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Preface

The Symposium on Theoretical Aspects of Computer Science (STACS) is alter-
nately held in France and in Germany. The conference of February 23–25, 2006,
held at Marseille was the 23rd in this series. Previous meetings took place in
Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988),
Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg
(1993), Caen (1994), München (1995), Grenoble (1996), Lübeck (1997), Paris
(1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003),
Montpellier (2004) and Stuttgart (2005).

The interest in STACS has been increasing continuously during recent years –
and even strongly this year. The STACS 2006 call for papers led to 283 submis-
sions from all over the world. We had a two-day physical meeting for the Program
Committee in Paris in November 2006 where all members of the Program Com-
mittee were present. We would like to thank the Program Committee and all
external referees for the valuable work they put into the reviewing process. Each
submission was assigned to at least 3 Programme Committee members, hence
each member was in charge of about 50 papers. Only 54 papers (i.e., 19 % of
the submissions) could be accepted, as we wanted to keep the conference in its
standard format with only two parallel sessions.

We would like to thank the three invited speakers, Philippe Flajolet, Leonid
Levin and Helmut Seidl, for their contributions to the proceedings.

Special thanks are due to Andrei Voronkov for his EasyChair software
(www.easychair.org) and for his continuous support in runnning it. This soft-
ware was used for the process of paper selection and also for preparing the
camera-ready copy of this proceedings volume.

December 2005 Bruno Durand and Wolfgang Thomas
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Péter Gács
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The Ubiquitous Digital Tree

Philippe Flajolet

Algorithms Project, INRIA Rocquencourt, F-78153 Le Chesnay, France
Philippe.Flajolet@inria.fr

Abstract. The digital tree also known as trie made its first appearance
as a general-purpose data structure in the late 1950’s. Its principle is a
recursive partitioning based on successive bits or digits of data items.
Under various guises, it has then surfaced in the management of very
large data bases, in the design of efficient communication protocols, in
quantitative data mining, in the leader election problem of distributed
computing, in data compression, as well as in some corners of compu-
tational geometry. The algorithms are invariably very simple, easy to
implement, and in a number of cases surprisingly efficient. The corre-
sponding quantitative analyses pose challenging mathematical problems
and have triggered a flurry of research works. Generating functions and
symbolic methods, singularity analysis, the saddle-point method, trans-
fer operators of dynamical systems theory, and the Mellin transform have
all been found to have a bearing on the probabilistic behaviour of trie
algorithms. We offer here a perspective on the rich algorithmic, analytic,
and probabilistic aspects of tries, culminating with a connection between
a sorting problem and the Riemann hypothesis.

While, in the course of the 1980s and 1990s, a large portion of the theoreti-
cal computer science community was massively engaged in worst-case design and
analysis issues, the discovery of efficient algorithms continued to make tangible
progress. Such algorithms are often based on simple and elegant ideas, and, ac-
cordingly, their study is likely to reveal structures of great mathematical interest.
Also, efficiency is much better served by probabilistic analyses1 than by the ter-
atological constructions of worst-case theory. I propose to illustrate this point of
view by discussing a fundamental process shared by algorithmics, combinatorics,
and discrete probability theory—the digital tree process. Because of space-time
limitations, this text, an invited lecture at STACS’06, cannot be but a brief guide
to a rich subject whose proper development would require a book of full length.

1 The Basic Structure

Consider first as domain of our data items the set of all infinitely long binary
strings, B = {0, 1}∞. The goal is to devise a data structure in which elements
of B can be stored and easily retrieved. Given a finite set ω ⊂ B like
1 To be mitigated by common sense and a good feel for algorithmic engineering, of

course!

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 1–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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ω =
{
110100 · · · , 01011 · · · , 01101 · · ·

}
,

a natural idea is to form a tree in which the left subtree will contain all the
elements starting with 0, all elements starting with 1 going to the right subtree.
(On the example, the last two strings would then go to the left subtree, the first
one to the right subtree.) The splitting process is repeated, with the next bit of
data becoming discriminant. Formally, given any ω ⊂ B, we define

ω \ 0 := {σ | 0 σ ∈ Ω}, ω \ 1 := {σ | 1 σ ∈ Ω}.

The motto here is thus simply “filter and shift left”. The digital tree or trie
associated to ω is then defined by the recursive rule:

trie(ω) :=

⎧⎪⎪⎨⎪⎪⎩
∅ if ω = ∅
σ if ω = {σ}
〈•, trie(ω \ 0), trie(ω \ 1)〉.

(1)

The tree trie(ω) makes it possible to search for elements of ω: in order to ac-
cess σ ∈ B, simply follow a path in the tree dictated by the successive bits
of σ, going left on a 0 and right on a 1. This continues till either an external
node containing one element, or being an empty node, is encountered. Insertion
proceeds similarly (split an external node if the position is already occupied),
while deletion is implemented by a dual process (merging a node with its newly
vacant brother). The tree trie(ω) can be either constructed from scratch by a
sequence of insertions or built by a top down procedure reflecting the inductive
definition (1). In summary:

Tries serve to implement dictionaries, that is, they support the operations of
insertion, deletion, and query.

A trie thus bears some resemblance to the Binary Search Tree (BST), with the
basic BST navigation based on relative order being replaced by decisions based
on values (bits) of the data items:

BST: 〈x, “< x”, “> x” 〉; Trie: 〈•, “ = 0”, “ = 1” 〉.

Equivalently, if infinite binary strings are interpreted as [0, 1] real numbers, the
separation at the root is based on the predicates < 1

2 ,≥
1
2 . Like for the BST, a

left to right traversal of the external nodes provides the set ω in sorted order:
the resulting sorting algorithm is then essentially isomorphic to Radix Exchange
Sort [43]. (This parallels the close relationship that BSTs entertain with the
Quicksort algorithm.) The books by Knuth [43] and Sedgewick [54] serve as an
excellent introduction to these questions.

There are many basic variations on the trie principle (1).

— Multiway branching. The alphabet {0, 1} has been so far binary. An m-
ary alphabet can be accommodated by means of multiway branching, with
internal nodes being m-ary.
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— Paging. Recursion may be halted as soon in the set ω has cardinality less
than some fixed threshold b. The standard case is b = 1. The general case
b ≥ 1 corresponds to “bucketing” or paging and is used for retrieval from
secondary memory.

— Finite-length data. Naturally occurring data tend to be of finite length. The
trie can then be implemented by appending a terminator symbol to each
data item, which causes branching to stop immediately.

— Digital search trees (DSTs). These are a hybrid between BSTs and tries.
Given a sequence of elements of B, place the first element at the root of the
tree, partition the rest according to the leading digit and proceed recursively.
DSTs are well described and analysed in Knuth’s volume [43]. Their interest
as a general purpose data structure has faded, but they have been found to
play an important rôle in connection with data compression algorithms.

— Patricia tries. They are obtained from tries by adding skip fields in order to
collapse sequences of one way branches.

Let us point out at this stage that, as a general purpose data structure, tries
and their kin are useful for performing not only dictionary operations, but also set
intersection and set union. This fact was recognized early by Trabb Pardo [58].
The corresponding algorithms are analysed in [27], which also contains a thor-
ough discussion of the algebra of finite-length models.

Complexity issues. Under the basic model of infinitely long strings, the worst-
case complexity of the algorithms can be arbitrarily large. In the more realistic
case of finite-length strings, the worst-case search cost may equal the length
of the longest item, and this may well be quite a large quantity. Like for many
probabilistic algorithms, what is in fact relevant is the “typical” behaviour of the
trie, measured either on average or in probability under realistic data models.
Analysis of algorithms plays here a critical rôle in helping us decide in which
contexts a trie can be useful and how parameters should be dimensioned for best
effect. This is the topic we address next.

2 Random Tries

The field of analysis of algorithms has evolved over the past two decades. The
old-style recurrence approach is nowadays yielding ground to modern “symbolic
methods” that replace the study of sequences of numbers (counting sequences,
probabilities of events, average-case values or moments of parameters) by the
study of generating functions. The algebra of series and the analysis of functions,
mostly in the complex domain C, then provide precise asymptotic information
on the original sequence. For an early comparative analysis of tries and digital
search trees in this perspective, see [29].

The algebra of generating functions. Let (fn) be a numeric sequence; its
exponential generating function (EGF) is by definition the formal sum

f(z) =
∑
n≥0

fn
zn

n!
. (2)
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(We systematically use the same groups of letters for numeric sequences and
their EGFs.) Consider a parameter φ defined inductively over tries by

φ[τ ] = t[τ ] + φ[τ0] + φ[τ1]. (3)

There, the trie τ is of the form 〈•, τ0, τ1〉, and the quantity t(τ), called the
“toll” function, often only depends on the number of items stored in τ (so that
t(τ) = tn if τ contains n data). Our goal is to determine the expectation (E) of
the parameter φ, when the set ω on which the trie is built comprises n elements.

The simplest probabilistic model assumes bits in strings to be identically
independently distributed,

P(0) = p, P(1) = q = 1− p,

the n strings of ω furthermore being drawn independently. This model is known
as the Bernoulli model. The unbiased model also known as uniform model cor-
responds to the further condition P(0) = P(1) = 1

2 . Under the general Bernoulli
model, the inductive definition (3) admits a direct translation

φ(z) = t(z) + eqzφ(pz) + epzφ(qz). (4)

There φ(z) is the EGF of the sequence (φn) and φn = En(φ) is the expectation of
the parameter φ[·] taken over all trees comprising n data items. The verification
from simple rules of series manipulation is easy: it suffices to see that, given n
elements, the probability that k of them go into the left subtree (i.e, start with
a 0) is the binomial probability pkqn−k

(
n
k

)
, so that, as regards expectations,

φn = tn +
∑
k

pkqn−k

(
n

k

)
(φk + φn−k).

For the number of binary nodes in the tree, a determinant of storage complexity,
the toll is tn = 1 − δn0 − δn1. For path length, which represents the total access
cost of all elements, it becomes tn = n−δn0. The functional equation (4) can then
be solved by iteration. Under the unbiased Bernoulli model, we have for instance

φ(z) = t(z) + 2ez/2t(
z

2
) + 4e3z/4t(

z

4
) + · · · .

Then, expansion around z = 0 yields coefficients, that is expectations. We quote
under the unbiased Bernoulli model

The expected size (number of binary nodes) and the expected path length of
a trie built out of n uniform independent random keys admit the explicit
expressions

Sn =
k≥0

2k 1 − (1 − 2−k)n − n

2k
(1 − 2−k)n−1 , Pn = n

k≥0

1 − (1 − 2−k)n−1 .

This result has been first discovered by Knuth in the mid 1960’s.

Asymptotic analysis and the Mellin transform. A plot of the averages,
Sn and Pn, is instructive. It strongly suggests that Sn is asymptotically linear,
Sn ∼ cn(?), while Pn ∼ nlgn(?), where lgx := log2 x. As a matter of fact, the
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conjecture on size is false, but by an amazingly tiny amount. What we have is
the following property:

The expected size (number of binary nodes) and the expected path length of
a trie built out of n uniform independent random keys

Sn =
n

log 2
(1 + ε(lgn)) + o(n), Pn = nlgn + O(n). (5)

There ε(x) is a continuous period function with amplitude < 10−5:

2e–06

e–06

0

1e–06

1000 2000

We can only give here a few indications on the proof techniques and refer
the reader to our long survey [24]. The idea, suggested to Knuth by the great
analyst De Bruijn, is to appeal to the theory of integral transforms. Precisely,
the Mellin transform associates to a function f(x) (with x ∈ R≥0) the function
f�(s) (with s ∈ C) defined by

f�(s) = M[f(x), x 	→ s] :=
∫ ∞

0

f(x)xs−1 dx.

For instanceM[e−x] = Γ (s), the familiar Gamma function [61]. Mellin tranforms
have two strikingly powerful properties. First, they establish a correspondence
between the asymptotic expansion of a function at +∞ (resp. 0) and singularities
of the transform in a right (resp. left) half-plane. Second, they factorize harmonic
sums, which correspond to a linear superposition of models taken at different
scales.

Consider the function s(x) = e−xS(x), where S(z) is the EGF of the sequence
(Sn) of expectations of size. (This corresponds to adopting a Poisson rather than
Bernoulli model; such a choice does not affect our asymptotic conclusions since, as
can be proved elementarily [43, p. 131], Sn − s(n) = o(n).) A simple calculation
shows that

s(x) =
∑
k≥0

2k
[
1−
(
1 +

x

2k

)
e−x/2k

]
, s�(s)− (1 + s)Γ (s)

1− 21+s
.

The asymptotic estimates (5) result from there, given that a pole at α of the
transform corresponds to a term x−α in the asymptotic expansion of the original
function. It is the existence of complex poles at

s = −1 +
2ikπ
log 2

, k ∈ Z,

that, in a sense, “creates” the periodic fluctuations present in s(x) (and hence
in Sn).

Models. Relative to the unbiased model (unbiased 0-1 bits in independent data),
the expected size estimate expresses the fact that storage occupation is at most
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Fig. 1. A random trie of size n = 500 built over uniform data

of linear growth, despite the absence of convergence to a constant occupation ratio.
The path length estimate means that the trie is nearly optimal in some information
theoretic sense, since an element is typically found after ∼ lgn binary questions.
The profile of random trie under this model is displayed in Figure 1.

The ε-fluctuation, with an amplitude of 10−5, in the asymptotic behaviour of
size tends to be quite puzzling to programmers. Undeniably, such fluctuations
will never be detected on simulations not to mention executions on real-life data.
However, mathematically, their presence implies that most elementary strategies
for analysing trie algorithms are doomed to failure. (See however [55, p. 403] for
an elementary approach.) It is a fact that no coherent theory of tries can be
developed without taking such fluctuations into account. For instance, the exact
order of the variance of trie size and trie path length must involve them [41,42].
As a matter of fact, some analyses, which were developed in the late 1970s and
ignored fluctuations, led to wrong conclusions, even regarding the order of growth
of important characteristics of tries.

Back to modelling issues, the uniform model seems at first sight to be of
little value. It is however fully justified in situations where elements are ac-
cessed via hashing and the indications it provides are precious: see for in-
stance the discussion of dynamic and extendible hashing in Section 4. Also, the
Mellin transform technology is equally suitable for extracting asymptotic infor-
mation from the baised Bernoulli model (p �= q). In that case, it is found that,
asymptotically2

2 The symbol ‘∼’ is used throughout in the strict sense of asymptotic equivalence;
the symbol ‘≈’ is employed here to represent a numerical approximation up to tiny
fluctuations.
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Sn ≈
n

H
, Pn ∼

n

H
logn, (6)

where H ≡ H(p, q) = −p log p − q log q is the entropy function of the Bernoulli
(p, q) model. The formulæ admit natural generalizations to m-ary alphabets.

The estimates (6) indicate that trees become less efficient roughly in propor-
tion to entropy. For instance, for a four symbol alphabet, where each letter has
probability larger than 0.10, (this is true of most {A,G,C,T} genomic sequences),
the degradation of performance is by less than a factor of 1.5 (i.e., a 50% loss
at most). In particular linear storage and logarithmic access costs are preserved.
Equally importantly, more realistic and considerably more general data models
can be analysed precisely: see Section 8 relative to dynamical sources, which
encapsulate the framework of Markov chains as a particular case.

Amongst the many fascinating techniques that have proved especially fruit-
ful for trie analyses, we should also mention: Rice’s method from the calcu-
lus of finite differences [30,43]; analytic depoissonization specifically developed
by Jacquet and Szpankowski [40], which has led to marked successes in the
analysis of dictionary-based compression algorithms. Complex analysis, that is,
the theory of analytic (holomorphic) functions is central to most serious works
in the area. Books that discuss relevant methods include those of Sedgewick-
Flajolet [31], Hofri [35], Mahmoud [45], and Szpankowski [57].

3 Multidimensional Tries

Finkel and Bentley [21] adapted the BST to multidimensional data as early as
1974. Their ideas can be easily transposed to tries. Say you want to maintain
sets of points in d-dimensional space. For d = 2, this gives rise to the standard
quadtrie, which associates to a finite set ω ⊂ [0, 1]2 a tree defined as follows.

(i) If card(ω) = 0, then quadtrie(ω) = ∅;
(ii) if card(ω) = 1, then quadtrie(ω) consists of a single external node con-

taing ω;
(iii) else, partition ω into the four subsets determined by their position with

respect to the center (1
2 ,

1
2 ) of space, and attach a root to the subtrees

recursively associated to the four subsets (NW,NE, SW,SE, where NE
stands for North-East, etc).

A moment’s reflection shows that the quadtrie is equivalent to the 4-way trie
built over an alphabet of cardinality 4: given any point P = (x, y), write its
coordinates in binary, x = x1x2, . . . and y = y1y2 · · ·, then encode the pair of
coordinates “in parallel” over the alphabet {a, b, c, d}, where, say, a = (0, 0),
b = (0, 1), c = (1, 0), d = (1, 1). The quadtrie is none other than the 4-way trie
built over the set of such encodings.

Another idea of Bentley [6] gives rise to k-d-tries. For d = 2, associate to
each point P = (x, y), where x = x1x2, . . . and y = y1y2 · · ·, the binary string
z = x1y1x2y2 · · · obtained by interleaving bits of both coordinates. The k-d-trie
is the binary trie built on the z-codes of points.
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Given these equivalences, the analytic methods of Section 2 apply verbatim:

Over uniform independent data, the d-dimensional quadtrie requires on aver-
age ≈ cn pointers, where c = 2d/ log 2d; for k-d-tries this number of pointers
is ≈ c′n, where c′ = 2/ log 2. The mean number of bit accesses needed by a
search is ∼ log2 n.

Roughly, multidimensional tries grant us fast access to multidimensional data.
The storage requirements of quad-tries may however become prohibitive when
the dimension of the underlying data space grows, owing to a large number of
null pointers that carry little information but encumber memory.

Quadtries and k-d-tries also serve to implement partial-match queries in an
elegant way. This corresponds to the situation, in d-dimensional space, where s
out of d coordinates are specified and all points matching the s known coordi-
nates are to be retrieved3. Put otherwise, one wants to reconstruct data given
partial knowledge of their attributes. It is easy to set up recursive procedures
reflected by inductive definitions for the cost parameters of such queries. The
analytic methods of Section 2 are then fully operational. The net result, due to
Flajolet and Puech [26], is

The mean number of operations needed to retrieve objects of d-dimensional
space, when s out of d of their coordinates are known, is O(n1−/s/d). The
estimate holds both for quadtries and for k-d-tries.

In contrast, quadtrees and k-d-trees (based on the BST concept) require

O(n1−s/d+θ(s/d))

operations for some function θ > 0. For instance, for comparison-based struc-
tures, the case s = 1 and d = 2, entails a complexity O(nα), where α =

√
17−3
2

.=
0.56155, which is of higher order than the O(

√
n) attached to bit-based struc-

tures. The better balancing on bit based structures pays—at least on uniform
enough data.

Devroye [11] has provided an insightful analysis of tries (d = 1) under a density
model, where data are drawn independently according to a probability density
function spread over the unit interval. A study of multidimensional search along
similar lines would be desirable.

Ternary search tries (TST). Multiway tries start require a massive amount
of storage when the alphabet cardinality is large. For instance, a dictionary that
would contain the word Apple should have null pointers corresponding to the
non-existent forms Appla, Applb, Applc, etc. When attempting to address this
problem, Bentley and Sedgewick [5] made a startling discovery: it is possible to
design a highly efficient hybrid of the trie and the BST. In essence, you build an
m-way trie (with m the alphabet cardinality), but implement the local decision
structure at each node by a BST. The resulting structure, known as a TST,
3 For an excellent discussion of spatial data structures, we redirect the reader to

Samet’s books [53,52].
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Fig. 2. Left: a trie. Middle: a corresponding TST. Right: cost of TST search on Moby
Dick (number of letter comparisons against number of words scanned).

is simply a ternary tree, where, at each node, a comparison between letters is
performed. Upon equality, go down one level, i.e., examine the next letter of
the item to be retrieved; else proceed to the left or the right, depending on the
outcome of the comparison between letters. It’s as simple as that!

The TST was analysed by Clément, Flajolet, and Vallée [7,8]. Quoting from
[7]: Ternary search tries are an efficient data structure from the information the-
oretic point of view since a search costs typically about logn comparisons. For an
alphabet of cardinality 26, the storage cost of ternary search tries is about 9 times
smaller than standard array-tries. (Based on extensive natural language data.)

4 Hashing and Height

Paged tries also known as bucket tries are digital trees defined like in (1), but
with recursion stopped as soon as at most b elements have been isolated. This
technique is useful in the context of a two-level memory. The tree itself can
then be stored in core-memory as an index. Its end-nodes then point to pages
or buckets in secondary memory. The technique can then be applied to hashed
values of records, rather than records themselves which may be rather non-
uniformly distributed in practice. The resulting algorithm is known as dynamic
hashing and is due to Larson [44]. It is interesting to note that it was first
discovered without an explicit reference to tries, the author viewing it as an
evolution of hashing with separate chaining (in a paged environment), and with
the splitting of buckets replacing costly chains of linked pages. The analysis
methods of Section 2 show that the mean number of pages is

≈ n

b log 2
.

In other words, the pages are approximately 69% filled, a score that is comparable
to the one of B–trees.

For very large data bases, the index of dynamic hashing may become too large
to fit in primary memory. Fagin et al. [16] discovered an elegant way to remedy
the situation, known as extendible hashing and based on the following principle:

Perfect tree embedding. Let a tree τ of some height H be given, with
only the external nodes of τ containg information. Form the perfect tree P
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of height H (i.e., all external nodes are at distance H from the root). The
tree τ can be embedded into the perfect tree with any information being
pushed to the external nodes of P . (This in general involves duplications.)
The perfect tree with decorated external nodes can then be represented as
an array of dimension 2H , thereby granting direct access to its leaves.

In this way, in most practical situations, only two disc accesses suffice to reach
any item stored in the structure—one for the index, which is a paged array, the
other for the referenced page itself. This algorithm is the definite solution to the
problem of maintaining very large hashed tables.

In its time, extendible hashing posed a new problem to analysts. Is the size of
the index of linear or of superlinear growth? That question brings the analysis
of height into our algorithmic games. General methods of combinatorial enumer-
ation [31,56,33,62] are relevant to derive the basic equations. The starting point
is ([zn]f(z) represents the coefficient of zn in the expansion of f(z) at 0)

Pn(H ≤ h) = n![zn]eb
( z

2h

)2h

, eb(z) := 1 +
z

1
+ · · ·+ zb

b!
.

The problem is thus to extract coefficients of large index in the large power
of a fixed function (here, the truncated exponential, eb(z)). The saddle point
method [10,31] of complex analysis comes to mind. It is based on Cauchy’s
coefficient formula,

[zn]f(z) =
1

2iπ

∫
O+

f(z)
dz

zn+1
,

which relates values of an analytic function to its coefficients, combined with the
choice of a contour that crosses a saddle point of the integrand (Figure 3). The
net result of the analysis [22] is the following:

Height of a paged b-trie is of the form(
1 +

1
b

)
logn + O(1)

both on average and in probability. The limit distributions are in the form of
a double exponential function.

Fig. 3. A saddle point of the modulus of an analytic function
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The size (2H) of the extendible-hashing index is on average of the form
C(log n)n1+1/b, with C(·) a bounded function. In particular, it grows non-
linearly with n.

(See also Yao [63] and Régnier [50] for earlier results under the Poisson model.)
The ideas of extendible hashing are also susceptible of being generalized to

higher dimensional data: see Régnier’s analysis of grid-file algorithms in [51].

Level compressed tries. Nilsson and Karlsson [48] made a sensation when
they discovered the “LC trie” (in full: Level Compressed trie): they demon-
strated that their data structure could handle address lookup in routing tables
with a standard PC in a way that can compete favorably with dedicated hard-
ware embedded into routers. One of their beautifully simple ideas consists in
compressing the perfect tree contained in a trie (starting from the root) into a
single node of high degree—this principle is then used recursively. It is evocative
of a partial realization of extendible hashing. The decisive advantage in terms
of execution time stems from the fact that chains of pointers are replaced by a
single array access, while the search depth decreases to O(log logn) for a large
class of distributions [12,13,48].

5 Leader Election and Protocols

Tries have found unexpected applications as an abstract structure underlying
several algorithms of distributed computing. We discuss here leader election and
the tree protocol due to Capetanakis-Tsybakov-Mikhailov (also known as the
CTM protocol or the stack protocol). In both cases, what is assumed is a shared
channel on which a number of stations are hooked. At any discrete instant, a
station can broadcast a message of unit duration. It can also sense the channel
and get a ternary feedback: 0 for silence; 1 for a succesful transmission; 2+ for a
collision between an unknown number of individuals.

The leader election protocol in its bare version is as follows:

Basic leader election. At time t = 0 the group G of all the n stations4 on
the channel are ready to start a round for electing a reader. Each one trans-
mits its name (an identifier) at time 1. If n = 0, the channel has remained
silent and nothing happens. If n = 1, the channel fedback is 1 and the cor-
responding individual is elected. Else all contenders in G flip a coin. Let GH

(resp GT ) be the subgroup of those who flipped head (resp. tails). Members
of the group GT withdraw instantly from the competition. Members of GH

repeat the process over the next time slot.

We expect the size of G to decrease by roughly a factor of 2 each time, which
suggests that the number of rounds should be close to log2 n. The basic protocol
described above may fail with probability close to 0.27865, see [55, p. 407], but it
is easily amended: it suffices to let the last nonempty group of contenders (likely
4 The number n is unknown.
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to be of small size) start again the process, and repeat, until a group of size 1
comes out.

This leader election protocol is a perfect case for the analytic methods evoked
earlier. The number of rounds for instance coincides with the leftmost branch
of tree, a parameter easily amenable to the analytic techniques described in
Section 2. The complete protocol has been analysed thoroughly by Prodinger [49]
and Fill et al. [20]. Fluctuations are once more everywhere to be found.

The tree protocol was invented around 1977 independently in the USA and
in the Soviet Union. For background, references, and results, we recommend the
special issue of the IEEE Transactions on Information Theory edited by Jim
Massey [46]. The idea is very simple: instead of developing only the leftmost
branch of a trie, develop cooperatively the whole trie.

Basic tree protocol. Let G be the group of stations initially waiting to
transmit a message. During the first available slot, all stations of G trans-
mit. If the channel feedback is 0 or 1, transmission is complete. Else, G is
split into GH , GT . All the members of GH are given precedence and resolve
their collisions between themselves, by a recursive application of the proto-
col. Once this phase has been completed, the group GT takes its turn and
proceeds similarly.

Our description presupposes a perfect knowledge of the system’s state by all
protagonists at every instant. It is a notable fact that the protocol can be imple-
mented in a fully decentralized manner, each station only needing to monitor the
channel feedback (and maintain a priority stack, in fact, a simple counter). The
time it takes to resolve the contention between n initial colliders coincides with
the total number of nodes in the corresponding trie (think of stations as having
predetermined an infinite sequence of coin flips), that is, 2Sn+1 on average. The
unbiased Bernoulli model is exactly applicable, given a decent random number
generator. All in all, the resolution of a collision of multiplicity n takes times
asymptotic to (cf Equation (5))

2
log 2

n,

upon neglecting the usual tiny fluctuations. In other words, the service time per
customer is about 2/ log 2. By standard queuing theory arguments, the protocol
is demonstrably stable for all arrival rates λ satisfying λ < λmax, where

λmax =
log 2

2
± ·10−5 .= 0.34657.

In contrast, the Ethernet protocol has been proved unstable by Aldous in a
stunning study [1].

We have described above a simplified version (the one with so-called “blocked
arrivals”) of the tree protocol. An improved version allows competitors to enter
the game as soon as they are ready. This “free arrivals” version leads to nonlocal
functional equations of the form

ψ(z) = t(z) + ψ(λ + pz) + ψ(λ + qz),
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whose treatment involves interesting properties of iterated functions systems
(IFS) and associated Dirichlet series: see G. Fayolle et al [17,18] and the account
in Hofri’s book [35]. The best protocol in this class (Mathys-Flajolet [47]) was
largely discovered thanks to analytic techniques, which revealed the following:
a throughput of λmax = 0.40159 is achievable when combining free arrivals and
ternary branching.

6 Probabilistic Counting Algorithms

A problem initially coming from query optimization in data bases led Nigel
Martin and me to investigate, at an early stage, the following problem: Given a
multiset M of data of sorts, estimate the number of distinct records, also called
cardinality, that M contains. The cardinality estimation problem is nowadays
of great relevance to data mining and to network management. (We refer to [23]
for a general discussion accompanied by references.)

The idea consists in applying a hash function h to each record. Then bits of
hashed values are observed. The detection of patterns in observed hashed values
can serve as a fair indicator of cardinality. Note that, by construction, such
algorithms are totally insensitive to the actual structure of repetitions in the
original file (usually, no probabilistic assumption regarding these can be made).
Also, once a hash function of good quality has been chosen, the hashed values can
legitimately be identified with uniform random strings. This makes it possible
to trigger a virtuous cycle, involving probabilistic analysis of observables and
suitably tuned cardinality estimators.

The original algorithm, called probabilistic counting [25], was based on a sim-
ple observable: the length L of the longest initial run of 1-bits in h(M). This
quantity can be computed with an auxiliary memory of a single 32 bit word,
for reasonable file cardinalities, say n ≤ 109. We expect Ln ≈ log2 n, which sug-
gests 2Ln as a rough estimator of n. The analysis of Ln is attached to that of
tries—we are in a way developing the leftmost branch of a pseudo-trie to which
the methods of Section 2 apply perfectly. It involves the Thue-Morse sequence,
which is familiar to aficionados of combinatorics on words. However, not too
surprisingly, the rough estimate just described is likely to be typically off, by
a little more than one binary order of magnitude, from the actual (unknown)
value of n. Improvements are called for.

The idea encapsulated into the complete Probabilistic Counting algorithm is
to emulate at barely any cost the effect of m independent experiments. There is
a simple device, called “stochastic averaging” which makes it possible to do so by
distribution into buckets and then averaging. The resulting algorithm estimates
cardinalities using m words of memory, with a relative accuracy of about 0.78√

m
.

It is pleasant to note that a multiplicative correction constant, provided by a
Mellin transform analysis,

ϕ =
eγ√
2

2
3

∞∏
p=1

[
4p + 1)(4p+ 2)
(4p)(4p + 3)

]ε(p)
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eddcdfdddddfcfdeeeeeefeedfedeffeffdefefeb fedefceffdefd

fefeecfdedeeededffefeffeecddefcfcddccedddcfddedeccdefdd

fcedddfdfedecddfedcfedcdfdeedegddcfededggfffdggdfgfegdg

ddddegddffededceeeefdedgfgdddeefdceeeefeeddeedefcffffdh

hcgdccgchdfdchdehdgeeegfeedccfdedfddf

Fig. 4. The LogLog algorithm asociates to a text a signature, from which the number
of differents words can be inferred. Here, the signature of Hamlet uses m = 256 bytes,
with which the cardinality of the vocabulary is estimated to an accuracy of 6.6%.

(γ is Euler’s constant, ε(p) ∈ {−1,+1} indicates the parity of the number of
1-bits in the binary representation of p) enters the very design of the algorithm
by ensuring that it is free of any systematic bias.

Recently, Marianne Durand and I were led to revisit the question, given the
revival of interest in the area of network monitoring and following stimulating
exchanges with Estan and Varghese (see, e.g., [15]). We realized that a pre-
viously neglected observable, the position L̃ of the rightmost 1-bit in hashed
values, though it has inferior probabilistic properties (e.g., a higher variance),
can be maintained as a register in binary, thereby requiring very few bits. Our
algorithm [14], called LogLog Counting estimates cardinalities using m bytes
of memory, with a relative accuracy of about 1.3√

m
. Given that a word is four

bytes, the overall memory requirement is divided by a factor of 3, when com-
pared to Probabilistic Counting. This is, to the best of my knowledge, the most
efficient algorithm available for cardinality estimation. Once more the analysis
can be reduced to trie parameters and Mellin transform as well as the saddle
point method play an important part.

For a highly valuable complexity-theoretic perspective on such questions see
the study [2] by Alon, Matias, and Szegedy. In recent years, Piotr Indyk and his
collaborators have introduced radically novel ideas in quantitative data mining,
based on the use of stable distributions, but these are unfortunately outside of
our scope, since tries do not intervene at all there.

7 Suffix Tries and Compression

Say you want to compress a piece of text, like the statement of Pythagoras’
Theorem:

In any right triangle, the area of the square whose side is the hypotenuse

(the side of the triangle opposite the right angle) is equal to the sum of

the areas of the squares of the other two sides.

It is a good idea to notice that several words appear repeated. They could then
be encoded once and for all by numbers. For instance:

1the,2angle,3triangle,4area,5square,6side,7right|In any 7 3, 1 4 of 1 5

whose 6 is 1 hypotenuse (1 6 of 1 3 opposite 1 7 2) is equal to 1 sum of 1 4s

of 1 5s of 1 other two 6s.



The Ubiquitous Digital Tree 15

A dictionary of frequently encountered terms has been formed. That dictionary
could even be recursive as in

1the,2angle,3tri2,4area,5square,6side,7right| ...

Around 1977–78, Lempel and Ziv developed ideas that were to have a profound
impact on the field of data compression. They proposed two algorithms that
make it possible to build a dictionary on the fly, and in a way that adapts nicely
to the contents of the text. The first algorithm, known as LZ’78, is the following:

LZ’78 algorithm. Scan the text left to right. The text is segmented into
phrases. At any given time, the cursor is on a yet unsegmented portion of
the text. Find the longest phrase seen so far that matches the continuation
of the text, starting from the cursor. A new phrase is created that contains
this longest phrase plus one new character. Encode the new phrase with the
rank of the previously matching phase and the new character.

For instance, “abracadabra” is segmented as follows
0a| 0b| 0r| a1c| a1d| a1b| r3a| ab6r| ac4a| 0d| abr7a|,

resulting in the encoding

0a0b0r1c1d1b3a6r4a0d7a,

As it is well known, the algorithm can be implemented by means of a trie whose
nodes store the ranks of the corresponding phrases.

From a mathematical perspective, the tree built in this way obeys the same
laws as a digital search tree (DST), so that we’ll start with examining them.
The DST parameters can be analysed on average by the methods of Section 2,
with suitable adjustments [28,29,43,45,57]. For instance, an additive parameter
φ associated to a toll function t gives rise, at EGF level, to a functional equation
of the form (in the unbiased case)

φ(z) = t(z) + 2
∫ z

0

et/2f

(
t

2

)
dt,

which is now a difference-differential equation. The treatement is a bit more
difficult, but the equation eventually succumbs to the Mellin technology. In par-
ticular, path length under a general Bernoulli model is found to be satisfy

P ◦
n =

1
H

n logn + O(n), (7)

with H the entropy of the model.
Back to the LZ’78 algorithm. Equation (7) means that when n phrases have

been produced by the algorithm, the total number of characters scanned is N ∼
H−1n logn on average. Inverting this relation5 suggest the following relation
between number of characters read and number of phrases produced:

n ∼ H
N

logN
.

5 This is in fact a renewal type of argument.
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Since a phrase requires at most log2 N bits to be encoded, the total length of
the compressed text should be ∼ hn with h = H/ log 2 the binary entropy.
This handwaving argument suggests the true fact: for a memoryless (Bernoulli)
source, the entropic (optimal) rate is achieved by LZ compression.

The previous argument is quite unrigorous. In addition, information theorists
are interested not only in dominant asymptotics but in quantifying redundancy,
which measures the distance to the entropic optimum. The nature of stochastic
fluctuations is also of interest in this context. Jacquet and Szpankowski have
solved these difficult questions in an important work [39]. Their treatment starts
from the bivariate generating function P ◦(z, u) of path length in DSTs, which
satisfies a nonlinear functional equation,

∂P ◦(z, u)
∂z

= P ◦(pz, u) · P ◦(qz, u).

They deduce asymptotic normality via a combination of inductive bounds, boot-
strapping, analytic depoissonization, and the Quasi-Powers Theorem of analytic
combinatorics [31,36,57]. (Part of the treatment makes use of ideas developed
earlier by Jacquet and Régnier in their work establishing asymptotic normality
of path length and size in tries [37].) From there, the renewal argument can be
put on a sound setting. A full characterization of redundancy results and the
fluctuations in the compression rate are determined to be asymptotically normal.

Suffix trees and antidictionaries. Given an infinitely long text T ∈ B ≡
{0, 1}∞, the suffix tree (or suffx trie) of index n is the trie built on the first n
suffixes of T . Such trees are important as an indexing tool for natural language
data. They are also closely related to a variant of the LZ algorithm, known as
LZ’77, that we have just presented. A new difficulty in the analysis comes from
the back that suffix trees are tries built on data that are intrinsically correlated,
due to the overlapping structure of suffixes of a single text. Jacquet and Sz-
pankowski [38] are responsible for some of the early analyses in this area. Their
treatment relies on the autocorrelation polynomial of Guibas and Odlyzko [34]
and on complex-analytic techniques. Julien Fayolle [19] has recently extended
this methodology. His methods also provide insight on the quantitative behaviour
of a new scheme due to Crochemore et al. [9], which is based on the surprising
idea of using antidictionaries, that is, a description of some of the patterns that
are avoided by the text.

8 Dynamical Sources

So far, tries have been analysed when data are provided by a source, but one
of a simple type. A new paradigm in this area is Brigitte Vallée’s concept of
dynamical sources. Such sources are most likely constituting the widest class of
models, which can be subjected to a complete analytic treatment. To a large
extent, Vallée’s ideas [59] evolved from the realization that methods, originally
developed for the purpose of analysing continued fraction algorithms [60], could
be of a much wider scope.
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Consider a transformation T of the unit interval that is piecewise differentiable
and expanding: T ′(x) > 1. Such a transformation is called a shift. It consists of
several branches, as does the multivalued inverse function T−1, which is formed
of a collection of contractions. Given an initial value x0, the sequence of iterates
(T j(x0)) can then be encoded by recording at each iteration which branch is
selected—this is a fundamental notion of symbolic dynamics. For instance, the
function T (x) = {2x} (with {w} representing the fractional part of w) generates
in this way the binary representation of numbers; from a metric (or probabilistic)
point of view, it also describes the unbiased Bernoulli model. Via a suitable
design, any biased Bernoulli model is associated with a shift, which is a piecewise-
linear function. Markov chains (of any order) also appear as a special case.
Finally, the continued fraction representation of numbers itself arises from the
transformation

T (x) :=
{

1
x

}
=

1
x
−
⌊

1
x

⌋
.

A dynamical source is specified by a shift (which determines a symbolic en-
coding) as well as by an initial density on the unit interval. The theory thus
unites Devroye’s density model, Bernoulli and Markov models, as well as con-
tinued fraction representions of real numbers and a good deal more. As opposed
to earlier models, such sources take into account correlations between letters at
an unbounded distance.

Tries under dynamical sources. Vallée’s theory has been applied to tries,
in particular in a joint work with Clément [8]. What it brings to the field is
the unifying notion of fundamental intervals which are the subintervals of [0, 1]
associated to places corresponding to potential nodes of tries. Much transparence
is gained by this way of viewing a trie process as a succession of refined partitions
of the unit interval, and the main parameters of tries can be expressed simply
in this framework.

Fig. 5. Dynamical sources: [left] the shift associated with continued fractions; [right] a
rendering of fundamental intervals
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Technically, a central rôle is played by Ruelle’s transfer operator. Given a shift
T with H the collection of its inverse branches, the transfer operator is defined
over a suitable space of functions by

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x).

For instance, in the continued fraction case, one has

Gs[f ](x) :=
∑
m≥1

1
(m + x)2s

f

(
1

m + x

)
.

The quantity s there is a parameter that is a priori allowed to assume complex
values. As Vallée showed, by considering iterates of Gs, it then becomes possi-
ble to construct generating functions, usually of the Dirichlet type, associated
with partitions into fundamental intervals. (In a way, the transfer operator is
a supergenerating operator.) Equiped with these, it then becomes possible to
express expectations and probability distributions of trie parameters, after a
Mellin transform round. Then functional analysis comes into play (the operators
have a discrete spectrum), to the effect that asymptotic properties of tries built
on dynamical sources are explicitly related to spectral properties of the transfer
operator.

As an example of unified formulæ, we mention here the mean value estimates
of (6) which are seen to hold for an arbitrary dynamical source. The rôle of
entropy in these formulæ comes out neatly—entropy is bound to be crucial under
any dynamical source model. The analysis of height becomes almost trivial; the
characteristic constant turns out to be in all generality none other than λ1(2),
the dominant eigenvalue of operator G2.

We conclude this section with a brief mention of an algorithm due to Gosper,
first described in the celebrated “Hacker’s memorandum” also known as HAK-
MEM [4, Item 101A]. The problem is to compare two fractions a

b and c
d . It is

mathematically trivial, since

a

b
− c

d
=

ad− bc

bd
,

but the algorithms that this last formula suggests either involve going to mul-
tiprecision routines or operating with floating point arithmetics at the risk of
reaching a wrong conclusion.

Gosper’s comparison algorithm. In order to compare a
b and c

d , perform
a continued fraction expansion of both fractions. Proceed in lazy mode. Stop
as soon as a discrepant digit is encountered.

Gosper’s solution operates within the set precision of data and is error-free (as
opposed to the use of floating point approximations). For this and other reasons6,
6 The sign question is equivalent to determining the orientation of a triangle in the

plane.
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it has been found to be of interest by the community of computational geometers
engaged in the design of robust algorithms [3]. (It also makes an appearance in
the source code of Knuth’s Metafont, for similar reasons.)

In our perspective, the algorithm can be viewed as the construction of the
digital tree associated to two elements accessible via their continued fraction
representations. Vallée and I give a thorough discussions of the fascinating math-
ematics that surround its analysis in [32]. The algorithm extends to the lazy and
robust comparison of a system of n fractions: it suffices to build, by lazy eval-
uation, the trie associated to continued fraction representations of the entries.
What we found in [32] is the following result: The expected cost of sorting n
uniform random real numbers by lazy evaluation of their continued fraction rep-
resentations satisfies

Pn = K0n logn + K1n + Q(n) + K2 + o(1),

where (ζ(s) is the Riemann zeta function)

K0 =
6 log 2
π2

, K1 = 18
γ log 2
π2

+ 9
(log 2)2

π2
− 72

log 2 ζ′(2)
π4

− 1
2
,

and Q(u) is an oscillating function with mean value 0 whose order is

Q(u)=O
(
uδ/2

)
,where δ is any number such that δ > sup

{
�(s)

∣∣ ζ(s)=0
}
.

The Riemann hypothesis has just made an entry into the world of tries!
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Abstract. We consider asynchronous dynamic networks of identical fi-
nite (independent of the network size) automata. A useful data structure
on such networks is a partial orientation of its edges. It needs to be straight,
i.e. have null holonomy (the difference between the number of up and down
edges in each cycle). It also needs to be centered, i.e., have a unique node
with no down edges. Using such orientation, any feasible computational
task can be efficiently implemented with self-stabilization and synchro-
nization. There are (interdependent) self-stabilizing asynchronous finite
automata protocols that straighten and centralize any orientation. Such
protocols may vary in assorted efficiency parameters and it is desirable to
have each replaceable with any alternative responsible for a simple limited
task. We describe an efficient reduction of any computational task to any
set of such protocols compliant with our interface conditions.

1 Introduction

1.1 Dynamic Asynchronous Networks (with Faults)

The computing environment is rapidly evolving into a huge global network. It
is divided into smaller nets, those into computer clusters, individual computers,
their assorted devices, and so on. Even individual silicon chips may evolve into
cheaper structures of reliable circuits build from unreliable elements easy to print
with huge densities. We can expect such networks to penetrate all aspects of our
life and achieve great diversity and complexity. It is interesting to investigate how
such diverse complex unpredictable networks of elementary unreliable nodes can
organize themselves to perform various useful tasks.

Let us view a network as a connected graph of asynchronous finite automata
and try to equip each node with a self-organizing protocol. The automata have
identical transition function independent of size and structure of the network.
So, they have no information about the network, and even no room in their O(1)

� This article supplements a STACS-06 talk “Symmetry Breaking in Computing Me-
dia” by Leonid A. Levin, illustrating some of its points.

1 Supported by NSF grant CCR-0311485.
2 Supported by NSF grant CCR-0311411.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 23–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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memories to store, say, its size. The automata run asynchronously with widely
varying speeds. Each sees the states of its neighbors but cannot know how many
(if any) transitions they made between its own transitions.

The network must recover from any faults. An adversary may initialize the
automata in any combination of states without restrictions, after which the pro-
tocol must recover some meaningful state and resume normal operation. Such
conditions and requirements may seem drastic, but stronger assumptions may
be undesirable for the really ubiquitous networks that we came to expect. For
instance, the popular assumption that each node grows in complexity with the
size of the network and keeps some global information may be too restrictive.

So, which tasks and how efficiently can be solved by such networks? The net-
work’s distributed nature, unknown topology, asynchrony, dynamics and faults,
etc. complicate this question. The computational power of any network with to-
tal memory S is in the obvious class Space(S). In fact, this trivial condition is
sufficient as well.

1.1.1 Connections, Slope, and Computing
We consider protocols based on orientation (up, down or horizontal) for each
directed edge. It is a somewhat stretched transplantation to graphs of widely
used geometric structures, connections, that map coordinate features between
nearby points of smooth manifolds. Orientation is a simplest analog of such
structures, comparing relative heights of adjacent nodes.

An important aspect of a connection is its holonomy, i.e. the composition over
each circular (often contractible, though in graphs this restriction is mute) path.
If this holonomy is null, i.e. an identity mapping, for each cycle, the connection is
called flat. For our orientations (then called slope) this means that every cycle is
balanced i.e. has equal numbers of up and down edges. Maintaining such property,
detecting and repairing its failures is a task useful for many purposes. It may
be that studying other examples of connections on graphs can be beneficial for
other problems, too.

Networks can deal with asynchrony by keeping in each node a step counter
with equal or adjacent values in adjacent nodes. Then a node may advance
its counter only if it is a local minimum. Such counters may be reduced mod 3
when no self-stabilization is required. A slope gives such an assignment of mod 3
counters to nodes; the change of its value induces orientation of (directed) edges.
Obviously, all cycles are balanced. Faulty configurations, however, can have in-
consistent mod 3 counters with vortices, i.e., unbalanced, even unidirectional
in extreme cases, cycles. Slope is especially useful when centered, i.e., having a
unique node, leader, with no down edges. It then yields a BFS tree, the con-
struction/maintenance of which is known to self-stabilize many basic network
management protocols.

1.1.2 Maintaining Centered Slope
The task of initiating an un-centered slope is easier in some aspects, e.g., it can
be done deterministically. The other task, centralizing a slope (i.e., modifying it
into a centered one), is known to be impossible for deterministic algorithms. A
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fast randomized algorithm for it, using one byte per node is given in [IL92]. The
appendix there gives a collection of deterministic finite automata (i.e., O(1) bits
per node) protocols that initiate a slope, running simultaneously in concert with
each other and with the slope centralization protocol.

Here, we refer to four separate tasks: build certificates on trees assuring their
acyclicity, check such certificates, balance orientation on graphs spanned by for-
est of such trees, and centralize such a slope merging the forest into a tree. We
develop a protocol Shell that (using no additional space) coordinates any pro-
tocols performing these tasks. Each of this protocols may be arbitrary, as long
as it performs the task and complies with simple rules imposed by the interface.
The Shell then assures that a centered slope is verified, and repaired if necessary,
with the efficiency of the underlying task protocols. Further protocols then make
an efficient Reduction of any computational task to a self-stabilizing protocol for
asynchronous networks.

1.2 Self-stabilizing Protocols

The ability of networks to recover from any faults can be modeled by self-
stabilization: A self-stabilizing protocol works correctly no matter what state
it is initiated in. This approach was pioneered by Dijkstra [Dij74] and has since
been a topic of much research in the distributed computation and other areas
(see bibliography by T. Herman [Her]).

It was widely believed that self-stabilization is unattainable for most tasks/
networks unless the bit-size of network’s nodes grows (at least logarithmically)
with the size of the network. (See, e.g., [M+92] for discussion of undesirability
of such assumptions.) Logarithmic lower-bound for self-stabilization on rings
[IJ90] reinforced this believe. However, this lower bound depends on an implicit
restriction on the types of protocols: a processor can change state only if a special
token predicate on the state of the node’s neighborhood evaluates to true (this
lower bound was later extended to silent protocols for which the communication
registers do not change values after stabilization [DGS96]).

The first general sub-logarithmic space result, by Awerbuch, Itkis, and Ostro-
vsky [I+92], gave randomized self-stabilizing protocols using log log n space per
edge for leader election, spanning tree, network reset and other tasks. This was
improved to constant space per node for all linear space tasks by Itkis in [I+92],
and by [IL92] using hierarchical constructions similar to those used in other
contexts in [Thu12, Ro71, G86]. These results were later modified in [AO94] to
extend the scope of tasks solvable deterministically in O(log∗ n) space per edge
(beyond forest/slope construction, for which algorithms of [IL92] were already
deterministic).

There is a large literature on self-stabilization and similar features in other
contexts which we cannot review here. For instance, many difficult and elegant
results in related directions were obtained for cellular automata. In most CA
contexts, the protocols, similarly to our work, assume finite complexity of each
node, independent of the network size. However, the irregular nature of our
networks presents major additional complications.
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2 Model

2.1 Nodes and Communication

Our network is based on an undirected reflexive communication graph G=(V, E)
of diameter d. Without loss of generality, for the rest of this paper we assume
that G is connected. Each node v is anonymous and labeled with state consist-
ing of bits and pointers to immediate neighbors w ∈ E(v). A link [v, w] is an
isomorphism type of a subnetwork restricted to two nodes v, w (this includes
information about equality of the pointers leaving the same node). Nodes act
as automata changing their states based on the set (without multiplicity) of all
incident links. When a node sets a pointer, it can chose a link, but a specific
(anonymous) neighbor connected by such link is chosen by the adversary.1

In other words, the transition table for the nodes may specify that the active
node in state X change its state to Y if it has a neighbor in state Z (or if all
the neighbors are in state Z). But it cannot say that this transition should take
place if there it has 5 neighbors in state Z. Also, the transition may specify that
the node’s pointer be set to its neighbor in state Z, but then it will be up to
Adversary to select the specific neighbor in the state Z to set the pointer to.

2.2 Asynchrony

Asynchrony is modeled by Adversary adaptively determining a sequence of nodes
with arbitrary infinite repetitions for each; the nodes act in this order. In other
words, at any point in time, Adversary selects the next node to act.

A step is the shortest time period since the previous step within which each
node acts at least once. We write s ≺ t (resp. s � t) to denote that all of the
step s occurs before (resp. after) the time instant t.

For the sake of simplicity, we assume that only one node is active at any time.
Assuming atomicity of node steps, we can further relax the asynchrony model
to allow adversary activate any set of nodes (including adjacent nodes).

2.2.1 Asynchrony Types
Consider three types of asynchrony: full, independent set and singular, cor-
responding to the adversary being able to simultaneously activate any set of
nodes, any independent set of nodes, and only one node at a time, respectively.
Since the transition of a node depends only on its set of incident links, it is
obvious that independent set asynchrony is equivalent to singular (a protocol
that works in one will work in the other without any changes).

To achieve now full asynchrony, replace each edge uv with a dummy node x and
edges ux and xv. This change of the network is used only for our structure fields
protocols (see Sec. 3.2, 3.3), for which this change of network is going to be unim-
portant. The dummy node x is to be simulated by one of the endpoints u, or v —

1 Proposition 4.1 requires deterministic choice of neighbor, e.g., the first qualified, if
the edges are ordered.
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let it be u. Then u is the host of x, x is a satellite of u, and v, x are buddies. Choos-
ing the host for a dummy node is arbitrary and can be done probabilistically and
independently for each edge.

When activated by adversary, a node first performs its own action and then
activates all its satellites. Thus, the dummy nodes are never activated simul-
taneously with their hosts. Now we need to avoid simultaneous activation of
any dummy node and its buddy. Let each node (real or dummy) have a binary
color — black or white — flipped when the node makes its transaction (even
if that transaction does not end up changing anything in the node). A dummy
node x makes its transaction only when its buddy v is of the different color, and
an actual node v — only when all of its buddies are of the same color as v. This
guarantees that the two buddies x and v can never make their transaction simul-
taneously: when x and v are of different colors — then only x can change, but
when their colors are the same, then only v can change (it may still be delayed
by its other buddies). If v does not move for one step, then all its buddies are
guaranteed to be the same color. Thus each actual node is guaranteed to move
at least every second step. If a dummy node x does not move for one step, then
its buddy v has all its buddies of the same color and within one more step v has
made the move changing its color. And then v cannot change color till x moves.
Thus, within two steps x will make its move.

Thus, at the cost of increasing the space of each node to be proportional to
its degree we can run any structure protocol designed for singular asynchrony in
a fully asynchronous network.

2.3 Faults

The faults are modeled by allowing the Adversary to select the initial state of the
whole network. This is a standard way of modeling the worst-case but transient,
“catastrophic” faults. The same model applies to any changes in the network —
since even a non-malicious local change may cause major global change, we treat
the changes as faults. After changes or faults introduced by the Adversary, the
network takes some time to stabilize (see Sec. 3.3 for the precise definitions) —
we assume that Adversary does not affect the transitions during the stabilization
period, except by controlling the timing (see asynchrony above).

We discuss the computational powers of the Adversary below in subsection 3.3.
As a preview, intuitively, our protocols require no computational bounds on Ad-
versary. However, the protocols given to our protocols for simulation may require
that these unreasonable powers of the Adversary be restricted.

Our algorithms (reductions) in this paper are all deterministic. They may
interact or even emulate other algorithms which may be either also deterministic
or randomized. Therefore we leave out the discussion of the access an adversary
may have to the random coins used in the other algorithms — such a discussion is
found in [IL92] in the context of the leader election algorithm. Other, emulated,
algorithms may have different restrictions on the adversary.
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3 Slope, Tasks and Protocols

3.1 Orientation and Slope

Edge orientation dir() of G maps each directed edge vw of G to dir(vw) ∈
{0,±1}.

Variance of a path v0 . . . vk is
∑k−1

i=0 dir(vivi+1).
We consider only such orientations for which the variance of any cycle is

divisible by 3. These orientations have economical representations: Let v.h3 ∈
{−1,0,1} be a field in each node. Then, define dir(vw) = (w.h3−v.h3 mod 3)∈
{−1,0,1}, which implies dir(vw) = −dir(wv). We say that w ∈ E(v) is under v
(and v is over w) if dir(vw) = −1; the directed edge vw points down and wv

up; define up(vw)
def
= (dir(vw) = +1). A path v0 . . . vk is an up-path if for all

0 ≤ i < k vi is under vi+1.
The balance of a directed cycle is 0, 1 or −1 according to the sign of its

variance. We say a cycle with balance 0 is balanced, otherwise it is a vortex.
An orientation is flat if all the cycles are balanced.2 A flat orientation is

centered if it has only a unique node with no neighbor under it. Such a local
minimum node is referred to as the leader.

It is convenient to mark potential leaders — we call them roots. Furthermore,
we strengthen the flatness condition to require that any path from root must
have non-negative variance, and call such orientation with roots a slope. In
particular, in a slope any root must be a local minimum, and a root-root path
must have zero variance. Slope is centralized if it is a centered orientation with
a single root.

3.2 Tasks

Here, as above, we use a standard probabilistic Turing Machine M with a read-
only input tape I, write-only output tape O, and read-write work tape W of size
|W | = n. We use reversal number of times the TM head changes direction as
the TM time-complexity measure [Tra64, Bar65] for the definition of the task
below.

Let Q = {〈x, y〉} be a relation (of question-“correct answer” pairs). A task
Γn for relation Q of input-output pairs is a triplet of probabilistic algorithms
Γn = 〈S,C,B〉, such that
2 A weaker condition suffices for most applications: absence of long up-paths (espe-

cially, cycles). Many protocols work with delays proportional to the maximum up-
path length. The zero variance condition assures that no up-path is longer than the
graph diameter d. Allowing non-zero variance may increase the maximum up-path
length, resulting in the corresponding computational delays.

We make the following observation which is not used in this paper: Many algo-
rithms change orientation gradually, so variance of any path changes at most by 1
at a time. Then the variance of a cycle (being a multiple of 3) never changes. This
implies that the variance of any path can change by at most ±2d, and thus the
maximum node-length of up-paths can vary with time within at most a factor of 2d.
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Time-bound T : for input x there is some tx, such that with probability > 1/2,
T (x) outputs tx using O(

√
tx) time and space O(n/ lg n); 3

Solver A with probability > 1/2 on input x using O(n) space and O(tx) time
outputs y, such that 〈x, y〉 ∈ Q;

Checker C on input 〈x, y〉 ∈ Q never outputs 0 (incorrect),
and on input 〈x, y′〉 �∈ Q with probability > 1/2 outputs 0 using O(n) space
and O(tx) time.

Our goal is to construct protocols that would take any task (specified for
a faultless and synchronous computational model such as TM) and produce a
protocol running the task in the tough distributed environment where Adversary
controls the timing and initial state of the system. We separate this job into two:

First, we assume that some special protocol generates a centered slope and
stabilizes, i.e., the orientation stops changing. The rest of this section discusses
how to achieve our goal under this assumption.

Then, the remainder of the paper (starting with Sec. 5) is dedicated to
satisfying this assumption: describing the protocol that stabilizes with a cen-
tered slope. This standard centered slope generating protocol will run in the
fields that we will call structure, and will enable the network to solve arbitrary
tasks.

3.3 Self-stabilizing Protocols

Let each processor (node) in the network G have the following fields: read-
only input, write-only output, and read/write work and structure. A con-
figuration at time instant t is a quintuple 〈G, I, Ot,Wt, St〉, where functions
I, Ot,Wt, St on V represent the input, output, work and structure fields re-
spectively. The standard protocol4 running in St and the computation running
in the other fields are mutually independent and interact only via reading the
slope fields of St.

Let Q be a set of correct i/o configurations {〈(G,I),O〉}, and Γn = 〈T,A, C〉 be
a corresponding task. A protocol solves Γn with self-stabilization in s steps
if starting from any initial configuration, for any time t � s the configuration
〈G, I, Ot〉 ∈ Q.

A protocol, which admits (potentially “incorrect”: 〈(G,I), O′〉 �∈ Q) halting
configurations, cannot be self-stabilizing: adversary can put the network in an
incorrect halted configuration and the system cannot correct itself.

A protocol solving Γn can repeatedly emulate checker C, invoking A whenever
C detects an incorrect configuration (i.e., when C outputs 0). We use here the
Las Vegas property of C: it never rejects a good configuration.

3 If desired, the probability (here as well as for Solver and Checker) can be bounded
by any constant ε > 0 instead of 1/2. Also, the O(

√
tx) time and O(n/ lg n) space

can be generalized to O(t1/c
x ) time and O(n/ logc n) space, for any c > 1.

4 Standard protocols are the same for all tasks, and their main purpose is to maintain
the centered slope.
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Adversary still might be able to start the network in a bad configuration
from which neither A nor C recover within the desired time. For this purpose
we use the time-bound algorithm T . In sec. 4.2 we show that the given time and
space restrictions on T are sufficient to compute it with self-stabilization. The
simplest way to eliminate this issue is to include time-bound tx as part of the
input.

Then the stabilization time will be at most the sum of the three protocols
running times (assuming the time-bound T is relatively accurate). This will be
formalized in the Proposition 4.1 below.

We use the centered slope to define a bfs spanning tree H of G, and then em-
ulate tree-CA on H . Thus, algorithms T,C,A all run on H-CA (or equivalently
on an rTM).

Remark 3.1 (Dynamic Properties). For the sake of simplicity, we focus on
“static” problems. For protocols, however, the dynamic behavior is often of in-
terest as well. We note that many temporal properties can be captured in terms
of static (instantaneous) properties. For example, one of the simplest temporal
properties is to assure that some field z does not change. This property can be
expressed using a flag, raised by transitions changing z, and lowering it by other
transitions. Excluding configurations with the raised flag from P then guaran-
tees constancy of z. In fact, Proposition 4.1 implies that any temporal property
that can be monitored by a linear space TM can be expressed via instantaneous
configurations, such as the problem P above.

Our protocols are Las Vegas. Since they do not halt, this means that after
stabilization output is independent of the subsequent coin-flips. Stabilization is
the repetition of the non-St configuration after the orientation stops changing.
The Las Vegas stabilization period is then the expected stabilization time (from
the worst case configuration).

4 Solving Any Task with Centered Slope

One of our results is to show that given a centered slope any task can be solved
by a self-stabilizing protocol on an asynchronous network:

Theorem 4.1. Given an (unchanging) centered slope in S-fields, for any task
Γn there exists a self-stabilizing randomized protocol solving Γn on asynchronous
network G. The protocol (stabilizes and) runs in the O(T (G, I)dΔ lg n) steps.

We first define some tools, and then prove the Theorem.

4.1 Tree-CA Time and TM Reversals

We characterize the computational power of the asynchronous dynamic networks
in terms of classical complexity notions in two steps: first express it in terms of
Cellular Automata on trees (tree-CA). Tree-CA are simpler than asynchronous
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dynamic networks, but still have significant variability depending on the topology
of the trees. To eliminate this variability, we further compare their computational
power to TM reversals.

Once our network G stabilizes, it can simulate tree-CA: Cellular Automata
on trees. (We can use the above definition of the network computation simplified
to be synchronous and restricted to tree graphs.) Tree-CA in turn can simulate
Turing Machines. The subsection 4.1.1 below discusses the simulations between
tree-CA and TM, while subsection 4 considers equivalence of these two models
and the network.

The efficiency of the tree-CA and TM mutual simulation is expressed more
precisely when the reversal number T̃ of times the TM head changes direction
is used as the TM time-complexity measure [Tra64, Bar65]. For convenience,
we speak about reversing TM (rTM) whenever we wish to use the number of
reversals as the complexity measure. Without loss of generality, we assume that
rTM makes a complete sweep of the tape before changing direction.

Representing G on tree-CA. For a spanning tree H of G, the graph topology
of G can be represented on the H-CA by giving each node the list of its neighbors
in G as its input. This can be done, for example, as follows. Let each node be
identified, say, according to the visitation order of the dfs tour of H . Associate
with each node v of the tree-CA a read-only register containing the list of all
the neighbors of v. Let each node see only the first bit of its input register. To
each node access all of its input bits, we rotate them in the registers. Namely,
let each input digit have a binary mark, different from its neighbors. Each node
state has a corresponding binary mark. The register makes a cyclic shift (by
one) only when the two marks match. This guarantees the input register is not
rotated until it is read. In addition, separately delimit each neighbor id as well
as the whole list.

Representing G on TM. For a TM (or rTM), we represent the network topol-
ogy as an adjacency list on the read-only input tape (in addition to the read-write
work tape). Each step, both the input and the work tapes are advanced. Assume
that the neighbors list for each node is of the same size (pad otherwise). For each
node, the bits of the corresponding list of neighbors is stored at intervals n —
so that whenever the work-tape head is in cell i, the input-tape head is reading
a bit of the i’s adjacency list.

The computational power of CA on any tree is the same as that of rTM with
the same space and T̃ close to CA’s time (within O(dΔ) factors, for diameter d
and degree Δ).

If we ignore logarithmic factors (and factors of diameter d and degree in the
case of tree-CA), both tree-CA and rTM are strictly more powerful than the
standard RAM model: Any RAM operation can be simulated by rTM (with
logarithmic overhead) and by tree-CA (with overhead O(dΔ lg n)). But RAM
requires linear in n time to, say, flip all bits — an operation that rTM can
manage in one step, and tree-CA in O(d) steps.



32 G. Itkis and L.A. Levin

Neither rTM nor tree-CA capture the full power of the network, however. For
example, rTM requires linear time to reverse its tape: change w to wr (similar
task can be defined for tree-CA, also requiring linear time). However, if G is a
sorting network then it can achieve it in logarithmic time. In general, the network
may be less powerful than a PRAM.

4.1.1 Simulation Between Tree-CA and rTM
In this section, we consider how a tree-CA H can simulate rTM M and how, in
turn, tree-CA H can be simulated by an rTM M ′.

Let a tree-CA H and a rTM M have the same number n of nodes/cells and an
rTM M ′ have 2n cells. Number the tape cells of M and M ′ from left to right. We
will use two ways to number the nodes of H (both based on dfs traversal of H):
one more convenient for H simulating M and the other for M ′ simulating H .

For simulating rTM M on tree-CA H , we number the nodes of H according
to the dfs discovery order and in the second — discovery time. Thus the first
numbering uses integers from 1 to n not skipping any, while the second — from
1 to 2n and some numbers are skipped.

Say that the cell and the node of the same number correspond to each other.
Let H , M and M ′ have the same inputs: the input register of node number i

of H has all the bits in positions j ≡ i (mod n) on the input tape of M (and
in the same order); and in positions j′ ≡ i (mod 2n) on the input tape of M ′

(i.e. kth bit of ith register is stored in cell number i + 2nk of M ′).
Let function g map the automaton states of H to the rTM alphabet characters

of M . We say that the tree-CA H simulates the rTM M with overhead t if
whenever M makes one sweep and H makes t steps, the state of each tape cell
of M is determined by the function g applied to the corresponding node of H .

Let function h map the rTM M ′ alphabet characters to automaton states of
H . We say that the rTM M ′ simulates the tree-CA H with time overhead t′ if
every time M ′ makes t′ sweeps and H makes a single step, the states of H are
determined by the function h applied to the corresponding tape cells of M ′.

Lemma 1. Let H be any tree of n nodes, diameter d and degree Δ. Then
- Any rTM M with n work-tape cells can be simulated by an H-CA with time
overhead O(dΔ).
- Any H-CA can be simulated by an rTM M ′ using 2n work-tape cells with
time overhead O(d).

Proof: tree-CA H simulating rTM M . The automata nodes x of each depth
in turn (starting from the leaves) compute the transition function fx. This fx de-
pends on the current states and inputs of the subtree tx of x and its offsprings; fx

maps each state in which M may enter tx (sweeping the tape along the dfs pass
of H) to the state in which it would exit tx. When froot is computed the whole
sweep of the TM tape is executed. In our model node x can communicate with
only one of its children at a time. Therefore, it takes O(Δ) steps for x to compute
fx once fy is computed for each child y of x; once fx is computed, x may signal
(by changing the special mark) the input register to rotate to the next bit (for the
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next sweep of the M work tape). Since the depth of the tree is d, it takes O(dΔ)
to compute froot, and thus to simulate one sweep of M work tape.

rTM M ′ Simulating Tree-CA H. M ′ represents tree H on its work tape
tape as a dfs tour of H with parentheses representing direction “away from” or
“toward” the root (i.e., parent-child relation). Each tree node x is represented
by a pair of matching parentheses enclosing images of all its offspring; the first
parenthesis of the pair is located in the cell corresponding to x.

On each sweep M ′ passes the information between matching parenthesis of
certain depth. Once all children of a given node are marked as served, the node
itself is served and marked. When the root is marked, all marks are removed and
the M ′ starts simulating the next step (from the leaves).

Now, let us consider how a node gets marked and served in greater detail.
Consider the case of the tree-CA node x being served and marked when all its
H-children have already been already marked. Let x( denote the tape cell, corre-
sponding to x and containing the corresponding open parenthesis, respectively,
cell x) contains the matching closing parenthesis.

Each tape cell can be either in waiting, or serving, or done states. Initially,
all cells are waiting. When x( and x) are waiting and there are no waiting cells
between x( and x) then we can serve x as follows. All the serving states be-
tween x( and x) correspond to the children of x (grandchildren of x are in done
states).

The next sweep carries the state of x to its children allowing them to finish
their current transition and enter done (upon the return sweep matching the
states of all the serving y( and y) between x( and x)). The same sweep gathers
information from the children of x for the transition of x and carries it to x)

(between x( and x) at this stage M ′ is concerned only with serving x). The re-
turn sweep brings this information to x(; at this point, x( and x) go into serving
state — only the parent of x information is needed to complete the transaction
of x.

The input is arranged so that when M ′ arrives into the position of the next
bit of the input register of x, the work tape of M ′ is at x(. It is easiest to space
the consecutive bits of each register on the input tape at intervals O(dn) just
so that the next bit is read at the beginning of each tree-CA step simulation.
If the resulting O(d) factor increase of the input tape size is undesirable, it is
possible for M ′ to maintain a counter which will keep the current register bit
number (same for all the registers) and add the corresponding number of sweeps
at the beginning (and the end — to keep each cycle of the same length) of each
simulation cycle.

