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Abstract. We study the speed of convergence to approximately optimal
states in two classes of potential games. We provide bounds in terms of
the number of rounds, where a round consists of a sequence of movements,
with each player appearing at least once in each round. We model the
sequential interaction between players by a best-response walk in the state
graph, where every transition in the walk corresponds to a best response
of a player. Our goal is to bound the social value of the states at the end
of such walks. In this paper, we focus on two classes of potential games:
selfish routing games, and cut games (or party affiliation games [7]).

1 Introduction

The main tool for analyzing the performance of systems where selfish players
interact without central coordination, is the notion of the price of anarchy in a
game [16]; this is the worst case ratio between an optimal social solution and a
Nash equilibrium. Intuitively, a high price of anarchy indicates that the system
under consideration requires central regulation to achieve good performance. On
the other hand, a low price of anarchy does not necessarily imply high perfor-
mance of the system. One main reason for this phenomenon is that in many
games, the repeated selfish behavior of players may not lead to a Nash equi-
librium. Moreover, even if the selfish behavior of players converges to a Nash
equilibrium, the rate of convergence might be very slow. Thus, from a practical
and computational viewpoint, it is important to evaluate the rate of convergence
to approximate solutions.

By modeling the repeated selfish behavior of the players as a sequence of
atomic improvements, the resulting convergence question is related to the run-
ning time of local search algorithms. In fact, the theory of PLS-completeness [22]
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and the existence of exponentially long walks in local optimization problems such
as Max-2SAT and Max-Cut, indicate that in many of these settings, we cannot
hope for a polynomial-time convergence to a Nash equilibrium. Therefore, for
such games, it is not sufficient to just study the value of the social function at
Nash equilibria. To deal with this issue, we need to bound the social value of a
strategy profile after polynomially many best-response improvements by players.

Potential games are games in which any sequence of improvements by players
converges to a pure Nash equilibrium. Equivalently, in potential games, there is
no cycle of strict improvements of players. This is equivalent to the existence of
a potential function that is strictly increasing after any strict improvement. In
this paper, we study the speed of convergence to approximate solutions in two
classes of potential games: selfish routing (or congestion) games and cut games.

Related Work. This work is motivated by the negative results of the conver-
gence in congestion games [7], and the study of convergence to approximate
solutions games [14,11]. Fabrikant, Papadimitriou, and Talwar [7] show that for
general congestion and asymmetric selfish routing games, the problem of finding
a pure Nash equilibrium is PLS-complete. This implies exponentially long walks
to equilibria for these games. Our model is based on the model introduced by
Mirrokni and Vetta [14] who addressed the convergence to approximate solutions
in basic-utility and valid-utility games. They prove that starting from any state,
one round of selfish behavior of players converges to a 1/3-approximate solution
in basic-utility games. Goemans, Mirrokni, and Vetta [11] study a new equilib-
rium concept (i.e. sink equilibria) inspired from convergence on best-response
walks and proved fast convergence to approximate solutions on random best-
response walks in (weighted) congestion games. In particular, their result on
the price of sinking of the congestion games implies polynomial convergence
to constant-factor solutions on random best-response walks in selfish routing
games with linear latency functions. Other related papers studied convergence
for different classes of games such as load balancing games [6], market sharing
games [10], and distributed caching games [8].

A main subclass of potential games is the class of congestion games introduced
by Rosenthal [18]. Monderer and Shapley [15] proved that congestion games are
equivalent to the class of exact potential games. In an exact potential game, the
increase in the payoff of a player is equal to the increase in the potential function.
Both selfish routing games and cut games are a subclass of exact potential games,
or equivalently, congestion games. Tight bounds for the price of anarchy is known
for both of these games in different settings [19,1,5,4]. Despite all the recent
progress in bounding the price of anarchy in these games, many problems about
the speed of convergence to approximate solutions for them are still open.

Two main known results for the convergence of selfish routing games are the
existence of exponentially long best-response walks to equilibria [7] and fast
convergence to constant-factor solutions on random best-response walks [11]. To
the best of our knowledge, no results are known for the speed of convergence to
approximate solutions on deterministic best-response walks in the general self-
ish routing game. Preliminary results of this type in some special load balancing
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games are due to Suri, Tóth and Zhou [20,21]. Our results for general selfish
routing games generalize their results.

