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Abstract. We consider Markov decision processes (MDPs) with multi-
ple discounted reward objectives. Such MDPs occur in design problems
where one wishes to simultaneously optimize several criteria, for exam-
ple, latency and power. The possible trade-offs between the different
objectives are characterized by the Pareto curve. We show that every
Pareto-optimal point can be achieved by a memoryless strategy; how-
ever, unlike in the single-objective case, the memoryless strategy may
require randomization. Moreover, we show that the Pareto curve can
be approximated in polynomial time in the size of the MDP. Addition-
ally, we study the problem if a given value vector is realizable by any
strategy, and show that it can be decided in polynomial time; but the
question whether it is realizable by a deterministic memoryless strat-
egy is NP-complete. These results provide efficient algorithms for design
exploration in MDP models with multiple objectives.

1 Introduction

Markov decision processes (MDPs) are a widely studied model for dynamic and
stochastic systems [2,8]. An MDP models a dynamic system that evolves through
stages. In each stage, a controller chooses one of several actions, and the system
stochastically evolves to a new state based on the current state and the chosen
action. In addition, one associates a cost or reward with each state and transi-
tion, and the central question is to find a strategy of choosing the actions that
optimizes the rewards obtained over the run of the system, where the rewards
are combined using a discounted sum. In many modeling domains, however,
there is no unique objective to be optimized, but multiple, potentially depen-
dent and conflicting objectives. For example, in designing a computer system,
one is interested not only in maximizing performance but also in minimizing
power. Similarly, in an inventory management system, one wishes to optimize
several potentially dependent costs for maintaining each kind of product, and in
AI planning, one wishes to find a plan that optimizes several distinct goals. The
usual MDP model is insufficient to express these natural problems.
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We study MDPs with multiple objectives, an extension of the MDP model
where there are several reward functions [4,10]. In MDPs with multiple objec-
tives, we are interested not in a single solution that is simultaneously optimal in
all objectives (which may not exist), but in a notion of “trade-offs” called the
Pareto curve. Informally, the Pareto curve consists of the set of realizable value
profiles (or dually, the strategies that realize them) which are not dominated (in
every dimension) by any other value profile. Pareto optimality has been studied
in co-operative game theory [6], and in multi-criterion optimization and decision
making in both economics and engineering [5,9,11]. Finding some Pareto-optimal
point can be reduced to optimizing a single objective: optimize a convex com-
bination of objectives using a set of positive weights; the optimal strategy must
be Pareto-optimal as well (the “weighted factor method”) [4]. In design space
exploration, however, we want to find not one, but all Pareto-optimal points in
order to better understand the trade-offs in the design. Unfortunately, even with
just two reward functions, the Pareto curve may have infinitely many points,
and also contain irrational payoff values. Thus, previous work has focused on
constructing a sampling of the Pareto curve, either by choosing a variety of
weights in the weighted factor method, or by imposing a lexicographic ordering
on the objectives and sequentially optimizing each objective according to the or-
der [1,2]. Unfortunately, this does not provide any guarantee about the quality
of the solutions.

Instead, we study the approximate version of the problem: the ε-approximate
Pareto curve [7] for MDPs with multiple discounted reward criteria. Informally,
the ε-approximate Pareto curve for ε > 0 contains a set of strategies (or dually,
their payoff values) such that there is no other strategy whose value dominates
the values in the Pareto curve by a factor of 1 + ε. Surprisingly, a polynomial-
sized ε-approximate Pareto curve always exists. Moreover, we show that such
an approximate Pareto curve may be computed efficiently (in polynomial time)
in the size of the MDP. Our proof is based on the following characterization of
Pareto-optimal points: every Pareto-optimal value profile can be realized by a
memoryless (but possibly randomized) strategy. This enables the reduction of
the problem to multi-objective linear programs, and we can apply the methods
of [7].

We also study the Pareto realizability decision problem: given a profile of
values, is there a Pareto-optimal strategy that dominates it? We show that the
Pareto realizability problem can be solved in polynomial time. However, if we
restrict the set of strategies to be pure (i.e., no randomization), then the problem
becomes NP-hard. Our complexities are comparable to the single discounted
reward case, where linear programming provides a polynomial-time solution [8].
However, unlike in the single-reward case, where pure and memoryless optimal
strategies always exist, here, checking pure and memoryless realizability is hard.

