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Abstract. We study scheduling problems in battery-operated comput-
ing devices, aiming at schedules with low total energy consumption.
While most of the previous work has focused on finding feasible schedules
in deadline-based settings, in this paper we are interested in schedules
that guarantee good response times. More specifically, our goal is to
schedule a sequence of jobs on a variable speed processor so as to min-
imize the total cost consisting of the power consumption and the total
flow time of all the jobs. We first show that when the amount of work,
for any job, may take an arbitrary value, then no online algorithm can
achieve a constant competitive ratio. Therefore, most of the paper is
concerned with unit-size jobs. We devise a deterministic constant com-
petitive online algorithm and show that the offline problem can be solved
in polynomial time.

1 Introduction

Embedded systems and portable devices play an ever-increasing role in every
day life. Prominent examples are mobile phones, palmtops and laptop computers
that are used by a significant fraction of the population today. Many of these
devices are battery-operated so that effective power management strategies are
essential to guarantee a good performance and availability of the systems. The
microprocessors built into these devices can typically perform tasks at different
speeds – the higher the speed, the higher the power consumption is. As a result,
there has recently been considerable research interest in dynamic speed scaling
strategies; we refer the reader to [1, 2, 3, 7, 10, 13] for a selection of the papers
that have been published in algorithms conferences.

Most of the previous work considers a scenario where a sequence of jobs,
each specified by a release time, a deadline and an amount of work that must
be performed to complete the task, has to be scheduled on a single processor.
The processor may run at variable speed. At speed s, the power consumption is
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P (s) = sα per time unit, where α > 1 is a constant. The goal is to find a feasible
schedule such that the total power consumption over the entire time horizon is
as small as possible. While this basic framework gives insight into effective power
conservation, it ignores the important aspect that users typically expect good
response times for their jobs. Furthermore, in many computational systems, jobs
are not labeled with deadlines. For example, operating systems such as Window
and Unix installed on laptops do not employ deadline-based scheduling.

Therefore, in this paper, we study algorithms that minimize energy usage
and at the same time guarantee good response times. In the scientific literature,
response time is modeled as flow time. The flow time of a job is the length of
the time interval between the release time and the completion time of the job.
Unfortunately, energy minimization and flow time minimization are orthogonal
objectives. To save energy, the processor should run at low speed, which yields
high flow times. On the other hand, to ensure small flow times, the processor
should run at high speed, which results in a high energy consumption. In or-
der to overcome this conflict, Pruhs et al. [10] recently studied the problem of
minimizing the average flow time of a sequence of jobs when a fixed amount
of energy is available. They presented a polynomial time offline algorithm for
unit-size jobs. However, it is not clear how to handle the online scenario where
jobs arrival times are unknown.

Instead, in this paper, we propose a different approach to integrate energy
and flow time minimization: We seek schedules that minimize the total cost con-
sisting of the power consumption and the flow times of jobs. More specifically,
a sequence of jobs, each specified by an amount of work, arrives over time and
must be scheduled on one processor. Preemption of jobs is not allowed. The goal
is to dynamically set the speed of the processor so as to minimize the sum of
(a) the total power consumption and (b) the total flow times of all the jobs. Such
combined objective functions have been studied for many other bicriteria opti-
mization problems with orthogonal objectives. The papers [5, 8], e.g., consider a
TCP acknowledgement problem, minimizing the sum of acknowledgement costs
and acknowledgement delays incurred for data packets. In [6] the authors study
network design and minimize the total hardware and QoS costs. More generally,
in the classical facility location problem, one minimizes the sum of the facility
installation and total client service costs, see [4, 9] for surveys.

For our energy/flow-time minimization problem, we are interested in both
online and offline algorithms. Following [11], an online algorithm A is said to be
c-competitive if there exists a constant a such that, for all job sequences σ, the
total cost A(σ) satisfies A(σ) ≤ c · OPT(σ) + a, where OPT(σ) is the cost of an
optimal offline algorithm.

