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Abstract. The common theoretical model adopted in recent studies on
algorithms for systems of autonomous mobile robots assumes that the
positional input of the robots is obtained by perfectly accurate visual
sensors, that robot movements are accurate, and that internal calcula-
tions performed by the robots on (real) coordinates are perfectly accurate
as well. The current paper concentrates on the effect of weakening this
rather strong set of assumptions, and replacing it with the more realistic
assumption that the robot sensors, movement and internal calculations
may have slight inaccuracies. Specifically, the paper concentrates on the
ability of robot systems with inaccurate sensors, movements and calcu-
lations to carry out the task of convergence. The paper presents several
impossibility results, limiting the inaccuracy allowing convergence. The
main positive result is an algorithm for convergence under bounded mea-
surement, movement and calculation errors.

1 Introduction

Background. Distributed systems consisting of autonomous mobile robots
(a.k.a. robot swarms) are motivated by the idea that instead of using a sin-
gle, highly sophisticated and expensive robot, it may be advantageous in certain
situations to employ a group of small, simple and relatively cheap robots. This
approach is of interest for a number of reasons. Multiple robot systems may be
used to accomplish tasks that cannot be achieved by a single robot. Such systems
usually have decreased cost due to the simpler individual robot structure. These
systems can be used in a variety of environments where the acting (human or
artificial) agents may be at risk, such as military operations, exploratory space
missions, cleanups of toxic spills, fire fighting, search and rescue missions, and
other hazardous tasks. In such situations, a multiple robot system has a better
chance of successfully carrying out its mission (while possibly accepting the loss
or destruction of some of its robots) than a single irreplaceable robot. Such sys-
tems may also be useful for carrying out simple repetitive tasks that humans
may find extremely boring or tiresome.
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Subsequently, studies of autonomous mobile robot systems can be found in
different disciplines, from engineering to artificial intelligence. (A survey on the
area is presented in [4].)

A number of recent studies on autonomous mobile robot systems focus on al-
gorithms for distributed control and coordination from a distributed computing
point of view (cf. [10, 13, 12, 2]). The approach is to propose suitable computa-
tional models and analyze the minimal capabilities the robots must possess in
order to achieve their common goals. The basic model studied in the these papers
can be summarized as follows. The robots execute a given algorithm in order
to achieve a prespecified task. Each robot in the system is assumed to operate
individually in simple cycles consisting of three steps:

(1) “Look”: determine the current configuration by identifying the locations of
all visible robots and marking them on your private coordinate system,
(2) “Compute”: execute the given algorithm, resulting in a goal point pG, and
(3) “Move”: travel towards the point pG. The robot might stop before reaching
its goal point pG, but is guaranteed to traverse at least some minimal distance
unit (unless reaching the goal first).

Weak and Strong Model Assumptions. Due to the focus on cheap robot
design and the minimal capabilities allowing the robots to perform some tasks,
most papers in this area (cf. [10, 13, 9, 5]) assume the robots to be rather limited.
Specifically, the robots are assumed to be indistinguishable, so when looking at
the current configuration, a robot cannot tell the identity of the robots at each
of the points (apart from itself). Furthermore, the robots are assumed to have
no means of direct communication. This gives rise to challenging “distributed
coordination” problems since the only permissible communication is based on
“positional” or “geometric” information exchange, yielding an interesting variant
of the classical (direct-communication based) distributed model.

Moreover, the robots are also assumed to be oblivious (or memoryless),
namely, they cannot remember their previous states, their previous actions or
the previous positions of the other robots. Hence the algorithm employed by the
robots for the “compute” step cannot rely on information from previous cycles,
and its only input is the current configuration. While this is admittedly an over-
restrictive and unrealistic assumption, developing algorithms for the oblivious
model still makes sense in various settings, for two reasons. First, solutions that
rely on non-obliviousness do not necessarily work in a dynamic environment
where the robots are activated in different cycles, or robots might be added to
or removed from the system dynamically. Secondly, any algorithm that works
correctly for oblivious robots is inherently self-stabilizing, i.e., it withstands tran-
sient errors that alter the robots’ local states.