The results of this paper provide polynomial-time algorithms for both the de-
cision problem and the optimization problem for MDPs with multiple discounted
reward objectives. Since the Pareto curve forms a useful “user interface” for



Markov Decision Processes with Multiple Objectives 327

desirable solutions, we believe that these results will lead to efficient design
space exploration algorithms in multi-criterion design.

The rest of the paper is organized as follows. In Section 2, we give the basic
definitions, and show in Section 3 the sufficiency of memoryless strategies. Sec-
tion 4 gives a polynomial-time algorithm to construct the ε-approximate Pareto
curve. Section 5 studies the decision version of the problem. Finally, in Section
6, we discuss the extension to MDPs with limit-average (not discounted) reward
objectives, and mention some open problems.

2 Discounted Reward Markov Decision Processes

We denote the set of probability distributions on a set U by D(U).

Markov decision processes (MDPs). A Markov decision process (MDP)
G = (S,A, δ) consists of a finite, non-empty set S of states, a finite, non-empty
set A of actions, and a probabilistic transition function δ : S × A → D(S) that,
given a state s ∈ S and an action a ∈ A, gives the probability δ(s, a)(t) of
the next state t. We denote by Dest(s, a) = Support(δ(s, a)) the set of possible
successors of s when the action a is chosen. Given an MDP G, we define the set of
edges by E = { (s, t) | ∃a ∈ A. t ∈ Dest(s, a) }, and write E(s) = { t | (s, t) ∈ E }
for the set of possible successors of s.

Plays and strategies. A play of G is an infinite sequence 〈s0, s1, . . .〉 of states
such that for all i ≥ 0, we have (si, si+1) ∈ E. A strategy σ is a recipe that
specifies how to extend a play. Formally, a strategy σ is a function σ: S+ →
D(A) that, given a finite and non-empty sequence of states representing the
history of the play so far, chooses a probability distribution over the set A of
actions. In general, a strategy depends on the history and uses randomization.
A strategy that depends only on the current state is a memoryless or stationary
strategy, and can be represented as a function σ: S → D(A). A strategy that does
not use randomization is a deterministic or pure strategy, i.e., for all histories
〈s0, s1, . . . , sk〉 there exists a ∈ A such that σ(〈s0, s1, . . . , sk〉)(a) = 1. A pure
memoryless strategy is both pure and memoryless, and can be represented as a
function σ: S → A. We denote by Σ, ΣM , ΣP , and ΣPM the sets of all strategies,
all memoryless strategies, all pure strategies, and all pure memoryless strategies,
respectively.

Outcomes. For a strategy σ and an initial state s, we denote by Outcome(s, σ)
the set of possible plays that start from s given strategy σ, that is,
Outcome(s, σ) = { 〈s0, s1, . . .〉 | ∀k ≥ 0. ∃ak ∈ A. σ(〈s0, s1, . . . , sk〉)(ak) >
0 and sk+1 ∈ Dest(sk, ak) }. Once the initial state and a strategy is chosen,
the MDP is reduced to a stochastic process. We denote by Xi and θi random
variables for the i-th state and the i-th action, respectively, in this stochastic
process. An event is a measurable subset of Outcome(s, σ), and the probabilities
of events are uniquely defined. Given a strategy σ, an initial state s, and an
event Φ, we denote by Prσ

s (Φ) the probability that a play belongs to Φ when the
MDP starts in state s and the strategy σ is used. For a measurable function f
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that maps plays to reals, we write E
σ
s [f ] for the expected value of f when the

MDP starts in state s and the strategy σ is used.

Rewards and objectives. Let r: S × A → R be a reward function that asso-
ciates with every state and action a real-valued reward. For a reward function r
the discounted reward objective is to maximize the discounted sum of rewards,
which is defined as follows. Given a discount factor 0 ≤ β < 1, the discounted
reward or payoff value for a strategy σ and an initial state s with respect to the
reward function r is Valσdis(r, s, β) =

∑∞
t=0 βt · E

σ
s [r(Xt, θt)].

We consider MDPs with k different reward functions r1, . . . , rk. Given an
initial state s, a strategy σ, and a discount factor 0 ≤ β < 1, the discounted
reward value vector, or payoff profile, at s for σ with respect to r = 〈r1, . . . , rk〉
is defined as Valσdis (r, s, β) = 〈Valσdis(r1, s, β), . . . , Valσdis(rk, s, β)〉.