Previous work: In their seminal paper, Yao et al. [13] introduced the basic
problem of scheduling a sequence of jobs, each having a release time, a deadline
and a certain workload, so as to minimize the energy usage. Here, preemption of
jobs is allowed. Yao et al. showed that the offline problem can be solved optimally
in polynomial time and presented two online algorithms called Average Rate and
Optimal Available. They analyzed Average Rate, for α ≥ 2, and proved an upper
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bound of 2ααα and a lower bound of αα on the competitiveness. Bansal et al. [2]
studied Optimal Available and showed that its competitive ratio is exactly αα.
Furthermore, they developed a new algorithm that achieves a competitiveness
of 2(α/(α − 1))αeα and proved that any randomized online algorithm has a
performance ratio of at least Ω((4/3)α).

Irani et al. [7] studied an extended scenario where the processor can be put into
a low-power sleep state when idle. They gave an offline algorithm that achieves
a 3-approximation and developed a general strategy that transforms an online
algorithm for the setting without sleep state into an online algorithm for the
setting with sleep state. They obtain constant competitive online algorithms, but
the constants are large. For the famous cube root rule P (s) = s3, the competitive
ratio is 540. The factor can be reduced to 84, see [2]. Settings with several
sleep states were considered in [1]. Speed scaling to minimize the maximum
temperature of a processor was addressed in [2, 3].

As mentioned above, Pruhs et al. [10] study the problem of minimizing the
average flow time of jobs given a fixed amount of energy. For unit-size jobs,
they devise a polynomial time algorithm that simultaneously computes, for each
possible energy level, the schedule with smallest average flow time.

Our contribution: We investigate the problem of scheduling a sequence of n
jobs on a variable speed processor so as to minimize the total cost consisting of
the power consumption and the flow times of jobs. We first show that when the
amount of work, for any job, may take an arbitrary value, then any determin-
istic online algorithm has a competitive ratio of at least Ω(n1−1/α). This result
implies that speed scaling does not help to overcome bad scheduling decisions:
It is well-known that in standard scheduling, no online algorithm for flow time
minimization can be better than Ω(n)-competitive. Our lower bound, allowing
speed scaling, is almost as high.

Because of the Ω(n1−1/α) lower bound, most of our paper is concerned with
unit-size jobs. We develop a deterministic phase-based online algorithm that
achieves a constant competitive ratio. The algorithm is simple and requires
scheduling decisions to be made only every once in a while, which is advan-
tageous in low-power devices. Initially, the algorithm computes a schedule for
the first batch of jobs released at time 0. While these jobs are being processed,
the algorithm collects the new jobs that arrive in the meantime. Once the first
batch of jobs is finished, the algorithm computes a schedule for the second batch.
This process repeats until no more jobs arrive. Within each batch the processing
speeds are easy to determine. When there are i unfinished jobs in the batch,
the speed is set to α

√
i/c, where c is a constant that depends on the value

of α. We prove that the competitive ratio of our algorithm is upper bounded
by 8.3e(1 + Φ)α, where Φ = (1 +

√
5)/2 ≈ 1.618 is the Golden Ratio. We re-

mark that a phase-based scheduling algorithm was also used in makespan min-
imization on parallel machines [12]. However, for our problem, the scheduling
strategy within the phases and the analysis techniques employed are completely
different.
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Furthermore, in this paper we develop a polynomial time algorithm for com-
puting an optimal offline schedule. We would like to point out that we could use
the algorithm by Pruhs et al. [10], but this would yield a rather complicated al-
gorithm for our problem. Instead, we design a simple, direct algorithm based on
dynamic programming. Our approach can also be used to address the problem
of Pruhs et al., i.e. we are able to determine a schedule with minimum flow time
given a fixed amount of enery. This can be seen as an additional advantage of
our new objective function.