The Max-Cut problem has been studied extensively [12], even in the local
search setting. It is well known that finding a local optimum for Max-Cut is
PLS-complete [13,22], and there are some configurations from which walks to
a local optimum are exponentially long. In the positive side, Poljak [17] proved
that for cubic graphs the convergence to a local optimum requires at most O(n2)
steps. The total happiness social function is considered in the context of correla-
tion clustering [2], and is similar to the total agreement minus disagreement in
that context. The best approximation algorithm known for this problem gives a
O(log n)-approximation [3], and is based on a semidefinite relaxation.

Our Contribution. Our work deviates from bounding the distance to a Nash
equilibrium [22,7], and focuses in studying the rate of convergence to an approx-
imate solution [14,11]. We consider two types of walks of best responses: random
walks and deterministic fair walks. On random walks, we choose a random player
at each step. On deterministic fair walks, the time complexity of a game is mea-
sured in terms of the number of rounds, where a round consists of a sequence of
movements, with each player appearing at least once in each round.

First, we give tight bounds for the approximation factor of the solution after
one round of best responses of players in selfish routing games. In particular,
we prove that starting from an arbitrary state, the approximation factor after
one round of best responses of players is at most O(n) of the optimum and
this is tight up to a constant factor. We extend the lower bound for the case of
multiple rounds, where we show that for any constant number of rounds t, the
approximation guarantee cannot be better than nε(t), for some ε(t) > 0. On the
other hand, we show that starting from an empty state, the state resulting after
one round of best responses is a constant-factor approximation.

We also study the convergence in cut games, that are motivated by the party
affiliation game [7], and are closely related to the local search algorithm for the
Max-Cut problem [22]. In the party affiliation game, each player’s strategy is
to choose one of two parties, i.e, si ∈ {1,−1} and the payoff of player i for the
strategy profile (s1, s2, . . . , sn) is

∑
j sjsiwij . The weight of an edge corresponds

to the level of disagreement of the endpoints of that edge. This game models
the clustering of a society into two parties that minimizes the disagreement
within each party, or maximizes the disagreement between different parties. Such
problems play a key role in the study of social networks.

We can model the party affiliation game as the following cut game: each vertex
of a graph is a player, with payoff its contribution in the cut (i.e. the total weight
of its adjacent edges that have endpoints in different parts of the cut). It follows
that a player moves if he can improve his contribution in the cut, or equivalently,
he can improve the value of the cut. The pure Nash equilibria exist in this game,
and selfish behavior of players converges to a Nash equilibrium.

We consider two social functions: the cut and the total happiness, defined as
the value of the cut minus the weight of the rest of edges. First, we prove fast
convergence on random walks. More precisely, the selfish behavior of players in a
round in which the ordering of the player is picked uniformly at random, results



352 G. Christodoulou, V.S. Mirrokni, and A. Sidiropoulos

in a cut that is a 1
8 -approximation in expectation. We complement our positive

results by examples that exhibit poor deterministic convergence. That is, we show
the existence of fair walks with exponential length, that result in a poor social
value. We also model the selfish behavior of mildly greedy players that move if
their payoff increases by at least a factor of 1 + ε. We prove that in contrast to
the case of (totally) greedy players, mildly greedy players converge to a constant-
factor cut after one round, under any ordering. For unweighted graphs, we give
an Ω(

√
n) lower bound and an O(n) upper bound for the number of rounds

required in the worst case to converge to a constant-factor cut.
Finally, for the total happiness social function, we show that for unweighted

graphs of large girth, starting from a random configuration, greedy behavior of
players in a random order converges to an approximate solution after one round.
We remark that this implies a combinatorial algorithm with sub-logarithmic
approximation ratio, for graphs of sufficiently large girth, while the best known
approximation ratio for the general problem is O(log n) [3], and is obtained using
semidefinite programming.

