
H.J. van den Herik et al. (Eds.): CG 2004, LNCS 3846, pp. 175 – 186, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Building a World-Champion Arimaa Program

David Fotland

Smart Games,
San Jose, CA, USA

Fotland@smart-games.com

Abstract. Arimaa is a new two-player strategy game designed by Omar Syed to
be difficult for computer players. Omar offers a $10,000 prize to the first
program to beat a top human player. My program, BOT_BOMB, won the 2004
computer championship, but failed to beat Omar for the prize. This paper
describes the problems with building a strong Arimaa program and details of
the program’s design.

1 Introduction

Arimaa is a new two-player perfect-information strategy game designed by Omar and
Amir Syed. Their goal was to design a game that was fun to play, and very difficult
for a computer to play well. The game has free placement of pieces in the initial
position to foil opening books. It has a huge branching factor and long-term strategy,
which should make full width search impractical. The game ends with most of the
pieces still on the board, eliminating any benefit from endgame databases.

Omar offers a prize of $10,000 for the first program that can beat a strong player
(selected by Omar), in a multi-game match with long time limits. The first computer
championship was in January, 2004, and was won by my program BOT_BOMB. The
computer vs. human championship was played against Omar. He won all eight games,
although none was easy, and the average length of the games was 55 moves. Typical
Arimaa games last 30 to 40 moves.

Omar contacted me in January, 2003, and suggested I might want to write a
program. While I agreed that Arimaa is a more difficult game for computers than
chess, I felt I could win the contest. My opinion is that Arimaa is more difficult than
chess, but still much easier than Go. It is more like Shogi or Amazons. Even though
Arimaa is difficult for computers, Arimaa is a new game, and people are not very
good at it yet.

I started in February, and by May BOT_BOMB was the highest rated player at the
web site. This May version of the program is still available at the web site under the
name BOT_ARIMAANATOR, and is rated about 225 points below the current version.
This gain was due to the addition of a goal evaluation and search extensions, and
adding the pin evaluation. I stopped working on it over the summer, and in September
discovered that the human players had become much stronger. Several new strategic
concepts were discovered, and the human players were not blundering away pieces.
Several players were rated higher than BOT_BOMB. I worked on the program until the

176 D. Fotland

end of December, but was not able to close the gap. As in computer chess, the
program is relatively stronger than people at short time controls. At 30 seconds per
move average, the program’s rating is about 100 points higher than the tournament
version, with 3 minutes per move.

Arimaa can be played on-line at http://arimaa.com or using software available from
Smart Games at http://www.smart-games.com.

2 Rules of Arimaa

Arimaa is played on an 8x8 chess board, and can be played with a standard set of
chess pieces, although Arimaa renames the pieces Elephant, Camel, Horses (2), Dogs
(2), Cats (2), and Rabbits (8), in order from strongest to weakest. Gold (white) starts
by placing the 16 pieces in the two rows closest to him1, in any arrangement, as his
first move, then Silver (Black) places pieces on his side of the board. Human play has
shown that there are several popular initial arrangements, with different strategic
consequences. Silver can place his pieces to counter Gold’s arrangement, which
compensates for Gold’s first move advantage. Because all pieces are placed at once,
the first move for each side has a branching factor of almost 65 million, so making the
first move part of the search is infeasible. There are over 10^15 possible opening
positions, making an opening book infeasible.

After placement, Gold moves first. For each player, a move consists of 4 steps.
Each step moves a piece one square horizontally or vertically, except that Rabbits
cannot move backwards. The four steps in a move can be used to move one piece or
multiple pieces. Any step but the first in a move can be a pass, but the move must
change the board position. The goal of the game is to get one of your Rabbits to the
8th rank.

The board has 4 traps, at the 3-3 squares. After any step, if a piece is on a trap, and
there is no friendly piece in one of the four squares next to the trap, that piece is
captured, and removed from the board.

Stronger pieces can pull, push, or freeze adjacent weaker enemy pieces. To pull a
piece, the player moves a piece one step, then uses another step to move the adjacent
enemy piece into the square he just vacated. To push a piece, the player moves an
adjacent enemy one square in any direction, then moves his stronger piece into the
open square. An adjacent weaker enemy piece is frozen unless it has an adjacent
friendly piece. Frozen pieces cannot be moved, although they can still be pulled or
pushed.

Repeating a position a third time loses the game. If there are no legal moves
available, the player to move loses. The only way to draw is for both players to lose
all eight Rabbits.