On the other hand, the robot model studied in the literature includes the
following overly strong assumptions:
– when a robot observes its surroundings, it obtains a perfect map of the

locations of the other robots relative to itself,
– when a robot performs internal calculations on (real) coordinates, the out-

come is exact (infinite precision) and suffers no numerical errors, and
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– when a robot decides to move to a point p, it progresses on the straight line
connecting its current location to p, stopping either precisely at p or at some
earlier point on the straight line segment leading to it.

All of these assumptions are unrealistic. In practice, the robot measurements
suffer from nonnegligible inaccuracies in both distance and angle estimations.
(The most common range sensors in mobile robots are sonar sensors. The accu-
racy in range estimation of the common models is about ±1% and the angular
separation is about 3◦; see, e.g., [11]. Other possible range detectors are based
on laser range detection, which is usually more accurate than the sonar, and on
stereoscopic vision, which is usually less accurate.) The same applies to the pre-
cision of robot movements. Due to various mechanical factors such as unstable
power supply, friction and force control, the exact distance a robot traverses in
a single cycle is hard to control, or even predict with high accuracy. This makes
most previous algorithms proposed in the literature inapplicable in most practi-
cal settings. Finally, the robots’ internal calculations cannot be assumed precise,
for a variety of well-understood reasons such as convergence rates of numerical
procedures, truncated numeric representations, rounding errors and more.

In this paper we address the issue of imperfections in robot measurements,
calculations and movements. Specifically, we replace the unrealistic assumptions
described above with more appropriate ones, allowing for measurement, calcu-
lation and movement inaccuracies, and show that efficient algorithmic solutions
can still be obtained in the resulting model.

We focus on the gathering and convergence problems, which have been exten-
sively studied in the common (fully accurate) model (cf. [13, 10, 5]). The gath-
ering problem is defined as follows. Starting from any initial configuration, the
robots should occupy a single point within a finite number of steps. The closely
related convergence problem requires the robots to converge to a single point,
rather than reach it (namely, for every ε > 0 there must be a time tε by which
all robots are within distance of at most ε of each other).

It is important to note that analyzing the effect of errors is not merely of the-
oretical value. In Section 3 we show that gathering cannot be guaranteed in en-
vironments with errors, and illustrate how certain existing geometric algorithms,
including ones designed for fault tolerance, fail to guarantee even convergence
in the presence of small errors. We also show (in Theorem 9) that the standard
center of gravity algorithm may also fail to converge when errors occur.

Related Work. A number of problems concerning coordination in autonomous
mobile robot systems have been considered so far in the literature. The gath-
ering problem was first discussed in [13] in the semi-synchronous model. It was
proven that it is impossible to gather two oblivious autonomous mobile robots
that have no common sense of orientation under the semi-synchronous model.
Also, an algorithm was presented in [13] for gathering N ≥ 3 robots in the
semi-synchronous model. In the asynchronous model, a gathering algorithm has
recently been described in [5]. Fault tolerant gathering algorithms (in the crash
and Byzantine fault models) were studied in [1]. The gathering problem was also
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studied in a system where the robots have limited visibility. The visibility con-
ditions are modeled by means of a visibility graph, representing the (symmetric)
visibility relation of the robots with respect to one another, i.e., an edge exists
between robots i and j if and only if i and j are visible to each other. (Note that
in this model visibility is a boolean predicate and does not involve imprecisions,
namely, if robot j is visible to robot i then its precise coordinates are measured
accurately.) It was shown that the problem is unsolvable in case the visibility
graph is not connected [9]. In [2] a convergence algorithm was provided for any
N , in limited visibility systems. The natural gravitational algorithm based on
going to the center of gravity, and its convergence properties, were studied in [6].

Other problems studied, e.g., in [12, 13, 7, 8, 10, 3], concern formation of var-
ious geometric patterns, flocking (or “following the leader”), distributed search
after (static or moving) targets, achieving even distribution, partitioning and
wake-up via the freeze-tag paradigm.

Our Results. In this paper we study the convergence problem in the common
semi-synchronous model where the robots’ only inputs are obtained by inac-
curate visual sensors, and their movements and internal calculations may be
inaccurate as well. In Section 3 we present several impossibility theorems, limit-
ing the inaccuracy allowing convergence, and prohibiting a general algorithm for
gathering in a finite number of steps. In Section 4 we present an algorithm for
convergence under bounded error, and prove its correctness, first in the fully syn-
chronous model, and then in the semi-synchronous model. Finally, we compare
the proposed algorithm with the ordinary center of gravity algorithm.