2 Definitions and Preliminaries

In order to model the selfish behavior of players, we use the notion of a state
graph. Each vertex in the state graph represents a strategy state S = (s1, s2, . . . ,
sn), and corresponds to a pure strategy profile (e.g an allocation for a congestion
game, or a cut for a cut game). The arcs in the state graph correspond to best
response moves by the players.

Definition 1. A state graph D = (V , E) is a directed graph, where each vertex
in V corresponds to a strategy state. There is an arc from state S to state S′

with label j iff by letting player j play his best response in state S, the resulting
state is S′.

Observe that the state graph may contain loops. A best response walk is a di-
rected walk in the state graph. We say that player i plays in the best response
walk P , if at least one of the edges of P has label i. Note that players play
their best responses sequentially, and not in parallel. Given a best response walk
starting from an arbitrary state, we are interested in the social value of the last
state on the walk. Notice that if we do not allow every player to make a best
response on a walk P , then we cannot bound the social value of the final state
with respect to the optimal solution. This follows from the fact that the actions
of a single player may be very important for producing solutions of high social
value1. Motivated by this simple observation, we introduce the following models
that capture the intuitive notion of a fair sequence of moves.

One-round walk: Consider an arbitrary ordering of all players i1, . . . , in. A
walk P of length n in the state graph is a one-round walk if for each j ∈ [n],
the jth edge of P has label ij.

1 E.g. in the cut social function, most of the weight of the edges of the graph might
be concentrated to the edges that are adjacent to a single vertex.
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Covering walk: A walk P in the state graph is a covering walk if for each
player i, there exists an edge of P with label i.

k-Covering walk: A walk P in the state graph is a k-covering walk if there are
k covering walks P1,P2, . . . ,Pk, such that P = (P1,P2, . . . ,Pk).

Random walk: A walk P in the state graph is a random walk, if at each step
the next player is chosen uniformly at random.

Random one-round walk: Let σ be an ordering of players picked uniformly
at random from the set of all possible orderings. Then, the one-round walk
P corresponding to the ordering σ, is a random one-round walk.

Note that unless otherwise stated, all walks are assumed to start from an
arbitrary initial state. This model has been used by Mirrokni and Vetta [14], in
the context of extensive games with complete information.

Congestion games. A congestion game is defined by a tuple (N, E, (Si)i∈N ,
(fe)e∈E) where N is a set of players, E is a set of facilities, Si ⊆ 2E is the
pure strategy set for player i: a pure strategy si ∈ Si for player i is a set of
facilities, and fe is a latency function for the facility e depending on its load. We
focus on linear delay functions with nonnegative coefficients; fe(x) = aex + be.

Let S = (s1, . . . , sN ) ∈ ×i∈NSi be a state (strategy profile) for a set of N
players. The cost of player i, in a state S is ci(S) =

∑
e∈si

fe(ne(S)) where by
ne(S) we denote the number of players that use facility e in S. The objective
of a player is to minimize its own cost. We consider as a social cost of a state
S, the sum of the players’ costs and we denote it by C(S) =

∑
i∈N ci(S) =∑

e∈E ne(S)fe(ne(S)).
In weighted congestion games, player i has weighted demand wi. By θe(S),

we denote the total load on a facility e in a state S. The cost of a player in a
state S is ci(S) =

∑
e∈si

fe(θe(S)). We consider as a social cost of a state S,
the weighted sum C(S) =

∑
i∈N wici(S) =

∑
e∈E θe(S)fe(θe(S)). We will use

subscripts to distinguish players and superscripts to distinguish states.
Note that the selfish routing game is a special case of congestion games. Al-

though we state all the results for congestion games with linear latency functions,
all of the results (including the lower and upper bounds) hold for selfish routing
games.

Cut Games. In a cut game, we are given an undirected graph G(V, E), with
n vertices and edge weights w : E(G) → Q+. We will always assume that
G is connected, simple, and does not contain loops. For each v ∈ V (G), let
deg(v) be the degree of v, and let Adj(v) be the set of neighbors of v. Let also
wv =

∑
u∈Adj(v) wuv. A cut in G is a partition of V (G) into two sets, T and

T̄ = V (G)− T , and is denoted by (T, T̄ ). The value of a cut is the sum of edges
between the two sets T and T̄ , i.e

∑
v∈T,u∈T̄ wuv.