1 In this paper we use ‘he’ when ‘he’ or ‘she’ are both possible.

 Building a World-Champion Arimaa Program 177

3 Why is Arimaa Hard?

The key issue for Arimaa and computers is the huge branching factor. Some positions
have only one legal step (after a push), but most have between 20 and 25 legal steps.
The four steps in a move lead to about 300,000 4-step sequences. Not counting
transpositions, there are typically between 20,000 and 30,000 distinct four step
moves.

Because the pieces move slowly compared to chess, an attack can take several
moves to set up, so the program must look ahead at least five moves (20 steps) to
compete with strong players. This is too deep for a simple iterative deepening alpha-
beta searcher. Forcing sequences are rare, so deep searching based on recognizing
forced moves (such as PN search or shogi endgame search) are not effective.

Sacrificing material to create a threat to reach the goal, or to immobilize a strong
piece, is much more common than sacrifices for attacks in chess, so programs that
focus on material are at a disadvantage.

Evaluation of an Arimaa position is difficult, and very unlike a chess evaluation.
Control of the traps is important, but control of the center is not, since it is easier to
move a Rabbit to the goal near the edge of the board than the center. Pieces can be
immobilized for many moves defending a trap, or preventing a Rabbit from reaching
a goal, which affects the balance of strength on the rest of the board.

3.1 Two Example Positions

Below I provide two example positions in the Figures 1 and 2.

In Figure 1, the Dog at c3 is

on a trap, with the Elephant
preventing it from being
captured. The adjacent silver
pieces are stronger than the
Dog, so it cannot push them out
of the way. The gold Elephant is
pinned, defending the Dog. If it
moves away, the Dog will be
captured.

Fig. 1. Example position 1

178 D. Fotland

In Figure 2, the trap at f6 is
dominated by strong nearby
gold pieces. Once the gold
Camel pushes the Cat at g6 out
of the way, Gold will control 3
sides of the trap, and can start
pulling pieces in. If the silver
pieces move away to avoid
being captured, Gold will be
able to advance the Rabbit at h3
and reach the goal.

Silver has sacrificed two
pieces to get an advanced
Rabbit at g3. The gold Camel is
frozen by the silver Elephant, so
it cannot help defend the goal. If
the gold Elephant moves away,
Silver will capture the gold
Camel in the trap at f6. Silver
has a very strong position, and
is threatening to reach the goal
next turn.

4 The Program

My Arimaa program is called BOT_BOMB (which is the name used on the Arimaa
web site, http://arimaa.com), but it also plays under the names BOT_SPEEDY,
BOT_BOMBCC2004, and BOT_ARIMAANATOR. It is written in C++, derived from a
chess program I wrote years ago. The rough specifications are:

4400 lines: board representation and evaluation;
1800 lines: search.

4.1 Board Representation

I use 64-bit bit-boards [5]. It was a good choice for a chess program, and even better
for Arimaa, since the pieces move one space horizontally or vertically and there are
many local evaluation terms. The bit-board class has members for logical operations,
shifts, expand, count-bits, and iteration.

There is one bit-board for each piece type, one for empty squares, and one for
frozen pieces. There is an array which gives the piece at each square, and another
which gives the strongest adjacent piece to each square, by each color. Some flags
track if there is a pull or push in progress. Additional board class members track the
side to move, the step number, hash values, and the material balance. All of this data
is maintained incrementally when a move is made, and copied and restored to take

Fig. 2. Example position 2

 Building a World-Champion Arimaa Program 179

back a move. The C++ operator “=” copies the core board data (373 bytes) using
memcpy(), without copying any of the temporary data used during evaluation. This is
much faster and simpler than writing an unmove function.

4.2 Evaluation

Below we discuss eight items of the evaluation function, viz., material, piece-square
tables, Rabbit evaluation, mobility, trap evaluation, goal evaluation, pin evaluation,
and center evaluation.

Material – In theory, material values in Arimaa should be completely relative,

since if an Elephant is taken, the Camel becomes the new invulnerable piece. In
practice, Elephants are never lost, so I use a fixed set of material values.

Rabbits 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 12.0
Cat 2.5
Dog 3.0
Horse 6.0
Camel 11.0
Elephant 18.0

The rabbit value is adjusted depending on how many Rabbits are left. Once the last

Rabbit is captured, the game cannot be won. You need two Rabbits to make goal
threats on opposite sides of the board, and you need several Rabbits to defend your
own goal. As the number of Rabbits goes down, the value of the remaining Rabbits
goes up. The first captured Rabbit is worth 1.0, and the final one is worth 12.0.