Comparison operators on vectors are interpreted in a point-wise fashion, i.e.,
given two real-valued vectors v1 = 〈v1

1 , . . . , vk
1 〉 and v2 = 〈v1

2 , . . . , vk
2 〉, and �	∈

{ <,≤, = }, we write v1 �	 v2 if and only if for all 1 ≤ i ≤ k, we have vi
1 �	 vi

2.
We write v1 	= v2 to denote that vector v1 is not equal to v2, that is, it is not
the case that v1 = v2.

Pareto-optimal strategies. Given an MDP G and reward functions r1, . . . , rk,
a strategy σ is a Pareto-optimal strategy [6] from a state s if there is no strat-
egy σ′ ∈ Σ such that both Valσdis(r, s, β) ≤ Valσ

′
dis(r, s, β) and Valσdis(r, s, β) 	=

Valσ
′

dis(r, s, β); that is, there is no strategy σ′ such that for all 1 ≤ j ≤ k,
we have Valσdis (rj , s, β) ≤ Valσ

′
dis (rj , s, β), and there exists 1 ≤ j ≤ k with

Valσdis(rj , s, β) < Valσ
′

dis(rj , s, β). For a Pareto-optimal strategy σ, the corre-
sponding payoff profile Valσdis(r, s, β) is referred to as a Pareto-optimal point. In
case k = 1, the class of Pareto-optimal strategies are called optimal strategies.

Sufficiency of strategies. Given reward functions r1, . . . , rk, a family ΣC of
strategies suffices for Pareto optimality for discounted reward objectives if for
every discount factor β, state s, and Pareto-optimal strategy σ ∈ Σ, there is a
strategy σ′ ∈ ΣC such that Valσdis(r, s, β) ≤ Valσ

′
dis(r, s, β).

Theorem 1. [2] In MDPs with a single reward function r, the pure memoryless
strategies suffice for optimality for the discounted reward objective, i.e., for all
discount factors 0 ≤ β < 1 and states s ∈ S, there exists a pure memoryless
strategy σ∗ ∈ ΣPM such that for all strategies σ ∈ Σ, we have Valσdis(r, s, β) ≤
Valσ

∗
dis(r, s, β).

3 Memoryless Strategies Suffice for Pareto Optimality

In the sequel, we fix a discount factor β such that 0 ≤ β < 1. Proposition 1
shows the existence of pure memoryless Pareto-optimal strategies.

Proposition 1. There exist pure memoryless Pareto-optimal strategies for
MDPs with multiple discounted reward objectives.
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Fig. 1. MDP for Example 1

Proof. Given reward functions r1, . . . , rk, consider a reward function r+ =
r1 + · · · + rk, that is, for all s ∈ S, we have r+(s) = r1(s) + · · · + rk(s). Let
σ∗ ∈ ΣPM be a pure memoryless optimal strategy for the reward function r+

with the discounted reward objective with discount β (such a strategy exists
by Theorem 1). We show that σ∗ is Pareto-optimal. Assume towards contra-
diction that σ∗ is not a Pareto-optimal strategy, then let σ ∈ Σ be such that
Valσ

∗
dis(r, s, β) ≤ Valσdis(r, s, β), and for some j, Valσ

∗
dis (rj , s, β) < Valσdis (rj , s, β).

Then we have Valσ
∗

dis (r+, s, β) =
∑k

j=1 Valσ
∗

dis (rj , s, β) <
∑k

j=1 Valσdis(rj , s, β) =
Valσdis(r+, s, β). This contradicts that σ∗ is optimal for r+.

The above proof can be generalized to any convex combination of the multiple
objectives, that is, for positive weights w1, . . . , wk, the optimal strategy for the
single objective

∑
i wi ·ri is Pareto-optimal. This technique is called the weighted

factor method [4,10], and used commonly in engineering practice to find subsets
of the Pareto set [5]. However, not all Pareto-optimal points are obtained in this
fashion, as the following example shows.

Example 1. Consider the MDP from Fig. 1, with two actions a and b, and two
reward functions r1 and r2. The transitions and the respective rewards are shown
as labeled edges in the figure. Consider the discounted reward objectives for
reward functions r1 and r2. For the pure memoryless strategies (and also the
pure strategies) in this MDP, the possible value vectors are ( β

1−β , 0) and (0, β
1−β ).

