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Abstract. Selective simulation is a search technique that estimates the value of 
a move in a state space by averaging the results of a selected sample of con-
tinuations. The value of selective sampling has been demonstrated in domains 
such as Backgammon, Scrabble, poker, bridge, and even Go. This article de-
scribes efficient methods for controlling selective simulations. 

1   Introduction 

The domains dealt with are characterized by three issues: (1) non-determinism, (2) 
imperfect information, and (3) high branching factors. In such domains, exhaustive 
algorithms achieve a shallow search depth, which is frequently insufficient. The inef-
fectiveness of exhaustive search seemingly leaves static analysis as the only option 
for such domains. Searching for an alternative, the question arises: can a selective 
search improve upon static analysis? 

In some domains it is possible to create effective selective-search policies. This is 
not true in every domain, but it is true in many domains that are of current research 
interest, such as Backgammon [9], Scrabble [11], poker [3], bridge [10], and even Go 
[5,7]. The selective-search methods described in this paper employ selective sampling 
of possible continuations. The distinction between selective sampling and Monte 
Carlo is subtle and maybe not even well defined, but here is an attempt at the distinc-
tion: in selective sampling we try to choose continuations that make the distinctions 
between alternatives clearer, whereas in Monte Carlo we select samples in the same 
distribution as the branching structure of the domain. This difference should not ob-
scure the goal of selective simulation, which is the same goal as that of a Monte-Carlo 
simulation: to find the best move We just want to find the best move more quickly. 

For example, assume that the player to move is playing a bear-off in Backgammon. 
The player considers two options. After either option the opponent can roll a doublet 
to bear off all his men, so the two moves work out equally in that case. In a selective 
simulation framework, the player to move can cease considering doublets, since any 
difference between the plays must be revealed in the other rolls. By avoiding dou-
blets, the player reduces CPU usage to 5/6 of a Monte-Carlo simulation, but still ar-
rives at the best move. In this example, the payoff is tiny. In other situations, the pay-
off of selectivity can be arbitrarily large. 

The course of the article is as follows. Section 2 provides the basic simulation 
framework. In Section 3 three illustrative domains are introduced: Hold’em poker, 
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Scrabble, and Backgammon. The emphasis is on Hold’em poker, since for that game 
the data used are specifically collected for this article. The data for the other games 
are from the literature. Section 4 focuses on generating plausible moves. The essence 
of this article is in Section 5: Selecting a sample of continuations. Section 6 briefly 
discusses time control. In Section 7 the issue of selecting a sample move (in relation 
to a continuation) is considered. Section 8 provides methods on how to evaluate the 
end result of a simulation. In Section 9 a summary is given. 

2   Basic Simulation Framework 

The following pseudo-code outlines the process of simulation. 

1. Generate plausible moves. 
2. Select a sample of continuations (an arbitrary process that can generate state 

changes). 
3. While time remains for further simulation: 

• select a continuation, 
• select a move to simulate, 
• follow up that move with the selected continuation, 
• evaluate the end result, 
• average with all previous results for this plausible move. 

4. The move with the highest average is the best. 

The choices that a player makes throughout this framework determine the effec-
tiveness of the search policy. The article discusses some options for each step in the 
framework.  Among the options that fit the framework is a pure  Monte-Carlo ap-
proach. 

3   Illustrative Domains 

The article contains several examples, most from three domains: Hold’em poker, 
Scrabble, and Backgammon. The Scrabble [12] and Backgammon [13] examples 
mostly summarize data from existing literature. The Hold’em data was collected spe-
cifically for this article, and does not appear elsewhere. 

The game Hold’em poker is described by Billings, Papp, Schaeffer, and Szafron 
[2]. For this purpose, it suffices to note that each player has 2 hole cards, and there are 
5 community cards. The winner is the player that makes the best 5-card hand by com-
bining his hole cards and the community cards. 

The Hold’em engines used in these experiments were rudimentary. They are noth-
ing special in themselves, and this article is not about them. It suffices to note that 
they play at an intermediate level, and exhibit the variability of the domain. They are 
typical of the programs that a developer might struggle to improve. 

Hold’em can be played with up to 10 players, but in this article we will use the 2-
player game. Each experiment measures the difference between two players by play-
ing 1600 games of Hold’em. The difference between the players is reported in the 
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units of “small bets per hand,” a standard measure of skill. We will perform each ex-
periment 400 times, and measure the standard deviation of the mean measured by 
each experiment. The goal of the article is to quantify the advantage of selecting a 
sample in a systematic way, rather than simply using Monte Carlo. 

The baseline Monte-Carlo simulation used no selectivity at all to compare the 
players. That is, a sample of 1600 random hands was played out, and the results were 
summarized. The standard deviation of the measurement was 0.251 small bets. The 
true value of the difference between the players in the experiment was known to be 
about 0.025 small bets per hand. 

This poses a huge obstacle to progress. To quantify the problem, consider that an 
advantage of 0.025 small bets per hand is considered significant in Hold’em. Yet, the 
standard deviation of a 1600-game Monte-Carlo simulation is ten times as large. To 
reduce the standard deviation of a Monte-Carlo sample to only 0.025 would require 
about 160,000 trials. This is feasible, but time consuming. In addition to the time, 
there is a 16 per-cent chance that the weaker program would have better simulation 
results. Drawing the wrong conclusion because of statistical noise can set back a re-
search agenda for months. 

Now consider a more typical case, where the players differ by a small amount be-
cause of some tweak. Assume that the difference is 0.005 small bets per hand. To de-
tect such a difference with 84 per-cent confidence would require 4,000,000 trials! 
Such differences are very expensive to detect, yet a difference of 0.005 is a worth-
while improvement. If a player wishes to produce a program that is aware of the sub-
tleties of the game, then the player would have to detect such small differences. 

4   Generating Plausible Moves 

The selective simulation framework starts with generating a list of moves to simulate 
(i.e., at the route of the search). Below we briefly discuss four related topics concern-
ing the list of plausible moves: the need for selectivity (in 4.1), the flexibility (in 4.2), 
a breadth-versus-depth decision (in 4.3), and metrics (in 4.4). 

