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Abstract. We introduce a distinction, in single-agent problems, be-
tween transpositions that are due to permutations of commutative moves
and transpositions that are not. We show a simple modification of a
depth-first search algorithm which can detect the transpositions of the
first class without the use of a transposition table. It works by maintain-
ing, for each node, a list of moves that are known to lead to transposi-
tions. This algorithm is applied to two one-player games: a solitary card
game called Gaps, and a game called Morpion Solitaire. We analyze, for
each domain, how often transpositions are due to commutative moves. In
one variant of Gaps, the algorithm enables to search more efficiently with
a small transposition table. In Morpion Solitaire, a transposition table
is not even needed. The best known sequence for this game is proved
optimal for more than one hundred moves.

1 Introduction

In games, transpositions often arise because the same moves appear in two se-
quences but in different orders. For example, when two moves a and b are com-
mutative, the sequences (a, b) and (b, a) lead to the same position. This is not the
only possibility; for instance, if m and m ™" are inverse moves, then the sequence
(m, m~1!) leads to the same position as the null sequence.

We state that we do not need a transposition table to detect transpositions
of the first class. Instead, they can be detected by maintaining incrementally,
for each node of the game tree, a list of the moves that are known to lead to
transpositions.

We present an algorithm that implements this idea, called the incremental
transpositions algorithm. When a search is made with a small transposition
table, comparatively to the real size of the tree, this may result in a drastic
increase of the number of nodes searched. We show that our algorithm can help
attenuate this phenomenon.

The incremental transpositions algorithm is presented in Section 2. Section
3 presents its application to a solitary card game called Gaps; we analyze two
variants of this game. In Section 4, we introduce a game called Morpion Solitaire,
which is a perfect application domain since all transpositions can be detected
without a transposition table. Section 5 contains our conclusion.
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2 The Incremental Transpositions Algorithm

We present a modification of a depth-first search algorithm that recognizes all
transpositions that are due to permutations of commutative moves (in 2.1),
and we show that it is complete (in 2.2). Finally, we discuss the conditions for
applicability of the algorithm (in 2.3).

2.1 Algorithm

The main function of the algorithm is called dfs it (depth-first search, incre-
mental transposition). The function takes as argument a set of moves T' which
are known to lead to transpositions, that is to say positions that have already
been completely searched. The function is to be called at the root position with
T=10.

function dfs it(T) {
for each legal move m, m ¢ T,
T ={teT,tis legal after m, m is legal after ¢,
t and m are commutative};

do move(m);
dfs it(T");
undo move(m);
T=TU{m};

The set T" is built so that it is restricted to moves that will be legal after the
current move m; therefore, for all recursive calls to dfs it, the argument set T’
will be a subset of the set of legal moves. Consequently, this algorithm needs
only very little memory.

2.2 Proof of Completeness

We state that the incremental transpositions search

algorithm is complete. We have to show that, as-

suming the set T given as parameter to the func- m SOt

tion dfs it contains only moves which lead to po- N

sitions that have already been completely searched, p °

the same property holds for the recursive calls of N

dfs it on the child nodes. N
Let m be a move at the current node a and t € T, No

such that t is legal after m, m is legal if played d

after ¢, and the moves ¢ and m are commutative.

This means that we have the commutative diagram Fig. 1. Transposition

shown in Figure[ll At node a, we know that move ¢

leads to a node, ¢, that has already been completely searched. Therefore node d,

which can be reached from node b with move ¢, has also been completely searched.

Since node d can also be reached from node ¢ with move m, we conclude that

move t at node b leads to a transposition.
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2.3 Applicability of the Algorithm

The incremental transpositions algorithm is applicable whenever the game con-
tains commutative moves. It is therefore broadly applicable. However, since it
does not detect all transpositions, it should be viewed as a complement to a
transposition table rather than a substitution to it. This being said, the ques-
tion to assess is what can be gained from the algorithm.