However, consider a memoryless strategy σm that at state s0 chooses action a
and b each with probability 1/2. For r = (r1, r2), we have Valσm

dis (r, s0, β) =
( β
2·(1−β) ,

β
2·(1−β) ). The strategy σm is Pareto-optimal and no pure memoryless

strategy can achieve the corresponding value vector. Hence it follows that the
pure strategies (and the pure memoryless strategies) do not suffice for Pareto
optimality. Note that for all 0 < x < 1, the memoryless strategy that chooses a

with probability x, is a Pareto-optimal strategy, with value vector ( x·β
1−β , (1−x)·β

1−β ).
Hence the set of Pareto-optimal value vectors may be uncountable and value
vectors may have irrational values.

We now show that the family of memoryless strategies suffices for Pareto
optimality. We assume the state space S is enumerated as S = { 1, . . . , n }. For
a state t ∈ S, we define the reward function rt by rt(s, a) = 1 if s = t, and 0
otherwise, i.e., a reward of value 1 is gained whenever state t is visited. Similarly,
we define the reward function rt,b for a state t ∈ S and an action b ∈ A by
rt,b(s, a) = 1 if s = t and b = a, and 0 otherwise, i.e., a reward of value 1 is
gained whenever state t is visited and action b is chosen. Given a strategy σ ∈ Σ
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and a state s ∈ S, we define the discounted frequency of the state-action pair
(t, a) as

Freqσ
s (t, a, β) = Valσdis (rt,a, s, β) =

∞∑

k=0

βk · Eσ
s [1(Xk=t,θk=a)],

and the discounted frequency of the state t as

Freqσ
s (t, β) = Valσdis (rt, s, β) =

∞∑

k=0

βk · Eσ
s [1(Xk=t)].

Observe that
∑

a∈A Freqσ
s (t, a, β) = Freqσ

s (t, β) for all s, t ∈ S and σ ∈ Σ. For
a memoryless strategy σm ∈ ΣM and a transition function δ, we denote by
δσm(s, t) =

∑
a∈A σm(s)(a) · δ(s, a)(t) the probability of the transition from s to

t given δ and σm.

Proposition 2. Given a memoryless strategy σm ∈ ΣM , consider a vector z =
〈z1, . . . , zn〉 of variables, where S = { 1, . . . , n }. The set of n equations

zi = rs(i) + β ·
∑

j∈S

δσm(j, i) · zj, for i ∈ S,

has the unique solution zi = Freqσm
s (i, β) for all 1 ≤ i ≤ n.

Proof. To establish the desired claim we show that for all i ∈ S, we have
Freqσm

s (i, β) = rs(i) + β · ∑j∈S δσm(j, i) · Freqσm
s (j, β). The uniqueness follows

from arguments similar to the uniqueness of values under memoryless strategies
(see [2]).

Freqσm
s (i, β) =

∑∞
k=0 βk · Eσm

s [1(Xk=i)]
=

∑∞
k=0 βk · Eσm

s [
∑

j∈S 1(Xk−1=j) δσm(j, i)]
= rs(i) +

∑∞
k=1 βk · ∑j∈S E

σm
s [1(Xk−1=j)] · δσm(j, i)

= rs(i) + β · ∑j∈S

(∑∞
k=1 βk−1

E
σm
s [1(Xk−1=j)]

) · δσm(j, i)
= rs(i) + β · ∑j∈S

(∑∞
z=0 βz · E

σm
s [1(Xz=j)]

) · δσm(j, i)
= rs(i) + β · ∑j∈S Freqσm

s (j, β) · δσm(j, i).

Given a strategy σ ∈ Σ and an initial state s, we define a memoryless strategy
σf,s ∈ ΣM from the discounted frequency of the strategy σ as follows:

σf,s(t)(a) =
Freqσ

s (t, a, β)
Freqσ

s (t, β)
, for all t ∈ S and a ∈ A.

Since
∑

a∈A Freqσ
s (t, a, β) = Freqσ

s (t, β) and Freqσ
s (t, a, β) ≥ 0, it follows that

σf,s(t) is a probability distribution. Thus σf,s is a memoryless strategy. From
Proposition 2, and the identity Freqσ

s (i, β) = rs(i)+β ·∑j∈S Freqσ
s (j, β)·δσf,s

(j),
we obtain the following lemma.