2 Preliminaries

Consider a sequence of jobs σ = σ1, . . . , σn which are to be scheduled on one
processor. Job σi is released at time ri and requires pi CPU cycles. We assume
r1 = 0 and ri ≤ ri+1, for i = 1, . . . , n − 1. A schedule S specifies, for each
job σi, a time interval Ii and a speed si such that σi is processed at speed si

continuously, without interruption, throughout Ii. Let P (s) = sα be the power
consumption per time unit of the CPU depending on s. The constant α > 1
is a real number. As P (s) is convex, we may assume w.l.o.g. that each σi is
processed at a constant speed si. A schedule S is feasible if, for any i, interval
Ii starts no earlier than ri, and the processing requirements are met, i.e. pi =
si|Ii|. Here |Ii| denotes the length of Ii. Furthermore, in a feasible schedule
S the intervals Ii must be non-overlapping. The energy consumption of S is
E(S) =

∑n
i=1 P (si)|Ii|. For any i, let ci be the completion time of job i, i.e. ci

is equal to the end of Ii. The flow time of job i is fi = ci − ri and the flow time
of S is given by F (S) =

∑n
i=1 fi. We seek schedules S that minimize the sum

g(S) = E(S) + F (S).

3 Arbitrary Size Jobs

We show that if the jobs’ processing requirements may take arbitrary values,
then no online algorithm can achieve a bounded competitive ratio. The proof of
the following theorem is omitted due to space constraints.

Theorem 1. The competitive ratio of any deterministic online algorithm is
Ω(n1−1/α) if the processing requirements p1, . . . , pn may take arbitrary values.

4 An Online Algorithm for Unit-Size Jobs

In this section we study the case that the processing requirements of all jobs are
the same, i.e. pi = 1, for all jobs. We develop a deterministic online algorithm
that achieves a constant competitive ratio, for all α. The algorithm is called
Phasebal and aims at balancing the incurred power consumption with the gen-
erated flow time. If α is small, then the ratio is roughly 1 : α − 1. If α is large,
then the ratio is 1 : 1. As the name suggests, the algorithm operates in phases.
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Let n1 be the number of jobs that are released initially at time t = 0. In the first
phase Phasebal processes these jobs in an optimal or nearly optimal way, ignor-
ing jobs that may arrive in the meantime. More precisely, the speed sequence for
the n1 jobs is α

√
n1/c, α

√
(n1 − 1)/c, . . . , α

√
1/c, i.e. the j-th of these n1 jobs is

executed at speed α
√

(n1 − j + 1)/c for j = 1, . . . , n1. Here c is a constant that
depends on α. Let n2 be the number of jobs that arrive in phase 1. Phasebal
processes these jobs in a second phase. In general, in phase i Phasebal schedules
the ni jobs that arrived in phase i−1 using the speed sequence α

√
(ni − j + 1)/c,

for j = 1, . . . , ni. Again, jobs that arrive during the phase are ignored until the
end of the phase. A formal description of the algorithm is as follows.

Algorithm Phasebal: If α < (19 +
√

161)/10, then set c := α − 1; otherwise
set c := 1. Let n1 be the number of jobs arriving at time t = 0 and set i = 1.
While ni > 0, execute the following two steps: (1) For j = 1, . . . , ni, process the
j-th job using a speed of α

√
(ni − j + 1)/c. We refer to this entire time interval

as phase i. (2) Let ni+1 be the number of jobs that arrive in phase i and set
i := i + 1.

Theorem 2. Phasebal has a competitiveness of at most (1+Φ)(1+Φ
α

(2α−1) )(α−1)

αα

(α−1)α−1 min{ 5α−2
2α−1 , 4

2α−1 + 4
α−1}, where Φ = (1 +

√
5)/2 ≈ 1.618.

Before proving Theorem 2, we briefly discuss the competitiveness. We first ob-
serve that αα

(α−1)α−1 ≤ eα. Moreover, α(5α−2)
2α−1 is increasing in α, while 4α

2α−1 + 4α
α−1

is decreasing in α. Standard algebraic manipulations show that the latter two
expressions are equal for α0 = (19 +

√
161)/10. Thus, the competitive ratio is

upper bounded by (1 + Φ)αeα0(5α0−2)
2α0−1 < (1 + Φ)αe · 8.22.