2 The Model

Each of the N robots i in the system is assumed to operate individually in simple
cycles. Every cycle consists of three steps, “look”, “compute” and “move”. The
result of the “look” step taken by i is a multiset of points P = {p1, . . . , pN}
(with pi = 0 in i’s local coordinate system) defining the current configuration
and used by the robot in calculating its next goal point pG. Note that the “look”
and “move” steps are carried out identically in every cycle, independently of
the algorithm used. The differences between different algorithms occur in the
“compute” step. Moreover, the procedure carried out in the “compute” step is
identical for all robots. If the robots are oblivious, then the algorithm cannot rely
on information from previous cycles, thus the procedure can be fully specified by
describing a single “compute” step, and its only input is the current configuration
P , giving the locations of the robots.

As mentioned earlier, our computational model for studying and analyzing
problems of coordinating and controlling a set of autonomous mobile robots
follows the well studied semi-synchronous (SSYNC) model. This model is par-
tially synchronous, in the sense that all robots operate according to the same
clock cycles, but not all robots are necessarily active in all cycles. Those robots
which are awake at a given cycle make take a measurement of the positions of
all other robots. Then they may make a computation and move instantaneously
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accordingly. The activation of the different robots can be thought of as managed
by a hypothetical scheduler, whose only fairness obligation is that each robot
must be activated and given a chance to operate infinitely often in any infi-
nite execution. On the way to establishing the result on the SSYNC model, we
prove it first in the fully synchronous (FSYNC) model. Finally, we also discuss
its performance in the fully asynchronous (ASYNC) model.

Our model assumes that the robot’s location estimation is imprecise, with
imprecision bounded by some accuracy parameter ε known at the robot’s design.
In general, this imprecision can affect both distance and angle estimations. In
particular, distance imprecision means that if the true location of an observed
point in i’s coordinate system is V and the measurement taken by i is v̄, then
this measurement will satisfy (1− ε)V < v < (1+ ε)V . (Throughout, for a vector
v̄, we denote by v its scalar length, v = |v̄|. Also, capital letters are used for
exact quantities, whereas lowercase ones denote the robots’ views).

The accuracy in angle measurements is θ0 (where it can always be assumed
that θ0 ≤ π). I.e., the angle θ between the actual distance vector V and the
measured distance vector v̄ satisfies θ ≤ θ0, or alternatively, cos θ = V v̄

V v ≥ cos θ0.
In what follows, we consider the model ERR in which both types of imprecision
are possible, and the model ERR− where only distance estimates are inaccurate.
This gives rise to six composite timing/error models, denoted 〈T , E〉, where T
is the timing model under consideration (FSYNC, SSYNC or ASYNC) and E
is the error model (ERR or ERR−).

While in reality each robot uses its own private coordinate system, for simplic-
ity of presentation it is convenient to assume the existence of a global coordinate
system (which is unknown to the robots) and use it for our notation. Through-
out, we denote by R̄j the location of robot j in the global coordinate system. In
addition, for every two robots i and j, denote by V

i

j = R̄j − R̄i the true location
of robot j from the position of robot i (i.e., the true vector from i to j), and by
v̄i

j the location of robot j as measured by i, translated to the global coordinate
system. Likewise, our algorithm and its analysis will be described in the global
coordinate system, although each of the robots will apply it in its own local
coordinate system. As the functions computed by the algorithm are all invariant
under translations, this representation does not violate the correctness of our
analysis.

If the robots may have inaccuracies in distance estimation but not in direc-
tions, then i will measure V

i

j as v̄i
j = (1 + εi

j)V
i

j , where −ε < εi
j < ε is the

local error factor in distance estimation at robot i. For robots with inaccuracy
in angle measurement as well, if the true distance is V i

j , then i will measure it

as vi
j = (1 + εi

j)V
i
j , where −ε < εi

j < ε and the angle θ between V
i

j and v̄i
j will

satisfy |θ| ≤ θ0. Values computed at time-slot t are denoted by a parameter [t].
Also, the actual error factor is time dependent and its value at time t is denoted
by εi

j [t]. The parameter t is omitted whenever clear from the context.
Inaccuracies in movement and calculations should also be taken into account.