The cut game on a graph G(V, E), is defined as follows: each vertex v ∈ V (G)
is a player, and the strategy of v is to chose one side of the cut, i.e. v can
chose sv = −1 or sv = 1. A strategy profile S = (s1, s2, . . . , sn), corresponds
to a cut (T, T̄ ), where T = {i|si = 1}. The payoff of player v in a strategy
profile S, denoted by αv(S), is equal to the contribution of v in the cut, i.e.
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αv(S) =
∑

i:si �=sv
wiv. It follows that the cut value is equal to 1

2

∑
v∈V αv(S).

If S is clear from the context, we use αv instead of αv(S) to denote the payoff
of v. We denote the maximum value of a cut in G, by c(G). The happiness of a
vertex v is equal to

∑
i:si �=sv

wiv − ∑
i:si=sv

wiv .
We consider two social functions: the cut value and the cut value minus the

value of the rest of the edges in the graph. It is easy to see that the cut value is
half the sum of the payoffs of vertices. The second social function is half the sum
of the happiness of vertices. We call the second social function, total happiness.

3 Congestion Games

In this section, we focus on the convergence to approximate solutions in conges-
tion games with linear latency functions. It is known [15,18] that any best-
response walk on the state graph leads to a pure Nash equilibrium, and a
pure equilibrium is a constant-factor approximate solution [1,5,4]. Unless other-
wise stated, we assume without loss of generality, that the players’ ordering is
1, . . . , N .

3.1 Upper Bounds for One-Round Walks

In this section, we bound the total delay after one round of best responses of
players. We prove that starting from an arbitrary state, the solution after one
round of best responses is a Θ(N)-approximate solution. We will also prove that
starting from an empty state, the approximation factor after one round of best
responses is a constant factor. This shows that the assumption about the initial
state is critical for this problem.

Theorem 1. Starting from an arbitrary initial state S0, any one-round walk P
leads to a state SN that has approximation ratio O(N).

Proof. Let X be the optimal allocation and Si = (sN
1 , . . . , sN

i , s0
i+1, . . . , s

0
N)

an intermediate state. Let me(Si), ke(Si) be the number of the players of the
final and of the initial state respectively, using facility e in a state Si, and
M(Si), K(Si) the corresponding sums. Clearly ne(Si) = me(Si) + ke(Si) and
K(Si) = K(Si−1) − ∑

e∈s0
i
(ae − be − 2aeke(Si−1)). By summing over all inter-

mediate states and using the fact K(SN) = 0, it follows that:

K(S0) = C(S0) =
∑

e∈E

ke(S0)fe(ke(S0)) =
∑

i∈N

∑

e∈s0
i

(2aeke(Si−1) − ae + be) (1)

Since player i in state Si−1 prefers strategy sN
i than xi, we get

∑

e∈sN
i

fe(ne(Si−1)) +
∑

e∈sN
i −s0

i

ae ≤
∑

e∈xi

fe(ne(Si−1) + 1)

For every intermediate state Si, the social cost is

C(Si) = C(Si−1)+
∑

e∈sN
i −s0

i

(2aene(Si−1)+ae+be)+
∑

e∈s0
i−sN

i

(ae−be−2aene(Si−1))
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Summing over all intermediate states and using equality (1), we get

C(SN ) =
∑

i∈N

∑

e∈sN
i −s0

i

(2aene(Si−1) + ae + be) +
∑

i∈N

∑

e∈s0
i

(2aeke(Si−1) − ae + be)

+
∑

i∈N

∑

e∈s0
i −sN

i

(ae − be − 2aene(Si−1))

=
∑

i∈N

∑

e∈sN
i −s0

i

(2aene(Si−1) + ae+be)+
∑

i∈N

∑

e∈s0
i ∩sN

i

(2aeke(Si−1)−ae+be)

−
∑

i∈N

∑

e∈s0
i −sN

i

2aeme(Si−1)

≤ 2
∑

i∈N

∑

e∈sN
i

fe(ne(Si−1)) + 2
∑

i∈N

∑

e∈sN
i −s0

i

ae

≤
∑

i∈N

∑

e∈xi

2fe(ne(Si−1) + 1)