In the remainder of this section we will analyze Phasebal . The global analysis
consists of two cases. We will first address c = 1 and then c = α−1. In each case
we first upper bound the total cost incurred by Phasebal and then lower bound
the cost of an optimal schedule. In the case c = 1 we will consider a pseudo-
optimal algorithm that operates with similar speeds as Phasebal . We will prove
that the cost of such a pseudo-optimal algorithm is at most a factor of 2 away
from the true optimum. In any case we will show that an optimal or pseudo-
optimal algorithm finishes jobs no later than Phasebal . This property will be
crucial to determine the time intervals in which optimal schedules process jobs
and to lower bound the corresponding speeds. These speed bounds will then
allow us to estimate the optimal cost and to finally compare it to the online
cost.

Let t0 = 0 and ti be the time when phase i ends, i.e. the ni jobs released
during phase i − 1 (released initially, if i = 1) are processed in the time interval
[ti−1, ti), which constitutes phase i. Given a job sequence σ, let SPB be the
schedule of Phasebal and let SOPT be an optimal schedule.

Case 1: c = 1 We start by analyzing the cost and time horizon of SPB .
Suppose that there are k phases, i.e. no new jobs arrive in phase k. In phase i
the algorithm needs 1/ α

√
ni − j + 1 time units to complete the j-th job. Thus

the power consumption in the phase is
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ni∑

j=1

( α
√

ni − j + 1)α/ α
√

ni − j + 1 =
ni∑

j=1

(ni − j + 1)1−1/α

≤ α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i .

The length of phase i is

T (ni) =
ni∑

j=1

1/ α
√

ni − j + 1 ≤ α
α−1n

1−1/α
i . (1)

As for the flow time, the ni jobs scheduled in the phase incur a flow time of

ni∑

j=1

(ni − j + 1)/ α
√

ni − j + 1 ≤ α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i ,

while the ni+1 jobs released during the phase incur a flow time of at most ni+1
times the length of the phase. We obtain

g(SPB) ≤
k∑

i=1

( 2α
2α−1 (n2−1/α

i − 1) + 2n
1−1/α
i ) +

k−1∑

i=1

ni+1
α

α−1n
1−1/α
i .

The second sum is bounded by
∑k−1

i=1
α

α−1 max{ni, ni+1}2−1/α≤
∑k

i=1
2α

α−1n
2−1/α
i

and we conclude

g(SPB) ≤ 2
k∑

i=1

( α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i + α

α−1n
2−1/α
i ). (2)

We next lower bound the cost of an optimal schedule. As mentioned before,
it will be convenient to consider a pseudo-optimal schedule SPOPT . This is the
best schedule that satisfies the constraint that, at any time, if there are � active
jobs, then the processor speed is at least α

√
�. We call a job active if it has arrived

but is not yet finished. In the next lemma we show that the objective function
value g(SPOPT ) is not far from the true optimum g(SOPT ).

Lemma 1. For any job sequence, g(SPOPT ) ≤ 2g(SOPT ).

Proof. Consider the optimal schedule g(SOPT ). We may assume w.l.o.g. that in
this schedule the speed only changes when a jobs gets finished of new jobs arrive.
We partition the time horizon of SOPT into a sequence of intervals I1, . . . , Im

such that, for any such interval, the number of active jobs does not change.
Let E(Ii) and F (Ii) be the energy consumption and flow time, respectively,
generated in Ii, i = 1, . . . , m. We have E(Ii) = sα

i δi and F (Ii) = �iδi, where si is
the speed, �i is the number of active jobs in Ii and δi is the length of Ii. Clearly
g(SOPT ) =

∑m
i=1(E(Ii) + F (Ii)).

Now we change SOPT as follows. In any interval Ii with si < α
√

�i we increase
the speed to α

√
�i, incurring an energy consumption of �iδi, which is equal to
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F (Ii) in original schedule SOPT . In this modification step, the flow time of jobs
can only decrease. Because of the increased speed, the processor may run out of
jobs in some intervals. Then the processor is simply idle. We obtain a schedule
whose cost is bounded by

∑m
i=1(E(Ii) + 2F (Ii)) ≤ 2g(SOPT ) and that satisfies

the constraint that the processor speed it at least α
√

� in intervals with � active
job. Hence g(SPOPT ) ≤ 2g(SOPT ). ��

The next lemma shows that in SPOPT jobs finish no later than in SPB .