For movement, we may assume that if a robot wants to move from its cur-
rent location R̄i to some goal point pG, then it will move on a vector at an
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angle of at most φ0 from the vector ripG and to any distance d in the interval
d ∈ [1 − ε, 1 + ε] · |ripG|. Also, when it calculates a goal point pG = (x, y), it will
have a multiplicative error of up to ε. In the center of gravity algorithms pre-
sented below, the calculation error is bounded linearly in the calculated terms.
Hence it can be seen that relative movement and calculation errors can be re-
placed with errors in measurement causing the same effect, so these errors can be
treated using the same algorithm by recalibrating ε. (Note that absolute errors
in movement or calculation can not be treated, since even when the robots have
already almost converged, such errors may cause them to spread again.) There-
fore, throughout most of the ensuing technical development, we will assume only
measurement inaccuracies.

We use the following technical lemma. (Most proofs are deferred to full paper.)

Lemma 1. For two vectors ā and b̄ with a ≤ 1 ≤ b, let x = |ā − b̄| and y =
|ā− b̄/b|. Then (1) x2 − y2 ≥ (b−1)2 +2(1−a)(b−1) ≥ (b−1)2, and (2) y ≤ x.

3 The Effect of Measurement Errors

To appreciate the importance of error analysis one must realize two facts. First,
computers are limited in their computational power, and therefore cannot per-
form perfect precision calculations. This may seem insignificant, since floating
point arithmetic can be made to very high accuracy with modern computers.
However, this may prove to be a practical problem. For instance, the point
that minimizes the sum of distances to the robots’ locations (also known as the
Weber point) may be used to achieve gathering. However, this point is not com-
putable, due to its infinite sensitivity to location errors. Second, the correctness
of algorithms that use geometric properties of the plane is usually proven using
theorems from Euclidean geometry. However, these theorems are, in many cases,
inappropriate when measurement or calculation errors occur.

Impossibility Results. We start with some impossibility results. The proofs
of these results are based on the ability of the adversary to partition the space of
possible initial configurations into countably many regions, each of uncountably
many configurations (say, on the basis of the initial distance between the robots),
such that within each region, the outcome of the algorithm (i.e., the movement
instructions to the robots) is the same. The following theorem holds even in
a rather strong setting where the timing model is fully synchronous, and the
robots have unlimited memory and are allowed to use randomness.

Theorem 1. Even in the strong setting outlined above, gathering is impossible
(1) for two robots on the line with inexact distance measurements,
(2) for any number of robots assuming inaccuracies in both the distance and
angle measurements.

It seems reasonable to conjecture that even convergence is impossible for robots
with large measurement errors. The exact limits are not completely clear. The
following theorem gives some rather weak limits on the possibility of convergence.
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In the theorem we assume that the robot has no sense of direction in a strong
way, i.e., at every cycle the adversary can choose each robot’s axes independent
of previous cycles.

Theorem 2. For a configuration of N = 3 robots having an error parameter
θ0 ≥ π/3 in angle measurement, there is no deterministic algorithm for con-
vergence even assuming exact distance estimation, fully synchronous model and
unlimited memory.

Problems with Existing Algorithms. To illustrate the second point raised in
the beginning of this section, consider the algorithm 3 − Gather presented in [1].
This algorithm achieves gathering of three robots using several simple rules.
One of these rules states that if the robots form an obtuse triangle, then they
move towards the vertex with the obtuse angle. As shown above, no algorithm
can guarantee gathering when measurement errors occur. Furthermore, although
this algorithm is designed to robustness and achieves gathering even if one of
the robots fails, one can verify that it might fail to achieve even convergence in
the presence of angle measurement errors of at least 15◦.

Likewise, for a group of N > 3 robots the algorithm N − Gather is presented
in [1]. In this algorithm the smallest enclosing circle of the robot group is calcu-
lated, and in case there is a single robot inside this circle, it does not move. In
the presence of measurement inaccuracies, this rule can potentially cause dead-
lock, implying that the algorithm might fail to achieve even convergence in the
presence of angle and distance measurement errors of ε > 0.