First, what is the proportion of transpositions that are due to permutations
of commutative moves? This question is very domain-dependent. For example,
there are absolutely no commutative moves in the sliding-tile puzzle. In Rubik’s
cube, there are few commutative moves (only moves on opposite faces are com-
mutative), so the algorithm would not be very useful. The two domains that we
will study, Gaps and Morpion Solitaire, feature a large number of commutative
moves; in the second domain, we will show that all transpositions are due to
permutations of commutative moves. Moreover, we have also been able to apply
the algorithm with some success in Sokoban.

Secondly, the incremental transpositions algorithm is only interesting for large
searches, when a transposition table alone is not sufficient. In chess, experiments
by D. Breuker [I] show that a transposition table can detect most transpositions
even when the size of the transposition table is much less than the size of the
search space. One of his experiments shows that, for a search that would take
optimally about 100 x 10° nodes, the situation is already almost optimal with a
transposition table of size 1M positions, and we lose less than a factor two when
using a transposition table of size 8K. This situation, however, does not appear
to be general. Our experiments with Gaps will show that the number of nodes
searched explodes when the transposition table is smaller than the size of the
search space.

Finally, our algorithm only works for a depth-first search in one player games.
It would be difficult to apply it to two-player games, because it is not sufficient
to know that a move leads to a transposition, it is also necessary to know the
value of the position after the move. This value has to be stored in memory.

3 Gaps

In 3.1 and 3.2 we describe the rules of two variants (named basic and common of
the game called Gaps (sometimes also called Montana or Superpuzz). In 3.3 we
give examples of non-incremental transpositions for both variants. Subsequently,
in 3.4 we give experimental results of the incremental transpositions algorithm
for the basic variant. We compare three possibilities: transposition table alone,
incremental transpositions alone, and both at the same time.

3.1 Rules

We start describing the variant we call the basic variant. The game is played
with a 52-card deck. The cards are placed in 4 rows of 13 cards each. The 4 Aces
are removed, resulting in 4 gaps in the position; then they are placed in a new
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column at the left in a fixed order (e.g., 1 row Spade, 2" Heart, 3™ Diamond,
4™ Club). The goal is to create ordered sequences of the same suit, from Ace
to King, in each row. A move consists in moving a card to a gap, thus moving
the gap where that card was. A gap can be filled only with the successor of the
card on the left (that is, the card of the same colour and one higher in value),
provided that there is no gap on the left and that the card on the left is not a
King, in which case we can place no card in that gap. Figure [2 shows an initial
position with only 4 cards per suit, before and after moving the Aces, and the
possible moves.

40 3% 4% 40 1O A 3% Ak 4D
2O 40 20 28 10 2049 20 24
20 30 10 1& 14 24 3<>

36 10 30 14 1& 34V | 30 Hy

Fig.2. An initial position with 4x4 cards, before and after moving the Aces. This
position can be won.

We will be concerned with another variant of the game which we call the
common one, since it is the one most often played. In this variant, the Aces are
not placed in a column on the left of the first column but are definitely removed.
Instead, it is allowed to place any Two in a gap if it is on the first column. As
we will see, this rule is the cause of many transpositions that are not due to
permutations of moves.

3.2 Previous Work

T. Shintani has worked on a game he calls Superpuzz; it is actually another
name of Gaps, precisely what we call the common variant [6]. He has analyzed
the structure of the strongly connected components in the search graph. This
is complementary to our research in this paper since, as we will see, the moves
inside the strongly connected components are the cause of many transpositions
that are not due to permutations of moves.