Lemma 2. For c = 1, in SPOPT the n1 jobs released at time t0 are finished by
time t1 and the ni jobs released during phase i − 1 are finished by time ti, for
i = 2, . . . , k.

Proof. We show the lemma inductively. As for the n1 jobs released at time
t0, the schedule SPOPT processes the j-th of these jobs at a speed of at least
α
√

n1 − j + 1 because there are at least n − j + 1 active jobs. Thus the n1 jobs
are completed no later than

∑n1
j=1 1/ α

√
n1 − j + 1, which is equal to the length

of the first phase, see (1).
Now suppose that jobs released by time ti−1 are finished by time ti and

consider the ni+1 jobs released in phase i. At time ti there are at most these
ni+1 jobs unfinished. Let ni+1 be the actual number of active jobs at that time.
Again, the j-th of these jobs is processed at a speed of at least (ni+1−j+1)1/α so
that the execution of these ni+1 jobs ends no later than

∑ni+1
j=1 (ni+1 − j+1)−1/α

and this sum is not larger than the length of phase i + 1, see (1). ��

Lemma 3. If a schedule has to process � jobs during a time period of length
T ≤ � α

√
α − 1, then its total cost is at least FLAT (�, T ) ≥ (�/T )αT + T .

The proof is omitted.

Lemma 4. For α ≥ 2, there holds g(SPOPT )≥ C1−α(1+Φ)−1(1+Φα/(2α−1))1−α

∑k
i=1 n

2−1/α
i +

∑k
i=1 T (ni), where C = α/(α − 1) and Φ = (1 +

√
5)/2.

Proof. By Lemma 2, for i ≥ 2, the ni jobs arriving in phase i − 1 are finished
by time ti in SPOPT . Thus SPOPT processes these jobs in a window of length at
most T (ni−1)+T (ni). Let T ′(ni) = min{T (ni−1)+T (ni), ni

α
√

α − 1}. Applying
Lemma 3, we obtain that the ni jobs incur a cost of at least

nα
i

(T ′(ni))α−1 + T ′(ni) ≥ nα
i

(T (ni−1) + T (ni))α−1 + T ′(ni)

≥ nα
i

(T (ni−1) + T (ni))α−1 + T (ni).

The last inequality holds because T (ni) ≤ ni ≤ ni
α
√

α − 1, for α ≥ 2 and hence
T ′(ni) ≥ T (ni). Similarly, for the n1 jobs released at time t = 0, the cost it at
least nα

1 /(T (n1))α−1 + T (n1). Summing up, the total cost of SPOPT is at least

nα
1

(T (n1))α−1 +
k∑

i=2

nα
i

(T (ni−1) + T (ni))α−1 +
k∑

i=1

T (ni).
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In the following we show that the first two terms in the above expression are
at least C1−α(1 + Φ)−1(1 + Φα/(2α−1))1−α

∑k
i=1 n2−1/α, which establishes the

lemma to be proven. Since T (ni) ≤ Cn
1−1/α
i , it suffices to show

(1 + Φ)(1 + Φα/(2α−1))α−1

⎛

⎜
⎝

nα
1(

n
1−1/α
1

)α−1 +
k∑

i=2

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

⎞

⎟
⎠

≥
k∑

i=1

n
2−1/α
i . (3)

To this end we partition the sequence of job numbers n1, . . . , nk into subse-
quences such that, within each subsequence, ni ≥ Φα/(2α−1)ni+1. More formally,
the first subsequence starts with index b1 = 1 and ends with the smallest index
e1 satisfying ne1 < Φα/(2α−1)ne1+1. Suppose that l − 1 subsequences have been
constructed. Then the l-st sequence starts at index bl = el−1 + 1 and ends with
the smallest index el ≥ bl such that nel

< Φα/(2α−1)nel+1. The last subsequence
ends with index k.