4.1   Need for Selectivity 

In the ideal case a player can consider all legal moves. For example, in 9 × 9 Go, there 
are never too many legal moves, and a program can consider all of them [7]. Another 
example is poker, where the options are either Bet, Call, or Fold. The number of legal 
moves in Bridge is also quite manageable, so a program can consider all of them. 

Other domains are not so simple. In Backgammon, for instance, it is possible to 
have hundreds of legal moves, particularly if one rolls small doublets such as 1-1 or 
2-2. In Scrabble, the number of legal moves averages over 700. Moreover, one can 
imagine war games where the number of legal moves is so large that the complete list 
cannot even be generated. In such cases a program needs to generate plausible moves 
by a static analysis. 
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4.2   Flexibility 

One valuable feature of a simulation framework is that the plausible-move selection 
process does not need to be particularly discriminating. A program is not relying on 
the plausible-move generator to determine the best play. The program simply wants 
the best move sorted sufficiently high that it makes a cut. This can be helpful. For ex-
ample, if a program wants to select good Scrabble moves by static analysis then it 
should include some evaluation of access to triple word squares. But that is not neces-
sary if the moves will be simulated. Triple word squares are neither significant 
enough to deny a move its place on the list of moves, nor to assure a move its place. 

Plausible-move generation need not be an “all or nothing” gamble. It is possible to 
simulate a few moves, then look at the outcomes and decide to add a few more 
moves. On the basis of simulations it is possible to discover that a move that was ini-
tially discarded should be considered. The Go proverb to “move where your opponent 
wants to move is an example of a similar heuristic.” In Scrabble, for example, a simu-
lation may tell you where the opponent obtains big scores, and then you can generate 
moves that block those locations. MAVEN [12] does not actually do this, as we have 
not yet seen a case where it is necessary, but the possibility is attractive. 

4.3   A Breadth-Versus-Depth Decision 

Simulating more moves means that there is less chance of overlooking the best play. 
But there is a downside: more moves means that the program either uses more time, 
or can simulate fewer continuations. Having fewer continuations means that there is a 
greater chance of missing the best play because of statistical noise. 

Each program faces the breadth-versus-depth decision after a time limit for the 
simulation has been fixed. From the time limit, the program can estimate how many 
trials it will be able to do in the available time, and from that it can figure how many 
moves it wants to spread those trials over. There is no hard and fast rule for how to do 
this. In general there is a tradeoff between the chance that the Nth move is best versus 
the chance that the best move will not be selected because of less precision. In judg-
ing this, keep in mind that the number of trials has to be quadrupled in order to halve 
the standard deviation. 

4.4   Metrics 

Each programmer should use a metric to evaluate the effectiveness of a plausible-
move generator. This subsection briefly discusses two metrics. One is well known and 
has been described in the literature. The other was created for the MAVEN project, but 
has not yet been described in the literature. 

A common metric is to count how often the generated moves include the moves ac-
tually selected by expert human players. This metric is frequently used in Go, and has 
also been used in Chess [1]. The metric has the advantage of being quick to evaluate. 
However, it has the disadvantage of providing no information about the quality of 
second-best moves.  

A more robust metric is the average number of points lost. This metric is more 
complicated to calculate, and may be impossible to calculate, but it is more useful 
when it can be achieved. For example, assume the time control for a Scrabble pro-
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gram is set such that the program has time to simulate only 10 moves. Assume further 
that we fix a policy P that chooses 10 moves. During development, we can simulate 
50 moves instead of 10. When the simulation selects a move that P ranks in the top 
10, then the loss due to P is 0. When the simulation selects a move that P does not 
rank in the top 10, then the loss due to P equals the evaluation of the selected move 
minus the evaluation of the best move that P selected. This metric is useful when you 
do not have a large supply of expert games, or when the program plays better than 
humans. 

5   Selecting a Sample of Continuations 

A peculiar feature of the basic simulation framework described in Section 2 is seen in 
the lines 1 and 2: the selection of continuations is listed as a separate step from the 
generation of moves. Hence the question arises: Does the framework require that a 
domain’s continuations are independent of the moves? 

If the continuations of a domain are intricately related to the moves, then selective 
simulation might not be a good search engine. For example, I would speculate that 
simulation could not play a game such as Reversi, where the legality of continuations 
depends heavily on every legal move.1 But when the domain has less dependence on 
the initial position, then simulation can be a better match. For example, the legality of 
continuations in a Go position has very little dependence on the first move. Brügmann 
[7] and Bouzy and Helmstetter [6] showed that simulations are surprisingly effective 
in Go. 

Simulation is at its best when there is hidden information, because then the first 
move of the continuation is to select hidden information for the opponent. Such in-
formation is necessarily independent of the move choices, so the framework described 
above is completely correct in that case. If the domain additionally has randomization, 
then simulation is an almost perfect match. 

When selecting continuations, the goal is to achieve convergence of the simulated 
results faster than simple random selection. Ideally, this should be done without bias-
ing the results. The techniques described below fall into two broad categories. The 
first category attempts to reduce the variance of sampling. The techniques used in this 
category are: explore parallel continuations (see 5.1), adjust for non-uniformity (see 
5.2), and enforce uniformity (see 5.3). The second category attempts to amplify dif-
ferences by focusing on continuations in which outcomes differ (see 5.4). 

5.1   Explore Parallel Continuations 

The simplest approach to achieve convergence and to reduce the variance of sampling 
is to use parallel continuations. That is, apply each continuation after each plausible 
move. This is a very simple technique for controlling variance, since it means that any 
biases that exist in the sample are the same for all moves. For example, in Hold’em 
 

                                                           
1 Of course, there are good deterministic algorithms for Reversi. 
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simulations, you can evaluate the Bet and Call options after each possible pair of op-
ponent’s hole cards. This way, it is impossible for the opponent’s hole cards to be bet-
ter for either option. Below we elaborate on reducing the variance by duplicating tri-
als (in 5.1.1) and by synchronizing random generators (in 5.1.2). 