4.2 Self-stabilizing Time Bounds

We use time-bounds algorithm T to restart computations that are initiated in-
correctly by Adversary. But Adversary might also initiate T incorrectly — we
therefore need a self-stabilizing version of T . In this section we show how any
algorithm T as defined in sec. 3.2 can be made self-stabilizing.
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As above, we refer to a standard probabilistic Turing Machine M with a read-
only input tape I, write-only output tape O, and read-write work tape W of size
|W | = n; Time is measured in tape reversals.

A function f is defined as [time-]constructible if there is an algorithm A such
that given input x, A computes A(x) = f(x) within O(f(x)) steps (tape re-
versals). We refer to algorithm A as constructible too. We need to extend con-
structibility to guarantee the time bounds even when the algorithm is initiated
in maliciously chosen configurations.

Clearly, if we repeatedly run A(x), properly initializing the TM after each time
A halts, the second run of A(x) will result in the output f(x) which would not
be changed by any subsequent executions of A. Thus, any constructible (in the
extended sense) f has a self-stabilizing implementation, and any constructible
algorithm can be converted into a self-stabilizing one.

Lemma 2. For any real constant c > 1 and constructible algorithm A running
in space O(n/ logc n) there is an algorithm B running in space O(n), such that
A(x) = B(x), and if Tx is the running time of A(x) starting from the proper
initial configuration, then B(x) stabilizes within O(T c

x + lg n) reversals starting
from any configuration.

Proof. Our strategy is to run k = logc n parallel computations of A(x). The
ith computation of A(x) continues for ti = 2ci

steps and then is reset to start
again from the proper initial state. When one of the computations completes
(halts, rather than is interrupted) all the computations are stopped as well.
Thus, if A(x) takes ti−1 < Tx ≤ ti steps, then starting from any configuration,
within ti steps the ith computation of A(x) is restarted from the proper initial
configuration and within Tx ≤ ti steps more it completes. Finally, T c

x > tci−1 = ti
implies that the ith computation halts (or is interrupted) within O(T c

x) time.
Using the tape reversal as the time measure allows us in one step to simulate

one step of all the parallel computations.
For the sake of simplicity and readability, we focus on the case of c = 2,

which allows us to skip some of these tedious details. Extending the proof to
c �= 2 requires implementing self-stabilizing arithmetic operations, such as mul-
tiplication — a tedious and straight-forward task (using techniques similar to
those below). Throughout this construction we use repeated recomputing of the
same values. Whenever such recomputing discovers an inconsistency we can re-
set the whole TM and restart computation from the proper initial state (unlike
general self-stabilizing networks, such a reset is easy on a TM).

To implement this strategy, we need a few tools. First, we can build a copy
subroutine, which repeatedly copies bits of a value from the input to output
location (overwriting the current output value). Eventually, the output value
will be a proper copy of the input.

Next, we build a timer: given a value t the timer counts down from t to 0. By
repeatedly checking that the input value t is no less than the current timer value
(resetting timer to 0 otherwise), we can make sure that the 0 is reached within t
decrement steps, no matter what is the initial configuration (implementing the
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decrement operation requires care in order to avoid potential pitfalls of malicious
initial configurations, but is still straight-forward).

Next tool is counting. First, (ideally, starting with the tape of all 0s) change
every odd 0 to 1 (that is change first encountered 0, and leave the next 0
unchanged). After at most �lg n� + 1 sweeps (exactly, if the initial state was
correct) there are no more 0s left. If each sweep adds a digit 1 to a counter
(starting empty when tape has all 0s), after 2(�lg n� + 1) sweeps the counter
contains �lg n�+1 digits 1, which makes the counter value u an upper-bound on
and an approximation of n: n ≤ u < 2n. Changing each but the leading 1 of u
to 0 changes u into l — a lower-bound approximation of n: l ≤ n ≤ u < 2l ≤ 2n.

Similarly, within O(lg n) we can compute (with self-stabilization) the ap-
proximations for �lg lg n� and �lg n� − �lg lg n�. Starting with all 0s and run-
ning the above sweeps replacing every other 0 with 1 for �lg n� − �lg lg n� − 1
times, results with the remaining 0s delimiting intervals of size 2
lg n�−
lg lg n� ∈
(n/2 lgn, n/ lg n].

Thus, within O(lg n) steps we have divided the work tape into at least lg n
intervals of Θ(n/ lg n) size.

All the intervals now run in parallel (an rTM in a single TM head sweep can
emulate a sweep of TM head in all the intervals). In each interval the A(x) is
emulated. In addition, the ith interval uses timer initialized to ti to interrupt
and restart from proper initial configuration the interval computation of A(x) if
it takes > ti steps. Initializing the timers is trivial.

Thus, if computing A(x) takes Tx < tj steps for some j, then within tj steps
after the intervals are properly initialized, the jth interval restarts computing
A(x) and so within tj + Tx steps, A(x) is computed. After that, the TM can
halt with the output. Of course, it is possible that the adversary can cause
the TM to halt earlier — in which case, the output might be incorrect. But
when initialized from the proper initial state (after the restart), the jth inter-
val will complete the computation of A(x) correctly and produce the correct
output.

Most functions f() of interest (esp. those which are likely to be used as T ()
in sec. 3.2) require significantly (often exponentially) less time to compute the
value f(x) than f(x) steps. Likewise, the space requirement for these functions
is likely to be O(lg n) or (lg n)O(1) at most. Thus, the space and time overheads
of the lemma are not a problem in most cases.

So, the lemma implies that the task time-bound can be implemented as a
self-stabilizing algorithm.

4.3 Proof of Theorem 4.1

A centered slope yields an obvious spanning (bfs) tree H , through the up edges.
Consider the tree-CA on H . The synchronization of the tree-CA can be achieved
by maintaining a separate slope on the tree, with each node incrementing its
slope value whenever making a step, which in turn is allowed only when it has
no tree-neighbors under it. H-CA in turn emulates an rTM M .
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A read-only input containing the adjacency matrix5 of G can be simulated as
follows. To read the entry (v, w) of the adjacency matrix, find node v and mark
it. Then find node w and see if there is an edge coming from a marked node.
In the end, clear the mark of the node v. The edge lookup is then reduced to
finding a given vertex v.

Assume that vertices are numbered linearly on the tape of M . To find each
vertex efficiently, cover the rTM tape with counters, each with the number of
the first vertex in the counter. These counters can be initialized in O(lg n) time
by the process similar to the marking of the intervals in Lemma 2 proof. Using
this marking, we can find the counter containing v in logarithmic time and then
within logarithmically more steps more find v within the counter.

A single look-up of the adjacency matrix can thus be simulated in O(dΔ lg n).
The rTM M repeatedly runs constructible (in the extended sense) version of

T (see Lemma 2); this gives a self-stabilizing time-bound. Whenever T outputs
a value, it is stored on the M tape — denote this constantly recomputed stored
value as t. Thus within O(T (G, I)) simulated time, t = T (G, I).6

M also maintains a counter, c. The counter c is repeatedly compared with t. If
c > t, then it is set to c = 0. Otherwise, it is decremented with every step of M .

Whenever the counter reaches 0, c is set to c = t again and M runs C(G, I,Wo)
starting from a proper initial configuration, where Wo are subfields of work fields
W which contain a copy of the output.

Whenever C(G, I,Wo) outputs 0 (i.e., Wo contains an incorrect answer), c is
set to c = t again and M runs A(G, I), with its output written into Wo fields.

When C(G, I,Wo) outputs 1 (i.e., Wo contains correct answer), then Wo fields
are copied to the output fields O, c reset to t and C(G, I,Wo) is run again.

5 Protocols for Centered Slope

The task protocols from Theorem 4.1, Sec. 4 use centered slope (given in the
structure fields). In this section we consider the protocols initiating a centered
slope on a given network.

5.1 Problem Decomposition

As stated in Sec. 1.1.2 we reduce maintaining centered slope to four separate
tasks: certificate building Cb and checking Cc (both working on trees and certi-
fying their acyclicity), balancing orientation Sb (of the network spanned by these
trees), and centralizing the slope Sc (merging the trees into one). We present
these tasks below in terms of specifications (specs, for short) and interfaces: an
interface defines the fields (with access permissions) and a spec augments the

5 The output must be correct for any numbering of the graph nodes used in the matrix.
6 The simulation overhead includes maintenance operations such as reseting all fields,

counters operations, copying appropriate values, etc. The total actual time is within
O(T (G, I)dΔ lg n).
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interface with a “contractual properties”. Any protocols satisfying these specs
will work for our reduction.

5.1.1 Interfaces, Filters, and Illegal Edges
In general, we structure reduction as a tree of protocols: each subtree corresponds
to a protocol; each node corresponds to an interface coordinating interaction of
the children sub-protocols, inheriting restrictions of the ancestor interfaces.

An interface defines a set of fields shared by the children (and parent) pro-
tocols and the corresponding permissions. Consider an interface I and its child
protocol P . An action of P at each node v produces the state change of v, de-
pending on the set of v’s links. The environment of P , denoted EP , interacts
with P via I, performing any actions permitted by I to programs outside the P
subtree. When discussing properties of P , it is often useful to assume that EP is
controlled by Adversary.

Since Adversary has no restrictions on the combinations of the initial states
of the two nodes of an edge, she can create abnormal links, possibly disruptive
for P . It might not be easy for P to correct such links (in particular, since P
acts at one node at a time, and this action is restricted by I but affects all the
incident links —and not just the abnormal one).

So, P comes with a list of its normal, P -legal, links. Any link which is not P -
legal is illegal. To protect P from illegal links, I has a special filter component
FI invoked before any other programs of this interface. FI can read all the fields,
and has the lists of P -legal edges from all protocols P of I.

If FI , acting at v, finds at least one incident illegal link, then FI preforms
crashing, also referred to as closing: some fields have default values to which
they are reset by FI , and no other programs are invoked by I at this node in
this activation. The resulting (crashed) node v is called a crash or closed —
we use these terms interchangeably.

The list of P -legal links must include all “closed–closed” links and must be
closed under all actions permitted by I to P and EP .7 For all P , any illegal edge
is crashed by FI (at both ends, if needed) making it legal; no new illegal edges
can be created. Thus, illegal edges disappear in one step and FI stabilizes:

Claim 5.1. Illegal links disappear within one step.

Typically, handling and opening the crashes will be responsibility of a special
protocol (Sb in our case); the other protocols will not act at or near crashes.

5.1.2 Pointers, Roots and Crashes
When slope centralization stabilizes, orientation (defined by the h3 fields, see
sec. 3.1) must yield a unique local minimum — the leader. Thus, the leader is
easy to find by following any down path. We refer to “potential leaders” as roots.

7 A slightly less robust version guarantees that P -legality is closed under only the
actions that P actually performs rather than all those allowed by I (closure under
EP transactions is unchanged).
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When the slope is centralized, there remains a single root — the leader. The first
task is thus to guarantee existence of roots.

A root r is always a local minimum; we also restrict it to r.h3 =0. However,
when many roots exist, the slope centralization protocol needs to “unroot” some
of them (eventually, all but one), leading to intermediate configurations where
some local minima are not roots, a down-path does not always lead to a root.

To facilitate finding roots (and guarantee their existence) we require the slope
centralization protocol Sc to maintain a pointer v.pc in each node v (supposedly
leading to a root). It is to guarantee the acyclicity of such pointer chains that
we use the certificate builder and checker (which work on the pointer trees). A
root r is marked by r.pc = r.

Let the default value for v.pc be nil , and v is closed whenever v.pc =nil . A
closed v is assumed to have “unreliable” orientation field v.h3, and Sb takes over
the node until it fixes the problem.

Non-crashes are called open. Changing v.pc from nil to non-nil (thus changing
v from a closed to open) is referred to as opening v. Whenever a closed v is
opened, its pointer is set down if v has a down-edge, or to self if v is a local
minimum. New roots can only be created from crashes (by opening them).

The shell and Sb protocols must keep checking the correctness of the slope,
and in particular verify existence of a root, even as Sc changes pc-pointers.
To facilitate this we let Sb own a pointer, pb, which copies pc before it changes.
Furthermore, Sc will be invoked only when the shell is ready for the next change.
If the shell detects a problem (such as a long edge), all changes are stopped until
Sb detects and fixes the problem. Thus any open node can have one or two
pointers. A closed v has only v.pb (v.pc = nil); and open v has v.pc �= nil and
v.pb (possibly v.pb = nil).

In a crash both pc = pb = nil . Sb signals that it is done with a crash by
setting pb (down, or self if at a local minimum). Such node with pb �= nil = pc
is referred to as fresh. A fresh is opened by Sc setting pc pointer (down, or self
if at a local minimum).

We call v a single, double or a split if v.pb = nil , v.pb = v.pc, v.pb �= nil �= v.pc,
respectively.

Define the pointer p(v) to be nil if v is closed, v.pc if v is a single, and v.pb
otherwise. This reflects the shell protocol’s view which might lag a bit behind
that of Sc. A maximal acyclic p()-pointer path vk, . . . , v0 : p(vi) = vi−1 from
v = vk can terminate at a root (p(v0) = v0), a crash (v0.pc = nil), or a pointer
cycle (p(v0)=vi>0). We call v rooted (in v0), if v0 is a root and all paths (from
the root) v0 . . . vi≤k have non-negative variances. An edge vw is called balanced
if v and w are rooted in rv, rw, respectively, and the path from rv to rw —against
the pointers, across vw, and down the pointers— has zero variance.

Claim 5.2. Orientation is a slope with neither crashes nor pointer cycles iff all
edges are balanced.

Indeed, suppose that all the edges are balanced. Then there are neither crashes
nor pointer cycles. Consider a path from a root v0 . . . vk. Let vi be rooted in ri
(r0 = v0), and let pi be the path from ri to vi (against pointers) then across
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vivi+1 and to ri+1 (along the pointers). Then the composition of all pi<k equals
the path v0 . . . vk followed by the pointer path from vk to rk. Since the variance
of each pi is 0 (by the balance of edges), and the variance of the pointer path
from vk to rk is non-positive (by rootedness of vk), then the variance of v0 . . . vk

is non-negative.
For the converse, consider an edge vw and the pointer paths from v and w

to roots rv, rw, respectively. If the variance of the path from rv to rw via the
pointer paths and vw is not 0 then either it or its reverse has a negative variance
violating the slope definition.

Unfortunately, the above notion of balanced edge is difficult to use: an edge that
is balanced at one instant can become unbalanced (e.g., by crashing its pointer
path to root) in the next instant. But what is worse, a process near the edge,
which may have just finished verifying its balance, would not be able to find out
about the change for some time. This leads us to define a “history-based” notion
of height.

Let the network start from some initial (possibly created by Adversary) con-
figuration IC. We use time index i referring to the number of events that had
occurred in the network. Its actual value is irrelevant, but it provides a conve-
nient way to unambiguously refer to any instance of the network evolution. We
say that v is i-rooted if at the instant i the maximal p()-pointer path from v
contains no pb-pointers that have not change since IC, ends in an open root, and
if v is a split, then it was created after IC; then the p()-pointer path is referred
to as i-rooting chain of v.

Define height hi(v) of v at instant i to equal 0: if v is a root (open or crash);
else: the variance of the i-rooting chain of v (computed from the root to v), if
such exist; and hi−1(v) otherwise. Thus, height might be initially undefined for
some nodes. Say an edge vw is long at instant i if both endpoints have defined
hi such that |hi(v)− hi(w)| > 1.

5.1.3 Slope Balancing (Sb) Spec
Consider environment Eb interacting with the protocol Sb. The Sb spec consists
of the following

fields:
v.pc, v.pb: pointers to neighbors of v
v.h3 ∈ Z3: orientation field

permissions:
Eb can

• crash any open v
• increment v.h3 in open v with no down edges (� ∃w ∈ E(v) : w.h3 =
v.h3− 1)

• change pointer v.pc ← w in open v (w ∈ E(v); w �= v)8

open a fresh v: if v is over only freshes, set v.pc down on a fresh, or
self if none

8 Thus, Eb creates no new roots — they can be created only by Sb from crashes.
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Sb can
• crash any open or fresh v: all non-Sb fields and pb are set to nil ;9

• decrement v.h3 in any closed v with no open nodes over it
• create a fresh from a closed v not over an open w by setting pointer
v.pb down on a crash, or self if at a local min

commitments:
Eb guarantees that
(Eb.1) There are no pointer cycles (neither old nor new).
(Eb.2) Any pointer chain of length L has a segment of variance Θ(L).
(Eb.3) Pointer chains from long edges are unchanged (incl. orientation),

except by crashing.10

Sb guarantees that (with the above commitments of Eb)
(Sb.1) If Eb makes no crashes, then after ts1 steps there are no crashes and

orientation is a slope.
(Sb.2) As an addendum, for efficiency: in any unchanged by Eb (incl. ori-

entation) pointer path with variance greater than O(d) some nodes
will be crashed within ts0 steps (even as Eb keeps crashing other
nodes).

For simplicity, below we combine ts0, ts1 (and a “pointer chain correctness
checking time” tCc, defined in Sec. 5.2 below) into the Sb stabilization time

tSb
def
= 1 + ts0 + tCc + ts1: this is the time within which Sb will stabilize (ini-

tiate correct slope, and open all crashes). Intuitively, all external to Sb crashes
will stop within 1 + ts0 + tCc steps: Filter crashes will stop after the first step;
then after all long (longer than (O(d)) pointer chains disappear within the next
ts0 steps (commitment Sb.2), the remaining short (O(d)) pointer chains will be
“checked for correctness” by the reduction (protocol Cc) and all incorrect ones
will be crashed within tCc steps. If all these times are polynomial in the network
diameter d, we say that the protocols stabilize promptly. Then, after all external
to Sb crashes stop, by the commitment Sb.1 Sb will initiate correct slope, open
all crashes and stabilize. The formal details of this process are covered in the
Sec. 5.2 below.

5.1.4 Slope Centralization (Sc) Spec
Consider environment Ec interacting with protocol Sc. The Ec-Sc interface uses
the same fields as the Eb-Sb interface: v.h3, v.pc. But here Ec has no permissions
to change these fields.

The Sc spec is as follows:

fields: (same as in the Eb-Sb interface)
v.pc: pointer (nil in crashes; self in roots)
v.h3 ∈ Z3: orientation field

9 pb = nil denotes Sb making pb unavailable to Eb, while Sb may still use it internally.
10 In particular, nodes near crashes do not change.
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permissions: (Ec has none)
Sc can

• increment v.h3 if v has no down edges
• can change v.pc in open v

commitments:
(Ec.1) Ec guarantees that orientation is a correct slope.
(Sc.1) Sc guarantees that (provided (Ec.1)) after tSc steps the slope is central-

ized.11

5.1.5 Stability of Low Nodes for Sb
Sb can initiate a proper slope and open all nodes only after all other protocols
stop crashing nodes. Filters stop crashing after one step. After that only Cc
can crash nodes (other than Sb itself). These crashes, however will stop after
all the pre-existing certs are replaced (we assume that Cb creates correct certs
which are not crashed by Cc). The cert renewal cycle guarantees that each cert
is replaced within time linear in the tree height (ignoring the Cb and Sled times,
which are typically nearly linear —or at most polynomial— in the tree-height).
So, if all tree heights are bounded by O(d) then the Cc crashes will stop within
poly-d time.

In this section, we show that this indeed is achieved by our algorithms.
Consider all nodes from some initial configuration at time denoted as 0.
We say that node v has (m,h, t)-trajectory if in the 0 to t period (inclusively)

the minimum height of v is m, and ht(v) = h.

Claim 5.3. If v has (m,h, t)-trajectory and h > m + 2 then for any neighbor
w ∈ E(v) there are t′ < t, m′, h′, such that w has (m′, h′, t′)-trajectory and
|m−m′| ≤ 2, |h− h′| ≤ 1.

Proof: Let v have (m,h, t)-trajectory and h > m + 2. Let t′ be the largest such
that ht′+1(v) = ht′(v) + 1 = h (i.e. it is the last float to h of the trajectory of
v). Then v has (m,h, t′ + 1)-trajectory.

Suppose that the (m′, h′, t′)-trajectory of w violates either |m − m′| ≤ 2
or |h − h′| ≤ 1. Consider the (first) time i when v is at the minimum height
m = hi(v) and floats at the next step hi+1(v) = m+1 (By R1 below, Sb cannot
increase height, so floating is the only way to increment hi(v)). Since hi(v) is
defined, LEC before this float is not IIA, and therefore w is rooted with variance
m or m+1. However, since w might at this point still be an IC-single, we cannot
conclude that m′ ≤ m + 1. However since h > m + 2, w must float at least once
before v can increase its height to m + 3. At that time its height will be defined
and will have the value m + 1 or m + 2. Thus, m′ ≤ m + 2. Similar argument
considering the first float of w from height w′ provides m ≤ m′ + 2, showing
|m−m′| ≤ 2.

The above implies that at time t′ both ht′(v) and ht′(w) are defined. Fur-
thermore, to permit floating of v (the preceding LEC is not IIA), we must have
ht′(w) be either h− 1 or h.
11 And thus all the changes to the interface fields cease.
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Corollary 5.4. If v raises by d + 1 while remaining at height > 2d then there
are no roots during that period.

Proof by induction on distance k from v to u (and using Claim for the inductive
step).

Internally, Sb maintains its own internal height and its own internal version
of roots at height 0. Eb guarantees to Sb existence of crashes, freshes or roots.
Sb should be able to assure that if there are crashes or freshes, then such zeros
exist.

However, efficient operation of Sb may demand stability of such zeros, or
nodes close to them. Then the above corollary guarantees that if a node was
ever a root/zero, it will never float above > 3d + 1.

5.1.6 Certificate Builder and Checker
Certificate builder Cb will be invoked by shell on the pointer trees as described
in sec. 5.2. The checker Cc runs in the pointer fields continuously. The two have
the following properties. Cc does not crash certificates generated by Cb properly
invoked on any trees. Cc crashes at least one node on any pointer cycle in time
poly-logarithmic in the cycle size. Cc is suspended at or near crashes.

To illustrate the idea, we briefly sketch a version of certificate and checker
used in [IL92]. While there certificate was constructed along the dfs traversal
path of a tree, here we define it as a function of tree height: so the node at
height i will contain α(i) (defined below) as its certificate.

Thue (or Thue-Morse) sequence is defined as μ(k)
def
=
∑

i ki mod 2, where ki

is the i-th bit of k [Thu12]. We say string x = x1x2 . . .xk is asymmetric if it has
a k bits segment of μ embedded in its digits (say, as xi mod 2).12

Let us cut off the tail of each binary string k according to some rule, say, the
shortest one starting with 00 (assume binary representation of k starts with 00).
Let us fix a natural representation of all integers j > 2 by such tails ĵ and call
j the suffix σ(k) of k. For a string χ, define ρ(χ, k) to be χσ(k) if σ(k) ≤ ‖χ‖, and
special symbol # otherwise. Then α[k] = ρ(k, k), and α(k) = 〈α[k],μ(k)〉. 13 Let
Lα be the set of all segments of α. Lα can be recognized in polynomial time. Let
LTα be a set of asymmetric trees where each root-leaf path contains a string in Lα.

Lemma 3. Any string of the form ss, ‖s‖>2, contains segment y �∈Lα, ‖y‖=
(log ‖s‖)2+o(1).

Other variants of α can be devised to provide greater efficiency or other desirable
properties (e.g., one such variant was proposed in [IL92]).

For a language L of strings define a Γ (L) be the language of trees, such that
any root-leaf path contains a string in L, and any two equal length down-paths
ending at the same node are identical.

12 For simplicity, we ignore other ways to break symmetry.
13 Inclusion of μ in α makes it asymmetric but otherwise is useful only for < 40-bit seg-

ments. Also, μ(k) could be used instead of # if i > ‖k‖ in α[k], but this complicates
the coding and thus is skipped.
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Let TA(XT ) be a tree T of cellular automata A starting in the initial state
with unchanging input XT . We say that TA(XT ) rejects XT if some of the
automata enter a reject state. Language Γ of trees is t-recognized by A if for all
T of depth t(k), TA(XT ) (1) rejects within t(k) steps those XT , which contain
a subtree Y �∈ Γ of depth k; and (2) reject none of the X with all subtrees in Γ .
For asynchronous self-stabilizing automata, requirement (1) extends to arbitrary
starting configuration and to trees rooted in a cycle; requirement (2) extends to
the case when a ancestors or children branches of the tree are cut off during the
computation.

Lemma 4. For any polynomial time language L of asymmetric strings, Γ (L)
is recognizable in polynomial time by self-stabilizing protocols on asynchronous
cellular tree-automata.

5.2 The IS-Interface Overview

Our reduction uses shell Sh and interface IS to run and coordinate the following
protocols: Sb,Sc,Cb,Cc and Sled. The first four are described in the previous
sections. The long-edge check Sled is invoked on a pointer tree prior to each Cb
invocation there: if any long edges adjacent to the tree are detected then Cb is
not invoked. This prevents any changes of the tree pointers and orientation with
adjacent long edges, thus satisfying the Eb commitment of the Sb spec. Sled can
be treated as a separate protocol, or be associated with Cb, or even Sh. Despite
its triviality, treating it as a separate protocol is a more flexible option. But we
associate it with Cb to simplify the paper.

Certs. In order to maintain evidence (certificate) of the slope correctness, Sb
maintains a collection of smaller certificates —which we refer to as certs— each
constructed independently along special pointer tree. Thus cert values are asso-
ciated with specific pointers (one in each node) and we give precise definition of
how the next pointer is selected for each cert. Each open node will typically have
one or two such certs (and thus cert-pointer chains) passing through it. These
certs, will be managed by the Sh which will create them using Cb. Cb can be
made self-stabilizing as in sec. 4. However, since Cb must halt, rather than sta-
bilize, it might be initialized improperly, and then it might halt with an incorrect
certificate (which will be crashed or deleted later). Cc runs continuously in the
pointers and crashes illegal certs, in particular, on pointer cycles.

Claim 5.5. If each node has a cert passing through it, and each cert is individ-
ually correct and there are no long edges, then the slope is correct.

Indeed, consider a cycle v0v1 . . . vk. Define the height of a rooted pointer to be
the variance of its pointer-path to its root. If all certs are correct, then all the
pointers are rooted. If a node contains two pointers of a different height then the
edge between these pointers is long. Thus, if there are no long edges the height
of a pointer uniquely determines the height of its node h(v). Furthermore, the
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variance of each directed edge must equal the difference of the heights of its
endpoints — otherwise the edge is long. But then the variance of the cycle is
(h(v1)−h(v0))+(h(v2)−h(v1))+. . .+(h(v0)−h(vk)) = 0.

Closed nodes are a responsibility of Sb and do not have certificates visible to
IS. The transition from a crash to an open node will have an intermediate stage,
fresh, initially without a cert.

Assuming no incorrect certs are built by Cb after some initial period, even-
tually incorrect tree-certs will disappear, and thus so do pointer cycles. We say
that then Cc stabilizes.

5.2.1 IS Fields
v.h3 : Slope.
v.pc, v.pb : pointers belonging to Sc and Sb, resp.

The following fields are associated with each non-nil pointer (rather than a node)
and correspond to an official and a draft version of a cert, where the draft field
can also be used for signal:

cert : cert digit (possibly nil).
cdft : draft cert digit (possibly nil), or a signal F or W (under specific

circumstances these signals invoke Sc and Cb, resp).

5.2.2 Interface Restrictions
The following are formal Interface IS restrictions.

FIS crashes illegal links.
Sc: can only

-read h3, pc;
-increment v.h3 in open non-root v not over another node;
-change v.pc pointers (to �= nil) for open or fresh v (for open v: to a
neighbor; for fresh v: down on a fresh, or self if none).

Sb: can only
-read h3, pc, pb, cert fields;
-crash any nodes;
-decrement to v.h3 of a closed v with no open neighbor over it;
-change a crash into a fresh with following restrictions: (1) a crash cannot
be opened over a non-crash, (2) after opening, v.pb must be down, or to
self—if there are no nodes under it.

Open, but not fresh, nodes make no IMain changes (except crashing) near a
crash or fresh.

Cb: can only
read h3, pc, pb, cdft fields of open and fresh nodes;
when W, can write to the corresponding cdft field.
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Cc : can only
read h3, pc, pb, cert fields of open and fresh nodes;
crash any nodes.14

Sled: has no IS-write permissions and can read h3, pc, pb[, cert, cdft]. Its only way
to communicate with the other protocols is to return —or not return—
control after its invocation.

Sh: can only
invoke Cb,Sled and Sc protocols15;
move, copy or set to nil the pc, pb pointers (together with the associated
fields);
can read/write cdft signal values.

Let a pointer from v points on its neighbor w. Then if each w has only one
cert, then the cert pointer of v is assumed to point on the cert pointer of w. If
w has two certs then v points on the like pointer (pb on pb, pc on pc). We refer
to trees defined by such pointers as cert-trees.

An pb-pointer is said to be dying if the node has an pc cert. A dying pb-
pointer is called dead if all its descendants are dying (dead). A pointer is live
if it is not dead (even if it is dying).

Signals. Intuitively, these signals and draft emulate a variant of the classical
fire-water-hay game, where fire burns hay, but is extinguished with water, which
in turn is absorbed by hay.

Specifically the “fire” F moves up burning “hay”: destroying current cert and
moving cdft into its place. The fire is followed up by the “water” or “wait”
signal W, which replaces F whenever it has spread to all its possible destination.
In turn, W is replaced with the new draft certificate: cdft = nil in dead pointers,
or obtaining the draft cert value from Cb in live ones. Thus, the dead pointers
eventually have no certs. This new draft-hay absorbs the water from the leaves
down. When the new fire enters, this new draft cert value is moved to the “official
cert” field cert, and so on. This change of cert from one version to the next does
not cause Cc to crash.

If the F signal has crossed a pb(�= pc) pointer, then it is considered to be
passive (Fp), and it is active (Fa) otherwise. A passive fire Fp does not spread
to new pointers (unless its a double and its twin pointer has a certificate there),
while active one (Fa) does.

The Cb algorithm is activated from root (after Sled) and runs in stabilized
water pointer tree: The leaves of the Cb-tree are those W-nodes that have nether
W- nor F- children, nor gain such even after each child has a chance to act (at
least) once.

Each open node v has a pc- and, possibly, a pb- pointers (v.pc, v.pb, resp.).
When a closed v is changed by Sb to a fresh, v gains a pb pointer down (or

self). For a fresh v, v.pc = nil . Sh calls Sc at fresh v to complete its opening. A

14 Cc is ran constantly on all the cert fields, treating each pointer tree separately.
15 Cb,Sled are invoked from a root of a tree and operate essentially as tree-CA; Sc is

invoked at each node separately and makes a single Sc step in that node.
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fresh has no cert v.cert = nil , and always points down on another fresh or crash
(or is a root).

Sc is always invoked at a single: then v.pc is copied to v.pb (with all the
associated fields), and Sc can make its move. If v.pc = v.pb after this, then Sh
erases the associated fields of v.pb. If Sc changes v.pc, then we call such v.pb a
split pointer.

The legal links are defined so a split and single pointers can point only on
a single (or closed or fresh). Therefore, any pointer path from leaf to root in
any cert-tree crosses at most one split pointer. The rest of pointers on the path
coincide with pc pointers. So, if Sb provides that all pointer chains have variance
O(d), then the height of the cert trees is also O(d).

The certs, assumed to be properly constructed by Cb (so that Cc does not
crash them), satisfy the following requirement for some sufficiently small tCc
(added to the overall stabilization time)16:

Condition 1. No cert loops exist for > tCc steps.

5.2.3 Cert Renewal Cycle
Certs renewal cycle algorithm works on cert-trees specified by the pointers.

Call a (pc-)pointer pre-existing if it has not changed since the initial confi-
guration. Say a chain of pc-pointers is pre-existing if all its pointers are. Call a
pc-chain balanced if all its adjacent edges are.

Claim 5.6. Whenever v.pc changes, its pc-chain to root is either balanced or
pre-existing.

Indeed, in order for v.pc-pointer to change, it must first be a single, and then
become a split. If it was pre-existing, this can happen with the Sled skipped
or improperly initialized. However, before the next change, v.pc must become a
single again, and so do all its pc ancestors. At least one cert-renewal cycle must
pass when v and its pc-ancestors are turned into singles. This will be accompanied
by Sled check,17 which will guarantee (if it completes) that the pc-chain from v
to the root is balanced.

Claim 5.7. If any pc-path is bounded by O(d), then a root r initiates a cert
cycle every O(d) + tSled

+ tCb steps, where tSled
, tCb are the times required by

Sled,Cb respectively.

Indeed, r initiates Sled which completes within tSled
steps. Then, within any

two steps any maximal W-path from r either grows, or terminates in a pointer
with no eligible F-children. A W-pointer with neither F nor W children cannot
gain any such children. Within tCb steps more, Cb completes its computation

16 In [IL92] we propose certs and Cc protocols for which tCc = (lg n)O(1).
17 In fact, it shows that it is sufficient to execute the long-edge check only once in

each cycle when the cert-tree is turned into singles (see below). We chose to execute
Sled in every cert cycle to support a stronger notion of a certificate: which includes
balance guarantee for adjacent edges.
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and simply needs a chance to output them. Then within each step any maximal
W-path from r shrinks. Since any W-path can cross at most one split pointer
(W follows F, which changes from Fa to Fp on crossing a split pointer, and Fp
cannot cross split pointers), the length of the maximal W-path from r is O(d).

5.2.4 Fresh Exiting and Sc-invocation
This part of the Sh protocol works on nodes (rather than just pointer trees),
and assumes that all nodes have been opened by Sb with a correct slope (after
filters and Cc stop crashing nodes). It deals with fresh nodes changing to normal
and then discusses another version of the “fire-water-hay” game, which provides
periodic invocation of Sc for all nodes. Recall that all the protocols except Sb
are frozen near crashes, so we ignore closed nodes in this section.

Here we refer to a pointer as empty or full depending on whether it contains
a cert or not.

Node types and stage coding. There can be the following types of nodes:
A single has one pointer (the other is nil). It is a fresh if the pointer is pb.
Otherwise, we refer to it as bot.

If both pointers are non-nil , the node is either a split or a double. In either
case it can be dry, wet or twin: corresponding to having a nil -cert in pc, pb, or
neither, respectively.

Fresh exiting. Consider a fresh node. Only other fresh and closed nodes can be
on its down path. On the other hand, any nodes can be rooted in fresh. Cc treats
such a certificate, where prefix is replaced with fresh, as legal. Sb guarantees
that when there are no crashes the down path —and in particular the pointer
path— from a fresh terminates in a root.

A fresh root initiates the regular cert renewal cycle. The cert pointers of non-
fresh nodes on fresh are treated as eligible. When two pointers of a twin are both
rooted in the same fresh cert, the pb-pointer eventually disappears as dead.18

Once the illegal for non-fresh configurations disappear, the freshes are changed
to bot all the way to the root. When a fresh node has a (non-empty) cert and
no twins pointing on it, the fresh functions as a regular bot single.

Thus the analysis below applies to fresh as well showing that they disappear in
polynomial in diameter time after the crashes disappear and the slope is correct.

Sc-invocation cycle. This cycle starts when a root r is dry and the cert cycle
initiates F. Then (after Sled) r changes to bot with Fa.

Any dry v pointing at a bot changes to bot in one step. A bot node v stays
unchanged if it is pointed at by a dry, bot or full pb pointer.

When no such pointers on dry v exist, upon arrival of F, v creates a split
pointer v.pb copies v.pc there (without associated fields), and invokes Sc. If Sc
changes v.pc, then the cert fields of pc are moved to pb, and the result is a dry
split. If v.pc is not changed, then v becomes wet.

18 Alternatively a fresh with a twin pointing on it can be viewed as a split with two
pointers on two dummy bot nodes which both point on another dummy bot node.
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The signal F is passive in wet or twin nodes: it does not enter new edges
(unless they are doubles with a cert on the two pointer). A dry node becomes
wet when accepting F from a wet parent. The exception is the case of dump
nodes: which have cert = nil and cdft = W in the twin pointer. Such nodes form
when a wet node has bot in the parent but all its children are dry. Dump nodes
are treated as wet by the parent (thus preventing it from changing to bot) and
as dry by children, allowing F to pass as active and without causing wetness.

The wet node changes to dry if all its children are dry, and the parent is wet.

5.2.5 Sc-invocation Cycle Times
Propagation of bot up the tree is straight-forward: dry changes to bot in one
step. A dry node can be pointed at by another dry or by an empty pc of a split
(which will be infected from F in the bot, or ignored if dump).

Consider a split v and a maximal pc chain P from v to —but not including—
bot. Consider the length of P plus the number of non-splits on it. In O(d) steps
this sum increases: either the bot under P splits or lowest split merges.

Since P is no longer than O(d), v merges promptly.
Since the tree of single and dry nodes does not increase, and dry promptly

changes to single, single leaves promptly loose their split children and can split
themselves. Then the tree of single and dry nodes promptly disappears.

Since split promptly merges into a double, it remains to show that any double
v promptly changes to single.

Consider P from v to the nearest single. P does not shrink and must grow
when the single promptly splits. Eventually but promptly, since P cannot be
more than O(d), this path must reach root, become dry, and change to bot.
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Abstract. Since programming languages are Turing complete, it is impossible
to decide for all programs whether a given non-trivial semantic property is valid
or not. The way-out chosen by abstract interpretation is to provide approximate
methods which may fail to certify a program property on some programs. Preci-
sion of the analysis can be measured by providing classes of programs for which
the analysis is complete, i.e., decides the property in question. Here, we consider
analyses of polynomial identities between integer variables such as x1 · x2 −
2x3 = 0. We describe current approaches and clarify their completeness proper-
ties. We also present an extension of our approach based on weakest precondition
computations to programs with procedures and equality guards.

1 Introduction

Invariants and intermediate assertions are the key to deductive verification of programs.
Correspondingly, techniques for automatically checking and finding invariants and in-
termediate assertions have been studied (cf., e.g., [3,2,22]). In this paper we present
analyses that check and find valid polynomial identities in programs. A polynomial
identity is a formula p(x1, . . . ,xk) = 0 where p(x1, . . . ,xk) is a multi-variate polyno-
mial in the program variables x1, . . . ,xk .1

Looking for valid polynomial identities is a rather general question with many ap-
plications. Many classical data flow analysis problems can be seen as problems about
polynomial identities. Some examples are: finding definite equalities among variables
like x = y; constant propagation, i.e., detecting variables or expressions with a constant
value at run-time; discovery of symbolic constants like x = 5y+2 or even x = yz2+42;
detection of complex common sub-expressions where even expressions are sought which
are syntactically different but have the same value at run-time such as xy+42 = y2+5;
and discovery of loop induction variables.

Polynomial identities found by an automatic analysis are also useful for program
verification, as they provide non-trivial valid assertions about the program. In particular,
loop invariants can be discovered fully automatically. As polynomial identities express
quite complex relationships among variables, the discovered assertions may form the
backbone of the program proof and thus significantly simplify the verification task.

1 More generally our analyses can handle positive Boolean combinations of polynomial
identities.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 50–67, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the following, we critically review different approaches for determining valid
polynomial identities with an emphasis on their precision. In expressions, only addi-
tion and multiplication are treated exactly, and, except for guards of the form p �= 0
for polynomials p, conditional choice is generally approximated by non-deterministic
choice. These assumptions are crucial for the design of effective exact analyses [12,13].
Such programs will be called polynomial in the sequel.

Much research has been devoted to polynomial programs without procedure calls,
i.e., intraprocedural analyses. Karr was the first who studied this problem [11]. He
considers polynomials of degree at most 1 (affine expressions) both in assignments and
in assertions and presents an algorithm which, in absence of guards, determines all
valid affine identities. This algorithm has been improved by the authors and extended
to deal with polynomial identities up to a fixed degree [13]. Gulwani and Necula also
re-considered Karr’s analysis problem [7] recently. They use randomization in order to
improve the complexity of the analysis at the price of a small probability of finding
invalid identities.

The first attempt to generalize Karr’s method to polynomial assignments is [12]
where we show that validity of a polynomial identity at a given target program point is
decidable for polynomial programs. Later, Rodriguez-Carbonell et al. propose an anal-
ysis based on the observation that the set of identities which are valid at a program point
can be described by a polynomial ideal [20]. Their analysis is based on a constraint sys-
tem over polynomial ideals whose greatest solution precisely characterizes the set of all
valid identities. The problem, however, with this approach is that descending chains of
polynomial ideals may be infinite implying that no effective algorithm can be derived
from this characterization. Therefore, they provide special cases [21] or approxima-
tions that allow to infer some valid identities. Opposed to that, our approach is based
on effective weakest precondition computations [12,14]. We consider assertions to be
checked for validity and compute for every program point weakest preconditions which
also are represented by ideals. In this case, fixpoint iteration results in ascending chains
of ideals which are guaranteed to terminate by Hilbert’s basis theorem. Therefore, our
method provides a decision procedure for validity of polynomial identities. By using
a generic identity with unknowns instead of coefficients, this method also provides an
algorithm for inferring all valid polynomial identities up to a given degree [14].

An interprocedural generalization of Karr’s algorithm is given in [15]. Using tech-
niques from linear algebra, we succeed in inferring all interprocedurally valid affine
identities in programs with affine assignments and no guards. The method easily gener-
alizes to inferring also all polynomial identities up to a fixed degree in these programs.
A generalization of the intraprocedural randomized algorithm to programs with proce-
dures is possible as well [8]. A first attempt to infer polynomial identities in presence
of polynomial assignments and procedure calls is provided by Colon [4]. His approach
is based on ideals of polynomial transition invariants. We illustrate, though, the pitfalls
of this approach and instead show how the idea of precondition computations can be
extended to an interprocedural analysis. In a natural way, the latter analysis also extends
the interprocedural analysis from [15] where only affine assignments are considered.

The rest of the paper is organized as follows. Section 2 introduces basic notions.
Section 3 provides a precise characterization of all valid polynomial identities by means
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of a constraint system. This characterization is based on forward propagation. Section
4 provides a second characterization based on effective weakest precondition computa-
tion. This leads to backwards-propagation algorithms. Both Sections 3 and 4 consider
only programs without procedures. Section 5 explains an extension to polynomial pro-
grams with procedures based on polynomial transition invariants and indicates its limi-
tations. Section 6 presents a possible extension of the weakest-precondition approach to
procedures. Section 7 then indicates how equality guards can be added to the analyses.
Finally, Section 8 summarizes and gives further directions of research.

2 The General Set-Up

We use similar conventions as in [15,17,16] which we recall here in order to be self-
contained. Thus, programs are modeled by systems of non-deterministic flow graphs
that can recursively call each other as in Fig. 1. Let X = {x1, . . . ,xk} be the set of

5

8
9

6
7

0
1

3
4

P : x3 := x3 + 1

x1 := x1 + x2 + 1

x1 := x1 − x2

x1 := x1 − x2 − x3

Main:

2

x2 := x1

x3 := 0

P ()

P ()

x1 − x2 − x3 = 0

Fig. 1. An interprocedural program

(global) variables the program operates on. For ease of presentation, we assume that
variables take values in the field Q. Similar arguments, though, can also be applied in
case values are integers from Z or even when we consider values from a modular ring
Zm for some m = 2w, w ≥ 1, as used in programming languages such as Java [17,16].

In the programs we analyze, we assume the assignments to variables to be of the
form xj := p for some polynomial p from Q[X], i.e., the ring of all polynomials with
coefficients from Q and variables from X. Note that this restriction does not come by
accident. It is well-known [9,19] that it is undecidable for non-deterministic flow graphs
to determine whether a given variable holds a constant value at a given program point
in all executions if the full standard signature of arithmetic operators (addition, subtrac-
tion, multiplication, and division) is available. Constancy of a variable is obviously a
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polynomial identity: x is a constant at program point n if and only if the polynomial
identity x − c = 0 is valid at n for some c ∈ Q. Clearly, we can write all expressions
involving addition, subtraction, and multiplication with polynomials. Thus, if we allow
also division, validity of polynomial identities becomes undecidable.

Assignments with non-polynomial expressions or input dependent values are there-
fore assumed to be abstracted with non-deterministic assignments. A non-
deterministic assignment of the form xj :=? (with xj ∈ X) is meant to represent
the non-deterministic choice between all assignments xj := c, c ∈ Q. In general, we
also assume that conditional branching is abstracted with non-deterministic branching,
i.e., either way is possible. Note that in [13] it is pointed out that in presence of equal-
ity guards, exact constant propagation again becomes undecidable. The only form of
guards at edges which we can handle within our framework precisely are disequality
guards of the form p �= 0 for some polynomial p. In order to reduce the number of
program points in examples, we sometimes annotate edges with sequences of assign-
ments. Also, we use assignments xj := xj which have no effect onto the program
state as skip-statements and omit these in pictures. For the moment, skip-statements
are used to abstract, e.g., equality guards. In Section 7, we will present methods which
approximatively deal with equality guards.

A polynomial program comprises a finite set Proc of procedure names with one
distinguished procedure Main. Execution starts with a call to Main. Each procedure
q ∈ Proc is specified by a distinct finite edge-labeled control flow graph with a single
start point stq and a single return point retq where each edge is labeled with an assign-
ment, a non-deterministic assignment, a disequality guard or a call to some procedure.
For simplicity, we only consider procedures without parameters or return values oper-
ating on global variables. The framework, though, can straightforwardly be extended to
procedures with local variables, call-by-value parameter passing and return values.

The basic approach of [15,13,17] which we take up here is to construct a precise
abstract interpretation of a constraint system characterizing the concrete program se-
mantics. For that, we model a state attained by program execution when reaching a
program point or procedure by a k-dimensional vector x = [x1, . . . , xk] ∈ Qk where
xi is the value assigned to variable xi. Runs through the program execute sequences of
assignments and guards. Each such sequence induces a partial polynomial transforma-
tion of the program state.

A (total) polynomial transformation τ can be described by a vector of polynomials
τ = [q1, . . . , qk] where τ applied to a vector x equals the vector:

τ(x) = [q1(x), . . . , qk(x)]

where we have written q′(x) for the value returned by a polynomial q′ for the vector x.
A partial polynomial transformation π is a pair π = (q, τ) of a polynomial q and a poly-
nomial transformation τ . If q(x) �= 0 then π(x) is defined and returns τ(x). Otherwise,
π(x) is undefined. Partial polynomial transformations are closed under composition
[14]. The partial polynomial transformations corresponding to single assignments and
disequality guards are given by:

[[xj := p]] = (0, [x1, . . . ,xj−1, p,xj+1, . . . ,xk])
[[q �= 0]] = (q, [x1, . . . ,xk])
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The definition of a partial polynomial transformation is readily extended to sets of
states. Since in general, procedures have multiple runs, we model their semantics by
sets of partial polynomial transformations.

3 Intraprocedural Analysis: Forward Iteration

Let π = (q, τ) be the partial polynomial transformation induced by some program run.
Then, a polynomial identity p = 0 is said to be valid after this run if, for each initial
state x ∈ Qk, either q(x) = 0 – in this case the run is not executable from x – or
q(x) �= 0 and p(τ(x)) = 0 – in this case the run is executable from x and the final
state computed by the run is τ(x). A polynomial identity p = 0 is said to be valid at a
program point v if it is valid after every run reaching v.

Clearly, if p = 0 is valid then also r · p = 0 for arbitrary polynomials r. Also, if
p1 = 0 and p2 = 0 are valid then also p1 +p2 = 0 is valid. Thus, the set of polynomials
p for which p = 0 is valid at v forms a polynomial ideal.2 Recall that, by Hilbert’s basis
theorem, every polynomial ideal I ⊆ Q[X] can be finitely represented by:

I = 〈p1, . . . , pm〉 =df {r1 · p1 + . . . + rm · pm | ri ∈ Q[X]}

for suitable p1, . . . , pm ∈ Q[X]. The set {p1, . . . , pm} is also said to generate the
ideal I . Based on such representations, algorithms have been developed for fundamental
operations on ideals [1]. In particular, membership is decidable for ideals as well as
containment and equality. Moreover, the set of all ideals I ⊆ Q[X] forms a complete
lattice w.r.t. set inclusion “⊆” where the least and greatest elements are the zero ideal
{0} and the complete ring Q[X], respectively. The greatest lower bound of a set of
ideals is simply given by their intersection while their least upper bound is the ideal
sum. More precisely, the sum of the ideals I1 and I2 is defined by

I1 ⊕ I2 = {p1 + p2 | p1 ∈ I1, p2 ∈ I2}

A set of generators for the sum I1 ⊕ I2 is obtained by taking the union of sets of
generators for the ideals I1 and I2.

For the moment, let us consider intraprocedural analysis only, i.e., analysis of pro-
grams just consisting of the procedure Main and without procedure calls. Such program
consist of a single control-flow graph. As an example, consider the program in Fig. 2.

Given that the set of valid polynomial identities at every program point can be de-
scribed by polynomial ideals, we can characterize the sets of valid polynomial identities
by means of the following constraint system F :

F(start) ⊆ {0}
F(v) ⊆ [[xi := p]]	(F(u)) (u, v) an assignment xi := p
F(v) ⊆ [[xi := ?]]	(F(u)) (u, v) an assignment xi := ?
F(v) ⊆ [[p �= 0]]	(F(u)) (u, v) a guard p �= 0

2 A polynomial ideal I is a set of polynomial which is closed under addition and under multi-
plication with arbitrary polynomials: ∀p, q ∈ I : p + q ∈ I and ∀p ∈ I , q ∈ Q[X] : p · q ∈ I .
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1

0

2

y := 1
z := 0

y := y ∗ xz := z + y

0 = 0

z ∗ x− z− y ∗ x + 1 = 0

z ∗ x− z− y + 1 = 0

Fig. 2. A program without procedures

where the effects of assignments and disequality guards onto ideals I are given by:

[[xi := p]]	(I) = {q | q[p/xi] ∈ I}
[[xi := ?]]	(I) = {

∑m
j=0 qjx

j
i | qj ∈ I ∩Q[X\{xi}]}

[[p �= 0]]	(I) = {q | p · q ∈ I}

Intuitively, these definitions can be read as follows. A polynomial identity q is valid after
an execution step iff its weakest precondition was valid before the step. For an assign-
ment xi := p, this weakest precondition equals q[p/xi] = 0. For a non-deterministic
assignment xi := ?, the weakest precondition of a polynomial q =

∑m
j=0 qjx

j
i with

qj ∈ Q[X\{xi}] is given by:

∀ xi. q = 0 ≡ q0 = 0 ∧ . . . ∧ qm = 0

Finally, for a disequality guard p �= 0, the weakest precondition is given by:

¬(p �= 0) ∨ q = 0 ≡ p = 0 ∨ q = 0 ≡ p · q = 0

Obviously, the operations [[xi := t]]	, [[xi := ?]]	, and [[p �= 0]]	 are monotonic. There-
fore by the fixpoint theorem of Knaster-Tarski, the constraint system F has a unique
greatest solution over the lattice of ideals of Q[X]. By definition, the operations com-
mute with arbitrary intersections. Therefore, using standard coincidence theorems for
completely distributive intraprocedural dataflow frameworks [10], we conclude:

Theorem 1. Assume p is a program without procedures. The greatest solution of the
constraint system F for p precisely characterizes at every program point v, the set of
all valid polynomial identities. !"

The abstract effect of a disequality guard is readily expressed as an ideal quotient for
which effective implementations are well-known. The abstract assignment operations,
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though, which we have used in the constraint system F are not very explicit. In order
to obtain an effective abstract assignment operation, we intuitively proceed as follows.
First, we replace the variable xi appearing on the left-hand side of the assignment with
a new variable z both in the ideal I and the right-hand side of the assignment. The
variable z thus represents the value of xi before the assignment. Then we add the new
relationship introduced by the assignment (if there is any) and compute the ideal closure
to add all implied polynomial relationships between the variables X and z. Since the
old value of the overwritten variable is no longer accessible, we keep from the implied
identities only those between the variables from X. Formally, we verify:

Lemma 1. For every ideal I = 〈p1, . . . , pn〉 ⊆ Q[X] and polynomial p ∈ Q[X],

1. {q | q[p/xi] ∈ I} = 〈xi − s, s1, . . . , sk〉 ∩Q[X] and
2. {

∑m
j=0 qjx

j
i | qj ∈ I ∩Q[X\{xi}]} = 〈s1, . . . , sn〉 ∩Q[X] ,

where s = p[z/xi] and sj = pj[z/xi] for i = 1, . . . , n.

Note that the only extra operation on ideals we use here is the restriction of an ideal to
polynomials with variables from a subset. This operation is also called elimination and
standard effective algorithms are known [1].

Proof. Assume that the ideal I is generated from the polynomials p1, . . . , pn. We only
prove statement (1). Assume q = q0(xi − s) +

∑n
j=1 qjsj does not contain variable z

where q0, . . . , qn ∈ Q[X ∪ {z}], s = p[z/xi] and for all j, sj = pj [z/xi]. Since the sj
do not contain xi,

q[p/xi] = q′0(p− s) +
∑n

j=1 q
′
jsj

for suitable polynomials q′0, . . . , q
′
n. Substituting again xi for z in this equation, we

therefore obtain:
q[p/xi] = q′′0 (p− p) +

∑n
j=1 q

′′
j pj

=
∑n

j=1 q
′′
j pj

for suitable polynomials q′′0 , . . . , q
′′
n. Therefore, q[p/xi] ∈ I .

For the reverse implication assume q[p/xi] ∈ I which means that q[p/xi] =∑n
j=1 qjpj for suitable polynomials qj . Substituting z for xi in this equation, there-

fore gives us q[s/xi] =
∑n

j=1 q
′
jsj for suitable polynomials q′j where s = p[z/xi] and

sj = pj [z/xi]. Now recall the identity (for k > 0):

xk
i − sk = gk · (xi − s) for gk =

k−1∑
h=0

xh
i s

k−1−h

and assume that q =
∑d

k=0 rkxk
i for polynomials rk ∈ Q[X\{xi}]. Then

q =
∑d

k=0 rk · (xk
i − sk) + q[s/xi]

=
∑d

k=1 rkgk · (xi − s) +
∑n

j=1 q
′
jsj

= q′0 · (xi − s) +
∑n

j=1 q
′
jsj for the polynomial q′0 =

∑d
k=1 rkgk .

Therefore, q ∈ 〈xi − s, s1, . . . , sn〉. Since q ∈ Q[X], the assertion follows. !"
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According to Lemma 1, all operations used in the constraint system F are effective.
Nonetheless, this does not in itself provide us with an analysis algorithm. The reason
is that the polynomial ring has infinite decreasing chains of ideals. And indeed, simple
programs can be constructed where fixpoint iteration will not terminate.

Example 1. Consider our simple example from Fig. 2. There, we obtain the ideal for
program point 1 as the infinite intersection:

F(1) = 〈z,y − 1〉 ∩
〈z− 1,y− x〉 ∩
〈z− 1− x,y − x2〉 ∩
〈z− 1− x− x2,y − x3〉 ∩
. . . �

Despite infinitely descending chains, the greatest solution of F has been determined
precisely by Rodriguez-Carbonell et al. [21] — but only for a sub-class of programs.
Rodriguez-Carbonell et al. consider simple loops whose bodies consist of a finite non-
deterministic choice between sequences of assignments satisfying additional restrictive
technical assumptions. No complete methods are known for significantly more general
classes of programs. Based on constraint system F , we nonetheless obtain an effective
analysis which infers some valid polynomial identities by applying widening for fix-
point acceleration [6]. This idea has been proposed, e.g., by Rodriguez-Carbonell and
Kapur [20] and Colon [4]. We will not pursue this idea here. Instead, we propose a
different approach.

4 Intraprocedural Analysis: Backward Propagation

The key idea of [12,14] is this: instead of propagating ideals of valid identities in a
forward direction, we start with a conjectured identity qt = 0 at some program point v
and compute weakest preconditions for this assertion by backwards propagation. The
conjecture is proven if and only if the weakest precondition at program entry start =
stMain is true. The assertion true, i.e., the empty conjunction is uniquely represented by
the ideal {0}. Note that it is decidable whether or not a polynomial ideal equals {0}.

Assignments and disequality guards now induce transformations which for every
postcondition, return the corresponding weakest precondition:

[[xi := p]]T q = 〈q[p/xi]〉
[[xi :=?]]T q = 〈q1, . . . , qm〉 where q =

∑m
j=0 qjx

j
i with qj ∈ Q[X\{xi}]

[[p �= 0]]T q = 〈p · q〉

Note that we have represented the disjunction p = 0∨q = 0 by p ·q = 0. Also, we have
represented conjunctions of equalities by the ideals generated by the respective poly-
nomials. The definitions of our transformers are readily extended to transformers for
ideals, i.e., conjunctions of identities. For a given target program point t and conjecture
qt = 0, we therefore can construct a constraint system B:
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B(t) ⊇ 〈qt〉
B(u) ⊇ [[xi := p]]T(B(v)) (u, v) labeled with xi := p
B(u) ⊇ [[xi :=?]]T(B(v)) (u, v) labeled with xi :=?
B(u) ⊇ [[p �= 0]]T(B(v)) (u, v) labeled with p �= 0

Since the basic operations are monotonic, the constraint system B has a unique least
solution in the lattice of ideals of Q[X]. Consider a single execution path π whose
effect is described by the partial polynomial transformation (q0, [q1, . . . , qk]). Then the
corresponding weakest precondition is given by:

[[π]]T p = 〈q0 · p[q1/x1, . . . , qk/xk]〉

The weakest precondition of p w.r.t. a set of execution paths can be described by the
ideal generated by the weakest preconditions for every execution path in the set sep-
arately. Since the basic operations in the constraint system B commute with arbitrary
least upper bounds, we once more apply standard coincidence theorems to conclude:

Theorem 2. Assume p is a polynomial program without procedures and t is a program
point of p. Assume the least solution of the constraint system B for a conjecture qt = 0
at t assigns the ideal I to program point start. Then, qt = 0 is valid at t iff I = {0}. !"
Using a representation of ideals through finite sets of generators, the applications of
weakest precondition transformers for edges can be effectively computed. A computa-
tion of the least solution of the constraint system B by standard fixpoint iteration leads
to ascending chains of ideals. Therefore, in order to obtain an effective algorithm, we
only must assure that ascending chains of ideals are ultimately stable. Due to Hilbert’s
basis theorem, this property indeed holds in polynomial rings over fields (as well as
over integral domains like Z). Therefore, the fixpoint characterization of Theorem 2
gives us an effective procedure for deciding whether or not a conjectured polynomial
identity is valid at some program point of a polynomial program.

Corollary 1. In a polynomial program without procedures, it can effectively be checked
whether or not a polynomial identity is valid at some target point. !"
Example 2. Consider our example program from Fig. 2. If we want to check the con-
jecture z · x− z− y + 1 = 0 for program point 1, we obtain:

B(2) ⊇ 〈(z · x− z− y + 1)[y · x/y]〉
= 〈z · x− z− y · x + 1〉

Since,
(z · x− z− y · x + 1)[z + y/z] = z · x− z− y + 1

the fixpoint is already reached for program points 1 and 2. Thus,

B(1) = 〈z · x− z− y + 1〉
B(2) = 〈z · x− z− y · x + 1〉

Moreover,
B(0) = 〈(z · x− z− y + 1)[0/z, 1/y]〉

= 〈0〉 = {0}
Therefore, the conjecture is proved. !"
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It seems that the algorithm of testing whether a certain given polynomial identity p0 = 0
is valid at some program point contains no clue on how to infer so far unknown valid
polynomial identities. This, however, is not quite true. We show now how to determine
all polynomial identities of some arbitrary given form that are valid at a given program
point of interest. The form of a polynomial is given by a selection of monomials that
may occur in the polynomial.

Let D ⊆ Nk
0 be a finite set of exponent tuples for the variables x1, . . . , xk. Then a

polynomial q is called a D-polynomial if it contains only monomials b · xi1
1 · . . . · xik

k ,
b ∈ Q, with (i1, . . . , ik) ∈ D, i.e., if it can be written as

q =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k

If, for instance, we choose D = {(i1, . . . , ik) | i1 + . . . + ik ≤ d} for a fixed maximal
degree d ∈ N, then the D-polynomials are all the polynomials up to degree d. Here the
degree of a polynomial is the maximal degree of a monomial occurring in q where the
degree of a monomial b · xi1

1 · . . . · xik

k , b ∈ Q, equals i1 + . . . + ik.
We introduce a new set of variables AD given by:

AD = {aσ | σ ∈ D} .

Then we introduce the generic D-polynomial as

qD =
∑

σ=(ik,...,ik)∈D

aσ · xi1
1 · . . . · xik

k .

The polynomial qD is an element of the polynomial ring Q[X ∪AD]. Note that every
concrete D-polynomial q ∈ Q[X] can be obtained from the generic D-polynomial
qD simply by substituting concrete values aσ ∈ Q, σ ∈ D, for the variables aσ . If
a : σ 	→ aσ and a : σ 	→ aσ , we write qD[a/a] for this substitution.

Instead of computing the weakest precondition of each D-polynomial q separately,
we may compute the weakest precondition of the single generic polynomial qD once
and for all and substitute the concrete coefficients aσ of the polynomials q into the
precondition of qD later. Indeed, we show in [14]:

Theorem 3. Assume p is a polynomial program without procedures and let BD(v), v
program point of p, be the least solution of the constraint system B for p with conjecture
qD at target t. Then q = qD[a/a] is valid at t iff q′[a/a] = 0 for all q′ ∈ BD(start). !"

Clearly, it suffices that q′[a/a] = 0 only for a set of generators of BD(start). Still, this
does not immediately give us an effective method of determining all suitable coefficient
vectors, since the precise set of solutions of arbitrary polynomial equation systems are
not computable. We observe, however, in [14]:

Lemma 2. Every ideal BD(u), u a program point, of the least solution of the abstract
constraint systemB for conjecture qD at some target node t is generated by a finite set G
of polynomials q where each variable aσ occurs only with degree at most 1. Moreover,
such a generator set can be effectively computed. !"
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Thus, the set of (coefficient maps) of D-polynomials which are valid at our target pro-
gram point t can be characterized as the set of solutions of a linear equation system. Such
equation systems can be algorithmically solved, i.e., finite representations of their sets
of solutions can be constructed explicitly, e.g., by Gaussian elimination. We conclude:

Theorem 4. For a polynomial program p without procedures and a program point t in
p, the set of all D-polynomials which are valid at t can be effectively computed. !"

As a side remark, we should mention that instead of working with the larger polynomial
ring Q[X∪AD], we could work with modules over the polynomial ring Q[X] consisting
of vectors of polynomials whose entries are indexed with σ ∈ D. The operations on
modules turn out to be practically much faster than corresponding operations on the
larger polynomial ring itself, see [18] for a practical implementation and preliminary
experimental results.

5 Interprocedural Analysis: Transition Invariants

The main question of precise interprocedural analysis is this: how can the effects of
procedure calls be finitely described? An interesting idea (essentially) due to Colon [4]
is to represent effects by polynomial transition invariants. This means that we introduce
a separate copy X′ = {x′

1, . . . ,x
′
k} of variables denoting the values of variables before

the execution. Then we use polynomials to express possible relationships between pre-
and post-states of the execution. Obviously, all such valid relationships again form an
ideal, now in the polynomial ring Q[X ∪X′].

The transformation ideals for assignments, non-deterministic assignments and dise-
quality guards are readily expressed by:

[[xi := p]]		 = 〈{xj − x′
j | j �= i} ∪ {xi − p[x′/x]}〉

[[xi :=?]]		 = 〈{xj − x′
j | j �= i}〉

[[p �= 0]]		 = 〈{p[x′/x] · (xj − x′
j) | j = 1, . . . , k}〉

In particular, the last definition means that either the guard is wrong before the transition
or the states before and after the transition are equal. The basic effects can be composed
to obtain the effects of larger program fragments by means of a composition operation
“◦”. Composition on transition invariants can be defined by:

I1 ◦ I2 = (I1[y/x′] ⊕ I2[y/x]) ∩Q[X ∪X′]

where a fresh set Y = {y1, . . . ,yk} is used to store the intermediate values between
the two transitions represented by I1 and I2 and the postfix operator [y/x] denotes re-
naming of variables in X with their corresponding copies in Y. Note that “◦” is defined
by means of well-known effective ideal operations. Using this operation, we can put up
a constraint system T for ideals of polynomial transition invariants of procedures:

T (v) ⊆ 〈xi − x′
i | i = 1, . . . , k〉 v is entry point

T (v) ⊆ [[xi := p]]		 ◦ T (u) (u, v) is labeled with xi := p
T (v) ⊆ [[xi :=?]]		 ◦ T (u) (u, v) is labeled with xi :=?
T (v) ⊆ [[p �= 0]]		 ◦ T (u) (u, v) is labeled with p �= 0
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0

1 4

2

3

y := 0

f()

y := y ∗ x x := x + 1

f() :Main :

Fig. 3. A simple program with procedures

0

1 4

3

y := y ∗ x x := x + 1y := 0

Main :

Fig. 4. The inlined version of the example program

T (v) ⊆ T (f) ◦ T (u) (u, v) calls f
T (f) ⊆ T (v) v exit point of f

Example 3. Consider the program from Fig. 3. We calculate:

T (f) = 〈x − x′,y − y′〉 ∩
〈x − x′ − 1,y − y′ · x′〉 ∩
〈x − x′ − 2,y − y′ · x′ · (x′ + 1)〉 ∩
. . .

= 〈0〉

Using this invariant for analyzing the procedure main, we only find the trivial transition
invariant 0. On the other hand, we may instead inline the procedure f as in Fig. 4. A
corresponding calculation of the transition invariant of main yields:

T (Main) = 〈x− x′,y〉 ∩
〈x− x′ − 1,y〉 ∩
〈x− x′ − 2,y〉 ∩
. . .

= 〈y〉

Thus for this analysis, inlining may gain precision. !"
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Clearly, using transition invariants incurs the same problem as forward propagation for
intraprocedural analysis, namely, that fixpoint iteration may result in infinite decreasing
chains of ideals. Our minimal example exhibited two more problems, namely that the
composition operation is not continuous, i.e., does not commute with greatest lower
bounds of descending chains in the second argument, and also that a less compositional
analysis through inlining may infer more valid transition invariants.

To be fair here, it should be noted that Colon did not propose to use ideals for
representing transition invariants. Colon instead considered pseudo-ideals, i.e., ideals
where polynomials are considered only up to a given degree bound. This kind of further
abstraction solves the problems of infinite decreasing chains as well as missing continu-
ity — at the expense, though, of further loss in precision. Colon’s approach, for example,
fails to find a nontrivial invariant in the example program from Fig. 3 for Main.

6 Interprocedural Analysis: Backward Propagation

Due to the apparent weaknesses of the approach through polynomials as transition in-
variants, we propose to represent effects of procedures by pre-conditions of generic
polynomials. Procedure calls are then dealt with through instantiation of generic coeffi-
cients. Thus, effects are still described by ideals — over a larger set of variables (or by
modules; see the discussion at the end of Section 4). Suppose we have chosen some fi-
nite set D ⊆ Nk

0 of exponent tuples and assume that the polynomial p = pD[a/a] is the
D-polynomial that is obtained from the generic D-polynomial through instantiation of
the generic coefficients with a. Assume further that the effect of some procedure call is
given by the ideal I ⊆ Q[X ∪AD] = 〈q1, . . . , qm〉. Then we determine a precondition
of p = 0 w.r.t. to the call by:

I (p) = 〈q1[a/a], . . . , qm[a/a]〉

This definition is readily extended to ideals I ′ generated by D-polynomials. There is no
guarantee, though, that all ideals that occur at the target program points v of call edges
(u, v) will be generated by D-polynomials. In fact, simple examples can be constructed
where no uniform set D of exponent tuples can be given. Therefore, we additionally
propose to use an abstraction operator W that splits polynomials appearing as post-
condition of procedure calls which are not D-polynomials.

We choose a maximal degree dj for each program variable xj and let

D = {(i1, . . . , ik) | ij ≤ dj for i = 1, . . . , k}

The abstraction operator W takes generators of an ideal I and maps them to generators
of a (possibly) larger ideal W(I) which is generated by D-polynomials. In order to
construct such an ideal, we need a heuristics which decomposes an arbitrary polynomial
q into a linear combination of D-polynomials q1, . . . , qm :

q = r1q1 + . . . + rmqm (1)

We could, for example, decompose q according to the first variable:

q = q′0 + xd1+1
1 · q′1 + . . . + xs(d1+1)

1 · q′s
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where each q′i contains powers of x1 only up to degree d1 and repeat this decomposition
with the polynomials q′i for the remaining variables. Given a decomposition (1), we have
q ∈ 〈q1, . . . , qm〉. Therefore, we can replace every generator of I by D-polynomials in
order to obtain an ideal W(I) with the desired properties.