We will prove (3) by considering the individual subsequences. Since within a
subsequence ni+1 ≤ niΦ

−α/(2α−1), we have n
2−1/α
i+1 ≤ n

2−1/α
i /Φ. Therefore, for

any subsequence l, using the limit of the geometric series

el∑

i=bl

n
2−1/α
i ≤ n

2−1/α
bl

/(1 − 1/Φ) = (1 + Φ)n2−1/α
bl

, (4)

which upper bounds terms on the right hand side of (3). As for the left hand
side of (3), we have for the first subsequence,

(1 + Φ)(1 + Φα/(2α−1))α−1

⎛

⎜
⎝

nα
1(

n
1−1/α
1

)α−1 +
e1∑

i=2

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

⎞

⎟
⎠

≥ (1 + Φ)n2−1/α
1 .

For any other subsequence l, we have

(1 + Φ)(1 + Φα/(2α−1))α−1
el∑

i=bl

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1 nα
bl(

n
1−1/α
bl−1 + n

1−1/α
bl

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1 nα
bl(

(Φ(α−1)/(2α−1) + 1)n1−1/α
bl

)α−1

≥ (1 + Φ)n2−1/α
bl

.
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The second to last inequality holds because nbl−1 and nbl
belong to different

subsequences and hence nbl−1 < Φα/(2α−1)nbl
. The above inequalities together

with (4) imply (3). ��

Lemma 5. For α ≥ 2 and c = 1, the competitive ratio of Phasebal is at most
(1 + Φ)(1 + Φα/(2α−1))(α−1) αα

(α−1)α−1 ( 4
2α−1 + 4

α−1 ).

Proof. Using (2) as well as Lemmas 1 and 4 we obtain that the competitive ratio
of Phasebal is bounded by

(1 + Φ)(1 + Φα/(2α−1))(α−1) 4
∑k

i=1((
α

2α−1 + α
α−1 )n2−1/α

i + n1−1/α)
∑k

i=1((
α

α−1 )1−αn
2−1/α
i + T (ni))

.

Considering the terms of order n2−1/α, we obtain the performance ratio we are
aiming at. It remains to show that n

1−1/α
i /T (ni) does not violate this ratio. Note

that T (ni) ≥ 1. Thus, if n
1−1/α
i ≤ 2 we have

n
1−1/α
i /T (ni) ≤ 2 ≤ 4( α

α−1 )α−1( α
2α−1 + α

α−1 ). (5)

If n
1−1/α
i > 2, then we use the fact that T (ni) =

∑ni

j=1 1/ α
√

ni − j + 1 ≥
α

α−1 ((ni + 1)1−1/α − 1) ≥ 1
2

α
α−1n

1−1/α
i and we can argue as in (5), since (α −

1)/α < 1. ��

Case 2: c = α − 1 The global structure of the analysis is the same as in the
case c = 1 but some of the calculations become more involved. Moreover, with
respect to the optimum cost, we will consider the true optimum rather than the
cost of a pseudo-optimal algorithm.

We start again by analyzing the cost and time of Phasebal . As before we as-
sume that there are k phases. In phase i, Phasebal uses 1/ α

√
(ni − j + 1)/(α − 1)

time units to process the j-th job. This yields a power consumption of

ni∑

j=1

(
ni − j + 1

α − 1

)1−1/α

≤ CE(n2−1/α
i − 1) + (α − 1)1/α−1n

1−1/α
i

with CE = (α−1)
1
α−1 α

2α−1 . The phase length is T (ni) =
∑ni

j=1 1/
(

ni−j+1
α−1

)1/α

.

Here we have

CT ((ni + 1)1−1/α − 1) < T (ni) < CT (n1−1/α
i − 1/α) (6)

with CT = α(α−1)
1
α−1. In phase i the ni jobs processed during the phase incur

a flow time of
ni∑

j=1

(ni − j + 1)/
(

ni − j + 1
α − 1

)1/α

= (α − 1)1/α
ni∑

j=1

(ni − j + 1)1−1/α

≤ CF (n2−1/α
i − 1) + (α − 1)1/αn

1−1/α
i
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with CF = (α − 1)
1
α

α
2α−1 , while the ni+1 jobs arriving in the phase incur a cost

of at most ni+1T (ni). We obtain

g(SPB) ≤ (CE+CF )
k∑

i=1

(n2−1/α
i −1)+2CT

k∑

i=1

n
2−1/α
i +α(α−1)1/α−1

k∑

i=1

n
1−1/α
i .