5.1.1   Duplicate Trials in Hold’em  
We can reduce variance by playing each deal twice, once with each player moving 
first. This simple change uses only half as many deals, but the luck of the draw is 
lower because the cards exactly balance. Using duplicate deals is a trick taken from 
bridge tournaments, and first applied to poker by Billings et al. [2]. 

Duplicate trials appear to be interdependent, since a duplicate experiment is actu-
ally 800 trials each of which measures the difference between the players. However, 
this does not change the statistical formulas. The observed standard deviation of the 
mean in duplicate trials is 0.075. Because the number of trials required to achieve a 
specific level of accuracy is a quadratic function, the reduction in variance from 0.251 
to 0.075 is equivalent to an increase in speed of a factor of 11. 

Not every such experiment will produce such drastic gains. The structural similar-
ity of the poker players used in this experiment makes the gains more drastic, since 
there is a strong tendency for play to cancel across pairs of games. The degree of im-
provement that a program may experience in its own simulations may vary. The same 
comment applies to all of the experiments in this article. 

5.1.2   Synchronizing Random Generators  
The fundamental decision unit of poker AI is the “strategy triple”. It is the triple (F, C, 
R) of positive real numbers such that F + C + R = 1. A poker AI program generates 
such a triple at every decision point, to represent the decision to Fold with probability 
F, Call (or Check) with probability C, and Raise (or Bet) with probability R. 

It is natural that the probability triples of well-tuned players will have a large 
amount of overlap, which means that the programs will often play the same strategy. 
In the event that the programs play the same strategy to the end of a game then the 
difference between the programs is zero. When using the duplicate sampling tech-
nique (cf. 5.1.1), we can synchronize the random state so that the same sequence of 
numbers is generated on the duplicate plays of a deal. This reduces the variance of a 
duplicate sample from 0.075 to 0.048. (Synchronizing random generators makes no 
difference without also duplicating trials.) This reduction in variance is equivalent to a 
speedup of 2.4 times. 

5.2   Adjust for Non-uniformity 

Sometimes it is easier to remove the impact of non-uniformity after it has happened. 
For example, in a poker simulation a player must have some notion about the distribu-
tion of the opponent’s hole cards. Rather than generating the hole cards in the as-
sumed distribution, the player can generate a uniform distribution, and then weight 
the outcomes according to the presumed distribution. This works well in poker when 
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the opponent’s hole cards are easily enumerated, as they are in Hold’em. It would not 
work so well in 5-card draw, where the opponent has one of C(47, 5) possible hands.2 

One downside to adjusting after the fact is a loss of information. We take a simpli-
fied example. Assume that the domain has two semantic categories that should occur 
in ratio 9 to 1. If the program makes a sample containing 1000 of each and scales 
them down to 9 to 1 ratios, then the effective sample size is only 1000 + 1000/ 10 = 
1100, whereas the program has taken 2000 samples. In effect, each sample that the 
program has taken from the minority option counts as only 1/10 of a sample. This loss 
can be viewed as inefficiency, or as increase in variance, or as a loss of information, 
but it is a bad thing in any way the program looks at it. 

For this reason, such manipulations are a poor design choice unless the program-
mer has no alternative. But there is one situation where the manipulations make a lot 
of sense: namely, if a program has simulated a sample under one distribution, and 
then the program wishes a simulation under a different distribution. For example, in 
Scrabble the program can do simulations assuming that the opponent’s tiles are uni-
formly random. But then the program might conclude on the basis of the opponent’s 
last turn that the opponent was unlikely to have kept the Q. It would cost a lot to do a 
new simulation under this hypothesis. But it is inexpensive to reweigh the outcomes 
under the new distribution. If necessary, after reweighing the program can add trials 
to categories that are very important in the new distribution and that did not occur of-
ten under the original. Below we give an example of class weighting in Hold’em. 

5.2.1   Class Weighting in Hold’em  
The goal of class weighting is to eliminate the variance that arises from unequal dis-
tributions of hole cards. Though there are C(52,2) = 1326 different pairs of hole cards, 
there are only 169 essentially different pairs after symmetries are accounted for. The 
169 equivalence classes are as follows: 

1. 13 hands consist of a pair of cards of identical rank (“Pocket pairs”). 

2. C(13,2) = 78 hands have different rank and the same suit (“Suited”). 

3. C(13,2) = 78 hands have different rank and different suits (“Off-suit”). 

The number of symmetries of each hand is as follows: 

1. Pocket pairs occur with weight C(4,2) = 6. 

2. Suited hands occur with weight C(4,1) = 4. 

3. Off-suit hands occur with weight P(4,3) = 12. 

The implementation of class weighting is to recombine the samples according to the 
true frequencies of each class, as follows: 

    Sum = Count = 0; 
    for (each equivalence class) { 
        if (there are trials in this class) { 

                                                           
2  Categorize hole cards at a higher level of aggregation (e.g., ace-high, two-pairs, ...) to apply 

this method to 5-card draw. 
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            v = total in this class / number of trials in this class; 
            Sum += v * equivalence class weight; 
            Count += equivalence class weight; 
        } 
    } 
    Mean = Sum / Count; 

In Hold’em, the two hole cards account for the entire difference between the hands 
of the players, so attacking the variance of hole card distribution is important. An in-
teresting aspect of Hold’em is that a program can reweigh the classes based on the 
hole cards of either player. In my actual implementation, I apply class weighting to 
both positions, and then average the means. 

In the Hold’em experiment, class weighting had essentially the same result as 
Monte Carlo. We might have expected a reduction, but this is actually not a bad re-
sult. One of the problems with class weighting is that scaling increases the variance of 
classes that have a relatively small sample size. Accordingly, class weighting “gives 
back” some of its variance reduction. 

Despite the outcome of this experiment, class weighting is a valuable technique 
because it allows us to estimate an unbiased mean even when trials have an imbal-
anced distribution. That capability is important to other selective sampling techniques. 