4 The Convergence Algorithm

Algorithm Go to COG. A natural algorithm for autonomous robot convergence
is the gravitational algorithm, where each robot computes the average position
(center of gravity) of the group, v̄i

cog = 1
N

∑
j v̄i

j , and moves towards it.
The properties of Algorithm Go to COG in a model with fully accurate mea-

surements have been studied in [6]. In particular, it is proven that a group of
N robots executing Algorithm Go to COG will converge in the ASYNC model
with no measurement errors. If measurements are not guaranteed to be accurate,
Algorithm Go to COG may not guarantee convergence. Nevertheless, convergence
is guaranteed in the fully synchronous model, i.e., we have the following.

Lemma 2. In the 〈FSYNC, ERR−〉 model with ε < 1
2 , a group of N robots

performing Algorithm Go to COG converges.

The convergence of Algorithm Go to COG in the SSYNC model is not clear at
the moment. However, as shown below, in the ASYNC model there are scenarios
where robots executing Algorithm Go to COG fail to converge. This leads us to
propose the following slightly more involved algorithm.

Algorithm RCG. Our algorithm, named RCG, is based on calculating the center of
gravity (CoG) of the group of robots, and also estimating the maximum possible
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error in the CoG calculation. The robot makes no movement if it is within the
maximum possible error from the CoG. If it is outside the circle of error, it
moves towards the CoG, but only up to the bounds of the circle of error. We fix
a conservative error estimate parameter, ε0 > ε.

Following is a more detailed explanation of the algorithm. In step 1, the
measured center of gravity is estimated using the conducted measurements. In
step 2 the distance to the furthest robot is found. Notice that this distance may
not be accurate, and that this needs not be even the real furthest robot. The
result of step 2 is used in step 3 to give an estimate of the possible error in the
CoG calculation. In step 4 the robots decide to hold if it is within the circle of
error, or calculates its destination point, which is on the boundary of the error
circle centered at the calculated CoG. A formal description of the algorithm is
given next. Note that Algorithm Go to COG is identical to Algorithm RCG with
parameter ε0 = 0.

Code for robot i

1. Estimate the measured center of gravity, v̄i
cog = 1

N

∑
j v̄i

j

2. Let di
max = maxj{vi

j} /* max distance measured to another robot

3. Let ρi =
ε0

1 − ε0
· di

max /* estimate for max error in calculated CoG

4. If vi
cog > ρi then move to the point c̄i = (1 − ρi/vi

cog) · v̄i
cog.

Otherwise do not move.

Analysis of RCG in the Semi-synchronous Model. We first prove the conver-
gence of Algorithm RCG in the 〈FSYNC, ERR−〉 model. Denote the true center
of gravity of the robots in the global coordinate system by R̄cog = 1

N

∑
j R̄j , and

the vector from robot i to the center of gravity by V
i

cog = R̄cog −R̄i = 1
N

∑
j V

i

j ,

where V
i

j = R̄j − R̄i. Denote the distance from the true center of gravity of the
robots to the robot farthest from it by Dcog = maxi{V i

cog}. Also, denote the true
distance from i to the robot farthest from it by Di

max = maxj{V i
j }. We use the

following two properties.

Fact 3. For every i: (a) Di
max ≤ 2Dcog,

(b) (1 − ε0)Di
max < (1 − ε)Di

max ≤ di
max ≤ (1 + ε)Di

max < (1 + ε0)Di
max.

For the synchronous model, we define the tth round to begin at time t and end at
time t + 1. The robots all perform their Look phase simultaneously. The robots’
moment of inertia at time t is defined as

I[t] =
1
N

∑

j

(
V

j

cog[t]
)2

=
1
N

∑

j

(
R̄j [t] − R̄cog[t]

)2
.

Defining Ix̄[t] ≡ 1
N

∑
j(R̄j [t] − x̄)2, we use the following fact.

Fact 4. Ix̄[t] attains its minimum on x̄ = R̄cog[t].



Convergence of Autonomous Mobile Robots 557

For ease of presentation, we assume a slightly simpler model where the move
step of a robot is ensured to bring it to its goal point pG. A slightly more
involved analysis, deferred to the full paper, applies to the usual setting where
it is assumed that the robot might stop before reaching pG, but is guaranteed
to traverse at least some minimal distance unit (unless reaching the goal first).

Our main lemma is the following.