In [2], the game is shown to be decomposable in relatively independent sub-
games, and the dependencies between them are analyzed. An algorithm called
blocks-search has been designed, which works by grouping several positions in one
block and making a search on the blocks rather than on the positions alone. As
a side effect (it was not the primary objective of the algorithm), it was observed
that blocks-search could detect more transpositions when the size of the search
space exceeds the size of the transposition table. The incremental transpositions
algorithm presented here is simpler; it does not perform a simplification of the
search space as blocks-search does, but it does a better job viz. by detecting the
transpositions. Up to now, attempts to combine both algorithms have not been
successful.
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3.3 Examples of Non-incremental Transpositions

Below we provide two examples of transpositions that are not due to permuta-
tions of moves. Although there are other possibilities, it gives a rough idea of
the structure of the transpositions in the two variants of Gaps.

The first example, shown in Figure Bl occurs in both variants. The sequences
m1, me and ms, my, my4 give the same position. It may be possible to make the
algorithm more efficient by adding a rule to detect automatically this pattern,
and thus increase the number of transpositions detected without a transposition
table.

The second example, shown in Figure[] (a), is specific to the common variant.
The position after moves m, and ms is the same as the position after move ms.
The position shown in Figured (b), with many gaps in the first column and long
ordered sequences on the right, features many similar transpositions. Therefore,
the incremental transpositions algorithm is not well suited to these kinds of
positions. Here again, it would probably be possible to add rules to detect those
patterns, such as preventing the same card from moving twice in a row. Also, the
methods developed by T. Shintani [6] seem to be particularly efficient precisely
in these kinds of positions.

Fig. 3. Example of transposition occurring in both variants

Transpositions of the kind of the second example appear more often than those
of the kind of the first example. Therefore, the proportion of transpositions that
are not due to permutations of moves is larger for the common variant than for
the basic one. The next section shows experimental results for the basic variant.

3.4 Experimental Results for the Basic Variant

The experimental results have been made for the basic variant with 52 cards. We
are performing a complete search and we do not stop after a winning sequence has
been found. For all the random positions tested it is possible that the game could
be searched completely with a depth-first search and a transposition table. The
transposition table has been implemented with a hash table of a fixed number
of entries, and one position per entry. When collisions occur, the old position is
replaced by the new. More complex replacement schemes with two positions per
entry may be slightly more efficient [I].

First, we analyze how much we lose by using incremental transpositions alone,
rather than combining it with a transposition table. We compare the number
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Fig. 4. Examples of transpositions occurring only in the common variant
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Fig. 5. Comparison between transposition table (32M entries) combined with incre-
mental transpositions, and incremental transpositions alone

of nodes searched using a transposition table and incremental transpositions,
Nyt it 320, with the number of nodes searched using incremental transpositions
alone, N;;. Figure[l] shows the ratio N;;/Ny it 320 depending on Ny it 3211, for
1000 random initial positions. Here the size of the transposition table is 22° =
32M entries, more than the number of positions searched, so Ny ;¢ 3257 1S very
close to the real size of the search space when all transpositions are detected.
The good point of this experiment is that we manage to make a complete search
without a transposition table, although the cost in number of nodes relative to
the optimal number of nodes is between a factor 1 and 1000.

Secondly, we show the usefulness of combining incremental transpositions with
a transposition table of limited size. Here we work with a transposition table
of a reduced size: 22° = 1M entries. We compare the number Ny i 127, with
the number of nodes searched when using a transposition table alone, Ny 157.
Figure [0 shows the ratio Ny 1a7/Ny it 1 depending on Ny i 107, for 3200
random initial positions. This shows how useful the incremental transpositions
algorithm can be, in conjunction with a transposition table. When the size of the
search space exceeds the size of the transposition table, the number of positions
searched when using only a transposition table explodes.
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Fig. 6. Comparison between transposition table (1M entries) combined with incremen-
tal transpositions, and transposition table alone
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Fig. 7. Transposition table combined with incremental transpositions, with transposi-
tion table size 32M and 1M

In Figure 6 we also see the large increase of nodes searched when using a
limited size transposition table. This is a loss compared to Ny i+ 101, SO a fortiori
it is a loss compared to the optimal size. This increase is particularly sensitive
for problems of size more than 2 x 10° nodes.