5.3   Enforce Uniformity 

When a program has a strong model of the distribution of continuations, then it can 
sample in a way that strictly matches the known distribution. We call this enforcing 
uniformity. Below we provide two examples of enforcing uniformity, viz. in Scrabble 
(5.3.1) and in Hold’em (5.3.2). 

5.3.1   Tile Distribution in Scrabble  
In Scrabble, the opponent’s rack can be assumed to come from a uniform distribu-
tion.3 Maven draws the first rack randomly, and for subsequent racks it begins each 
rack by placing the one tile that has been most underrepresented in the sampling this 
far. This policy very strongly pushes the sample towards the desired distribution, but 
does not bias the outcome. 

Table 1 provides some data that illustrates the benefits. It is taken from a MAVEN 
simulation that contained 2718 continuations. The table shows that blanks were ex-
pected to occur in 7.53% of all racks, and actually occurred in 7.47% of all racks, a 
difference of only 0.06%. For comparison purposes, if the same experiment were 
conducted using a pure Monte-Carlo approach with no controls on sampling, then we 
would have a standard deviation of 0.51%. If you look down the column labeled Dif-
ference, it is clear that the sample has much greater conformance to the expected dis-
tribution than a Monte-Carlo sample would. 

                                                           
3  Alternatively, you can draw inferences from the opponent’s recent moves and bias the distri-

bution of tiles accordingly. This makes implementation more difficult, but does not change 
the essence of the idea. 
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The benefit of this policy is to eliminate biases that relate moves to continuations. 
In the case of Scrabble, an illustrative example is the following: if the sample in-
cluded more Qs than expected then it would reduce the evaluation of any move that 
pays off to an opponent’s Q.  

5.3.2   Hole Cards in Hold’em  
When a program has control over the distribution of trials, it is natural to ensure that 
every equivalence class occurs with the proper frequency. An experiment that sam-
ples every equivalence class at the predicted frequency is called a stratified sample. 
The technique is used in public-opinion polling, for example. This goes beyond class 
weighting, which merely scales results. Stratified sampling makes certain that every 
class is appropriately represented, which avoids the drawback of class weighting 
while achieving the same result. 

Table 1. Data on tile distribution 

Tile Expected Actual Difference 

?   7.53%   7.47% 0.06% 
A 67.74% 67.92% 0.18% 
B   7.53%   7.65% 0.13% 
C 15.05% 14.94% 0.12% 
D 30.11% 30.10% 0.01% 
E 67.74% 67.73% 0.01% 
F 15.05% 14.97% 0.08% 
G 22.58% 22.59% 0.01% 
H 15.05% 14.97% 0.08% 
I 67.74% 67.59% 0.16% 
J   7.53%   7.54% 0.02% 
K   7.53%   7.51% 0.02% 
L 30.11% 30.06% 0.05% 
M 15.05% 14.97% 0.08% 
N 45.16% 45.03% 0.13% 
O 52.69% 52.61% 0.08% 
P 15.05% 15.38% 0.33% 
Q   7.53%   7.62% 0.09% 
R 37.63% 37.93% 0.30% 
S 30.11% 30.02% 0.09% 
T 45.16% 45.14% 0.02% 
U 30.11% 29.99% 0.12% 
V 15.05% 14.94% 0.12% 
W 15.05% 15.27% 0.21% 
X   7.53%   7.58% 0.05% 
Y 15.05% 14.97% 0.08% 
Z   7.53%   7.51% 0.02% 
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The application to Hold’em has a few technical fine points that illustrate how to 
adapt a technique to a domain. It is natural to arrange the 1326 distinct hole cards in a 
sequence that will repeat as long as there are trials, but we can do slightly better. Note 
that the weights of the equivalence classes are 6, 4, and 12, which are all even num-
bers. It follows that a cycle of length 1326 / 2 = 663 suffices. 

A good ordering for the elements should satisfy certain natural goals. First, the ini-
tial 169 elements should be distinct equivalence classes, so that every equivalence 
class is sampled at least once as soon as possible. Second, we should distribute sam-
ples such there is a balance of strong and weak hands. It would not do to process the 
hands in decreasing order of hand strength. 

We constructed our sample by first sorting the 169 classes in order of hand 
strength, and then performing a single shuffle that interleaved strong and weak hands. 
The same sequence is used at the end of the 663 hands. The middle of the sequence 
was constructed by taking 1 instance of each pocket pair, and 4 instances of each non-
suited non-pair, then sorting and interleaving as before. The result is that any short 
segment contains a balance of strong and weak hands, including pairs, suited and non-
suited hands. Additionally, each equivalence class occurs within the first 169 trials. 

Any time we run through the complete sequence we have an unbiased sample of 
the full distribution. If an experiment stops partway through a cycle, then some 
equivalence classes will have more than their share of trials, but in large runs we can 
ignore such biases. Or more simply, make the number of trials a multiple of 663. 

In our implementation, only the hands of the first position are systematically sam-
pled in this way. The hands of the second position are randomly sampled. It is possi-
ble to sample both hands systematically, but this would require cycling through a 
much larger and more complicated space of equivalence classes. 

The standard deviation of this procedure is 0.047 small bets, versus Monte Carlo’s 
0.251. This is a spectacularly good result, the equivalent of a 28-fold increase in 
speed. 

5.4   Focus Attention on Differences 

Thus far we have focused on methods of controlling the variance. Now we shift atten-
tion to methods of emphasizing differences. The basic idea is to notice that two moves 
do not differ after certain continuations, but do differ after others. If you can charac-
terize the continuations then you can emphasize those that matter. 

In principle, you can make such discriminations experimentally. Taking the case of 
Hold’em poker again, we might notice that when the opponent holds Ace-Ace then he 
always wins. In such a case the difference between the Bet and Call options might be 
constant, or might have at any rate a low variance. In an analogous position, a suited 
10-9 might have a huge variance because of straight and flush draws. Rather than con-
tinuing to sample the Ace-Ace continuation, it is better to sample the high-variance 
continuation. 