≤
∑

i∈N

∑

e∈xi

2fe(N + 1) =
∑

e∈E

2ne(X)fe(N + 1) = O(N)C(X)

��
In the next section, we will show that the above bound is tight up to a constant
factor. As mentioned earlier, the assumption about the initial state is critical
for this problem. We will call a state empty, if no player is committed to any
of its strategies. Note that the one-round walk starting from an empty state
is essentially equivalent to the greedy algorithm for a generalized scheduling
problem, where a task may be assigned into many machines. Suri et al. [20,21]
address similar questions for the special case of the congestion games where the
available strategies are single sets (i.e. each player can choose just one facility).
They give a 3.08 lower bound and a 17/3 upper bound. For the special case of
identical facilities (equal speed machines) they give an upper bound of (φ+1)2

φ ≈
4.24. We generalize this result for our more general setting.

Theorem 2. Starting from the empty state S0, any one-round walk P leads to
a state SN that has approximation ratio of at most (φ+1)2

φ ≈ 4.24.

Now we turn our attention to weighted congestion games with linear latency
functions, where player i has weighted demand wi. Fotakis et al. [9] showed that
this game with linear latency functions is a potential game.

Theorem 3. In weighted congestion games with linear latency functions, start-
ing from the initial empty state S0, any one-round walk P leads to a state SN

that has approximation ratio of at most (1 +
√

3)2 ≈ 7.46.

3.2 Lower Bounds

The next theorem shows that the result of Theorem 1 is tight and explains why
it is necessary in the upper bounds given above to consider walks starting from
an empty allocation.
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Theorem 4. For any N > 0, there exists an N -player instance of the un-
weighted congestion game, and an initial state S0 such that for any one-round
walk P starting from S0, the state at the end of P is an Ω(N)-approximate
solution.

Proof. Consider 2N players and 2N +2 facilities {0, 1, . . .2N +1}. The available
strategies for the first players are {{0}, {i}, {N + 1, . . . , 2N}} and for the N last
{{2N + 1}, {i}, {1, . . . , N}}. In the initial allocation, every player plays its third
strategy. Consider any order on the players and let them begin to choose their
best responses. It is easy to see that in the first steps, the players would prefer
their first strategy. If this happens until the end of the round, the resulting cost
is Ω(N2). Thus, we can assume that at some step, the (k+1)-th player from the
set {1, . . . , N} prefers his second strategy while all the previous k players of the
same set have chosen their first strategies. The status of the game at this step is
as follows: k players of the first group play their first strategy, m players of the
second group play their first strategy and the remaining players play their initial
strategy. Since player k + 1 prefers his second strategy, this means k = N − m
and so one of the m, N is at least N/2. The cost at the end will be at least
m2 + k2 + N = Ω(N2). On the other hand, in the optimal allocation everybody
chooses its second strategy which gives cost 2N . Thus, the approximation ratio
is Ω(N). ��
We extend theorem 4 for the case of t-covering walks, for t > 1. We remark that
the following result holds only for a fixed ordering of the players.

Theorem 5. For any t > 0, and for any sufficiently large N > 0, there exists
an N -player instance of the unweighted congestion game, an initial state S0,
and an ordering σ of the players, such that starting from S0, after t rounds
where the players play according to σ, the cost of the resulting allocation is a
(N/t)ε-approximation, where ε = 2−O(t).

4 Cut Games: The Cut Social Function

4.1 Fast Convergence on Random Walks

First we prove positive results for the convergence to constant-factor approxi-
mate solutions with random walks. We show that the expected value of the cut
after a random one-round walk is within a constant factor of the maximum cut.

Theorem 6. In weighted graphs, the expected value of the cut at the end of a
random one-round walk is at least 1

8 of the maximum cut.