Lemma 1. For all strategies σ ∈ Σ and states i, s ∈ S, we have Freqσ
s (i, β) =

Freqσf,s
s (i, β).
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Proof. We show that Freqσ
s (i, β) = rs(i) + β · ∑

j∈S Freqσ
s (j, β) · δσf,s

(j). The
result then follows from Proposition 2.

Freqσ
s (i, β) =

∑∞
k=0 βk · E

σ
s [1(Xk=i)]

=
∑∞

k=0 βk · E
σ
s [

∑
j∈S

∑
a∈A 1(Xk−1=j,θk−1=a)δ(j, a)(i)]

= rs(i) +
∑∞

k=1 βk · ∑j∈S

∑
a∈A E

σ
s [1(Xk−1=j,θk−1=a)] · δ(j, a)(i)

= rs(i) + β · ∑j∈S

∑
a∈A(

∑∞
k=1 βk−1

E
σ
s [1(Xk−1=j,θk−1=a)]) · δ(j, a)(i)

= rs(i) + β · ∑j∈S

∑
a∈A Freqσ

s (j, a, β) · δ(j, a)(i)
= rs(i) + β · ∑j∈S

∑
a∈A

(
Freqσ

s (j, β) · Freqσ
s (j,a,β)

Freqσ
s (j,β)

) · δ(j, a)(i)

= rs(i) + β · ∑j∈S Freqσ
s (j, β) · (∑

a∈A
Freqσ

s (j,a,β)
Freqσ

s (j,β)

) · δ(j, a)(i)
= rs(i) + β · ∑j∈S Freqσ

s (j, β) · ∑a∈A σf,s(j)(a) · δ(j, a)(i)
= rs(i) + β · ∑j∈S Freqσ

s (j, β) · δσf,s
(j, i).

Corollary 1. For all strategies σ ∈ Σ, all states i, s ∈ S, and all actions a ∈ A,
we have Freqσ

s (i, a, β) = Freqσf,s
s (i, a, β).

Proof. The following equalities follow from the definitions and Lemma 1:

Freqσf,s
s (i, a, β) = Freqσf,s

s (i, β) · σf,s(i)(a)
= Freqσ

s (i, β) · Freqσ
s (i,a,β)

Freqσ
s (i,β)

= Freqσ
s (i, a, β).

Theorem 2. For all reward functions r, all strategies σ ∈ Σ, and all states
s ∈ S, we have Valσdis(r, s, β) = Valσf,s

dis (r, s, β).

Proof. The result is proved as follows:

Valσdis(r, s, β) =
∑∞

k=0 βk · Eσ
s [r(Xk, θk)]

=
∑∞

k=0 βk · Eσ
s [

∑
i∈S

∑
a∈A r(i, a) · 1(Xk=i,θk=a)]

=
∑

i∈S

∑
a∈A(

∑∞
k=0 βk · Eσ

s [1(Xk=i,θk=a)]) · r(i, a)
=

∑
i∈S

∑
a∈A Freqσ

s (i, a, β) · r(i, a)
=

∑
i∈S

∑
a∈A Freqσf,s

s (i, a, β) · r(i, a) (by Corollary 1).

Similarly, it follows that Valσf,s

dis (r, s, β) =
∑

i∈S

∑
a∈A Freqσf,s

s (i, a, β) · r(i, a).
This establishes the result.

Theorem 2 yields Theorem 3, and since the set of memoryless strategies is convex,
it also shows that the set of Pareto-optimal points is convex.

Theorem 3. Given an MDP with multiple reward functions r, for all strate-
gies σ ∈ Σ and all states s ∈ S, the memoryless strategy σf,s ∈ ΣM satisfies
Valσdis(r, s, β) = Valσf,s

dis (r, s, β). Consequently, the memoryless strategies suffice
for Pareto optimality for MDPs with multiple discounted reward objectives.