In practice, you must sufficiently sample for patterns to emerge, so that the sam-
pling does not become confused by a chance low-variance outcome. An epsilon-
greedy policy may be able to avoid such problems. Normally, if a program empha-
sizes continuations then it risks biasing the simulation. To do this properly the pro-
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gram may have to adjust for non-uniformity in the sample. Below we provide some 
considerations why targeting high-variance samples in poker is to be advised. 

5.4.1 Targeting High-Variance Samples in Poker  
A different approach to reducing variance is to select the hole cards so as to target 
equivalence classes that contribute most to the variance of the measurement. The 
method is to simulate the equivalence class that leads to the greatest expected reduc-
tion in variance from one additional trial. A program can use various heuristics for 
deciding which equivalence class that is. The author suspects that a good heuristic is 
to differentiate the formula for variance with respect to the number of data points, and 
simulate the equivalence class that maximized the derivative. 

In practice, this technique suffers from a “bootstrapping” problem: variance cannot 
be measured reliably using a small number of trials. In general, it is an easy matter to 
overcome this problem. For example, one can require that every equivalence class 
have at least C × N trials, where C is a small positive number. 

In poker, the bootstrapping problem has a natural solution. One can systematically 
sample the hole cards for player 1 on even trials, and systematically sample the hole 
cards for player 2 on odd trials. On each trial, the hole cards for one player are sys-
tematically sampled, and the hole cards for the other player are randomly sampled. 
Random sampling of the hole cards for the other player guarantees a minimum level 
of coverage. 

This technique has not been implemented and verified, so there are no results to 
report. 

6   Time Control 

At the start of a turn, a program can budget a number of iterations that it expects to 
complete. While the simulation is underway, the program will collect additional in-
formation, which may suggest altering the initial allocation. In this section we will 
consider three reasons for reducing search effort, viz. by obvious moves (in 6.1), by 
minimal differences (in 6.2), and by a search bound (in 6.3). 

6.1   Obvious Moves 

If one move stands out, then you can terminate the search. A ‘difference of means’ 
test will reveal when a move is forced. MAVEN employs a “six sigma” standard for 
permanently pruning moves, and if all moves are pruned then MAVEN declares that 
the decision is “obvious.” The six-sigma standard was selected because numerical 
precision limitations prevent calculating one-tailed standard normal tests when sigma 
exceeds 6. 

In practice, this terminates about 25 per cent of the simulations in a Scrabble game. 
As computers become faster, this fraction will rise. Each quadrupling of CPU speed is 
sufficient to halve the sigma of a simulation, so in a few years only genuinely close 
decisions will simulate for the full time limit. 
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6.2   Minimal Difference 

It may also happen that two moves are so close together that it is impossible to distin-
guish them. This often happens in Scrabble. For example, if you can play BOARD or 
BROAD in the same spot and for the same score, then there might not be a hair’s dif-
ference between them. Actually, in this case the variance of the difference will also be 
very small, so the search may terminate because of a difference of means test. 

There may be other reasons for having minimal differences. It may be that the po-
sition transposes after two plies, so the future is the same, or it may be that both 
moves pay off to the same continuations. 

6.3   Search Bound 

Near the end of a simulation, the leading move may be uncatchable by any other 
move within the available number of iterations. That move may have a small advan-
tage, but if the program has only a small number of continuations remaining to simu-
late, then the advantage may be insurmountable within the time limit. 

7   Selecting a Sample Move 

The inner loop of a simulation plays out a continuation after a move (see line 3c in 
Section 2). This gives us the opportunity to select both a move and a continuation. In 
general, the sequence of continuations that the simulation should pursue is fixed in 
advance. In this section we discuss a dynamic continuation selection (in 7.1), a dy-
namic move selection (in 7.2) and provide an example of dynamic move selection (in 
7.3). 

7.1   Dynamic Continuation Selection 

We mention as a possibility that the continuations can be selected dynamically instead 
of following a fixed sequence. We do not know of any program that actually operates 
this way, and it is not immediately clear how to make this work. Many of our other 
ideas depend on maintaining comparability across continuations, which is difficult 
when the order of continuations varies across moves. 

7.2   Dynamic Move Selection 

Think of a simulation as having a fixed set of continuations 1, 2, 3, … C. We also 
have a fixed list of moves 1, 2, 3, … M. A simulation that runs to exhaustion needs M 
× C trials. But if we observe what happens in the early trials, then we can shift atten-
tion to moves that show the greatest chance of being better than the move that is cur-
rently ranked best. This heuristic focuses on moves that may have high potential of 
being best. In Scrabble, there are usually only a handful of good moves, and therefore 
the simulation runs in time that is linear in C + M. 

Between each trial, the program should sort the moves according to the probability 
of being better than the move that is currently considered best. Let us introduce some 
notation to make this precise. Let the outcome of move M after continuation C be 
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E(M, C). Let the move ranked best be M = 0. Then one estimate of the difference be-
tween move M and move 0 is the mean of E(0, C) – E(M, C) over all continuations C 
for which we have outcomes for both move M and move 0. We can also compute the 
standard deviations of E(0, C) – E(M, C), and then rank the moves in increasing order 
of mean / sigma. Moves preferred by this metric are more likely to surpass the top-
ranked move, so it makes sense to spend extra effort on them. MAVEN’s simulations 
show that the vast majority of effort goes to only 2 to 3 moves, even when 100 moves 
are simulated. 

Note that this trick works best when every continuation is feasible after every 
move. This is generally the case in games with hidden information, because the first 
move in such a game is to select hidden information for the opponent, and that selec-
tion cannot depend on our move. 

Of course, we need some policies that guarantee that we make progress. Progress is 
guaranteed if search would ultimately force every move to be searched. For the tail-
end moves, it is sufficient to use an epsilon-greedy strategy. The best move poses a 
different problem: the selection heuristic above never proposes that we spend any ef-
fort on the best move itself! Accordingly, MAVEN imposes a practical rule: the best 
move must always have at least as many trials as any move. 