We use the new application operator as well as the abstraction operator W to gener-
alize our constraint system B to a constraint system E for the effects of procedures:

E(u) ⊇ 〈qD〉 u is exit point
E(u) ⊇ [[xi := p]]T(E(v)) (u, v) labeled with xi := p
E(u) ⊇ [[xi :=?]]T(E(v)) (u, v) labeled with xi :=?
E(u) ⊇ [[p �= 0]]T(E(v)) (u, v) labeled with p �= 0
E(u) ⊇ E(f)(W(E(v))) (u, v) calls f
E(f) ⊇ E(u) u entry point of f

Example 4. Consider again the example program from Fig. 3. Let us choose d = 1
where p1 = ay + bx + c. Then we calculate for f :

E(f) = 〈ay + bx + c〉 ⊕
〈ayx + b(x + 1) + c〉 ⊕
〈ayx(x + 1) + b(x + 2) + c〉 ⊕
〈ayx(x + 1)(x + 2) + b(x + 3) + c〉 ⊕
. . .

= 〈ay,b, c〉

This description tells us that for a linear identity ay+bx+c = 0 to be valid after a call
to f , the coefficients b and c necessarily must equal 0. Moreover, either coefficient a
equals 0 (implying that the whole identity is trivial) or y = 0. Indeed, this is the optimal
description of the behavior of f with polynomials. !"

The effects of procedures as approximated by constraint system E can be used to check
a polynomial conjecture qt at a given target node t along the lines of constraint system
B. We only have to extend it by extra constraints dealing with function calls. Thus, we
put up the following constraint system:

R(t) ⊇ 〈qt〉
R(u) ⊇ [[xi := p]]T(R(v)) (u, v) labeled with xi := p
R(u) ⊇ [[xi :=?]]T(R(v)) (u, v) labeled with xi :=?
R(u) ⊇ [[p �= 0]]T(R(v)) (u, v) labeled with p �= 0
R(u) ⊇ E(f)(W(R(v))) (u, v) calls f
R(f) ⊇ R(u) u entry point of f
R(u) ⊇ R(f) (u, ) calls f

This constraint system again has a least solution which can be computed by standard
fixpoint iteration. Summarizing, we obtain the following theorem:

Theorem 5. Assume p is a polynomial program with procedures. Assume further that
we assert a conjecture qt at program point t.
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Safety: 1. For every procedure f , the ideal E(f) represents a precondition of the
identity pD = 0 after the call.

2. If the ideal R(Main) equals {0}, then the conjecture qt is valid at t.
Completeness: If during fixpoint computation, all ideals at target program points v of

call edges (u, v) are represented by D-polynomials as generators, the conjecture
is valid only if the ideal R(Main) equals {0}.

The safety-part of Theorem 5 tells us that our analysis will never assure a wrong
conjecture but may fail to certify a conjecture although it is valid. According to the
completeness-part, however, the analysis algorithm provides slightly more information:
if no approximation steps are necessary at procedure calls, the analysis is precise. For
simplicity, we have formulated Theorem 5 in such a way that it only speaks about
checking conjectures. In order to infer valid polynomial identities up to a specified de-
gree bound, we again can proceed analogous to the intraprocedural case by considering
a generic postcondition in constraint system R.

7 Equality Guards

In this section, we discuss methods for dealing with equality guards p = 0. Recall,
that in presence of equality guards, the question whether a variable is constantly 0 at
a program point or not is undecidable even in absence of procedures and with affine
assignments only. Thus, we cannot hope for complete methods here. Still, in practical
contexts, equality guards are a major source of information about values of variables.
Consider, e.g., the control flow graph from Fig. 5. Then, according to the equality guard,
we definitely know that x = 10 whenever program point 2 is reached. In order to deal
with equality guards, we thus extend forward analysis by the constraints:

F(v) ⊆ [[p = 0]]	(F(u)) (u, v) labeled with p = 0

where the effect of an equality guard is given by:

[[p = 0]]	 I = I ⊕ 〈p〉

0

1

2

x := 0

x := x + 1x = 10

Fig. 5. A simple for-loop
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This formalizes our intuition that after the guard, we additionally know that p = 0
holds. Such an approximate treatment of equality guards is common in forward pro-
gram analysis and already proposed by Karr [11]. A similar extension is also possible
for inferring transition invariants. The new effect is monotonic. However, it is, no longer
distributive, i.e., it does not commute with intersections. Due to monotonicity, the ex-
tended constraint systemsF as well as T still have greatest solutions which provide safe
approximations of the sets of all valid invariants and transition invariants in presence of
equality guards, respectively.

Example 5. Consider the program from Fig. 5. For program point 1 we have:

F(1) = 〈x〉 ∩ 〈x − 1〉 ∩ 〈x− 2〉 ∩ . . .
= {0}

Accordingly, we find for program point 2,

F(2) = {0} ⊕ 〈x− 10〉
= 〈x− 10〉

Thus, given the lower bound {0} for the infinite decreasing chain of program point 1,
we arrive at the desired result for program point 2. !"
It would be nice if also backward analysis could be extended with some approximate
method for equality guards. Our idea for such an extension is based on Lagrange mul-
tipliers. Recall that the weakest precondition for validity of q = 0 after a guard p = 0
is given by:

(p = 0) ⇒ (q = 0)

which, for every λ, is implied by:

q + λ · p = 0

The value λ is called a Lagrange-multiplier and can be arbitrarily chosen. We remark
that a related technique has been proposed in [5] for inferring parametric program in-
variants. Thus, we define:

[[p = 0]]T(q) = 〈q + p · λ〉 (2)

where a different formal multiplier λ is chosen for every occurrence of an equality
guard. Similar to the treatment of generic postconditions, the parameters λ will occur
linearly in a suitably chosen set of generators for the precondition ideal at program start
where they can be chosen appropriately.

Example 6. Again consider the program from Fig. 5 and assume that we are interested
in identities up to degree 1 at the exit point of the program. Thus we start with the
generic polynomial ax + b = 0 at node 2. This gives us for program point 1:

B1(1) = 〈(a + λ) · x + b− 10λ〉 ⊕
〈(a + λ) · x + a + λ + b− 10λ〉

= 〈a + λ,b− 10λ〉

Choosing λ = −a, we obtain b = −10a. Therefore all multiples of the polynomial
x− 10 are valid identities for program point 2. !"
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Instead of using a single variable λ as a Lagrange multipliers we could also use an entire
polynomial. This means that we use in (2) a generic polynomial qD (for some set D of
exponent tuples) instead of the variable λ for each equality guard p = 0:

[[p = 0]]T(q) = 〈q + p · qDλ〉

where we use new variables AD = {aσ | σ ∈ D} in qD for each equality guard. Now,
all the variables in AD can be adjusted in the computed weakest precondition. This may
lead to more precise results – at the price of a more expensive analysis.

8 Discussion

We have summarized forward and backward iteration methods for inferring valid poly-
nomial identities. In absence of procedure calls, we arrived at a rather clear picture: we
exhibited a finite constraint system which precisely characterizes the set of all valid
polynomial identities in a polynomial program. Due to possibly infinite decreasing
chains of ideals, it is currently open whether the greatest solution of this constraint
system can effectively be computed. On the other hand, backward analysis based on
weakest precondition computations relies on increasing chains of ideals — allowing us
to decide whether any given conjecture at a program point is valid. Also, this enables
us to effectively find all valid polynomial identities up to a given degree.

In presence of procedure calls, the picture is less clear. The natural extension of the
intraprocedural forward propagation suggests to use ideals of polynomial transition in-
variants to describe effects of procedures. The composition operation for such ideals,
though, turned out to be non-continuous. Also, our example shows that using poly-
nomial transition invariants may not be precise, i.e., may miss some valid polynomial
identities. Therefore, we considered a generalization of backward analysis which de-
scribes effects of procedures by means of preconditions of generic polynomials. Here,
we obtained a precise finite characterization of identities of some given form only if
in the polynomials occurring during the analysis at procedure exits the degrees of the
variables are bounded. Note that this approach can be considered as a smooth general-
ization of the methods in [15] for affine programs where all occurring polynomials are
known to have bounded degree.

It still remains open whether precise techniques can be found for lifting the degree
bound in the general intraprocedural case. It is also unclear how to deal with recursive
programs precisely if the degrees of weakest preconditions grow arbitrarily.
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using Gröbner Bases. In ACM Symp. on Principles of Programming Languages (POPL),
pages 318–329, 2004.



External String Sorting:
Faster and Cache-Oblivious

Rolf Fagerberg1, Anna Pagh2, and Rasmus Pagh2

1 University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
rolf@imada.sdu.dk

2 IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark
{annao, pagh}@itu.dk

Abstract. We give a randomized algorithm for sorting strings in ex-
ternal memory. For K binary strings comprising N words in total, our
algorithm finds the sorted order and the longest common prefix sequence
of the strings using O(K

B
logM/B( K

M
) log(N

K
) + N

B
) I/Os. This bound is

never worse than O(K
B

logM/B( K
M

) log logM/B( K
M

) + N
B

) I/Os, and im-
proves on the (deterministic) algorithm of Arge et al. (On sorting strings
in external memory, STOC ’97). The error probability of the algorithm
can be chosen as O(N−c) for any positive constant c. The algorithm
even works in the cache-oblivious model under the tall cache assump-
tion, i.e,, assuming M > B1+ε for some ε > 0. An implication of our
result is improved construction algorithms for external memory string
dictionaries.

1 Introduction

Data sets consisting partly or entirely of string data are common: Most database
applications have strings as one of the data types used, and in some areas, such as
bioinformatics, web retrieval, and word processing, string data is predominant.
Additionally, strings form a general and fundamental data model of computer
science, containing e.g. integers and multi-dimensional data as special cases.

In internal memory, sorting of strings is well understood: When the alphabet
is comparison based, sorting K strings of total length N takes Θ(K log K + N)
time (see e.g. [8]). If the alphabet is the integers, then on a word-RAM the time
is Θ(SortInt(K) + N), where SortInt(K) is the time to sort K integers [3].

In external memory the situation is much less clear. Some upper bounds have
been given [7], along with matching lower bounds in restricted models of compu-
tation. As noted in [7], the natural upper bound to hope for is O(K

B logM/B( K
M )+

N
B ) I/Os, which is the sorting bound for K single characters plus the complexity
of scanning the input. In this paper we show how to compute (using randomiza-
tion) the sorted order in a number of I/Os that nearly matches this bound.

1.1 Models of Computation

Computers contain a hierarchy of memory levels, with large differences in ac-
cess time. This makes the time for a memory access depend heavily on what is

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 68–79, 2006.
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currently the innermost level containing the data accessed. In algorithm anal-
ysis, the standard RAM (or von Neumann) model is unable to capture this,
and external memory models were introduced to better model these effects. The
model most commonly used for analyzing external memory algorithms is the
two-level I/O-model [1], also called the External Memory model or the Disk
Access model. The I/O-model approximates the memory hierarchy by modeling
two levels, with the inner level having size M , the outer level having infinite
size, and transfers between the levels taking place in blocks of B consecutive
elements. The cost measure of an algorithm is the number of memory transfers,
or I/Os, it makes.

The cache-oblivious model, introduced by Frigo et al. [17], elegantly gener-
alizes the I/O-model to a multi-level memory model by a simple measure: the
algorithm is not allowed to know the value of B and M . More precisely, a cache-
oblivious algorithm is an algorithm formulated in the RAM model, but analyzed
in the I/O-model, with an analysis valid for any value of B and M . Cache re-
placement is assumed to take place automatically by an optimal off-line cache
replacement strategy. Since the analysis holds for any B and M , it holds for all
levels simultaneously. See [17] for the full details of the cache-oblivious model.

Over the last two decades, a large body of results for the I/O-model has been
produced, covering most areas of algorithmics. For the newer cache-oblivious
model, introduced in 1999, already a sizable number of results exist. One of the
fundamental facts in the I/O-model is that comparison-based sorting of N el-
ements takes Θ(Sort(N)) I/Os [1], where Sort(N) = N

B logM/B
N
M . Also in the

cache-oblivious model, sorting can be carried out in Θ(Sort(N)) I/Os, if one
makes the so-called tall cache assumption M ≥ B1+ε [10, 17]. This assump-
tion has been shown to be necessary [11]. Another basic fact in the I/O-model
is that permutation takes Θ(min{Sort(N), N}), assuming that elements are
indivisible [1].

The subject of this paper is sorting strings in external memory models. Below,
we discuss existing results in this area. For a general overview of results for
external memory, refer to the recent surveys [4, 21, 23, 24] for the I/O-model,
and [6, 9, 13, 21] for the cache-oblivious model.

1.2 Previous Work

Arge et al. [7] were the first to study string sorting in external memory, introduc-
ing the size N of the input and the number K of strings as separate parameters.
Note that the problem is at least as hard as sorting K words1, and also requires
at least N/B I/Os for reading the input. In internal memory, i.e., for B = 1,
there are algorithms that meet this lower bound [3, 8]. However, it remains an
open problem whether this is possible in external memory for general B.

Arge et al. give several algorithms obeying various indivisibility restrictions.
The complexity of these algorithms depends on the number K1 of strings of less
than one block in length, and the number K2 of strings of at least one block

1 See Section 1.3 below for the model of computation.
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in length. The total length of short and long strings is denoted N1 and N2,
respectively. The fastest algorithm runs in

O(min(K1 logM K1,
N1
B logM/B(N1

M )) + K2 logM K2 + N
B ) I/Os.

Under the tall cache assumption this simplifies to

O(N1
B logM K1 + K2 logM K2 + N2

B ) I/Os.

The first term is the complexity of sorting the short strings using external merge
sort. The second term states a logarithmic (base M) I/O cost per long string.
The third term is the complexity of reading the long strings. Each of the three
terms may be the dominant one. Assume for simplicity that all K strings have the
same length. If they are short, the first term obviously dominates. If their length
is between B and B logM K, the second term dominates. For longer strings, the
third term dominates, i.e., sorting can be done in scanning complexity. Note
that the upper bound is furthest from the lower bound for strings with a length
around one block.

Arge et al. also consider “practical algorithms” whose complexity depends on
the alphabet size. However, because of the implicit assumption that the alphabet
has size NΘ(1) (it is assumed that a character and a pointer uses the same space,
within a constant factor), none of these algorithms are better than the above
from a theoretical perspective.

Note that prior to our work there are no direct results on cache-oblivious
string sorting, except the bound O(Sort(N)), which can be derived from suffix
tree/array construction algorithms [14, 19].

1.3 Our Results

Before we state our results, we discuss the model and notation. First of all, we
assume the input to be binary strings. This is no restriction in practice, since
any finite alphabet can be encoded as binary strings such that replacing each
character with its corresponding string preserves the ordering of strings. How-
ever, to facilitate a clear comparison with previous results, we will not count the
length of strings in bits, but rather in words of Θ(log N) bits. This is consis-
tent with [7] which assumes that a character and a pointer uses the same space,
within a constant factor. We will also assume that all strings have length at least
one word, which again is consistent with [7]. We will adopt the notation from [7]:

K = # of strings to sort,
N = total # of words in the K strings,
M = # of words fitting in internal memory,
B = # of words per disk block,

where M < N and 1 < B ≤ M/2. We assume that the input sequence x1, . . . , xK

is given in a form such that it can be read in O(N/B) I/Os.
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Secondly, we distinguish between standard value-sorting, which produces a
sequence with the input items in sorted order, and the problem of finding the
sorting permutation, i.e., producing a sequence of references to the items in
sorted order (this is equivalent to what is sometimes referred to as rank-sorting,
i.e., computing the rank of all input elements). For strings, the latter is often
enough, as is e.g. the case for string dictionaries. The sorting permutation σ of the
input sequence is the permutation such that σ(i) = j if xj has rank i in the sorted
order. In this definition, the references to strings are their ranks in input order.
If one instead as references wants pointers to the memory locations of the first
characters of the strings, conversion between the two representations can be done
in O(Sort(K)+N/B) I/Os by sorting and scanning. The latter representation is
commonly called the suffix array in the case where the strings are the suffixes of
some base string. Let lcp(xi, xj) be the longest common prefix of xi and xj . By
the lcp sequence we denote the numbers LCP(i) = |lcp(xσ(i), xσ(i+1))|, i.e., the
lengths of the longest common prefixes between pairs of strings consecutive in
sorted order. For the application of string dictionary construction, we will need
this.

Our main result is a Monte Carlo type randomized, cache-oblivious algorithm
which computes the sorting permutation and the lcp sequence. The output is
the sequences σ(1), . . . , σ(K) and LCP(1), . . . ,LCP(K − 1).

Theorem 1. Let c and ε be arbitrary positive constants, and assume that
M > B1+ε. Then there is a randomized, cache-oblivious algorithm that, given
K strings of N words in total, computes the sorting permutation and the lcp
sequence in O(K

B logM/B( K
M ) log(N

K ) + N
B ) I/Os, such that the result is correct

with probability 1−O(N−c).

Note that the I/O bound above coincides with Sort(K) for strings of length O(1)
words, and is never worse than O(Sort(K) log logM/B( K

M ) + N
B ). (If N

K exceeds
(logM/B( K

M ))O(1) then the N/B term will be dominant.) Thus, we have optimal
dependence on N and are merely a doubly logarithmic factor away from Sort(K).
We prove Theorem 1 in Section 2.

The String B-tree [15] is an external memory string dictionary, which allows
(prefix) searches over a set of K strings in O(logB K+P/B) I/Os, where P is the
length of the search string. Constructing the String B-tree over a set of strings is
as hard as finding the sorting permutation. Conversely, from the sorting permu-
tation and the lcp sequence, the String B-tree over the strings can easily be built.
Recently, a cache-oblivious string dictionary with the same searching complexity
as String B-Trees has been given [12], and the same statement about construc-
tion applies to this structure. Hence, one important corollary of Theorem 1 is
the following, shown in Section 3:

Corollary 1. Let c and ε be arbitrary positive constants, and assume that
M > B1+ε. Then there is a randomized, cache-oblivious algorithm that, given
K strings of N words in total, constructs a String B-tree or a cache-oblivious
string dictionary [12] over the strings in O(K

B logM/B( K
M ) log(N

K ) + N
B ) I/Os,

such that the result is correct with probability 1−O(N−c).
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Again, this bound is never worse than O(Sort(K) log logM/B( K
M ) + N

B ). If one
wants not only the sorting sequence, but also the strings to appear in memory
in sorted order, they must be permuted. In Section 4, we discuss methods for
permuting strings based on knowledge of the sorting sequence. The methods
are straightforward, but nevertheless show that also for the standard value-
sorting problem (i.e. including permuting the strings), our main result leads to
asymptotical improvements in complexity, albeit more modest than for finding
the permutation sequence.

1.4 Other Related Work

Sorting algorithms for the word RAM model have developed a lot in the last
decade. The new RAM sorting algorithms take advantage of the bit represen-
tation of the strings or integers to be sorted, in order to beat the Ω(K log K)
lower bound for sorting K items using comparisons. The currently fastest sorting
algorithm for K words runs in time O(K

√
log log K), expected [18]. This implies

an external memory algorithm running in the same I/O bound, which is better
than O(Sort(K)) if K is sufficiently large (K = Mω(B) is necessary).

Andersson and Nilsson [3] have shown how to reduce sorting of K strings of
length N to sorting of O(K) words, in O(N) expected time. This means that
the relation between string sorting and word sorting on a word RAM is very
well understood. The currently fastest word sorting algorithm gives a bound
of O(K

√
log log K + N) expected time. Again, using this directly on external

memory gives a bound better than other string sorting bounds (including those
in the present paper) for certain extreme instances (very large sets of not too
long strings).

If the length w of the machine words to be sorted is sufficiently large in
terms of K, there exists an expected linear time word RAM sorting algorithm.
Specifically, if w > (log K)2+ε, for some constant ε > 0, K words can be sorted in
expected O(K) time [2]. To understand the approach of the algorithm it is useful
to think of the words as binary strings of length w. The key ingredient of the
algorithm is a randomized signature technique that creates a set of “signature”
strings having, with high probability, essentially the same trie structure (up to
ordering of children of nodes) as the original set of strings. If the word length is
large, the signatures can be made considerably shorter than the original strings,
and after a constant number of recursive steps they can be sorted in O(K) time.
To sort the original strings, one essentially sorts the parts of the original strings
that correspond to branching nodes in the trie of signatures.

Our algorithm is inspired by this, and uses the same basic approach as just
described. However, the details of applying the technique to external memory
strings are quite different. For example, it is easier for us to take advantage of the
reduction in string size. This means that the best choice in our case is to use the
signatures to decrease the string lengths by a constant factor at each recursive
step, as opposed to the logarithmic factor used in [2]. Also, in the cache-oblivious
model, it is not clear when to stop the recursion.
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Using shorter strings to represent the essential information about longer ones
was proposed already in [20]. Indeed, similar to the randomized signature scheme
discussed above, the idea of Karp-Miller-Rosenberg labeling [20] is to divide the
strings into substrings, and replace each substring with a shorter string. In par-
ticular, for each distinct substring one needs a unique shorter string to represent
it. This can even be done such that the lexicographical order is preserved. The
technique of [20] avoids randomization, but requires in each recursive step the
sorting of the substrings that are to be replaced, which takes O(Sort(N)) and
hence will not improve on the known external memory upper bounds. The “prac-
tical algorithms” in [7] use this technique, but as stated above, these algorithms
are asymptotically inferior to the best algorithm in [7].

2 Proof of Main Theorem

In this section we will prove Theorem 1. First we describe in Section 2.1 a
recursive algorithm that finds the structure of the unordered trie of strings in
the set S that is to be sorted. The algorithm is randomized and produces the
correct trie with high probability. Each step of the recursion reduces the total
length of the strings by a constant factor using a signature method. Section 2.2
then describes how to get from the unordered trie to the ordered trie, from
which the sorting permutation and the lcp sequence can easily be found. The
crux of the complexity bound is that at each recursive step, as well as at the
final ordering step, only the (at most K) branching characters of the current trie
are sorted, and the current set of strings is scanned. The use of randomization
(hashing) allows the shorter strings of the next recursive step to be computed
in scanning complexity (as opposed to the Karp-Miller-Rosenberg method), but
also means that there is no relation between the ordering of the strings from
different recursive levels. However, for unordered tries, equality of prefixes is all
that matters.

Our algorithm considers the input as a sequence of strings x1, . . . , xK over
an alphabet of size Θ(N2+c), by dividing the binary strings into chunks of
&(2 + c) log N' bits, where c is the positive constant of Theorem 1. Note that
this means that the total length of all strings is O(N) characters. Dividing into
chunks may slightly increase the size of the strings, because the length is effec-
tively rounded up to the next multiple of the chunk size. However, the increase is
at most a constant factor. To simplify the description of our algorithm we make
sure that S is prefix free, i.e., that no string in S is a prefix of another string in
S. To ensure this we append to x1, . . . , xK special characters $1, . . . ,$K that do
not appear in the original strings. Extending the alphabet with K new charac-
ters may increase the representation size of each character by one bit, which is
negligible.

2.1 Signature Reduction

We will now describe a recursive, cache-oblivious algorithm for finding the struc-
ture of the blind trie of the strings in S, i.e., the trie with all unary nodes removed
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Fig. 1. We consider the set of strings S = {baaa, baab, babc, acbb, acba}. Left is
T (S′), where each character is a hash function value of two characters from S. Right
is T (S), which can be computed from T (S′) by considering each branching node in
T (S′) and its branching characters, each of which corresponds to a unique string of
two characters from S.

(blind tries [15] are also known as compressed tries or Patricia tries [22]). Recall
that for now, we are only concerned with computing the unordered blind trie
T (S). We represent each node p as follows (where for brevity, a node is identified
with the string represented by the path from the root to the node):

– A unique ID, which is a number in {1, . . . , 2K}.
– The ID of its parent node q, which is the longest proper prefix of p in S, if

any.
– The number i of a string xi ∈ S having p as a prefix (a representative string).
– Its branching character, i.e., the first character in p after q, and its position

in p.

Our algorithm handles strings in S of length 1 separately, in order to be able
to not recurse on these strings. Because no string is a prefix of another string, the
strings of length 1 are leaf children of the root in T (S). Thus we may henceforth
assume that S contains only the strings of length � ≥ 2, and add the strings of
length 1 to the trie at the end.

The sequence S′ is derived from S by hashing pairs of consecutive characters
to a single character, using a function chosen at random from a universal family
of hash functions [16]. A string of � characters in S will correspond to a string of
&�/2' characters in S′. Since all strings have length at least 2, the total length
of the strings in S′ is at most 2

3N , as desired. The set S′ can be computed in a
single scan of S, using O(N/B) I/Os. We denote the strings of S′ by x′

1, . . . , x
′
K

such that they correspond one by one to the strings x1, . . . , xK of S, in this
order. The trie T (S′) is computed recursively.

If there are no hash function collisions (i.e., no pair of distinct characters
with the same hash function value), the longest common prefix of any two strings
x′
i1 , x

′
i2 ∈ S′ is of length �|lcp(xi1 , xi2)|/2�. Intuitively, this means that T (S′) has

the same structure as T (S), only “coarser”. To get T (S) from T (S′) we basically
need to consider each node and its children, and introduce new branching nodes
in this part of the trie by considering the (pairs of) characters of S corresponding
to the branching characters. Figure 1 shows an example.

Assuming that the hash function has no collisions, T (S) can be computed
from T (S′) as follows:
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1. Sort the nodes of T (S′) according to the numbers of their representative
strings in S′, and secondly for each representative string according to the
position of the branching character. Note that this can be done in a single
sorting step (using a cache-oblivious sorting algorithm).

2. By scanning the strings of S in parallel with this sorted list, we can annotate
each node p, having representative string xi, with the two characters cp,1cp,2

from xi that correspond to its branching character (their position can be
computed from the position of the branching character in x′

i).
3. Sort the annotated nodes of T (S′) according to the IDs of their parents, and

for each parent ID according to cp,1 (using a single sorting step).
4. We can now construct the nodes of T (S) by scanning this sorted list. Con-

sider the children of a node p, occurring together in the list. There are two
cases:
(a) If all children have the same cp,1 we can basically copy the structure

of T (S′). That is, we keep a node for each child p, with the same ID,
parent ID, and representative string number as before, and with cp,2 as
branching character (its position can be computed as above).

(b) If there are children having different cp,1 we introduce a new node for
each group of at least two children with the same cp,1 (getting new IDs
using a global internal memory counter). The branching character for
such a node is cp,1, the parent ID is that of p, and any representative
string of a child can be used. Again, we keep a node for each child
p with the same ID as in T (S′). If no other child has the same cp,1

the node keeps its parent ID, with branching character cp,1. If two or
more children have the same cp,1, their parent is the new node with
branching character cp,1, and their branching characters are their cp,2

characters.

Lemma 1. The above algorithm uses O(N/B) blocks of external space and
O(K

B logM/B( K
M ) log(N

K ) + N/B) I/Os. It computes T (S) correctly with prob-
ability 1−O(N−c),

Proof sketch. Since the length of the strings is geometrically decreasing during
the recursion, the total length of all strings considered in the recursion is O(N).
This means that the space usage on external memory is O(N/B) blocks, and
that the number of pairs of characters hashed is O(N). In particular, since
the collision probability for any pair of inputs to the universal hash function is
N−2−c, we have that with probability 1−O(N−c) there are no two distinct pairs
of characters that map to the same character (i.e., no hash function collisions).
In this case, note that all sets of strings in the recursion are prefix free, as
assumed by the algorithm. The argument that the trie is correct if there is no
hash function collision is based on the fact that the longest common prefixes in
S correspond to longest common prefixes of half the length (rounded down) in
S′. Details will be given in the full version of this paper.

We now analyze the I/O complexity. At the ith level of the recursion the total
length of the strings is bounded by (2

3 )iN . In particular, for i > log3/2(N/K)
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the maximum possible number of strings at each recursive level also starts to
decrease geometrically (since the number of strings is bounded by the total length
of the strings). Finally note that when the problem size reaches M , the rest of
the recursion is completed in O(M/B) I/Os.

Let j = �log3/2(N/K)�. We can bound the asymptotic number of I/Os used
as follows:

j∑
i=0

(
K
B logM/B

(
K
M

)
+

2
3

i
N

B

)
+

∞∑
i=j+1

(
2
3

i−j
K

B logM/B

(
2
3

i−j
K

M

)
+

2
3

i
N

B

)

=
(

K
B logM/B( K

M ) log(N
K ) + N

B

)
+
(

K
B logM/B( K

M ) + N
B

)
.

The first term is the dominant one, and identical to the bound claimed. !"

2.2 Full Algorithm

We are now ready to describe our string sorting algorithm in its entirety. We
start by finding T (S) using the algorithm of Section 2.1. What remains to find
the sorting permutation is to order the children of each node according to their
branching character and traverse the leaves from left to right. We do this by a
reduction to list ranking, proceeding as follows:

1. Sort the nodes according to parent ID, and for each parent ID according to
branching character, in a single sorting step.

2. We now construct a graph (which is a directed path) having two vertices,
vin and vout, for each vertex v of T (S).
(a) For a node with ID v having d (ordered) children with IDs v1, . . . , vd we

construct the edges (vin, vin
1 ), (vout

1 , vin
2 ), . . . , (vout

d−1, v
in
d ), (vout

d , vout). We
annotate each “horizontal” edge (vout

i , vin
i+1) by the length of the lcp of

the representative strings of vi and vi+1 (considered as bit strings). This
number can be computed from the branching characters of vi and vi+1

and their positions.
(b) For a leaf node v we construct the edge (vin, vout), and annotate it with

the number of its representative string.
3. Run the optimal cache-oblivious list ranking algorithm of [5] on the above

graph to get the edges in the order they appear on the path.
4. Scan the list, and report the numbers annotated on the edges corresponding

to the leaves in T (S) (giving the sorting permutation), and the numbers on
the horizontal edges (giving the lcp sequence).

The work in this part of the algorithm is dominated by the sorting and list
ranking steps, which run in O(K

B logM/B( K
M ) + N/B) I/Os. Again, we postpone

the (straightforward) correctness argument to the full version of this paper. This
concludes the proof sketch of Theorem 1.
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3 Construction of External String Dictionaries

In this section, we prove Corollary 1. A String B-tree [15] is a form of B-tree
over pointers to the strings. Each B-tree node contains pointers to Θ(B) strings,
as well as a blind trie over these strings to guide the search through the node.
The bottom level of the tree contains pointers (in sorted order) to all strings.
These pointers are divided into groups of Θ(B) consecutive pointers, and a node
is built on each group. For each node, the left-most and the right-most pointer
are copied to the next level, and these constitute the set of pointers for this next
level. Iterating this process defines all levels of the tree.

Building a blind trie on a set of strings is straightforward given the sequence
of pointers to the strings in sorted order and the associated lcp sequence: insert
the pointers as leaves of the trie in left-to-right order, while maintaining the
right-most path of the trie in a stack. The insertion of a new leaf entails popping
from the stack until the first node on the right-most path is met which has a
string depth at most the length of the longest common prefix of the new leaf
and its predecessor. The new leaf can now be inserted, possibly breaking an edge
and creating a new internal node. The splitting characters of the two edges of
the internal node can be read from the lcp sequence. The new internal node and
the leaf is then pushed onto their stack.

For analysis, observe that once a node is popped from the stack, it leaves the
right-most path. Hence, each node of the trie is pushed and popped once, for a
total of O(S) stack operations, where S is the number of strings represented by
the blind trie. Since a stack implemented as an array is I/O-efficient by nature,
the number of I/Os for building a blind trie is O(S/B).

Hence, the number of I/Os for building the lowest level of the String B-tree is
O(K/B). Finding the pointers in sorted order and their corresponding lcp array
for the next level is straightforward, using that the lcp value between any pairs of
strings is the minimum of the lcp values for all intervening neighboring (in sorted
order) pairs of strings. Hence, the lcp value of the left-most and right-most leaf
in the trie in a String B-tree node can be found by scanning the relevant part
of the lcp array. As the sizes of each level decreases by a factor Θ(B), building
the entire String B-tree is dominated by the building of its lowest level.

For the cache-oblivious string dictionary [12], it is shown in [12] how to take
a blind trie (given as an edge list) for a set of K strings, and build a cache-
oblivious search structure for it, using Sort(K) I/Os. The construction algorithm
works in the cache-oblivious model. Since an array-based stack is I/O efficient
also in the cache-oblivious model, the blind trie can be built cache-obliviously
by the method above. The ensuing search structure provides a cache-oblivious
dictionary over the strings.

4 Bounds for Permuting Strings

In this section, we discuss methods for permuting the strings into sorted or-
der in memory, based on knowledge of the sorting sequence. Our methods are
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straightforward, but nevertheless show that also for the standard sorting prob-
lem (i.e. including permuting the strings), our main result leads to asymptotical
improvements (albeit modest) in complexity.

In the cache-aware case, knowledge of B allows us to follow Arge et al. [7],
and divide the strings into short and long strings. We use their terminology
K1,K2, N1, N2 described in Section 1.2. The long strings we permute by direct
placement of the strings, based on preprocessing in O(Sort(K) + N/B) I/Os
which calculates the position of each string. The short strings we permute by
sorting, using the best algorithm from [7] for short strings. For simplicity of
expression, we assume a tall cache. Then the complexity of our randomized
sorting algorithm, followed by the permutation procedure above, is

O(K
B logM (K) log(N

K ) + N
B + N1

B logM (K1) + K2) .

The bound holds for any choice of length threshold between short and long
strings. For the threshold equal to B, it is easy to see that the bound improves on
the bound of [7] for many parameter sets with long strings. For specific inputs,
other thresholds may actually be better.

Turning to the cache-oblivious situation, we can also, on instances with long
strings, improve the only existing bound of O(Sort(N)). For simplicity assume
a tall cache assumption of M ≥ B2. If N ≤ K2, we permute by sorting the
words of the strings in O(Sort(N)) as usual. Else, we place each string directly
(using preprocessing as above). If M > N , everything is internal. Otherwise,
N/K ≥

√
N ≥

√
M ≥ B, so N/B ≥ K, and we can afford one random I/O per

string placed, leading to permutation in O(Sort(K) + N/B).
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Abstract. Cartesian trees have found numerous applications due to a
peculiar rigid structure whose properties can be exploited in various
ways. This rigidness, however, is also an obstacle when updating the
structure since it can lead to a very unbalanced shape and so up to
now most applications either assumed a random distribution of the keys
or considered only the static case. In this paper we present a frame-
work for efficiently maintaining a Cartesian tree under insertions and
weak deletions in O(log n) amortized time per operation, using O(n)
space. We show that the amortized cost of updating a Cartesian tree is
O(1 + H (T )/n) where H (T ) = O(n log n) is an entropy-related mea-
sure for the partial order encoded by T . We also show how to exploit this
property by implementing an algorithm which performs these updates in
O(log n) time per operation. No poly-logarithmic update bounds were
previously known.

1 Introduction

Cartesian trees have been introduced 25 years ago by Vuillemin [1]. Due to their
unique properties (cf. [2]), they have found numerous applications in priority
queue implementations, randomized searching [3], range searching, range max-
ima queries [2], least common ancestor queries [4], integer sorting, and memory
management, to name a few.

A Cartesian tree T is a binary tree storing a set of n points (w.l.o.g. ordered
pairs over an unbounded universe with distinct coordinates) according to the
following recursive rules: The root stores the point 〈x̄, ȳ〉 with the maximum y-
value (priority) in the set. The x-value of the root, x̄, induces a partition of the
remaining elements into sets L = {〈x, y〉 : x < x̄} and R = {〈x, y〉 : x > x̄}. The
roots of the Cartesian trees obtained from L and R are the left and right children
of the root 〈x̄, ȳ〉, respectively (see Figure 1). As follows from this definition, the
order on the x-coordinates of the points matches the inorder of the nodes in T
and the order on the y-coordinates of the points complies with the heap order
on the nodes in T . The set of points uniquely determines the Cartesian tree.
This “rigidness” is exploited in applications, but leaves no freedom for balancing
operations because the height of the tree can even be Θ(n) if the distribution of
points is skewed.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 80–91, 2006.
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〈1, 2〉〈1, 2〉

〈2, 22〉〈2, 22〉

〈3, 9〉〈3, 9〉

〈4, 18〉〈4, 18〉

〈5, 12〉〈5, 12〉

〈6, 17〉〈6, 17〉
〈7, 15〉〈7, 15〉

〈8, 13〉〈8, 13〉
〈9, 11〉〈9, 11〉

〈10, 7〉〈10, 7〉

〈11, 1〉〈11, 1〉

〈12, 3〉〈12, 3〉

(

〈14, 5〉〈14, 5〉
〈15, 4〉〈15, 4〉

〈16, 8〉〈16, 8〉

〈17, 10〉〈17, 10〉

〈18, 19〉〈18, 19〉

〈19, 21〉〈19, 21〉

〈20, 16〉〈20, 16〉

〈21, 20〉〈21, 20〉

〈22, 6〉〈22, 6〉

No change
Shrinking
Deleted/inserted

Fig. 1. An example of a Cartesian tree and its companion interval tree before and after
the insertion of 〈13, 14〉 with affected edges indicated

Cartesian trees are also known as treaps [3] when the priorities (y values)
of the nodes are assigned randomly with a uniform distribution and the tree is
used as a binary search tree (for the x values). The random distribution of y
values guarantees good average dynamic behavior of the tree as the height is
expected to stay O(log n) in this case. It is important to note at this point that
the logarithmic expected update time is indeed achieved only under a random
uniform distribution (with x values independent from y). In fact, a thorough
study of the average behavior of Cartesian trees [5] shows that with most “real
life” distributions the expected time is O(

√
n ). Figure 2 illustrates the typical

worst-case behavior that yields Θ(n) time for an insertion or a deletion. As far
as we know, the amortized complexity of these update operations is currently
unknown, except for the fact that a Cartesian tree can be built from scratch
in O(n logn) time, or even in O(n) time when the points are already given in
sorted order [2].

x̄x̄u0 C u0 CL
u1u1

u2u2
u3 u3 CR

u4u4
u5u5

u6u6
u7u7

u8u8
u9u9

u10u10
u11u11

u12u12
u13u13

Fig. 2. The outcome of split(C, x̄) (or merge(CL, CR) if viewed from right to left). Note
that the path revealed in the illustration can be proportional in length to the overall tree
size in which case an insert or delete operation affects Θ(n) edges of a tree of size n.
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We motivate our study by observing that Cartesian trees are difficult to update
and no poly-logarithmic update bounds are currently known. (The alternative so-
lutions proposed, such as priority search trees [6], have weaker topological prop-
erties in the Cartesian plane.) Hence, the use of Cartesian trees has been confined
to the static case. Along with the least common ancestor (lca), Cartesian trees
are useful for answering the constant-time range maximum queries (rmq), which
are a generalization of priority-queue queries in which the find-min operation is
restricted to ranges of values. The implementation of lca itself in [4] uses Carte-
sian trees for a reduction from general trees to rmq, while the dynamic version
of lca [7] does not use Cartesian trees. Hopefully, the efficient dynamization of
the Cartesian trees can make a first significant step in finding a suitable array of
applications in a dynamic setting (once have it, use it), such as solving the dy-
namic version of the constant-time rmq (in logarithmic update time). This can
stimulate further research, such as extending the dynamic constant-time lca to
treat cut and link operations among trees (in logarithmic update time).

We study Cartesian trees in a dynamic setting, under insertions and deletions
of arbitrary points. Our algorithm provides the actual structure of the Cartesian
tree T at all times rather than maintaining some equivalent representation of it.
It does not cache the updates so the structure of the tree can be queried between
every operation (which makes it significantly more powerful that the O(n log n)
algorithm which first constructs the tree and then allows it to be queried, but
not updated). We obtain an amortized update cost of O(log n) time.

We start by analyzing the behavior of T in a combinatorial setting. We con-
sider the restructuring cost of n insertions into an initially empty tree resulting in
tree T , that is the total number of structure elements which change due to these
insertions. We show that this cost is O(1 + H (T )), where H (T ) = O(n log n)
is an entropy-related measure for the partial order encoded by T . We then show
that the cost of locating the elements to update (the searching cost) can be
reduced to O(log n) amortized time with the use of a companion interval tree,
which is based on the interval tree [8] implemented using a weight-balanced
B-tree [9]. We take advantage of the special properties of the our problem and the
results of our analysis to provide algorithms that match the amortized bounds.

Weak deletions (logically marking nodes as deleted and periodically rebuild-
ing T ) can be amortized when coupled with insertions, at the price of having a
constant fraction of nodes in T marked as deleted. We can maintain T under
insertions and weak deletions in O(log n) amortized time per operation, using
O(n) space. Handling deletions is quite standard and will be explained in detail
in the full version of the paper.

1.1 Dynamic Operations on Cartesian Trees

We identify T with the set of points it stores in its nodes and hence write
〈x, y〉 ∈ T for a point in T . The main dynamic operations on a Cartesian tree
are those of inserting and deleting points. We review these operations as they
will be the basis for the analysis in the rest of the paper. It is useful to see them
as based on more basic operations, such as splitting and merging Cartesian trees.
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Merge and deletion operations can be viewed as the exact opposites of the split
and insert operations, so we omit their description.

Split. We define split(C, x̄) for a Cartesian tree C and a value x̄ as the operation
returning CL = {〈x, y〉 ∈ C : x < x̄} and CR = {〈x, y〉 ∈ C : x > x̄}. Note
that the vertical line at x̄ cuts some edges in C (see Figure 2). These edges are
each one below the other. They are nested on the x-axis and their inclinations
are alternating as they become smaller (by inclination we mean rising or falling
along the y-axis). The nesting follows directly from the definition of the Cartesian
tree. The alternating inclinations are due to the fact all the edges are part of
one path and nodes along any path must have a decreasing y value (due to the
heap condition).

We classify the edges in C according to their role in the split operation, as this
will be important to our analysis. We assume that CL and CR are not empty,
otherwise the case is trivial. First of all, edges not crossed by the vertical line
at x̄ are not affected by the split. The lowest edge affected by the split can be
considered deleted, since it does not have a counterpart in either CL or CR (note
that CL together with CR have one less edge than C). All the remaining edges
in C can be mapped into edges in CL or CR so we can view them as altered by
the split. The higher endpoint (with greater y value) of each such edge remains
the same and only the lower endpoint changes. If the higher endpoint belongs
to CL then the lower endpoint moves from CR to CL and vice versa. Note that
such a change always shrinks the projection of an edge on the x-axis. We will
therefore refer to this type of change as shrinking an edge and call such an edge
shrunk. Note that all the affected edges were nested before the split, but after
the split each two overlap by at most one endpoint.

Insertion. Let us consider T ′ = T ∪ {〈x̄, ȳ〉}, where T is a Cartesian tree and
〈x̄, ȳ〉 is a new point to insert into T . If ȳ > y for each 〈x, y〉 ∈ T , then the new
point becomes the root of T ′ and its two children are TL and TR, respectively,
obtained by invoking split(T, x̄). In all other cases 〈x̄, ȳ〉 has a parent in T ′. By
definition, this parent can be located in the following way. Let 〈xL, yL〉 ∈ T be
the rightmost point such that xL < x̄ and yL > ȳ and let 〈xR, yR〉 ∈ T be the
leftmost point such that xR > x̄ and yR > ȳ (at least one of these two points
must exist). The parent of 〈x̄, ȳ〉 in T ′ is the lower of these two points. Let C be
the right subtree of 〈xL, yL〉 in T in the case 〈xL, yL〉 is the parent of 〈x̄, ȳ〉 in
T and let it be the left subtree of 〈xR, yR〉 in the other case. Then CL and CR

obtained by invoking split(C, x̄) become the children of 〈x̄, ȳ〉 in T ′.

Fact 1. The insertion (deletion) of a point causes O(1) edges in the tree to be
inserted or deleted and causes k edges to shrink (stretch), where 0 ≤ k ≤ n.

2 Bounding the Number of Edge Modifications

We now focus on the number of edge modifications as expressed by Fact 1. In
this section, we consider insertions only, so we are interested in bounding the
number of inserted, deleted and shrunk edges for a sequence of n insertions of
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points into an initially empty Cartesian tree. Since the number of shrunk edges
for each insertion is k = O(n), it may appear that n insertions cause Θ(n2)
such edge modifications. However, we make the following observation which will
eventually lead to a bound which is lower: Inserting a point into a Cartesian tree
does not require performing comparisons on the y-coordinates of the nodes in
the Cartesian tree (except pertaining to the node being inserted). On the other
hand, reversing this operation by deleting the same node does require a number
of comparisons proportional to the number of affected edges. This suggests that
information is lost as a result of an insertion and that entropy can serve as a
measure of a tree’s potential for costly (affecting many edges) insertions.

We now formalize this intuition. A Cartesian tree T induces a partial order on
its elements: 〈x, y〉 ≺T 〈x′, y′〉 if and only if 〈x, y〉 is a descendent of 〈x′, y′〉. The
intuition behind this definition is that if 〈x, y〉 descends from 〈x′, y′〉 then we
know that y < y′ from the heap condition of the tree. In all other cases we can
not guess the relative order of y and y′ just by looking at the position of these
two nodes in the tree. Note that even if y values are drawn from a total order,
the order ≺T is only partial1, so we can use any y-ordering of points satisfying
≺T without violating the heap condition of the tree.

A linear extension of a partially ordered set 〈P,≺P 〉 is a permutation of its
elements, p1, p2, . . . , pn, such that if pi ≺P pj is defined, then 1 ≤ i < j ≤ n.
We will say that an ordering is valid for T if it is a linear extension of ≺T . Let
L (T ) denote the number of linear extensions of the partial order ≺T induced by
T . We introduce the notion of the missing entropy of T as H (T ) = log L (T ),
which is the information needed to sort the set of y values in T starting only
from the information inferred from the shape of the tree.2 Since the number of
linear extensions cannot exceed the number of permutations, we trivially have
H (T ) ≤ logn! = O(n log n) from order entropy and Stirling’s approximation.
However, H (T ) can even be zero if the partial order is a total order (this occurs
when the Cartesian tree is a single path). We exploit the notion of missing
entropy for bounding the number of shrunk edges.

Theorem 1. Inserting n points into an initially empty Cartesian tree results in
O(n) edge insertions and deletions and O(n + H (T )) edges shrinking, where T
is the resulting Cartesian tree.

In order to demonstrate Theorem 1, we use the missing entropy of the Cartesian
tree as the potential function in our amortized analysis. We measure the change
in the number of linear extensions of T after an insertion T ′ = T ∪{〈x̄, ȳ〉}. This
change can be measured by the ratio L (T ′)/L (T ), but it is more convenient
to consider its logarithm, which is the change in our potential, H (T ′)−H (T ).
We consider an insertion T ′ = T ∪{〈x̄, ȳ〉} that splits a subtree C of the current
Cartesian tree T into CL and CR as discussed in Section 1.1. By Fact 1, this
operation results in O(1) inserted and deleted edges in T , plus k shrunk edges.
We claim that
1 Unlike the y-ordering, the x-ordering induced by the shape of the tree is always total.
2 All logarithms are to the base of 2.
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k = O(H (T ′)−H (T )). (1)

Equation (1) holds asymptotically and its proof follows from Lemma 2 below:
Let s = �(k + 1)/2�, and take the logarithms obtaining log L (T ) + log

(
k+1
s

)
≤

log L (T ′). Since k = O(log
(
k+1
s

)
) = O(log L (T ′) − log L (T )), we obtain the

claimed bound in (1).

Lemma 1. Every linear extension of T is also a linear extension of T ′.

Proof. Linear extensions of T do not contain the newly inserted point 〈x̄, ȳ〉, so
we only consider relations between points of T . We need to show that for any
two nodes a, d ∈ T , we have d ≺T ′ a ⇒ d ≺T a. This can be easily shown by
considering all possible locations of a and d with respect to the subtrees CL and
CR resulting from splitting C.

Lemma 2. For each linear extension of T , there are at least
(
k+1
s

)
unique linear

extensions of T ′, where s = �k + 1)/2�. Hence, L (T )×
(
k+1
s

)
≤ L (T ′).

Proof. If k = 0 then the proof follows directly from Lemma 1, so we will consider
the case where k > 0. In this case CL and CR are not empty and the split of
C causes k edges to shrink. Let us first assume that these k edges form a path
whose endpoints alternate between CL and CR, where k = 2s− 1 for an integer
s > 0. Let uL

1 , u
L
2 , . . . , u

L
s be the endpoints in CL, and uR

1 , u
R
2 , . . . , u

R
s be the

endpoints in CR. Without loss of generality, suppose that the path of shrunk
edges inside T is p = 〈uL

1 , u
R
1 , u

L
2 , u

R
2 , . . . , u

L
s , u

R
s 〉. After the split, p becomes two

paths pL = 〈uL
1 , u

L
2 , . . . , u

L
s 〉 and pR = 〈uR

1 , u
R
2 , . . . , u

R
s 〉 in T ′.

Now let us consider any linear extension L ′ of≺T . Notice that (u′ < u′′) ∈ L ′

for any pair of nodes u′, u′′ ∈ p such that u′ precedes u′′ in p. In particular, L ′

reflects the fact that for any pair of nodes uL
i ∈ pL and uR

j ∈ pR, either uL
i ≺T uR

j

or uR
j ≺T uL

i holds. Now, L ′ is also an extension of ≺T ′ by Lemma 1. However,
neither uL

i ≺T ′ uR
j nor uL

j ≺T ′ uR
i holds for uL

i ∈ pL and uR
j ∈ pR. We use this

property for producing further unique extensions from L ′, since L ′ enforces
just one of the

(
k+1
s

)
distinct ways of merging the nodes in pL and pR. Note that

all these orderings are valid for T ′ since they only change the relative order of the
nodes in pL and pR (for which T ′ does not define any order). In other words, for
each linear extension L ′ of ≺T we can produce

(
k+1
s

)
distinct valid extensions

of ≺T ′ by shuffling the order of elements belonging to p while maintaining the
relative order of elements in pL and the relative order of elements in pR.

The case in which the path is of length k = 2s for an integer s > 0 can
be treated analogously by decomposing it into two paths of s and s + 1 nodes,
respectively. In the general case, the shrunk edges are interspersed along a path
of T that is longer than p (e.g. Figure 2). In this case, the number of endpoints
is even larger and so is the number of distinct extensions, since there are more
distinct ways to merge these endpoints in T ′. Hence, L (T ′) ≥ L (T ) ×

(
k+1
s

)
holds in the general case.

We now complete the proof of Theorem 1. Consider an arbitrary sequence of
n insertions into an initially empty Cartesian tree, denoted T0, where |T0| = 0.
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Let T1, T2, . . . , Tn denote the sequence of resulting Cartesian trees, where Ti is
formed from Ti−1 by the ith insert operation in the sequence, which shrinks ki

edges by Fact 1, for 1 ≤ i ≤ n. Summing up the numbers of all the shrunk edges,
we split the total sum according to the constant k0 related to equation (1), as

n∑
i=1

ki =
∑

i:ki≤k0

ki +
∑

i:ki>k0

ki. (2)

We denote the indexes i such that ki > k0 in (2) by i1, i2, · · · , ir, where i1 < i2 <
· · · < ir. Note that kij = O(H (Tij )−H (Tij−1)) = O(H (Tij )−H (Tij−1)) by
equation (1) and Lemma 1, for 1 ≤ j ≤ r. Applying these observations to the
last term in (2) where i = i1, i2, . . . , ir, we obtain the following bound for (2):

∑
i:ki>k0

ki = O

⎛⎝ r∑
j=1

(
H (Tij )−H (Tij−1 )

)⎞⎠ = O(H (Tn)). (3)

Hence, we obtain a total bound of O(n+H (Tn)) for equation (2). Consequently,
for each insertion of a point in the Cartesian tree, there are O(1) inserted and
deleted edges and an amortized number of O(1+H (Tn)/n) shrunk edges. Since
H (Tn) = O(n log n), we have H (Tn)/n = O(log n), but it can also be signifi-
cantly lower if the missing entropy of Tn is small.

3 Implementing the Insertions

In this section we show how to exploit the amortized upper bound on the number
of edge modifications obtained in Section 2 to achieve the efficient updating of
a Cartesian tree. Let T denote the current Cartesian tree and let k denote the
number of edges that are shrunk during the insertion T ′ = T ∪ {〈x̄, ȳ〉} (see
Fact 1). We recall that the cost of updating the elements of the Cartesian tree
modified by such an insertion is O(1 + k) and that this can be amortized to
O(1+H (T )/n) (Theorem 1). The searching cost (the cost to locate the elements
to update), on the other hand, does not amortize as is, since the tree can have
linear height. In order to deal with this, we reduce the maintenance of the edges
of T to a special instance of the dynamic maintenance of intervals. We do this by
mapping each edge e = (〈x, y〉, 〈x′, y′〉) of T into its companion interval, (x, x′)
(where (x, x′) denotes the set of coordinates x̂ such that x < x̂ < x′), and storing
the companion intervals in an interval tree [8].

Searching, insertion, deletion and shrinking of T ’s edges can be rephrased in
terms of equivalent operations on their companion intervals (see Figure 1). In
the rest of this section, we will exploit the special properties of the companion
intervals which result from the fact that they are not arbitrary but are derived
from the Cartesian tree. We are able to reduce the searching cost to O(log n+k)
time by a constrained stabbing query on the intervals. We obtain a restructuring
cost of O(log n + k) amortized time by performing the O(1) insertions and the
deletions in O(log n) time and each edge shrink operation in O(1) amortized
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time on the corresponding intervals. Note that the restructuring cost for the
Cartesian tree alone is still O(1 + k). The rest is for the maintenance of the
companion intervals, which also need to be updated.

3.1 The Companion Interval Tree

Our companion interval tree, W , is implemented using Arge and Vitter’s weight-
balanced B-tree [9]. We actually need a simpler version, without the leaf param-
eter. Let the weight w(u) of a node u be the number of its descendent leaves.
A weight-balanced B-tree W with branching parameter a > 4 satisfies the fol-
lowing constraints: (1) All the leaves have the same depth and are on level 0.
(2) An internal node u on level � has weight (1/2)a < w(u) < 2a. (3) The
root has at least two children and weight less than 2ah, where h is its level. We
fix a = O(1) in our application, so W has height h = O(loga |W |) = O(log n)
and each node (except maybe for the root) has between a/4 and 4a children.
We denote the number of children of u by deg(u). The n leaves of W store
elements in sorted order, one element per leaf. Each internal node u contains
d = deg(u) − 1 boundaries b1, b2, . . . , bd chosen from the elements stored in its
descendent leaves. In particular, the first child leads to all elements e ≤ b1, and
the last child to all elements e > bd, while for 2 ≤ i ≤ d, the ith child contains
all elements bi−1 < e ≤ bi in its descendent leaves. Among others, W satisfies
an interesting property:

Lemma 3 (Arge and Vitter [9]). After splitting a node u on level � into two
nodes, u′ and u′′, at least a/2 insertions have to be performed below u′ (or u′′)
before it splits again. After creating a new root in a tree with n elements, at least
3n insertions are performed before it splits again.

A weight-balanced B-tree W with n elements supports leaf insertions and dele-
tions in O(log n) time per operation. Each operation only involves the nodes on
the path from the leaf to the root and their children. We do not need to remove
amortization and to split nodes lazily in W , since our bounds are amortized
anyway. We refer the reader to [9] for more details on weight-balanced B-trees.

Let I(T ) denote the set of companion intervals for the current Cartesian
tree T . The leaves of W store the endpoints of the intervals in I(T ). We store
companion intervals in the nodes of the tree according to standard interval tree
rules. Specifically, each node u contains d secondary lists, L1(u), L2(u), . . . ,
Ld(u), where d = deg(u) − 1. For 1 ≤ i ≤ d, list Li(u) is associated with the
boundary bi and stores all intervals (x, x′) ∈ I that contain bi (i.e., x < bi < x′),
but are not stored in an ancestor of u. Since any two intervals in I(T ) are either
disjoint or one nested within the other (see Fact 2), every internal node u ∈ W
stores a number of intervals that is bounded by O(w(u)), which is crucial to
amortize the costs by Lemma 3. Note that the same interval can be stored in
up to d secondary lists of the same node, but not in different nodes, hence, the
space occupancy remains linear. We keep these O(1) copies of each interval in a
thread. We can derive the following fact from the properties of the edges in the
Cartesian tree.
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Fact 2. For any two intervals in the companion tree, if two intervals overlap,
they are nested. Moreover, the edge corresponding to the larger interval is above
the edge corresponding to the smaller interval in the Cartesian tree. In particular,
for any node u ∈ W , the intervals in Li(u) ⊆ I(T ) are all nested within each
other. The order according to which they are nested corresponds to the order of
their left endpoints, to the (reverse) order of their right endpoints and also to
the vertical y order of their corresponding edges in T .

We maintain each list Li(u) of intervals sorted according to the order stated in
Fact 2. Each list supports the following operations, where ni = |Li(u)| is the
number of items in it:

– Insert the smallest item into Li(u) in O(1), and any item in O(log ni) time.
– Delete any item from Li(u) in O(1) time, provided that we have a pointer

to its location in Li(u).
– Perform a (one-dimensional) range query reporting the f items (in sorted

order) between two values in O(log ni + f) time. In the case of listing the
first items, this takes O(1 + f) time.

– Rebuild Li(u) from scratch in O(ni) time, provided that items are given in
sorted order.

We implement Li(u) using a balanced search tree with constant update time [10],
in which we maintain a thread of the items linked in sorted order.3 It is worth
giving some detail on how to maintain the secondary lists when a node u ∈ W
splits into u′ and u′′ (see Lemma 3). Let bi be the median boundary in u. Node u′

gets boundaries b1, . . . , bi−1 while u′′ gets bi+1, . . . , bd, along with their secondary
lists and child pointers. The boundary bi is inserted into u’s parent. Note that
no interval in Li(u) can belong to a secondary list in u’s parent by definition.
What remains is to use the threads of the copies of the intervals in Li(u) for
removing these copies from secondary lists in u′ and u′′. But this takes O(ni)
time, which is O(1) amortized by Lemma 3.

We will now see how to use the companion interval tree W to implement the
insertion of a new point into a Cartesian tree yielding T ′ = T ∪ {〈x̄, ȳ〉}. As it
should be clear at this point, we maintain both T and its auxiliary W . Following
the insertion scheme described in Section 1.1, we should perform the following
actions :

1. Find the node 〈x̂, ŷ〉 in T that will become the parent of 〈x̄, ȳ〉 in T ′.4

2. Find the edges to shrink in T (and the one to delete) as a result of the split,
which is part of the insert operation.

3. For each of the O(1) edges inserted or removed in the Cartesian tree, insert
or remove its companion interval from W .

3 Note that we do not need to use the finger search functionality in [10], which re-
quires non-constant update time, as we can easily keep the minimum dynamically.
In practice, we can implement Li(u) as a skip list.

4 This action only needs to be performed if the new element does not become the root
of T ′ (something that can be easily verified).
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4. For each companion interval of the k edges identified in action 2, perform
the appropriate shrink of an interval in W .

Action 3 is a standard operation that takes O(log n) time in W , so in the rest
of this section we focus on the remaining.5 We first show how to find the edges
to shrink (action 2).

Fact 3. The edges affected by the split caused by the insertion of 〈x̄, ȳ〉 into T
are the edges in T which cross the vertical line at x̄ below ȳ. Their companion
intervals can be identified by a stabbing query x̄ with the additional constraint
that the y values of the corresponding edges are below ȳ.

Suppose that the search for x̄ in W from the root visits uh, uh−1, . . . , u1, u0,
where u ∈W is the node on level �. Let S denote the set of the k intervals to be
identified by the constrained stabbing query. If for some 1 ≤ j ≤ h, a list Li(uj)
in the node uj contains intervals crossing the line x̄, but not contained in S due
to the constraint on the y values, then no list Li′(u) in node u above node uj

(� > j) can contain intervals in S. Moreover, Li(uj)∩S form a contiguous range
within Li(uj).

As a result of Fact 3, the implementation of action 2 is reduced to the efficient
implementation of the constrained stabbing query. Let us recall that a regular,
unconstrained, stabbing query traverses a path from the root to the leaf accord-
ing to the query value x̄ and the intervals reported from each considered list
always form a contiguous range at the beginning of the list, which allows their
efficient extraction. Due to Fact 3 we are able to perform the constrained ver-
sion of the stabbing query while maintaining the O(log n+k) time complexity of
the operation. The constrained query is performed bottom-up and at each node
it checks if the edge corresponding to the first interval on the list satisfies the
constraint of being below ȳ (O(1) time). This allows us to locate node uj from
Fact 3. The query behaves like a an unconstrained stabbing query before reach-
ing uj and terminates afterwards. For uj itself it performs a one-dimensional
range query on Li(uj) which takes O(log |Li(uj)|+ f) time.

We are left with the problem of locating the node 〈x̂, ŷ〉 in T which will become
the parent of the new node 〈x̄, ȳ〉 in T ′ (action 1).

Fact 4. Let e = (〈xe, ye〉, 〈x′
e, y

′
e〉) be the lowest edge such that xe < x̄ < x′

e and
ye, y

′
e > ȳ. If e exists, then 〈x̂, ŷ〉 is located either on the right downward path

which starts from point 〈xe, ye〉 if ye < y′e, or on the left downward path which
starts from point 〈x′

e, y
′
e〉 if y′e < ye. If e does not exist then 〈x̂, ŷ〉 is located on

either the left or right downward path which starts from the root. In all cases, ŷ
is the minimum satisfying the condition ŷ > ȳ.

5 Note that a shrinking operation (action 4) cannot be implemented in the trivial
way by a deletion and an insertion, since this would give rise to an extra factor of
O(log n), hence O(H (T )/n × log n) = O(log2 n) per each point inserted into T and
this we want to avoid, so we have to provide an implementation which exploits the
special properties of the shrinking phenomenon.
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Fact 4 follows from the insertion procedure described in Section 1.1. We exploit
it to locate the sought parent node. We defer the details of the procedure to the
full version of the paper. The main observation behind it is that due to Fact 4
we can limit the search in the Cartesian tree to a monotonous (along both axis)
path of disjoint intervals. Therefore, the search in the companion tree can be
performed along a single path and in such a way that only the first intervals in
the lists at each node are considered. That way action 1 can be performed in
O(log n) total time.

We are left with the implementation of action 4. We can observe that the
shrinking of edges involves some reattachments at their endpoints, while the
endpoints themselves stay fixed. Reconnecting the Cartesian tree in O(1 + k)
time having located the appropriate edges is just an implementation detail, so
we focus on maintaining the companion intervals in W under multiple shrinking
operations. We need the crucial properties below to perform this task efficiently.

Fact 5. Let (x, x′) ∈ I(T ) be an interval which shrinks and becomes (x, x′′),
where x < x′′ < x′.6 Let u ∈ W be the node whose secondary list(s) contain(s)
interval (x, x′). The shrinking of (x, x′) does not introduce any new endpoints to
be stored in W (a leaf of W already stores x′′). Moreover, if (x, x′′) is relocated
to another node, v, then v is a descendent of u and (x, x′′) becomes the first
interval in the suitable secondary list(s) of v.

Fact 5 guarantees that no restructuring of the tree shape of W is needed because
of a shrinking, so we only need to relocate (x, x′) into O(1) secondary lists of W
as it shrinks. It also guarantees that this relocation moves the interval downward
and requires just O(1) time per node. Consequently, the relocating algorithm is
as follows. We consider each node u on the path uh, uh−1, . . . , u1, u0 identifying
the edges to shrink. For each shrinking interval we execute the following steps:

1. Let (x, x′) be the interval shrinking.6 For each secondary list Li(u) that
contains (x, x′), let bi be the boundary associated with the list: if x′′ < bi,
remove the interval from the list; otherwise leave the intervals as is.

2. If at least one copy of (x, x′′) remains in the secondary lists of u, stop
processing the interval.

3. Otherwise, find the descendent v of u, which is the new location of (x, x′′).
Insert (x, x′′) into the secondary lists of v as needed, and create a thread of
these copies.

The correctness of the method follows from Fact 5. As for the complexity, each
relocation may cost O(log n) time, but we can show that the amortized cost
of the relocations in W is in fact O(n log n) due to the fact that the intervals
can only be relocated downward in the companion tree and so the total journey
of each interval is bound by the height of the tree. This amortized analysis is
tricky, because we must also consider that nodes of W may split, so the formal
6 Notice that one endpoint always remains unchanged due to shrinking. Here we as-

sume without loss of generality that it is the left endpoint. An analogous result holds
when the right endpoint remains unchanged and the shrunk interval is (x′′, x′).
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argument will be detailed in the full version. It is based on two types of credits for
each interval e. The interval e is assigned O(h) downward credits when it is first
inserted into W , where h is the current height of W . Another type, called floating
credits, are assigned to e by the split operations occurring in W according to
Lemma 3. Initially, e has zero floating credits. We maintain the invariant that
at any given time the interval e has at least � − �min floating credits and �min
downward credits, where � is the level of the node u currently containing e in
some of its secondary lists and �min is the deepest (minimum) level reached by
e during the lifetime of W (� ≥ �min). The intuition behind maintaining this
invariant is that if a split pushes e one level up, then it assigns e one more
floating credit for relocating e one level down again in the future. Downward
credits cannot be recharged but they are sufficient to reach new levels �′ < �min

below the ones reached before in W by e. Hence, at any time e has at least �
total credits needed to reach the leaves of W .

Theorem 2. Given a Cartesian tree T , we can maintain it under a sequence
of n insertions of points using a modified weight balanced B-tree W as an aux-
iliary data structure, with an amortized cost of O(log n) time per insertion.
The amortized cost of restructuring T is O(1 + H (T )/n) per insertion, where
H (T ) = O(n log n) is the missing entropy of T .

Acknowledgments. The authors wish to thank Marco Pellegrini for some in-
teresting discussions on Cartesian trees and for pointing out reference [5].
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Abstract. A new method for constructing minimum-redundancy prefix
codes is described. This method does not build a Huffman tree; instead
it uses a property of optimal codes to find the codeword length of each
weight. The running time of the algorithm is shown to be O(nk), where
n is the number of weights and k is the number of different codeword
lengths. When the given sequence of weights is already sorted, it is shown
that the codes can be constructed using O(log2k−1 n) comparisons, which
is sub-linear if the value of k is small.

1 Introduction

Minimum-redundancy coding plays an important role in data compression appli-
cations [9]. Minimum-redundancy prefix codes give the best possible compression
of a finite text when we use one static code for each symbol of the alphabet. This
encoding is extensively used in various fields of computer science, such as picture
compression, data transmission, etc. Therefore, the methods used for calculat-
ing sets of minimum-redundancy prefix codes that correspond to sets of input
symbol weights are of great interest [1,4,6].

The minimum-redundancy prefix code problem is to determine, for a given
list W = [w1, . . . , wn] of n positive symbol weights, a list L = [l1, . . . , ln] of n cor-
responding integer codeword lengths such that

∑n
i=1 2−li = 1 (Kraft equality),

and
∑n

i=1 wili is minimized. Once we have the codeword lengths corresponding
to a given list of weights, constructing a corresponding prefix code can be easily
done in linear time using standard techniques.

Finding a minimum-redundancy code for W = [w1, . . . , wn] is equivalent to
finding a binary tree with minimum-weight external path length

∑n
i=1 w(xi)l(xi)

among all binary trees with leaves x1, . . . , xn, where w(xi) = wi and l(xi) =
li is the level of xi in the corresponding tree. Hence, if we define a leaf as a
weighted node, the minimum-redundancy prefix code problem can be defined as
the problem of constructing an optimal binary tree for a given list of leaves.

Based on a greedy approach, Huffman algorithm [3] constructs specific optimal
trees, which are referred to as Huffman trees. Huffman algorithm starts with a
list H containing n leaves. In the general step, the algorithm selects the two
� The two authors are on sabbatical from Alexandria University of Egypt.
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nodes with the smallest weights in the current list of nodes H and removes them
from the list. Next, the removed nodes become children of a new internal node,
which is inserted in H. To this internal node is assigned a weight that is equal
to the sum of the weights of its children. The general step repeats until there
is only one node in H, the root of the Huffman tree. The internal nodes of a
Huffman tree are thereby assigned values throughout the algorithm. The value of
an internal node is the sum of the weights of the leaves of its subtree. Huffman
algorithm requires O(n logn) time and linear space. Van Leeuwen [8] showed
that the time complexity of Huffman algorithm can be reduced to O(n) if the
input list is already sorted.