Lemma 3. For fixed ε0 < 0.2, in the 〈FSYNC, ERR−〉 model, Algorithm RCG
guarantees that at every round t:

1. at least one robot can move,
2. every robot i decreases its distance from the true center of gravity at time t,

i.e., |R̄i[t + 1] − R̄cog[t]| < |R̄i[t] − R̄cog[t]|,
3. the robots’ moment of inertia decreases, i.e., I[t + 1] < I[t].

Proof. Consider some time t. Denote by erri = 1
N

∑
j εi

jV
i

j the error compo-
nent in the center of gravity calculation by robot i. Then the center of gravity
computed by robot i can be expressed as

v̄i
cog =

1
N

∑

j

r̄i
j =

1
N

∑

j

(R̄j + εi
jV

i

j) = V
i

cog + erri .

By the bounded error assumption and Fact 3(a),

erri =
1
N

∑

j

εi
j · V i

j ≤ εDi
max ≤ 2εDcog < 2ε0Dcog. (1)

By the two parts of Fact 3, the calculated value ρi is bounded by

ρi ≤ ε0(1 + ε0)
1 − ε0

· Di
max ≤ ε0(1 + ε0)

1 − ε0
· 2Dcog. (2)

Combining (1) and (2), we have for each i,

erri + ρi ≤ f(ε0) · Dcog < Dcog , (3)

where f(ε0) = 4ε0/(1 − ε0), and the last inequality follows from the assumption
that ε0 < 0.2.

For k = arg maxj{V j
cog}, the robot farthest from the center of gravity, we have

V k
cog = Dcog and v̄k

cog = V
k

cog + errk, hence by (3) and the triangle inequality,
ρk < V k

cog − errk ≤ vk
cog . This implies that at round t, robot k is allowed to

move in Step 4 of the algorithm, proving Part 1 of the Lemma.
To prove Part 2, consider a round t and a robot i which moved in round t.

Fix x̄ = R̄cog[t] and take ā = erri[t]/ρi[t] and b̄ = v̄i
cog[t]/ρi[t]. Note that by

(1) and Fact 3(b), erri[t] ≤ ε
1−ε · di

max[t] < ε0
1−ε0

· di
max[t] = ρi[t], hence

a ≤ 1. Also, at round t + 1, robot i moves if and only if vi
cog[t] > ρi[t], hence if

i moved then b = vi
cog[t]/ρi[t] > 1. Hence Lemma 1(1) can be applied. Noting
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that b̄/b = (R̄i[t+1]− R̄cog[t])/ρi[t], we get |R̄i[t+1]− x̄| < |R̄i[t]− x̄| , yielding
Part 2 of the Lemma. It remains to prove Part 3. Note that for a robot that did
not move, |R̄i[t + 1] − x̄| = |R̄i[t] − x̄|. Using this fact that and Part 2, we have
that Ix̄[t + 1] < Ix̄[t] = I[t] . Finally, by Fact 4, I[t + 1] ≤ Ix̄[t + 1], yielding
Part 3 of the Lemma.

Theorem 5. In every execution of Algorithm RCG in the 〈FSYNC, ERR−〉
model, the robots converge.

Proof. By Part 1 of Lemma 3, the robot k most distant from the center of
gravity can always move if Algorithm Go to COG is applied. By Part 2 of Lemma
3, in round t every robot decreases its distance from the old center of gravity,
x̄ = R̄cog[t]. Therefore, to bound from below the decrease in I, we are only
required to examine the behavior of the most distant robot. By Lemma 1(1)
with a = R̄k[t + 1] − R̄cog[t] and b = R̄k[t] − R̄cog[t], for ε0 < 0.2 we have
vk

cog > ρk and (R̄k[t] − R̄cog[t])2 − (R̄k[t + 1] − R̄cog[t])2 ≥ (vk
cog − ρk)2 . Since

v̄k
cog = V

k

cog + errk, and using the triangle inequality,

(R̄k[t] − R̄cog[t])2 − (R̄k[t + 1] − R̄cog[t])2 ≥
(
V k

cog − (ρk + errk)
)2

. (4)

Recall that since k is the most distant robot, V k
cog = Dcog. Denoting γ = 1−f(ε0),

we have by (3) that

V k
cog − (ρk + errk) ≥ γ · Dcog . (5)