Thus, we should begin by simulating all of the moves for at least a few iterations 
apiece, so that the standard deviations of the differences E(0, C) – E(M, C) are de-
fined. 

Moreover, we need a special case to cover the possibility of two essentially identi-
cal moves, which could result in a standard deviation of zero, and then a division by 
zero. More generally, if two moves are sufficiently close, in the sense of having a 
very small standard deviation of E(0, C) – E(M, C) then it is possible for those two 
moves to freeze out the rest of the list (except for moves chosen by epsilon-greedy) if 
the two happen to be the first-ranked and second-ranked moves. MAVEN’s approach is 
to regard such a move as “co-leaders.” This means that (a) whenever MAVEN simu-
lates one of these moves then it simulates the other, and (b) such moves are never 
considered to be second best. 

7.3   Example of Dynamic Move Selection 

Dynamic move selection is the most powerful method in this article, so an example is 
in order (see Table 2). The data was collected from a Scrabble game. MAVEN simu-
lated 20 moves, using an evaluation function that estimated winning percentage. 

At the end of the simulation, MAVEN had given the moves widely varying numbers 
of trials, as shown by the column labeled “Trials”. In this position, three moves mer-
ited almost equal attention: GOOMBAH, HOMAGE, and GOMBO. Had all 20 
moves been simulated for the maximum 2353 trials, there would have been 47060 tri-
als. The actual simulation needed less than 1/5 as many: 9381 altogether. Of course, 
had all 20 moves been simulated for 2353 iterations then the simulation would have 
had a lower error rate. But only barely, imperceptibly lower, since all of the best 
moves received a full quota of trials. 

The column labeled “Error” represents the amount of equity that was lost by termi-
nating search. This is estimated from the standard normal scores at the point when 
simulation stopped. Note that the amounts are very small, totaling less than 1 game in 
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2000. That is, this simulation estimates that playing GOOMBAH results in a loss of 
equity of about 0.0005 compared to perfect play of this position. This loss arises be-
cause of statistical uncertainty concerning simulation results. 

Moreover, we note that the values in the Error column are almost all approximately 
equal. The algorithm that distributes trials causes this. By selecting to simulate the 
move with the highest Error value, the algorithm drives down the highest member of 
this column. It keeps the simulation on a nearly optimal path to reduction in error. 

There is one notable exception to the pattern. HOMAGE has an estimated Error 
that is 200 times greater than the other moves. How did that happen? At an earlier 
point in the simulation, HOMAGE appeared to be significantly worse than it does 
now, with an Error value in the same range as the other moves. At that point, 
HOMAGE went on a streak of good results that distinguished it from the other plays.4 
The large value of Error reflects 
those recent good results. 

The simulation stopped with 
HOMAGE having 2248 trials 
compared to GOOMBAH’s 
2353. Given the good results 
that HOMAGE has achieved, it 
is probably the second-best 
move, if not the best. If simula-
tion had continued, then 
HOMAGE would soon receive 
2353 trials, at which point the 
simulation would continue by 
alternating trials to GOOMBAH 
and HOMAGE until the Error 
value of the lesser of the two 
dropped below 0.0000020, 
whereupon attention would go 
back to GOMBO and the other 
moves. 

We note that every move has 
received at least 29 iterations. 
This simulation ran using 8 as 
the minimum number of trials. 
The fact that every move has re-
ceived more than 8 trials sug-
gests that the simulation should 
have admitted more moves. One 
possible dynamic strategy is to 
add new moves to the simula-

                                                           
4  You can see the advantage of not pruning any moves. What if HOMAGE had been pruned 

before its hot streak? Dynamic move selection never permanently prunes a move. The six-
sigma time control algorithm does prune moves, but only when the evidence is incontro-
vertible. 

Table 2. Data for dynamic move selection 
 

Word P(Win) Error Trials 

GOOMBAH 0.616 - 2353

HOMAGE 0.615 0.0004573 2248 

GOMBO 0.611 0.0000020 2353 

GABOON 0.609 0.0000020 713 

BEHOOF 0.607 0.0000017 640 

GENOA 0.594 0.0000018 185 

BOGAN 0.592 0.0000019 29 

BAH 0.590 0.0000012 131 

BEGORAH 0.587 0.0000013 29 

HOAGY 0.584 0.0000018 114 

GOBAN 0.583 0.0000018 52 

BOON 0.582 0.0000012 38 

OHMAGE 0.581 0.0000012 38 

GOBO 0.581 0.0000012 33 

BEANO 0.581 0.0000019 33 

GABOON 0.580 0.0000020 97 

ABMHO 0.579 0.0000020 90 

ABOON 0.577 0.0000013 58 

BOOGY 0.577 0.0000019 71 

OOH 0.57 0.0000018 76 
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tion wherever every move in the simulation has, say, 20 iterations. Such a rule would 
dynamically scale the move list so as to use additional time to reduce the error rate at 
near optimal trajectories. 

Finally, we note that the results of infrequently simulated moves are very uncer-
tain. For example, OOH received only 76 trials. The standard deviation of the differ-
ence GOOMBAH – OOH is about 3.5 points. This is really poor accuracy. However, 
the mean of GOOMBAH – OOH is estimated as 12.1 points, which is 3.5 standard 
deviations. Accordingly, while we do not really know the value of OOH, we can be 
quite sure that GOOMBAH is a better play. 

8   Evaluating the End Result 

Simulated continuations eventually end, and then the end result should be evaluated. 
There are several approaches. Below we discuss the three most important ones, i.e., 
play to the end (in 8.1),  heuristic evaluation (in 8.2), and compensation (in 8.3). 