Throughout the paper, we exchange the use of the terms leaves and weights.
When mentioning a node of a tree, we mean that it is either a leaf or an internal
node. The levels of the tree that are further from the root are considered higher;
the root has level 0. We use the symbol k as the number of different codeword
lengths, i.e. k is the number of levels that have leaves in the corresponding tree.

A distribution-sensitive algorithm is an algorithm whose running time relies
on how the distribution of the input affects the output [5,7]. In this paper, we
give a distribution-sensitive algorithm for constructing minimum-redundancy
prefix codes. Our algorithm runs in O(nk), achieving a better bound than the
O(n log n) bound of the other known algorithms when k = o(log n).

The paper is organized as follows. In the next section, we give a property
of optimal trees corresponding to prefix codes, on which our construction al-
gorithm relies. In Section 3, we give the basic algorithm and prove its correct-
ness. We show in Section 4 how to implement the basic algorithm to ensure the
distribution-sensitive behavior; the bound on the running time we achieve in this
section is exponential with respect to k. In Section 5, we improve our algorithm,
using a technique that is similar in flavor to dynamic programming, to achieve
the O(nk) bound. We conclude the paper in Section 6.

2 The Exclusion Property

Consider a binary tree T ∗ that corresponds to a list of n weights [w1, . . . , wn]
and has the following properties:

1. The n leaves of T ∗ correspond to the given n weights.
2. The value of a node equals the sum of the weights of the leaves of its subtree.
3. For every level of T ∗, let τ1, τ2, . . . be the nodes of that level in non-decreasing

order with respect to their values, then τ2p−1 and τ2p are siblings for all p ≥ 1.

We define the exclusion property for T ∗ as follows: T ∗ has the exclusion prop-
erty if and only if the values of the nodes at level j are not smaller than the
values of the nodes at level j + 1.

Lemma 1. Given a prefix code whose corresponding tree T ∗ has the aforemen-
tioned properties, the given prefix code is optimal and T ∗ is a Huffman tree if
and only if T ∗ has the exclusion property.
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Proof. First, assume that T ∗ does not have the exclusion property. It follows
that there exists two nodes x and y at levels j1 and j2 such that j1 < j2 and
value(x) < value(y). Swapping the subtree of x with the subtree of y results
in another tree with a smaller external path length and a different list of levels,
implying that the given prefix code is not optimal.

Next, assume that T ∗ has the exclusion property. Let [x1, . . . , xn] be the list
of leaves of T ∗, with w(xi) ≤ w(xi+1). We prove by induction on the number of
leaves n that T ∗ is an optimal binary tree that corresponds to an optimal prefix
code. The base case follows trivially when n = 2. As a result of the exclusion
property, the two leaves x1, x2 must be at the highest level of T ∗. Also, Property 3
of T ∗ implies that these two leaves are siblings. Alternatively, there is an optimal
binary tree with leaves [x1, . . . , xn], where the two leaves x1, x2 are siblings; a
fact that is used to prove the correctness of Huffman’s algorithm [3]. Remove
x1, x2 from T ∗, replace their parent with a leaf whose weight equals x1 +x2, and
let T ′ be the resulting tree. Since T ′ has the exclusion property, it follows using
induction that T ′ is an optimal tree with respect to its leaves [x1+x2, x3, . . . , xn].
Hence, T ∗ is an optimal tree and corresponds to an optimal prefix code. !"
In general, building T ∗ requires Ω(n logn). It is crucial to mention that we do
not have to explicitly construct T ∗. Instead, we only need to find the values of
some of, and not all, the internal nodes at every level.

3 The Main Construction Method

Given a list of weights, we build the tree T ∗ bottom up. Starting with the highest
level, a weight is assigned to a level as long as its value is less than the sum of the
two nodes with the smallest values at that level. The Kraft equality is enforced
by making sure that the number of nodes at every level is even, and that the
number of nodes at the lowest level containing leaves is a power of two.

3.1 Example

For the sake of illustration, consider a list with thirty weights: ten weights have
the value 2, ten have the value 3, five the value 5, and five the value 9. To
construct the optimal codes, we start by finding the smallest two weights in the
list; these will have the values 2, 2. We now identify all the weights in the list
with value less than 4, the sum of these two smallest weights. All these weights
will be momentarily placed at the same level. This means that the highest level
l will contain ten weights of value 2 and ten of value 3. The number of nodes at
this level is even, so we move to the next level l − 1. We identify the smallest
two nodes at level l− 1, amongst the two smallest internal nodes resulting from
combining nodes of level l, and the two smallest weights among those remaining
in the list; these will be the two internal nodes 4, 4 whose sum is 8. All the
remaining weights with value less than 8 are placed at level l− 1. This level now
contains an odd number of nodes: ten internal nodes and five weights of value
5. To make this number even, we move the node with the largest weight to the,
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still empty, next lower level l − 2. The node to be moved, in this case, is an
internal node with value 6. Moving an internal node one level up implies moving
the weights in its subtree one level up. In such case, the subtree consisting of
the two weights of value 3 is moved one level up. At the end of this stage, the
highest level l contains ten weights of value 2 and eight weights of value 3; level
l− 1 contains two weights of value 3 and five weights of value 5. For level l− 2,
the smallest two internal nodes have values 6, 8 and the smallest weight in the
list has value 9. This means that all the five remaining weights in the list will
go to level l− 2. Since we are done with all the weights, we only need to enforce
the condition that the number of nodes at level l − 3 is a power of two. Level
l − 2 now contains eight internal nodes and five weights, for a total of thirteen
nodes. All we need to do is to move the three nodes with the largest values,
from level l− 2, one level up. The largest three nodes at level l− 2 are the three
internal nodes of values 12, 12 and 10. So we move eight weights of value 3 and
two weights of value 5 one level up. As a result, the number of nodes at level l−3
will be 8. The final distribution of weights will be: the ten weights of value 2 are
in the highest level l; level l − 1 contains the ten weights of value 3 and three
weights of value 5; and level l− 2 contains the remaining weights, two of value 5
and five of value 9. The corresponding code lengths are 6, 5 and 4 respectively.

3.2 The Basic Algorithm

The idea of the algorithm should be clear. We construct the optimal code tree
by maintaining the exclusion property for all the levels. Since this property is
always satisfied by the internal nodes, the weights are placed at the levels in such
a way that the exclusion property is satisfied. Adjusting the number of nodes at
each level will not affect this property since we are always moving the largest
nodes one level up to a still empty lower level. A formal description follows.

1. The smallest two weights are found, removed from W , and placed at the
highest level l. Their sum S is computed. The list W is scanned and all
weights less than S are removed and placed in level l. If the number of
leaves at level l is odd, the leaf with the largest weight among these leaves
is moved to level l − 1.

2. In the general iteration, after moving weights from W to level j, determine
the weights from W that will go to level j − 1 as follows. Find the smallest
two internal nodes at level j − 1, and the smallest two leaves from W . Find
the smallest two nodes amongst these four nodes, and let their sum be S.
Scan W for all weights less than S, and move them to level j − 1. If the
number of nodes at level j− 1 is odd, move the subtree of the node with the
largest value among these nodes to level j − 2.

3. When W is exhausted, let m be the number of nodes at the shallowest level
that has leaves. Move the 2log2 m�−m subtrees of the nodes with the largest
values, from such level, one level up.



96 A. Belal and A. Elmasry

3.3 Proof of Correctness

To guarantee its optimality following Lemma 1, we need to show that both the
Kraft equality and the exclusion property hold for the constructed tree.

By construction, the number of nodes at every level of the tree is even. At
Step 3 of the algorithm, if m is a power of 2, no subtrees are moved to the next
level and Kraft equality holds. If m is not a power of two, we move 2log2 m�−m
nodes to the next level, leaving 2m − 2log2 m� nodes at this level other than
those of the subtrees that have just been moved one level up. Now, the number
of nodes at the next lower level is m− 2log2 m�−1 internal nodes resulting from
the higher level, plus the 2log2 m�−m nodes that we have just moved. This sums
up to 2log2 m�−1 nodes, that is a power of 2, and Kraft equality holds.

Throughout the algorithm, we maintain the exclusion property by making
sure that the sum of the two nodes with the smallest values is larger than all
the values of the nodes at this level. When we move a subtree one level up, the
root of this subtree is the node with the largest value at its level. Hence, all
the nodes of this subtree at a certain level will have the largest values among the
nodes of this level. Moving these nodes one level up will not destroy the exclusion
property. We conclude that the resulting tree has the exclusion property.

4 Distribution-Sensitive Construction

Up to this point, we have not shown how to evaluate the internal nodes needed by
our basic algorithm, and how to search within the list W to decide which weights
are at which levels. The basic intuition behind the novelty of our approach is that
it does not require evaluating all the internal nodes of the tree corresponding to
the prefix code, and would thus surpass the Θ(n logn) bound for several cases,
a fact that will be asserted in the analysis. We show next how to implement the
basic algorithm in a distribution-sensitive behavior.

4.1 Example

The basic idea is clarified through an example having 1.5n+ 2 weights. Assume
that the resulting optimal tree will turn out to have n leaves at the highest
level, n/2 at the following level, and two leaves at level 2; the 1.5n leaves, at the
highest two levels, combine to produce two internal nodes at level 2.

In such case, we show how to produce the codeword lengths in linear time.
For our basic algorithm, we need to evaluate the smallest node x of the two
internal nodes at level 2, which amounts to identifying the smallest n/2 nodes
amongst the nodes at the second highest level. In order to be able to achieve this
in linear time, we need to do it without having to evaluate all n/2 internal nodes
resulting from the pair-wise combinations of the highest level n weights. We
show that this can be done through a simple pruning procedure. The nodes at
the second highest level consist of two sets; one set has n/2 leaves whose weights
are known and thus their median M can be found in linear time [2], and another
set containing n/2 internal nodes which are not known but whose median M ′
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can still be computed in linear time, by simply finding the two middle weights of
the highest level n leaves and adding them. Assuming without loss of generality
that M > M ′, then the bigger half of the n/2 weights at the second highest
level can be safely discarded as not contributing to x, and the smaller half of
the highest level n weights are guaranteed to contribute to x. The above step
is repeated recursively on a problem half the size. This results in a procedure
satisfying the recurrence T (n) = T (n/2) + O(n), and hence T (n) = O(n).

If the list of weights is already sorted, the number of comparisons required
to find any of the medians M or M ′ is constant. This results in a procedure
satisfying the recurrence Ts(n) = Ts(n/2) + O(1), and hence Ts(n) = O(log n).

4.2 The Detailed Algorithm

Let l1 > l2 > . . . lk′ be the levels that have already been assigned weights at
some step of our algorithm (other levels only have internal nodes), nj be the
count of the weights assigned to level lj , and μj =

∑j
i=1 ni. At this point, we are

looking forward to find the next level lk′+1 < lk′ that will be assigned weights
by our algorithm. Knowing that the weights that have already been assigned to
higher levels are the only weights that may contribute to the internal nodes of
any level l ≥ lk′+1, we need to evaluate some internal nodes at these levels.

Finding the splitting node. Consider the internal node x at a level l, lk′ >
l ≥ lk′+1, where the count of the weights contributing to the internal nodes of
level l, whose values are smaller (larger) than that of x, is at most μk′/2. We
call x the splitting node of l.

The following recursive procedure is used to evaluate x. We find the leaf with
the median weight M among the list of the nk′ weights already assigned to level
lk′ (partition the nk′ list into two sublists around M), and recursively evaluate
the splitting node M ′ at level lk′ using the list of the μk′−1 weights of the higher
levels (partition the μk′−1 list into two sublists around M ′). Comparing M to
M ′, we either conclude that one of the four sublists - the two sublists of the
nk′ list and the two sublists of the μk′−1 list - will not contribute to x, or that
one of these four sublists contributes to x. If one of the sublists of the nk′ list is
discarded, find a new median M for the other sublist and compare it with M ′. If
one of the sublists of the μk′−1 list is discarded, recursively find the new splitting
node M ′ corresponding to the other sublist and compare it to M . Once one of the
two lists becomes empty, we would have identified the weights that contribute to
x and hence evaluated x. As a byproduct, we also know which weights contribute
to the internal nodes at level l whose values are smaller (larger) than that of x.

Let T (μk′ , k′) be the time required by the above procedure. The total amount
of work, in all the recursive calls, required to find the medians among the nk′

weights assigned to level k′ is O(nk′ ). The time for the i-th recursive call to find
a splitting node at level k′ is T (μk′−1/2i−1, k′ − 1) . The next relations follow:

T (μ1, 1) = O(n1),

T (μk′ , k′) ≤
∑
i≥1

T (μk′−1/2i−1, k′ − 1) + O(nk′ ).
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Substitute with T (a, b) = c · 2ba, for a < μk′ , b < k′, and some big enough
constant c. Then, T (μk′ , k′) ≤ c ·2k′−1

∑
i≥1 μk′−1/2i−1 +O(nk′ ) < c ·2k′

μk′−1 +
c · nk′ . Since μk′ = μk′−1 + nk′ , it follows that

T (μk′ , k′) = O(2k′
μk′ ).

Consider the case when the list of weights W is already sorted. Let Ts(μk′ , k′)
be the number of comparisons required by the above procedure. The number of
comparisons, in all recursive calls, required to find the medians among the nk′

weights assigned to level k′, is at most log2 (nk′ + 1). The next relations follow:

Ts(μ2, 2) ≤ 2 log2 μ2,

Ts(μk′ , k′) ≤
∑
i≥1

Ts(μk′−1/2i−1, k′ − 1) + log2 (nk′ + 1).

Since the number of internal nodes at level k′ is at most μk′−1/2, the number
of recursive calls at this level is at most log2 μk′−1. It follows that Ts(μk′ , k′) ≤
log2 μk′−1 ·Ts(μk′−1, k

′− 1)+ log2 (nk′ + 1) < log2 μk′ ·Ts(μk′ , k′− 1)+ log2 μk′ .

Substitute with Ts(a, b) ≤ logb−1
2 a +

∑b−1
i=1 logi

2 a, for a < μk′ , b < k′. Then,
Ts(μk′ , k′)< log2 μk′ ·logk′−2

2 μk′ +log2 μk′ ·
∑k′−2

i=1 logi
2 μk′ +log2 μk′ =logk′−1

2 μk′+∑k′−1
i=1 logi

2 μk′ . It follows that

Ts(μk′ , k′) = O(logk′−1 μk′ ).

Finding the t-th smallest (largest) node. Consider the node x at level lk′ ,
which has the t-th smallest (largest) value among the nodes at level lk′ . The
following recursive procedure is used to evaluate x.

As for the case of finding the splitting node, we find the leaf with the median
weight M among the list of the nk′ weights already assigned to level lk′ , and
evaluate the splitting node M ′ at level lk′ (applying the above recursive proce-
dure) using the list of the μk′−1 leaves of the higher levels. As with the above
procedure, comparing M to M ′, we conclude that either one of the four sublists -
the two sublists of nk′ leaves and the two sublists of μk′−1 leaves - will not con-
tribute to x, or that one of these four sublists contributes to x. Applying the
aforementioned pruning procedure, we identify the weights that contribute to x
and hence evaluate x. As a byproduct, we also know which weights contribute
to the nodes at level lk′ whose values are smaller (larger) than that of x.

Let T ′(μk′ , k′) be the time required by the above procedure. Then,

T ′(μk′ , k′) ≤
∑
i≥1

T (μk′−1/2i−1, k′ − 1) + O(nk′ ) = O(2k′
μk′ ).

Let T ′
s(μk′ , k′) be the number of comparisons required by the above procedure,

when the list of weights W is already sorted. Then,

T ′
s(μk′ , k′) ≤

∑
i≥1

Ts(μk′−1/2i−1, k′ − 1) + O(log nk′) = O(logk′−1 μk′ ).
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Finding lk′+1, the next level that will be assigned weights. Consider
level lk′ − 1, which is the next level lower than level lk′ . We start by finding
the minimum weight w among the weights remaining in W at this point of the
algorithm, and use this weight to search within the internal nodes at level lk′ −1
in a manner similar to binary search. The basic idea is to find the maximum
number of the internal nodes at level lk′ − 1 with the smallest values, such that
the sum of their values is less than w. We find the splitting node x at level lk′−1,
and evaluate the sum of the weights contributing to the internal nodes, at that
level, whose values are smaller than that of x. Comparing this sum with w,
we decide which sublists of the μk′ leaves to proceed to find its splitting node.
At the end of this searching procedure, we would have identified the weights
contributing to the r smallest internal nodes at level lk′ − 1, such that the sum
of their values is less than w and r is maximum. We conclude by setting lk′+1

to be equal to lk′ − &log2 (r + 1)'.
To prove the correctness of this procedure, consider any level l, such that

r > 1 and lk′ − &log2 (r + 1)' < l < lk′ . The values of the two smallest internal
nodes at level l are contributed to by at most 2lk′−l ≤ 2log2 (r+1)�−1 ≤ t internal
nodes from level lk′−1. Hence, the sum of these two values is less than w. For the
exclusion property to hold, no weights are assigned to any of these levels. On the
contrary, the values of the two smallest internal nodes at level lk′ −&log2 (r + 1)'
are contributed to by more than r internal nodes from level lk′ − 1, and hence
the sum of these two values is more than w. For the exclusion property to hold,
at least the weight w is assigned to this level.

The time required by this procedure is the O(n−μk′) time to find the weight
w among the weights remaining in W , plus the time for the calls to find the
splitting nodes. Let T ′′(μk′ , k′) be the time required by this procedure. Then,

T ′′(μk′ , k′) ≤
∑
i≥1

T (μk′/2i−1, k′) + O(n− μk′) = O(2k′
μk′ + n).

Let T ′′
s (μk′ , k′) be the number of comparisons required by the above proce-

dure, when the list of weights W is already sorted. Then,

T ′′
s (μk′ , k′) ≤

∑
i≥1

Ts(μk′/2i−1, k′) + O(1) = O(logk′
μk′).

Maintaining Kraft equality. After deciding the value of lk′+1, we need to
maintain Kraft equality in order to produce a binary tree corresponding to the
optimal prefix code. This is accomplished by moving the subtrees of the t nodes
with the largest values from level lk′ one level up. Let m be the number of
nodes currently at level lk′ , then the number of the nodes to be moved up t is
2lk′−lk′+1&m/2lk′−lk′+1' −m. Note that when lk′+1 = lk′ − 1 (as in the case of
our basic algorithm), then t equals one if m is odd and zero otherwise.

To establish the correctness of this procedure, we need to show that both the
Kraft equality and the exclusion property hold. For a realizable construction,
the number of nodes at level lk′ has to be even, and if lk′+1 �= lk′ − 1, the
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number of nodes at level lk′ −1 has to divide 2lk′−lk′+1−1. If m divides 2lk′−lk′+1 ,
no subtrees are moved to level lk′ − 1 and Kraft equality holds. If m does not
divide 2lk′−lk′+1 , then 2lk′−lk′+1&m/2lk′−lk′+1' − m nodes are moved to level
lk′ − 1, leaving 2m− 2lk′−lk′+1&m/2lk′−lk′+1' nodes at level lk′ other than those
of the subtrees that have just been moved one level up. Now, the number of
nodes at level lk′ − 1 is m − 2lk′−lk′+1−1&m/2lk′−lk′+1' internal nodes resulting
from the nodes of level lk′ , plus the 2lk′−lk′+1&m/2lk′−lk′+1' −m nodes that we
have just moved. This sums up to 2lk′−lk′+1−1&m/2lk′−lk′+1' nodes, which divides
2lk′−lk′+1−1, and Kraft equality holds. The exclusion property holds following the
same argument mentioned in the proof of the correctness of the basic algorithm.

The time required by this procedure is basically the time needed to find the
weights contributing to the t nodes with the largest values at level lk′ , which is
O(2k′

μk′). If W is sorted, the required number of comparisons is O(logk′−1 μk′).

Summary of the algorithm

1. The smallest two weights are found, moved from W to the highest level l1,
and their sum S is computed. The rest of W is searched for weights less than
S, which are moved to level l1.

2. In the general iteration of the algorithm, after assigning weights to k′ levels,
perform the following steps:
(a) Find lk′+1, the next level that will be assigned weights.
(b) Maintain the Kraft equality at level lk′ by moving the t subtrees with

the largest values from this level one level up.
(c) Find the values of the smallest two internal nodes at level lk′+1, and the

smallest two weights from those remaining in W . Find the two nodes
with the smallest values among these four, and let their sum be S.

(d) Search the rest of W , and move the weights less than S to level lk′+1.
3. When W is exhausted, maintain Kraft equality at the last level that has

been assigned weights.

4.3 Complexity Analysis

Using the bounds deduced for the described steps of the algorithm, we conclude
that the time required by the general iteration is O(2k′

μk′ + n). If W is sorted,
the required number of comparisons is O(logk′

μk′).
To complete the analysis, we need to show the effect of maintaining the Kraft

equality on the complexity of the algorithm. Consider the scenario when, as a
result of moving subtrees one level up, all the weights at a level move up to
the next level that already had other weights. As a result, the number of levels
that contain leaves decreases. It is possible that within a single iteration the
number of such levels decreases by one half. If this happens for several iterations,
the amount of work done by the algorithm would have been significantly large
compared to the actual number of distinct codeword lengths k. Fortunately, this
scenario will not happen quite often. In the next lemma, we bound the number of
iterations performed by the algorithm by 2k. We also show that, at any iteration,
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the number of levels that contain leaves is at most twice the number of distinct
optimal codeword lengths for the weights that have been assigned so far.

Lemma 2. Consider the set of weights, all having the j-th largest optimal code-
word length. During the execution of the algorithm, such set of weights will be
assigned to at most two consecutive levels, among those levels that contain leaves.
Hence, these two levels will be the at most 2j − 1 and 2j highest such levels.

Proof. Consider a set of weights that will turn out to have the same codeword
length. During the execution of the algorithm, assume that some of these weights
are assigned to three levels. Let li > li+1 > li+2 be such levels. It follows that
li − 1 > li+2. Since we are maintaining the exclusion property throughout the
algorithm, there will exist some internal nodes at level li − 1 whose values are
strictly smaller than the values of the weights at level li+2 (some may have the
same value as the smallest weight at level li+2). The only way for all these weights
to catch each other at the same level of the tree would be as a result of moving
subtrees up (starting from level li+2 upwards) to maintain the Kraft equality.
Suppose that, at some point of the algorithm, the weights that are currently at
level li are moved up to catch the weights of level li+2. It follows that the internal
nodes that are currently at level li − 1 will accordingly move to the next lower
level of the moved weights. As a result, the exclusion property will not hold; a
fact that contradicts the behavior of our algorithm. It follows that such set of
weights will never catch each other at the same level of the tree; a contradiction.

We prove the second part of the lemma by induction. The base case follows
easily for j = 1. Assume that the argument is true for j − 1. By induction, the
levels of the weights that have the (j − 1)-th largest optimal codeword length
will be the at most 2j − 3 and 2j − 2 highest such levels. From the exclusion
property, it follows that the weights that have the j-th largest optimal codeword
length must be at the next lower levels. Using the first part of the lemma, the
number of such levels is at most two. It follows that these weights are assigned
to the at most 2j − 1 and 2j highest levels. !"
Using Lemma 2, the time required by our algorithm to assign the set of weights
whose optimal codeword length is the j-th largest, among all distinct lengths, is
O(22jn) = O(4jn). Summing for all such lengths, the total time required by our
algorithm is

∑k
j=1 O(4jn) = O(4kn).

Consider the case when the list of weights W is already sorted. The only step
left to mention, for achieving the claimed bounds, is how to find the weights of
W smaller than the sum of the values of the smallest two nodes at level lj . Once
we get this sum, we apply an exponential search that is followed by a binary
search on the weights of W for an O(log nj) comparisons. Using Lemma 2, the
number of comparisons performed by our algorithm to assign the weights whose
codeword length is the j-th largest, among all distinct lengths, is O(log2j−1 n).
Summing for all such lengths, the number of comparisons performed by our
algorithm is

∑k
j=1 O(log2j−1 n) = O(log2k−1 n). The next theorem follows.

Theorem 1. If the list of weights is sorted, constructing minimum-redundancy
prefix codes can be done using O(log2k−1 n) comparisons.
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Corollary 1. For k < c · logn/ log logn, and any constant c < 0.5, the above
algorithm requires o(n) comparisons.

5 The Improved Algorithm

The drawback of the algorithm we described in the previous section is that
it uses many recursive median-finding calls. The basic idea we use here is to
incrementally process the weights throughout the algorithm by partitioning them
into unsorted blocks, such that the weights of one block are smaller or equal to the
smallest weight of the succeeding block. The time required during the recursive
calls becomes smaller when handling these shorter blocks. The details follow.

The invariant we maintain is that during the execution of the general itera-
tion of the algorithm, after assigning weights to k′ levels, the weights that have
already been assigned to a level lj ≥ lk′ are partitioned into blocks each of size at
most nj/2k′−j weights, such that the weights of one block are smaller or equal to
the smallest weight of the succeeding block. To accomplish this invariant, once
we assign weights to a level, the median of the weights of each block among
those already assigned to all the higher levels is found, and each of these blocks
is partitioned into two blocks around this median weight. Using Lemma 2, the
number of iterations performed by the algorithm is at most 2k. The amount of
work required for this partitioning is O(n) for each of these iterations, for a total
of O(nk) time for this partitioning phase.

The basic step for all our procedures is to find the median weight among the
weights already assigned to a level lj . This step can now be done faster. To find
such median weight, we can identify the block that has such median in constant
time, then we find the required weight in O(nj/2k′−j) time, which is the size of
the block at this level. The recursive relations for all our procedures performed
at each of the k general iterations of the algorithm can be written as

Gk′
(μ1, 1) = O(n1/2k′−1),

Gk′
(μk′ , k′) ≤

∑
i≥1

Gk′
(μk′−1/2i−1, k′ − 1) + O(nk′ ).

Substitute with Gk′
(a, b) = c · a/2k′−b, for a < μk′ , b < k′, and some big

enough constant c. Then, Gk′
(μk′ , k′) ≤ c/2 ·

∑
i≥1 μk′−1/2i−1 + O(nk′ ) < c ·

μk′−1 + c · nk′ . Since μk′ = μk′−1 + nk′ , it follows that

Gk′
(μk′ , k′) = O(μk′ ) = O(n).

Since the number of iterations performed by the algorithm is at most 2k, by
Lemma 2. Summing up for these iterations, the running time for performing the
recursive calls is O(nk) as well. The next main theorem follows.

Theorem 2. Constructing minimum-redundancy prefix codes is done in O(nk).
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6 Conclusion

We gave a distribution-sensitive algorithm for constructing minimum-redundancy
prefix codes, whose running time is a function of both n and k. For small values of
k, this algorithm asymptotically improves over other known algorithms that re-
quire O(n logn); it is quite interesting to know that the construction of optimal
codes can be done in linear time when k turns out to be a constant. For small val-
ues of k, if the sequence of weights is already sorted, the number of comparisons
performed by our algorithm is asymptotically better than other known algorithms
that require O(n) comparisons; it is also interesting to know that the number of
comparisons required for the construction of optimal codes is poly-logarithmic
when k turns out to be a constant.

Two open issues remain; first is the possibility of improving the algorithm
to achieve an O(n log k) bound, and second is to make the algorithm faster in
practice by avoiding so many recursive calls to a median-finding algorithm.
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Abstract. Let w be an infinite fixed point of a binary k-uniform mor-
phism f , and let E(w) be the critical exponent of w. We give necessary
and sufficient conditions for E(w) to be bounded, and an explicit for-
mula to compute it when it is. In particular, we show that E(w) is always
rational. We also sketch an extension of our method to non-uniform mor-
phisms over general alphabets.
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1 Introduction

Let w be a right-infinite word over a finite alphabet Σ. The critical exponent of
w, denoted by E(w), is the supremum of the set of exponents r ∈ Q≥1, such
that w contains an r-power (see Section 2 for the definition of fractional powers).
Given an infinite word w, a natural question is to determine its critical exponent.

The first critical exponent to be computed was probably that of the Thue-
Morse word, t [18, 2]. This word, defined as the fixed point beginning with 0 of
the Thue-Morse morphism μ(0) = 01, μ(1) = 10, was proved by Thue in the
early 20th century to be overlap-free, that is, to contain no subword of the form
axaxa, where a ∈ {0, 1} and x ∈ {0, 1}∗. In other words, t is r-power-free for
all r > 2; and since it contains 2-powers (squares), by our definition E(t) = 2.
Another famous word for which the critical exponent has been computed is
the Fibonacci word f , defined as the fixed point of the Fibonacci morphism
f(0) = 01, f(1) = 0. In 1992, Mignosi and Pirillo [15] showed that E(f) = 2+ϕ,
where ϕ = (1+

√
5)/2 is the golden mean. This gives an example of an irrational

critical exponent.
In a more general setting, critical exponents have been studied mainly with

relation to Sturmian words (for the definition, properties and structure of Stur-
mian words, see e.g. [12, Chapter 2]). In 1989, Mignosi [14] proved that for a
Sturmian word s, E(s) < ∞ if and only if the continued fraction expansion of
the slope of s has bounded partial quotients; an alternative proof was given in
1999 by Berstel [3]. In 2000, Vandeth [19] gave an explicit formula for E(s),
where s is a Sturmian word which is a fixed point of a morphism, in terms of the
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continued fraction expansion of the slope of s. In particular, E(s) is algebraic
quadratic. Alternative proofs for the results of Mignosi and Vandeth, with some
generalizations, were given in 2000 by Carpi and de Luca [5], and in 2001 by
Justin and Pirillo [10]. Carpi and de Luca also showed that 2+ϕ is the minimal
critical exponent for any Sturmian word. In 2002, Damanik and Lenz [7] gave a
formula for critical exponents of general Sturmian words, again in terms of the
continued fraction expansion of the slope. An alternative proof for this result
was given in 2003 by Cao and Wen [4].

In this work we consider a different family of words: that of fixed points
of binary k-uniform morphisms. Given a binary k-uniform morphism f with
a fixed point w, we give necessary and sufficient conditions for E(w) to be
bounded, and an explicit formula to compute it when it is. In particular, we
show that if E(w) < ∞ then it is rational. We also show that, given a ratio-
nal number 0 < r < 1, we can construct a binary k-uniform morphism f such
E(fω(0)) = n+r for some positive integer n. Finally, we sketch a method for ex-
tending the results to non-uniform morphisms over an arbitrary finite alphabet,
and conjecture that E(w), when bounded, is always algebraic, and lies in the
field extension Q[s1, . . . , s�], where s1, . . . , s� are the eigenvalues of the incidence
matrix of f . For injective morphisms the conjecture has been proved [11].

2 Preliminaries

Let Σ be a finite alphabet. We use the notation Σ∗, Σ+, Σn and Σω to denote
the sets of finite words, non-empty finite words, words of length n, and right-
infinite words over Σ, respectively. We use ε to denote the empty word. For
words x ∈ Σ∗, y ∈ Σ∗∪Σω, we use the notation x � y to denote the relation “x
is a subword of y”. We use Z≥r (and similarly Q≥r, R≥r) to denote the integers
(similarly rational or real numbers) greater than or equal to r.

Let z =a0 · · · an−1 ∈ Σ+, ai ∈ Σ. A positive integer q≤|z| is a period of z if
ai+q =ai for i=0, · · · , n− 1− q. An infinite word z=a0a1 · · · ∈ Σω has a period
q ∈ Z≥1 if ai+q =ai for all i≥0; in this case, z is periodic, and we write z=xω,
where x=a0 · · · aq−1. If z has a periodic suffix, we say it is ultimately periodic.

A fractional power is a word of the form z = xny, where n ∈ Z≥1, x ∈ Σ+, and
y is a proper prefix of x. Equivalently, z has a |x|-period and |y| = |z| mod |x|. If
|x| = q and |y| = p, we say that z is an (n+p/q)-power, and write z = xn+p/q; the
rational number n+p/q is the exponent of the power. Since q stands for both the
exponent’s denominator and the period, we use non-reduced fractions to denote
exponents: for example, 10101 is a 2 1

2 -power, while 1001100110 is a 2 2
4 -power.

Let w be an infinite word over Σ, and let α be a real number. We say that w
is α-power-free if no subword of it is an r-power for any rational r ≥ α; we say
that w contains an α-power if it has an r-power as a subword for some rational
r ≥ α. The critical exponent of w is defined by

E(w) = sup{r ∈ Q≥1 : ∃x ∈ Σ+ such that xr � w} . (1)

By this definition, w contains α-powers for all α ∈ R such that 1 ≤ α < E(w),
but no α-powers for α > E(w); it may or may not contain E(w)-powers.



106 D. Krieger

A morphism f : Σ∗ → Σ∗ is prolongable on a letter a ∈ Σ if f(a) = ax
for some x ∈ Σ+, and furthermore fn(x) �= ε for all n ≥ 0. If this is the
case, then fn(a) is a proper prefix of fn+1(a) for all n ≥ 0, and by applying
f successively we get an infinite fixed point of f , fω(a) = limn→∞ fn(a) =
axf(x)f2(x)f3(x) · · · . A morphism f : Σ∗ → Γ ∗ is k-uniform if |f(a)| = k for
all a ∈ Σ, where k is a positive integer. In this work we consider powers in
fixed points of uniform morphisms defined over a binary alphabet Σ = {0, 1},
therefore we assume that f is prolongable on 0.

Let f be a k-uniform morphism defined over Σ = {0, 1}, and let w = fω(0) =
w0w1w2 . . .. Let z = wi · · ·wj � w be an r-power, where r = n + p/q. We say
that z is reducible if it contains an r′-power, r′ = n′ + p′/q′, such that r′ > r, or
r′ = r and q′ < q. If r′ > r then z is strictly reducible. The occurrence of z in w
is left stretchable (right stretchable) if zL = wi−1 · · ·wj (zR = wi · · ·wj+1) is an
(n + (p + 1)/q)-power.

Since E(w) is an upper bound, it is enough to consider irreducible, unstretch-
able powers when computing it. Therefore, for a binary alphabet, we can assume
n ≥ 2: since any binary word of length 4 or more contains a square, a (1 + p/q)-
power over {0, 1} is always reducible, save for the 1 1

2 -power 101 (010).
The next definition is a key one:

Definition 1. Let f be a binary k-uniform morphism. The shared prefix of f ,
denoted by ρf , is the longest word ρ ∈ {0, 1}∗ satisfying f(0) = ρx, f(1) = ρy
for some x, y ∈ Σ∗. Similarly, the shared suffix of f , denoted by σf , is the longest
word σ ∈ {0, 1}∗ satisfying f(0) = xσ, f(1) = yσ for some x, y ∈ Σ∗. The shared
size of f is the combined length λf = |ρf |+ |σf |.

We can now state our main Theorem:

Theorem 2. Let f be a binary k-uniform morphism prolongable on 0, and let
w = fω(0). Then:

1. E(w) = ∞ if and only if at least one of the following holds:
(a) f(0) = f(1);
(b) f(0) = 0k;
(c) f(1) = 1k;
(d) k = 2m + 1, f(0) = (01)m0, f(1) = (10)m1.

2. Suppose E(w) < ∞. Let E be the set of exponents r = n + p/q, such that
q < k and f4(0) contains an r-power. Then

E(w) = max
n+p/q∈E

{
n +

p(k − 1) + λf

q(k − 1)

}
.

In particular, E(w), when bounded, is always rational. The bound E(w) is
attained if and only if λf = 0.

Here is an example of an application of Theorem 2:

Example 3. The Thue-Morse word is overlap-free.
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Proof. The Thue-Morse morphism μ satisfies λμ = 0; and since the largest power
in μ4(0) is a square, we get that E(μω(0)) = 2, and the bound is attained. !"

We end this section by stating a few theorems that will be useful later. Theorem 4
can be found in [12, Thm 8.1.4]; Theorems 5, 6, 7 can be found in [1, Thm 1.5.2,
Thm 1.5.3, Thm 10.9.5]. In this setting, Σ is any finite alphabet.

Theorem 4 (Fine and Wilf [8]). Let w be a word having periods p and q,
with p ≤ q, and suppose that |w| ≥ p + q − gcd(p, q). Then w also has period
gcd(p, q).

Theorem 5 (Lyndon and Schützenberger [13]). Let y ∈ Σ∗ and x, z ∈ Σ+.
Then xy = yz if and only if there exist u, v ∈ Σ∗ and an integer e ≥ 0 such that
x = uv, z = vu, and y = (uv)eu.

Theorem 6 (Lyndon and Schützenberger [13]). Let x, y ∈ Σ+. Then the
following three conditions are equivalent:

1. xy = yx;
2. There exist integers i, j > 0 such that xi = yj;
3. There exist z ∈ Σ+ and integers k, � > 0 such that x = zk and y = z�.

A word w ∈ Σω is recurrent if every finite subword of w occurs infinitely often. It
is uniformly recurrent if for each finite subword x of w there exists an integer m,
such that every subword of w of length m contains x. A morphism h : Σ∗ → Σ∗ is
primitive if there exists an integer n such that for all a, b ∈ Σ we have b � hn(a).

Theorem 7. Let h : Σ∗ → Σ∗ be a primitive morphism, prolongable on a. Then
hω(a) is uniformly recurrent.

3 Powers Structure

For the rest of this section, Σ = {0, 1}; f : Σ∗ → Σ∗ is a k-uniform morphism
prolongable on 0; and w = fω(0).

Lemma 8. Let ρ, σ and λ be the shared prefix, shared suffix, and shared size of
f , respectively. Suppose z = wi · · ·wj � w is an (n + p/q)-power. Then

E(w) ≥ n +
p(k − 1) + λ

q(k − 1)
.

Proof. If f(0) = f(1) or f(0) = 0k or f(1) = 1k, it is easy to see that E(w) = ∞.
Otherwise, 0 ≤ λ ≤ k−1; also, f is primitive, thus w is recurrent by Theorem 7,
and we can assume i > 0. Let z = xny, where x = a0 · · ·aq−1, y = a0 · · · ap−1. Let
f(wi−1) = tσ and f(wj+1) = ρs for some s, t ∈ Σ∗. Applying f to wi−1 · · ·wj+1,
we get a subword of w which is a fractional power with period kq, as illustrated
in Fig. 1.
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Fig. 1. Applying f to wi−1 · · ·wj+1

Since σ is a shared suffix, it is a suffix of f(aq−1) as well; similarly, ρ is a
prefix of f(ap). Therefore, we can stretch the kq-period of f(z) by σ to the left
and ρ to the right. We get that z′ = σf(z)ρ is an (n+ (kp+λ)/kq)-power. Note
that kp + λ < kq, since λ < k and p < q.

The process of applying f and stretching the resulting power can be repeated
infinitely. Successive applications of f give a sequence of powers {n+pm/qm}m≥0,
which satisfy p0 = p, q0 = q, and for m > 0, pm = kpm−1 + λ, and qm = kqm−1.
Let π : Σ∗ ×Q → Σ∗ ×Q be the map defined by

π

(
z, n +

x

y

)
=
(

σf(z)ρ, n +
kx + λ

ky

)
. (2)

We use π(z) and π(n + p/q) to denote the first and second component, respec-
tively. Iterating π on (n + p/q), we get

πm

(
n +

p

q

)
= n +

kmp + λ
∑m−1

i=0 ki

kmq
= n +

kmp + λkm−1
k−1

kmq
−−−−−→m → ∞

n +
p(k − 1) + λ

q(k − 1)
.

The lemma’s assertion follows. !"

Our goal is to show that the π mapping defined in (2) is what generates E(w). To
do that, we need to rule out arbitrary powers. We start with a few lemmas which
describe power behavior in a more general setting, namely, in an infinite word
v = h(u), where h is a k-uniform binary morphism and u ∈ Σω is an arbitrary
infinite word. We consider 4 cases of block size q: q ≡ 0 (mod k); q �≡ 0 (mod k)
and q > 2k; k < q < 2k; and finally q < k.

Definition 9. Let h be a binary k-uniform morphism, and let v = h(u) for some
u ∈ Σω. We refer to the decomposition v into images of h as decomposition into
k-blocks. Let α = vi · · · vj � v. The outer closure and inner closure of α, denoted
by α̂, α̌, respectively, are the following subwords of v:

α̂ = vı̂ · · · vĵ , ı̂ =
⌊

i

k

⌋
k , ĵ =

⌈
j + 1

k

⌉
k − 1 ;

α̌ = vı̌ · · · vǰ , ı̌ =
⌈

i

k

⌉
k , ǰ =

⌊
j + 1

k

⌋
k − 1 .

Thus α̂ consists of the minimal number of k-blocks that contain vi · · · vj ; simi-
larly, α̌ consists of the maximal number of k-blocks that are contained in vi · · · vj .
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By this definition, both α̂ and α̌ have inverse images under h, denoted by h−1(α̂)
and h−1(α̌), respectively. Note that α̌ may be empty.

Lemma 10. Let h be an injective binary k-uniform morphism, let v = h(u) for
some u ∈ Σω, and let α = vi · · · vj � v be an unstretchable (n + p/q)-power,
α = Qn+p/q where Q ∈ Σq. Suppose q ≡ 0 (mod k). Then α is an image under
the π mapping defined in (2).

Proof (sketch). Let α′ = h−1(α̌). Since h is injective, we have h(0) �= h(1), thus
α′ is an (n′ + p′/q′)-power, where q′ = q/k and n − 1 ≤ n′ ≤ n. Use the fact
that q ≥ k to show that n − n′ < 2; use the maximality of |ρ| and |σ| to show
that if the q period of α is unstretchable, then α = σα̌ρ, and thus n = n′ and
p = kp′ + λ. !"

Lemma 11. Let h be a binary k-uniform morphism, let v = h(u) for some
u ∈ Σω, and let α = vi · · · vj � v be an (n + p/q)-power, α = Qn+p/q where
Q ∈ Σq. Suppose q > 2k and q �≡ 0 (mod k). Then either h(0) = h(1), or α is
reducible to a power n′ + r/s, which satisfies s ≤ k. If the second case holds, we
get one of the following:

1. Q = uc for some c ∈ Z≥4 and u ∈ Σ+ satisfying |u| < k;
2. n = 2 and q < 3k, i.e., |α| < 6k + 2.

Proof (sketch). Consider the decomposition of α into k-blocks. We can assume
w.l.o.g. that the decomposition starts from the first character of α (index i).
Since q �≡ 0 (mod k), we get overlaps of k-blocks, as illustrated in Fig. 2.

Fig. 2. Overlaps of k-blocks. The bold rectangles denote the power’s q-blocks; the
light grey and dark grey rectangles stand for h(0), h(1), respectively; the top line of h
rectangles stands for the k-decomposition of α; and the bottom line shows the repetition
of the q-block.

Since q > 2k, there are at least 5 k-blocks involved in the overlap. Each
overlap induces a partition on the k-blocks involved, resulting in a system of
word equations. The idea of the proof is to do an overlap case analysis, and
solve the system for each case. For case notation, we order the k-blocks by their
starting index (the numbers 1-5 in Fig. 2), and denote the case by the resulting
5-letter binary word; in the Fig. 2 case, it is 01001. By symmetry arguments, it is
enough to consider words that start with 0, therefore we need to consider 16 over-
lap combinations. We mark the k-block partition induced by the overlaps using
the letters x, y, z, t, where x marks the leftmost part; since the k-decomposition
starts from the first letter of α, we have |x| = q mod k, i.e., |x| > 0. We give
here as an example two simple cases, which are illustrated in Fig. 3.
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Fig. 3. Overlaps of k-blocks for cases 00010, 01001

00010: h(0) = xy = yx = h(1).
01001: h(0) = xy = yz, h(1) = yx = zt. Using Theorems 5, 6, it can be shown

that x = z and y = t, thus h(0) = h(1). !"
Lemma 12. Let h be a binary k-uniform morphism, let v = h(u) for some
u ∈ Σω, and let α = vi · · · vj � v be an (n + p/q)-power, α = Qn+p/q where
Q ∈ Σq. Suppose k < q < 2k. Then either h(0) = h(1), or α is reducible to a
power n′ + r/s, which satisfies s ≤ k.

Proof (sketch). If n ≥ 3, or n = 2 and p ≥ 4k− 2q, then again there are at least
5 k-blocks involved in the overlap. Thus we can assume that n = 2, p < 4k− 2q.
The proof now consists of analyzing 4 overlap cases (000, 001, 010, 011), and
showing each of them to be reducible. !"
Corollary 13. In the setting of f and w, assume E(w) < ∞, and let E ′ be the
set of exponents r = n + p/q, such that q < k and w contains an r-power. Then

E(w) = max
n+p/q∈E′

{
n +

p(k − 1) + λf

q(k − 1)

}
. (3)

Proof. By Lemmata 10, 11, 12, if z � w is an irreducible, unstretchable (n+p/q)-
power for which q ≥ k, then z is an image under the π mapping; thus the
exponent of every such power is an element of a sequence of the form {πi(r)}∞i=0,
where r ∈ E ′. The set E ′ is finite, since E(w) < ∞, thus there are only finitely
many such sequences. By Lemma 8, the limit of each such sequence is given by
the expression in (3); and since each of these sequences increases towards its
limit, the critical exponent is the maximum of those limits. !"
Lemma 14. Let h be a binary k-uniform morphism, let v = h(u) for some
u ∈ Σω, and let α = vi · · · vj � v be an (n + p/q)-power, α = Qn+p/q where
Q ∈ Σq. Suppose q < k. Then at least one of the following holds:

1. q|k;
2. q � k and q|2k;
3. α is reducible;
4. n < 3k/q.

Proof (sketch). Assume w.l.o.g. that i ≡ 0 (mod k). Suppose n ≥ 3k/q. Then
|α| ≥ 3k; therefore, h(a1a2a3) is a prefix of α for some a1, a2, a3 ∈ Σ. We now use
the fact that any 3-letter word over a binary alphabet either contains a square,
or is a 1 1

2 -power; thus h(a1a2a3) either contains a subword of length at least 2k
which has a k-period, or it itself has a 2k-period. The result now follows from
Theorem 4. !"
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Corollary 15. If q < k and α is irreducible, then at least one of the following
holds:

1. h(0) = h(1);
2. h−1(α̂) = ac�b, where a, b ∈ {0, 1, ε}, c ∈ {0, 1}, and � ≥ 0;
3. h−1(α̂) = ax�b, where a, b ∈ {0, 1, ε}, x ∈ {01, 10}, and � ≥ 0;
4. |h−1(α̂)| ≤ 5.

Corollary 16. In the setting of f and w, E(w) = ∞ if and only if at least one
of the following holds: f(0) = f(1), f(0) = 0k, f(1) = 1k, or f(0) = (01)m0 and
f(1) = (10)m1, where k = 2m + 1.

Proof. It is easy to see that any of the 4 conditions implies E(w) = ∞. For
the converse, suppose f(0) �= f(1), and w contains unbounded powers. Then by
Lemmata 10, 11, 12, 14 and Corollary 15, w must contain unbounded powers of
the form 0m, 1m, or (01)m. If it contains unbounded 0m powers, then f(a) = 0k

for some a ∈ Σ. Suppose f(1) = 0k. Then w must contain unbounded 1m

powers as well, and so necessarily f(0) = 1k, a contradiction: f is prolongable
on 0. Thus w contains unbounded 0m powers if and only if f(0) = 0k, and
similarly it contains unbounded 1m powers if and only if f(1) = 1k. Finally, it
is easy to see using similar inverse image arguments that w contains unbounded
(01)m powers if and only if the last condition holds. !"

Note. By Frid [9], the four conditions of Corollary 13 characterize non-circularity
in uniform binary fixed points. More on circularity in Section 4.

To complete the proof of Theorem 2, it remains to show that in order to compute
E(w), it is enough to consider f4(0). We do this in the following lemma.

Lemma 17. Suppose E(w) < ∞. Let z � w be an irreducible (n + p/q)-power,
satisfying q < k. Then z � f4(0) and n ∈ O(k3). The bound on the first occur-
rence of z is tight.

Proof (sketch). First, we show that any subword of w of the form ab, a�, or
(aā)�, where � is a positive integer, a, b ∈ Σ and ā = 1− a, must occur in f2(0)
or f3(0). We then apply Corollary 15. !"

Corollary 18. Suppose E(w) < ∞. Let E be the set of exponents r = n + p/q,
such that q < k and f4(0) contains an r-power. Then

E(w) = max
n+p/q∈E

{
n +

p(k − 1) + λf

q(k − 1)

}
. (4)

Proof. This is an immediate result of Corollary 13 and Lemma 17. !"

Corollary 18 completes the proof of Theorem 2. We end this section with a couple
of examples.
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Example 19. As implied by the tightness assertions of Lemma 17, the prefix
f4(0) is best possible. Consider the morphism 0 → 010101, 1 → 000110. In this
example, E(w) = 12 3

5 , and the first occurrence of a 12-power is in f4(0).

Example 20. Let r, s be natural numbers satisfying 0 < r ≤ s. Let f be the
following binary (s + 1)-uniform morphism:

f :
0 → 01s;
1 → 01r−10s−r+1.

Then f is an (s + 1)-uniform morphism, satisfying ρf = 01r−1, σf = ε, and
λf = r. Let w = fω(0). Then 1s is a subword of f1(0); also, 0s(s+1)+1 is a
subword of f3(0) if r = 1. Set z = 1s for r > 1 and z = 0s(s+1)+1 for r = 1. It
is easy to check that by applying π to z we get the maximal number in the set{
n + p(k−1)+λf

q(k−1) : n + p/q ∈ E
}

; thus

r > 1 ⇒ E(w) = s +
0 · s + r

1 · s = s +
r

s
;

r = 1 ⇒ E(w) = s(s + 1) + 1 +
r

s
.

Corollary 21. For any rational number 0 < t < 1 there exist a binary k-
uniform morphism f , such that E(w) = n + t for some n ∈ Z≥2.

4 Generalizing the Results

The definitions of ρ, σ, π (Definition 1, Equation (2)) can be generalized to
arbitrary morphisms over finite alphabets. Let Σ = Σt = {0, . . . , t − 1}, let
f : Σ∗ → Σ∗ be a morphism prolongable on 0, and let w = fω(0). For a word
u ∈ Σ∗, let [u] be the Parikh vector of u, i.e., [u] = (|u|0, . . . , |u|t−1)T , where |u|i
is the number of occurrences of the letter i in u. Let F be the incidence matrix
associated with f , i.e., Fi,j = |f(j)|i, 0 ≤ i, j < t. It is easy to check that for all
u ∈ Σ∗ we have [f(u)] = F [u].

Let z = wi · · ·wj � w be an (n + p/q)-power, z = xny, and let Q,P be
the Parikh vectors of x, y respectively. In order to keep track of the components
|x|i, |y|i, we introduce the notation “z is an (n+P/Q)-power”, where P/Q stands
for
∑t−1

i=0 |y|i/
∑t−1

i=0 |x|i. Under this notation, fm(z) is an (n + FmP/FmQ)-
power; this power may be stretchable.

Assume E(w) < ∞, and let z = wi · · ·wj � w be an unstretchable (n+P/Q)-
power. Define

π

(
z, n +

P

Q

)
=
(

σf(z)ρ, n +
FP + Λ

FQ

)
, (5)

where σ, ρ ∈ Σ∗ are the words that stretch the FQ period of f(z) on the left and
on the right, respectively, to an unstretchable power, and Λ = [σρ]. We call Λ
the stretch vector of (f(z),FQ). Note that π(z, n+P/Q) depends on the context
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of z, in particular on the letters wi−1, wj+1. Iterating π on the initial power z,
we get a sequence of stretch vectors, {Λm}m≥0, and we have:

πm

(
n +

P

Q

)
= n +

FmP +
∑m−1

i=0 Fm−1−iΛi

FmQ
. (6)

We call the sequence {πm(n + P/Q)}m≥0 a π-sequence. If the sequence
{Λm}m≥0 is ultimately periodic, it can be shown that in the uniform case, the
π-sequence converges to a rational number, and in the non-uniform case, its lim-
sup is a rational expression of the eigenvalues of F . In particular, it is algebraic
of degree at most t.

To prove that E(w) is algebraic, we need to show that the sequence of stretch
vectors is indeed ultimately periodic for every choice of initial power z; we also
need to show that E(w) is generated by the π mapping, i.e., we need to rule out
arbitrary powers. The overlap analysis method we used in the binary uniform
case is too tedious for uniform morphisms over larger alphabets, and will not
work at all for non-uniform morphisms. Instead, we use circularity arguments.

Basically, a fixed point fω(0) is circular if every sufficiently long subword of
it has an unambiguous decomposition into images under f , save maybe for a
prefix and a suffix of bounded length. The notion was introduced by Mignosi
and Séébold in [16], where they showed that bounded critical exponent implies
circularity in fixed points of morphisms over a finite alphabet; see also [17], [6]. In
[11], we use circularity arguments to show that when f is an injective morphism
and E(w) < ∞, the following holds:

1. the sequence of stretch vectors is ultimately periodic for every choice of initial
power z;

2. every unstretchable power with a sufficiently long power block belongs to
some π-sequence;

3. there are only finitely many distinct π-sequences occurring in w.

Thus we have proved that if w is a fixed point of an injective morphism, then
either E(w) = ∞, or E(w) is algebraic of degree at most t, where t is the
alphabet size. Our method also gives an algorithm for computing E(w), which
essentially reduces the problem to computing the Jordan decomposition of the
incidence matrix. In particular, computing the critical exponent of the Fibonacci
word becomes almost trivial.

It yet remains to extend the results to non-injective morphisms; nevertheless,
in light of the observations above, the following conjecture seems reasonable:

Conjecture 22. Let f be a morphism over a finite alphabet, and let w be an
infinite fixed point of f . Assume E(w) < ∞. Then

1. if f is uniform, then E(w) is rational;
2. if f is non-uniform, then E(w) ∈ Q[s1, . . . , s�], where s1, . . . , s� are the

eigenvalues of the incidence matrix of f . In particular, E(w) is algebraic.
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Abstract. We study the isomorphism problem of two “natural” alge-
braic structures – F-algebras and cubic forms. We prove that the F-
algebra isomorphism problem reduces in polynomial time to the cubic
forms equivalence problem. This answers a question asked in [AS05]. For
finite fields of the form 3 
 |(#F − 1), this result implies that the two
problems are infact equivalent. This result also has the following inter-
esting consequence:

Graph Isomorphism ≤P
m F-algebra Isomorphism ≤P

m Cubic Form
Equivalence.

1 Introduction

For a field F, F-algebras are commutative rings of finite dimension over F. One
of the fundamental computational problems about F-algebras is to decide, given
two such algebras, if they are isomorphic. When F is an algebraically closed field,
it follows from Hilbert’s Nullstellensatz [Bro87] that the problem can be decided
in PSPACE. When F = R, the problem is in EEXP due to the result of Tarski
on the decidability of first-order equations over reals [DH88]. When F = Q, it is
not yet known if the problem is decidable. When F is a finite field, the problem is
in NP∩ coAM [KS05]. In all of the above results, we assume that an F-algebra
is presented by specifying the product of its basis elements over F.

F-Cubic Forms are homogeneous degree 3 polynomials over field F. We call
two such forms equivalent if an invertible linear transformation on the variables
makes one equal to the other. The problem of equivalence of F-cubic forms has
a very similar complexity to that of F-algebra isomorphism for different F. This
follows from the result of [AS05] showing that F-cubic form equivalence reduces,
in polynomial time, to F-algebra isomorphism (in case F is a finite field, the
result holds for 3 � |(#F− 1) due to technical reasons).

Both the problems have been well studied in mathematics (for instance see
[Har75, MH74], [Rup03]). Over the last ten years, these problems have been found
to be useful in computer science as well: [Pat96, CGP98] proposes a cryptosystem
based on the hardness of the cubic form equivalence over finite fields, [AS05] show
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that the Graph Isomorphism problem reduces to both F-algebra isomorphism
and F-cubic form equivalence for any F. Therefore, the two problems are of an
intermediate complexity but seemingly harder than Graph Isomorphism.

Of the two problems, cubic form equivalence might appear to be an easier
problem because, for example, the reduction from Graph Isomorphism to F-
algebra isomorphism is simple while the reduction to F-cubic form equivalence
is very involved. In this paper, we show that this is not the case by exhibiting
a reduction from F-algebra isomorphism to F-cubic form equivalence. Apart
from showing that the two problems are essentially equivalent, this has other
interesting implications. For example, this suggests that Q-algebra isomorphism
is decidable because Q-cubic form equivalence appears to be decidable due to
the rich structure they possess.

Our reduction is a two step process. We first reduce F-algebras to local F-
algebras of a special form. Then we use the properties of these local algebras to
show that a “natural” construction of F-cubic forms works.

In section 2 we give an overview of the reduction. In section 3 we reduce
general F-algebra isomorphism to the isomorphism problem for local F-algebras
and in section 4 we reduce F-algebra isomorphism problem to F-cubic form
equivalence.

2 The Basics

An F-algebra R is a commutative ring containing field F. We assume that R is
specified in terms of its additive generators over F, say b1, . . . , bn. Thus, R =
Fb1 ⊕ . . .⊕ Fbn. To completely specify R, the product of pairs of basis elements
is given in terms of a linear combination of b’s. Thus, a’s ∈ F are given in the
input such that:

∀i, j, bibj =
∑

1≤k≤n

aij,kbk (1)

Let S be another F-algebra with basis elements b1, . . . , bn satisfying:

∀i, j, bibj =
∑

1≤k≤n

a′
ij,kbk

To specify an isomorphism ψ from R to S it is sufficient to describe ψ(bi), for
each i, as a linear combination of b1, . . . , bn in S.

The isomorphism problem for these F-algebras is related to polynomial equiv-
alence problem over F because we can combine equations (1), by using new
variables z for various i, j, to construct:

fR(z, b) :=
∑

1≤i≤j≤n

zij

⎛⎝bibj −
∑

1≤k≤n

aij,kbk

⎞⎠ (2)

In the above expression we consider zij and bi as formal variables and thus fR

is a degree-3 or cubic polynomial. Similarly, construct fS(z, b) from S. It was
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shown in [AS05] that equivalence of the polynomials fR and fS is sufficient to
decide whether R and S are isomorphic. If φ is an isomorphism from R to S
then it is easy to see that there is a linear invertible map τ on z such that:
fR(τz, φb) = fS(z, b). More work is needed to show that if fR is equivalent to
fS then infact R ∼= S. The main idea being that any equivalence ψ from fR to
fS will map bi’s to a linear combination of b’s and hence ψ becomes our natural
candidate for an isomorphism from R to S (for details see [AS05]).

The question we resolve in this paper is whether there is a way to construct
homogeneous cubic polynomials, i.e. cubic forms over F (henceforth referred to
as F-cubic forms), such that their equivalence implies the isomorphism of R and
S. The cubic form we construct looks like:

gR(z, b, v) :=
∑

1≤i≤j≤n

zij

⎛⎝bibj − v ·
∑

1≤k≤n

aij,kbk

⎞⎠ (3)

Here v is a new formal variable. We reduce F-algebra isomorphism to F-cubic
form equivalence by first constructing special F-algebras R′, S′ from R,S (in
section 3) and then showing that equivalence of gR′ , gS′ implies the isomorphism
of R,S (in section 4). The idea again is to show that any equivalence ψ from
gR′(z, b, v) to gS′(z, b, v) sends bi’s to a linear combination of b’s and thus ψ leads
us to an isomorphism from R to S.

3 Local F-Algebra Isomorphism Problem

An F-algebra is local if it cannot be broken into simpler F-algebras i.e. if it
cannot be written as a direct product of algebras. Given an F-algebra this direct
product decomposition can be done by factoring polynomials over the field F.
Any non-unit r in a local F-algebra is nilpotent i.e., there is an m such that
rm = 0 (see [McD74]).

In this section we give a many-to-one reduction from F-algebra isomorphism
to local F-algebra isomorphism. Moreover, the local F-algebras that we construct
have basis elements most of whose products vanish. We exploit the properties
of this local F-algebra to give a reduction from F-algebra to cubic forms in the
next section.

Theorem 3.1. F-algebra isomorphism ≤P
m Local F-algebra isomorphism.

Proof. Given two F-algebras R and S, [AS05] constructs two cubic polynomials
p and q respectively such that p, q are equivalent iff R,S are isomorphic. These
polynomials look like (as in equation (2))):

p(z, b) =
∑

1≤i≤j≤n

zij

(
bibj −

∑
k

aij,kbk

)

q(z, b) =
∑

1≤i≤j≤n

zij

(
bibj −

∑
k

a′
ij,kbk

)
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Let

p3(z, b) =
∑

1≤i≤j≤n

zijbibj and p2(z, b) = −
∑

1≤i≤j≤n

(
zij

∑
k

aij,kbk

)
. (4)

Similarly define q3(z, b) and q2(z, b) from q. Thus, p = p3 + p2 and q = q3 + q2

where p3, q3 are homogeneous of degree 3 and p2, q2 are homogeneous of degree 2.
Using p, q we construct the following F-algebras:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

S′ := F[z, b, u]/
〈
q3, uq2, u

2, I
〉

(5)

where, I is the ideal generated by all possible products of 4 variables.
Note that all the variables in R′, S′ are nilpotent and hence the two rings are

local F-algebras (see [McD74]). The following claim tells us that it is enough to
consider the isomorphism problem for these local structures. Recall that R ∼= S
iff p, q are equivalent polynomials.

Claim 3.1.1. p(z, b), q(z, b) are equivalent polynomials iff R′ ∼= S′.

Proof of Claim 3.1.1. If p, q are equivalent then the same equivalence, extended
by sending u �→ u, gives an isomorphism from R′ to S′.

Conversely, say φ is an isomorphism from R′ to S′. Our intention is to show
that the linear part of φ induces an equivalence from p to q. Note that since
z, b, u are nilpotents in R′, therefore ∀i ≤ j ∈ [n], k ∈ [n], φ(zij), φ(bi), φ(u) can
have no constant term.

Let us see where φ sends u. Since φ(u)2 = 0 in S′ while for all i, j: z2
ij , b2

i �= 0,
the linear part of φ(u) can have no z, b’s. Thus,

φ(u) = c · u + (terms of degree 2 or more), where c ∈ F. (6)

Now by the definition of φ:

φ(p3) = c1·q3+c2·uq2+(linear terms in z, b, u)·u2+(terms of degree 4 or more),
where c1, c2 ∈ F.

By substituting u = 0 we get,

φ(p3) |u=0 = c1q3 + (terms of degree 4 or more) (7)

Also,

φ(up2) = d1 ·q3+d2 ·uq2+(linear terms in z, b, u) ·u2+(terms of degree 4 or
more),where d1, d2 ∈ F.

Using eqn (6) we deduce that d1 = 0. Thus,

φ(up2) = d2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)
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Again using eqn (6) we deduce:

uφ(p2) = d′2 ·uq2 +(linear terms in z, b, u) ·u2 +(terms of degree 4 or more),
where d′2 ∈ F.

Factoring out u and substituting u = 0 gives us:

φ(p2) |u=0 = d′2 · q2 + (terms of degree 3 or more) (8)

Let ψ be the linear part of φ after substituting u = 0, that is:

for all i ≤ j, ψ(zij) := linear terms of φ(zij) other than u and
for all i, ψ(bi) := linear terms of φ(bi) other than u

By comparing degree 3 and degree 2 terms on both sides of equations (7) and
(8) respectively, we get:

ψ(p3) = c1q3 (9)
ψ(p2) = d′2q2 (10)

Note that since φ is an isomorphism, ψ has to be an invertible map and thus,
ψ(p3), ψ(p2) �= 0. As a result c1 and d′2 are both non-zero. Consider the map
ψ′ := (d′

2
c1

) ◦ ψ. The above two equations give us: ψ′(p3 + p2) = d′3
2

c2
1
· (q3 + q2).

Denote d′3
2

c2
1

by c. Thus,

ψ′(p(z, b)) = c · q(z, b)
Now we can get rid of the extra factor of c by defining a map ψ′′:

∀i, j, ψ′′(zij) :=
1
c
ψ′(zij)

∀i, ψ′′(bi) := ψ′(bi)

It follows that ψ′′(p) = q and thus p(z, b), q(z, b) are equivalent. �

Thus, R ∼= S iff R′ ∼= S′ and hence it is sufficient to study F-algebra isomorphism
over local F-algebras of the form (5).

4 Cubic Form Equivalence

Given two cubic forms f(x), g(x) (homogeneous degree 3 polynomials over a field
F) the equivalence problem is to determine whether there is an invertible linear
transformation (over the field F) on the variables that makes the two forms equal.
When field F is finite, cubic form equivalence is in NP ∩ coAM. For an infinite
field F we expect the problem to be decidable but it is still open for F = Q.

Here we show that F-algebra isomorphism reduces to cubic form equivalence.
This improves the result of [AS05] that graph isomorphism reduces to cubic form
equivalence. The proof involves the use of similar cubic forms as constructed in
[AS05] but here we heavily use the properties of the intermediate local F-algebras
to study the equivalences of these cubic forms.
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Theorem 4.1. F-algebra isomorphism ≤P
m F-cubic form equivalence.

Proof. Given F-algebras R, S we will construct cubic forms φR, φS such that
the cubic forms are equivalent iff the algebras are isomorphic. The construction
involves first getting the local F- algebras R′, S′ (as in thm 3.1) and then the
cubic forms out of these local algebras (similar to [AS05]).

Let b1, . . . , bn be the additive basis of R over F. Let the multiplication in the
algebra be defined as:

for all i, j ∈ [n] : bi · bj =
n∑

k=1

aij,kbk, where aij,k ∈ F

Consider the following local ring R′ constructed from R:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

(11)

where p3(z, b) :=
∑

1≤i≤j≤n zijbibj and p2(z, b) :=
∑

1≤i≤j≤n zij (
∑n

k=1 aij,kbk).
I is the set of all possible products of 4 variables.

Similarly, construct S′ from S and we know from thm 3.1 that R ∼= S iff
R′ ∼= S′. Now we move on to constructing cubic forms from these local algebras
R′ and S′.

A natural set of generators of the ring R′ is: {1}∪{zij}1≤i≤j≤n ∪{bi}1≤i≤n ∪
{u}. For simplicity let us call them 1, x1, . . . , xg, u respectively, where g :=(
n+1

2

)
+ n. A natural additive basis of R′ over F is:

{1} ∪ {xi}1≤i≤g ∪ {u} ∪ {xixj}1≤i≤j≤g ∪ {uxi}1≤i≤g ∪ {xixjxk}1≤i≤j≤k≤g

∪{uxixj}1≤i≤j≤g minus oneterm each from p3 and up2. (12)

For simplicity denote this additive basis by 1, c1, . . . , cd respectively, where

d := g+1+
(
g + 1

2

)
+g+

(
g + 2

3

)
+
(
g + 1

2

)
−2 = 2g+2

(
g + 1

2

)
+
(
g + 2

3

)
−1

Finally, we construct a cubic form φR using R′ as follows:

φR(y, c, v) :=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(
d∑

k=1

ãij,kck

)
(13)

where ∀i, j, ci · cj =
∑d

k=1 ãij,kck in R′, for some ãij,k ∈ F.
Observe that the v terms in this cubic form are “few” because most of the ã

are zero. This property is useful in analysing the equivalence of such forms. Let
us bound the number of v terms in φR.

Claim 4.1.1. The number of surviving v terms in the rhs of eqn (13) is <
(3d− 6).
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Proof of Claim 4.1.1. The number of surviving v terms in the rhs of eqn (13) is:

≤ # {(k, l) | 1 ≤ k ≤ l ≤ d, ckcl �=0 in R′}+3 [#(terms in p3) + #(terms in p2)]

The first expression above accounts for all the relations in R′ of the form ckcl =
cm. The second expression takes care of the relations that arise from p3 = 0
and up2 = 0. The factor of 3 above occurs because a term xixjxk in p3, up2 can
create v terms in atmost 3 ways: from (xi) ·(xjxk) or (xj) ·(xixk) or (xk) ·(xixj).