4 Approximating the Pareto Curve

Pareto curve. Let M be an MDP with k reward functions r = 〈r1, . . . , rk〉.
The Pareto curve Pdis (M, s, β, r) of the MDP M at state s with respect to
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discounted reward objectives is the set of all k-vectors of values such that
for each v ∈ Pdis (M, s, β, r), there is a Pareto-optimal strategy σ such that
Valσdis(r, s, β) = v. We are interested not only in the values, but also in the
Pareto-optimal strategies. We often blur the distinction and refer to the Pareto
curve Pdis (M, s, β, r) as a set of strategies that achieve the Pareto-optimal val-
ues (if there is more than one strategy that achieves the same value vector,
then Pdis (M, s, β, r) contains at least one of them). For an MDP M and a real
ε > 0, an ε-approximate Pareto curve, denoted P ε

dis(M, s, β, r), is a set of strate-
gies in Σ such that there is no strategy σ′ ∈ Σ such that for all strategies
σ ∈ P ε

dis (M, s, β, r), we have Valσ
′

dis(ri, s, β) ≥ (1 + ε) · Valσdis(ri, s, β) for all
1 ≤ i ≤ k. That is, an ε-approximate Pareto curve contains enough strategies
such that every Pareto-optimal strategy is “almost” dominated by some strategy
in P ε

dis(M, s, β, r).

Multi-objective linear programming. A multi-objective linear program L
consists of (i) a set of k objective functions o1, . . . , ok, where oi(x) = cT

i · x, for
a vector ci of coefficients and a vector x of variables; and (ii) a set of linear con-
straints specified by A·x ≥ b, for a matrix A and a value vector b. A valuation of
x is a solution if it satisfies the set (ii) of linear constraints. A solution x is Pareto-
optimal if there is no other solution x′ such that both 〈o1(x), . . . , ok(x)〉 ≤
〈o1(x′), . . . , ok(x′)〉 and 〈o1(x), . . . , ok(x)〉 	= 〈o1(x′), . . . , ok(x′)〉. Given a multi-
objective linear program L, the Pareto curve for L, denoted P (L), is the set of
k-vectors v of values such that there is a Pareto-optimal solution x of L with
v = 〈o1(x), . . . , ok(x)〉. The definition of ε-approximate Pareto curves P ε(L) for
a multi-objective linear program L and a real ε > 0, is analogous to the definition
of ε-approximate Pareto curves for multi-objective MDPs given above.

Theorem 4. [7] Given a multi-objective linear program L with k objective func-
tions, the following assertions hold:

1. For all ε > 0, there exists an ε-approximate Pareto curve P ε(L) whose size
is is polynomial in |L| and 1

ε , and exponential in k.
2. For all ε > 0, there exists an algorithm to construct an ε-approximate Pareto

curve P ε(L) in time polynomial in |L| and 1
ε , and exponential in k.

Proof. Part 1 is a direct consequence of Theorem 1 of [7]. Part 2 follows from
Theorem 3 of [7] and the fact that linear programming can be solved in polyno-
mial time.

Solving MDPs by linear programming. Given an MDP M = (S, A, δ) with
state space S = {1, . . . , n}, a reward function r, and a discount factor 0 ≤ β < 1,
the discounted reward objective can be computed as the optimal solution of a
linear program [2]. For multi-objective MDPs, we extend the standard linear
programming formulation as follows. Given MDP M an discount factor β as
before, an initial state s, and reward functions r1, . . . , rk, the multi-objective
linear program has the set { x(t, a) | t ∈ S and a ∈ A } of variables. Intuitvely,
the variable x(t, a) represents the discounted frequency of the state-action pair
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(t, a) when the starting state is s. The constraints of the multi-objective linear
program over the variables x(·, ·) are given by:
∑

a∈A x(t, a) = rs(t) + β · ∑u∈S

∑
a1∈A δ(u, a1)(t) · x(u, a1), for t ∈ S;

x(t, a) ≥ 0, for t ∈ S, a ∈ A.
(1)

Equation (1) provides constraints on the discounted frequencies. The k objective
functions are

max
∑

t∈S

∑

a∈A

ri(t, a) · x(t, a), for i ∈ { 1, . . . , k }.

Consider any solution x(t, a), for t ∈ S and a ∈ A, of this linear program. Let
x(t) =

∑
a∈A x(t, a). The solution derives a memoryless strategy that chooses

action a at state t with probability x(t,a)
x(t) . The linear program with the i-th

objective function asks to maximize the discounted reward for the i-th reward
function ri over the set of all memoryless strategies. The optimal solution for the
linear program with only the i-th objective also derives an optimal memoryless
strategy for the reward function ri. Furthermore, given a solution of the linear
program, or equivalently, the memoryless strategy derived from the solution, we
can compute the corresponding payoff profile in polynomial time, because the
MDP reduces to a Markov chain when the strategy is fixed.

