216 1 70 1 14 70 10 1 1 70 70 70 1
228 1 70 1 70 1 1 1 1 14 70 14 1
240 1 70 1 14 1 1 1 1 70 70 14 1
252 1 1 1 14 1 1 1 1 14 70 14 1
264 1 1 1 14 1 1 1 1 14 70 14 1
276 1 1 1 14 1 1 1 1 14 70 70 1
288 1 1 1 14 1 1 1 1 14 70 70 1
300 1 1 1 14 1 1 1 1 14 70 14 1
312 1 1 1 14 1 1 1 1 14 70 14 1
324 1 1 1 14 1 1 1 1 14 70 14 1

rays of the stars get longer and longer. This makes us think whether we should
come back to earth to take a look at the roots: Pin-Kayles.

In Pin-Kayles a player can knock out one or two adjacent pins only. Thereby
the remaining pins might also be split into several groups. In the original game
we have only one row of pins, and therefore at most two groups emerge, but in
our star-shaped setting we can get up to d groups if we remove the center pin.

The Grundy values for Pin-Kayles have the periodicity 12, and show the
following sequence for n ≡ 0, 1, 2, . . . , 11 (mod 12): (4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7),
with the following 14 exceptions.

• G(n) = 0 when n = 0;
• G(n) = 3 when n = 3, 6, 18, 39;
• G(n) = 4 when n = 9, 21, 57;
• G(n) = 5 when n = 28;
• G(n) = 6 when n = 11, 22, 34, 70;
• G(n) = 7 when n = 15.
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5.1 An Alteration Spell

The magic number of Pin-Kayles is 12, but as we start to play the game on stars
we quickly encounter a class of stars that shows a different period. Stars with
l2 = 24 and l3 = 1 have a 14-times lengthened period. Every 168 numbers we will
get exactly the same numbers again. Only one out of the original 12 positions
causes this new period. The next candidate that shows the same behavior and
same period has a ray length of l2 = 37. Here, two different positions display
irregularities. Three further multipliers of 12 can be found which are 5, 10, and
70.

Table 5 lists the changes in periods as multipliers of 12 for an increasing ray
length l2 and a fixed ray length l3 = 1. The last three rows show the same
pattern, and also later rows do not present any changes anymore.

In contrast to the other two Node-Kayles versions we could not find yet a
class that does not stop shifting the position of its last irregular value.

Another fact seems notable. The last irregular value of the underlying Pin-
Kayles sequence appears at position 70. This coincides with the greatest multi-
plier of the period we have found so far.

6 The Forest Lies Ahead

We have shown that the problem of determining game values for stars can be
done in polynomial time using dynamic programming and memoization. We
have seen that Node-Kayles played on stars cannot lead to an ultimate periodic
sequence that can be used to describe all stars bigger than a certain size. Instead
we presented star classes whose last irregular value will continue to move farther
and farther away with growing length of the rays.

Pin-Kayles played on stars seems more promising but further studies are nec-
essary to prove or disprove the existence of such an ultimate periodic sequence.

Our investigations have given a solution for stars, a special kind of trees. It
still remains an open problem to show how difficult it is to calculate a game
position for arbitrary trees. If one can compute this, solving the problem for a
forest is as simple as adding the Grundy values for the single trees together in
the usual manner.
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