≤ #
{
(k, l) | k ≤ l, ck, cl ∈ {xi}1≤i≤g

}
+ #

{
(k, l) | ck ∈ {xi}1≤i≤g , cl = u

}
+#

{
(k, l) | ck ∈ {xi}1≤i≤g , cl ∈ {xixj}1≤i≤j≤g

}
+#

{
(k, l) | ck ∈ {xi}1≤i≤g , cl ∈ {uxi}1≤i≤g

}
+#

{
(k, l) |ck =u, cl∈{xixj}1≤i≤j≤g

}
+ 3 [#(terms in p3) + #(terms in p2)]

≤
[(

g + 1
2

)
+ g + g ·

(
g + 1

2

)
+ g2 +

(
g + 1

2

)]
+ 3
[(

n + 1
2

)
+
(

n + 1
2

)
· n
]

Note that the dominant term in the above expression is g3

2 while in that of d it
is g3

6 . Computation gives the following bound:

< (3d− 6) �

Construct a cubic form φS from ring S in a way similar to that of eqn (13).

φS(y, c, v) :=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(
d∑

k=1

ẽij,kck

)
(14)

where ∀i, j, ci · cj =
∑d

k=1 ẽij,kck in S′ for some ẽij,k ∈ F.
The following claim is what we intend to prove now.

Claim 4.1.2. φR(y, c, v) is equivalent to φS(y, c, v) iff R′ ∼= S′ iff R ∼= S.

Proof of Claim 4.1.2. The part of this claim that needs to be proved is φR ∼
φS ⇒ R′ ∼= S′. Suppose ψ is an equivalence from φR(y, c, v) to φS(y, c, v). We
will show how to extract from ψ an isomorphism from R′ to S′.

We have the following starting equation to analyze:

∑
1≤i≤j≤d

ψ(yij)ψ(ci)ψ(cj)− ψ(v)
∑

1≤i≤j≤d

ψ(yij)

(
d∑

k=1

ãij,kψ(ck)

)

=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(
d∑

k=1

ẽij,kck

)
(15)

The main property of this huge equation that we would like to show is: ψ(ci)
consists of only c terms. Thus, ψ(ci) has enough information to extract a ring
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isomorphism from R′ to S′. In the rest of the proof we will rule out the unpleasant
cases of ψ(ci) having y, v terms and ψ(v) having y terms.

Let for every i, ψ(ci) =
∑

j αi,jcj +
∑

j,k βi,jkyjk + γiv where α,β, γ’s ∈ F.
For obvious reasons we will call the expression

∑
j,k βi,jkyjk as the y part of

ψ(ci). y parts of ψ(v) and ψ(yij) are defined similarly. We will show that the
rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is less than 3.

Assume that for some i, j, k the y parts of ψ(ci), ψ(cj), ψ(ck) are linearly in-
dependent over F. By a term on the lhs of eqn (15) we mean expressions of the
form ψ(yls)ψ(cl)ψ(cs) or ψ(v)ψ(yls)ψ(ct) where l, s, t ∈ [d]. Let T0 be the set of
all terms. There are atleast d + (d − 1) + (d − 2) = (3d − 3) terms on the lhs of
eqn (15) that have an occurrence of ψ(ci), ψ(cj) or ψ(ck), denote this set of terms
by T1. Let the set of the remaining terms be T2. Let us build a maximal set Y of
linearly independent y parts and a set T of terms as follows: Start with keeping y
parts of ψ(ci), ψ(cj), ψ(ck) in Y and setting T = T1. Successively add a new y part
to Y that is linearly independent from the elements already in Y and that occurs
in a term t in T0 \ T , also add t to T . It is easy to see (by claim 4.1.1) that:

#Y ≤ 3 + #T2

< 3+
[(

d + 1
2

)
+(3d−6)− (3d−3)

]
=
(

d + 1
2

)
=# {yij}1≤i≤j≤d (16)

Now apply an invertible linear transformation τ on the y variables in equation
(15) such that all the y parts in Y are mapped to single y variables, let τ(Y )
denote the set of these variables. By substituting suitable linear forms, having
only c, v’s, to variables in τ(Y ) we can make all the terms in τ(T ) zero and
the rest of the terms, i.e. τ(T0 \ T ), will then have no occurrence of y variables
(as Y is the maximal set of linearly independent y parts). Thus, the lhs of
eqn (15), after applying τ and the substitutions, is completely in terms of c, v
while the rhs still has atleast one free y variable (as we fixed only #τ(Y ) <
# {yij}1≤i≤j≤d y variables and as τ is an invertible linear transformation). This
contradiction shows that the y part of ψ(ci), ψ(cj), ψ(ck) cannot be linearly
independent, for any i, j, k. Using a similar argument it can be shown that the
y part of ψ(ci), ψ(cj), ψ(v) cannot be linearly independent, for any i, j. Thus,
the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is ≤ 2. For concreteness let us
assume that the rank is exactly 2, the proof we give below will easily go through
even when the rank is 1.

Again let Y be a maximal set of linearly independent y parts occurring in
{ψ(yij)}1≤i≤j≤d with the extra condition that y parts in Y are also linearly
independent from that occurring in ψ(c1), . . . , ψ(cd), ψ(v). As we have assumed
the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) to be 2 we get #Y =

(
d+1
2

)
− 2.

Let (i1, j1), (i2, j2) be the two tuples such that the y parts of ψ(yi1j1), ψ(yi2j2)
do not appear in Y . To make things easier to handle let us apply an invertible
linear transformation τ1 on the y variables in equation (15) such that:

– the y parts of τ1 ◦ ψ(c1), . . . , τ1 ◦ ψ(cd), τ1 ◦ ψ(v) have only yi1j1 and yi2j2 .
– for all (i, j) other than (i1, j1) and (i2, j2), the y part of τ1◦ψ(yij) has only yij .
– τ1 is identity on c, v.
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For clarity let ψ′ := τ1 ◦ψ. Rest of our arguments will be based on comparing
the coefficients of yij , for (i, j) �= (i1, j1), (i2, j2), on both sides of the equation:

∑
1≤i≤j≤d

ψ′(yij)

(
ψ′(cicj)− ψ′(v)

d∑
k=1

ãij,kψ
′(ck)

)
=

∑
1≤i≤j≤d

yij(quadratic terms in c, v) (17)

For any ci, choose distinct basis elements cj , ck and cl satisfying cicj = cick =
cicl = 0 in R′ (note that there is an ample supply of such j, k, l), such that by
comparing coefficients of yij , yik, yil (assumed to be other than yi1j1 , yi2j2) on
both sides of equation (17) we get:

ψ′(cicj) + (eij,1E1 + eij,2E2) = (quadratic terms in c, v)
ψ′(cick) + (eik,1E1 + eik,2E2) = (quadratic terms in c, v)
ψ′(cicl) + (eil,1E1 + eil,2E2) = (quadratic terms in c, v) (18)

where, eij,1, eij,2, eik,1, eik,2, eil,1, eil,2 ∈ F and

E1 = ψ′(ci1cj1)− ψ′(v)
d∑

k=1

ãi1j1,kψ
′(ck)

E2 = ψ′(ci2cj2)− ψ′(v)
d∑

k=1

ãi2j2,kψ
′(ck)

Now there exist λ1, λ2, λ3 ∈ F (not all zero) such that equations (18) can be
combined to get rid of E1, E2 and get:

ψ′(ci) (λ1ψ
′(cj) + λ2ψ

′(ck) + λ3ψ
′(cl)) = (quadratic terms in c, v)

This equation combined with the observation that both ψ′(ci) and (λ1ψ
′(cj) +

λ2ψ
′(ck) + λ3ψ

′(cl)) are non-zero (as ψ′ is invertible) implies that:

∀i, ψ′(ci) = (linear terms in c, v) (19)

This means that the y-variables are only in ψ′(yij)s and possibly ψ′(v). Again
apply an invertible linear transformation τ2 on the y-variables in equation (17)
such that τ2 ◦ψ′(v) has only yi0j0 in the y part and except for one tuple (i0, j0),
the y part of τ2◦ψ′(yij) has only yij for all other (i, j). For clarity let ψ′′ := τ2◦ψ′.
Our equation now is:

∑
1≤i≤j≤d

ψ′′(yij)

(
ψ′′(cicj)− ψ′′(v)

d∑
k=1

ãij,kψ
′′(ck)

)

=
∑

1≤i≤j≤d

yij(quadratic terms in c, v) (20)
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By comparing coefficients of yij (other that yi0j0) on both sides of the above
equation we get:(

ψ′′(cicj)− ψ′′(v)
d∑

k=1

ãij,kψ
′′(ck)

)
+ e

(
ψ′′(ci0cj0)− ψ′′(v)

d∑
k=1

ãi0j0,kψ
′′(ck)

)

= (quadratic terms in c, v), for some e ∈ F.

Pick i, j such that
∑d

k=1 ãij,kck �= 0 in R′. Now if ψ′′(v) has a nonzero yi0j0 term
then by comparing coefficients of yi0j0 on both sides of the above equation we
deduce:

d∑
k=1

ãij,kψ
′′(ck) + e

d∑
k=1

ãi0j0,kψ
′′(ck) = 0 (21)

But again we can pick i, j suitably so that
(∑d

k=1 ãij,kck

)
�∈
{

0,−e
∑d

k=1 ãi0j0,kck

}
and hence avoiding equation (21) to hold. Thus, proving that ψ′′(v) has no yi0j0

term. So we now have:

ψ′′(v) = (linear terms in c, v)
and

∀i, ψ′′(ci) = (linear terms in c, v) (22)

Since y-variables are present only in ψ′′(yij)’s, comparing coefficients of yij ’s
on both sides of equation (20) gives:

∀i, j, ψ′′(cicj) − ψ′′(v)
d

k=1

ãij,kψ′′(ck)=(quadratic terms in c) − v(linear terms in c)

(23)

Using this equation we will prove now that ψ′′(ci) has only c-variables.
Consider a ci such that c2

i = 0 in R′, then from equation (23):

ψ′′(ci)2 = (quadratic terms in c)− v(linear terms in c) (24)

Now if ψ′′(ci) has a nonzero v term then there will be a v2 term above on the
lhs which is absurd. Thus, ψ′′(ci) has only c-variables when c2

i = 0 in R′. When
c2
i �= 0 then c2

i =
∑d

k=1 ãii,kck in R′ where the ck’s with nonzero ãii,k satisfy
c2
k = 0. This happens because the way c’s are defined in eqn (12) the expression

of c2
i will have only quadratic or cubic terms in x and the square of these terms

would clearly be zero in R′. Thus, again if ψ′′(ci) has a v term then there will
be an uncancelled v2 term on the lhs of the equation:

ψ′′(ci)2 − ψ′′(v)
d∑

k=1

ãii,kψ′′(ck) = (quadratic terms in c)− v(linear terms in c)
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Thus, we know at this point that ψ′′(v) has only c, v terms and ψ′′(ci) has only
c terms. Since τ1, τ2 act only on the y’s we have what we intended to prove from
the beginning (recall eqn (15)):

ψ(v) = (linear terms in c, v)
and

∀i, ψ(ci) = (linear terms in c) (25)

We have now almost extracted a ring isomorphism from the cubic form equiva-
lence ψ, just few technicalities are left which we resolve next.

Apply an invertible linear transformation τ3 on the y-variables in equation
(15) such that the y part of τ3 ◦ ψ(yij) has only yij for all i ≤ j ∈ [d]. Of course
we assume that τ3 is identity on the c, v variables. So on comparing coefficients
of yij on both sides of the eqn (15) after applying τ3 we get:

∀i, j, τ3 ◦ ψ(cicj)− τ3 ◦ ψ(v)
d∑

k=1

ãij,kτ3 ◦ ψ(ck) =
∑
i≤j

λij

(
cicj − v

d∑
k=1

ẽij,kck

)
(26)

for some λij ∈ F.
Substitute v = 1 in the expression for τ3 ◦ψ(v) = γvvv+

∑
i αvici and denote

the result by m. Observe that γvv �= 0 and ∀i, ci is a nilpotent element in S′

and hence m is a unit in the ring S′. On substituting v = 1 in eqn (26) we get:

∀i, j, τ3 ◦ ψ(ci)τ3 ◦ ψ(cj)−m ·
d∑

k=1

ãij,kτ3 ◦ ψ(ck) = 0 in S′

If we define Ψ := τ3◦ψ
m then we get:

∀i, j, Ψ(ci)Ψ(cj)−
d∑

k=1

ãij,kΨ(ck) = 0 in S′

Now observe that if for some λi’s ∈ F, Ψ(
∑d

i=1 λici) = 0 in S′ then τ3 ◦
ψ(
∑d

i=1 λici) = 0 in S′. Since τ3 ◦ ψ is an invertible linear map this means
that

∑d
i=1 λici = 0 in R′. Thus, showing that Ψ is an injective map from R′ to

S′. Since R′ and S′ are of the same dimension over F, Ψ becomes surjective too.
Thus, Ψ is an isomorphism from R′ to S′. �

This completes the reduction from F-algebra isomorphism to cubic form
equivalence.

5 Conclusion

In this paper we gave a reduction from F-algebra isomorphism to F-cubic form
equivalence for any field F. Thus, cubic form equivalence, in addition to being a
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natural algebraic problem, is also directly related to isomorphism problems for
F-algebras and graphs. We would like to pose the following questions related to
cubic forms:

– Is there a subexponential algorithm for F-cubic forms for any field F? Such an
algorithm will result in a subexponential time algorithm for Graph
Isomorphism.

– Is Q-cubic form equivalence decidable? This will make Q-algebra isomor-
phism decidable too.
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Abstract. We define a code in a sofic shift as a set of blocks of symbols
of the shift such that any block of the shift has at most one decomposition
in code words. It is maximal if it is not strictly included in another one.
Such a code is complete in the sofic shift if any block of the shift occurs
within some concatenation of code words. We prove that a maximal code
in an irreducible sofic shift is complete in this shift. We give an explicit
construction of a regular completion of a regular code in a sofic shift.
This extends the well known result of Ehrenfeucht and Rozenberg to the
case of codes in sofic systems. We also give a combinatorial proof of a
result concerning the polynomial of a code in a sofic shift.

1 Introduction

In this paper, we continue the study of codes in sofic shifts initiated in [1]. This
generalization of the theory of (variable length) codes extends previous works of
Reutenauer [2], Restivo [3] and Ashley et al. [4]. The main result of this paper
is an extension of a classical result of Schützenberger [5] relating the notions of
completeness and maximality of codes.

Let S be a sofic shift, i.e. the set of bi-infinite sequences of symbols labelling
paths in a finite automaton. The set of factors of S, denoted by Fact(S), is the
set of blocks appearing in the elements of S. We call S-code a set of elements of
Fact(S) such that any element of Fact(S) has at most one decomposition in code
words. A set of words X is S-complete if any element of Fact(S) occurs within
some concatenation of elements of X . An S-code is maximal if it is maximal for
inclusion.

We prove that, for any irreducible sofic shift S, any maximal S-code is S-
complete. Moreover, we give an effective embedding of a regular S-code into
an S-complete one. This extends the well known theorem of Ehrenfeucht and
Rozenberg [6] to codes in a sofic shift.

Our definition of S-codes generalizes the notion introduced by Restivo [3]
and Ashley et al. [4]. In the first place, they consider subshifts of finite type
instead of the more general notion of sofic shifts. Although shifts of finite type
can also be described by a finite automaton, there is a real gap between the two
classes. Indeed, representations of shifts of finite type have nice strong properties
of synchronization that do not have general sofic shifts. These properties are
used to complete the codes. In the second place, they consider codes such that
all concatenations of code words are in Fact(S), a condition that we do not

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 127–136, 2006.
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impose. Our definition here is also slightly more general than the one used in
our previous paper [1]. Indeed, we only require the unique factorization for the
words of Fact(S) and not for all products of code words. We think that this
definition is more natural. The results of [1] all extend straightforwardly to this
new class.

In the last section, we give a combinatorial proof of the main result of our
previous paper [1] concerning the polynomial of a finite code. This proof is
interesting because it is simpler and also because it relates our result to ones
due to S. Williams [7] and M. Nasu [8].

The paper is organized as follows. We first recall some basic definitions from
the area of symbolic dynamics and from the theory of codes. We introduce the
notions of S-code, maximal S-code, and S-complete code when S denotes a
sofic shift. In Section 3, we prove that any maximal S-code is S-complete. A
combinatorial proof of the result of [1] is given in the last section.

2 Codes and Sofic Shifts

2.1 Sofic Shifts

Let A be a finite alphabet. We denote by A∗ the set of finite words, by A+ the set
of nonempty finite words, and by AZ the set of bi-infinite words on A. A subshift
is a closed subset S of AZ which is invariant by the shift transformation σ (i.e.
σ(S) = S) defined by σ((ai)i∈Z) = (ai+1)i∈Z.

A finite automaton is a finite multigraph labeled on a finite alphabet A. It is
denoted A = (Q,E), where Q is a finite set of states, and E a finite set of edges
labeled by A. All states of these automata can be considered as both initial and
final states.

A sofic shift is the set of labels of all bi-infinite paths in a finite automaton.
A sofic shift is irreducible if there is such a finite automaton with a strongly
connected graph. In this case the automaton also is said to be irreducible. An
automaton A = (Q,E) is deterministic if, for any state p ∈ Q and any word u,
there is at most one path labeled u and going out of p. When it exists, the
target state of this path is denoted by p · u. An automaton is unambiguous if
there is at most one path labeled by u going from a state p to a state q for any
given triple p, u, q. Irreducible sofic shifts have a unique (up to isomorphisms of
automata) minimal deterministic automaton, that is a deterministic automaton
having the fewest states among all deterministic automata representing the shift.
This automaton is called the Fischer cover of the shift. A subshift of finite type
is defined as the bi-infinite words on a finite alphabet avoiding a finite set of
finite words. It is a sofic shift. The full shift on the finite alphabet A is the set
of all bi-infinites sequences on A, i.e. the set AZ.

The entropy of a sofic shift S is defined as

h(S) = lim
n→∞

1
n

log2 sn,

where sn is the number of words of length n of Fact(S). The Fischer cover of a
transitive sofic shift of null entropy is made of one cycle.
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Example 1. Let S be the irreducible sofic subshift on A = {a, b} defined by the
automaton on the left of Figure 1. This automaton is the Fischer cover of S.
This shift is the so-called even system since its bi-infinite sequences are those
having an even number of b’s between two a’s. It is not a shift of finite type.

Let T be the irreducible shift on A = {a, b} defined by the forbidden block
bb. It is a shift of finite type. Its Fischer cover is given on the right of Figure 1.
This shift is the so-called golden mean system.

1 2a

b

b

1 2a

b

a

Fig. 1. The Fischer covers of the even system S on the left, and of the golden mean
system T on the right

Let S be a subshift on the alphabet A. We denote by Fact(S) the set of finite
factors (or blocks) of elements of S. Each element of Fact(S) is the label of a
finite path of the Fischer cover of S.

Let A be a finite automaton. A word w is said to be a synchronizing word ofA
if and only if any path in A labeled by w ends in a same state depending only on
w. If p denotes this states, one says that w synchronizes to p. For instance the
words a, bab are synchronizing words of the Fischer cover of the even system. In
the golden mean shift, which is a shift of finite type, each word of length 1, i.e.
a or b, is a synchronizing word. For any Fischer cover of a shift of finite type,
there is a positive integer k such that any word of length k is synchronizing.

Let L be a language of finite words. A word w is a synchronizing word of L if
and only if whenever u, v are words such that uw and wv belong to L, one has
uwv belongs to L. Note that if w is a synchronizing word of an automaton A
recognizing a sofic shift S, it is a synchronizing word of the language Fact(S).

It is known that the Fischer cover of an irreducible sofic shift S has a syn-
chronizing word [9, Proposition 3.3.16]. If w is one of them, for any words u, v
such that uwv ∈ Fact(S), uwv is a synchronizing word also.

2.2 Codes

Let S be a sofic shift. A set of finite words X ⊂ Fact(S) on an alphabet A is an
S-code if and only if whenever w = x1x2 . . . xn = y1y2 . . . ym, where xi, yj ∈ X ,
n,m are positive integers, and w ∈ Fact(S), one has n = m and xi = yi for
1 ≤ i ≤ n. Thus the classical definition of a code corresponds to the case where S
is the full shift. Any code is an S-code but the converse is false as shown with
the following example.

Example 2. The set {a, ab, ba} is not a code but it is not difficult to see that it is
an S-code in the even system. Indeed any word with two factorizations contains
the block aba.
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Let S be a sofic shift. A set X on the alphabet A is said to be complete in S,
or S-complete, if X is an S-code and any word in Fact(S) is a factor of a word
in X∗. For instance the code X = {a, bb} is complete in the even system.

An S-code X is maximal if it is not strictly included in another S-code.
In [2] is an example of an S-complete code which is not maximal. Indeed, let

us consider the shift of finite type S defined on the alphabet A = {a, b} and
avoiding the blocks aa and bb. The S-code X = {ab} is S-complete but not
maximal since X is strictly included in the S-code Y = {ab, ba}.

There is a connection between complete S-codes and a concept which has been
studied in symbolic dynamics. This explains why the results proved in Section 4
are related with the results of Williams [7] and Nasu [8]. Let X be a complete
S-code. Let A = (Q,E) be the Fischer cover of S. We build an automaton B
computed from X and A as follows. The set of states of B contains the set of
states Q of A. For each path in A labeled by a word in X going from a state p
to a state q, we build a path in B from p to q with dummy states inbetween. Let
T be the subshift of finite type made of the bi-infinite paths of the graph of B.
The labelling of the paths in the automaton B defines a block map φ from T
to S. The set X is an S-code if and only if φ is finite-to-one. It is S-complete if
and only if φ is onto. Thus statements on complete S-codes can be reformulated
as statements on finite-to-one factor maps between irreducible sofic shifts.

3 Completion of an S-Code

The following result generalizes the theorem of Ehrenfeucht and Rozenberg [6].
As in the case of the extension to subshifts of finite type obtained in [4], the
proof uses the same type of construction as the one of [6]. It requires however,
as we shall see, a careful adaptation to extend to sofic shifts.

Theorem 1. Let S be an irreducible sofic shift. If X is an S-code, there is an
S-code Y such that X ⊆ Y and Y is S-complete. If X is moreover regular, Y
can be chosen regular and is computable in an effective way.

A nonempty word w of A∗ is called unbordered if no proper nonempty left factor
of w is a right factor of w. In other words, w is unbordered if and only if w ∈
uA+ ∩A+u implies u = ε, where ε denotes the empty word.

The following lemma provides the construction of an unbordered word in the
set of factors of an irreducible sofic shift. It replaces the construction used in
[5, Proposition 3.6] for the case of the full shift.

Lemma 1. Let S be an irreducible sofic shift which has a positive entropy. Let
z be a word in Fact(S). Then there is a word y in Fact(S) such that z is a factor
of y and y is unbordered.

Proof. Let A be the Fischer cover of S. Let m be the number of states of A and
let k be the length of z. Since S has a positive entropy, there are two distinct
nonempty words u, v labels of first return paths in A to state p. The words
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u and v are not two powers a same word since A is deterministic. Moreover
{u, v}∗ is a submonoid of Fact(S). Let w = uk+mvk+m. Since k + m ≥ 2, by
[10, Theorem 9.2.4, pp. 166], w is a primitive word. It follows that the Lyndon
word w′ conjugate to w is unbordered (see for instance [10, Proposition 5.1.2,
p. 65]). Since A is irreducible, there are two words b1, b2 of length at most m
such that the word y = w′b1zb2w

′ ∈ Fact(S).
We claim that y is unbordered. This fact is trivial by considering the length,

greater than 2k + 2m, of w′, the length k + 2m of b1zb2 and the fact that w′ is
unbordered.

Proof (Sketch of proof of Theorem 1). Let S be an irreducible sofic shift. We
denote by A the Fischer cover of S. Let X be an S-code.

Let us suppose that X is not S-complete. Consequently there is a word z in
Fact(S) which is not in Fact(X∗).

We first assume that S has a null entropy. This means that the Fischer cover
A is made of a unique cycle. One can assume that there is a state p such that
p has no outgoing path in A labeled in X . Otherwise X is already S-complete.
Since A is irreducible, one can assume without loss of generality that z is the
label of a path in A going from a state p to itself, and that z is moreover a
synchronizing word of A. We set Y = X ∪ {z}. Now we show that Y is an
S-code. Assume the contrary and consider a relation

x1x2 . . . xn = y1y2 . . . ym,

with x1x2 . . . xn ∈ Fact(S), xi, yj ∈ Y , and xn �= ym. The set X being an S-
code, at least one of the words xi, yj must be z. Hence, for instance x1x2 . . . xn =
x1x2 . . . xrzxr+1 . . . xn. The word zxr+1 . . . xn is the label of a path in A going
through the state p after reading the label z. Since p has no outgoing path in A
labeled in X , it follows that xr+1 . . . xn = zn−r. Hence there is a positive integer k
such that x1x2 . . . xn = x1x2 . . . xrz

k with x1, x2, . . . , xr �= z. Since z is not a
factor of X∗, there is also a positive integer l such that y1y2 . . . ym = y1y2 . . . ytz

l

with y1, y2, . . . , yt �= z. The above relation becomes

x1x2 . . . xrz
k = y1y2 . . . ytz

l,

which contradicts the hypothesis that xn �= ym since z /∈ Fact(X∗). It is trivial
that Y is S-complete.

We may now assume that S has a positive entropy. Without loss of generality,
by extending z on the right, one can moreover assume that z is a synchronizing
word. By Lemma 1, we construct a word y ∈ Fact(S) which is unbordered and
has w as factor. Moreover y is a synchronizing word of A.

If L is a language of finite words, we denote by u−1L (resp. Lu−1) the set of
words z such that uz ∈ L (resp. zu ∈ L).

We define the sets U and Y by

U = y−1 Fact(S)y−1 −X∗ −A∗yA∗, (1)
Y = X ∪ y(Uy)∗. (2)
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The rest of the proof consists in verifying the following three properties.

– The set Y is a subset of Fact(S).
– The set Y is an S-code.
– The set Y is S-complete.

It is clear from Equations (1) and (2) that Y is regular when X is regular. It
can be computed in an effective way from these equations. !"

Remark 1. Note that our proof shows that, if S is an irreducible sofic shift with
a positive entropy, and X is a code, then X can be completed into a code Y
(i.e a code for the full shift) which is S-complete. We do not know whether this
property also holds for irreducible shifs of entropy zero.

In [11,3] (see also [4]), it is proved that if S is an irreducible shift of finite type
and X a code with X∗ ⊆ Fact(S) which is not S-complete, X can be embedded
into an S-complete set which is moreover a code (i.e a code for the full shift). The
proof of our theorem allows us to recover this result. Indeed, when X∗ ⊆ Fact(S),
our construction build an S-code Y which is a code. Moreover, the S-complete
code Y that we have built satisfies also Y ∗ ⊆ Fact(S), when X∗ ⊆ Fact(S).
This is due to the strong synchronization properties of the Fischer cover of an
irreducible shift of finite type.

Example 3. We consider the even system S of Example 1 on the alphabet A =
{a, b}. Let X = {a, ba}. The set X is an S-code but it is not S-complete since
for instance z = bb does not belong to Fact(X∗). The regular completion of X
is obtained following the proof of Theorem 1. We replace z by bba in order to
get a synchronizing word. The proof of Lemma 1 says that the word a2b4bbaa2b4

is an unbordered word of Fact(S). But a smaller y can be chosen. For instance
y = bba also is an unbordered word of Fact(S). We then define U and Y as in
Equations (1) and (2). The set Y is a regular S-complete code.

We derive the following corollary which generalizes to codes in irreducible sofic
shifts the fact that any maximal code is complete [5, Theorem 5.1].

Corollary 1. Let S be an irreducible sofic shift. Any maximal S-code is S-
complete.

4 Polynomial of a Code

In the sequel, S is an irreducible sofic shift recognized by its Fischer cover A =
(Q,E). Let μA (or μ) be the morphism from A∗ into NQ×Q defined as follows.
For each word u, the matrix μ(u) is defined by

μ(u)pq =

{
1 if p · u = q

0 otherwise.

The matrix αA(u) (or α(u)) is defined by α(u) = μ(u)u. Thus the matrix α(u) is
obtained from μ(u) by replacing its coefficients 1 by the word u. The coefficients
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of α(u) are either 0 or u. In this way α is a morphism from A∗ into the monoid
of matrices with elements in the set of subsets of A∗.

The morphism α is extended to subsets of A∗ by linearity.
For a finite set X , we denote by pX the polynomial in commuting variables:

pX = det(I − α(X)).

The following result is proved in [1]. It is a generalization of a result of C. Reute-
nauer [2] who has proved it under more restrictive assumptions.

Theorem 2. Let S be an irreducible sofic shift and let X be a finite complete
S-code. The polynomial pA divides pX .

Example 4. For the even shift and the set X = {aa, ab, ba, bb}, we have

α(A) =
[
a b
b 0

]
and α(X) =

[
aa + bb ab

ba bb

]
,

and pA = 1− a− bb, pX = 1− aa− 2bb + b4 = (1 + a− bb)(1− a− bb).

We present here two combinatorial proofs of this result, which come as an alter-
native to the analytic proof presented in [1]. Both proofs rely on the reduction
of automata with multiplicities.

The first proof goes along the same line as the proof of a result of S. Williams
presented in Kitchen’s book [12, p. 156], giving a necessary condition to the
existence of a finite-to-one factor map between irreducible sofic shifts.

We first build as in Section 2 an automaton B computed from X and A as
follows. The set of states of B contains the set of states Q of A. For each path in
A labeled by a word in X going from state p to state q, we build a path in B from
p to q with dummy states inbetween as shown in Example 5. The automaton B
is unambiguous if and only if the set X is an S-code. It represents S if and only
if the set X is S-complete.

Example 5. Consider the code X = {aa, ab, ba, bb} in the even system S. The
automaton B is represented in the right part of Figure 2.

1 2a

b

b

1 2

5 3

4

7

6

a

a
a b

ba

b

b
b

b

Fig. 2. The automaton A (on the left), and the automaton B computed from A and
X = {aa, ab, ba, bb} (on the right)
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Since X is a complete S-code, B is unambiguous and represents S. Without loss
of generality, one can assume that B is irreducible. Otherwise, one keeps only a
strongly connected component of B representing S. By construction,

pA = det(I − αA(A)) and pX = det(I − αB(A)).

Hence, Theorem 2 is a consequence of the following result.

Proposition 1. Let S be an irreducible sofic shift and let A be its Fischer cover.
If B is an unambiguous and irreducible automaton representing S, det(I−αA(A))
divides det(I − αB(A)).

Proof (Sketch of proof). The degree of a word u in an automaton is defined as
the number of paths labeled by u. The degree of an automaton is the minimal
non-null value of the degree of words. Any unambiguous irreducible automaton
of degree k has the following property: for any word u of degree k and any word
w such that uwu has a non-null degree, uwu has degree k.

We first assume that the Fischer cover A of S is codeterministic (or left
resolving): for any state p ∈ Q and any word u, there is at most one path
labeled by u and ending at p. In this case the degree of A is d = 1. Indeed, since
A is a Fischer cover, it has a synchronizing word. Since A is codeterministic,
each synchronizing word has degree 1.

Let v (resp. w) be a word which has a non-null and minimal degree k (resp.
d = 1) in B (resp. in A). Since B is irreducible, there are words z, z′ such that
vzwz′v has a non-null degree. Hence vzwz′v has degree k in B and degree d = 1
in A. We set u = vzwz′v.

An N-automaton with a set of states Q is a triple 〈I,μ, T 〉, where I and T are
two vectors — respectively initial row vector and final column vector — with
entries in N, and where μ is a morphism from A∗ into NQ×Q. It is equivalently
defined by the triple 〈I, α(A), T 〉. Two N-automata 〈I,μ, T 〉 and 〈J,μ′,F 〉 are
equivalent if and only if, for any word w ∈ A∗, Iμ(w)T = Jμ′(w)F .

Let 1A be the row-vector with all coefficients equal to 1 of size the num-
ber of states of A, and 1t

A its transpose. It follows from the definition of the
word u that the two N-automata C = 〈k1AμA(u), μA, μA(u)1t

A〉, and D =
〈d1BμB(u), μB, μB(u)1t

B〉, are equivalent.
The standard Schützenberger reductions of the N-automata C and D over the

field R are similar. The reduction of each N-automaton is obtained through a
left reduction followed by a right reduction (see for instance [13] or [14]).

Since u has degree 1, the initial row (resp. final column) vector of C has a
unique non-null coefficient. Consequently, since A is deterministic (resp. code-
terministic) and irreducible, the automaton C is left (resp. right) reduced. Hence
C is already reduced.

Finally, one can prove that the transition matrix of D is similar to a matrix
having a principal subblock equal to the transition matrix of its left (or right)
reduced form. It follows that det(I − αA(A)) divides det(I − αB(A)). The ex-
tension to sofic shifts that may not have a codeterministic Fischer cover can be
obtained with a specialization argument (see [1]). !"
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Example 6. We continue with Example 5. The word bab has degree 2 in B and 1
in A. Hence the N-automata

C = 〈 0 2 , μA(A) =
a b
b 0 ,

0
1 〉, and D = 〈 0 1 0 0 0 1 0 , μB(A), 0 1 0 0 0 1 0 t〉,

are equivalent. We obtain a right-reduction of the automaton D = 〈I, E =
αB(A), T 〉 by computing a basis of the vector space generated by the vectors in
μ(A∗)T . We can choose the basis (T,μ(b)T,μ(ab)T ) since μ(a)T = 0, μ(bb)T =
T , μ(bab)T = T and μ(aab)T = μ(ab)T . This basis is extended to a basis of R7,
for instance with the first 4 column vectors e1, . . . e4 of the canonical basis of R7.

Let F and H be the matrices

F =

0 b b
b 0 0
0 a a

b 0 0 0
0 b 0 0
a 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

−a −b a 0
−b 0 0 b

a 0 0 0
−a 0 0 0

, H =

0 b
b a

0
0

1 0 0

.

We get that E is similar to F . Let us denote by G the upper left block matrix
of size 3 of F . The right-reduced automaton 〈

(
2 0 0

)
, G =

( 0 b b
b 0 0
0 a a

)
,
( 1

0
0

)
〉 can be

now reduced on the left side. We get that G is similar to H . The upper left block
matrix of size 2 of G is similar to αA(A). As a consequence, det(I − αA(A)) =
1 − a − bb divides det(I − H) which divides det(I − F ) = det(I − αB(A)) =
(1− a− bb)(1 + a− bb).

A variant of the combinatorial proof uses an argument due to Nasu [8].
We denote by M (resp. M ′) the matrix M =

∑
a∈A μA(a) and (resp. M ′ =∑

a∈A μB(a)). It is known from the Perron-Frobenius theory that M and M ′

have the same positive spectral radius λ, the logarithm of λ being called the
topogical entropy of the sofic shift S [9]. Let U , V (resp. U ′, V ′) be two real
positive left and right eigenvectors of M (resp. of M ′) for the eigenvalue λ. One
can choose these vectors such that UV = U ′V ′ = 1. With these settings, the
two R-automata C = 〈U,μA,V 〉 and D = 〈U ′,μB,V

′〉 are equivalent.
The proof of this equivalence relies on the following arguments. One first

divides μA and μB by λ to assume that λ = 1.
For any word x ∈ A∗ and any R-automaton S = 〈I,μ, T 〉, we denote by

πS(x) the real coefficient Iμ(x)T . Hence C and D are equivalent if and only if
πC(x) = πD(x) for any x ∈ A∗. The functions πC and πD define two rational
probability measures on A∗ [15]. These measures satisfy the following properties.

– A right (and left) invariance property: for any x ∈ A∗, with S equal to C
or D. ∑

w∈Ak

πS(xw) = πS(x).
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– An ergodic property: for any x ∈ A∗, with S equal to C or D.

lim
n→∞

1
n

n−1∑
i=0

∑
w∈Ai

πS(xwy) = πS(x)πS(y).

Moreover, since the automata A and B are unambiguous, one can show that
there are positive real numbers ρ, ρ′ such that for any x ∈ A∗, πC(x) ≤ ρ πD(x)
and πD(x) ≤ ρ′πC(x). The equivalence of C and D follows from these inequalities.
The reduction of the automata is used to finish the proof as before.

Acknowledgments. The authors would like to thank an anonymous reviewer for
detecting an error in Lemma 1 in a preliminary version of this paper.
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Abstract. We introduce the study of Kolmogorov complexity with er-
ror. For a metric d, we define Ca(x) to be the length of a shortest program
p which prints a string y such that d(x, y) ≤ a. We also study a condi-
tional version of this measure Ca,b(x|y) where the task is, given a string
y′ such that d(y, y′) ≤ b, print a string x′ such that d(x,x′) ≤ a. This def-
inition admits both a uniform measure, where the same program should
work given any y′ such that d(y, y′) ≤ b, and a nonuniform measure,
where we take the length of a program for the worst case y′. We study
the relation of these measures in the case where d is Hamming distance,
and show an example where the uniform measure is exponentially larger
than the nonuniform one. We also show an example where symmetry of
information does not hold for complexity with error under either notion
of conditional complexity.

1 Introduction

Kolmogorov complexity measures the information content of a string typically
by looking at the size of a smallest program generating that string. Suppose we
received that string over a noisy or corrupted channel. Such a channel could
change random bits of a string, possibly increasing its Kolmogorov complexity
without adding any real information.

Alternatively, suppose that we do not have much memory and are willing to
sacrifice fidelity to the original data in order to save on compressed size. What is
the cheapest approximation to a string within our level of tolerance to distortion?
Such compression where some, less important we hope, information about the
original data is lost is known as lossy compression.
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Intuitively, these scenarios are in some sense complementary to one another:
we expect that if we lossy compress a string received over a corrupted chan-
nel with our level of tolerance equal to the number of expected errors, then
the cheapest string within the level of tolerance will be the one with the high
complexity noise removed. Ideally we would get back our original string. For
certain compression schemes and models of noise this intuition can be made
precise [8].

In this paper we explore a variation of Kolmogorov complexity designed to
help us measure information in these settings. We define the Kolmogorov com-
plexity of a string x with error a as the length of a smallest program generating
a string x′ that differs from x in at most a bits. We give tight bounds (up to
logarithmic factors) on the maximum complexity of such strings and also look
at time-bounded variations.

We also look at conditional Kolmogorov complexity with errors. Traditional
conditional Kolmogorov complexity looks at the smallest program that converts
a string y to a string x. In our context both x and y could be corrupted. We
want the smallest program that converts a string close to y to a string close to x.
We consider two variations of this definition, a uniform version where we have a
single program that that converts any y′ close to y to a string x′ close to x and
a nonuniform version where the program can depend on y′. We show examples
giving a large separation between the uniform and nonuniform definitions.

Finally we consider symmetry of information for Kolmogorov complexity with
error. Traditionally the complexity of the concatenation of strings x, y is roughly
equal to the sum of the complexity of x and the complexity of y given x. We
show that for any values of d and a the complexity of xy with error d is at most
the sum of the complexity of x with error a and the complexity of converting a
string y with d−a error given x with a bits of error. We show the other direction
fails in a strong sense—we do not get equality for any a.

2 Preliminaries

We use |x| to denote the length of a string x, and ‖A‖ to denote the cardinality
of a set A. All logarithms are base 2.

We use dH(x, y) to denote the Hamming distance between two binary strings
x, y, that is the number of bits on which they differ. For x ∈ {0, 1}n we let
Bn(x,R) denote the set of n-bit strings within Hamming distance R from x,
and V (n,R) =

∑R
i=0

(
n
i

)
denote the volume of a Hamming ball of radius R over

n-bit strings. For 0 < λ ≤ 1/2 the binary entropy of λ is H(λ) = −λ log λ −
(1 − λ) log(1 − λ). The binary entropy is useful in the following approximation
of V (n,R) which we will use on several occasions (a proof can be found in [1]).

Lemma 1. Suppose that 0 < λ ≤ 1/2 and λn is an integer. Then

2nH(λ)√
8nλ(1− λ)

≤ V (n, λn) ≤ 2nH(λ).
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3 Defining Kolmogorov Complexity with Error

We consider several possible ways of defining Kolmogorov complexity with error.
In this section we present these alternatives in order to evaluate their relative
merits in the coming sections. First, we review the standard definition of Kol-
mogorov complexity. More details can be found in [6].

For a Turing machine T , the Kolmogorov complexity CT (x|y) of x given y
is the length of a shortest program p such that T (p, y) = x. The theory of
Kolmogorov complexity begins from the following invariance theorem: there is
a universal machine U such that for any other Turing machine T , there exists a
constant cT such that CU (x|y) ≤ CT (x|y) + cT , for all x, y. We now fix such
a U and drop the subscript. Now we define also the unconditional Kolmogorov
complexity C(x) = C(x|empty string).

Definition 1. Let d : ({0, 1}n)2 → R be a metric, and a ∈ R. The complexity
of x with error a, denoted Ca(x) is Ca(x) = minx′{C(x′) : d(x′, x) ≤ a}.

We will also consider a time bounded version of this definition, Ct
a(x) =

minx′{Ct(x′|empty string) : d(x, x′) ≤ a}, where Ct(x|y) is the length of a
shortest program p such that U(p, y) prints x in less than t(|x|+ |y|) time steps.
Here we assume that the machine U is universal in the following sense: for any
other Turing machine T , there exists a constant cT and a polynomial q such that
C

q(|x|,|y|,t)
U (x|y) ≤ Ct

T (x|y) + cT , for all x, y, t.
A relative version of Kolmogorov complexity with error is defined by Im-

pagliazzo, Shaltiel and Wigderson [4]. That is, they use the definition Cδ(x) =
min{C(y) : dH(x, y) ≤ δ|x|}. We prefer using absolute distance here as it be-
haves better with respect to concatenations of strings—using relative distance
has the disadvantage of severe nonmonotonicity over prefixes. Take, for example,
x ∈ {0, 1}n satisfying C(x) ≥ n. Let y = 02n. Then C1/3(x) ≥ n− logV (n, n/3)
while C1/3(xy) ≤ log n + O(1). Using absolute error we have that Ca(xy) ≥
Ca(x) − O(log n), that is it only suffers from logarithmic dips as with standard
definition.

Defining conditional complexity with error is somewhat more subtle. We in-
troduce both uniform and nonuniform versions of conditional complexity with
error.

Definition 2. For a Turing machine T , the uniform conditional complexity,
denoted (Cu

a,b)T (x|y), is the length of a shortest program p such that, for any y′

satisfying d(y, y′) ≤ b it holds that T (p, y′) outputs a string whose distance from
x is less than a.

The invariance theorem remains true: there is a universal machine U such that for
any other Turing machine T , there exists a constant cT such that (Cu

a,b)U (x|y) ≤
(Cu

a,b)T (x|y) + cT , for all x, y, a, b. We fix such a U and drop the subscript.

Definition 3. Nonuniform conditional complexity, which we denote Ca,b(x|y)
is defined as Ca,b(x|y) = maxy′ minx′{C(x′|y′) : d(x′, x) ≤ a and d(y′, y) ≤ b}.

In section 6 we study the difference between these two measures.
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4 Strings of Maximal Complexity

One of the most famous applications of Kolmogorov complexity is the incom-
pressibility method (see [6], Chapter 6). To prove there exists an object with a
certain property, we consider an object with maximal Kolmogorov complexity
and show that it could be compressed if it did not possess this property.

This method relies on a simple fact about strings of maximal complexity:
for every length n, there is a string x of complexity at least n. This follows
from simple counting. It is also easy to see that, up to an additive constant,
every string has complexity at most its length. What is the behavior of maximal
complexity strings in the error case? In this paper we restrict ourselves to the
Hamming distance case.

Again by a counting argument, we see that for every n there is an x of length n
with Ca(x) ≥ log 2n/V (n, a) = n− logV (n, a). Upper bounding the complexity
of strings in the error case requires a bit more work, and has a close connection
with the construction of covering codes. A covering code C of radius a is a set
of strings such that for every x ∈ {0, 1}n there is an element y ∈ C such that
dH(x, y) ≤ a. Thus an upper bound on the maximum complexity strings will be
given by the existence of covering codes of small size. The following Lemma is
well known in the covering code literature, (see [1] or [5]).

Lemma 2. For any n and integer R ≤ n, there exists a set C ⊆ {0, 1}n with the
following properties:

1. ‖C‖ ≤ n2n/V (n,R)
2. for every x ∈ {0, 1}n, there exists c ∈ C with dH(x, c) ≤ R
3. The set C can be computed in time poly(2n)

Proof. For the first two items we argue by the probabilistic method. Fix a point
x ∈ {0, 1}n. We uniformly at random choose k elements x1, . . . , xk of {0, 1}n.
The probability Px that x is not contained in ∪k

i=1B(xi, R) is precisely

Px = (1− V (n,R)/2n)k ≤ e−kV (n,R)/2n

.

For the inequality we have used the fact that ez ≥ 1+z for any z. Taking k to be
n2n/V (n,R) makes this probability strictly less than 2−n. Thus the probability
of the union of the events Px over x ∈ {0, 1}n is, by the union bound, less than
1 and there exists a set of n2n/V (n,R) centers which cover {0, 1}n. This gives
items 1 and 2.

For item 3 we now derandomize this argument using the method of conditional
probabilities. The argument is standard as found in [7], and omitted here. !"
To achieve part 3 of Lemma 2 one could alternatively apply a general theorem
that the greedy algorithm always finds a covering of a set X of size at most a
ln ‖X‖ multiplicative factor larger than the optimal covering (see Corollary 37.5
in [2]). This would give the slightly worse bound of O(n22n/V (n,R)).
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Theorem 1. For every n, a and x ∈ {0, 1}n, Ca(x) ≤ n− logV (n, a)+O(log n).

Proof. Use the lexicographically first covering code of radius a whose existence
is given by Lemma 2. �

One nice property of covering codes is that they behave very well under concate-
nation. Let C1 be a covering code of {0, 1}n1 of radius R1 and C2 be a covering
code of {0, 1}n2 of radius R2. Now let C = {cc′ : c ∈ C1, c

′ ∈ C2} be the set of all
ordered concatenations of codewords from C1 with codewords from C2. Then C
is a covering code over {0, 1}n1+n2 of radius R1 + R2.

We can use this idea in combination with item 3 of Lemma 2 to efficiently
construct near-optimal covering codes. This construction has already been used
for a complexity-theoretic application in [3].

Theorem 2. There is a polynomial time bound p(n) such that C
p(n)
a (x) ≤ n−

logV (n, a) + O(n log log n/ logn) for every x ∈ {0, 1}n and every a.

Proof. We construct a covering code over {0, 1}n with radius a such that the ith
element of the covering can be generated in time polynomial in n. Let � = log n
and divide n into n/� blocks of length �. Let r = (a/n)�. Now by item 3 of
Lemma 2 we can in time polynomial in n construct a covering code over {0, 1}�

of radius r and of cardinality �2�/V (�, r). Call this covering C�. Our covering
code C over {0, 1}n will be the set of codewords {c1c2 · · · cn/� : ci ∈ C�}. The size
of this code will be:

‖C‖ ≤ (2�−log V (�,r)+log �)n/� = (2�−�H(a/n)+O(log �))n/�

= 2n−nH(a/n)+O(n log �/�) = 2n−log V (n,a)+O(n log �/�).
(1)

The second and last inequalities hold by Lemma 1.
In this proof we assumed that log n, n/ log n, and a log n/n are all integer.

The general case follows with simple modifications. �

5 Dependence of Complexity on the Number of Allowed
Errors

Both the uniform and the non-uniform conditional complexities Cu
a,b and Ca,b are

decreasing functions in a and increasing in b. Indeed, if b decreases and a increases
then the number of y′’s decreases and the number of x′’s increases, thus the prob-
lem to transform every y′ to some x′ becomes easier. What is the maximal possible
rate of this decrease/increase? For the uniform complexity, we have no non-trivial
bounds. For the non-uniform complexity, we have the following

Theorem 3. For all x, y of length n and all a ≤ a′, b′ ≤ b it holds

Ca,b(x|y) ≤ Ca′,b′(x|y)+log(V (n, a)/V (n, a′))+log(V (n, b′)/V (n, b))+O(log n).
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Proof. Let y′ be a string at distance b from y. We need to find a short program
mapping it to a string at distance a from x. To this end we need the following
lemma from [9].

Lemma 3. For all d ≤ d′ ≤ n having the form i/n, every Hamming ball of
radius d′ in the set of binary strings of length n can be covered by at most
O(n4V (n, d′)/V (n, d)) Hamming balls of radius d.

Apply the lemma to d′ = b, d = b′ and to the ball of radius b centered at y′. Let
B1, . . . , BN , where N = O(n4V (n, b)/V (n, b′)), be the covering balls. Let Bi be
a ball containing the string y and let y′′ be its center. There is a program, call
it p, of length at most Ca′,b′(x|y) mapping y′′ to a string at distance a′ from
x. Again apply the lemma to d = a, d′ = a′ and to the ball of radius d′ cen-
tered at x′. Let C1, . . . , CM , where M = O(n4V (n, a′)/V (n, a)), be the covering
balls. Let Cj be a ball containing the string x and let x′′ be its center. Thus
x′′ is at distance a from x and can be found from y′, p, i, j. This implies that
K(x′′|y′) ≤ |p| + log N + log M + O(log n) (extra O(log n) bits are needed to
separate p, i and j). �

In the above proof, it is essential that we allow the program mapping y′ to
a string close to x depend on y′. Indeed, the program is basically the triple
(p, i, j) where both i and j depend on y′. Thus the proof is not valid for the uni-
form conditional complexity. And we do not know whether the statement itself
is true for the uniform complexity.

By using Theorem 2 one can prove a similar inequality for time bounded
complexity with the O(log n) error term replaced by O(n log log n/ logn).

6 Uniform vs. Nonuniform Conditional Complexity

In this section we show an example where the uniform version of conditional
complexity can be exponentially larger than the nonuniform one. Our example
will be for C0,b(x|x). This example is the standard setting of error correction:
given some x′ such that dH(x, x′) ≤ b, we want to recover x exactly. An obvious
upper bound on the nonuniform complexity C0,b(x|x) is logV (n, b) + O(1)—as
we can tailor our program for each x′ we can simply say the index of x in the
ball of radius b around x′.

In the uniform case the same program must work for every x′ in the ball of
radius b around x and the problem is not so easy. The following upper bound
was pointed out to us by a referee.

Proposition 1. Cu
0,b(x|x) ≤ logV (n, 2b) + O(1).

Proof. Let C ⊆ {0, 1}n be a set with the properties:

1. For every x, y ∈ C : Bn(x, b) ∩Bn(y, b) = ∅.
2. For every y ∈ {0, 1}n ∃x ∈ C : dH(x, y) ≤ 2b.
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We can greedily construct such a set as if there is some string y with no string
x ∈ C of distance less than 2b, then Bn(y, b) is disjoint from all balls of radius b
around elements of C and so we can add y to C.

Now for a given x, let x∗ be the closest element of C to x, with ties broken
by lexicographical order. Let z = x ⊕ x∗. By the properties of C this string
has Hamming weight at most 2b and so can be described with logV (n, 2b) bits.
Given input x′ with dH(x, x′) ≤ b, our program does the following: computes
the closest element of C to x′⊕z, call it w, and then outputs w⊕z = w⊕x∗⊕x.
Thus for correctness we need to show that w = x∗ or in other words that
dH(x′ ⊕ z, x∗) ≤ b. Notice that dH(α⊕ β,β) = dH(α, 0), thus

dH(x′ ⊕ z, x∗) = dH(x′ ⊕ x⊕ x∗, x∗) = dH(x′ ⊕ x, 0) = dH(x, x′) ≤ b. �

We now turn to the separation between the uniform and nonuniform measures.
The intuition behind the proof is the following: say we have some computable
family S of Hamming balls of radius b, and let x be the center of one of these
balls. Given any x′ such that dH(x, x′) ≤ b, there may be other centers of the
family S which are also less than distance b from x′. Say there are k of them.
Then x has a nonuniform description of size about log k by giving the index of
x in the k balls which are of distance less than b from x′.

In the uniform case, on the other hand, our program can no longer be tailored
for a particular x′, it must work for any x′ such that dH(x, x′) ≤ b. That is,
intuitively, the program must be able to distinguish the ball of x from any other
ball intersecting the ball of x. To create a large difference between the nonuniform
and uniform conditional complexity measures, therefore, we wish to construct a
large family of Hamming balls, every two of which intersect, yet that no single
point is contained in the intersection of too many balls. Moreover, we can show
the stronger statement that C0,b(x|x) is even much smaller than Cu

a,b(x|x), for a
non-negligible a. For this, we further want that the contractions of any two balls
to radius a are disjoint. The next lemma shows the existence of such a family.

Lemma 4. For every length m of strings and a, b, and N satisfying the inequal-
ities

N2V (m, 2a) ≤ 2m−1, N2V (m,m− 2b) ≤ 2m−1, NV (m, b) ≥ m2m+1 (2)

there are strings x1, . . . , xN such that the balls of radius a centered at x1, . . . , xN

are pairwise disjoint, and the balls of radius b centered at x1, . . . , xN are pairwise
intersecting but no string belongs to more than NV (m, b)21−m of them.

Proof. The proof is by probabilistic arguments. Take N independent random
strings x1, . . . , xN . We will prove that with high probability they satisfy the
statement.

First we estimate the probability that there are two intersecting balls of radius
a. The probability that two fixed balls intersect is equal to V (m, 2a)/2m. The
number of pairs of balls is less than N2/2, and by union bound, there are two
intersecting balls of radius a with probability at most N2V (m, 2a)/2m+1 ≤ 1/4
(use the first inequality in (2)).
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Let us estimate now the probability that there are two disjoint balls of radius
b. If the balls of radius b centered at xj and xi are disjoint then xj is at distance
at most m− 2b from the string x̄i, that is obtained from xi by flipping all bits.
Therefore the probability that for a fixed pair (i, j) the balls are disjoint is at
most V (m,m − 2b)/2m. By the second inequality in (2), there are two disjoint
balls with probability at most 1/4.

It remains to estimate the probability that there is a string that belongs to
more than NV (m, b)21−m balls of radius b. Fix x. For every i the probability
that x lands in Bi, the ball of radius b centered at xi, is equal to p = |Bi|/2m =
V (m, b)/2m. So the average number of i with x ∈ Bi is pN = NV (m, b)/2m. By
Chernoff inequality the probability that the number of i such that x lands in Bi

exceeds twice the average is at most

exp(−pN/2) = exp(−NV (m, b)/2m+1) ≤ exp(−m) ( 2−m

(use the third inequality in (2)). Thus even after multiplying it by 2m the num-
ber of different x’s we get a number close to 0. �

Using this lemma we find x with exponential gap between C0,b(x|x) and Cu
0,b(x|x)

and even between C0,b(x|x) and Cu
a,b(x|x) for a, b linear in the length n of x.

Theorem 4. Fix rational constants α,β, γ satisfying γ ≥ 1 and

0 < α < 1/4 < β < 1/2, 2H(β) > 1 + H(2α), 2H(β) > 1 + H(1− 2β) (3)

Notice that if β is close to 1/2 and α is close to 0 then these inequalities are
satisfied. Then for all sufficiently large m there is a string x of length n = γm
with C0,βm(x|x) = O(log m) while Cu

αm,βm(x|x) ≥ m(1 −H(β))−O(log m).

Proof. Given m let a = αm, b = βm and N = m2m+1/V (m, b). Let us verify
that for large enough m the inequalities (2) in the condition of Lemma 4 are
fulfilled. Taking the logarithm of the first inequality (2) and ignoring all terms
of order O(log m) we obtain

2(m−mH(β)) + mH(2α) < m

This is true by the second inequality in (3). Here we used that, ignoring loga-
rithmic terms, logV (m, b) = mH(β) and logV (m, 2a) = mH(2α) as both β, 2α
are less than 1/2. Taking the logarithm of the second inequality (2) we obtain

2(m−mH(β)) + mH(1− 2β) < m.

This is implied by the third inequality in (3). Finally, the last inequality (2)
holds by the choice of N .

Find the first sequence x1, . . . , xN satisfying the lemma. This sequence has
complexity at most C(m) = O(log m). Append 0n−m to all strings x1, . . . , xN .
Obviously the resulting sequence also satisfies the lemma. For each string xi we
have C0,b(xi|xi) = O(log m), as given any x′ at distance at most b from xi we
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can specify xi by specifying its index among centers of the balls in the family
containing x′ in log(NV (m, b)21−m) = log 4m bits and specifying the family
itself in O(log m) bits.

It remains to show that there is xi with Cu
a,b(xi|xi) ≥ log N . Assume the

contrary and choose for every xi a program pi of length less than log N such
that U(p, x′) is at distance a from xi for every x′ at distance at most b from xi.
As N is strictly greater than the number of strings of length less than logN , by
the Pigeon Hole Principle there are different xi, xj with pi = pj . However the
balls of radius b with centers xi, xj intersect and there is x′ at distance at most
b both from xi, xj . Hence U(p, x′) is at distance at most a both from xi, xj , a
contradiction. �

Again, at the expense of replacing O(log m) by O(m log log m/ logm) we can
prove an analog of Theorem 4 for time bounded complexity. We defer the proof
to the final version.

Theorem 5. There is a polynomial p such that for all sufficiently large m there
is a string x of length n = γm with C

p(n)
0,βm(x|x) = O(m log log m/ logm) while

Cu
αm,βm(x|x) ≥ m(1−H(β))−O(m log log m/ log m). (Note that Cu has no time

bound; this makes the statement stronger.)

7 Symmetry of Information

The principle of symmetry of information, independently proven by Kolmogorov
and Levin [10], is one of the most beautiful and useful theorems in Kolmogorov
complexity. It states C(xy) = C(x) + C(y|x) + O(log n) for any x, y ∈ {0, 1}n.
The direction C(xy) ≤ C(x)+C(y|x)+O(log n) is easy to see—given a program
for x, and a program for y given x, and a way to tell these programs apart, we
can print xy. The other direction of the inequality requires a clever proof.

Looking at symmetry of information in the error case, the easy direction is
again easy: The inequality Cd(xy) ≤ Ca(x) + Cd−a,a(y|x) + O(log n) holds for
any a — let p be a program of length Ca(x) which prints a string x∗ within
Hamming distance a of x. Let q be a shortest program which, given x∗, prints
a string y∗ within Hamming distance d − a of y. By definition, Cd−a,a(y|x) =
maxx′ miny′ C(y′|x′) ≥ miny′ C(y′|x∗) = |q|. Now given p and q and a way to
tell them apart, we can print the string xy within d errors.

For the converse direction we would like to have the statement

For every d, x, y there exists a ≤ d such that
Cd(xy) ≥ Ca(x) + Cd−a,a(y|x)−O(log n). (∗)

We do not expect this statement to hold for every a, as the shortest program
for xy will have a particular pattern of errors which might have to be respected
in the programs for x and y given x. We now show, however, that even the
formulation (∗) is too much to ask.
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Theorem 6. For every n and all d ≤ n/4 there exist x, y ∈ {0, 1}n such that
for all a ≤ d the difference

Δ(a) = (Ca(y) + Cd−a,a(x|y)) − Cd(xy)

is more than both

logV (n, d)− log V (n, a), logV (n, d + a)− logV (n, d− a)− logV (n, a),

up to an additive error term of the order O(log n).

Since Cu
d−a,a(x|y) ≥ Cd−a,a(x|y), Theorem 6 holds for uniform conditional com-

plexity as well.
Before proving the theorem let us show that in the case, say, d = n/4 it

implies that for some positive ε we have Δ(a) ≥ εn for all a. Let α < 1/4 be the
solution to the equation

H(1/4) = H(1/4 + α)−H(1/4− α).

Note that the function in the right hand side increases from 0 to 1 as α increases
from 0 to 1/4. Thus this equation has a unique solution.

Corollary 1. Let d = n/4 and let x, y be the strings existing by Theorem 6.
Then we have Δ(a) ≥ n(H(1/4)−H(α)) −O(log n) for all a.

The proof is simply a calculation and is omitted. Now the proof of Theorem 6.

Proof. Coverings will again play an important role in the proof. Let C be the
lexicographically first minimal size covering of radius d. Choose y of length n
with C(y) ≥ n, and let x be the lexicographically least element of the covering
within distance d of y. Notice that Cd(xy) ≤ n− logV (n, d), as the string xx is
within distance d of xy, and can be described by giving a shortest program for x
and a constant many more bits saying “repeat”. (In the whole proof we neglect
additive terms of order O(log n)). Let us prove first that C(x) = n− logV (n, d)
and C(y|x) = logV (n, d1) = logV (n, d), where d1 stands for the Hamming
distance between x and y. Indeed,

n ≤ C(y) ≤ C(x) + C(y|x) ≤ n− logV (n, d) + C(y|x)
≤ n− logV (n, d) + logV (n, d1) ≤ n.

Thus all inequalities here are equalities, hence C(x) = n − logV (n, d) and
C(y|x) = logV (n, d1) = logV (n, d).

Let us prove now the first lower bound for Δ(a). As y has maximal complexity,
for any 0 ≤ a ≤ d we have Ca(y) ≥ n− logV (n, a). Summing the inequalities

−Cd(xy) ≥ −n + logV (n, d),
Ca(y) ≥ n− logV (n, a),

Cd−a,a(x|y) ≥ 0,
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we obtain the lower bound Δ(a) ≥ logV (n, d)− logV (n, a). To prove the second
lower bound of the theorem, we need to show that

Cd−a,a(x|y) ≥ logV (n, d + a)− logV (n, d− a)− logV (n, d). (4)

To prove that Cd−a,a(x|y) exceeds a certain value v we need to find a y′ at
distance at most a from y such that C(x′|y′) ≥ v for all x′ at distance at most
d− a from x. Let y′ be obtained from y by changing a random set of a bits on
which x and y agree. This means that C(y′|y, x) ≥ logV (n − d1, a). It suffices
to show that

C(x|y′) ≥ logV (n, d + a)− logV (n, d).

Indeed, then for all x′ at distance at most d− a from x we will have

C(x′|y′) + logV (n, d− a) ≥ C(x|y′)

(knowing x′ we can specify x by its index in the ball of radius d− a centered at
x′). Summing these inequalities will yield (4).

We use symmetry of information in the nonerror case to turn the task of lower
bounding C(x|y′) into the task of lower bounding C(y′|x) and C(x). This works
as follows: by symmetry of information,

C(xy′) = C(x) + C(y′|x) = C(y′) + C(x|y′).

As C(y′) is at most n, using the second part of the equality we have C(x|y′) ≥
C(x) + C(y′|x) − n. Recall that C(x) = n − logV (n, d). Thus to complete the
proof we need to show the inequality C(y′|x) ≥ log V (n, d + a) , that is, y′ is
a random point in the Hamming ball of radius d + a with the center at x. To
this end we first note that logV (n, d + a) = logV (n, d1 + a) (up to a O(log n)
error term). Indeed, as a + d ≤ n/2 we have logV (n, d + a) = log

(
n

d+a

)
and

logV (n, d) = log
(
n
d

)
. The same holds with d1 in place of d. Now we will show that

logV (n, d)− log V (n, d1) = O(log n) implies that logV (n, d + a)− logV (n, d1 +
a) = O(log n). It is easy to see that

(
n

d+1

)
/
(

n
d1+1

)
≤
(
n
d

)
/
(

n
d1

)
provided d1 ≤ d.

Using the induction we obtain
(

n
d+a

)
/
(

n
d1+a

)
≤
(
n
d

)
/
(

n
d1

)
.

Thus we have

logV (n, d + a)− logV (n, d1 + a) = log
(( n

d + a

)
/

(
n

d1 + a

))
≤ log

((n

d

)
/

(
n

d1

))
= logV (n, d)− logV (n, d1) = O(log n).

Again we use (the conditional form of) symmetry of information:

C(y′y|x) = C(y|x) + C(y′|y, x) = C(y′|x) + C(y|y′, x).

The string y differs from y′ on a bits out of the d1 + a bits on which y′ and x
differ. Thus C(y|y′, x) ≤ log

(
d1+a

a

)
. Now using the second part of the equality



148 L. Fortnow, T. Lee, and N. Vereshchagin

we have

C(y′|x) = C(y|x) + C(y′|y, x)− C(y|y′, x)

≥ logV (n, d1) + logV (n− d1, a)−
(

d1 + a

a

)
.

We have used that logV (n− d1, a) = log
(
n−d1

a

)
, as a ≤ (n− d1)/2. Hence,

C(y′|x) ≥ log
(

n

d1

)
+ log

(
n− d1

a

)
− log

(
d1 + a

a

)
= logV (n, d + a).

�

Again, at the expense of replacing O(log n) by O(n log log n/ log n) we can prove
an analog of Theorem 6 for time bounded complexity.
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k-SAT based on covering codes and local search. In Proceedings of the 27th Inter-
national Colloquium On Automata, Languages and Programming, Lecture Notes in
Computer Science, pages 236–247. Springer-Verlag, 2000.

4. R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random
generators with optimal seed length. In Proceedings of the 32nd ACM Symposium
on the Theory of Computing, pages 1–10. ACM, 2000.

5. M. Krivelevich, B. Sudakov, and V. Vu. Covering codes with improved density.
IEEE Transactions on Information Theory, 49:1812–1815, 2003.
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Abstract. We introduce the concepts of complex and autocomplex sets,
where a set A is complex if there is a recursive, nondecreasing and un-
bounded lower bound on the Kolmogorov complexity of the prefixes (of
the characteristic sequence) of A, and autocomplex is defined likewise
with recursive replaced by A-recursive. We observe that exactly the au-
tocomplex sets allow to compute words of given Kolmogorov complexity
and demonstrate that a set computes a diagonally nonrecursive (DNR)
function if and only if the set is autocomplex. The class of sets that
compute DNR functions is intensively studied in recursion theory and is
known to coincide with the class of sets that compute fixed-point free
functions. Consequently, the Recursion Theorem fails relative to a set if
and only if the set is autocomplex, that is, we have a characterization of
a fundamental concept of theoretical computer science in terms of Kol-
mogorov complexity. Moreover, we obtain that recursively enumerable
sets are autocomplex if and only if they are complete, which yields an
alternate proof of the well-known completeness criterion for recursively
enumerable sets in terms of computing DNR functions.

All results on autocomplex sets mentioned in the last paragraph ex-
tend to complex sets if the oracle computations are restricted to truth-
table or weak truth-table computations, for example, a set is complex
if and only if it wtt-computes a DNR function. Moreover, we obtain
a set that is complex but does not compute a Martin-Löf random set,
which gives a partial answer to the open problem whether all sets of
positive constructive Hausdorff dimension compute Martin-Löf
random sets.

Furthermore, the following questions are addressed: Given n, how
difficult is it to find a word of length n that (a) has at least prefix-
free Kolmogorov complexity n, (b) has at least plain Kolmogorov com-
plexity n or (c) has the maximum possible prefix-free Kolmogorov com-
plexity among all words of length n. All these questions are investi-
gated with respect to the oracles needed to carry out this task and
it is shown that (a) is easier than (b) and (b) is easier than (c). In
particular, we argue that for plain Kolmogorov complexity exactly the
PA-complete sets compute incompressible words, while the class of sets
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that compute words of maximum complexity depends on the choice of
the universal Turing machine, whereas for prefix-free Kolmogorov com-
plexity exactly the complete sets allow to compute words of maximum
complexity.

1 Introduction and Overview

The Recursion Theorem, one of the most fundamental results of theoretical com-
puter science, asserts that — with a standard effective enumeration ϕ0, ϕ1, . . .
of all partial recursive functions understood — every recursive function g has a
fixed point in the sense that for some index e, the partial recursive functions ϕe

and ϕg(e) are the same. The question of which type of additional information is
required in order to compute a fixed-point free function g is well understood; in
particular, it is known that a set can compute such a function iff it can compute
a diagonally nonrecursive (DNR) function g, that is, a function g such that for
all e the value ϕe(e), if defined, differs from g(e) [6].

By a celebrated result of Schnorr, a set is Martin-Löf random if and only if
the length n prefixes of its characteristic sequence have prefix-free Kolmogorov
complexity H of at least n − c for some constant c. From this equivalence, we
obtain easily a proof for Kučera’s result [4, Corollary 1 to Theorem 6] that any
Martin-Löf random set R computes a DNR function, and hence also computes
a fixed-point free function; simply let f(e) = R(0)R(1) . . .R(e − 1) (where the
prefixes of R are interpreted as binary expansions of natural numbers), then
for appropriate constants c and c′ and for all e, the prefix-free Kolmogorov
complexity of the function values ϕe(e) and f(e) is at most 2 log e + c′ and at
least e − c, respectively, hence for almost all e these two values differ, that is,
changing f at at most finitely many places yields a DNR function. Similarly,
if one lets g(e) be an index for the constant function with value f(e), then ϕe

and ϕg(e) differ at place e for almost all e, and thus a finite variant of g is
fixed-point free.