We denote by Ldis(M, s, β, r) the multi-objective linear program defined
above for the memoryless strategies of an MDP M , state s of M , discount
factor β, and reward functions r = 〈r1, . . . , rk〉. Let P (Ldis(M, s, β, r)) be the
Pareto curve for this multi-objective linear program. With abuse of notation,
we write P (Ldis(M, s, β, r)) also for the set of memoryless strategies that are
derived from the Pareto-optimal solutions of the multi-objective linear program.
It follows that the Pareto curve P (Ldis(M, s, β, r)) characterizes the set of mem-
oryless Pareto-optimal points for the MDP with k discounted reward objectives.
Since memoryless strategies suffice for Pareto optimality for discounted reward
objectives (Theorem 3), the following lemma is immediate. Theorem 5 follows
from Theorem 4 and Lemma 2.

Lemma 2. Given an MDP M with k reward functions r, a state s of M , and
a discount factor 0 ≤ β < 1, let Ldis(M, s, β, r) be the corresponding multi-
objective linear program. The following assertions hold:

1. P (Ldis(M, s, β, r)) = Pdis (M, s, β, r), that is, the Pareto curves for the linear
program and the discounted reward MDP coincide.

2. For all ε > 0 and all ε-approximate Pareto curves P ε(Ldis(M, s, β, r)) of
Ldis(M, s, β, r), there is an ε-approximate Pareto curve P ε

dis (M, s, β, r) such
that P ε(Ldis (M, s, β, r)) = P ε

dis(M, s, β, r).

Theorem 5. Given an MDP M with k reward functions r and a discount factor
0 ≤ β < 1, the following assertions hold:
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1. For all ε > 0, there exists an ε-approximate Pareto curve P ε
dis (M, s, β, r)

whose size is polynomial in |M |, |β|, |r|, and 1
ε , and exponential in k.

2. For all ε > 0, there exists an algorithm to construct an ε-approximate Pareto
curve P ε

dis (M, s, β, r) in time polynomial in |M |, |β|, |r|, and 1
ε , and expo-

nential in k.

Theorem 5 shows that the Pareto curve can be efficiently ε-approximated. Recall
that it follows from Example 1 that the set of Pareto-optimal points may be
uncountable and the values may be irrational. Hence the ε-approximation of the
Pareto curve is a useful finite approximation. The approximate Pareto curve
allows us to answer trade-off queries about multi-objective MDPs. Specifically,
given a multi-objective MDP M with k reward functions r and discount factor
β, and a value profile w = 〈w1, . . . , wk〉, we can check whether w is ε-close to
a Pareto-optimal point at state s by constructing P ε

dis(M, s, β, r) in polynomial
time, and checking that there is some strategy in P ε

dis(M, s, β, r) whose payoff
profile is ε-close to w.

5 Pareto Realizability

In this section we study two related aspects of multi-objective MDPs: Pareto
realizability, and pure memoryless Pareto realizability. The Pareto realizabil-
ity problem asks, given a multi-objective MDP M with reward functions r =
〈r1, . . . , rk〉 and discount factor 0 ≤ β < 1, a state s of M , and a value profile
w = 〈w1, . . . , wk〉 of k rational numbers, whether there exists a strategy σ such
that Valσdis (r, s, β) ≥ w. Observe that such a strategy exists if and only if there
is a Pareto-optimal strategy σ′ such that Valσ

′
dis (r, s, β) ≥ w. Also observe that

it follows from Lemma 2 that a value profile w is realizable if and only if it is
realizable by a memoryless strategy. The pure memoryless Pareto realizability
problem further requires this strategy to be pure and memoryless.

The Pareto realizability problem arises when certain target behaviors are
required, and one wishes to check if they can be attained on the model. Pure
Pareto realizability arises in situations, such as circuit implementations, where
the implemented strategy does not have access to randomization.

Theorem 6. The Pareto realizability problem for MDPs with multiple dis-
counted reward objectives can be solved in polynomial time. The pure memoryless
Pareto realizability problem for MDPs with multiple discounted reward objectives
is NP-complete.

Proof. We show that Pareto realizability is in polynomial time by reduction
to linear programming. The reduction is obtained as follows: along with the
constraints defined by Equation (1) we add the constraints

wi ≤
∑

t∈S

∑

a∈A

x(t, a) · ri(t, a), for i ∈ { 1, . . . , k }.