(7)
We next lower bound the cost of an optimal schedule. Again we call a job

active if it has arrived but is still unfinished. The proofs of the next three lemmas
are omitted.

Lemma 6. There exists an optimal schedule SOPT having the property that,
at any time, if there are � active jobs, then the processor speed is at least
α
√

�/(α − 1).

Lemma 7. For c = α − 1, in SOPT the n1 jobs released at time t0 are finished
by time t1 and the ni jobs released during phase i− 1 are finished by time ti, for
i = 2, . . . , k.

Lemma 8. There holds g(SOPT ) ≥ C1−α
T (1 + Φ)−1(1 + Φα/(2α−1))(1−α)

∑k
i=1 n

2−1/α
i +

∑k
i=1 T (ni), where Φ = (1 +

√
5)/2..

Lemma 9. For c = α − 1, the competitive ratio of Phasebal is at most
(1 + Φ)(1 + Φα/(2α−1))(α−1) αα

(α−1)α−1
5α−2
2α−1 .

Proof. Using (6), (7) and Lemma 8, we can determine the ratio of the online
cost to the optimal offline cost as in Lemma 5. The desired competitive ratio
can then be derived using algebraic manipulations. The calculations are more
involved than in the proof of Lemma 5. Details are given in the full version of
the paper. ��

Theorem 2 now follows from Lemmas 5 and 9, observing that α0 = (19 +√
161)/10 ≥ 2 and that, for α > α0, we have 4

2α−1 + 4
α−1 < 5α−2

2α−1 .

5 An Optimal Offline Algorithm for Unit-Size Jobs

We present a polynomial time algorithm for computing an optimal schedule,
given a sequence of unit-size jobs that is known offline. Our algorithm is based
on dynamic programming and constructs an optimal schedule for a given job
sequence σ by computing optimal schedules for subsequences of σ. A schedule
for σ can be viewed as a sequence of subschedules S1, S2, . . . , Sm, where any Sj

processes a subsequence of jobs j1, . . . , jk starting at time rj1 such that ci > ri+1
for i = j1, . . . , jk − 1 and cjk

≤ rjk+1. In words, jobs j1 to jk are scheduled
continuously without interruption such that the completion time of any job i is
after the release time of job i+1 and the last job jk is finished no later than the
release time of job jk + 1. As we will prove in the next two lemmas, the optimal
speeds in such subschedules Sj can be determined easily. For convenience, the
lemmas are stated for a general number n of jobs that have to be scheduled in
an interval [t, t′). The proofs are omitted.
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Lemma 10. Consider n jobs that have to be scheduled in time interval [t, t′)
such that r1 = t and rn < t′. Suppose that in an optimal schedule ci > ri+1, for
i = 1, . . . , n − 1. If t′ − t ≥

∑n
i=1

α
√

(α − 1)/(n − i + 1), then the i-th job in the
sequence is executed at speed si = α

√
(n − i + 1)/(α − 1).

Lemma 11. Consider n jobs that have to be scheduled in time interval [t, t′)
such that r1 = t and rn < t′. Suppose that in an optimal schedule ci > ri+1,
for i = 1, . . . , n − 1. If t′ − t <

∑n
i=1

α
√

(α − 1)/(n − i + 1), then the i-th job in
the sequence is executed at speed si = α

√
(n − i + 1 + c)/(α − 1), where c is the

unique value such that
∑n

i=1
α
√

(α − 1)/(n − i + 1 + c) = t′ − t.

Of course, an optimal schedule for a given σ need not satisfy the condition that
ci > ri+1, for i = 1, . . . , n − 1. In fact, this is the case if the speeds specified
in Lemmas 10 and 11 do not give a feasible schedule, i.e. there exists an i such
that ci =

∑i
j=1 tj ≤ ri+1, with ti = 1/si and si as specified in the lemmas.