We will call a set A complex if there is a nondecreasing and unbounded re-
cursive function h such that the length h(n) prefix of A has plain Kolmogorov
complexity of at least n and autocomplex is defined likewise with recursive re-
placed by A-recursive. Obviously, any autocomplex sets computes a function f
such the plain Kolmogorov complexity of f(n) is at least n and as observed in
Proposition 3, this implication is in fact an equivalence; a similar equivalence is
stated in Proposition 4 for complex sets and for computing such a function f
in truth-table or weak truth-table style. By an argument similar to the one
given in the last paragraph, any autocomplex set computes a DNR function.
In fact, Theorem 5 asserts that the reverse implication holds too, that is, the
class of autocomplex sets coincides with the class of sets that compute a DNR
function, or, equivalently, with the class of sets that compute fixed-point free
functions. This means that the sets relative to which the Recursion Theorem
does not hold can be characterized as the autocomplex sets, that is, like for
Schnorr’s celebrated characterization of Martin-Löf random sets as the sets with
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incompressible prefixes, we obtain a characteriziation of a fundamental concept
of theoretical computer science in terms of Kolmogorov complexity. By similar
arguments, the class of complex sets coincides with the class of sets that com-
pute a DNR function via a truth-table or weak truth-table reduction, where the
DNR function then automatically is recursively bounded.

From the mentioned results on complex sets and by work of Ambos-Spies,
Kjos-Hanssen, Lempp and Slaman [2], we obtain in Proposition 7 that there is
a complex set that does not compute a Martin-Löf random set, thus partially
answering an open problem by Reimann [13] about extracting randomness.

Theorem 8 states that recursively enumerable (r.e.) sets are complete if and
only if it they are autocomplex, and are wtt-complete if and only if they are
complex. Arslanov’s completeness criteria in terms of DNR functions are then
immediate from Theorems 5 and 8, which in summary yields simplified proofs
for these criteria.

Theorem 10 asserts that the complex sets can be characterized as the sets that
are not wtt-reducible to a hyperimmune set. Miller [8] demonstrated that the
latter property characterizes the hyperavoidable sets, thus we obtain as corollary
that a set is complex if and only if it is hyperavoidable.

In the characterization of the autocomplex sets as the sets that compute a
function f such that the complexity of f(n) is at least n, the values f(n) of
such a function f at place n might be very large and hence the complexity
of the function value f(n) might be arbitrarily small compared to its length.
Theorem 14 states that the sets that allow to compute a function f such that
the length and the plain Kolmogorov complexity of f(n) are both equal to n
are just the PA-complete sets and that, furthermore, these two identical classes
of sets coincide with the class of sets that compute a lower bound b on plain
Kolmogorov complexity such that b attains values strictly smaller than n not
more often than 2n−1 times. Recall in this connection that by definition a set is
PA-complete if and only if it computes a complete extension of Peano arithmetic
and that the concept of PA-completeness is well understood and allows several
interesting characterizations, for example, a set is PA-complete if and only if it
computes a {0, 1}-valued DNR function [6].

For a word f(n) of length n, in general plain Kolmogorov complexity n is
not maximum, but just maximum up to an additive constant. In Theorem 15 it
is demonstrated that the class of sets that allow to compute a function f such
that f(n) has indeed maximum plain Kolmogorov complexity depends on the
choice of the universal machine used for defining plain Kolmogorov complexity;
more precisely, for any recursively enumerable set B there is a universal machine
such that this class coincides with the class of sets that are PA-complete and
compute B. In contrast to this, Theorem 17 asserts that in the case of prefix-
free Kolmogorov complexity exactly the sets that compute the halting problem
allow to compute a function f such that f(n) has length n and has maximum
complexity among all words of the same length.

In the remainder of this section we describe some notation and review some
standard concepts. If not explicitly stated differently, a set is always a subset
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of the natural numbers N. Natural numbers are identified with binary words in
the usual way, hence we can for example talk of the length |n| of a number n. A
set A will be identified with ist characteristic sequence A(0)A(1) . . ., where A(i)
is 1 iff i is in A and A(i) is 0, otherwise; this way for example we can speak of
the length n prefix A�n of a set A, which consists just of the first n bits of the
characteristic sequence of A.

We write ϕe for the partial recursive functional computed by the (e + 1)st
Turing machine in some standard effective enumeration of all Turing machines.
Similarly, ϕX

e denotes the partial function computed by the (e + 1)st oracle
Turing machine on oracle X .

Recall that a set A is weak truth-table reducible (wtt-reducible) to a set B
if A is computed with oracle B by some Turing machine M such that for some
recursive function g, machine M will access on input n at most the first g(n)
bits of its oracle and that A is truth-table reducible (tt-reducible) to B if A is
computed with oracle B by some Turing machine which is total for all oracles.

A function f is called fixed-point free iff ϕx �= ϕf(x) for all x. The partial
recursive function x �→ ϕx(x) is called the diagonal function and a function g is
called diagonally nonrecursive (DNR) iff g is total and differs from the diagonal
function at all places where the latter is defined.

We write C(x) and H(x) for the plain and the prefix-free Kolmogorov com-
plexity of x, see Li and Vitányi [7] (who write “K” instead of “H”).

2 Autocomplex and Complex Sets

Definition 1 (Schnorr). A function g: N → N is an order if g is nondecreas-
ing and unbounded.

Definition 2. A set A is complex if there is a recursive order g such that for
all n, we have C(A�n) ≥ g(n).

A set A is autocomplex if there is an A-recursive order g such that for all n,
we have C(A�n) ≥ g(n).

The concepts complex and autocomplex remained the same if one would replace
in their definitions plain Kolmogorov complexity C by its prefix-free variant H,
and similarly the following Propositions 3 and 4 remain valid with C replaced
by H. The reason is that the two variants of Kolmogorov complexity differ by
less than a multiplicative constant.

Proposition 3. For any set A, the following conditions are equivalent.

(1) The set A is autocomplex.
(2) There is an A-recursive function h such that for all n, C(A�h(n)) ≥ n.
(3) There is an A-recursive function f such that for all n, C(f(n)) ≥ n.

Proof. We show (1) ⇒ (2) ⇒ (3) ⇒ (1). Given an autocomplex set A, choose
an A-recursive order g where C(A�n) ≥ g(n) and in order to obtain a function h
as required by (2), let

h(n) = min{l: g(l) ≥ n}.
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Given a function h as in (2), in order to obtain a function f as required by (3),
simply let f(n) be equal to (an appropriate encoding of) the prefix of A of
length h(n). Finally, given an A-recursive function f as in (3), let u(n) be an A-
recursive order such that some fixed oracle Turing machine M computes f with
oracle A such that M queries on input n only bits A(m) of A where m ≤ u(n).
Then for any l ≥ u(n), the value of f(n) can be computed from n and A � l,
hence

n ≤ C(f(n)) ≤+ C(A� l) + 2 logn,

and thus for almost all n and all l ≥ u(n), we have n/2 ≤ C(A � l). As a
consequence, a finite variation of the A-recursive order

g:n �→ max{l:u(l) ≤ n}/2

witnesses that A is autocomplex. !"

Proposition 4. For any set A, the following conditions are equivalent.

(1) The set A is complex.
(2) There is a recursive function h such that for all n, C(A�h(n)) ≥ n.
(3) The set A tt-computes a function f such that for all n, C(f(n)) ≥ n.
(4) The set A wtt-computes a function f such that for all n, C(f(n)) ≥ n.

We omit the proof of Proposition 4, which is very similar to the proof of Propo-
sition 3, where now when proving the implication (4) ⇒ (1) one exploits that
the use of f is bounded by a recursive function.

Theorem 5. A set is autocomplex if and only if it computes a DNR function.

Proof. First assume that A is autocomplex and choose an A-recursive function f
as in assertion (3) of Proposition 3. Then we have for some constant c and almost
all n,

C(ϕn(n)) ≤ C(n) + c ≤ log n + 2c < n ≤ C(f(n)),

and consequently some finite variation of f is a DNR-function.
Next suppose that A is not autocomplex. Assume for a contradiction that A

computes a DNR function, that is, for some r, ϕA
r is DNR. For any z there is

an index e(z) such that on every input x, ϕe(z)(x) is computed as follows: first,
assuming that z is a code for a prefix w of an oracle (meant to be equal to A),
try to decode this prefix by simulating the universal Turing machine used to
define C on input z; on success, simulate ϕr(x) with the prefix w as oracle; if the
latter computation converges with the given prefix, output the computed value.

Now consider the A-recursive function h, where h(n) is the maximum of the
uses of all computations of values ϕA

r (e(z)) with |z| < n on oracle A. Because A
is not autocomplex and by Proposition 3, there are infinitely many n such that
the complexity of the length h(n) prefix of A is less than n, say, witnessed by a
code zn. Then for all such n and zn, we have

ϕA
r (e(zn)) = ϕe(zn)(e(zn)),
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hence the function computed from A by ϕr is not DNR, which contradicts our
assumption. !"

The complex sets are just the sets that wtt-compute a DNR function.

Theorem 6. For a set A the following statements are equivalent.

(1) The set A is complex.
(2) The set A tt-computes a DNR function.
(3) The set A wtt-computes a DNR function.

In particular, the sets that permit to wtt-compute DNR-functions and to wtt-
compute recursively bounded DNR-functions coincide.

Proof. (1) implies (2): Similar to the proof of Theorem 5, the set A tt-computes
a DNR function where f(n) is equal to the prefix of A of length l(n), where l is
defined as above but can now be chosen to be recursive.

(2) implies (3): This is immediate from the definition.
(3) implies (1): Follows as in the proof of Theorem 5, where now the function h

can be chosen to be recursive.
The concluding remark follows because a DNR function as in (2) is bounded

by the maximum of the function values over all possible oracles. !"
The constructive Hausdorff dimension of a set A can be defined as the limit
inferior of the relative Kolmogorov complexities C(A�n)/n of the prefixes of A.
Reimann [13] has asked whether one can “extract randomness” in the sense that
any set with constructive Hausdorff dimension α > 0 computes a set with con-
structive Hausdorff dimension 1 or even a Martin-Löf random set. By Theorem 6
and work of Ambos-Spies, Kjos-Hanssen, Lempp and Slaman [2] (which is in turn
based on an unpublished construction by Kumabe), we obtain as a partial answer
to this question that there is a complex set that does not compute a Martin-Löf
random set, that is, in general it is not possible to compute a set of roughly
maximum complexity from a set that has a certain minimum and effectively
specified amount of randomness. Reimann and Slaman [14] have independently
announced a proof of Theorem 7 by means of a direct construction.

Theorem 7. There is a complex set that does not compute a Martin-Löf random
set.

Proof. Ambos-Spies, Kjos-Hanssen, Lempp and Slaman [2] demonstrate that
for any recursive function h there is a DNR function d that cannot compute a
DNR function that is bounded by h(n). In their construction it is implicit that
the constructed function d can be made recursively bounded, hence the function d
is tt-reducible to its graph D and, by Theorem 6, the set D is complex. Apply
this construction to the function h(n) = 2n and assume that the graph D of
the resulting function d computes a Martin-Löf random set R. Then D also
computes the function f :n �→ R(0) . . .R(n), which is h(n)-bounded. Now f(n)
has H-complexity of at least n for almost all n, hence f(n) differs from ϕn(n)
for almost all n, that is, by changing f at finitely many places, we obtain an
h(n)-bounded DNR function recursive in D, contradicting the choice of D. !"
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Theorem 8. An r.e. set is Turing complete if and only if it is autocomplex. An
r.e. set is wtt-complete if and only if it is complex.

Proof. Fix any r.e. set A and let As be the finite set of all elements that have
been enumerated after s steps of some fixed effective enumeration of A; similarly,
fix finite approximations Ks to the halting problem K. We demonstrate the
slightly less involved second equivalence before the first one.

First assume that A is wtt-complete. That is, A wtt-computes the halting
problem, which in turn wtt-computes the function f that maps n to the least
word that has C-complexity of at least n. Since wtt-reductions compose, A wtt-
computes f , hence A is complex by Proposition 4. Conversely, if the set A is
complex, by Proposition 4 fix a recursive function h such that for all n we
have C(A�h(n)) ≥ n. For all n, let

k(n) = min{s ∈ N:K(n) = Ks(n)}, a(n) = min{s ∈ N:A�h(n) = As �h(n)} .

Obviously A wtt-computes a, hence in order to show that A wtt-computes K
it suffices to show that for almost all n we have k(n) ≤ a(n) . For a proof by
contradiction, assume that there are infinitely many n such that k(n) > a(n).
Each such n must be in K because otherwise k(n) were equal to 0; consequently,
given any such n, the word

wn = A�h(n) = Aa(n) �h(n) = Ak(n) �h(n)

can be computed as follows: first compute k(n) by simulating the given ap-
proximation to K, then compute h(n) and let wn be equal to Ak(n) � h(n).
Consequently, up to an additive constant we have C(wn) ≤ C(n), that is, C(wn)
is in O(log n), which contradicts the choice of wn for all sufficiently large n.

The proof that Turing complete sets are autocomplex is almost literally the
same as for the corresponding assertion for wtt-complete sets and is omitted.
In order to prove the reverse implication, assume that A is autocomplex and
according to Proposition 3, fix an A-recursive function h such that for all n we
have C(A�h(n)) ≥ n. Let a(n) be equal to the least s such that As agrees with A
on all elements that are queried while computing h(n) and on all numbers up
to h(n). Like in the case of wtt-complete sets, we can argue that A computes a
and that for all n where k(n) > a(n), the word A�h(n) can be computed from n,
hence for almost all n we have k(n) ≤ a(n) and A computes K. !"
As immediate corollaries to Theorems 5, 6, and 8, we obtain the following well-
known characterizations of T- and wtt-completeness [11, Theorem III.1.5 and
Proposition III.8.17], where the latter characterization is known as Arslanov’s
completeness criterion [1, 6].

Corollary 9. An r.e. set is Turing complete if and only if it computes a DNR-
function. An r.e. set is wtt-complete if and only if it wtt-computes a DNR-
function.

A set A = {a0, a1, . . .} with a0 < a1 < . . . is called hyperimmune if A is infi-
nite and there is no recursive function h such that an ≤ h(n) for all n [11]. A
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further characterization is that there is no recursive function f such that A in-
tersects almost all sets of the form {n+1, n+2, . . . , f(n)}. Intuitively speaking,
hyperimmune sets have large gaps that exceed all recursive bounds, hence if a
set A is wtt-reducible to a hyperimmune set, that is, is reducible by a reduction
with recursively bounded use, then A must have prefixes of very low complex-
ity. This intuition is made precise by the next proposition which gives another
characterization of complex sets.

Theorem 10. A set is complex if and only if it is not wtt-reducible to a hyper-
immune set.

Proof. First assume that f, g are recursive functions, A is wtt-reducible to a
hyperimmune set B = {b0, b1, ...} with use f and C(A(0)A(1)...A(g(n))) ≥ n
for all n. There are infinitely many n such that f(g(4bn)) < bn+1. Thus there
is a constant c with C(A(0)A(1)...A(g(4bn))) ≤ 2bn+c for infinitely many n; this
happens at those n where at the computation of A(0)A(1)...A(g(4bn)) relative
to B only the characteristic function of B up to bn has to be taken into account
since it is 0 afterwards up to the query-bound f(g(4bn)). On the other hand,
C(A(0)A(1)...A(g(4bn))) ≥ 4bn for all n. This gives 4bn ≤ 2bn+c for infinitely
many n and contradicts to the fact that the sequence b0, b1, ... is strictly increas-
ing as it is the ascending sequence of elements of an infinite set. Thus A is not
complex.

Next assume that A is not wtt-reducible to any hyperimmune set. Let p(m)
be that word σ such that 1σ has the binary value m + 1, so p(0) = λ, p(1) = 0,
p(2) = 1, p(3) = 00 and so on. Let U be the universal machine on which C is
based and assume that U is such that C(A(0)A(1)...A(n)) ≤ n+1 for all n. Now
let f(n) be the first m such that U(p(m)) is a word extending A(0)A(1)...A(n)
and let

B = {(n,m) : f(n) = m ∧ ∀k < n (f(k) �= m)}.
Now A ≤wtt B since A(n) = U(p(m))(n) for the maximal m such that (k,m) ∈
B∧k ≤ n; one can find this m by querying B at (i, j) for all (i, j) ∈ {0, 1, ..., n}×
{0, 1, ..., 2n+1}. Therefore B is not hyperimmune and there is a recursive func-
tion g such that B has more than 2n+1 elements falling into the rectangle
{0, 1, ..., h(n)} × {0, 1, ..., g(n)}. Now one knows that f(A(0)A(1)...A(g(n))) ≥
2n+1 and thus C(A(0)A(1)...A(g(n))) ≥ n. So A is complex. !"

Remark 11. Post [12] introduced the notion of hyperimmune sets and demon-
strated that every r.e. set with a hyperimmune complement is wtt-incomplete
and that there are such sets, that is, hyperimmunity was used as a tool for con-
structing an r.e. wtt-incomplete set. Moreover, Post showed that if an r.e. set A
is wtt-complete then A is not wtt-reducible to any hyperimmune set. This impli-
cation is in fact an equivalence, that is, an r.e. set is wtt-complete if and only if
it is not wtt-reducible to a hyperimmune set, as is immediate from Theorems 6
and 8.

Miller [8] introduced the notion of hyperavoidable set. A set is hyperavoidable
iff it differs from any characteristic function of a recursive set on a prefix of
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length computable from an index for that recursive set. Formally, a set A is
hyperavoidable if there is a nondecreasing and unbounded recursive function h
such that for all e, whenever ϕe(x) is defined for all y < h(e), then we have

A(0) . . . A(h(e)− 1) �= ϕe(0) . . .ϕe(h(e)− 1) .

Among other results on hyperavoidable sets, Miller showed that hyperavoidabil-
ity can be characterized by not being wtt-reducible to any hyperimmune set.

Theorem 12 ([8, Theorem 4.6.4]). A set is hyperavoidable if and only if it
is not wtt-reducible to any hyperimmune set.

The following proposition is then immediate from Theorems 10 and 12.

Proposition 13. A set is hyperavoidable if and only if it is complex.

3 Plain Kolmogorov Complexity and Completions of
Peano Arithmetic

By Propositions 3 and Theorem 5, computing a DNR function is equivalent to
the ability to compute on input n a word f(n) of C-complexity of at least n.
The next theorem shows that if one enforces the additional constraint that the
word f(n) has length n, that is, if one requires f(n) to be an incompressible word
of length n, then one obtains a characterization of the strictly smaller class of
PA-complete sets. Recall that a set A is PA-complete if and only if A computes
a DNR function with finite range, which by a result of Jockusch [6] in turn is
equivalent to computing a {0, 1}-valued DNR function.

Theorem 14. The following is equivalent for every set A.

(1) A computes a {0, 1}-valued DNR function.
(2) A computes a function f such that for all n, f(n) has length n and satisfies

C(f(n)) ≥ n.
(3) A computes a lower bound b on plain complexity C such that for all n there

are at most 2n − 1 many x with b(x) < n.

Proof. (3) implies (2): Just let f(n) be the lexicographically first word y of
length n such that b(y) ≥ n. This word exists by the condition that there are at
most 2n− 1 words x with b(x) < n. Since b is a lower bound for C, one has that
C(f(n)) ≥ n for all n. Furthermore, f is computed from b.

(2) implies (1): Let the partial recursive function ψ be defined by ψ(x) =
xϕn(n) where n is the length of x and ψ is defined if and only if ϕn(n) is
defined. Then there is a constant c such that C(ψ(x)) < n + c for all x, n with
x ∈ {0, 1}n. In order to obtain a DNR function d with finite domain that is
computed by f , let d(n) consists of the last c bits of f(n + c). Now consider
any n such that ϕn(n) is defined. If we let x be the first n bits of f(n + c), then
we have

xd(n) = f(n + c) �= ψ(x) = xϕn(n)
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where the inequality holds by assumption on f and because of C(ψ(x)) < n+ c.
Thus d is a DNR function and its range is the finite set {0, 1}c. By the already
mentioned result of Jockusch [6], this implies that f computes a {0, 1}-valued
DNR function.

(1) implies (3): Assume that A computes a {0, 1}-valued DNR function and
that hence A is PA-complete. Consider the Π0

1 class of all sets G that satisfy the
following two conditions:

– ∀p, x, s (Us(p)↓= x ⇒ (p, x) ∈ G);
– ∀p, x, y ((p, x) ∈ G ∧ (p, y) ∈ G ⇒ x = y).

Since A is PA-complete, by the Scott Basis Theorem (see Odifreddi [11, Theorem
V.5.35]) this Π0

1 class contains a set that is computable in A; fix such a set G.
Now one defines b(x) = min{|p| : |p| < n & (p, x) ∈ G} . By the first condition,
the function b is a lower bound for C. By the second condition, any word p can
occur in at most one pair (p, x) in G, hence there are at most 2n − 1 many x
where there is such a pair with |p| < n, or equivalently, where b(x) < n. !"

One might ask whether one can strengthen Theorem 14 such that any PA-
complete set A, that is, any set that satisfies the first condition in the theorem,
computes a function f such f(n) is a word of length n that, instead of just
being incompressible as required by the second condition, has maximum plain
Kolmogorov complexity among all words of the same length. The answer to this
question depends on the universal machine that is used to define plain com-
plexity; more precisely, for every r.e. oracle B one can compute a corresponding
universal machine which makes this problem hard not only for PA but also for B.
The proof of Theorem 15 is omitted due to space considerations.

Theorem 15. For every recursively enumerable oracle B there is a universal
machine UB such that the following two conditions are equivalent for every
oracle A:

(1) A has PA-complete degree and A ≥T B.
(2) There is a function f ≤T A such that for all n and for all x ∈ {0, 1}n,

f(n) ∈ {0, 1}n and CB(f(n)) ≥ C(x), where CB is the plain Kolmogorov
complexity based on the universal machine UB.

4 Computing Words with Maximum Prefix-Free
Kolmogorov Complexity

While PA-completeness can be characterized in terms of C, an analogous re-
sult for H fails. First, one cannot replace C-incompressibility by H-incompress-
ibility since relative to any Martin-Löf random set A, which includes certain
non-PA-complete sets, one can compute the function mapping n to the H-
incompressible word A(0)...A(n). So one might consider the sets A which permit
to compute words of maximal complexity in order to obtain a characterization of
PA-complete sets. However, instead the corresponding notion gives a character-
ization of the sets that compute the halting problem K. The proof of this result
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makes use of the following proposition, which we state without proof because lack
of space. Note that the following proposition does not hold with C in place of H .

Proposition 16. Let f be a partial recursive surjective function with |f(x)| <
|x| for all x in the domain of f . Then there is a constant c and an enumeration
Us of the universal prefix-free machine U such that

∀n ∀x∀s (f(x) = n ∧Hs(x) = H(x) ⇒ Hs(n) ≤ H(n) + c)

where Hs is the approximation to H based on Us.

In contrast to Theorem 15, the following result does not depend on the choice
of the universal machine that is used when defining Kolmogorov complexity.

Theorem 17. A set A computes the halting problem K if and only if there is
a function f ≤T A such that for all n, the word f(n) has length n and has
maximum H-complexity among all words of the same length, that is, H(x) ≤
H(f(n)) for all words x of length n.

Proof. Since H is K-recursive, a function f as required can obviously be com-
puted if A ≥T K. For the reverse direction, assume that f ≤T A is a function
as stated in the theorem. Let U be the universal prefix-free machine on which
H is based. Given any n,m and any o < 2m, let h map every word of length
2n+m+1 + 2m + o to n; h is undefined on words of length 0, 1, 2. Note that
|h(x)| < |x| for all x. By Proposition 16 there is an enumeration Us of U and a
constant, here called c1, such that

∀n ∀x∀s (h(x) = n ∧Hs(x) = H(x) ⇒ Hs(n) ≤ H(n) + c1).

Let P0, P1, . . . be an enumeration of all primitive-recursive partitions of the nat-
ural numbers and let Pm,0, Pm,1, . . . be the members of partition Pm enumerated
such that the member Pm,o exists whenever Pm,o+1 exists. We can assume that
every partition in the enumeration has infinitely many indices. Now define a
family of partial recursive function T0, T1, . . . such that each Tk on input p does
the following steps:

– Compute the first s such that Us(p) is defined;
– If Us(p) is defined then check whether there are values n,m, �, x, y, z such

that U(p) = xz, |x| = 2n+m+1 + 2m, � = 22|z|
and � < 2m.

– If this also goes through and Hs(n) ≥ k then search for o such that Hs(n)−
k ∈ Pm,o.

– If all previous steps have gone through and o < 2� then let Tk(p) = xy for
the unique y ∈ {0, 1}� with bv(y) = o.

Here bv(y) is the binary value of y, for example, bv(00101) = 5. The machines
Tk are prefix-free and there is a constant c2 such that for all k ≤ c1, H(Tk(p)) ≤
|p| + c2. Furthermore, there is a constant c3 such that H(F (o + c3)) + c2 <
H(F (o + 22c3 )) for all o. In particular one has

∀n ∀m > c3 + 2 ∀p (|U(p)| = 2n+m+1 + 2m + c3 ⇒
∀k ≤ c1 (H(Tk(p)) < H(F (2n+m+1 + 2m + c4)))).
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where c4 = 22c3 . Given any n and m > 2c3, let y be the last c4 bits of F (2n+m+1+
2m + c4). Then Pm,bv(y) does either not exist or not contain H(n).

Thus one can run the following A-recursive algorithm to determine for any
given n a set of up to 2c4 − 1 elements which contains H(n) by the following
algorithm.

– Let E = {0, 1, . . . , 2n + 2} and m = c4 + 1.
– While |E| ≥ 2c4 Do Begin m = m + 1,

Determine the word y consisting of the last c4 bits of f(2n+m+1 + 2m + c4),
If Pm,bv(y) exists and intersects E then let E = E − Pm,bv(y) End.

– Output E.

This algorithm terminates since whenever |E| ≥ 2c4 at some stage m then there
is o > m such that Po has 2c4 members all intersecting E and one of them will
be removed so that E loses an element in one of the stages m+1, . . . , o. Thus the
above algorithm computes relative to A for input n a set of up to 2c4−1 elements
containing H(n). By a result of Beigel, Buhrman, Fejer, Fortnow, Grabowski,
Longpré, Muchnik, Stephan and Torenvliet [5], such an A-recursive algorithm
can only exist if K ≤T A. !"

Remark 18. Theorem 17 and its proof answer a question of Calude, who had
asked whether the statement of the theorem is true with the condition that
H(f(n)) is maximum (among all words of the same length) replaced by the
condition that H(f(n)) is maximum up to an additive constant. This variant of
Theorem 17 can be obtained by a minor adaptation of the proof of the theorem
given above.

Nies [10] pointed out that for any n the word x of maximum prefix-free Kol-
mogorov complexity among all words of length n satisfies, up to an additive
constant, the equality H(x) = n + H(n), hence the variant of Theorem 17 can
be rephrased as follows. For any oracle A, A ≥T K if and only if there is a
function f ≤T A and a constant c such that for all n, f(n) ∈ {0, 1}n and
H(f(n)) ≥ f(n) + H(f(n))− c.

Acknowledgements. We would like to thank Cristian Calude and André Nies
for helpful discussion.

References

1. Marat M. Arslanov, On some generalizations of the Fixed-Point Theorem, Soviet
Mathematics (Iz. VUZ), Russian, 25(5):9–16, 1981, English translation, 25(5):1–10,
1981.

2. Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp and Theodore A. Slaman.
Comparing DNR and WWKL, Journal of Symbolic Logic, 69:1089-1104, 2004.

3. Cristian S. Calude. Private Communication, 2005.
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Abstract. If two classical provers share an entangled state, the result-
ing interactive proof system is significantly weakened [6]. We show that
for the case where the verifier computes the XOR of two binary answers,
the resulting proof system is in fact no more powerful than a system
based on a single quantum prover: ⊕MIP∗[2] ⊆ QIP(2). This also im-
plies that ⊕MIP∗[2] ⊆ EXP which was previously shown using a different
method [7]. This contrasts with an interactive proof system where the
two provers do not share entanglement. In that case, ⊕MIP[2] = NEXP
for certain soundness and completeness parameters [6].

1 Introduction

Interactive proof systems have received considerable attention [2,3,4,8,14,10]
since their introduction by Babai [1] and Goldwasser, Micali and Rackoff [11] in
1985. An interactive proof system takes the form of a protocol of one or more
rounds between two parties, a verifier and a prover. Whereas the prover is com-
putationally unbounded, the verifier is limited to probabilistic polynomial time.
Both the prover and the verifier have access to a common input string x. The
goal of the prover is to convince the verifier that x belongs to a pre-specified
language L. The verifier’s aim, on the other hand, is to determine whether the
prover’s claim is indeed valid. In each round, the verifier sends a polynomial (in
x) size query to the prover, who returns a polynomial size answer. At the end of
the protocol, the verifier decides to accept, and conclude x ∈ L, or reject based
on the messages exchanged and his own private randomness. A language has an
interactive proof if there exists a verifier V and a prover P such that: If x ∈ L,
the prover can always convince V to accept. If x /∈ L, no strategy of the prover
can convince V to accept with non-negligible probability. IP denotes the class of
languages having an interactive proof system. Watrous [30] first considered the
notion of quantum interactive proof systems. Here, the prover has unbounded
quantum computational power whereas the verifier is restricted to quantum poly-
nomial time. In addition, the two parties can now exchange quantum messages.
QIP is the class of languages having a quantum interactive proof system. Clas-
sically, it is known that IP = PSPACE [22,23]. For the quantum case, it has
� Supported by EU project RESQ IST-2001-37559 and NWO Vici grant 2004-2009.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 162–171, 2006.
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been shown that PSPACE ⊆ QIP ⊆ EXP [30,12]. If, in addition, the verifier is
given polynomial size quantum advice, the resulting class QIP/qpoly contains
all languages [21]. Let QIP(k) denote the class where the prover and verifier are
restricted to exchanging k messages. It is known that QIP = QIP(3) [12] and
QIP(1) ⊆ PP [29,15]. We refer to [15] for an overview of the extensive work
done on QIP(1), also known as QMA. Very little is known about QIP(2) and its
relation to either PP or PSPACE.

In multiple-prover interactive proof systems the verifier can interact with
multiple, computationally unbounded provers. Before the protocol starts, the
provers are allowed to agree on a joint strategy, however they can no longer
communicate during the execution of the protocol. Let MIP denote the class of
languages having a multiple-prover interactive proof system. In this paper, we
are especially interested in two-prover interactive proof systems as introduced
by Ben-Or, Goldwasser, Kilian and Widgerson [3]. Feige and Lovász [10] have
shown that a language is in NEXP if and only if it has a two-prover one-round
proof system, i.e. MIP[2] = MIP = NEXP. Let ⊕MIP[2] denote the restricted
class where the verifier’s output is a function of the XOR of two binary answers.
Even for such a system ⊕MIP[2] = NEXP, for certain soundness and complete-
ness parameters [6]. Classical multiple-prover interactive proof systems are thus
more powerful than classical proof systems based on a single prover, assum-
ing PSPACE �= NEXP. Kobayashi and Matsumoto have considered quantum
multiple-prover interactive proof systems which form an extension of quantum
single prover interactive proof systems as described above. Let QMIP denote the
resulting class. In particular, they showed that QMIP = NEXP if the provers
do not share quantum entanglement. If the provers share at most polynomially
many entangled qubits the resulting class is contained in NEXP [13].

Cleve, Høyer, Toner and Watrous [6] have raised the question whether a clas-
sical two-prover system is weakened when the provers are allowed to share arbi-
trary entangled states as part of their strategy, but all communication remains
classical. We write MIP∗ if the provers share entanglement. The authors pro-
vide a number of examples which demonstrate that the soundness condition
of a classical proof system can be compromised, i.e. the interactive proof sys-
tem is weakened, when entanglement is used. In their paper, it is proved that
⊕MIP∗[2] ⊆ NEXP. Later, the same authors also showed that ⊕MIP∗[2] ⊆ EXP
using semidefinite programming [7]. Entanglement thus clearly weakens an in-
teractive proof system, assuming EXP �= NEXP.

Intuitively, entanglement allows the provers to coordinate their answers, even
though they cannot use it to communicate. By measuring the shared entangled
state the provers can generate correlations which they can use to deceive the
verifier. Tsirelson [26,24] has shown that even quantum mechanics limits the
strength of such correlations. Consequently, Popescu and Roehrlich [17,18,19]
have raised the question why nature imposes such limits. To this end, they
constructed a toy-theory based on non-local boxes [17,27], which are hypothetical
“machines” generating correlations stronger than possible in nature. In their full
generalization, non-local boxes can give rise to any type of correlation as long
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as they cannot be used to signal. van Dam has shown that sharing certain non-
local boxes allows two remote parties to perform any distributed computation
using only a single bit of communication [27,28]. Preda [20] showed that sharing
non-local boxes can then allow two provers to coordinate their answers perfectly
and obtained ⊕MIPNL = PSPACE, where we write ⊕MIPNL to indicate that the
two provers share non-local boxes.

Kitaev and Watrous [12] mention that it is unlikely that a single-prover quan-
tum interactive proof system can simulate multiple classical provers, because
then from QIP ⊆ EXP and MIP = NEXP it follows that EXP = NEXP.

1.1 Our Contribution

Surprisingly, it turns out that when the provers are allowed to share entangle-
ment it can be possible to simulate two such classical provers by one quantum
prover. This indicates that entanglement among provers truly leads to a weaker
proof system. In particular, we show that a two-prover one-round interactive
proof system where the verifier computes the XOR of two binary answers and the
provers are allowed to share an arbitrary entangled state can be simulated by a
single quantum interactive proof system with two messages:⊕MIP∗[2] ⊆ QIP(2).
Since very little is known about QIP(2) so far [12], we hope that our result may
help to shed some light about its relation to PP or PSPACE in the future. Our
result also leads to a proof that ⊕MIP∗[2] ⊆ EXP.

2 Preliminaries

2.1 Quantum Computing

We assume general familiarity with the quantum model [16]. In the following,
we will use V ,P and M to denote the Hilbert spaces of the verifier, the quan-
tum prover and the message space respectively. �(z) denotes the real part of a
complex number z.

2.2 Non-local Games

For our proof it is necessary to introduce the notion of (non-local) games: Let
S, T , A and B be finite sets, and π a probability distribution on S × T . Let V
be a predicate on S × T ×A×B. Then G = G(V, π) is the following two-person
cooperative game: A pair of questions (s, t) ∈ S×T is chosen at random according
to the probability distribution π. Then s is sent to player 1, henceforth called
Alice, and t to player 2, which we will call Bob. Upon receiving s, Alice has to
reply with an answer a ∈ A. Likewise, Bob has to reply to question t with an
answer b ∈ B. They win if V (s, t, a, b) = 1 and lose otherwise. Alice and Bob
may agree on any kind of strategy beforehand, but they are no longer allowed
to communicate once they have received questions s and t. The value ω(G) of a
game G is the maximum probability that Alice and Bob win the game. We will
follow the approach of Cleve et al. [6] and write V (a, b|s, t) instead of V (s, t, a, b)
to emphasize the fact that a and b are answers given questions s and t.
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Here, we will be particularly interested in non-local games. Alice and Bob
are allowed to share an arbitrary entangled state |Ψ〉 to help them win the
game. Let A and B denote the Hilbert spaces of Alice and Bob respectively.
The state |Ψ〉 ∈ A ⊗ B is part of the quantum strategy that Alice and Bob
can agree on beforehand. This means that for each game, Alice and Bob can
choose a specific |Ψ〉 to maximize their chance of success. In addition, Alice
and Bob can agree on quantum measurements. For each s ∈ S, Alice has a
projective measurement described by {Xa

s : a ∈ A} on A. For each t ∈ T , Bob
has a projective measurement described by {Y b

t : b ∈ B} on B. For questions
(s, t) ∈ S × T , Alice performs the measurement corresponding to s on her part
of |Ψ〉 which gives her outcome a. Likewise, Bob performs the measurement
corresponding to t on his part of |Ψ〉 with outcome b. Both send their outcome,
a and b, back to the verifier. The probability that Alice and Bob answer (a, b) ∈
A×B is then given by

〈Ψ |Xa
s ⊗ Y b

t |Ψ〉.

The probability that Alice and Bob win the game is given by

Pr[Alice and Bob win] =
∑
s,t

π(s, t)
∑
a,b

V (a, b|s, t)〈Ψ |Xa
s ⊗ Y b

t |Ψ〉.

The quantum value ωq(G) of a game G is the maximum probability over all
possible quantum strategies that Alice and Bob win. An XOR game is a game
where the value of V only depends on c = a⊕b and not on a and b independently.
For XOR games we write V (c|s, t) instead of V (a, b|s, t). We will use τ(G) to
denote the value of the trivial strategy where Alice and Bob ignore their inputs
and return random answers a ∈R {0, 1}, b ∈R {0, 1} instead. For an XOR game,

τ(G) =
1
2

∑
s,t

π(s, t)
∑

c∈{0,1}
V (c|s, t). (1)

In this paper, we will only be interested in the case that a ∈ {0, 1} and
b∈{0, 1}. Alice and Bob’s measurements are then described by {X0

s ,X
1
s} for s∈S

and {Y 0
t ,Y

1
t } for t ∈ T respectively. Note that X0

s +X1
s =I and Y 0

t +Y 0
t =I and

thus these measurements can be expressed in the form of observables Xs and Yt

with eigenvalues ±1: Xs =X0
s−X1

s and Yt=Y 0
t −Y 1

t . Tsirelson [26,24] has shown
that for any |Ψ〉∈A⊗B there exists real vectors xs, yt∈RN with N =min(|S|, |T |)
such that 〈Ψ |Xs ⊗ Yt|Ψ〉= 〈xs|yt〉. Conversely, if dim(A)=dim(B)=2N/2� and
|Ψ〉 ∈ A ⊗ B is a maximally entangled state, there exist observables Xs on A,
Yt on B such that 〈xs|yt〉= 〈Ψ |Xs ⊗ Yt|Ψ〉. See [25, Theorem 3.5] for a detailed
construction.

2.3 Interactive Proof Systems

Multiple Provers. It is well known [6,10], that two-prover one-round interac-
tive proof systems with classical communication can be modeled as (non-local)
games. Here, Alice and Bob take the role of the two provers. The verifier now
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poses questions s and t, and evaluates the resulting answers. A proof system as-
sociates with each string x a game Gx, where ωq(Gx) determines the probability
that the verifier accepts (and thus concludes x ∈ L). The string x, and thus the
nature of the game Gx is known to both the verifier and the provers. Ideally,
for all x ∈ L the value of ωq(Gx) is close to one, and for x /∈ L the value of
ωq(Gx) is close to zero. It is possible to extend the game model for MIP[2] to use
a randomized predicate for the acceptance predicate V . This corresponds to V
taking an extra input string chosen at random by the verifier. However, known
applications of MIP[2] proof systems do not require this extension [9]. Our ar-
gument in Section 3 can easily be extended to deal with randomized predicates.
Since V is not a randomized predicate in [6], we here follow this approach.

In this paper, we concentrate on proof systems involving two provers, one
round of communication, and single bit answers. The provers are computation-
ally unbounded, but limited by the laws of quantum physics. However, the verifier
is probabilistic polynomial time bounded. As defined by Cleve et al. [6],

Definition 1. For 0 ≤ s < c ≤ 1, let ⊕MIPc,s[2] denote the class of all lan-
guages L recognized by a classical two-prover interactive proof system of the
following form:

– They operate in one round, each prover sends a single bit in response to the
verifier’s question, and the verifier’s decision is a function of the parity of
those two bits.

– If x /∈ L then, whatever strategy the two provers follow, the probability that
the verifier accepts is at most s (the soundness probability).

– If x ∈ L then there exists a strategy for the provers for which the probability
that the verifier accepts is at least c (the completeness probability).

Definition 2. For 0 ≤ s < c ≤ 1, let ⊕MIP∗
c,s[2] denote the class corresponding

to a modified version of the previous definition: all communication remains clas-
sical, but the provers may share prior quantum entanglement, which may depend
on x, and perform quantum measurements.

A Single Quantum Prover. Instead of two classical provers, we now consider
a system consisting of a single quantum prover Pq and a quantum polynomial
time verifier Vq as defined by Watrous [30]. Again, the quantum prover Pq is
computationally unbounded, however, he is limited by the laws of quantum
physics. The verifier and the prover can communicate over a quantum channel.
In this paper, we are only interested in one round quantum interactive proof
systems: the verifier sends a single quantum message to the prover, who responds
with a quantum answer. We here express the definition of QIP(2) [30] in a form
similar to the definition of ⊕MIP∗:

Definition 3. Let QIP(2, c, s) denote the class of all languages L recognized by
a quantum one-prover one-round interactive proof system of the following form:

– If x /∈ L then, whatever strategy the quantum prover follows, the probability
that the quantum verifier accepts is at most s.



Entanglement in Interactive Proof Systems with Binary Answers 167

– If x ∈ L then there exists a strategy for the quantum prover for which the
probability that the verifier accepts is at least c.

3 Main Result

We now show that an interactive proof system where the verifier is restricted to
computing the XOR of two binary answers is in fact no more powerful than a
system based on a single quantum prover. The main idea behind our proof is to
combine two classical queries into one quantum query, and thereby simulate the
classical proof system with a single quantum prover. Recall that the two provers
can use an arbitrary entangled state as part of their strategy. For our proof we
will make use of the following proposition shown in [6, Proposition 5.7]:

Proposition 1 (CHTW). Let G(V, π) be an XOR game and let N = min
(|S|, |T |). Then

wq(G)− τ(G) =
1
2

max
xs,yt

∑
s,t

π(s, t) (V (0|s, t)− V (1|s, t)) 〈xs|yt〉,

where the maximization is taken over unit vectors

{xs ∈ RN : s ∈ S} ∪ {yt ∈ RN : t ∈ T }.

Theorem 1. For all s and c such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s[2] ⊆ QIP(2, c, s)

Proof. Let L ∈ ⊕MIP∗
c,s[2] and let Ve be a verifier witnessing this fact. Let

P 1
e (Alice) and P 2

e (Bob) denote the two provers sharing entanglement. Fix an
input string x. As mentioned above, interactive proof systems can be modeled
as games indexed by the string x. It is therefore sufficient to show that there
exists a verifier Vq and a quantum prover Pq, such that wsim(Gx) = wq(Gx),
where wsim(Gx) is the value of the simulated game.

Let s,t be the questions that Ve sends to the two provers P 1
e and P 2

e in the
original game. The new verifier Vq now constructs the following state in V ⊗M

|Φinit〉 =
1√
2
( |0〉︸︷︷︸

V

|0〉|s〉︸ ︷︷ ︸
M

+ |1〉︸︷︷︸
V

|1〉|t〉︸ ︷︷ ︸
M

),

and sends register M to the single quantum prover Pq
1

We first consider the honest strategy of the prover. Let a and b denote the an-
swers of the two classical provers to questions s and t respectively. The quantum
prover now transforms the state to

|Φhonest〉 =
1√
2
((−1)a |0〉︸︷︷︸

V

|0〉|s〉︸ ︷︷ ︸
M

+(−1)b |1〉︸︷︷︸
V

|1〉|t〉︸ ︷︷ ︸
M

),

1 If questions s and t are always orthogonal, it suffices to use 1√
2
(|0〉|s〉 + |1〉|t〉).
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and returns register M back to the verifier. The verifier Vq now performs a
measurement on V ⊗M described by the following projectors

P0 = |Ψ+
st〉〈Ψ+

st | ⊗ I

P1 = |Ψ−
st〉〈Ψ−

st | ⊗ I

Preject = I − P0 − P1,

where |Ψ±
st〉 = (|0〉|0〉|s〉±|1〉|1〉|t〉)/

√
2. If he obtains outcome “reject”, he imme-

diately aborts and concludes that the quantum prover is cheating. If he obtains
outcome m ∈ {0, 1}, the verifier concludes that c = a ⊕ b = m. Note that
Pr[m = a ⊕ b|s, t] = 〈Φhonest|Pa⊕b|Φhonest〉 = 1, so the verifier can reconstruct
the answer perfectly.

We now consider the case of a dishonest prover. In order to convince the
verifier, the prover applies a transformation on M⊗ P and send register M
back to the verifier. We show that for any such transformation the value of the
resulting game is at most wq(Gx): Note that the state of the total system in
V ⊗M⊗P can now be described as

|Φdish〉 =
1√
2
(|0〉|φs〉+ |1〉|φt〉)

where |φs〉 =
∑

u∈S′∪T ′ |u〉|αs
u〉 and |φt〉 =

∑
v∈S′∪T ′ |v〉|αt

v〉 with S′ = {0s|s ∈
S} and T ′ = {1t|t ∈ T }. Any transformation employed by the prover can be
described this way. We now have that

Pr[m = 0|s, t] = 〈Φdish|P0|Φdish〉 =
1
4
(〈αs

s|αs
s〉+ 〈αt

t|αt
t〉) +

1
2
�(〈αs

s|αt
t〉) (2)

Pr[m = 1|s, t] = 〈Φdish|P1|Φdish〉 =
1
4
(〈αs

s|αs
s〉+ 〈αt

t|αt
t〉)−

1
2
�(〈αs

s|αt
t〉) (3)

The probability that the prover wins is given by

Pr[Prover wins] =
∑
s,t

π(s, t)
∑

c∈{0,1}
V (c|s, t) Pr[m = c|s, t].

The prover will try to maximize his chance of success by maximizing Pr[m =
0|s, t] or Pr[m = 1|s, t]. We can therefore restrict ourselves to considering real
unit vectors for which 〈αs

s|αs
s〉 = 1 and 〈αt

t|αt
t〉 = 1. This also means that |αs′

s 〉 =
0 iff s �= s′ and |αt′

t 〉 = 0 iff t �= t′. Any other strategy can lead to rejection and
thus to a lower probability of success. By substituting into Equations 2 and 3,
it follows that the probability that the quantum prover wins the game when he
avoids rejection is then

1
2

∑
s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈αs
s|αt

t〉). (4)

In order to convince the verifier, the prover’s goal is to choose real vectors |αs
s〉

and |αt
t〉 which maximize Equation 4. Since in |φs〉 and |φt〉 we sum over |S′|+
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|T ′| = |S|+|T | elements respectively, the dimension of P need not exceed |S|+|T |.
Thus, it is sufficient to restrict the maximization to vectors in R|S|+|T |. In fact,
since we are interested in maximizing the inner product of two vectors from the
sets {αs

s : s ∈ S} and {αt
t : t ∈ T }, it is sufficient to limit the maximization of

vectors to RN with N = min(|S|, |T |) [6]: Consider the projection of the vectors
{αs

s : s ∈ S} onto the span of the vectors {αt
t : t ∈ T } (or vice versa). Given

Equation 4, we thus have

wsim(Gx) = max
αs

s,α
t
t

1
2

∑
s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈αs
s|αt

t〉),

where the maximization is taken over vectors {αs
s ∈ RN : s ∈ S}, and {αt

t ∈
RN : t ∈ T }. However, Proposition 1 and Equation 1 imply that

wq(Gx) = max
xs,yt

1
2

∑
s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈xs|yt〉)

where the maximization is taken over unit vectors {xs ∈ RN : s ∈ S} and
{yt ∈ RN : t ∈ T }. We thus have

wsim(Gx) = wq(Gx)

which completes our proof.

Corollary 1. For all s and c such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s[2] ⊆ EXP.

Proof. This follows directly from Theorem 1 and the result that QIP(2) ⊆
EXP [12].

4 Discussion

It would be interesting to show that this result also holds for a proof system
where the verifier is not restricted to computing the XOR of both answers, but
some other boolean function. However, it remains unclear what the exact value
of a binary game would be. The approach based on vectors from Tsirelson’s
results does not work for binary games. Whereas it is easy to construct a single
quantum query which allows the verifier to compute an arbitrary function of the
two binary answers with some advantage, it thus remains unclear how the value
of the resulting game is related to the value of a binary game. Furthermore, mere
classical tricks trying to obtain the value of a binary function from XOR itself
seem to confer extra cheating power to the provers.

Examples of non-local games with longer answers [6], such as the Kochen-
Specker or the Magic Square game, seem to make it even easier for the provers
to cheat by taking advantage of their entangled state. Furthermore, existing
proofs that MIP = NEXP break down if the provers share entanglement. It is
therefore an open question whether MIP∗ = NEXP or, what may be a more
likely outcome, MIP∗ ⊆ EXP.
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Non-locality experiments between two spacelike separated observers, Alice
and Bob, can be cast in the form of non-local games. For example, the experiment
based on the well known CHSH inequality [5], is a non-local game with binary
answers of which the verifier computes the XOR [6]. Our result implies that this
non-local game can be simulated in superposition by a single prover/observer:
Any strategy that Alice and Bob might employ in the non-local game can be
mirrored by the single prover in the constructed “superposition game”, and also
vice versa, due to Tsirelson’s constructions [26,24] mentioned earlier. This means
that the “superposition game” corresponding to the non-local CHSH game is in
fact limited by Tsirelson’s inequality [26], even though it itself has no non-local
character. Whereas this may be purely coincidental, it would be interesting to
know its physical interpretation, if any. Perhaps it may be interesting to ask
whether Tsirelson type inequalities have any consequences on local computations
in general, beyond the scope of these very limited games.
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Abstract. We present quantum algorithms for some graph problems:
finding a maximal bipartite matching in time O(n

√
m log n), finding a

maximal non-bipartite matching in time O(n2( m/n+log n) log n), and
finding a maximal flow in an integer network in time O(min(n7/6√m ·
U1/3,

√
nUm) log n), where n is the number of vertices, m is the number

of edges, and U ≤ n1/4 is an upper bound on the capacity of an edge.

1 Introduction

Network flows is one of the most studied problems in computer science. We are
given a directed graph with two designated vertices: a source and a sink. Each
edge has assigned a capacity. A network flow is an assignment of flows to the
edges such that the capacity of an edge is never exceeded and the total incoming
and outgoing flow are equal for each vertex except for the source and the sink.
A size of the flow is the total flow going from the source. The task is to find a
flow of maximal size.

After the pioneering work of Ford and Fulkerson [1], many algorithms have
been proposed. Let n denote the number of vertices and let m denote the number
of edges. For networks with real capacities, the fastest algorithms run in time
O(n3) [2,3]. If the network is sparse, one can achieve a faster time O(nm(log n)2)
[4]. If all capacities are integers bounded by U , the maximal flow can be found in
time O(min(n2/3m,m3/2) log(n2/m) logU) [5]. For unit networks, the log-factor
is not necessary and the fastest algorithm runs in time O(min(n2/3m,m3/2)) [6].
For undirected unit networks, the fastest known deterministic algorithm runs in
time O(n7/6m2/3) and the fastest known probabilistic algorithm runs in time
O(n20/9) [7].

Another well studied problem is finding a matching in a graph. We are given
an undirected graph. A matching is a set of edges such that every vertex is con-
nected to at most one other vertex. The task is to find a matching of maximal
size. The simplest classical algorithm based on augmenting paths runs in time
� Supported by NSERC, ARDA, CIAR and IQC University Professorship.

�� Supported in part by the EU fifth framework project RESQ, IST-2001-37559. Work
conducted while visiting University of Waterloo and University of Calgary.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 172–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Quantum Algorithms for Matching and Network Flows 173

O(n3) [8,9]. If the graph is bipartite, then the simple algorithm finds a maximal
matching in faster time O(n5/2) [10]. Finding a bipartite matching can be re-
duced to finding a maximal flow in a directed unit network, hence one can apply
the same algorithms and achieve a running time O(min(n2/3m,m3/2)) [6]. The
fastest known algorithm for general sparse graphs runs in time O(

√
nm) [11].

Recently, Mucha and Sankowski published a new algorithm [12] based on matrix
multiplication that finds a maximal matching in general graphs in time O(nω),
where 2 ≤ ω ≤ 2.38 is the exponent of the best matrix multiplication algorithm.

In our paper, we analyze the quantum time complexity of these problems.
We use Grover’s search [13,14] to speed up searching for an edge. A similar
approach has been successfully applied by Dürr et al. [15] to the following graph
problems: connectivity, strong connectivity, minimum spanning tree, and single
source shortest paths. Our bipartite matching algorithm is polynomially faster
than the best classical algorithm when m = Ω(n1+ε) for some ε > 0, and
the network flows algorithm is polynomially faster when m = Ω(n1+ε) and U
is small. Out non-bipartite matching algorithm is worse than the best known
classical algorithm [11].

There is an Ω(n3/2) quantum adversary lower bound for the bipartite match-
ing problem [16,17]. Since the bipartite matching problem is a special case of
the other problems studied in this paper, this implies an Ω(n3/2) quantum lower
bound for all problems in this paper.

2 Preliminaries

An excellent book about quantum computing is the textbook by Nielsen and
Chuang [18]. In this paper, we only use two quantum sub-routines and oth-
erwise our algorithm are completely classical. The first one is a generalization
of Grover’s search that finds k items in a search space of size � in total time
O(
√
k�) [13,14]. An additional time O(

√
�) is needed to detect that there are no

more solutions; this term is only important when k = 0. The second one is quan-
tum counting that estimates the number of ones in a string of length n within
additive constant

√
n with high probability in time O(

√
n) [19, Theorem 13].

Each of those algorithms may output an incorrect answer with a constant
probability. Our algorithms may use a polynomial number nc of quantum sub-
routines. Because of that, we have to repeat each quantum subroutine O(log n)
times, to make sure that the probability of an incorrect answer is less than
1/nc+1. Then, the probability that all quantum subroutines in our algorithm
output the correct answer is at least 1− 1/n. This increases the running time of
all our algorithms by a logn factor. We omit the log-factors in the proofs, but
we state them in the statements of our theorems.

A very good book about network flows is the classical book by Ahuja, Mag-
nanti, and Orlin [20]. It, however, does not contain most of the newest algorithms
that we compare our algorithms to. We use the following concepts: A layered net-
work is a network whose vertices are ordered into a number of layers, and whose
edges only go from the i-th layer to the (i + 1)-th layer. A residual network is a
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network whose capacities denote the residual capacity of the edges in the original
network. When an edge has a capacity c and carries a flow f , then its residual
capacity is either c − f or c + f depending on the direction. An augmenting
path in a network is a path from the source to the sink whose residual capacity
is bigger than 0. An augmenting path for the matching problem is a path that
consists of alternated non-edges and edges of the current matching, and starts
and ends in a free vertex. A blocking flow in a layered residual network is a
maximal flow with respect to inclusion. A blocking flow cannot be increased by
one augmenting path. A cut in a network is a subset of edges such that there is
no path from the source to the sink if we remove these edges. The size of a cut
is the sum of the capacities of its edges. Any flow has size smaller or equal to
the size of any cut.

Let us define our computational model. Let V be a fixed vertex set of size
n ≥ 1 and let E ⊆ (V

2 ) be a set of edges. E is a part of the input. Let m denote
the number of edges. We assume that m ≥ n, since one can eliminate zero-degree
vertices in classical time O(n). We consider the following two black-box models
for accessing directed graphs:

– Adjacency model: the input is specified by an n×n Boolean matrix A, where
A[v, w] = 1 iff (v, w) ∈ E.

– List model: the input is specified by n arrays {Nv : v ∈ V } of length 1 ≤
dv ≤ n. Each entry of an array is either a number of a neighbor or an hole,
and {Nv[i] : i = 1, . . . , dv} − {hole} = {w : (v, w) ∈ E}.

The structure of the paper is as follows: In Section 3, we present a quantum
algorithm for computing a layered network from a given network. It is used as
a tool in almost all our algorithms. In Section 4, we present a simple quantum
algorithm for bipartite matching. In Section 5, we show how to quantize the clas-
sical algorithm for non-bipartite matching. In Section 6, we present a quantum
algorithm for network flows.

3 Finding a Layered Subgraph

We are given a connected directed black-box graph G = (V, E) and a starting
vertex a ∈ V , and we want to assign layers � : V → N to its vertices such that
�(a) = 0 and �(y) = 1 + minx:(x,y)∈E �(x) otherwise. The following quantum
algorithm computes layer numbers for all vertices:

1. Set �(a) = 0 and �(x) = ∞ for x �= a.
Create a one-entry queue W = {a}.

2. While W �= ∅,
– take the first vertex x from W ,
– find by Grover’s search all its neighbors y with �(y) = ∞,

set �(y) := �(x) + 1, and append y into W ,
– and remove x from W .

Theorem 1. The algorithm assigns layers in time O(n3/2 logn) in the adja-
cency model and in time O(

√
nm logn) in the list model.
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Proof. The algorithm is a quantum implementation of breadth-first search. The
initialization costs time O(n). Every vertex is processed at most once. In the
adjacency model, every vertex contributes by time at most O(

√
n), because

finding a vertex from its ancestor costs time at most O(
√
n) and discovering

that a vertex has no descendant costs the same.
In the list model, processing a vertex v costs time O(

√
nvdv +

√
dv + 1),

where nv is the number of vertices inserted into W when processing v. Let
f ≤ min(n,m) be the number of found vertices. Since

∑
v nv ≤ f ≤ n and∑

v(dv + 1) ≤ m + f = O(m), the total running time is upper-bounded by the
Cauchy-Schwarz inequality as follows:∑

v

√
nvdv ≤

√∑
v

nv

√∑
v

dv = O(
√
nm),

and
∑

v

√
dv + 1 ≤

√
f
√
m + f is upper-bounded in the same way.

4 Bipartite Matching

We are given an undirected bipartite black-box graph G = (V1,V2, E) and we
want to find a maximum matching among its vertices. This can be done classi-
cally in time O(n5/2) [10] as follows:

1. Set M to an empty matching.
2. Let H = (V ′, E′) denote the following graph:

V ′ = V1 ∪ V2 ∪ {a, b}
E′ = {(a, x) : x ∈ V1, x �∈M}
∪ {(x, y) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) �∈M}
∪ {(y, x) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) ∈M}
∪ {(y, b) : y ∈ V2, y �∈M},
where the shortcut x �∈M means that x is not matched.

Find a maximal (with respect to inclusion) set S of vertex-disjoint augment-
ing paths of minimal length. This is done as follows: First, construct a layered
subgraph H ′ of H . Second, perform a depth-first search for a maximal set of
vertex-disjoint paths from a to b in H ′. Every such a path is an augmenting
path in M , and they all have the same minimal length.

3. Augment the matching M by S.
4. If S �= ∅, go back to step 2, otherwise output the matching M .

The algorithm is correct because (1) a matching is maximal iff there is no
augmenting path, and (2) the minimal length of an augmenting path is increased
by at least one after every iteration. The construction of H ′ classically and the
depth-first search both cost O(n2). The maximal number of iterations is O(

√
n)

due to the following statement:
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Lemma 1. [10] If M1 and M2 are two matchings of size s1 and s2 with s1 < s2,
then there exist s2 − s1 vertex-disjoint augmenting paths in M1.

Let s be the size of the maximal matching M in G, and let si be the size of
the found matching Mi after the i-th iteration. Let j be the number of the first
iteration with sj ≥ s −

√
n. The total number of iterations is at most j +

√
n,

because the algorithm finds at least one augmenting path in every iteration. On
the other hand, by Lemma 1, there are s− sj ≥

√
n vertex-disjoint augmenting

paths in Mj. Since all augmenting paths in the j-th iteration are of length at
least j + 2, it must be that j <

√
n, otherwise the paths would not be disjoint.

We conclude that the total number of iterations is at most 2
√
n.

Theorem 2. Quantumly, a maximal bipartite matching can be found in time
O(n2 logn) in the adjacency model and O(n

√
m logn) in the list model.

Proof. We present a quantum algorithm that finds all augmenting paths in one
iteration in time O(n3/2), resp. O(

√
nm), times a log-factor for Grover’s search.

Since the number of iterations is O(
√
n), the upper bound on the running time

follows. Our algorithm works similarly to the classical one; it also computes the
layered graph H ′ and then searches in it.

The intermediate graph H is generated on-line from the input black-box graph
G and the current matching M , using a constant number of queries as follows:
the sub-graph of H on V1 × V2 is the same as G except that some edges have
been removed; here we exploit the fact that the lists of neighbors can contain
holes. We also add two new vertices a and b, add one list of neighbors of a with
holes of total length n, and at most one neighbor b to every vertex from V2.
Theorem 1 states how long it takes to compute H ′ from H . It remains to show
how to find the augmenting paths in the same time.

This is simple once we have computed the layer numbers of all vertices. We
find a maximal set of vertex-disjoint paths from a to b by a depth-first search.
A descendant of a vertex is found by Grover’s search over all unmarked vertices
with layer number by one bigger. All vertices are unmarked in the beginning.
When we find a descendant, we mark it and continue backtracking. Either the
vertex will become a part of an augmenting path, or it does not belong to any
and hence it needs not be tried again. Each vertex is thus visited at most once.

In the adjacency model, every vertex costs time O(
√
n) to be found and time

O(
√
n) to discover that it does not have any descendant. In the list model, a

vertex v costs time O(
√
nvdv +

√
dv), where nv is the number of unmarked

vertices found from v. The sum over all vertices is upper-bounded like in the
proof of Theorem 1. Note that

∑
v dv has been increased by at most 2n.

5 Non-bipartite Matching

We are given an undirected graph G = (V, E) and we want to find a maximal
matching among its vertices. There is a classical algorithm [8,9] running in total
time O(n3) in n iterations of time O(n2).
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Each iteration consists of searching for an augmenting path. The algorithm
performs a breadth-first search from some free vertex. It browses paths that
consist of alternated non-edges and edges of the current matching. The matching
is specified by pointers mate. Let us call a vertex v even if we have found such
an alternated path of even length from the start to v; otherwise we call it odd.
Newly discovered vertices are considered to be odd. For each even vertex, we
store two pointers link and bridge used for tracing the path back, and a pointer
first to the last odd vertex on this path. The algorithm works as follows and its
progress on an example graph is outlined in Figure 1:

7

8

6

5 4

3

2

1 bridges
0

– white vertices are free
– thick solid lines denote the

current matching
– dotted lines are the remaining

edges of the graph
– even vertices are numbered in

the order they are found
– vertices 5, 6, 7, and 8 are found

via 3 bridges
– the augmenting path is 0, 7, 1,

6, 3, 4, 5, 2, 8, and the final
free vertex

Fig. 1. The classical non-bipartite matching algorithm [8,9]

1. Initialize a queue of even vertices W = {a} with some free vertex a.
2. Take the first vertex v from W and delete it from W .
3. If there exists an free vertex w connected to v, then augment the current

matching by the path a→ v plus the edge (v, w), and quit. A general subpath
ρ : b→ v is traced recursively using v’s pointers as follows:
– If bridge is nil, then link points to the previous even vertex on ρ. Output

2 edges from v to mate and link, and trace ρ from link to b.
– Otherwise v was discovered via a bridge, link points to v’s side of the

bridge, and bridge to the other side. Trace ρ from link to v in the opposite
direction, and then from bridge to b in the normal direction.

4. For every odd vertex w connected to v, do the following:
– Let w be connected to a mate w′. If w′ is even, do nothing.
– Otherwise mark w′ as even, append it to W , and set its pointers as

follows: link to v, bridge to nil, and first to w.
5. For every even vertex w connected to v, do the following:

– Compare the pointers first of v and w. If they are equal, do nothing.
– Now, v and w lie on a circle of odd length, and the edge (v, w) is a bridge

between the two subpaths. Find the nearest common odd ancestor p of
v and w by tracing the pointers first. Collapse the circle as follows:
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• Mark all odd vertices between v and p as even, append them to W ,
and set their pointers as follows: link to v, bridge to w, and first to p.

• Do the same for odd vertices between w and p.
• Finally, rewrite all links first pointing to odd vertices that have just

become even to p.
6. If W is empty, then there is no augmenting path from a and we quit, other-

wise go back to step 2.

It holds that if an augmenting path from some vertex has not been found,
then it would not be found even later after more iterations of the algorithm.
Hence it suffices to search for an augmenting path from each vertex once.

Theorem 3. Quantumly, a maximal non-bipartite matching can be found in
time O(n5/2 logn) in the adjacency model and O(n2(

√
m/n+logn) logn) in the

list model.

Proof. The algorithm iteratively augments the current matching by single aug-
menting paths, like the classical algorithm. An augmenting path is found using
Grover’s search in faster time O(n3/2), resp. O(n(

√
m/n + logn)), times the

usual log-factor. This implies the bound on the total running time, since there
are n vertices and each of them is used as the starting vertex a at most once.
Let us prove the time bound for the list model.

Let f ≤ min(n,m) denote the number of even vertices. For every even vertex
v, we perform the following 3 Grover’s searches: First, we look for a free neighbor
of v in time O(

√
dv). Second, we process all odd neighbors of v whose mate is

still odd in total time O(
√
evdv), where ev is the number of odd vertices that

are found during processing v. Third, we process all even neighbors of v whose
pointer first is different from v’s pointer first, in time O(

√
bvdv), where bv is the

number of bridges that are found during processing v. Clearly
∑

v ev ≤ f and∑
v bv ≤ f , and, since

∑
v dv ≤ m, by the Cauchy-Schwarz inequality, the total

time spent in all Grover’s searches is O(
√
nm).

Let us estimate the running time of collapsing one circle. Let p1 be the length
of the link-list of pointers first from one side of the bridge into the nearest
common parent, let p2 be the other one, and let p = max(p1, p2). The nearest
common parent is found in time O(p log p) as follows: we maintain two balanced
binary trees for each link-list, add vertices synchronously one-by-one, and search
for every newly inserted vertex in the opposite tree, until we find a collision. Let
rv be the number of odd vertices collapsed during processing a vertex v. It holds
that rv = p1+p2 = Θ(p) and

∑
v rv ≤ f . Hence the total time spent in collapsing

circles is O(f log f).
Rewriting the pointers first of all even vertices inside a collapsed circle would

be too slow. We instead maintain aside a Union-tree of all these pointers, and
for every odd vertex converted to even, we append its subtree to the node of the
nearest common ancestor. The total time spent in doing this is O(f log f).

The augmenting path has length at most n and it is traced back in linear
time. We conclude that the total running time of finding an augmented time is
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O(
√
nm+n logn) = O(n(

√
m/n+ logn)), which is O(

√
nm) for m ≥ n(logn)2.

The running time in the adjacency model is equal to the running time in the list
model with m = n2, that is O(n5/2).

It would be interesting to quantize the fastest known classical algorithm by
Micali and Vazirani [11] running in total time O(

√
nm).

6 Integer Network Flows

We are given a directed network with real capacities, and we want to find a
maximal flow from the source to the sink. There are classical algorithms running
in time O(n3) [2,3]. They iteratively augment the current flow by adding blocking
flows in layered residual networks [21] of increasing depth. Since the depth is
increased by at least one after each iteration, there are at most n iterations.
Each of them can be processed in time O(n2). For sparse real networks, the
fastest known algorithm runs in time O(nm(log n)2) [4].

Let us restrict the setting to integer capacities bounded by U . There is a sim-
ple capacity scaling algorithm running in time O(nm logU) [22,21]. The fastest
known algorithm runs in time O(min(n2/3m,m3/2) log(n2/m) logU) [5]. For unit
networks, i.e. for U = 1, a simple combination of the capacity scaling algorithm
and the blocking-flow algorithm runs in time O(min(n2/3m,m3/2)) [6]. For undi-
rected unit networks, there is an algorithm running in time O(n3/2√m) [23], and
the fastest known algorithm runs in worst-case time O(n7/6m2/3) and expected
time O(n20/9) [7].

Lemma 2. [6] Let us have an integer network with capacities bounded by U ,
whose layered residual network has depth k. Then the size of the residual flow is
at most min((2n/k)2,m/k) · U .

Proof. (1) There exist layers V and V+1 that both have less than 2n/k ver-
tices. This is because if for every i = 0, 1, . . . , k/2, at least one of the layers
V2i,V2i+1 had size at least 2n/k, then the total number of vertices would
exceed n. Since V and V+1 form a cut, the residual flow has size at most
|V| · |V+1| · U ≤ (2n/k)2U .

(2) For every i = 0, 1, . . . , k − 1, the layers Vi and Vi+1 form a cut. These cuts
are disjoint and they together have at most m edges. Hence at least one of
them has at most m/k edges, and the residual flow has thus size at most
O(mU/k).