The original constraints from Equation (1) provide constraints on the discounted
frequencies. The additional new constraints ensure that the payoff value for each
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reward function ri is greater than or equal to the corresponding profile value wi.
Thus, if the set is consistent, then the answer to the Pareto realizability problem
is “yes,” and if inconsistent, the answer is “no.” Consistency of this set can be
checked in polynomial time using linear programming.

Pure and memoryless Pareto realizability is in NP since we can guess a pure
memoryless strategy and compute its payoff values in polynomial time. We can
then check that each payoff value is greater than or equal to the given profile
value. It is NP-hard by reduction from subset sum. The subset sum problem
takes as input natural numbers { a1, . . . , an }, and a natural number p, and asks
if there exist v1, . . . , vn in { 0, 1 } such that a1 · v1 + · · · + an · vn = p. It is
NP-complete [3].

For an instance of the subset sum problem, we construct an MDP with two
reward functions as follows. We assume for clarity that β = 1. The construction
can be adapted for any fixed discount factor by suitably scaling the rewards. The
MDP has n + 1 states, numbered from 1 to n + 1. We fix the start state to be
1. There are two actions, L and R. The transition relation is deterministic, for
state i ∈ { 1, . . . , n }, we have δ(i, L)(i + 1) = δ(i, R)(i + 1) = 1. For state n + 1,
we have δ(n + 1, L)(n + 1) = δ(n + 1, R)(n + 1) = 1. The reward function r1 is
defined as r1(i, L) = ai, and r1(i, R) = 0 for i ∈ { 1, . . . , n }, and r1(n + 1, L) =
r1(n+1, R) = 0. Similarly, the reward function r2 is defined as r2(i, R) = ai, and
r2(i, L) = 0 for i ∈ { 1, . . . , n }, and r2(n + 1, L) = r2(n + 1, R) = 0. We now ask
if the value profile (p,

∑
i ai − p) is pure Pareto realizable for this MDP. From

the construction, it is clear that this profile is pure memoryless Pareto realizable
iff the answer to the subset sum problem is “yes”. In fact, the pure strategy that
realizes the profile provides the required vi’s: if action L is played at state i, then
vi = 1, else vi = 0. Since the MDP is a DAG, the hardness construction holds if
we require the realizing strategy to be pure (not necessarily memoryless).

The pure Pareto realizability problem requires the realizing strategy to be pure,
but not necessarily memoryless. It follows from the reduction given above that
the pure Pareto realizability problem for MDPs with multiple discounted reward
objectives is NP-hard; however, we do not have a characterization of the exact
complexity of the problem.

6 Limit-Average Reward Objectives

We now briefly discuss the class of limit-average reward objectives, which
is widely studied in the context of MDPs. Given a reward function r, the
limit-average reward for a strategy σ at an initial state s is Valσavg(r, s) =

s0s1

b (0,1)

b (1,0)

(0,1)
aa

(1,0)

Fig. 2. MDP for Example 2
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lim supk→∞
1
k · ∑k

t=0 E
σ
s [r(Xt, θt)]. With this definition, Theorem 1 holds for

a single limit-average reward objective, and Proposition 1 extends to multiple
limit-average reward objectives. Moreover, a simple adaptation of Example 1
shows that the pure strategies do not suffice for Pareto optimality for limit-
average reward objectives. Unfortunately, Theorem 3 does not generalize. Ex-
ample 2 below shows that for limit-average reward objectives, the family of
memoryless strategies does not capture all Pareto-optimal strategies. However,
it is still possible that the Pareto curve for limit-average reward objectives can
be approximated in polynomial time. This remains an open problem.

Example 2. Fig. 2 shows an MDP with two actions a and b, and two reward
functions r1 and r2. The transitions and the respective rewards are shown as
labeled edges in the figure. Consider the limit-average reward objectives for
r1 and r2. Given any memoryless strategy σm, at s0 we have Valσm

avg(s0, r1) +
Valσm

avg(s0, r2) = 1. We now consider the following strategy σ, which is played
in rounds. In round j, the strategy σ first goes to state s1, chooses action a
(i.e., stays in s1) unless the average for reward r1 is at least 1 − 1

j , then goes
to state s0, chooses action a unless the average reward for reward r2 is at least
1− 1

j , and then proceeds to round j +1. Given σ, we have Valσavg(s0, r1) = 1 and
Valσavg(s0, r2) = 1. There is no memoryless Pareto-optimal strategy to achieve
this value vector.
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