As mentioned above, if ε0 < 0.2, then γ > 0. We also use the fact that I[t] =
Ix̄[t] ≤ D2

cog. Together with Fact 4 and inequalities (4) and (5), we have that

I[t + 1] ≤ Ix̄[t + 1] =
1
N

⎛

⎝(R̄k[t + 1] − R̄cog[t])2 +
∑

j �=k

(R̄j [t + 1] − R̄cog[t])2

⎞

⎠

≤ 1
N

(R̄k[t + 1] − R̄cog[t])2 +
1
N

∑

j �=k

(R̄j [t] − R̄cog[t])2

≤ 1
N

(R̄k[t + 1] − R̄cog[t])2 − 1
N

(R̄k[t] − R̄cog[t])2 + I[t]

≤ I[t] − 1
N

(
V k

cog − (ρk + errk)
)2 ≤ I[t] − γ2

N
· D2

cog ≤ I[t]
(

1 − γ2

N

)

and therefore the system converges, proving the theorem.

We now turn to the ERR model, allowing also inaccuracies in angle measure-
ments, and observe that Theorem 5 can be extended to hold true in this model
as well, with a suitable choice of ε0.

Theorem 6. Taking ε0 >
√

2(1 − ε)(1 − cos θ0) + ε2, in every execution of Al-
gorithm RCG in the 〈FSYNC, ERR〉 model, the robots converge.
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Turning to the semi-synchronous model, we observe that the results of Theorem 6
hold true also for the 〈SSYNC , ERR〉 model, yielding the following.

Theorem 7. In every execution of Algorithm RCG (with ε0 as in Theorem 6) in
the 〈SSYNC, ERR〉 model, the robots converge.

Finally, let us turn to robots with movement and calculation inaccuracies. In
case of robots with inaccurate movements, we assume it is always possible to
tune the algorithm such that the distance traveled is always less than or equal
to the distance aimed i.e., instead of moving by a vector v̄, move by a vec-
tor νv̄. Suppose now that D, the distance traveled by the robot is bounded by
(1 − α)R ≤ D ≤ (1 + α)R, where R is the norm of the output of the algorithm,
and α is a constant denoting the accuracy of the robot’s movement. ν can be cho-
sen such that (1+α)ν ≤ 1. The result can be obtained following the same line of
proof. The details are deferred to the full paper. As for calculation inaccuracies,
since we assume a multiplicative inaccuracy, and by the linearity of the calcula-
tion, it can be treated as a measurement inaccuracy with the proper addition to ε.

Analysis of RCG in the Fully Asynchronous Model. So far, we have not
been able to establish the convergence of Algorithm RCG in the fully asynchronous
model. In this section we prove its convergence in the restricted one-dimensional
case and with no angle inaccuracies, i.e., in the 〈ASYNC, ERR−〉 model.

Denote by c̄i[t] the calculated destination of robot i at time t. If robot i has
not gone through a look yet, or has reached its previous destination then, by
definition, c̄i[t] = R̄i[t]. Notice that we set c̄i[t] to be the destination of the
robot’s motion after the look phase even if the robot has not yet completed its
computation, and is still unaware of this destination.

Theorem 8. In the 〈ASYNC, ERR−〉 model, N robots performing Algorithm
RCG converge on the line.

Conjecture 1. Algorithm RCG converges in the 〈ASYNC, ERR〉 model for suffi-
ciently small error in the angle and distance measurements.

Separating Go to COG from RCG in the ASYNC Model. This section estab-
lishes the advantage of Algorithm RCG over the basic Algorithm Go to COG. In the
fully synchronous case there is no justification for using the more involved Algo-
rithm RCG, since the simpler Algorithm Go to COG also guarantees convergence
as shown above in Lemma 2.

However, a gap between the two algorithms can be established in the fully
asynchronous model. Specifically, we now show that the ordinary center of grav-
ity algorithm Go to COG does not converge in the 〈ASYNC, ERR−〉 model, even
when the robots are positioned on a straight line. Contrasting this result with
Theorem 8 yields the claimed separation between the two algorithms.

Theorem 9. In the 〈ASYNC, ERR−〉 model, for every ε and N > 1/ε there
exists an activation schedule for which Algorithm Go to COG does not converge,
even when the robots are restricted to a line.
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