Piece-square tables – This is a minor part of the evaluation, encouraging Rabbits

to stay back to defend the goal, Dogs and Cats to stay near our traps to defend them,
and the strong pieces to stay near the center and off of traps. Rabbits are encouraged
to advance at the edges, and stay out of the center. For pieces, the values range from
+0.1 to −0.5.

Rabbit evaluation – There is a bonus if a Rabbit has no enemy Rabbits on its file

or adjacent files ahead of it (0.1 to 1.0 depending on how advanced it is). There is a
bonus (0.1) to encourage Rabbits to have a piece to either side in the three points
adjacent, behind or ahead. This tends to keep a solid wall of Rabbits and pieces across
the board to make it harder to reach the goal. Advanced Rabbits are evaluated based
on the relative strength of nearby pieces. This evaluation can be positive or negative,
between about −0.3 and +5.0.

Mobility – Frozen pieces are penalized 0.02 for Rabbits, 0.1 for Cats and Dogs,

0.15 for Horses and 0.2 for the Camel. Mobility is very important for the stronger
pieces. I found that if I make these penalties too large, the strong pieces get tied down
freezing the weaker pieces, and become immobilized themselves.

The basic evaluation above is inadequate to prevent weak players from trapping the
program’s pieces. Weak players can also easily force a Rabbit to the goal. Searching

180 D. Fotland

at least 16 steps is required, but is not possible due to the high branching factor. To
make the program competitive with strong players, the evaluation must do a static
analysis that replaces several ply of look ahead.

Trap evaluation – Trap evaluation statically evaluates how many steps (1 to 6, or

more) it will take to trap each piece on the board, assuming no enemy defensive
moves. For any piece that could be trapped in six or fewer steps, it statically estimates
the number of enemy steps it takes to defend that piece. There are about 50 cases,
evaluated with a decision tree, about 900 lines of code. The evaluation function
combines the individual values to estimate the future material balance, and identify
threats. The algorithm is run once for each trap, and looks at the pattern of nearby
pieces.

Goal evaluation – Goal evaluation statically evaluates how many steps (1 to 8, or

more) it will take each Rabbit to reach the goal, assuming no intervening moves by
the opponent. This is a tricky 700 lines of code, since there are many cases. It allows
the search to find goals four steps earlier, and enables a highly pruned search to find
defenses against goal threats. When this was implemented, weak players could no
longer sacrifice pieces to force a goal, and strong players complained that the program
defended tenaciously against goal threats. The strong players shifted to new strategies
that immobilized pieces, won material, and did not try for the goal until there was a
large material advantage.

I test the goal evaluation with 50 problems that have a forced goal in 10 to 12
steps, taken from actual games. With the goal evaluation enabled, it solves all 50
problems in an average of 1.2 seconds and 190 K search nodes. With the goal
evaluation disabled, and a 10 minute time limit, it only solves 21 problems in an
average of 436 seconds and 94 M nodes. The test positions are available at
http://www.smart-games.com/mate12.ZIP

Pin evaluation – It is possible to use one piece to pin two enemy pieces near a
trap, giving you a material advantage on the rest of the board. You can also use
several weak pieces to pin an enemy piece on a trap. The pin evaluator handles these
situations. This is the most difficult part of the evaluation, since it is hard to judge the
relative values correctly.

Center evaluation – Strong pieces (Horse, Camel, and Elephant) are encouraged

to have access to the center. The value depends on the number of steps it would take
each piece to move onto one of the four center squares. For the Elephant, it ranges
from 0.35 for being on the center to zero for being 4 or more steps away. The peak
value for the Camel is 0.10.

The Camel is encouraged to stay away from the enemy Elephant, unless that
Elephant is immobilized, or the Camel is near a trap with several friendly pieces
nearby. If the enemy Elephant is not pinned, the Camel is encouraged to stay on its
own side of the board. If the Camel is advanced, the enemy Elephant gets a bonus for
being behind it. The bonuses are in the range of 0.1, and are sufficient to prevent
strong players from pulling a camel to their trap in the opening, but are not a general
solution.