Theorem 4. Let U ≤ n1/4. Quantumly, a maximal network flow with integer
capacities at most U can be found in time O(n13/6 ·U1/3 log n) in the adjacency
model and in time O(min(n7/6√m · U1/3,

√
nUm) logn) in the list model.

Proof. The algorithm iteratively augments the current flow by blocking flows
in layered residual networks [21], until the depth of the network exceeds k =
min(n2/3U1/3,

√
mU). Then it switches to searching augmenting paths [22], while

there are some. The idea of switching the two algorithms comes from [6]. Our
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algorithm uses classical memory of size O(n2) to store the current flow and its
direction for every edge of the network, and a 1-bit status of each vertex. A
blocking flow is found as follows:

1. Compute a layered subgraph H ′ of the residual network H . The capacity of
each edge in H is equal to the original capacity plus or minus the current
flow depending on the direction. Edges with zero capacities are omitted.

2. Mark all vertices as enabled.
3. Find by a depth-first search a path ρ in H ′ from the source to the sink that

only goes through enabled vertices. If there is no such a path, quit. During
back-tracking, disable all vertices from which there is no path to the sink.

4. Compute the minimal capacity μ of an edge on ρ.
Augment the flow by μ along ρ.

5. Go back to step 3.

The layered subgraph H ′ is computed from H using Theorem 1, and the ca-
pacities of H are computed on-line in constant time. When the flow is augmented
by μ along the path ρ, the saturated edges will have been automatically deleted.
This is because the algorithm only stores layer numbers for the vertices, and the
edges of H ′ are searched on-line by Grover’s search.

Let us compute how much time the algorithm spends in a vertex v during
searching the augmenting paths. Let av denote the number of augmenting paths
going through v and let ev,i denote the number of outgoing edges from v at
the moment when there are still i remaining augmenting paths. The capacity of
every edge is at most U , hence ev,i ≥ &i/U'. The time spent in Grover’s searches
leading to an augmenting path in v is thus at most

av∑
i=1

√
dv

ev,i
≤
√
U ·

av∑
i=1

√
dv

i
= O(

√
Uavdv).

Let cv denote the number of enabled vertices found from v that do not lie on
an augmenting path and are thus disabled. The time spent in Grover’s searches
for these vertices is at most O(

√
cvdv). Furthermore, it takes additional time

O(
√
dv + 1) to discover that there is no augmenting path from v, and in this

case v is disabled and never visited again.
Let j denote the depth of the network and let Aj be the size of its blocking

flow. The total number of augmenting paths going through vertices in any given
layer is at most Aj . We conclude that

∑
v av ≤ jAj . We also know that

∑
v cv ≤

n. Since
∑

v dv ≤ m, by the Cauchy-Schwarz inequality, the total time spent by
finding one blocking flow is∑

v

(
√
Uavdv +

√
cvdv +

√
dv + 1) ≤

√
U

√∑
v

av

√∑
v

dv + 2
√
nm

= O(
√

jmAjU +
√
nm).

Our algorithm performs at most k = min(n2/3U1/3,
√
mU) iterations of find-

ing the blocking flow in total time at most
√
mU ·

∑k
j=1

√
jAj + k

√
nm. Let us
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assume that the algorithm has not finished, and estimate the size of the resid-
ual flow and thus upper-bound the number of augmenting paths that need to be
found. The algorithm has constructed in this iteration a layered network of depth
bigger than k. By Lemma 2, the residual flow has size O(min((n/k)2,m/k)·U) =
O(k), hence the algorithm terminates in O(k) more iterations. From this point
on, the algorithm only looks for one augmenting path in each layered network,
hence its complexity drops to O(

√
j′m) = O(

√
nm) per iteration, omitting the

factor
√

Aj′U . The total running time is thus at most

O
(√

mU ·
k∑

j=1

√
jAj + k

√
nm
)

+ O(k
√
nm).

Let us prove that
∑

j

√
jAj = O(k3/2). We split the sequence into log k intervals

Si = {2i, 2i + 1, . . . , 2i+1 − 1} of length 2i. By Lemma 2, the residual flow after
� = k/2i iterations is at most O(min((n/k)2 · 22i,m/k · 2i) · U) ≤ O(22ik) =
O((k/�)2�) = O(k2/�). Since the total size of all blocking flows cannot exceed the
residual flow,

∑2−1
j= Aj = O(k2/�). By applying the Cauchy-Schwarz inequality

independently on each block, we get

k∑
j=1

√
jAj =

log k∑
i=0

2i+1−1∑
j=2i

√
jAj ≤

log k∑
i=0

√
2i · 2i+1

√√√√2i+1−1∑
j=2i

Aj

≤
√

2
log k∑
i=0

2i
√
k2/2i =

√
2 · k

log k∑
k=0

2i/2 = O(k3/2).

The total running time is thus O(k
√
m(
√
kU +

√
n)). Now, kU ≤ n, because

U ≤ n1/4 and kU = min(n2/3U4/3,
√
m·U3/2) ≤ n2/3n1/3 = n. The running time

is therefore O(k
√
nm) = O(min(n7/6

√
m · U1/3,

√
nUm)), times a log-factor for

Grover’s search. The time for the adjacency model follows from setting m = n2

and it is O(n13/6 · U1/3 logn).

It is not hard to compute an upper bound on the running time of the network
flows algorithm for U > n1/4 by the same techniques. One obtains O(min(n7/6
√
m,
√
nm) ·U logn) for arbitrary U by setting k = min(n2/3,

√
m). It would be

interesting to apply techniques of [5] to improve the multiplicative constant in
Theorem 4 from poly(U) to logU . If m = Ω(n1+ε) for some ε > 0 and U is small,
then our algorithm is polynomially faster than the best classical algorithm. For
constant U and m = O(n), it is slower by at most a log-factor. The speedup is
biggest for dense networks with m = Ω(n2).

Theorem 5. Any bounded-error quantum algorithm for network flows with in-
teger capacities bounded by U = n has quantum query complexity Ω(n2).

Proof. Consider the following layered graph with m = Θ(n2) edges. The vertices
are ordered into 4 layers: the first layer contains the source, the second and third
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layer contain p = n
2 − 1 vertices each, and the last layer contains the sink. The

source and the sink are both connected to all vertices in the neighboring layer
by p edges of full capacity n. The vertices in the second and third layer are
connected by either p2

2 or p2

2 + 1 edges of capacity 1 chosen at random. The
edges between these two layers form a minimal cut. Now, deciding whether the
maximal flow is p2

2 or p2

2 +1 allows us to compute the majority on p2 bits. There
is an Ω(p2) = Ω(n2) lower bound for majority, hence the same lower bound also
holds for the computation of the maximal flow.
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Abstract. A run (or a maximal repetition) in a string is an inclusion-
maximal periodic segment in a string. Let ρ(n) be the maximal number
of runs in a string of length n. It has been shown in [8] that ρ(n) = O(n),
the proof was very complicated and the constant coefficient in O(n) has
not been given explicitly. We propose a new approach to the analysis of
runs based on the properties of subperiods: the periods of periodic parts
of the runs. We show that ρ(n) ≤ 5 n. Our proof is inspired by the results
of [4], where the role of new periodicity lemmas has been emphasized.

1 Introduction

Periodicities in strings were extensively studied and are important both in theory
and practice (combinatorics of words, pattern-matching, computational biology).
The set of all runs in a string corresponds to the structure of its repetitions.
Initial interest was mostly in repetitions of the type xx (so called squares),
[1, 10]. The number of squares, with primitive x, is Ω(n log n), hence the number
of periodicities of this type is not linear. Then, it has been discovered that
the number of runs (also called maximal repetitions or repeats) is linear and
consequently linear time algorithms for runs were investigated [8, 7]. However
the most intriguing question remained the asymptotically tight bound for the
number of runs. The first bound was quite complicated and has not given any
concrete constant coefficient in O(n) notation. This subject has been studied in
[12, 13, 2]. The lower bound of approximately 0.927 n has been given in [2]. The
exact number of runs has been considered for special strings: Fibonacci words
and (more generally) Sturmian words, [6, 5, 11]. In this paper we make a step
towards better understanding of the structure of runs. The proof of the linear
upper bound is simplified and small explicit constant coefficient is given in O(n)
notation.

Let period(w) denote the size of the smallest period of w. We say that a word
w is periodic iff period(w) ≤ |w|

2 .
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b   b    a     b    a    a    b     a    a

Fig. 1. RUNS( b b a b a a b a a ) = {[1, 2], [2, 5], [3, 9], [5, 6], [8, 9]}

A run in a string w is an inclusion-maximal interval α = [i...j] such that the
substring w[i...j] = w[i]w[i + 1]...w[j] is periodic. Denote by RUNS(w) the set
of runs of w. For example we have 5 runs in an example string in Figure 1.

Denote: ρ(n) = max{|RUNS(w)| : |w| = n}.

The most interesting conjecture about ρ(n) is: ρ(n) < n.

We make a small step towards proving validity of this conjecture and show that
ρ(n) ≤ 5 n. The proof of linear upper bound in [8] does not give any explicit
constant coefficient at all.

The value of the run α = [i...j] is val(α) = w[i...j]. When it creates no ambiguity
we identify sometimes runs with their values although two different runs could
correspond to the identical subwords, if we disregard positions of these runs.
Hence runs are also called maximal positioned repetitions.

Each value of the run α is a string xky = w[i...j], where |x| = period(α) ≥ 1,
k ≥ 2 is an integer and y is a proper prefix of x (possibly empty). The subword
x is called the periodic part of the run and denoted by PerPart(α) = x. Denote
SquarePart(α) = [i . . . i + 2 period(α) − 1].

We also introduce terminology for the starting position of the second occur-
rence of periodic part: center(α) = i + |x|.

The position i is said to be the occurrence of this run and is denoted by
first(α). We write α ≺ β iff first(α) < first(β).

Example. In Figure 2 we have: first(α) = 2, f irst(β) = 4 and center(α) =
22, center(β) = center(γ) = 21, PerPart(γ) = (aba)4ab.

b a a b a a b a a b a a b a a b ab a ab b a a b a a b a a b a a b a a b a a b a

4

α
22

21β

γ

Fig. 2. Example of three highly periodic runs α ≺ β ≺ γ with subperiod 3. The runs
β, γ are left-periodic (the subperiod 3 continues to the left), α is not. The runs α, β (as
well as β, γ) are “neighbors” in sense of Lemma 1. The occurrences (starting positions)
of very large runs can be very close. The periodic parts are indicated by the arcs.
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In the paper the crucial role is played by the runs α with highly periodic
PerPart(α). Denote

subperiod(α) = period(PerPart(α)).

In Figure 2 we have: subperiod(α) = subperiod(β) = subperiod(γ) = 3.

We say that a word w is highly periodic (h-periodic) if period(w) ≤ |w|
4 . A

run is said to be a highly periodic run (an hp-run, in short) iff PerPart(α)
is h-periodic. The run which is not h-periodic is called a weakly-periodic run
(wp-run). In Figure 2 α,β, γ are a highly periodic runs.

Denote Δ = 5
4 . We say that two different runs α, β are neighbors iff there is a

positive number η such that:

|first(α) − first(β)| ≤ 1
4
η and η ≤ period(α), period(β) ≤ Δ η

Informally, two runs are neighbors iff they have similar periods and are positioned
close to each other relatively to their sizes, in particular this means that

period(α), period(β) ≥ 4 |first(α)− first(β)|.

It is “intuitively obvious” that if we have many neighbors gathered together then
such situation forces one of them to be highly periodic. The tedious proof of the
following key-lemma is given in Section 3.

Lemma 1 [The Three-Neighbors]. Lemma] If we have three distinct runs
which are pairwise neighbors with the same number η then at least one of them
is h-periodic.

We cannot replace Three-Neighbors Lemma with Two-Neighbors Lemma, see
Figure 3.

We show that hp-runs are also sparse in a certain sense. Another tedious proof
of the following lemma is given in Section 4. Figure 2 shows that “two” cannot
be replaced by “single”, the runs α,β have subperiod 3 and start in the interval
[2 . . . 4] of size 3.

b    b   a   a   a   a   a   a   a   a   a   a   b   b   a   a   a   a   a   a   a   a   a   a   a  b   b   a

Fig. 3. Two weakly-periodic runs which are neighbors

Lemma 2 [HP-Runs Lemma]. For a given p > 1 there are at most two oc-
currences of hp-runs with subperiod p in any interval of length p.
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2 Estimating the Number ρ(n)

The analysis is based on the sparsity properties of hp-runs and wp-runs expressed
by Lemmas 1 and 2.

Denote by WP(n, k) the maximal number of wp-runs α in a string of length n
with period(α) ≥ k.

Let HP(n) be the maximal number of all hp-runs in a string of length n. It
can be shown that HP (n) ≥ 1

3n − c0, where c0 is a constant ( take w =
(ab)mb(ab)mb(ab)m ). However we are interested in the upper bound.

Let ρ(n, k) be the maximal number of all runs α with period(α) ≤ k, in a
string of length n. We separately estimate the numbers WP (n, k), HP (n),
ρ(n, k).

2.1 Estimating the Number of Weakly Periodic Runs

We group wp-runs into groups of potential neighbors. Denote

G(k) = {α : α is a weakly periodic run of w, Δk ≤ period(α) < Δk+1};

Lemma 3. WP (n, &Δr') ≤ 40Δ−r × n.

Proof. Let w be a string of length n. If α,β ∈ G(k) for the same k, and |first(α)−
first(β)| ≤ Δk/4 then α,β are neighbors with η = Δk.

Now Lemma 1 can be reformulated as follows: |G(k)| ≤ 2·(1/(Δk· 14 )·n = 8Δ−k·n.

The last inequality follows directly from Lemma 1, which implies that there are
at most two elements of G(k) in any interval of size 1

4Δk.
Consequently we have

WP (n, &Δr') ≤
∞∑

k=r

|G(k)| ≤
∞∑

k=r

8 ·Δ−k · n = 8Δ−r × 1
1−Δ−1

= 40 ·Δ−r

2.2 Estimating the Number of Highly Periodic Runs

Denote by hp(n, p) the maximal number hp-runs α with p ≤ subperiod(α) ≤ 2p,
maximized over strings of length n.

Lemma 4. If p ≥ 2 then hp(n, p) ≤ 2
p n.

Proof. It is easy to see the following claim (using the periodicity lemma).

Claim. If α,β are two hp-runs which satisfy
|first(α)− first(β)| < p and p ≤ subperiod(α), subperiod(β) ≤ 2p,

then subperiod(α) = subperiod(β).
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It follows from the claim and Lemma 2 that for any interval of length p there
are at most two hp-runs occurring in this interval and having subperiods in
[p . . . 2p], since such hp-runs should have the same subperiod p′ ≥ p. There-
fore there are at most 2

p′ n ≤ 2
p n hp-runs with subperiods in [p . . . 2p]. This

completes the proof.

Lemma 5. HP (n) ≤ 1.75 n.

Proof. Observe that there are no hp-runs with subperiod 1.
According to Lemma 4 we have:

HP (n) ≤ hp(n, 2)+ hp(n, 5)+ hp(n, 11)+ hp(n, 23)+ hp(n, 47)+ hp(n, 95)+ . . .

= 2 n × (
1
2

+
1
5

+
1
11

+
1
23

+
1
47

+ . . .)× n = 2 n ×
∞∑

k=1

1
pk

,

where pk = 2k + 2k−1 − 1. A rough estimation gives:

2×
∞∑

k=1

1
pk

< 1.75

Hence HP (n) ≤ 1.75 n.

2.3 The Runs with Periods Bounded by a Constant

We estimate the number of runs with small periods in a rather naive way.

Lemma 6. For any given k ≥ 1 there are at most 1
k+1 n runs with period(α) = k

or period(α) = 2k.

Proof. We omit the proof of the following simple fact.

Claim. If u, v are primitive words and |u| = 2|v|, then vv is not contained in uu
as a subword.

Assume that α ≺ β are two different runs with periods k or 2k.
If period(α) = period(β) = k then α,β can have an overlap of size at most k−

1, otherwise α,β could be merged into a single run. Hence first(β)−first(α) ≥
k + 1.

If period(α) = k and period(β) = 2k then it is possible that first(β) −
first(α) = 1. Due to the claim the distance from first(β) to the occurrence of
the next hp-run γ with period k or 2k is at least 2k + 1. Then two consecutive
distances give together (first(β) − dirst(α) + (first(γ)− first(β)) ≥ 2k + 2,
and “on average” the distance is k + 1. Therefore there are at most n

k+1 runs
with a period k or 2k.
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The last lemma motivates the introduction of the infinite set Φ, generated by
the following algorithm (which never stops).

Φ := ∅; Ψ := {1, 2, 3, . . .};
repeat forever

k := min Ψ ;
remove k and 2k from Ψ ;
insert k into Φ;

Define the set Φ(p) = {k ∈ Φ : k ≤ p}. For example:

Φ(34) = {1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33}

For p ≥ 1 define the numbers:

H(p) =
∑

k∈Φ(p)
1

k+1 .

The next lemma follows directely from Lemma 6 and from the structure of the
set Φ.

Lemma 7. ρ(n, p) ≤ H(p)× n.

2.4 Estimating the Number of all Runs

Our main result is a concrete constant coefficient in O(n) notation for ρ(n).

Theorem 1. ρ(n) ≤ 5 n.

Proof. Obviously, for each r ≥ 1 we have:

ρ(n) ≤ HP (n) + WP (n, &Δr') + ρ(n, �Δr�)

≤ (1.75 + 40 Δ−r + H(&Δr')× n.

If we choose r = 20, then

�Δ20� = 86, H(86) ≤ 2.77, 40Δ−20 ≤ 0.4612.

Due to Lemmas 5,6,7 we have:

ρ(n) ≤ (1.75 +H(86) + 40Δ−20)× n ≤

(1.75 + 2.77 + 0.4612)× n < 5 n.

This completes the proof of the main result.
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3 The Proof of Lemma 1

If α ≺ β and the square part of β is not contained in the square part of α then
we write α ≺≺ β (see Figure 5). More formally:

α � β iff SquarePart(β) is contained in SquarePart(α) as an interval

α ≺≺ β iff [ α ≺ β and not (α � β) ]

Lemma 8. (a) If α � β are distinct neighbors then β is highly periodic.
(b) If α ≺≺ β are distinct neighbors then the prefix of β of size period(α)−δ has
a period |q−p|, where δ = first(β)−first(α) and p = period(α), q = period(β).

Proof. Point (a). We refer the reader to Figure 4, where the case center(β) >
center(α) is illustrated. Obviously p > q. It is easy to see that the whole
PerPart(β) has a period period(α) − period(β).

Let η be the constant from the definition of neighbors, then

period(α)− period(β) ≤ 1
4
η and |PerPart(β)| ≥ η ,

hence PerPart(β) is h-periodic. The case center(β) ≤ center(α) can be consid-
ered similarly.

δ

q 
p 

q 

p 
α

β

Fig. 4. Two neighbors with α � β, a case center(β) > center(α). The square part of
β is contained in the square part of α. The periodic part of β is h-periodic, so it should
have a period p − q, where p = period(α), q = period(β).

δ

α
β

δp − q 

q 
p 

p 

Fig. 5. Two neighbors with α ≺≺ β, the case p < q. The shaded part has the period
|q − p|, where p = period(α), q = period(β).
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Point (b). We refer to Figure 5, when only the case p < q is shown. For each
position i in the shaded area we have w[i] = w[i+p] = w[i+p− q]. The opposite
case p > q can be considered similarly. This completes the proof.

α

α

α

p1 

p2 p1 −  

p2 −   

δ   1   

δ   2   δ   2   

δ   1   

2   

1   

3   

Fig. 6. The Three-Neighbors Lemma, a situation when α1 ≺≺ α2 ≺≺ α3. α2 should
be h-periodic, since both its large suffix and large prefix have small periods.

The Proof of the Three-Neighbors Lemma
Assume we have 3 runs α1 ≺ α2 ≺ α3 which are pairwise neighbors, with periods
p1, p2, p3, respectively. Let δ1 = first(α2) − first(α1), and δ2 = first(α3) −
first(α2). Then, due to Lemma 8 the “middle” run α2 has a suffix γ2 of size
p2 − δ2 with a period |p3 − p2| and a prefix γ1 of size p1 − δ1 with a period
|p2− p1| , see Figure 6.

Let η be the number from the definition of neighbors. We have

δ1 + δ2 ≤ 1
4η, p1 ≥ η, and |γ1 ∪ γ2| = p2.

Hence:

|γ1 ∩ γ2| ≥ (p2 − δ2) + (p1− δ1)− p2 = p1− δ1− δ2 ≥ 3
4
η

We have |p3−p2|, |p2−p1| ≤ 1
4η, hence period(γ1), period(γ2) ≤ 1

4η. Due to the
periodicity lemma γ1 ∩ γ2 has a period which divides periods of γ1 and γ2, and
the whole α2 = γ1 ∪ γ2 has a period of size not larger than 1

4η. Consequently,
the run α2 is h-periodic. This completes the proof of our key lemma.

4 The Proof of Lemma 2

The proof is based on the following simple lemma.

Lemma 9. Assume we have two distinct hp-runs α,β with the same subperiod
p and such that periodic part of one of them is a prefix of the periodic part of
another. Then |first(α) − first(β)| ≥ p.
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Proof. If |first(α)− first(β)| < p then, due to periodicity lemma [9, 3, 12], the
periodic part of one of the runs would have subperiod smaller than p, which
contradicts the assumption that p is the smallest subperiod.

We say that a hp-run α = [i . . . j] of a string w is left-periodic iff w[i − 1] =
w[i− 1 + subperiod(α)]. The runs β, γ in Figure 2 are left-periodic. We also say
that a position i in a word w breaks period p iff w[i] �= w[i + p]. Hence a hp-run
α of a word w is left-periodic iff first(α) − 1 does not break subperiod(α). In
other words the subperiod of PerPart(α) continues to the left.

Example. In Figure 2 the runs α,β, γ are shown, the first one is not left periodic
and the other two are. The position center(β)− 1 = center(γ)− 1 = 21 breaks
subperiod 3. The periodic part of β is a prefix of a periodic part of γ.

α )

a a a a a b a a a a a

PerPart(

h−periodic segment λ

PerPart( β)center( )α

p
β

α

Fig. 7. Two left-periodic runs. The position center(α) − 1 = center(β) − 1 breaking
subperiod p is placed in a small square. subperiod(α) = subperiod(β) = p, center(α) =
center(β). The second occurrences of periodic parts of α and β start at the same
position center(α), consequently PerPart(β) is a prefix of PerPart(α).

Lemma 10. Assume two neighbors α,β are left-periodic and h-periodic. Then
center(α) = center(β).

Proof. We first prove that positions center(α) − 1, center(β) − 1 break
subperiod(α), see Figure 7. The proof is by contradiction. If it is not true then
one of these runs can be extended one position to the left. This contradicts the
definition of the run as a left non-extendible segment. The positions center(α)
and center(β) are positions in the same h-periodic segment λ, see Figure 7. They
should be equal to the first position of this segment, because the next position to
the left breaks the period. Hence they should be the same position, consequently
center(α) = center(β).

The Proof of the HP-Runs Lemma
For a given p > 1 there are at most two occurrences of hp-runs with subperiod
p in any interval of length p.
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Proof. The proof is by contradiction. Assume we have three distinct highly pe-
riodic runs α1 ≺ α2 ≺ α3 with the same subperiod p such that |first(αi) −
first(αj)| ≤ p for 1 ≤ i, j ≤ 3. Then all of them are neighbors. We show that
α2 = α3. Both α2, α3 should be left-periodic since their subperiods extend to
the left at least to first(α1).

Therefore the runs α2, α3 are h-periodic and they are neighbors. Due to
Lemma 10 center(α2) = center(α3). Consequently periodic parts of α2 and
α3 have occurrences starting at the same position center(α2). If two words
start at a same position then one should be a prefix of another. Consequently
PerPart(α3) is a prefix of PerPart(α2). Now, due to Lemma 9, if α2 �= α3 then
first(α3)−first(α2) ≥ p. However first(α3)−first(α2) < p. This implies that
all of α1, α2, α3 cannot be pairwise distinct. This contradicts the assumption and
completes the proof.

5 The Sum of Exponents of Periodicities

We define the exponent of periodicity of a run α as exp(α) = |α|/period(α).
The linear bound on ρ(n) gives, almost automatically, a linear upper bound

on the sum of exponents of periodicities. The run α is called a long run iff
exp(α) ≥ 4. Denote by Exp(w) the sum of exponents of periodicity of all runs
of w, and by L-Exp(w) the sum of exponents of all long runs of w.

Let μ(n) be maximum Exp(w) and μ(n, 4) be maximum L-Exp(w) of a string
w of length n. Denote by γ(n) the maximum number of long runs in a string of
size n.

Lemma 11. (a) μ(n, 4) ≤ 5 n; (b) γ(n) ≤ 1.25 n; (c) μ(n) ≤ μ(n, 4)+4 ρ(n).

Proof. Denote

G′(k) = {α : 2k ≤ period(α) < 2k+1, exp(α) ≥ 4}

If α = [i...j] then denote Γ (α) = [i + 3 period(α) − 1 . . . j].

Claim. If α �= β are in a same G′(k), for some integer k, then Γ (α)∩Γ (β) = ∅.
Proof (of the claim). The following inequality follows from the periodicity lemma:

|α ∩ β| ≤ min {3 period(α), 3 period(β)}

The claim follows easily from this inequality.

Observe now that |Γ (α)| = (exp(α) − 3) period(α).

Denote by L the set of long runs with period(α) > 1. In other words L =∑
k>0 G′(k). Due to the claim and the inequality period(α) ≥ 2k we have:∑
α∈ G′(k)

(exp(α) − 3) period(α) ≤ n, hence
∑

α∈G′(k)

(exp(α) − 3) ≤ n

2k
and

∑
α ∈ L

(exp(α) − 3) ≤ n

∞∑
k=1

1
2k

≤ n. (1)
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We have that exp(α)−3 ≥ 1, hence |L| ≤ n, and we have at most n long runs
with period(α) > 1. There are at most 1

4 n long runs with period 1. Altogether
we have γ(n) ≤ 1.25 n. This proves point (b).

We now prove point (a). Due to Equation 1 we have:∑
α ∈ L

exp(α) ≤ n +
∑

α ∈ L
3 ≤ n + 3 |L| ≤ 4n

On the other hand all runs with period 1 are pairwise disjoint, so the sum of
exponents of these runs is at most n. Hence the total sum of exponents of all
long α’s is at most n + 4 n = 5 n. This completes the proof of point (a). Point
(c) follows directly from definitions.

6 Final Remarks

We gave an estimation ρ(n) ≤ 5 n. The important part of our contribution is also
a new approach based on subperiods. The proof is completely different from the
one in [8], where the proof was by induction on n. The only complicated parts
of our proof are the proofs of Lemma 1 and Lemma 2, which can be viewed
as new periodicity lemmas of independent interest. The proofs of these lemmas
are tedious but the lemmas are intuitively almost obvious. In a certain sense
we demystified the whole proof of the linear upper bound for ρ(n). The point
(c) of Lemma 11 gives directly linear bound on μ(n) (the sum of exponents of
periodicities of all runs), though the constant coefficient is still not satisfactory.
Experimental evidence suggests μ(n) ≤ 2n. One should possibly rewrite the
whole proof of Theorem 1, proving the linear bound on ρ(n) in terms of μ(n),
to improve the coefficient in the linear bound for μ(n). However this would
hideously obscure the proof of Theorem 1.
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Estimating Entropy and Entropy Norm
on Data Streams
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Abstract. We consider the problem of computing information theoretic
functions such as entropy on a data stream, using sublinear space.

Our first result deals with a measure we call the “entropy norm” of an
input stream: it is closely related to entropy but is structurally similar
to the well-studied notion of frequency moments. We give a polyloga-
rithmic space one-pass algorithm for estimating this norm under certain
conditions on the input stream. We also prove a lower bound that rules
out such an algorithm if these conditions do not hold.

Our second group of results are for estimating the empirical entropy
of an input stream. We first present a sublinear space one-pass algorithm
for this problem. For a stream of m items and a given real parameter
α, our algorithm uses space O(m2α) and provides an approximation of
1/α in the worst case and (1 + ε) in “most” cases. We then present a
two-pass polylogarithmic space (1+ ε)-approximation algorithm. All our
algorithms are quite simple.

1 Introduction

Algorithms for computational problems on data streams have been the focus
of plenty of recent research in several communities, such as theory, databases
and networks [1, 5, 2, 12]. In this model of computation, the input is a stream
of “items” that is too long to be stored completely in memory, and a typical
problem involves computing some statistics on this stream. The main challenge
is to design algorithms that are efficient not only in terms of running time, but
also in terms of space (i.e., memory usage): sublinear space is mandatory and
polylogarithmic space is often the goal.

The seminal paper of Alon, Matias and Szegedy [1] considered the problem
of estimating the frequency moments of the input stream: if a stream contains
mi occurrences of item i (for 1 ≤ i ≤ n), its kth frequency moment is denoted
Fk and is defined by Fk :=

∑n
i=1 mk

i . Alon et al. showed that Fk could be
estimated arbitrarily well in sublinear space for all nonnegative integers k and
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in polylogarithmic (in m and n) space for k ∈ {0, 1, 2}. Their algorithmic results
were subsequently improved by Coppersmith and Kumar [3] and Indyk and
Woodruff [9].

In this work, we first consider a somewhat related statistic of the input
stream, inspired by the classic information theoretic notion of entropy. We con-
sider the entropy norm of the input stream, denoted FH and defined by FH :=∑n

i=1 mi lg mi. 1 We prove (see Theorem 2.2) that FH can be estimated arbi-
trarily well in polylogarithmic space provided its value is not “too small,” a
condition that is satisfied if, e.g., the input stream is at least twice as long as the
number of distinct items in it. We also prove (see Theorem 2.5) that FH cannot
be estimated well in polylogarithmic space if its value is “too small.”

Second, we consider the estimation of entropy itself, as opposed to the entropy
norm. Any input stream implicitly defines an empirical probability distribution
on the set of items it contains; the probability of item i being mi/m, where m
is the length of the stream. The empirical entropy of the stream, denoted H , is
defined to be the entropy of this probability distribution:

H :=
n∑

i=1

(mi/m) lg(m/mi) = lg m− FH/m . (1)

An algorithm that computes FH exactly clearly suffices to compute H as well.
However, since we are only able to approximate FH in the data stream model,
we need new techniques to estimate H . We prove (see Theorem 3.1) that H
can be approximated using sublinear space. Although the space usage is not
polylogarithmic in general, our algorithm provides a tradeoff between space
and approximation factor and can be tuned to use space arbitrarily close to
polylogarithmic.

The standard data stream model allows us only one pass over the input. If,
however, we are allowed two passes over the input but still restricted to small
space, we have an algorithm that approximates H to within a (1 + ε) factor and
uses polylogarithmic space.

Both entropy and entropy norm are natural statistics to approximate on data
streams. Arguably, entropy related measures are even more natural than Lp

norms or frequency moments Fk. In addition, they have direct applications.
The quintessential need arises in analyzing IP network traffic at packet level
on high speed routers. In monitoring IP traffic, one cares about anomalies. In
general, anomalies are hard to define and detect since there are subtle intru-
sions, sophisticated dependence amongst network events and agents gaming the
attacks. A number of recent results in the networking community use entropy
as an approach [6, 13, 14] to detect sudden changes in the network behavior and
as an indicator of anomalous events. The rationale is well explained elsewhere,
chiefly in Section 2 of [13]. The current research in this area [13, 6, 14] relies
on full space algorithms for entropy calculation; this is a serious bottleneck in
high speed routers where high speed memory is at premium. Indeed, this is

1 Throughout this paper “lg” denotes logarithm to the base 2.
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the bottleneck that motivated data stream algorithms and their applications to
IP network analysis [5, 12]. Our small-space algorithms can immediately make
entropy estimation at line speed practical on high speed routers.

To the best of our knowledge, our upper and lower bound results for the en-
tropy norm are the first of their kind. Recently Guha, McGregor and Venkata-
subramanian [7] considered approximation algorithms for the entropy of a given
distribution under various models, including the data stream model. They ob-
tain a

(
e

e−1 + ε
)
-approximation for the entropy H of an input stream provided

H is at least a sufficiently large constant, using space Õ(1/(ε2H)), where the Õ-
notation hides factors polylogarithmic in m and n. Our work shows that H can
be (1 + ε)-approximated in Õ(1/ε2) space for H ≥ 1 (see the remark after The-
orem 3.1); more importantly, we obtain efficient sublinear space approximations
when H < 1 (the most challenging case). Our space bounds are independent of
H . Guha et al. also give a two-pass (1+ ε)-approximation algorithm for entropy,
using Õ(1/(ε2H)) space. We do the same using only Õ(1/ε2) space. Finally, Guha
et al. consider the entropy estimation problem in the random streams model,
where it is assumed that the items in the input stream are presented in a uni-
form random order. Under this assumption, they obtain a (1+ε)-approximation
using Õ(1/ε2) space. We study adversarial data stream inputs only.

2 Estimating the Entropy Norm

In this section we present a polylogarithmic space (1 + ε)-approximation algo-
rithm for entropy norm that assumes the norm is sufficiently large, and prove a
matching lower bound if the norm is in fact not as large.

2.1 Upper Bound

Our algorithm is inspired by the work of Alon et al. [1]. Their first algorithm,
for the frequency moments Fk, has the following nice structure to it (some of the
terminology is ours). A subroutine computes a basic estimator, which is a random
variable X whose mean is exactly the quantity we seek and whose variance is
small. The algorithm itself uses this subroutine to maintain s1s2 independent
basic estimators {Xij : 1 ≤ i ≤ s1, 1 ≤ j ≤ s2}, where each Xij is distributed
identically to X . It then outputs a final estimator Y defined by

Y := median
1≤j≤s2

(
1
s1

s1∑
i=1

Xij

)

The following lemma, implicit in [1], gives a guarantee on the quality of this final
estimator.

Lemma 2.1. Let μ := E[X ]. For any ε, δ ∈ (0, 1], if s1 ≥ 8 Var[X ]/(ε2μ2) and
s2 = 4 lg(1/δ), then the above final estimator deviates from μ by no more than
εμ with probability at least 1− δ. The above algorithm can be implemented to use
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space O(S log(1/δ)Var[X ]/(ε2μ2)), provided the basic estimator can be computed
using space at most S.

Proof. The claim about the space usage is immediate from the structure of the
algorithm. Let Yj = 1

s1

∑s1
i=1 Xij . Then E[Yj ] = μ and Var[Yj ] = Var[X ]/s1 ≤

ε2μ2/8. Applying Chebyshev’s Inequality gives us

Pr[|Yj − μ| ≥ εμ] ≤ 1/8 .

Now, if fewer than (s2/2) of the Yj ’s deviate by as much as εμ from μ, then
Y must be within εμ of μ. So we upper bound the probability that this does not
happen. Define s2 indicator random variables Ij , where Ij = 1 iff |Yj − μ| ≥ εμ,
and let W =

∑s2
j=1 Ij . Then E[W ] ≤ s2/8. A standard Chernoff bound (see,

e.g. [11, Theorem 4.1]) gives

Pr
[
|Y − μ| ≥ εμ

]
≤ Pr

[
W ≥ s2

2

]
≤
(

e3

44

)s2/8

=
(

e3

44

) 1
2 lg(1/δ)

≤ δ ,

which completes the proof. !"
We use the following subroutine to compute a basic estimator X for the

entropy norm FH .

Input stream : A = 〈a1, a2, . . . , am〉, where each
ai ∈ {1, . . . , n}.

Choose p uniformly at random from {1, . . . ,m}.1

Let r = |{q : aq = ap, p ≤ q ≤ m}|. Note that r ≥ 1.2

Let X = m
(
r lg r − (r − 1) lg(r − 1)

)
, with the convention that3

0 lg 0 = 0.

Our algorithm for estimating the entropy norm outputs a final estimator based
on this basic estimator, as described above. This gives us the following theorem.

Theorem 2.2. For any Δ > 0, if FH ≥ m/Δ, the above one-pass algorithm can
be implemented so that its output deviates from FH by no more than εFH with
probability at least 1− δ, and so that it uses space

O

(
log(1/δ)

ε2
log m(log m + log n)Δ

)
.

In particular, taking Δ to be a constant, we have a polylogarithmic space algo-
rithm that works on streams whose FH is not “too small.”

Proof. We first check that the expected value of X is indeed the desired quantity:

E[X ] =
m

m

n∑
v=1

mv∑
r=1

(
r lg r − (r − 1) lg(r − 1)

)
=

n∑
v=1

(mv lg mv − 0 lg 0) = FH .
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The approximation guarantee of the algorithm now follows from Lemma 2.1.
To bound the space usage, we must bound the variance Var[X ] and for this we
bound E[X2]. Let f(r) := r lg r, with f(0) := 0, so that X can be expressed as
X = m(f(r)− f(r − 1)). Then

E[X2] = m

n∑
v=1

mv∑
r=1

(
f(r) − f(r − 1)

)2
≤ m · max

1≤r≤m

(
f(r) − f(r − 1)

)
·

n∑
v=1

mv∑
r=1

(
f(r) − f(r − 1)

)
≤ m · sup {f ′(x) : x ∈ (0,m]} · FH (2)
= (lg e + lg m)mFH (3)
≤ (lg e + lg m)ΔF 2

H ,

where (2) follows from the Mean Value Theorem.
Thus, Var[X ]/E[X ]2 = O(Δ lg m). Moreover, the basic estimator can be im-

plemented using space O(log m+log n): O(log m) to count m and r, and O(log n)
to store the value of ap. Plugging these bounds into Lemma 2.1 yields the claimed
upper bound on the space of our algorithm.

Let F0 denote the number of distinct items in the input stream (this notation
deliberately coincides with that for frequency moments). Let f(x) := x lg x as
used in the proof above. Observe that f is convex on (0,∞) whence, via Jensen’s
inequality, we obtain

FH =
F0

F0

n∑
v=1

f(mv) ≥ F0f

(
1
F0

n∑
v=1

mv

)
= m lg

m

F0
. (4)

Thus, if the input stream satisfies m ≥ 2F0 (or the simpler, but stronger, condi-
tion m ≥ 2n), then we have FH ≥ m. As a direct corollary of Theorem 2.2 (for
Δ = 1) we obtain a (1 + ε)-approximation algorithm for the entropy norm in
space O((log(1/δ)/ε2) log m(log m + log n)). However, we can do slightly better.

Theorem 2.3. If m ≥ 2F0 then the above one-pass, (1 + ε)-approximation al-
gorithm can be implemented in space

O

(
log(1/δ)

ε2
log m logn

)
without a priori knowledge of the stream length m.

Proof. We follow the proof of Theorem 2.2 up to the bound (3) to obtain
Var[X ] ≤ (2 lg m)mFH , for m large enough. We now make the following claim

lg m

lg(m/F0)
≤ 2 max{lgF0, 1} . (5)
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Assuming the truth of this claim and using (4), we obtain

Var[X ] ≤ (2 lg m)mFH ≤ 2 lg m

lg(m/F0)
F 2

H ≤ 4 max{lgF0, 1}F 2
H ≤ (4 lg n)F 2

H .

Plugging this into Lemma 2.1 and proceeding as before, we obtain the desired
space upper bound. Note that we no longer need to know m before starting the
algorithm, because the number of basic estimators used by the algorithm is now
independent of m. Although maintaining each basic estimator seems, at first, to
require prior knowledge of m, a careful implementation can avoid this, as shown
by Alon et al [1].

We turn to proving our claim (5). We will need the assumption m ≥ 2F0.
If m ≤ F 2

0 , then lg m ≤ 2 lgF0 = 2 lgF0 lg(2F0/F0) ≤ 2 lgF0 lg(m/F0) and we
are done. On the other hand, if m ≥ F 2

0 , then F0 ≤ m1/2 so that lg(m/F0) ≥
lg m− (1/2) lgm = (1/2) lgm and we are done as well.

Remark 2.4. Theorem 2.2 generalizes to estimating quantities of the form μ̂ =∑n
v=1 f̂(mv), for any monotone increasing (on integer values), differentiable func-

tion f̂ that satisfies f̂(0) = 0. Assuming μ̂ ≥ m/Δ, it gives us a one-pass (1+ ε)-
approximation algorithm that uses Õ(f̂ ′(m)Δ) space. For instance, this space
usage is polylogarithmic in m if f̂(x) = xpolylog(x).

2.2 Lower Bound

The following lower bound shows that the algorithm of Theorem 2.2 is optimal,
up to factors polylogarithmic in m and n.

Theorem 2.5. Suppose Δ and c are integers with 4 ≤ Δ ≤ o(m) and 0 ≤
c ≤ m/Δ. On input streams of size at most m, a randomized algorithm able to
distinguish between FH ≤ 2c and FH ≥ c+ 2m/Δ must use space at least Ω(Δ).
In particular, the upper bound in Theorem 2.2 is tight in its dependence on Δ.

Proof. We present a reduction from the classic problem of (two-party) Set Dis-
jointness in communication complexity [10].

Suppose Alice has a subset X and Bob a subset Y of {1, 2, . . . ,Δ− 1}, such
that X and Y either are disjoint or intersect at exactly one point. Let us define
the mapping

φ : x �−→
{

(m− 2c)x
Δ

+ i : i ∈ Z, 0 ≤ i <
m− 2c

Δ

}
.

Alice creates a stream A by listing all elements in
⋃

x∈X φ(x) and concatenating
the c special elements Δ + 1, . . . ,Δ + c. Similarly, Bob creates a stream B by
listing all elements in

⋃
y∈Y φ(y) and concatenating the same c special elements

Δ + 1, . . . ,Δ + c. Now, Alice can process her stream (with the hypothetical
entropy norm estimation algorithm) and send over her memory contents to Bob,
who can then finish the processing. Note that the length of the combined stream
A ◦B is at most 2c + |X ∪ Y | · ((m− 2c)/Δ) ≤ m.
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We now show that, based on the output of the algorithm, Alice and Bob can
tell whether or not X and Y intersect. Since the set disjointness problem has
communication complexity Ω(Δ), we get the desired space lower bound.

Suppose X and Y are disjoint. Then the items in A◦B are all distinct except
for the c special elements, which appear twice each. So FH(A◦B) = c · (2 lg 2) =
2c. Now suppose X ∩ Y = {z}. Then the items in A ◦ B are all distinct except
for the (m − 2c)/Δ elements in φ(z) and the c special elements, each of which
appears twice. So FH(A ◦B) = 2(c + (m− 2c)/Δ) ≥ c + 2m/Δ, since Δ ≥ 4.

Remark 2.6. Notice that the above theorem rules out even a polylogarithmic
space constant factor approximation to FH that can work on streams with
“small” FH . This can be seen by setting Δ = mγ for some constant γ > 0.

3 Estimating the Empirical Entropy

We now turn to the estimation of the empirical entropy H of a data stream,
defined as in equation (1): H =

∑n
i=1(mi/m) lg(m/mi). Although H can be

computed exactly from FH , as shown in (1), a (1 + ε)-approximation of FH can
yield a poor estimate of H when H is small (sublinear in its maximum value,
lg m). We therefore present a different sublinear space, one-pass algorithm that
directly computes entropy.

Our data structure takes a user parameter α > 0, and consists of three compo-
nents. The first (A1) is a sketch in the manner of Section 2, with basic estimator

X = m

(
r

m
lg

m

r
− r − 1

m
lg

m

r − 1

)
, (6)

and a final estimator derived from this basic estimator using s1 = (8/ε2)m2α

lg2 m and s2 = 4 lg(1/δ). The second component (A2) is an array of m2α counters
(each counting from 1 to m) used to keep exact counts of the first m2α distinct
items seen in the input stream. The third component (A3) is a Count-Min Sketch,
as described by Cormode and Muthukrishnan [4], which we use to estimate k,
defined to be the number of items in the stream that are different from the most
frequent item; i.e., k = m−max{mi : 1 ≤ i ≤ n}. The algorithm itself works as
follows. Recall that F0 denotes the number of distinct items in the stream.

Maintain A1, A2, A3 as described above. When queried (or at1

end of input):
if F0 ≤ m2α then return exact H from A2.2

else3

let k̂ = estimate of k from A3.4

if k̂ ≥ (1− ε)m1−α then return final estimator, Y , of A1.5

else return (k̂ lg m)/m.6

end7
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Theorem 3.1. The above algorithm uses

O

(
log(1/δ)

ε2
m2α log2 m (log m + log n)

)
space and outputs a random variable Z that satisfies the following properties.

1. If k ≤ m2α − 1, then Z = H.
2. If k ≥ m1−α, then Pr

[
|Z −H | ≥ εH

]
≤ δ.

3. Otherwise (i.e., if m2α ≤ k < m1−α), Z is a (1/α)-approximation of H.

Remark 3.2. Under the assumption H ≥ 1, an algorithm that uses only the basic
estimator in A1 and sets s1 = (8/ε2) lg2 m suffices to give a (1+ε)-approximation
in O(ε−2 log2 m) space.

Proof. The space bound is clear from the specifications of A1, A2 and A3, and
Lemma 2.1. We now prove the three claimed properties of Z in sequence.

Property 1: This follows directly from the fact that F0 ≤ k + 1.

Property 2: The Count-Min sketch guarantees that k̂ ≤ k and, with probability
at least 1 − δ, k̂ ≥ (1 − ε)k. The condition in Property 2 therefore implies that
k̂ ≥ (1 − ε)m1−α, that is, Z = Y , with probability at least 1− δ. Here we need
the following lemma.

Lemma 3.3. Given that the most frequent item in the input stream A has count
m − k, the minimum entropy Hmin is achieved when all the remaining k items
are identical, and the maximum Hmax is achieved when they are all distinct.
Therefore,

Hmin =
m− k

m
lg

m

m− k
+

k

m
lg

m

k
, and

Hmax =
m− k

m
lg

m

m− k
+

k

m
lg m .

Proof. Consider a minimum-entropy stream Amin and suppose that, apart from
its most frequent item, it has at least two other items with positive count. With-
out loss of generality, let m1 = m − k and m2,m3 ≥ 1. Modify Amin to A′ by
letting m′

2 = m2 +m3 and m′
3 = 0, and keeping all other counts the same. Then

H(A′)−H(Amin) = (lg m− FH(A′)/m)− (lg m− FH(Amin)/m)
= (FH(Amin)− FH(A′))/m
= m2 lg m2 + m3 lg m3 − (m2 + m3) lg(m2 + m3)
< 0 ,

since x lg x is convex and monotone increasing (on integer values), giving us a
contradiction. The proof of the maximum-entropy distribution is similar.
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Now, consider equation (6) and note that for any r, |X | ≤ lg m. Thus, if E[X ] =
H ≥ 1, then Var[X ]/ E[X ]2 ≤ E[X2] ≤ lg2 m and our choice of s1 is sufficiently
large to give us the desired (1+ ε)-approximation, by Lemma 2.1.2 On the other
hand, if H < 1, then k < m/2, by a simple argument similar to the proof of
Lemma 3.3. Using the expression for Hmin from Lemma 3.3, we then have

Hmin = lg
m

m− k
+

k

m
lg

m− k

k
≥ − lg

(
1− k

m

)
≥ k

m
≥ m−α ,

which gives us Var[X ]/ E[X ]2 ≤ E[X2]/m−2α ≤ (lg2 m)m2α. Again, plugging
this and our choice of s1 into Lemma 2.1 gives us the desired (1 + ε)-
approximation.

Property 3: By assumption, k < m1−α. If k̂ ≥ (1−ε)m1−α, then Z = Y and the
analysis proceeds as for Property 2. Otherwise, Z = (k̂ lg m)/m ≤ (k lg m)/m.
This time, again by Lemma 3.3, we have

Hmin ≥ k

m
lg

m

k
≥ k

m
lg (mα) =

αk

m
lg m,

and

Hmax =
m− k

m
lg

m

m− k
+

k

m
lg m

= lg
m

m− k
+

k

m
lg(m− k)

≤ k

m
lg m + O

(
k

m

)
,

which, for large m, implies H − o(H) ≤ Z ≤ H/α and gives us Property 3. Note
that we did not use the inequality m2α ≤ k in the proof of this property.

The ideas involved in the proof of Theorem 3.1 can be used to yield a very efficient
two-pass algorithm for estimating H , the details of which will be provided in the
full version of the paper.

4 Conclusions

Entropy and entropy norms are natural measures with direct applications in
IP network traffic analysis for which one-pass streaming algorithms are needed.
We have presented one-pass sublinear space algorithms for approximating the
entropy norms as well as the empirical entropy. We have also presented a two-pass
algorithm for empirical entropy that has a stronger approximation guarantee and
space bound. We believe our algorithms will be of interest in practice of data
stream systems. It will be of interest to study these problems on streams in the
presence of inserts and deletes. Note: Very recently, we have learned of a work
in progress [8] that may lead to a one-pass polylogarithmic space algorithm for
approximating H to within a (1 + ε)-factor.
2 This observation, that H ≥ 1 =⇒ Var[X] ≤ lg2 m, proves the statement in the

remark following Theorem 3.1.
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Abstract. Demand-robust versions of common optimization problems were re-
cently introduced by Dhamdhere et al. [4] motivated by the worst-case consider-
ations of two-stage stochastic optimization models. We study the demand robust
min-cut and shortest path problems, and exploit the nature of the robust objective
to give improved approximation factors. Specifically, we give a (1 +

√
2) ap-

proximation for robust min-cut and a 7.1 approximation for robust shortest path.
Previously, the best approximation factors were O(log n) for robust min-cut and
16 for robust shortest paths, both due to Dhamdhere et al. [4].

Our main technique can be summarized as follows: We investigate each of the
second stage scenarios individually, checking if it can be independently serviced
in the second stage within an acceptable cost (namely, a guess of the optimal
second stage costs). For the costly scenarios that cannot be serviced in this way
(“rainy days”), we show that they can be fully taken care of in a near-optimal first
stage solution (i.e., by ”paying today”).

We also consider “hitting-set” extensions of the robust min-cut and shortest
path problems and show that our techniques can be combined with algorithms
for Steiner multicut and group Steiner tree problems to give similar approxima-
tion guarantees for the hitting-set versions of robust min-cut and shortest path
problems respectively.

1 Introduction

Robust optimization has been widely studied to deal with the data uncertainty in op-
timization problems. In a classical optimization problem, all parameters such as costs
and demands are assumed to be precisely known. A small change in these parameters
can change the optimal solution considerably. As a result, classical optimization is in-
effective in those real life applications where robustness to uncertainty is desirable.

Traditional approaches toward robustness have focused on uncertainty in data
[3,12,13]. In a typical data-robust model, uncertainty is modeled as a finite set of scenar-
ios, where a scenario is a plausible set of values for the data in the model. The objective
is to find a feasible solution to the problem which is “good” in all or most scenarios,
where various notions of “goodness” have been studied. Some of them include
� Supported in part by NSF ITR grants CCR-0122581 and IIS-0121678.

�� Supported in part by NSF grant CCF-0430751 and ITR grant CCR-0122581.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 206–217, 2006.
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1. Absolute Robustness (min-max): The objective is to find a solution such that the
maximum cost over all scenarios is minimized.

2. Robust Deviation (min-max regret): For a given solution, regret in a particular sce-
nario is the difference between cost of this solution in that scenario and the optimal
cost in that scenario. In the robust deviation criteria, the objective is to minimize
the maximum regret over all scenarios.

More recent attempts at capturing the concept of robust solutions in optimization
problems include the work of Rosenblatt and Lee [19] in the facility design problem,
and Mulvey et al. [14] in mathematical programming. Even more recently, an approach
along similar lines has been advocated by Bertsimas et al. [1,2]. Other related works
in the data-robust models include heuristics such as branch and bound and surrogate
relaxation for efficiently solving the data-robust instances. A research monograph by
Kouvelis and Yu [11] summarizes this line of work. An annotated bibliography available
online is a good source of references for work in data-robustness [16].

Most of the prior work addresses the problem of robustness under data uncertainty. In
this paper, we consider a model which also allows uncertainty in the problem constraints
along with the uncertainty in data. We call this model of robustness as demand-robust
model since it attempts to be robust with respect to problem demands (constraints). Our
model is motivated by the recent work in two-stage stochastic programming problems
with recourse [7,5,9,17,20]. In a two-stage stochastic approach, the goal is to find a so-
lution that minimizes the expected cost over all possible scenarios. While the expected
value minimization is reasonable in a repeated decision-making framework, one short-
coming of this approach is that it does not sufficiently guard against the worst case over
all the possible scenarios. Our demand-robust model for such problems is a natural way
to overcome this shortcoming by postulating a model that minimizes this worst-case
cost.

Let us introduce the new model with the demand-robust min-cut problem: Given an
undirected graph G = (V, E), a root vertex r and costs c on the edges. The uncertainty
in demand and costs is modeled as a finite set of scenarios, one of which materializes
in the second stage. The ith scenario is a singleton set containing only the node ti. We
call the nodes specified by the scenarios terminals. An edge costs c(e) in the first stage
and σi · c(e) in the recourse (second) stage if the ith scenario is realized. The problem
is to find a set E0 ⊆ E (edges to be bought in the first stage) and for each scenario i, a
set Ei ⊆ E (edges to be bought in the recourse stage if scenario i is realized), such that
removing E0 ∪ Ei from the graph G disconnects r from the terminal ti. The objective
is to minimize the cost function maxi{c(E0) + σi · c(Ei)}.

Note that in the above model, each scenario has a different requirement (in sce-
nario i, ti is required to be separated from r). Such a scenario model allows to han-
dle uncertainty in problem constraints. Another point of difference with the previous
data-robust models is that the demand-robust model is two-stage i.e. solution is bought
partially in first stage and is then augmented to a feasible solution in the second stage
after the uncertainty is realized. However, cost uncertainty in the our demand-robust
model is restrictive, as each element becomes costlier by the same factor in a particular
scenario in the second stage unlike the data-robust models which handle general cost
uncertainties.
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1.1 Our Contributions

In this paper we consider the shortest path and min-cut problems in the two-stage
demand-robust model. In a recent paper Dhamdhere et al. [4] introduced the model
of demand robustness and gave approximation algorithms for various problems such
as min-cut, multicut, shortest path, Steiner tree and facility location in the framework
of two-stage demand-robustness. They use rounding techniques recently developed for
stochastic optimization problems [7,8,17] for many of their results and obtain similar
guarantees for the demand-robust versions of the problem. In this paper we crucially
exploit and benefit from the structure of the demand-robust problem: in the second
stage, every scenario can pay up to the maximum second stage cost without worsening
the solution cost. This is not true for the stochastic versions where the objective is to
minimize the expected cost over all scenarios. At a very high level, the algorithms for
the problems considered in this paper are as follows: Guess the maximum second stage
cost C in some optimal solution. Using this guess identify scenarios which do not need
any first stage “help” i.e. scenarios for which the best solution costs at most a constant
times C in the second stage. Such scenarios can be ignored while building the first stage
solution. For the remaining scenarios or a subset of them, we build a low-cost first stage
solution and prove the constant bounds by a charging argument.

We give the first constant factor approximation for the demand-robust min-cut prob-
lem. The charging argument leading to a constant factor argument crucially uses the
laminarity of minimum cuts separating a given root node from other terminals. The
previous best approximation factor was O(log n) due to Dhamdhere et al. [4].

Theorem 1.1. There is a polynomial time algorithm which gives a (1 +
√

2) approxi-
mation for the robust min-cut problem.

For the demand-robust shortest path problem, we give an algorithm with an improved
approximation factor of 7.1 as compared to the previous 16-approximation [4].

Theorem 1.2. There is a polynomial time algorithm which gives a 7.1 approximation
for the robust shortest path problem.

Demand-robust shortest path generalizes the Steiner tree problem and is thus NP-hard.
The complexity of demand-robust min-cut is still open. However, in section 4 we
present NP-hard generalizations of both problems, together with approximation algo-
rithms for them. In particular, we consider “hitting set” versions of demand-robust min-
cut and shortest path problems where each scenario is a set of terminals instead of a
single terminal and the requirement is to satisfy at least one terminal (separate from the
root for the min-cut problem and connect to the root for the shortest path problem) in
each scenario. We obtain approximation algorithms for these “hitting set” variants by
relating them to two classical problems, namely Steiner multicut and group Steiner tree.

2 Robust Min-Cut

In this section, we present a constant factor approximation for this problem. To motivate
our approach, let us consider the robust min-cut problem on trees. Suppose we know
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the maximum cost that some optimal solution pays in the second stage (say C). Any
terminal ti whose min-cut from r costs more than C

σi
should be cut away from r in the

first stage. Thus, if we know C, we can identify exactly which terminals U should be
cut in the first stage. The remaining terminals pay at most C to buy a cut in the second
stage. If there are k scenarios, then there are only k + 1 choices for C that matter, as
there are only k + 1 possible sets that U could be. Though we may not be able to guess
C, we can try all possible values of U and find the best solution. This algorithm solves
the problem exactly on trees.

The algorithm for general graphs has a similar flavor. In a general graph if for any
terminal the minimum r-ti cut costs more than C

σi
, then we can only infer that the first

stage should “help” this terminal i.e. buy some edges from a r-ti cut. In the case of
trees, every minimal r-ti cut is a single edge, so the first stage cuts ti from the root.
However, this is not true for general graphs. But we prove that a similar algorithm gives
a constant factor approximation using a charging argument. As in the algorithm for
trees, we reduce the needed non-determinism by guessing a set of terminals rather than
C itself.

Algorithm for Robust Min-Cut
T = {t1, t2, . . . , tk} are the terminals, r ← root .
α ← (1 +

√
2).

1. For each terminal ti, compute the cost (with respect to c) of a minimum r-ti cut,
denoted mcut(ti).

2. Let C be the maximum second stage cost of some optimal solution.
Guess U := {ti : σi · mcut(ti) > α · C}.

3. First stage solution: E0 ← minimum r-U cut.
4. Second stage solution for scenario i: Ei ← any minimum r-ti cut in G \ E0.

If we relabel the scenarios in decreasing order of σi ·mcut(ti), then for every choice
of C, U = ∅ or U = {t1, t2, . . . , tj} for some j ∈ {1, 2, . . . , k}. Thus, we need to try
only k + 1 values for C. This algorithm runs in Õ(k2mn) time on undirected graphs
using the max flow algorithm of Goldberg and Tarjan [6] to find min cuts. The above
algorithm (1 +

√
2)-approximates the robust min-cut problem.

Proof of Theorem 1.1. Let OPT be an optimal solution, let E∗
0 be the edge set it buys

in stage one, and let C∗
0 and C be the amount it pays in the first and second stage,

respectively. Let α be a constant to be specified later, and let U := {ti : σi ·mcut(ti) >
α · C}, where mcut(ti) is the cost of minimum r-ti cut in G with respect to the cost
function c. Note that we can handle every terminal ti /∈ U by paying at most αC in
the second stage. We will prove that the first stage solution E0, given by the algorithm
has cost c(E0) ≤ (1 + 2

α−1 )C∗
0 . The output solution is thus a max{α, (1 + 2

α−1 )}-

approximation. Setting α := (1 +
√

2) then yields the claimed approximation ratio.
To show c(E0) ≤ (1+ 2

α−1 )C∗
0 , we exhibit an r-U cut of cost at most (1+ 2

α−1 )C∗
0 .

Recall that OPT buys E∗
0 in the first stage. Since σi ·mcut(ti) > C for all ti ∈ U , E0

must “help” each such ti reduce its second stage cost by a large fraction. The high level
idea is as follows: we show how to group terminals of U into equivalence classes such
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that each edge of E∗
0 helps at most two such classes and then cut away each equivalence

class from the root using a cut that can be charged to its portion of E∗
0 .

Formally, let G = (V, E) be our input. Define G′ := (V, E \ E∗
0 ). The goal is to

construct a low-cost r-U cut, C. We include E∗
0 in C. This allows us to ignore terminals

that E∗
0 separates from the root. U is the set of remaining terminals with σi ·mcut(ti) >

α · C. For a terminal t ∈ U , let Qt ⊂ V be the t side of some minimum r-t cut in
G′. Lemma 2.1 proves that there exist min cuts such that F := {Qt : t ∈ U} is a
laminar family (see figure 1). Let F be all the node-maximal elements of F , that is,
F = {Q ∈ F : ∀Q′ ∈ F , either Q′ ⊆ Q, or Q′ ∩Q = φ}. For Q ∈ F , we say Q uses
edges {(u, v) ∈ E∗

0 | Q∩{u, v} �= ∅}. Since F is laminar, all the sets in F are disjoint.
It follows that each edge e ∈ E∗

0 can be used by at most two sets of F . For each Q ∈ F ,
we include the edges of G′ incident to Q in the cut C, and charge it to the edges of E∗

0

it uses as follows:
For a graph G = (V, E) and Q ⊂ V , let δG(Q) := {(q, w)|q ∈ Q,w ∈ V \ Q} ∩ E
be the boundary of Q in graph G. Fix Qti ∈ F , let X = δG(Qti) ∩E∗

0 (edges that Qti

uses) and let Y = δG(Qti) \ E∗
0 (edges of G′ incident to Qti). Since δG(Qti) is a r-ti

cut in G,

c(δG(Qti)) = c(X) + c(Y ) ≥ mcut(ti) (2.1)

Since ti ∈ U , σi · mcut(ti) > α · C so with (2.1) we have (c(X) + c(Y )) > α·C
σi

.
Also, we know that OPT pays at most C in second stage costs for any scenario which
implies σi · c(Y ) ≤ C. Thus, we have c(Y ) < 1

α−1 c(X) Thus we can pay for c(Y )
by charging it to the cost of X ⊆ E∗

0 and incurring an overhead of 1/(α − 1) on the
charged edges. Since each edge in E∗

0 is charged at most twice, the total charge to buy

all edges in
⋃

Q∈F (δG(Q) \ E∗
0 ) is at most 2c(E∗

0 )
α−1 = 2C∗

0
α−1 . Thus, a minimum r-U cut

costs at most (1 + 2
α−1 )C∗

0 . !"

Lemma 2.1. Let U , Qt be defined as in the proof of Theorem 1.1 Then there exists a
minimum r-t cut in G′ for each terminal t ∈ U such that F := {Qt : t ∈ U} is a
laminar family.

Proof. We start with minimally sized sets Qt. That is, for each t ∈ U , Qt is the t side
of a minimum r-t cut in G′, and every vertex set Q′ containing t but not the root such
that |Q′| < |Qt| satisfies c(δG′(Q′)) > c(δG′(Qt)). We claim this family is laminar.
Suppose not, then there exists A := Qa, B := Qb, a, b ∈ U that violate the laminar
property. Thus, A ∩B �= ∅, A � B, and B � A.

Case 1: a ∈ A \ B, b ∈ B \ A. Let X := A ∩ B, A′ := A \ X , and B′ := B \ X .
Note the cut capacity function of G′, defined f(Q) := c(δG′(Q)), is submodular.
We claim that f(A′) ≤ f(A) or f(B′) ≤ f(B), contradicting the minimality of A
and B. Let c(V1,V2) denote the sum of costs of edges from V1 to V2 in G′, where
V1,V2 ⊆ V . Then

f(A) < f(A′) =⇒ c(X, B′) + c(X, (V \ (A ∪B))) < c(A′,X) (2.2)

f(B) < f(B′) =⇒ c(X,A′) + c(X, (V \ (A ∪B))) < c(B′,X) (2.3)
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Fig. 1. Once the edges bought in the first stage, E∗
0 , are fixed, there exists an optimal (w.r.t. E∗

0 )
second stage solution {E∗

i | i = 1, 2, . . . , k} such that the ti sides of the cuts {E∗
0 ∪ E∗

i } are
a laminar family. Here, the labeled vertices are all terminals, the dashed contour corresponds
to E∗

0 , and the dotted contours correspond to second stage edge sets for various terminals. The
node-maximal elements of this family are the terminal side cuts for v1, v5, and v6.

Adding inequalities (2.2) and (2.3), we get c(X, (V \ (A ∪ B))) < 0, which is
clearly impossible.

Case 2: a ∈ B (equivalently, b ∈ A). Since A and B are terminal sides of min-cuts,

max{f(A), f(B)} ≤ f(A ∪B) (2.4)

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B) (2.5)

where (2.5) follows from submodularity. Inequalities (2.4) and (2.5) together imply
f(A∩B) ≤ min{f(A), f(B)}. But f(A∩B) ≤ f(A) contradicts the minimality
of A. !"

3 Demand-Robust Shortest Path Problem

The problem is defined on a undirected graph G = (V, E) with a root vertex r and cost
c on the edges. The ith scenario Si is a singleton set {ti}. An edge e costs c(e) in the
first stage and ci(e) = σi · c(e) in the ith scenario of the second stage. A solution to the
problem is a set of edges E0 to be bought in the first stage and a set Ei in the recourse
stage for each scenario i. The solution is feasible if E0 ∪ Ei contains a path between
r and ti. The cost paid in the ith scenario is c(E0) + σi · c(Ei). The objective is to
minimize the maximum cost over all scenarios.

The following structural result for the demand-robust shortest path problem can be
obtained from a lemma proved in Dhamdhere et al. [4].

Lemma 3.1. [4] Given a demand-robust shortest path problem instance on an undi-
rected graph, there exists a solution that costs at most twice the optimum such that the
first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search in the space of solutions where
first stage is a tree containing the root and lose only a factor of two. This property is
exploited crucially in our algorithm.
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Algorithm for Robust Shortest Path
Let C be the maximum second stage cost of some fixed connected optimal solution.
T = {t1, t2, . . . , tk} are the terminals, r ← root, α ← 1.775, V ′ ← φ.

1. V ′ := {ti|distc(ti, r) > 2α·C
σi

}
2. B := {Bi = B(ti,

α·C
σi

)| ti ∈ V ′}, where B(v, d) is a ball of radius d around v
with respect to cost c. Choose a maximal set BI of non-intersecting balls from B
in order of non-decreasing radii.

3. Guess R0 := {ti|Bi ∈ BI}.
4. First stage solution: E0 ← The Steiner tree on terminals R0 ∪ {r} output by the

best approximation algorithm available.
5. Second stage solution for scenario i: Ei ← Shortest path from ti to the closest

node in the tree E0.

3.1 Algorithm

Lemma 3.1 implies that there is a first stage solution which is a tree containing the
root r and it can be extended to a final solution within twice the cost of an optimum
solution. We call such a solution as a connected solution. Fix an optimal connected
solution, say E∗

0 , E
∗
1 , . . . , E

∗
k . Let C be the maximum second stage cost paid by this

solution over all scenarios, i.e. C = maxk
i=1{σi · c(E∗

i )}. Therefore, for any scenario
i, either there is path from ti to root r in E∗

0 , or there is a vertex within a distance C
σi

of ti which is connected to r in E∗
0 , where distance is with respect to the cost function

c, denoted distc(·, ·). We use this fact to obtain a constant factor approximation for our
problem.

The algorithm is as follows: Let C be the maximum second stage cost paid by the
connected optimal solution (fixed above) in any scenario. We need to try only k · n
possible values of C 1, so we can assume that we have correctly guessed C. For each
scenario ti, consider a shortest path (say Pi) to r with respect to cost c. If c(Pi) ≤ 2α·C

σi
,

then we can handle scenario i in the second stage with cost only a factor 2α more than
the optimum. Thus, ti can be ignored in building the first stage solution. Here α > 1 is
a constant to be specified later. Let V ′ = {ti | distc(r, ti) > 2α·C

σi
}.

For each ti ∈ V ′, let Bi be a ball of radius α·C
σi

around ti. Here, we include internal
points of the edges in the ball. We collectively refer to vertices in V and internal points
on edges as points, VP . Thus, Bi = {v ∈ VP | distc(ti, v) ≤ α·C

σi
}.

The algorithm identifies a set of terminals R0 ⊆ V ′ to connect to the root in the first
stage such that the remaining terminals in V ′ are close to some terminal in R0 and thus,
can be connected to the root in the second stage paying a low-cost.

Proposition 3.1. There exist a set of terminals R0 ⊆ V ′ such that:

1. For every ti, tj ∈ R0, we have Bi ∩Bj = φ; and
2. For every ti ∈ V ′ \ R0, there is a representative rep(ti) = tj ∈ R0 such that

Bi ∩Bj �= φ and α·C
σj

≤ α·C
σi

.

1 For each scenario i, the second stage solution is a shortest path from ti to one of the n vertices
(possibly ti), so there are at most k · n choices of C.
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Fig. 2. Illustration of first-stage tree computation described in Lemma 3.2. The balls with solid
lines denote B(ti,

C
σi

), while the balls with dotted lines denote B(ti,
α·C
σi

).