8.1   Play to the End 

In the ideal case, a program can simulate continuations until it hits a terminal node. 
Then the evaluation is easy. For instance, in Scrabble, the program simply has to 
compare the points scored by both sides. But even here the program can have trouble. 
For example, in Go it can be difficult to know when the game is over. You can have 
seki, for example, in which the player that moves first will lose a group, so the proper 
play is to pass. Unfortunately, detecting seki is computationally expensive, and a bet-
ter policy maybe to continue games until statically safe eyes are found. Playing to the 
end is the indicated method if (1) it is computationally feasible, and (2) if the game is 
guaranteed to end, and (3) a heuristic evaluation of middle-game positions is slower 
or inaccurate. 

8.2   Heuristic Evaluation 

Heuristic evaluation is often the best alternative, since playing to the end of the game 
is in most cases impractical. There is just one cautionary note. It is very important for 
heuristic evaluations to be comparable across all continuations considered by the pro-
gram. This can be awkward in cases of early termination. For example, assume that a 
program has a heuristic evaluation function that measures progress towards a goal. 
The evaluation from one variation may be “need three more moves.” Then, another 
branch may terminate early, resulting in the evaluation “the program wins.” How do 
you average these outcomes? Below we provide an example of a heuristic evaluation 
for a non-deterministic strategy in Hold’em (see 8.2.1). 

8.2.1   Accounting for Non-deterministic Strategy in Hold’em  
The representation of the Hold’em strategy in terms of probability triples (Fold, Call, 
Bet) creates an attractive opportunity for the heuristic evaluation function. When a 
player decides to fold, the experimental trial is treated as though he folds 100 per cent 
of the time, whereas he actually folds only with some probability. In truth, the prob-
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abilities selected are quite often 1.0, that is, the strategies are pure. Still, there is a per-
centage of mixed strategy, and it would be a shame not to exploit that. 

When a mixed strategy includes a non-zero probability of folding, we can credit 
the opponent with the pot with that probability, and then carry on the rest of the game 
(which may include further non-determinism). This trick applies only to two-player 
games, and thus it appears that it cannot be used in a normal 10-player Hold’em 
game. However, generalizations of the same idea are applicable. For instance, the 
trick can be used when all but two players have folded. Many pots in Hold’em even-
tually come down to two players, so the trick would apply to some degree even in a 
10-player game. Another example involves simulations where you only wish to 
measure the equity of a single player. Such a situation arises when simulations are 
used to select betting strategies, as only the equity of the bettor matters [2]. 

Another refinement of the same idea is to sample non-deterministically a final call. 
When a strategy gives both Call and Raise as an option, and the Call strategy would 
end the game, then we can settle the game under the Call strategy, and continue the 
game under the Raise strategy. 

The author’s experimental poker environment requires significant reorganization 
before this complex experiment can be carried out. It seems particularly interesting in 
conjunction with other methods. Consider two engines that differ only in some rare 
aspect of play. Simulations would not normally be able to detect such differences, be-
cause they do not occur often enough to stand out above statistical noise. But assume 
that the simulation used duplicate trials, with duplicate random number generators. In 
that case, two engines would always agree except in those cases where they differ, 
and the simulation would correctly find no differences in those cases. If the simula-
tions also sampled cases that have a higher variance, then the focus would go to re-
gions of the search space where differences were found. Finally, if the simulation ac-
counted for non-determinism, then in case the two engines differed we would see the 
real effect of those differences, even if the only change were a small shift in  
probabilities. 

It may be that two very similar programs can be tested more directly. For instance, 
you could create a test bed of situations where they disagree on the strategy, and then 
measure the disagreements. But that only works if you can characterize the differ-
ences. In many situations, particularly where automatic tuning is involved, all we 
know is that the engines are similar. Having a combination of techniques that auto-
matically identified differences would be a huge boost to the productivity of research. 

8.3   Compensation 

If you can determine whether a continuation is better or worse than average, then a 
remarkable opportunity may be available to the program. Backgammon researchers, 
who have the benefit of excellent evaluation functions, developed this method. The 
idea is to correct for the “luck of the draw” by adjusting the outcomes of continua-
tions for the effects of fortune. Below I will elaborate on this issue. 

Compensation is important enough that I will give four examples, viz. Backgam-
mon rollouts (in 8.3.1), Backgammon races (in 8.3.2), Scrabble simulations (in 8.3.3), 
and reducing variance of uncontrolled sequences (in 8.3.4). The first example is the 
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original idea, which I believe is due to Fredrik Dahl (JELLYFISH), but does not appear 
to be described in the literature. Other examples are from the author’s research. 

8.3.1   Backgammon Rollouts 
Backgammon engines use the term ‘variance reduction’ for the concept called com-
pensation. In a Backgammon rollout “with variance reduction” the engine’s evalua-
tion function (which is presumed to be unbiased) is used to compensate for the effect 
of luck. This is a very effective compensation factor. Compensation is most beneficial 
in situations where the evaluation function is well tuned, but it is highly beneficial in 
every case. Variance-reduced rollouts are frequently two to four times as fast as 
Monte-Carlo rollouts. 

When a Backgammon engine chooses moves in rollouts using at least a 2-ply 
search, then they can use compensation. Backgammon engines often count plies of 
search in peculiar ways, so I should describe what I mean. A 2-ply search consists of 
(1) generating the legal moves for the roll that a player has to play, and (2) evaluating 
each alternative by generating all 21 different rolls for the opponent and by averaging 
a static evaluation of the best opponent’s reply for each roll. This accounting of search 
depth is consistent with conventions used in other games, though I have seen it called 
“1-ply” in Backgammon writing. Notice that when a Backgammon engine uses a 2-
ply search, it generates an evaluation of each possible opponent’s roll. This is very 
useful, because the next thing that happens in the rollout is that the opponent will ran-
domly select a roll. It follows that a 2-ply (or deeper) search generates all of the in-
formation needed to estimate the extent to which the opponent’s roll exceeded expec-
tations. The sequence of amounts by which rolls exceed expectations can be summed 
and used to offset the outcome of the game. 

8.3.2   Backgammon Races  
Backgammon evaluation functions are very accurate, which is enormously helpful 
when trying to correct for the effects of luck. But it is not necessary to be tremen-
dously accurate. 