 Building a World-Champion Arimaa Program 181

4.3 Search

The search is fail-soft alpha-beta negamax principal variation search (PVS, also called
NEGASCOUT) [6] with iterative deepening and transposition table. Each iteration and
call to negamax extends the search by a single step, which makes move generation
simple. Because the side to move only changes every four ply, alpha and beta are only
exchanged every four ply, and the code for PVS and cutoffs is a little different. PVS
typically has some code that looks like:

if (first move)
 score = −negamax(depth−1, −beta, −alpha);
else {
 score = −negamax(depth−1, −alpha−1, −alpha);
 if (score > alpha && score < beta)
 score = −negamax(depth−1, −beta, −alpha);
}

Arimaa code looks like:

if (step != 4)
 score = negamax(depth−1, alpha, beta);
else if (first move)
 score = −negamax(depth−1, −beta, −alpha);
else {
 score = −negamax(depth−1, -alpha−1, −alpha);
 if (score > alpha && score < beta)
 score = -negamax(depth−1, −beta, −alpha);
}

There can be no cutoffs in the first four ply so at the root, PVS is only used for

iterations that search five steps or more. In negamax, PVS is only used at the 4th step
of each move. Using it at the other three steps only slows down the search. The first
iteration searches three steps, since with extensions, many interesting lines go four or
more steps, complete a move, and help sort the next iteration.

Null move [7] is used to prune uninteresting branches. A null move can happen on
any step except the first in a turn, and causes a pass for all the remaining steps in that
turn. The search depth is reduced by four steps. A null move is only tried if beta is
low enough that a cutoff is likely.

If all remaining steps are by the same color, the position is evaluated to see if it can
get an early cutoff.

4.4 Search Extensions

If the goal evaluation shows three or fewer steps remaining to the goal, and the player
to move has that many steps left in his turn, the position is scored as a mate without
further search. By an experiment it is shown that the goal evaluation is accurate up to

182 D. Fotland

three steps. If there are four steps remaining, the search is extended one step to verify
the goal.

If the opponent has a Rabbit four or fewer steps from the goal, the search is
extended to find a defense. While searching for a defense, generated moves are
pruned to only moves that are close enough to the Rabbit to affect the outcome. When
there is a push, the next step is forced, so if that forced step is at depth zero, the search
is extended one step.

4.5 Move Generation and Sorting

The move generator generates pulling and pushing moves first, then all others. Piece
captures usually involve a push or pull, so these moves are more likely to cause a
cutoff. The move generator never generates passes, although they are legal.
Generating pass moves slows down the search, and does not seem to make the
program stronger. The game ends with many pieces still on the board, so zugzwang is
unlikely.

During a goal search, moves are sorted according to the distance from the piece
moved to the Rabbit threatening to reach the goal. During the regular search, it first
tries the move suggested by the transposition table, then two killer moves [1], then
three moves from the history heuristic [2], then the rest of the moves. I tried using just
the three history moves, and no killer moves, but the performance was worse, unlike
the results in [3]. Perhaps this is because many Arimaa moves are quiet, so moves
from one part of the tree are less likely to be effective elsewhere. Or perhaps it is
because I only used the top 3 history moves, rather than doing a full sort.

4.6 Transposition Table

There is a 2 million entry transposition table [5] using Zobrist keys [4]. Half the
entries are used for the primary table, and are replaced if the new value is closer to the
root. Replaced entries are saved in the other half of the table.

5 Performance

On a 2.4 GHz Pentium, in the middle game, the program searches between 200K and
250 K nodes per second, where a node counts every time a move is made during the
search. At 3 minute per move time control it completes 10 or 11 full steps of search,
with extensions to a maximum of 14 to 18 steps.

The goal search can find 12 step forced goal sequences in under 1.5 seconds, and
usually finds 20 step goal sequences within the 3-minute tournament time control.
The program spends about 15 to 20% of the time generating moves, and 10 to 15% in
search and move sorting. Most of the time is spent in the evaluation function. Early
versions of the program with simple evaluations searched about 600 K nodes per
second.

At the Arimaa web site, BOT_BOMB is currently rated 125 rating points below the
top human. There are only 4 human players more highly rated. The next strongest
computer opponent, BOT_OCCAM, is rated about 400 rating points below BOT_BOMB.

 Building a World-Champion Arimaa Program 183

6 Future Work

The goal search, goal evaluation, and trap evaluation work very well, but there are
still some bugs and missing cases to add. The evaluation of pieces stuck on traps or
defending traps still has big problems, and leads to the loss of many games. Finally,
the program has little sense of how to deploy its pieces, especially when one or more
of the traps is tied up with strong pieces.

After the computer vs. human championship, the players discovered a way to
sacrifice a piece to immobilize an Elephant forever, and easily win see Figure 3).
Clearly mobility if the strong pieces needs more work.

The gold Elephant has just been immobilized, since it can not push anything or
cross the trap. Silver can substitute weak pieces for the stronger ones involved, and
get an advantage on the rest of the board. It is not easy to free the Elephant.