Our third experiment shows that this phenomenon is much weaker when the
transposition table is combined with the incremental transpositions algorithm.
We compare the number of nodes searched for two different sizes of the transpo-
sition table: 1M and 32M. We call these two numbers Ny ;¢ 17 and Nyt it 3007
Figure[[shows the ratio Ny it 18 /Nit it 320, depending on Ny ¢ sons, for 5000
random initial positions. The figure shows that, when the transposition table is
backed up with the incremental transpositions algorithm, it is much less affected
by the size of the search space.

The experiments have been run on a Pentium 3GHz with 1GB memory. Our
implementation of the depth-first search, without a transposition table and in-
cremental transpositions, can search 20.4 x 10® positions/s. This drops down to
9.5 x 100 positions/s with incremental transpositions, and 1.7 x 10° with a trans-
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position table. With both, the search is actually faster than with a transposition
table alone: 3.4 x 10°% positions/s. The reason is that incremental transposi-
tions are tested before accessing the transposition table; our implementation of
the incremental transpositions algorithm is very well optimized and can detect
transpositions faster than the transposition-table lookup.

4 Morpion Solitaire

Below we introduce a relatively new game called Morpion Solitaire. We show
that, when doing a complete depth-first search of the game tree, using the in-
cremental transpositions algorithm is sufficient to detect all transpositions, and
therefore a transposition table is useless. Although we do not beat the current
record, we are able to prove its optimality for more than one hundred moves.

4.1 Rules

Morpion Solitaire is a one player deterministic game, with a fixed starting posi-
tion. General information about the game can be found in [5]. It is played using a
paper with a grid layout, ideally infinite, and a pencil. The initial position, with
28 dots, is shown in Figure[§ (a). A dot can be added if it makes an alignment
of five dots, horizontally, vertically, or diagonally, with the dots already drawn.
The move consists in adding the dot and the segment of line, of length four,
that goes through the five dots. Additionally, an alignment cannot be drawn if
it shares more than one dot along the same axis as any previous line segment.
Figure [{ (b) shows an example of a legal move. The goal is to maximize the
number of moves.
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0000 © 09

(a) (b

Fig. 8. Positions at the beginning and after a few moves

~
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4.2 Bound on the Length of the Game

It has been proved that the length of the game is bounded. We explain the ar-
gument briefly. Each dot has 8 possibilities to be used for drawing an alignment,
one for each direction. Some of them may have already been used. For each dot,
the sum of the number of free possibilities is an invariant during the game. In-
deed, when we make a move, this number is increased by 8 because we add a new
dot, and decreased by 8 because of the segment of line drawn: the 3 dots inside
the alignment lose 2 possibilities each , and the 2 dots at the extremities lose 1
each. The more dots are drawn, the more there are dots “on the boundary” (dots
that are not completely surrounded by other dots). Those have free possibilities,
so the length of the game is bounded. Achim Flammenkamp has proved a bound
of 324 moves [5].

4.3 Finding Long Sequences: Previous Work

The current best published record for the game is 170; it has been obtained by
hand, by Charles-Henri Bruneau, in the 1970s [5].

Hugues Juillé has applied a method which he calls Evolving Non Determin-
ism to the game [34]. This algorithm works by making a population of prefix
sequences evolve; the best ones are selected depending on the results of random
games starting with the prefixes; the prefix sequences are gradually made longer
until the end of the game is reached. The best result obtained by Juillé with this
algorithm is 122. Pascal Zimmer has later improved the algorithm and found a
sequence of length 147 [5].

Although this is not precisely the subject of this paper, we have developed a
program to find good sequences. This has been done independently with Juillé’s
work, but the method is similar, since it also makes heavy use of statistics on
random games. Our current record is 136.

In the following, our goal will be to determine whether the record, of length
170, is optimal in the endgame, starting from as as many moves as possible
before the end.