The basic idea is to offset the luck of the dice. That is, instead of computing the 
sum of the trials, we compute the sum of the trials and subtract a value that represents 
the quality of the rolls. We will call this term a compensator. A compensator will re-
duce variance if it satisfies the following three conditions. 

1. It has mean zero when averaged over all possible continuations. This is required so 
that subtracting the compensator does not bias the mean. 

2. It correlates well to the quality of the draw. To ensure that it can compensate for 
the luck of the draw. 

3. It has roughly the same magnitude as wins and losses. This requirement ensures 
that variance will be cancelled, rather than be magnified. 

A typical compensator will evaluate all possible outcomes at the point of a random 
choice, and determine a distribution of outcomes at that point. The actual outcome is 
offset by its evaluation within the list. The author believes that this is the first publica-
tion that states the sufficiency of these conditions. In this section I will present an ex-
ample that shows that a program does not need to have a particularly good evaluation 
function in order to reduce variance. The domain is racing positions in Backgammon. 



18 B. Sheppard 

The occurrence of 6-6 or 5-5 at any time in a race is a huge swing. A program can 
control the frequency of such rolls early in the rollout, but beyond the first few ply 
there are not enough trials to fill a random distribution. Nevertheless, the program can 
compensate for the impact of the dice on races. 

Here is how it works: a program has an evaluation function that roughly measures 
the effect of any roll on the race. The evaluation does not have to be sophisticated, as 
long as it is unbiased. That is, the program simply needs the expected sum of the 
evaluation to be zero and the evaluation to be positively correlated with the effect of 
the roll. The program might take the evaluation to be C × (pip-count – 8.166666), 
where C is a small positive parameter, and the magic number 8.166666 is chosen to 
make the evaluation unbiased. Every time a roll occurs, subtract this evaluation from 
the outcome of the simulated continuation. Big rolls will help a player to win the race, 
but they will also be offsets against the outcome. 

The program can experimentally choose the parameter C to maximize the stability 
of rollouts. Alternatively, based on the expert rule of thumb that having a lead equal 
to 10 per cent of your pip count is equivalent to a 75 per-cent chance of victory, it is 
possible to choose C as a function of the lead in the game, which should achieve 
nearly the same degree of variance reduction as you would achieve using a neural-
network evaluation function, but with much better speed. 

8.3.3   Scrabble Simulations  
In Scrabble, the only tiles that a program can force into a known distribution are the 
opponent’s tiles. The tiles that the side-to-move will draw after its turn are a function 
of the tiles that the opponent receives, so they cannot be controlled independently. 
Even though those tiles cannot be forced to conform to a fixed distribution, they can 
be controlled by compensation. 

MAVEN contains a table that represents the first-order impact of a tile on scoring. It 
contains facts such as “Holding an S increases the score by 7.75 points.” Such first-
order values were estimated by simulations, and the values are widely applicable. We 
can use these estimates to adjust the scores of variations, by offsetting the point dif-
ferentials of continuations by subtracting the first-order value of the tiles drawn by 
both sides. 

The effect of this adjustment is fairly minor for the opponent’s tiles, since the tiles 
are controlled through selective sampling and duplicate continuations. But for the fu-
ture racks of the side to move, or if simulations extend beyond two ply of lookahead, 
then such adjustments can reduce the variance by a substantial amount. My data is 
somewhat speculative, since I have not implemented this feature in MAVEN and I 
therefore have no direct measurements. I have indirect data from counting the tiles in 
a small sample of human expert games. That data suggests that the first-order quality 
of one’s tiles explains at least 70 per cent of the variance in scoring. Accordingly, for 
long-range simulations that encompass many turns, I would expect a substantial re-
duction in variance by this adjustment. For the short-range, 2-ply simulations that 
MAVEN actually uses to select moves, I expect the effect to be small. 

8.3.4   Reducing Variance of Uncontrolled Sequences  
All of the techniques described thus far reduce variance by controlling the cards or 
randomness of the simulation. Such techniques are not always available. One impor-



 Efficient Control of Selective Simulations 19 

tant example is when measuring the quality of a program’s play in games against 
Internet players. In such cases, the server distributes cards, and other players will not 
allow a person to control how it is done! Billings, Davidson, Schaeffer, and Szafron 
[4] remarked: “Since no variance reduction methods are available for online games, 
we generally test new algorithms for a minimum of 20,000 hands before interpreting 
the results.” However, while it is true that a person or program cannot control the 
cards, there are still techniques for reducing variance. 

First, one can apply class weighting. This simple technique attacks the variance 
caused by unequal distributions of hole cards. The drawback of class weighting (loss 
of information) is lessened when a lot of data is available. 

But the real opportunity is compensation. In poker games, a suitable compensator 
is all-in equity. All-in equity is calculated by assuming that all current players will 
call for the rest of the game. It is easy to verify that all-in equity satisfies the condi-
tions given above. Any expert computer program typically computes all-in equity, so 
there is no run-time implication of this technique. 

In my implementation, each trial is compensated by the all-in equity of the hole 
cards only. Note that this technique is redundant when using duplicate trials, because 
the compensator would cancel across trials. No compensation is made for the com-
munity cards. Results should be better if compensation applies throughout the deal. 

Applying this technique to a Monte-Carlo simulation produces a reduction in vari-
ance from 0.251 to 0.153. When this compensator is used in conjunction with dupli-
cate continuations and an enforced uniform distribution of hole cards, the variance is 
reduced to 0.030, equivalent to a 70-fold speedup. 

9   Summary 

Selective search control is an effective tool in many domains of current interest. In 
suitable domains, selective simulation uses a large amount of CPU power to leverage 
a small amount of skill into a large amount of skill. The trick is to make the CPU bur-
den manageable. 

The methods described in this paper can go a long way towards reducing the CPU 
cost. The author suspects that some of these ideas are so obvious that they have been 
discovered many times, yet they do not appear to be described in the literature. It is 
our hope that by gathering these ideas into one source, we may eliminate the need to 
rediscover them in the future. 
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