Proof. It suffices to show that after a random one-round walk, for every v ∈
V (G), E[αv] ≥ 1

8wv.
Consider a vertex v. The probability that v occurs after exactly k of its

neighbors is 1
deg(v)+1 . After v moves, the contribution of v in the cut is at

least wv

2 . Conditioning on the fact that v occurs after exactly k neighbors, for
each vertex u in the neighborhood of v, the probability that it occurs after v
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is deg(v)−k
deg(v) , and only in this case u can decrease the contribution of v in the

cut by at most wuv. Thus the expected contribution of v in the cut is at least
max(0, wv(1

2 − deg(v)−k
deg(v) )). Summing over all values of k, we obtain E[αv] ≥

∑deg(v)
k=0

1
deg(v)+1 max(0, wv(1

2 − deg(v)−k
deg(v) )) = wv

deg(v)+1

∑� deg(v)
2 �+1

k=0
2k−deg(v)
2deg(v) ≥

wv

8 . The result follows by the linearity of expectation. ��
The next theorem studies a random walk of best responses (not necessarily a
one-round walk).

Theorem 7. There exists a constant c > 0 such that the expected value of the
cut at the end of a random walk of length cn logn is a constant-factor of the
maximum cut.

4.2 Poor Deterministic Convergence

We now give lower bounds for the convergence to approximate solutions for
the cut social function. First, we give a simple example for which we need at
least Ω(n) rounds of best responses to converge to a constant-factor cut. The
construction resembles a result of Poljak [17].

Theorem 8. There exists a weighted graph G(V, E), with |V (G)| = n, and an
ordering of vertices such that for any k > 0, the value of the cut after k rounds
of letting players play in this ordering is at most O(k/n) of the maximum cut.

We next combine a modified version of the above construction with a result of
Schaffer and Yannakakis for the Max-Cut local search problem [22], to obtain
an exponentially-long walk with poor cut value.

Theorem 9. There exists a weighted graph G(V, E), with |V (G)| = Θ(n), and
a k-covering walk P in the state graph, for some k exponentially large in n, such
that the value of the cut at the end of P, is at most O(1/n) of the optimum cut.

Proof. In [22], it is shown that there exists a weighted graph G0(V, E), and
an initial cut (T0, T̄0), such that the length of any walk in the state graph,
from (T0, T̄0) to a pure strategy Nash equilibrium, is exponentially long. Con-
sider such a graph of size Θ(n), with V (G0) = {v0, v1, . . . , vN}. Let P0 be an
exponentially long walk from (T0, T̄0) to a Nash equilibrium in which we let
vertices v0, v1, . . . , vN play in this order for exponential an number of rounds.
Let S0, S1, . . . , S|P0| be the sequence of states visited by P0 and let yi be the
vertex that plays his best response from state Si to state Si+1. The result of [22]
guarantees that there exists a vertex, say v0, which wants to change side (i.e.
strategy) an exponential number of times along the walk P0 (since otherwise we
can find a small walk to a pure Nash equilibrium). Let t0 = 0, and for i ≥ 1, let
ti be the time in which v0 changes side for the i-th time along the walk P0. For
i ≥ 1, let Qi be the sequence of vertices yti−1+1, . . . , yti . Observe that each Qi

contains all of the vertices in G0.
Consider now a graph G, which consists of a path L = x1, x2, . . . , xn, and a

copy of G0. For each i ∈ {1, . . . , n − 1}, the weight of the edge {xi, xi+1} is 1.
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We scale the weights of G0, such that the total weight of the edges of G0 is less
than 1. Finally, for each i ∈ {1, . . . , n}, we add the edge {xi, v0}, of weight ε,
for some sufficiently small ε. Intuitively, we can pick the value of ε, such that
the moves made by the vertices in G0, are independent of the positions of the
vertices of the path L in the current cut.

For each i ≥ 1, we consider an ordering Ri of the vertices of L, as follows: If
i is odd, then Ri = x1, x2, . . . , xn, and if i is even, then Ri = xn, xn−1, . . . , x1.