4.4 All Transpositions Are Due to Permutations of Moves

We show that, in Morpion Solitaire, all transpositions are due to permutations
of commutative moves. First we remark that, whenever two moves a and b are
legal as well as the sequences (a, b) and (b, a), they are always commutative.
Therefore, all we need to show is that, given a position, we can find the set of
moves that have been made to reach it. This is done in two steps.

First, we group all the segments of a line drawn in segments of length four,
each being the effect of only one move. We can do it separately for all the
segments lying on the same infinite line, and in this case it is easy: we just have
to group them four by four in order.

Secondly, we find the exact position where a dot has been added on each of the
segments of a line just found. We start from the initial position, and, whenever a
move is possible that corresponds to one of the segments of length four found, we
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make it. We lose nothing by making such a move as soon as it can be done. On
the one hand, no other move will ever be possible using this segment of length
four even after other moves have been made; on the other hand, making this
move now or later does not change the possibilities for the other moves.

We have thus shown theoretically that the transpositions are due to permu-
tations of moves; this is confirmed experimentally by the fact that, whether
we make a depth-first search with incremental transpositions and a transposi-
tion table or incremental transpositions alone, the same number of nodes are
searched.

4.5 Experimental Results

We have performed some experiments to test whether the best known sequence,
of length 170, is optimal for the last moves. We have also made a similar search
for the best sequence we have found in our own experiments, of length 136.

Since we do not need a transposition table, we have been able to parallelize
the search. This search has run for about two months on the computers of our
laboratory. Our program can search 3.7 x 105 positions/s on a Pentium 3GHz.

Figure [@ (a) shows the evolution of the total number of nodes searched de-
pending of the depth of the starting position. Starting at move 61, a total of
3.97 x 10" nodes have been searched, and the record has not been beaten. Fig-
ure shows the positions after move 61 and after the last move for the best
known sequence.

Figure [ (b) shows the same work for the best sequence found in our own
experiments (Subsection E3]). We have put less effort on this one, but we have
still been able to search it completely starting at move 42. This sequence has
not been improved either.

The fact that the sequences considered in this section are optimal for so
many moves is surprising, especially for the record of length 170 which has been
obtained by hand. In our opinion, this indicates that the endgame is relatively

1e+14 T T T T T 1e+14 T T T T T
1e+12 B 1e+12 b
1e+10 B 1e+10 B
1e+08 - B 1e+08 - 1
1e+06 - B 1e+06 - 1
10000 B 10000 1
100 B 100 + 1

1L L L L L 1 L ! L L .

160 140 120 100 80 60 120 100 80 60 40

(a) (b)

Fig. 9. number of positions searched depending on the starting move (a) in the best
known sequence of length 170, (b) in a sequence of length 136
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Fig. 10. Positions after move 61 and after move 170

easy. With the help of the methods described in Subsection B3] both human
players and computers are able to play well.

5 Conclusion

We have introduced a distinction between transpositions that are due to permu-
tations of moves and transpositions that are not. The first category of transpo-
sitions can be easily detected using a method we have called incremental trans-
positions. Unlike a transposition table, this method costs very little memory. It
does not seem, however, to be applicable in two-player games.

The proportion of transpositions that are due to permutation of moves, and
therefore have an impact on the efficiency of the algorithm, depends on the
domain. In the basic variant of Gaps, the algorithm can be used in conjunction
with a transposition table to detect more transpositions. Results are particularly
good when the search space is larger than the size of the transposition table. The
method would be less efficient in the common variant. Finally, we have shown
a perfect application domain for the algorithm, Morpion Solitaire, where the
incremental transpositions algorithm makes a transposition table useless.

In the domain of Morpion Solitaire, our parallel search program has proved the
optimality of the best known sequence for more than one hundred moves before
the end. We know that methods using statistics on random games are efficient
in finding the best sequences in the endgame. Therefore, as further research, we
plan to make use of statistics on random games to make cuts in the search, so
that we can test the optimality for more moves before the end, and still be quite
sure of the result.
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