Obviously, this infeasibility is easy to check in linear time.
We are now ready to describe our optimal offline algorithm, a pseudo-code

of which is presented in Figure 1. Given a jobs sequence consisting of n jobs,
the algorithm constructs optimal schedules for subproblems of increasing size.
Let P [i, i + l] be the subproblem consisting of jobs i to i + l assuming that
the processing may start at time ri and must be finished by time ri+l+1, where
1 ≤ i ≤ n and 0 ≤ l ≤ n − i. We define rn+1 = ∞. Let C[i, i + l] be the cost
of an optimal schedule for P [i, i + l]. We are eventually interested in C[1, n]. In
an initialization phase, the algorithm starts by computing optimal schedules for
P [i, i] of length l = 0, see lines 1 to 3 of the pseudo-code. If ri+1 − ri ≥ α

√
α − 1,

then Lemma 10 implies that the optimal speed for job i is equal to α
√

1/(α − 1).
If ri+1 − ri < α

√
α − 1, then by Lemma 11 the optimal speed is 1/(ri+1 − ri).

Note that this value can be infinity if ri+1 = ri. The calculation of C[i, i] in
line 3 will ensure that in this case an optimal schedule will not complete job i
by ri+1.

Algorithm Dynamic Programming
1. for i := 1 to n do
2. if ri+1 − ri ≥ α

√
α − 1 then S[i] := α

√
1/(α − 1) else S[i] := 1/(ri+1 − ri);

3. C[i, i] := (S[i])α−1 + 1/S[i];
4. for l := 1 to n − 1 do
5. for i := 1 to n − l do
6. C[i, i + l] := mini≤j<i+l{C[i, j] + C[j + 1, i + l]};
7. Compute an optimal schedule for P [i, i + l] according to Lemmas 10 and 11

assuming cj > rj+1 for j = i, . . . , i + l − 1 and let si, . . . , si+l be the
computed speeds;

8. if schedule is feasible then C :=
∑i+l

j=i sα−1
j +

∑i+l
j=i(i + l − j + 1)/sj

else C := ∞;
9. if C < C[i, i + l] then C[i, i + l] := C and S[j] := sj for j = i, . . . , i + l;

Fig. 1. The dynamic programming algorithm



632 S. Albers and H. Fujiwara

After the initialization phase the algorithm considers subproblems P [i, i + l]
for increasing l. An optimal solution to P [i, i + l] has the property that either
(a) there exists an index j with j < i+ l such that cj ≤ rj+1 or (b) cj > rj+1 for
j = i, . . . , i + l − 1. In case (a) an optimal schedule for P [i, i + l] is composed of
optimal schedules for P [i, j] and P [j + 1, i + l], which is reflected in line 6 of the
pseudo-code. In case (b) we can compute optimal processing speeds according to
Lemmas 10 and 11, checking if the speeds give indeed a feasible schedule. This
is done in lines 7 and 8 of the algorithm. In a final step the algorithm checks if
case (a) or (b) holds. The algorithm has a running time of O(n3 log ρ), where ρ is
the inverse of the desired precision. Note that in Lemma 11, c can be computed
only approximately using binary search.

We briefly mention that we can use our dynamic programming approach to
compute a schedule that minimizes the total flow time of jobs, given a fixed
amount A of energy. Here we simply consider the minimization of a weighted
objective function gβ(S) = βE(S) + (1 − β)F (S), where 0 < β < 1. By suitably
choosing β, we obtain an optimal schedule SOPT for gβ with E(SOPT ) = A.
This schedule minimizes the flow time. Details can be found in the full version
of the paper.

References

1. J. Augustine, S. Irani and C. Swamy. Optimal power-down strategies. Proc. 45th
Annual IEEE Symposium on Foundations of Computer Science, 530-539, 2004.

2. N. Bansal, T. Kimbrel and K. Pruhs. Dynamic speed scaling to manage energy and
temperature. Proc. 45th Annual IEEE Symposium on Foundations of Computer
Science, 520–529, 2004.

3. N. Bansal and K. Pruhs. Speed scaling to manage temperature. Proc. 22nd Annual
Symposium on Theoretical Aspects of Computer Science (STACS), Springer LNCS
3404, 460–471, 2005.
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