We are now ready to describe the exponentially long path in the state graph.
Assume w.l.o.g., that in the initial cut for G0, we have v0 ∈ T0. The initial cut
for G is (T, T̄ ), with T = {x1}∪T0, and T̄ = {x2, . . . , xn}∪T̄0. It is now straight-
forward to verify that there exists an exponentially large k, such that for any
i, with 1 ≤ i ≤ k, if we let the vertices of G play according to the sequence
Q1,R1,Q2,R2, . . . ,Qi,Ri, then we have (see Figure 1):

Ti

T̄i

v0 x1

x2 . . . xn−1 xn

(a) i is even

Ti

T̄i v0

x1 x2 . . . xn−1

xn

(b) i is odd

Fig. 1. The cut (Ti, T̄i) along the walk of the proof of Theorem 9

– If i is even, then {v0, x1} ⊂ T , and {x2, . . . , xn} ⊂ T̄ .
– If i is odd, then {x1, . . . , xn−1} ⊂ T , and {v0, xn} ⊂ T̄ .

It follows that for each i, with 1 ≤ i ≤ k, the size of the cut is at most O(1/n)
times the value of the optimal cut. The result follows since each walk in the state
graph induced by the sequence Qi and Ri is a covering walk. ��

4.3 Mildly Greedy Players

By Theorem 6, it follows that for any graph, and starting from an arbitrary
cut, there exists a walk of length at most n to an Ω(1)-approximate cut, while
Theorems 8 and 9, show that there are cases where a deterministic ordering of
players may result to very long walks that do reach an approximately good cut.

We observe that if we change the game by assuming that a vertex changes
side in the cut if his payoff is multiplied by at least a factor 1+ ε, for a constant
ε > 0, then the convergence is faster. We call such vertices (1 + ε)-greedy. In the
following, we prove that if all vertices are (1 + ε)-greedy for a constant ε > 0,
then the value of the cut after any one-round walk is within a constant factor of
the optimum.

Theorem 10. If all vertices are (1 + ε)-greedy, then the cut value at the end of
any one-round walk is within a min{ 1

4+2ε ,
ε

4+2ε} factor of the optimal cut.
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4.4 Unweighted Graphs

In unweighted simple graphs, it is straight-forward to verify that the value of
the cut at the end of an n2-covering walk is at least 1

2 of the optimum. The
following theorem shows that in unweighted graphs, the value of the cut after
any Ω(n)-covering walk is a constant-factor approximation.

Theorem 11. For unweighted graphs,the value of the cut after anΩ(n)-covering
walk is within a constant-factor of the maximum cut.

Proof. Consider a k-covering walk P = (P1, . . . ,Pk), where each Pi is a covering
walk. Let M0 = 0, and for any i ≥ 1, let Mi be the size of the cut at the end
of Pi. Note that if Mi − Mi−1 ≥ |E(G)|

10n , for all i, with 1 ≤ i ≤ k, then clearly
Mk ≥ k |E(G)|

10n , and since the maximum size of a cut is at most |E(G)|, the
Lemma follows.

It remains to consider the case where there exists i, with 1 ≤ i ≤ k, such that
Mi − Mi−1 < |E(G)|

10n . Let V1 be the set of vertices that change their side in the
cut on the walk Pi, and V2 = V (G) \V1. Observe that when a vertex changes its
side in the cut, the size of the cut increases by at least 1. Thus, |V1| < |E(G)|

10n ,
and since the degree of each vertex is at most n − 1, it follows that the number
of edges that are incident to vertices in V1, is less than |E(G)|

10 .
On the other hand, if a vertex of degree d remains in the same part of the

cut, then exactly after it plays, at least �d/2 of its adjacent edges are in the
cut. Thus, at least half of the edges that are incident to at least one vertex in
V2, were in the cut, at some point during walk Pi. At most |E(G)|

10 of these edges
have an end-point in V1, and thus at most that many of these edges may not
appear in the cut at the end of Pi. Thus, the total number of edges that remain
in the cut at the end of walk Pi, is at least |E(G)|−|E(G)|/10

2 − |E(G)|
10 = 7|E(G)|

20 .
Since the maximum size of a cut is at most |E(G)|, we obtain that at the end of
Pi, the value of the cut is within a constant factor of the optimum. ��
Theorem 12. There exists an unweighted graph G(V, E), with |V (G)| = n,
and an ordering of the vertices such that for any k > 0, the value of the cut
after k rounds of letting players play in this ordering is at most O(k/

√
n) of the

maximum cut.

5 The Total Happiness Social Function

Due to space limitations, this section has been left to the full version.
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