Fig. 3. An immobilized Elephant

7 Conclusion

Omar has succeeded in creating a game that is both fun for people to play and
difficult for computers. In order to win you have to advance your Rabbits and pieces,
but that puts them in danger of being pulled into traps in enemy territory. Pieces can
be immobilized defending traps, giving one side a long-term strategic advantage.

A year ago it was not very hard to make a program to beat the strongest people, but
the quality of top human play has improved faster than the computer programs. Any
strong Arimaa program will have to evaluate accurately difficult strategic issues and
have a deep selective search. Nevertheless, I have found that iterative deepening
alpha-beta search is effective against most players. There does not seem to be a need
for local search within the evaluation function, as in computer Go. But like Go, there
are long-term positional effects that must be captured in a complex evaluation, that
search cannot find.

184 D. Fotland

References

1. S.G. Akl and M.M Newborn, The Principle Continuation and the Killer Heuristic, ACM
Annual Conference, 466–473, 1977.

2. J. Schaeffer, The History Heuristic, ICCA Journal, Vol. 6, No. 3, pp. 16–19, 1983.
3. J. Schaeffer, The History Heuristic and Alpha-Beta Enhancements in Practice, IEEE

Transactions on Pattern Analysis and Machine Intelligence archive, Vol. 11, No. 11, pp.
1203–1212, 1989.

4. Zobrist, A. L., A Hashing Method with Applications for Game Playing, Technical Report
88, Computer Science Department, University of Wisconsin Madison 1970, reprinted in
ICCA Journal, Vol. 13, No. 2, pp. 69–73, 1990.

5. D.J. Slate and L.R. Atkin, Chess 4.5 – The Northwestern University Chess Program, in
Chess Skill in Man and Machine, Springer-Verlag, 82–118, 1977.

6. A. Reinfeld, An Improvement on the Scout Tree Search Algorithm, ICCA Journal, Vol. 6,
No. 4, pp. 4-14, 1983.

7. C. Donninger, Null Move and Deep Search: Selective-Search Heuristics for Obtuse Chess
Programs. ICCA Journal, Vol. 16, No. 3, pp. 137–143, 1993.

Appendix: Championship Games

The following games can be played at http://arimaa.com/arimaa/gameroom. Follow
the links to Computer Championship and World Championship.

The second best computer player was BOT_OCCAM, and the championship games
are 5038 and 5039. In both games BOT_BOMB was able to pull the enemy Camel to its
side of the board and get a very strong position in the opening, and games were over
at move 30 and 33.

The human championship games lasted much longer, 38 to 96 moves, with a 56
move average. BOT_BOMB is able to defend its strong pieces in the opening, but

Fig. 4. After move 7 Fig. 5. After move 17

 Building a World-Champion Arimaa Program 185

Fig. 6. After move 29

Omar was usually able to pull weaker pieces to his side of the board, trapping them or
immobilizing other pieces. BOT_BOMB gave higher value to threatening Omar’s strong
pieces than to defending the cats, but the threats rarely led to any lasting advantage.

The fourth challenge match game, #5247: Move 7 (Figure 4), Omar (Gold) has
pulled a Horse onto his trap, and immobilized BOT_BOMB’s Elephant. Bomb thinks
this is ok, since it takes more gold pieces to keep the Horse on the trap. But the gold
Elephant can move away at any time, so BOT_BOMB’s Camel can always be attacked,
but Omar’s Camel is free to move.

Omar launched an attack on the lower left trap, capturing a Dog, and leading to the
position of Figure 5. Omar will capture the other Dog now. But Omar lets the Knight
get off the upper right trap, and BOT_BOMB manages to immobilize Omar’s Elephant
at the lower right trap on move 29 (Figure 6).

Fig. 7. After move 36

186 D. Fotland

Fig. 8. After move 51

Omar gives up the Horse to attack the lower left trap, but BOT_BOMB is able to
immobilize Omar’s Elephant defending the Camel at move 36 (Figure 7).

In spite of this disadvantage, Omar is able to trade a piece and capture several
Rabbits, leading to this position at move 51 (Figure 8). BOT_BOMB was never able to
get its Camel out to attack the upper right trap.

Now BOT_BOMB does not have enough pieces left to prevent the goal at move 67.

	Introduction
	Rules of Arimaa
	Why is Arimaa Hard?
	The Program
	Board Representation
	Evaluation
	Search
	Search Extensions
	Move Generation and Sorting
	Transposition Table

	Performance
	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