Proof. Consider terminals in V ′ in non-decreasing order of the radii α·C
σt

of the cor-
responding balls Bt. If terminal ti is being examined and Bi ∩ Bj = φ, ∀tj ∈ R0,
then include ti in R0. If not, then there exists tj ∈ R0 such that Bi ∩ Bj �= φ; define
rep(ti) = tj . Note that α·C

σj
≤ α·C

σi
as the terminals are considered in order of non-

decreasing radii of the corresponding balls. !"

The First Stage Tree. The first stage tree is a Steiner tree on the terminal set R0∪{r}.
However, in order to bound the cost of first stage tree we build the tree in a slightly
modified way. For an illustration, refer to Figure 2.

Let G′ be a new graph obtained when the balls B(ti, C
σi

) corresponding to every
terminal ti ∈ R0 are contracted to singleton vertices. We then build a Steiner tree E01

in G′ with the terminal set as the shrunk nodes corresponding to terminals in R0 and
the root vertex r. In Figure 2, E01 is the union of solid edges and the thick edges.
Now, for every shrunk node corresponding to B(ti, C

σi
), we connect each tree edge

incident to B(ti, C
σi

) to terminal ti using a shortest path; these edges are shown as
dotted lines in Figure 2 and are denoted by E02. Our first stage solution is the Steiner
tree E0 = E01 ∪ E02.

Lemma 3.2. The cost of E0 is at most 1.55α
α−1 times c(E∗

0 ), the first stage cost of the
optimal connected solution.

Proof. We know that the optimal first stage tree, E∗
0 connects some vertex in the ball

B(ti, C
σi

) to the root r for every ti ∈ R0, for otherwise the maximum second stage cost
of OPT would be more than C. Thus, E∗

0 induces a Steiner tree on the shrunk nodes in
G′. We build a Steiner tree on the shrunk nodes as terminals using the algorithm due to
Robins and Zelikovsky [18]. Thus,

c(E01) ≤ 1.55 c(E∗
0 ) (3.6)

Now, consider edges in E02. Consider a path q ∈ E02 connecting some edge incident
to B(ti, C

σi
) to ti. Since q is the shortest path between its end points, we have c(q) ≤ C

σi
.

Now, consider a path from terminal ti along q until it reaches B(ti, α·C
σi

) and label the
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portion between B(ti, C
σi

) and B(ti, α·C
σi

) as p(q). By construction, we have c(p(q)) ≥
(α−1)·C

σi
, so c(q) ≤ 1

α−1 · c(p(q)).
For any two paths q1, q2 ∈ E02, the paths p(q1) and p(q2) are edge-disjoint. Clearly,

if q1 and q2 are incident to distinct terminals of R0, then p(q1) and p(q2) are contained
in disjoint balls and thus are edge-disjoint. If q1 and q2 are incident to the same terminal,
then it is impossible that p(q1)∩p(q2) �= φ as E01 is a tree on the shrunk graph. Hence,
we have∑

e∈E02

c(e) =
∑

q∈E02

c(q) ≤
∑

q∈E02

1
α− 1

· c(p(q)) ≤
∑

e∈E01

1
α− 1

· c(e) (3.7)

where the last inequality is due to edge-disjointness of p(q1) and p(q2) for any two paths
q1, q2 ∈ E02. Thus, c(E0) = c(E01)+c(E02) ≤ c(E01)+ 1

α−1 ·c(E01) ≤ 1.55α
α−1 ·c(E∗

0 ),
where the last inequality follows from (3.6). !"

Second Stage. The second stage solution for each scenario is quite straightforward.
For any terminal ti, Ei is the shortest path from ti to the closest node in E0.

Lemma 3.3. The maximum second stage cost for any scenario is at most 2α · C.

Proof. We need to consider the following cases:

1. ti ∈ R0: Since the first stage tree E0 connects ti to r, Ei = φ. Thus, c(Ei) = 0.
2. ti ∈ V ′ \ R0: By Proposition 3.1, there exists a representative terminal tj ∈ R0

such that Bi ∩Bj �= φ and σj ≥ σi. Therefore, distc(ti, tj) ≤ α·C
σi

+ α·C
σj

≤ 2α·C
σi

.
We know that tj is connected to r in E0. Thus, the closest node to ti in the first
stage tree is at a distance at most 2α·C

σi
. Hence, σi · c(Ei) ≤ 2α · C.

3. ti /∈ V ′: Then the shortest path from ti to r with respect to cost c is at most 2α·C
σi

.

Hence, the closest node to ti in the first stage tree is at a distance at most 2α·C
σi

and
σi · c(Ei) ≤ 2α · C. !"

Proof of Theorem 1.2. From Lemma 3.2, we get that c(E0) ≤ 1.55α
α−1 c(E∗

0 ). From
Lemma 3.3, we get that the second stage cost is at most 2α · C. Choose α = 3.55

2 =
1.775. Thus, we get c(E0) ≤ (3.55)·c(E∗

0 ) and maxk
i=1{σi ·c(Ei)} ≤ (3.55)·C. From

Lemma 3.1 we know that c(E∗
0 ) + C ≤ 2 · OPT, where OPT is the cost of optimal

solution to the robust shortest path instance. Together the previous three inequalities
imply c(E0) + maxk

i=1{σi · c(Ei)} ≤ (7.1) · OPT. !"

4 Extensions to Hitting Versions

In this problem, we introduce generalizations of demand-robust min-cut and shortest
path problems that are closely related to Steiner multicut and group Steiner tree, re-
spectively. In a Steiner multicut instance, we are given a graph G = (V, E) and k sets
of vertices X1,X2, . . . ,Xk and our goal is to find the cheapest set of edges S whose
removal separates each Xi, i.e. no Xi lies entirely within one connected component of
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(V, E \ S). If
⋂k

i=1 Xi �= ∅, we call the instance restricted. In a group Steiner tree in-
stance, we are given a graphG = (V, E), a root r, and k sets of vertices X1,X2, . . . ,Xk

and our goal is to find a minimum cost set of edges S that connects at least one vertex in
each Xi, i = 1, . . . , k to the root r. We show how approximation algorithms for these
problems can be combined with our techniques to yield approximation algorithms for
“hitting versions” of demand-robust min-cut and shortest path problems.

In the hitting version of robust min-cut (resp. shortest path), each scenario i is spec-
ified by an inflation factor σi and a set of nodes Ti ⊂ V (rather than a single node).
A feasible solution is a collection of edge sets {E0, E1, . . . , Ek} such that for each
scenario i, E0 ∪ Ei contains an root-t cut (resp. path) for some t ∈ Ti. The goal is to
minimize c(E0) + maxi{σi · c(Ei)}.

4.1 Robust Hitting Cuts

Robust hitting cut is Ω(log k)-hard, where k is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to inputs in which the graph is a
star, the root is the center of the star, and σ = ∞ for all scenarios, then robust hitting
cut on these instances is exactly the hitting set problem. In contrast, we can obtain an
O(log k) approximation for robust hitting cut on trees, and O(log n · log k) in general
using results of Nagarajan and Ravi [15] in conjunction with the following theorem.

Theorem 4.1. If for some class of graphs there is a ρ-approximation for Steiner multi-
cut on restricted instances, then for that class of graphs there is a (ρ+2)-approximation
for robust hitting cut. Conversely, if there is a ρ-approximation for robust hitting cut then
there is a ρ-approximation for Steiner multicut on restricted instances.

Algorithm: Let α = 1
2 (ρ+1+

√
ρ2 + 6ρ + 1) and let C be the cost that some optimal

solution pays in the second stage. For each terminal t in some group, compute the cost of
a minimum root-t cut, denoted mcut(t). Let T ′ := {Ti : ∀t ∈ Ti, σi ·mcut(t) > α·C}.
Note that there are only k+1 possibilities, as in the robust min-cut algorithm. For each
terminal set Ti ∈ T ′, separate at least one terminal in Ti from the root in the first stage
using an ρ-approximation algorithm for Steiner Multicut [10,15].

Proof of Theorem 4.1. We first show that a ρ-approximation for robust hitting cut
implies a ρ-approximation for Steiner multicut on restricted instances. Given a restricted
instance of Steiner multicut (G,X1,X2, . . . ,Xk) build a robust hitting cut instance as
follows: use the same graph and costs, set the root r to be any element of

⋂
i Xi, and

create scenarios Ti = Xi \ r with σi = ∞ for each i. Note that solutions to this
instance correspond exactly to Steiner multicuts of the same cost. Thus robust hitting
cut generalizes Steiner multicut on restricted instances.

We now show the approximate converse, that a ρ-approximation for Steiner multicut
on restricted instances implies a (ρ + 2)-approximation for robust hitting cut. Let OPT
be an optimal solution, and let E∗

0 be the edge set it buys in stage one, and let C1 and
C2 be the amount it pays in the first and second stage, respectively. Note we can handle
every Ti /∈ T ′ while paying at most α · C2.

We prove that the first stage edges E0 ⊂ E[G] given by our algorithm satisfy all
scenarios in T ′, and have cost c(E0) ≤ ρ(1 + 2

α−1 )C1. Thus, the total solution cost is
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at most ρ(1 + 2
α−1 )C1 + α · C2. Compared to the optimal cost, C1 + C2, we obtain

a max{α, ρ(1 + 2
α−1 )}-approximation. Setting α = 1

2 (ρ + 1 +
√

ρ2 + 6ρ + 1) then
yields the claimed (ρ + 2) approximation ratio.

A cut is called a T ′-cut if it separates at least one terminal in each T ∈ T ′ from
the root. There exists a T ′-cut of cost at most (1 + 2

α−1 )C1, by the same argument
as in the proof of Theorem 1.1. Suppose OPT cuts away t∗i when scenario Ti occurs.
Then OPT is also an optimal solution to the robust min-cut instance on the same graph
with terminals {t∗i | i = 1, 2, . . . , k} as k scenarios. Since, for all t ∈ T such that
T ∈ T ′, we have σt ·mcut(t) > α · C, we can construct a root-{t∗i | i = 1, 2, . . . , k}
cut of cost at most (1 + 2

α−1 )C1. Thus, the cost of an optimal T ′-cut is at most (1 +
2

α−1 )C1. Now apply the ρ-approximation for Steiner multicut on restricted instances.
To build the Steiner multicut instance, we use the same graph and edge costs, and create
a groups Xi = Ti ∪ {root} for each Ti ∈ T ′. Clearly, the instance is restricted. Note
that every solution to this instance is a T ′-cut of the same cost, and vice-versa. Thus a
ρ-approximation for for Steiner multicut on restricted instances yields a T ′-cut of cost
at most ρ(1 + 2

α−1 )C1. !"

Corollary 4.1. There is a polynomial time O(log n · log k)-approximation algorithm
for robust hitting cut on instances with k scenarios and n nodes, and an O(log k)-
approximation algorithm for robust hitting cut on trees.

4.2 Robust Hitting Paths

Theorem 4.2. If there is a ρ-approximation for group Steiner tree then there is a 2ρ-
approximation for robust hitting path. If there is a ρ-approximation for robust hitting
path, then there is a ρ-approximation for group Steiner tree.

Proof. Note that robust hitting path generalizes group Steiner tree (given a GST instance
with graph G, root r and groups X1,X2, . . . ,Xk, use the same graph and root, make
each group a scenario, and set σi = ∞ for all scenarios i). Thus a ρ-approximation for
robust hitting path immediately yields a ρ-approximation for group Steiner tree.

Now suppose we have an ρ-approximation for group Steiner tree. Lemma 3.1 guar-
antees that there exists a solution {E0, E1, . . . , Ek} of cost at most 2OPT whose first
stage edges, E0, are a tree containing root r.

The algorithm is as follows. Guess C := maxi{σic(Ei)}. Note that for each scenario
i the tree E0 must touch one of the balls in {B(t, C/σi)|t ∈ Ti}, where B(v, x) :=
{u| distc(v, u) ≤ x}. Thus we can construct groups Xi :=

⋃
t∈Ti

B(t, C/σi) for each
scenario i and use the ρ-approximation for group Steiner tree on these groups to obtain
a set of edges E′

0 to buy in the first stage.
Note that c(E′

0) ≤ ρc(E0) and any scenario i has a terminal t ∈ Ti that is within
distance C/σi of some vertex incident on an edge of tree E′

0. We conclude that the total
cost is at most ρc(E0) + C ≤ 2ρ ·OPT. !"

5 Conclusion

In this paper we give improved approximation algorithms for robust min-cut and short-
est path problems and extend our results to an interesting ”hitting-set” variant. It would
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be interesting to use the techniques introduced in this paper to obtain better approxima-
tions for robust minimum multicut and Steiner tree problems. The technique of guessing
and pruning crucially uses the fact that each scenario can pay up to the maximum sec-
ond stage cost without worsening the optimal cost. However, this is not true for the
stochastic optimization problems and hence our technique doesn’t extend to stochastic
versions in a straightforward way. It would be interesting to adapt this idea for stochastic
optimization.
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Abstract. We show exact values for the price of anarchy of weighted and un-
weighted congestion games with polynomial latency functions. The given values
also hold for weighted and unweighted network congestion games.

1 Introduction

Motivation and Framework. Large scale communication networks, like e.g. the in-
ternet, often lack a central regulation for several reasons: The size of the network may
be too large, or the users may be free to act according to their private interests. Even
cooperation among the users may be impossible due to the fact that users may not
even know each other. Such an environment—where users neither obey some central
control instance nor cooperate with each other—can be modeled as a non-cooperative
game [18].

One of the most widely used solution concepts for non-cooperative games is the con-
cept of Nash equilibrium. A Nash equilibrium is a state in which no player can improve
his objective by unilaterally changing his strategy. A Nash equilibrium is called pure if
all players choose a pure strategy, and mixed if players choose probability distributions
over strategies.

Rosenthal [25] introduced a special class of non-cooperative games, now widely
known as congestion games. Here, the strategy set of each player is a subset of the power
set of given resources. The players share a private cost function, defined as the sum (over
their chosen resources) of functions in the number of players sharing this resource. Later
Milchtaich [20] considered weighted congestion games as an extension to congestion
games in which the players have weights and thus different influence on the congestion
of the resources. Weighted congestion games provide us with a general framework for
modeling any kind of non-cooperative resource sharing problem. A typical resource
sharing problem is that of routing. In a routing game the strategy sets of the players
correspond to paths in a network. Routing games where the demand of the players
cannot be split among multiple paths are also called (weighted) network congestion
games. Another model for selfish routing—the so called Wardrop model—was already
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studied in the 1950’s (see e.g. [3,29]) in the context of road traffic systems, where traffic
flows can be split arbitrarily. The Wardrop model can be seen as a special network
congestion game with infinitely many players each carrying a negligible demand.

In order to measure the degradation of social welfare due to the selfish behavior of
the players, Koutsoupias and Papadimitriou [16] introduced a global objective function,
usually coined as social cost. They defined the price of anarchy, also called coordination
ratio, as the worst-case ratio between the value of social cost in a Nash equilibrium and
that of some social optimum. Thus, the price of anarchy measures the extent to which
non-cooperation approximates cooperation. The price of anarchy directly depends on
the definition of social cost. Koutsoupias and Papadimitriou [16] considered a very
simple weighted network congestion game on parallel links, now known as KP-model.
For this model they defined the social cost as the expected maximum latency. For the
Wardrop model, Roughgarden and Tardos [28] considered social cost as the total la-
tency, which is a measure for the (weighted) total travel time. Awerbuch et al. [1] and
Christodoulou and Koutsoupias [5] considered the total latency for congestion games
with a finite number of players with non-negligible demands. In this setting, they show
asymptotic bounds on the price of anarchy for weighted (and unweighted) congestion
games with polynomial latency (cost) functions. Here, all polynomials are of maximum
degree d and have non-negative coefficients. For the case of linear latency functions
they give exact bounds on the price of anarchy.

Contribution and Comparison. In this work we prove exact bounds on the price
of anarchy for unweighted and weighted congestion games with polynomial latency
functions. We use the total latency as social cost measure. This improves on results by
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5], where non-matching upper
and lower bounds are given.
We now describe our findings in more detail.

– For unweighted congestion games we show that the price of anarchy (PoA) is
exactly

PoA =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = �Φd� and Φd is a natural generalization of the golden ratio to larger
dimensions such that Φd is the solution to (Φd + 1)d = Φd+1

d . Prior to this paper the
best known upper and lower bounds were shown to be of the form dd(1−o(1)) [5].
However, the term o(1) still hides a gap between the upper and the lower bound.

– For weighted congestion games we show that the price of anarchy (PoA) is exactly

PoA = Φd+1
d .

This result closes the gap between the so far best upper and lower bounds of
O(2ddd+1) and Ω(dd/2) from [1].

We show that the above values on the price of anarchy also hold for the subclasses of
unweighted and weighted network congestion games.

For our upper bounds we use a similar analysis as in [5]. The core of our analysis is
to determine parameters c1 and c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (1)
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for all polynomial latency functions of maximum degree d and for all reals x, y ≥ 0. For
the case of unweighted demands it suffices to show (1) for all integers x, y. In order to
prove their upper bound Christodoulou and Koutsoupias [5] looked at (1) with c1 = 1

2

and gave an asymptotic estimate for c2. In our analysis we optimize both parameters
c1, c2. This optimization process requires new ideas and is non-trivial.

Table 1 shows a numerical comparison of our bounds with the previous results of
Awerbuch et al. [1] and Christodoulou and Koutsoupias [5].

For d ≥ 2, the table only gives the respective lower bounds that are given in the cited
works (before any estimates are applied). Values in parentheses denote cases in which
the bound for linear functions is better than the general case.

In [1, Theorem 4.3], a construction scheme for networks is described with price of an-
archy approximating 1

e
∞
k=1

kd

k!
which yields the d-th Bell number. In [5, Theorem 10],

a network with price of anarchy (N−1)d+2

N
is given, with N being the largest integer for

which (N − 1)d+2 ≤ Nd holds.
The column with the upper bound from [5] is computed by using (1) with c1 = 1

2

and optimizing c2 with help of our analysis. Thus, the column shows the best possible
bounds that can be shown with c1 = 1

2
.

Table 1. Comparison of our results to [5] and [1]

unweighted PoA weighted PoA
d Φd Our exact result Upper Bound [5] Lower bound [5] Our exact result Lower bound [1]

1 1.618 2.5 2.5 2.5 2.618 2.618
2 2.148 9.583 10 (2.5) 9.909 (2.618)
3 2.630 41.54 47 (2.5) 47.82 5
4 3.080 267.6 269 21.33 277.0 15
5 3.506 1,514 2,154 42.67 1,858 52
6 3.915 12,345 15,187 85.33 14,099 203
7 4.309 98,734 169,247 170.7 118,926 877
8 4.692 802,603 1,451,906 14,762 1,101,126 4,140
9 5.064 10,540,286 20,241,038 44,287 11,079,429 21,147

10 5.427 88,562,706 202,153,442 132,860 120,180,803 115,975

Related Work. The papers most closely related to our work are those of Awerbuch et
al. [1] and Christodoulou and Koutsoupias [5,4]. For (unweighted) congestion games
and social cost defined as average private cost (which in this case is the same as total
latency) it was shown that the price of anarchy of pure Nash equilibria is 5

2
for linear

latency functions and dΘ(d) for polynomial latency functions of maximum degree d
[1,5]. The bound of 5

2
for linear latency function also holds for the correlated and thus

also for the mixed price of anarchy [4]. For weighted congestion games the mixed price
of anarchy for total latency is 3+

√
5

2
for linear latency functions and dΘ(d) for polynomial

latency functions [1].
The price of anarchy [24], also known as coordination ratio, was first introduced and

studied by Koutsoupias and Papadimitriou [16]. As a starting point of their investigation
they considered a simple weighted congestion game on parallel links, now known as
KP-model. In the KP-model latency functions are linear and social cost is defined as
the maximum expected congestion on a link. In this setting, there exist tight bounds
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on the price of anarchy of Θ( log m
log log m

) for identical links [7,15] and Θ( log m
log log log m

) [7]
for related links. The price of anarchy has also been studied for variations of the KP-
model, namely for non-linear latency functions [6,12], for the case of restricted strategy
sets [2,10], for the case of incomplete information [14] and for different social cost
measures [11,17]. In particular Lücking et al. [17] study the total latency (they call it
quadratic social cost) for routing games on parallel links with linear latency functions.
For this model they show that the price of anarchy is exactly 4

3
for case of identical

player weights and 9
8

for the case of identical links and arbitrary player weights.
The class of congestion games was introduced by Rosenthal [25] and extensively

studied afterwards (see e.g. [8,20,21]). In Rosenthal’s model the strategy of each player
is a subset of resources. Resource utility functions can be arbitrary but they only de-
pend on the number of players sharing the same resource. Rosenthal showed that such
games always admit a pure Nash equilibrium using a potential function. Monderer and
Shapley [21] characterize games that possess a potential function as potential games
and show their relation to congestion games. Milchtaich [20] considers weighted con-
gestion games with player specific payoff functions and shows that these games do not
admit a pure Nash equilibrium in general. Fotakis et al. [8,9] consider the price of an-
archy for symmetric weighted network congestion games in layered networks [8] and
for symmetric (unweighted) network congestion games in general networks [9]. In both
cases they define social cost as expected maximum latency. For a survey on weighted
congestion games we refer to [13].

Inspired by the arisen interest in the price of anarchy Roughgarden and Tardos [28]
re-investigated the Wardrop model and used the total latency as a social cost measure.
In this context the price of anarchy was shown to be 4

3
for linear latency functions [28]

and Θ( d
log d

) [26] for polynomial latency functions of maximum degree d. An overview
on results for this model can be found in the recent book of Roughgarden [27].

Roadmap. The rest of this paper is organized as follows. In Section 2 we give an
exact definition of weighted congestion games. We present exact bounds on the price
of anarchy for unweighted congestion games in Section 3 and for weighted congestion
games in Section 4. Due to lack of space we omit some of the proofs.

2 Notations

General. For all integers k ≥ 0, we denote [k] = {1, . . . , k}, [k]0 = {0, . . . , k}. For
all integers d > 0, let Φd ∈ R+ denote the number for which (Φd + 1)d = Φd+1

d .
Clearly, Φ1 coincides with the golden ratio. Thus, Φd is a natural generalization of the
golden ratio to larger dimensions.

Weighted Congestion Games. A weighted congestion game Γ is a tuple
Γ = n, E, (wi)i∈[n], (Si)i∈[n], (fe)e∈E . Here, n is the number of players (or users)
and E is the finite set of resources. For every player i ∈ [n], wi ∈ R+ is the weight and
Si ⊆ 2E is the strategy set of player i. Denote S = S1× . . .×Sn and S−i = S1× . . .×
Si−1 × Si+1 . . .× Sn. For every resource e ∈ E, the latency function fe : R+ → R+

describes the latency on resource e. We consider only polynomial latency functions
with maximum degree d and non-negative coefficients, that is for all e ∈ E the latency
function is of the form fe(x) = d

j=0 ae,j · xj with ae,j ≥ 0 for all j ∈ [d]0.
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In a (unweighted) congestion game, the weights of all players are equal. Thus, the
private cost of a player only depends on the number of players choosing the same re-
sources.

Strategies and Strategy Profiles. A pure strategy for player i ∈ [n] is some specific
si ∈ Si whereas a mixed strategy Pi = (p(i, si))si∈Si is a probability distribution over
Si, where p(i, si) denotes the probability that player i chooses the pure strategy si.

A pure strategy profile is an n-tuple s = (s1, . . . , sn) ∈ S whereas a mixed strat-
egy profile P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies. For a
mixed strategy profile P denote by p(s) =

∏
i∈[n] p(i, si) the probability that the play-

ers choose the pure strategy profile s = (s1, . . . , sn). Following standard game theory
notation, we denote P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn) as the (mixed) strategy pro-
file of all players except player i and (P−i, Qi) as the strategy profile that results from
P if player i deviates to strategy Qi.

Private Cost. Fix any pure strategy profile s, and denote by le(s) =
∑

i∈[n],si�e wi the
load on resource e ∈ E. The private cost of player i ∈ [n] in a pure strategy profile s
is defined by PCi(s) = e∈si

fe (le(s)) . For a mixed strategy profile P, the private cost
of player i ∈ [n] is

PCi(P) =
s∈S

p(s) · PCi(s) .

Social Cost. Associated with a weighted congestion game Γ and a mixed strategy
profile P is the social cost SC(P) as a measure of social welfare. In particular we use
the expected total latency, that is,

SC(P) =
s∈S

p(s)
e∈E

le(s) · fe(le(s))

=
s∈S

p(s)
i∈[n] e∈si

wi · fe(le(s))

=
i∈[n]

wi · PCi(P).

The optimum associated with a weighted congestion game is defined by OPT =
minP SC(P).

Nash Equilibria and Price of Anarchy. We are interested in a special class of (mixed)
strategy profiles called Nash equilibria [22,23] that we describe here. Given a weighted
congestion game and an associated mixed strategy profile P, a player i ∈ [n] is satisfied
if he can not improve his private cost by unilaterally changing his strategy. Otherwise,
player i is unsatisfied. The mixed strategy profile P is a Nash equilibrium if and only
if all players i ∈ [n] are satisfied, that is, PCi(P) ≤ PCi(P−i, si) for all i ∈ [n] and
si ∈ Si.

Note, that if this inequality holds for all pure strategies si ∈ Si of player i, then it
also holds for all mixed strategies over Si. Depending on the type of strategy profile,
we differ between pure and mixed Nash equilibria.

The price of anarchy, also called coordination ratio and denoted PoA, is the maxi-
mum value, over all instances Γ and Nash equilibria P, of the ratio SC(P)

OPT .
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3 Price of Anarchy for Unweighted Congestion Games

In this section, we prove the exact value for the price of anarchy of unweighted con-
gestion games with polynomial latency functions. We start with two technical lemmas
which are crucial for determining c1 and c2 in (1) and thus for proving the upper bound
Theorem 1. In Theorem 2 we give a matching lower bound which also holds for un-
weighted network congestion games (Corollary 1).

Lemma 1. Let 0 ≤ c < 1 and d ∈ N0 then

max
x∈N0,y∈N

x + 1
y

d

− c · x

y

d+1

= max
x∈N0

(x + 1)d − c · xd+1 .

Lemma 2. Let d ∈ N and

Fd = {g(d)
r : R → R | g(d)

r (x) = (r + 1)d − x · rd+1, r ∈ R≥0}

be an infinite set of linear functions. Furthermore, let γ(s, t) for s, t ∈ R≥0 and s �= t

denote the intersection abscissa of g
(d)
s and g

(d)
t . Then it holds for any s, t, u ∈ R≥0

with s < t < u that γ(s, t) > γ(s, u) and γ(u, s) > γ(u, t).

Theorem 1. For unweighted congestion games with polynomial latency functions of
maximum degree d and non-negative coefficients, we have

PoA ≤ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
, where k = �Φd�.

Proof. Let P = (P1, ..., Pn) be a (mixed) Nash equilibrium and let Q = (Q1, ..., Qn)
be a pure strategy profile with optimum social cost. Since P is a Nash equilibrium,
player i ∈ [n] cannot improve by switching from strategy Pi to strategy Qi. Thus,

PCi(P) =
s∈S

p(s)
e∈si

fe(le(s)) ≤ PCi(P−i, Qi)

=
s∈S

p(s)
e∈Qi∩si

fe(le(s)) +
e∈Qi\si

fe(le(s) + 1)

≤
s∈S

p(s)
e∈Qi

fe(le(s) + 1).

Summing up over all players i ∈ [n] yields

SC(P) =
i∈[n] s∈S

p(s)
e∈si

fe(le(s)) ≤
i∈[n] s∈S

p(s)
e∈Qi

fe(le(s) + 1)

=
s∈S

p(s)
e∈E

le(Q) · fe(le(s) + 1).

Now, le(Q) and le(s) are both integer, since Q and s are both pure strategy profiles.
Thus, by choosing c1, c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (2)
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for all polynomials f with maximum degree d and non-negative coefficients and for all
x, y ∈ N0, we get

SC(P) ≤
s∈S

p(s)
e∈E

[c1le(s)fe(le(s)) + c2le(Q)fe(le(Q))] = c1 · SC(P) + c2 · SC(Q).

With c1 < 1 it follows that SC(P)
SC(Q)

≤ c2
1−c1

. Since P is an arbitrary (mixed) Nash
equilibrium we get

PoA ≤ c2

1 − c1
. (3)

In fact, c1 and c2 depend on the maximum degree d, however, for the sake of readability
we omit this dependence in our notation.

We will now show how to determine constants c1 and c2 such that Inequality (2)
holds and such that the resulting upper bound of c2

1−c1
is minimal. To do so, we will first

show that it suffices to consider Inequality (2) with y = 1 and f(x) = xd.
Since f is a polynomial of maximum degree d with non-negative coefficients, it is

sufficient to determine c1 and c2 that fulfill (2) for f(x) = xr for all integers 0 ≤ r ≤ d.
So let f(x) = xr for some 0 ≤ r ≤ d. In this case (2) reduces to

y · (x + 1)r ≤ c1 · xr+1 + c2 · yr+1. (4)

For any given constant 0 ≤ c1 < 1 let c2(r, c1) be the minimum value for c2 such that
(4) holds, that is

c2(r, c1) = max
x∈N0,y∈N

y(x + 1)r − c1 · xr+1

yr+1
= max

x∈N0,y∈N

x + 1
y

r

− c1 · x

y

r+1

.

Note that (4) holds for any c2 when y = 0. By Lemma 1 we have

c2(r, c1) = max
x∈N0

(x + 1)r − c1 · xr+1 . (5)

Now, c2(r, c1) is the maximum of infinitely many linear functions in c1; one for each
x ∈ N0. Denote Fr as the (infinite) set of linear functions defining c2(r, c1):

Fr := {g(r)
x : (0, 1) → R | g(r)

x (c1) = (x + 1)r − c1 · xr+1, x ∈ N0}

For the partial derivative of any function (x, r, c1) 	→ g
(r)
x (c1) we get

∂((x + 1)r − c1 · xr+1)
∂r

= (x + 1)r · ln(x + 1) − c1 · xr+1 · ln(x)

> ln(x + 1) (x + 1)r − c1 · xr+1 ≥ 0,

for (x + 1)r − c1 · xr+1 ≥ 0, that is, for the positive range of the chosen function from
Fr. Thus, the positive range of (x + 1)d − c1 · xd+1 dominates the positive range of
(x+ 1)r − c1 · xr+1 for all 0 ≤ r ≤ d. Since c2(r, c1) > 0 for all 0 ≤ r ≤ d, it follows
that c2(d, c1) ≥ c2(r, c1), for all 0 ≤ r ≤ d. Thus, without loss of generality, we may
assume that f(x) = xd.

For s, t ∈ R≥0 and s �= t define γ(s, t) as the intersection abscissa of g
(d)
s and

g
(d)
t (as in Lemma 2). Now consider the intersection of the two functions g

(d)
v and g

(d)
v+1

from Fd for some v ∈ N. We show that this intersection lies above all other functions
from Fd.
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– First consider any function g
(d)
z with z > v + 1. We have g

(d)
z (0) > g

(d)
v+1(0) >

g
(d)
v (0). Furthermore, by Lemma 2 we get γ(v, z) < γ(v, v + 1). It follows that

g
(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

– Now consider any function g
(d)
z with z < v. We have g

(d)
v+1(0) > g

(d)
v (0) > g

(d)
z (0).

Furthermore, by Lemma 2 we get γ(v, z) > γ(v, v + 1). Again, it follows that
g
(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

Thus, all intersections of two consecutive linear functions from Fd lie on c2(d, c1).
By (3), any point that lies on c2(d, c1) gives an upper bound on PoA. Let k be the

largest integer such that (k + 1)d ≥ kd+1, that is k = �Φd�. Then (k + 2)d < (k + 1)d+1.
Choose c1 and c2 at the intersection of the two lines from Fd with x = k and x = k + 1,
that is c2 = (k + 1)d − c1 · kd+1 and c2 = (k + 2)d − c1 · (k + 1)d+1. Thus,

c1 =
(k + 2)d − (k + 1)d

(k + 1)d+1 − kd+1
and c2 =

(k + 1)2d+1 − (k + 2)d · kd+1

(k + 1)d+1 − kd+1
.

Note that by the choice of k we have 0 < c1 < 1.
It follows that

PoA ≤ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem. !"

Theorem 2. For unweighted congestion games with polynomial latency functions of
maximum degree d and non-negative coefficients, we have

PoA ≥ (k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
, where k = �Φd�.

Proof. Given the maximum degree d ∈ N for the polynomial latency functions, we
construct a congestion game for n ≥ k + 2 players and |E| = 2n facilities.

We divide the set E into two subsets E1 := {g1, . . . , gn} and E2 := {h1, . . . , hn}.
Each player i has two pure strategies, Pi := {gi+1, . . . , gi+k, hi+1, . . . , hi+k+1} and Qi :=
{gi, hi} where gj := gj−n and hj := hj−n for j > n. I. e. Si = {Qi, Pi}.

Each of the facilities in E1 share the latency function x 	→ axd for an a ∈ R>0 (yet
to be determined) whereas the facilities in E2 have latency x 	→ xd.

Obviously, the optimal allocation Q is for every player i to choose Qi. Now we
determine a value for a such that the allocation P := (P1, . . . , Pn) becomes a Nash
Equilibrium, i.e., each player i is satisfied with P, that is PCi(P) ≤ PCi(P−i, Qi) for all
i ∈ [n], or equivalently k · a · kd + (k + 1) · (k + 1)d ≤ a · (k + 1)d + (k + 2)d. Resolving
to the coefficient a gives

a ≥ (k + 1)d+1 − (k + 2)d

(k + 1)d − kd+1
> 0. (6)

Because (k + 1)d 
= kd+1, due to either k + 1 or k being odd and the other being
even, a is well defined and positive. Now since for any player i the private costs are
PCi(Q) = a + 1 and PCi(P) = a · kd+1 + (k + 1)d+1, it follows that

SC(P)
SC(Q)

= i∈[n] PCi(P)

i∈[n] PCi(Q)
=

a · kd+1 + (k + 1)d+1

a + 1
. (7)
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Provided that (k + 1)d ≥ kd+1, it is not hard to see that (7) is monotonically decreasing
in a. Thus, we assume equality in (6), which then gives

PoA ≥ SC(P)
SC(Q)

=
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem. !"

Corollary 1. The lower bound in Theorem 2 on PoA also holds for unweighted
network congestion games.

4 Price of Anarchy for Weighted Congestion Games

In this section, we prove the exact value for the price of anarchy of weighted congestion
games with polynomial latency functions. The proof of the upper bound in Theorem 3
has a similar structure as the one for the unweighted case (cf. Theorem 1). In Theorem 4
we give a matching lower bound which also holds for weighted network congestion
games (Corollary 2). Corollary 3 shows the impact of player weights to the price of
anarchy.

Theorem 3. For weighted congestion games with polynomial latency functions of
maximum degree d and non-negative coefficients we have PoA ≤ Φd+1

d .

Theorem 4. For weighted congestion games with polynomial latency functions of
maximum degree d and non-negative coefficients, we have PoA ≥ Φd+1

d .

Proof. Given the maximum degree d ∈ N for the polynomial latency functions, set
k ≥ max{ d

	d/2
 , 2}. Note, that d
	d/2
 = maxj∈[d]0

d
j

. We construct a congestion
game for n = (d + 1) · k players and |E| = n facilities.

We divide the set E into d + 1 partitions: For i ∈ [d]0, let Ei := {gi,1, . . . , gi,k},
with each gi,j sharing the latency function x 	→ ai · xd. The values of the coefficients
ai will be determined later. For simplicity of notation, set gi,j := gi,j−k for j > k in
the following.

Similarly, we partition the set of players [n]: For i ∈ [d]0, let Ni := {ui,1, . . . , ui,k}.
The weight of each player in set Ni is Φi

d, so wui,j = Φi
d for all i ∈ [d]0, j ∈ [k].

Now, for every set Ni, each player ui,j ∈ Ni has exactly two strategies:

Qui,j := {gi,j} and Pui,j :=
{gd,j+1, . . . , gd,j+(d

i)
, gi−1,j} for i = 1 to d

{gd,j+1} for i = 0

Now let Q := (Q1, . . . , Qn) and P := (P1, . . . , Pn) be strategy profiles. The facilities
in each set Ei then have the following loads for Q and P:

load on every facility e ∈ Ei

i le(Q) le(P)

d Φd
d

d
l=0

d
l

Φl
d = (Φd + 1)d = Φd+1

d

0 to d − 1 Φi
d Φi+1

d
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For P to become a Nash Equilibrium, we need to fulfill the following Nash inequalities
for each set Ni of players:

i Nash inequality to fulfill

1 to d
PCui,j (P) = d

i
· ad · (Φd+1

d )d + ai−1 · (Φi
d)d

≤ ai · (Φi+1
d + Φi

d)
d = PCui,j (P−ui,j , Qui,j )

0 PCu0,j (P) = ad · (Φd+1
d )d ≤ a0 · (Φd + 1)d = PCu0,j (P−u0,j , Qu0,j )

Replacing “≤” by “=” yields a homogeneous system of linear equations, i.e., the system
Bd · a = 0 where Bd is the following (d + 1)× (d + 1) matrix:

Bd =

−Φd2+d+1
d + Φd2+d

d Φd2

d 0 · · · · · · 0

d
d−1

Φd2+d
d −Φd2+1

d

. . .
...

... 0
. . .

...
...

. . .
. . .

...
d
i

Φd2+d
d 0 · · · 0 −Φid+d+1

d Φid
d 0 · · · 0

...
... 0

. . .
. . .

...
...

. . . 0
...

...
...

. . . Φd
d

Φd2+d
d 0 · · · 0 · · · 0 −Φd+1

d

(8)

and a := (ad . . . a0)t. Obviously, a solution to this system fulfills the initial Nash in-
equalities. Note that

(Φi+1
d + Φi

d)
d = (Φi

d)d · (Φd + 1)d = Φid+d+1
d .

Claim. The (d + 1)× (d + 1) matrix Bd from (8) has rank d.

Proof. We use the well-known fact from linear algebra that if a matrix C results from
another matrix D by adding a multiple of one row (or column) to another row (or
column, respectively) then rank(C) = rank(D).

Now consider the matrix Cd that results from adding row j multiplied by the factor
Φ−1

d to row j − 1, sequentially done for j = d + 1, d, . . . , 2. Obviously, Cd is a lower
triangular matrix with nonzero elements only in the first column and on the principal
diagonal.

For the top left element of Cd we get

− Φd2+d+1
d +

d

j=0

d

j
Φd2+j

d = Φd2

d · −Φd+1
d +

d

j=0

d

j
Φj

d

(Φd+1)d

= 0.

Since all elements on the principal diagonal of Cd—with the just shown exception
of the first one—are nonzero, it is easy to see that Cd (and thus also Bd) has rank d. !"
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By the above claim it follows that the column vectors of Bd are linearly dependent
and thus there are—with degree of freedom 1—infinitely many linear combinations of
them yielding 0. In other words, Bd · a = 0 has a one-dimensional solution space.

We now show (by induction over i) that all coefficients ai, i ∈ [d]0 must have the
same sign and thus we can always find a valid solution. From the last equality, for i = 0,
we have that ad and a0 must have the same sign. Now for i = 1, . . . , d − 1, it follows
that ai must have the same sign as ai−1 and ad, for (Φd+1

d )d, (Φi
d)

d, and (Φi+1
d + Φi

d)d

are all positive.
Choosing a �= 0 with all components being positive, all coefficients of the latency

functions are positive. We get,

PoA ≥ SC(P)
SC(Q)

=
k · d

i=0 ai(Φi+1
d )d+1

k · d
i=0 ai(Φi

d)d+1
= Φd+1

d .

!"

Corollary 2. The lower bound in Theorem 4 on PoA also holds for weighted network
congestion games.

Corollary 3. The exact price of anarchy for unweighted congestion games

PoA =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = �Φd�, is bounded by �Φd�d+1 ≤ PoA ≤ Φd+1
d .
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Abstract. We introduce a new class Op
2 as a subclass of the symmetric

alternation class Sp
2. An Op

2 proof system has the flavor of an Sp
2 proof

system, but it is more restrictive in nature. In an Sp
2 proof system, we

have two competing provers and a verifier such that for any input, the
honest prover has an irrefutable certificate. In an Op

2 proof system, we
require that the irrefutable certificates depend only on the length of the
input, not on the input itself. In other words, the irrefutable proofs are
oblivious of the input. For this reason, we call the new class oblivious
symmetric alternation. While this might seem slightly contrived, it turns
out that this class helps us improve some existing results. For instance,
we show that if NP ⊂ P/poly then PH = Op

2, whereas the best known
collapse under the same hypothesis was PH = Sp

2.
We also define classes YOp

2 and NOp
2, bearing relations to Op

2 as NP
and coNP are to P, and show that these along with Op

2 form a hier-
archy, similar to the polynomial hierarchy. We investigate other inclu-
sions involving these classes and strengthen some known results. For
example, we show that MA ⊆ NOp

2 which sharpens the known result
MA ⊆ Sp

2 [16]. Another example is our result that AM ⊆ O2 · NP ⊆ Πp
2,

which is an improved upper bound on AM. Finally, we also prove better
collapses for the 2-queries problem as discussed by [12,1,7]. We prove
that PNP[1] = PNP[2] ⇒ PH = NOp

2 ∩ YOp
2.

1 Introduction

The symmetric alternation class (Sp
2) was introduced independently by Russell

and Sundaram [16] and by Canetti [5]. The class Sp
2 contains languages having

an interactive proof system of the following type. The proof system consists of
two mutually adversarial and computationally all-powerful provers called the
Yes-prover and the No-prover, and a polynomial time verifier. The veri-
fier interacts with the two provers to ascertain whether or not an input string x
belongs to a language L. The Yes-prover and the No-prover make contradic-
tory claims: x ∈ L and x �∈ L, respectively. Of course, only one of them is honest.
To substantiate their claims, the provers give strings y and z as certificates. The
verifier analyzes the input x and the two certificates and votes in favor of one
of the provers. The requirement is that, if x ∈ L, the Yes-prover has a certifi-
cate y using which he can win the vote, for any certificate z of the No-prover.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 230–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Similarly, if x �∈ L, the No-prover has a certificate z using which he can win
the vote, for any certificate y of the Yes-prover. We call certificates satisfying
the above requirements as irrefutable certificates. We can rephrase the require-
ments as follows. If x ∈ L, the Yes-prover has an irrefutable certificate and if
x �∈ L, then the No-prover has an irrefutable certificate. The class Sp

2 consists
of languages having a proof system of the above type. We will provide a formal
definition of Sp

2 later. Symmetric alternation has been gaining attention recently
and several nice results involving the class are known (see [3,4,5,6,7,8,16,18]).

In this paper, we define a class called oblivious symmetric alternation, de-
noted Op

2, as a subclass of Sp
2 by incorporating a few additional requirements

to the Sp
2 proof system. We show that some of the earlier Sp

2-related results can
be strengthened by using Op

2 and related classes. We study these classes and
show that they enjoy some interesting properties. Our results seem to indicate
that these classes are worthy of further investigation. We start with an informal
description of Op

2.
Similar to Sp

2, an Op
2 proof system for a language L consists of two competing

all powerful provers, the Yes-prover and the No-prover and a polynomial
time verifier. For an input x the two provers make contradictory claims: the
Yes-prover claims x ∈ L and No-prover claims x �∈ L. To substantiate their
claims the provers present polynomially long certificates and the verifier analyzes
the input and the two certificates and votes in favor of one of the provers. The
requirement is that, for any n, there exists a pair of certificates (y∗, z∗) such that
y∗ serves as an irrefutable certificate for the Yes-prover, for all strings in L ∩
{0, 1}n and similarly, z∗ serves as an irrefutable certificate for the No-prover,
for all strings in L∩{0, 1}n. The difference between Sp

2 and Op
2 is as follows. Fix

an input length n. In an Sp
2 proof system, we require that for any input x of length

n, if x ∈ L, then the Yes-prover should have an irrefutable certificate, and
if x �∈ L, then the No-prover should have an irrefutable certificate. Whereas,
in an Op

2 proof system, the Yes-prover should have a single string y∗ which
is an irrefutable certificate for all strings in L of length n, and similarly, the
No-prover should have a string z∗ which is an irrefutable certificate for all
strings not in L of length n. In a nutshell, the irrefutable certificates of in an
Sp

2 proof system may depend on the input, whereas in an Op
2 proof system, they

depend only on the length of the input – the certificates are oblivious of the
input. Borrowing terminology from the theory of non-uniform computation, we
call y∗ and z∗ as irrefutable advice at length n for the Yes-prover and the
No-prover, respectively.

The class Op
2 can be used to strengthen some of the earlier results involving

Sp
2. The first such result we consider is the classical Karp–Lipton theorem. Karp

and Lipton [14] showed that if NP ⊂ P/poly then the polynomial time hierarchy
(PH) collapses to Σp

2 ∩ Πp
2. Köbler and Watanabe [15] improved the collapse

as PH = ZPPNP. Sengupta observed that under the same hypothesis, we have
PH = Sp

2 (see [3]), which is an improvement over the Köbler–Watanabe result,
since by Cai’s result [3], Sp

2 ⊆ ZPPNP. We strengthen the collapse further. We
show that if NP ⊂ P/poly then PH = Op

2. By definition, Op
2 ⊆ Sp

2 and thus, the
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collapse of PH to Op
2 improves the earlier collapse to Sp

2. But, how much is this
an improvement? To answer this question, we compare Sp

2 and Op
2.

Op
2 seems to be much weaker than Sp

2 as evidenced by our observation that
Op

2 ⊂ P/poly. Hence, if Sp
2, or even NP, is contained in Op

2, then PH collapses
to Op

2. Thus, while Sp
2 is a stronger class containing PNP [16], Op

2 is unlikely to
contain even NP.

We next consider the related issue of whether NP is contained in coNP/poly
(or equivalently, coNP ⊂ NP/poly). Yap [19] showed that if coNP ⊂ NP/poly,
then PH = Σp

3 ∩ Πp
3. Köbler and Watanabe improved the collapse as PH =

ZPPNPNP
. This was further strengthened as PH = SNP

2 [4,17]. We improve the
result further by showing that PH = ONP

2 . In fact, we show that if coNP ⊆
NP/poly then PH = O2 · PNP[2]. (In O2 · PNP[2], we allow the verifier to make
only two queries to an NP oracle).

We also investigate the lowness properties of Sp
2 and Op

2 and show that Op
2

nicely connects some earlier results regarding low sets of Sp
2. It is known that

BPP is low for Sp
2 [16,5]. We observe that this result can be generalized as follows:

the class IP[P/poly] [10], which contains BPP, is low for Sp
2. On a different note,

Cai et al. [4] showed that the class of Turing self-reducible languages having
polynomial size circuits is low for Sp

2. Using Op
2, we connect these two seemingly

unrelated results. We prove that Op
2 contains both IP[P/poly] and the class of

Turing self-reducible languages having polynomial size circuits. Then, we argue
that Op

2 is low for Sp
2. Moreover, we observe that Op

2 is low for Op
2.

We then proceed to study one-sided versions of Op
2 and define two classes

YOp
2 and NOp

2. In the YOp
2 proof system, only the Yes-prover is required

to present an irrefutable advice, whereas it is sufficient for the No-prover
to present irrefutable certificates. In other words, the irrefutable certificates of
the No-prover may depend on the input, whereas those of the Yes-prover
must depend only the length of the input. The class NOp

2 is defined analogously
by interchanging the above requirements of the Yes-prover and No-prover.
Notice that YOp

2 and NOp
2 are complementary classes: L ∈ YOp

2 if and only if
L ∈ NOp

2.
We study the properties of YOp

2 and NOp
2 and use these classes to sharpen

some of the earlier results involving Sp
2. It is known that MA and coMA are

contained in Sp
2 [16]. We strengthen the above result as MA ⊆ NOp

2 and coMA ⊆
YOp

2. Building on the work of Buhrman and Fortnow [1], Fortnow, Pavan and
Sengupta [7] showed that if PNP[1] = PNP[2] then PH = Sp

2. Under the same
hypothesis, we improve the collapse to PH = YOp

2 ∩NOp
2.

We illustrate the relationships among Op
2, YOp

2, NOp
2 and other classes in

Figure 1.
Finally, we use Op

2, NOp
2 and YOp

2 to build an hierarchy of classes similar to
the polynomial time hierarchy. In this new hierarchy, which we call the oblivious
symmetric alternation hierarchy (OSH), Op

2, NOp
2 and YOp

2 play the role of P,
NP and coNP, respectively. As it turns out, the oblivious symmetric alternation
hierarchy behaves similarly to PH and we discuss other features of this hierarchy
in Sec. 6. For instance, it is true that OSH is finite if and only if PH is finite.
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Fig. 1. Op
2 and other classes

Note: Due to the lack of space, we are unable to present proofs for most of the
results. These will be included in the full version of the paper, which is under
preparation.

2 Definitions

We start with the formal definition of Sp
2. For the sake of brevity, we straightaway

define the relativized version.

Definition 1 ([5,16]). Let C be a complexity class. A language L is said to be
in the class S2 · C, if there exists a 3-argument predicate V ∈ C such that for all
n, for all x ∈ {0, 1}n,

x ∈ L =⇒ ∃my∀mz [V (x, y, z) = 1] and
x �∈ L =⇒ ∃mz∀my [V (x, y, z) = 0],

where m is polynomial in n. For an x ∈ L (resp. x �∈ L), any y (resp. z) satisfying
the first (resp. second) requirement above is called an irrefutable certificate of
the Yes-prover (resp. the No-prover).

We next define Op
2, YOp

2 and NOp
2. Again, we straightaway present the relativized

versions.

Definition 2. Let C be a complexity class. A language L is said to be in the class
O2 ·C, if there exists a 3-argument predicate V ∈ C such that, for all n, there exist
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strings y∗ and z∗, with |y∗| = |z∗| = m, satisfying the following requirements,
where m is polynomial in n. For all x ∈ {0, 1}n,

x ∈ L =⇒ ∀mz [V (x, y∗, z) = 1] and
x �∈ L =⇒ ∀my [V (x, y, z∗) = 0].

We call y∗ and z∗ irrefutable advice at length n, for the Yes-prover and
No-prover, respectively.

Definition 3. Let C be a complexity class. A language L is said to be in the
class NO2 · C, if there exists a 3-argument predicate V ∈ C such that, for all
n, there exist a string z∗, with |z∗| = m, satisfying the following requirements,
where m is polynomial in n. For all x ∈ {0, 1}n,

x ∈ L =⇒ ∃my∀mz [V (x, y, z) = 1] and
x �∈ L =⇒ ∀my [V (x, y, z∗) = 0].

We call z∗ irrefutable advice at length n for the No-prover and for an x ∈ L,
any string y satisfying the first requirement is called an irrefutable certificate of
the Yes-prover for x.

We define YO2 · C similarly : in this case the Yes-prover has an irrefutable
advice string, and the No-prover has an irrefutable certificate.

We denote by Sp
2, Op

2, YOp
2, and NOp

2, the classes S2 · P, O2 · P, YO2 · P and
NO2 · P, respectively. For any oracle A, SA

2 , OA
2 , YOA

2 , NOA
2 , denote the classes

S2 ·PA, O2 ·PA, YO2 ·PA and NO2 ·PA, respectively. Similarly, for a class C, SC
2 ,

OC
2 , YOC

2 and NOC
2 denote the classes S2 · PC, O2 · PC, YO2 · PC and NO2 · PC ,

respectively.

3 Oblivious Symmetric Alternation and Other Classes

In this section, we compare Op
2, NOp

2 and YOp
2 with other standard complexity

classes. We start with the following easy (syntactic) observations:

Proposition 1. The following (relativizing) inclusions hold for the classes Op
2,

NOp
2, YOp

2 :

(i) Op
2 ⊆ NOp

2 ∩YOp
2

(ii) coNOp
2 = YOp

2

(iii) NP ⊆ NOp
2 ⊆ Sp

2

(iv) coNP ⊆ YOp
2 ⊆ Sp

2

So we know thereby that Op
2 ⊆ Sp

2 - how much weaker is Op
2 as compared to

Sp
2? We observe below that Op

2 ⊂ P/poly. On the other hand, Sp
2 contains NP,

and NP is unlikely to have polynomial size circuits (for that would collapse PH).
This gives credence to the belief that Op

2 might indeed be quite weaker than Sp
2.

Theorem 1. Op
2 ⊂ P/poly. In general, for any oracle A, OA

2 ⊂ PA/poly. Sim-
ilarly, NOp

2 ⊂ NP/poly, YOp
2 ⊂ coNP/poly, and these inclusions relativize as

NOA
2 ⊂ NPA/poly,YOA

2 ⊂ coNPA/poly.
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We can ask other warm-up questions about these new classes, for instance, is
coNP ⊆ NOp

2? This is unlikely, because from the above we know that NOp
2 ⊂

NP/poly, so such a containment would imply that coNP ⊂ NP/poly, which is
known to imply a collapse of the polynomial time hierarchy: PH = SNP

2 [4,17].
We obtain a better collapse under the hypothesis coNP is contained in NOp

2.

Theorem 2. If coNP ⊆ NOp
2 , then PH = NOp

2 ∩YOp
2.

We now compare Arthur-Merlin classes with the O2 classes, thereby improving
some of the syntactic inclusions in Proposition 1.

Theorem 3. MA ⊆ NOp
2, coMA ⊆ YOp

2.

While the intuition gained so far about the class Op
2 is that it is a relatively

small class, we are not able to show containment of Op
2 inside the class AM. On

the other hand, we are able to prove an upper bound on AM better than the
previously known upper bound of Πp

2.

Theorem 4. AM ⊆ O2 · NP ⊆ Πp
2.

4 Low Sets of Sp
2 and Op

2

In this section, we connect some earlier lowness results of Sp
2 using Op

2. We also
give a precise characterization of low sets of Op

2.
Russell and Sundaram [16] and Canetti [5] showed that BPP is low for Sp

2. We
can prove that IP[P/poly] is low for Sp

2, where IP[P/poly] consists of languages
having an interactive proof system in which the power of the honest prover lies in
P/poly, see [10]. Since BPP ⊆ IP[P/poly], this latter lowness result implies the
former. On a different note, Cai et al. [4] showed that any Turing self-reducible
language in P/poly is low for Sp

2. We connect these two seemingly unrelated
lowness results using Op

2. We show that IP[P/poly] ⊆ Op
2 and that any Turing

self-reducible language in P/poly belongs to Op
2. Then, we prove that Op

2 is low
for Sp

2.

Theorem 5. IP[P/poly] ⊆ Op
2.

Theorem 6. If a language A is Turing self-reducible and A ∈ P/poly then
A ∈ Op

2.

Cai et al. [4] prove a theorem similar to Theorem 6: the set A is low for Sp
2. Our

lowness result is proved via an argument similar to theirs. We next show:

Theorem 7. Op
2 is low for Sp

2, i.e., SOp
2

2 = Sp
2.

Theorem 7 gives a partial characterization of low sets of Sp
2. We can do a better

job in the case of Op
2. Below, we show that Op

2 is low for Op
2. As a consequence,

we can precisely specify the low sets of Op
2: Low(Op

2) = Op
2.
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Theorem 8. Op
2 is low for Op

2, i.e., OOp
2

2 = Op
2.

Also, similar lowness results hold for NOp
2,YOp

2 :

Theorem 9. Op
2 is low for NOp

2 and YOp
2. The claim relativizes with respect to

any oracle A: NOOA
2

2 = NOA
2 and YOOA

2
2 = YOA

2 .

5 Strengthening Collapses Using Op
2

In this section, we show that some earlier collapse results involving Sp
2 and related

classes can be improved by using Op
2 and its relativized versions.

The first result we consider is the classical Karp–Lipton theorem [14], which
deals with the issue of NP having polynomial size circuits. The theorem states
that if NP ⊂ P/poly then PH = Σp

2 ∩ Πp
2. The collapse has been strengthened

subsequently. Under the same hypothesis, the collapse was improved as PH =
ZPPNP [15] and further as PH = Sp

2 (see Cai [3]). (Note Sp
2 ⊆ ZPPNP [3]). We

further strengthen the collapse to PH = Op
2.

For this section and Section 7, we define following:

Definition 4. A circuit (purportedly computing SAT for a specific input length)
is called nice if it does not accept unsatisfiable formulas. We note that, via self-
reducibility, we can design a polynomial time algorithm that converts a given
circuit C into a nice circuit C′, such that if C is a correct circuit for SAT at a
certain length m, then so is C′ (at length m).

Theorem 10. If NP ⊂ P/poly then PH = Op
2.

Proof. Assuming NP ⊂ P/poly, we show that Σp
2 ⊆ Op

2, which implies that
PH = Op

2. Let L ∈ Σp
2. We have polynomials p(·) and q(·), and a polynomial

time algorithm which given an x and a y ∈ {0, 1}p(|x|), produces a formula ϕx,y

of length at most q(|x|) such that the following is true. For any x,

x ∈ L ⇐⇒ ∃p(|x|)y[ϕx,y �∈ SAT].

Our Op
2 proof system works as follows. Let x ∈ {0, 1}n be the input. The

Yes-prover and the No-prover will provide circuits CY and CN respectively,
that are purported to compute SAT at lengths r(n), q(n) respectively (r(n) to
be defined shortly). The verifier converts the circuits CY , CN into nice (cf. Def-
inition 4) circuits C′

Y , C′
N respectively. The verifier’s algorithm is as follows.

Convert the following NP question:

∃p(n)y[C′
N (ϕx,y) = 0].

into a boolean formula ϕ̃x. The length of ϕ̃x is at most r(n), where r(·) is a
polynomial. We then use C′

Y to check the satisfiability of ϕ̃x. If C′
Y accepts the

formula, we vote in favor of the Yes-prover and otherwise, vote in favor of the
No-prover.
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Consider an input length n. Let C∗
Y and C∗

N be correct circuits for SAT
at lengths r(n) and q(n), respectively, whose existence is guaranteed by our
assumption that NP ⊂ P/poly. We can then argue that at length n, C∗

Y and C∗
N

are irrefutable advice strings for the Yes-prover and No-prover, respectively.
The argument is based on the niceness transformation described above. !"
It is curious to note that the above implication is in fact an equivalence. As a
corollary, we have the following improvement of [13]. Here, Size(nk) refers to
languages which have deterministic circuits of size nk for some fixed constant k.

Corollary 1. NPOp
2 �⊂ Size(nk) and NEXPOp

2 �⊂ P/poly.

The previous best known result was that Sp
2 �⊂ Size(nk) (attributed to Sen-

gupta in Cai [3]). Also, Impagliazzo and Kabanets [11] prove conditionally that
NEXPRP �⊂ P/poly. On the other hand, [2] prove that MAexp �⊂ P/poly. which
already implies our result for NEXPOp

2 not being in P/poly (since MAexp ⊆
NEXPOp

2 ).
Theorem 10 studies the consequence of NP being contained in P/poly. We

now consider a weaker hypothesis, namely NP ⊂ coNP/poly. Under the above
hypothesis, Yap [19] showed that PH collapses to Σp

3 ∩Πp
3, which was improved

as PH = ZPPNPNP
[15], and further improved to PH = SNP

2 [4,17]. We bring
down the collapse further to ONP

2 . In fact, we show that the verifier needs to
make only two queries to the NP oracle.

Theorem 11. If coNP ⊂ NP/poly then PH = O2 · PNP[2].

6 Oblivious Symmetric Alternation Hierarchy

In this section, we use Op
2, NOp

2 and YOp
2 to construct a hierarchy of classes akin

to the polynomial time hierarchy. We call this hierarchy, the oblivious symmetric
alternation hierarchy and denote it OSH. Here, Op

2, NOp
2 and YOp

2 play a role
analogous to that of P, NP and coNP, respectively. We start with the definition
of various levels of OSH.

Definition 5. Define NO(0)
2 = YO(0)

2 = Op
2. For k ≥ 1, we define

NO(k)
2 = NONO

(k−1)
2

2 and YO(k)
2 = YONO

(k−1)
2

2

The classes in OSH enjoy a simpler characterization, as shown by the follow-
ing theorem. We can prove it using induction, along with our observation that
NOA

2 ⊆ ONPA

2 , for any oracle A.

Theorem 12. For any k ≥ 1, NO(k)
2 = NO

Σp
k−1

2 and YO(k)
2 = YO

Σp
k−1

2 .

The hierarchies OSH and PH are intertwined, as shown by the following result,
which is a generalization of Proposition 1.
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Theorem 13. For any k ≥ 1,

Σp
k ⊆ NO(k)

2 ⊆ Σp
k+1 ∩Πp

k+1 and Πp
k ⊆ YO(k)

2 ⊆ Σp
k+1 ∩Πp

k+1.

As a consequence of Theorem 13, we have that if PH is infinite then OSH is
infinite.

Theorem 14. (i) If OSH = NO(k)
2 then PH = Σp

k+1.

(ii) If PH = Σp
k then OSH = NO(k)

2 .

It is well known that if Πp
k = Σp

k, then PH collapses to the kth level: PH =
Σp

k ∩Πp
k. The following theorem provides a similar result for OSH. We can prove

it using a generalization of Theorem 2.

Theorem 15. For any k ≥ 1, if NO(k)
2 = YO(k)

2 then OSH = NO(k)
2 ∩YO(k)

2 .

7 Application to the Two Queries Problem

In this section, we consider the two queries problem: Is PNP[1] = PNP[2]? We refer
the reader to an excellent article by Hemaspaandra et al. [9] for a survey on the
above and related issues. It is known that if PNP[1] = PNP[2], then the polynomial
time hierarchy collapses and the best known collapse result is PH = Sp

2 [7]
(building on [1]). We strengthen the collapse consequence as follows.

Theorem 16. If PNP[1] = PNP[2] then PH = NOp
2 ∩YOp

2.

For this, as in [7], we use the following theorem from [1]:

Theorem 17. If PNP[1] = PNP[2], then there exists a polynomial-time predicate
R and a constant k > 0 such that for every n, one of the following holds :

1. Locally NP = coNP : For every unsatisfiable formula φ of length n, there is
a short proof of unsatisfiability w, i.e. φ �∈ SAT ⇔ ∃w R(φ,w) = 1, where
|w| is polynomial in n.

2. There exists a circuit of size nk that decides SAT at length n.

We also use the key lemma in [7]. The following notation is needed in the lemma
and in the rest of the proof.

Given a circuit C claiming to compute SAT, we convert it into a nice (cf.
Definition 4) circuit C′. We assume henceforth that after receiving circuits from
the Yes-prover and the No-prover, the verifier makes the above “niceness”
transformation.

Lemma 1. ([7]) Fix n > 0. For every k > 0, if SAT does not have nk+2 size
circuits at length n, then there exists a set S of satisfiable formulas of length
n, called counterexamples, such that every nice circuit of size nk is wrong on at
least one formula from S. The cardinality of S is polynomial in n.
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Proof. (of Theorem 16) The intuition behind the proof is clear. Buhrman and
Fortnow [1] prove that under the premise, it holds that either NP is (locally) like
coNP or SAT has small circuits. Now under the first condition, clearly coNP ⊆
NOp

2 , while under the second condition, the No-prover can give the existing
small circuit for SAT to prove coNP ⊆ NOp

2 . Altogether, we would have a NOp
2

collapse of the hierarchy. We formalize this intuition in the following.
We show that Σp

2 ⊆ NOp
2. Let language L be a language in Σp

2. So, for any x,
we have that

x ∈ L : ∃y ϕx,y �∈ SAT
x �∈ L : ∀y ϕx,y ∈ SAT,

where ϕx,y is a formula computable in polynomial time, given x and y. In the
following we denote the length of ϕx,y by m, noting that we can make the lengths
of ϕx,y corresponding to different y’s uniformly m.

Yes-prover gives the following strings : bit b1, y,X . If b1 = 0 then it means
that Yes-prover claims there is a circuit of size mk computing SAT on inputs
of length m, and then X = CY , a circuit of size mk (purportedly solving SAT).
If b1 = 1, that means Yes-prover claims that there is no such circuit, so it
gives X = w corresponding to Case 1 of Theorem 17.

No-prover gives the following strings : bit b2,X . If b2 = 0 then it means
that No-prover claims there is a circuit of size mk+2 solving SAT on inputs of
length m, and then X = CN , a circuit of size mk+2 (purportedly solving SAT).
If b2 = 1, then No-prover claims that there is no such circuit, and it gives
X = a list L of counterexamples ψ as guaranteed by Lemma 1. Formally, L is
a list of satisfiable formulas along with proofs of satisfiability (satisfying truth
assignments).

For the verifier’s computation, we have the following cases:

1. b2 = 0. In this case, the verifier uses the circuit CN to check if ϕx,y is
satisfiable (by self-reducibility of SAT). If CN (ϕx,y) = 1, then the verifier
rejects x, else accepts x.

2. b2 = 1. This breaks down into two subcases

(a) b1 = 0. In this case, the verifier converts the circuit CY into a nice circuit
(while preserving correctness). The verifier then checks if L is valid,
meaning all the formulas in the list are satisfied by the corresponding
truth assignments. If this check fails, the verifier accepts the input and
halts. In the next step, the verifier checks if CY is correct against the
counterexamples in L, i.e. it checks if for every ψ ∈ L, CY (ψ) = 1. If CY

fails this test, then the verifier rejects x, else accepts x.
(b) b1 = 1. In this case, neither Yes-prover nor No-prover is claim-

ing that there are small circuits for SAT. So the verifier just checks if
R(ϕx,y, w) = 1. If so, then it accepts x, else rejects x.

Let us prove that this proof system indeed accepts the language L. Again we
have cases:
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1. x ∈ L. This case breaks down into two subcases.
(a) There exists circuits of size mk solving SAT. In this case, Yes-prover

gives the appropriate y, b1 = 0, and a circuit CY of size mk solving
SAT. Since x ∈ L, No-prover cannot make the verifier reject x by
showing a circuit CN such that CN (ϕx,y) = 1, because then CN has
to exhibit a satisfying assignment for ϕx,y and in this case of the case
analysis, ϕx,y �∈ SAT. So then the verifier checks CY against the list of
counterexamples ψ in L, and CY will pass all these tests. So the verifier
accepts x.

(b) There do not exist circuits of size mk solving SAT, and Yes-prover
gives w satisfying Case 1 of Theorem 17. If b2 = 0, and No-prover
gives a circuit CN of size mk+2 solving SAT, then clearly CN (ϕx,y) = 0.
On the other hand if both b2 = b1 = 0, then R(ϕx,y, w) = 1. In either
case, the verifier accepts x.

2. x �∈ L. Again, the two subcases are as follows:
(a) There exist circuits of size mk solving SAT, and so also circuits of size

mk+2. No-prover gives b2 = 0 and one such circuit CN . Since x �∈ L,
for any choice of y, it holds that ϕx,y ∈ SAT. So CN (ϕx,y) = 1 and the
verifier rejects x.

(b) There does not exist circuits of size mk+2 solving SAT. No-prover gives
b2 = 1 and a list of counterexamples L which catches any “spurious”
circuit CY of size mk given by Yes-prover (in case Yes-prover gives
b1 = 0). If Yes-prover gives b1 = 1, then R(ϕx,y, w) = 0 and the
verifier rejects x.

Clearly we observe that in the above, No-prover needs to give only a single
“proof” for any x �∈ L. Thus, Σp

2 ⊆ NOp
2. By Proposition 1, we therefore have

that PH = NOp
2 ∩YOp

2. !"

8 Conclusions and Open Problems

We introduced a new class Op
2 and showed some of the nice properties it has

(improved lowness results, improved collapses). A natural question is whether
Op

2 ⊆ AM. Note that such an inclusion would prove NP ⊂ P/poly ⇒ PH = MA,
a longstanding open problem. Whether Op

2 is contained in PNP is also an inter-
esting question. Since BPP ⊆ Op

2, a positive answer to the above question would
imply BPP ⊆ PNP, which is a well-known open problem. So, it is worthwhile to
show that Op

2 ⊆ PNP, under some hardness assumption. Shaltiel and Umans [18]
studied a similar question for Sp

2. They obtained Sp
2 = PNP, under the hypothesis

that ENP requires SV-nondeterministic circuits of size 2Ω(n). Since Op
2 ⊆ Sp

2, we
have Op

2 ⊆ PNP, under the same hypothesis. Can one show Op
2 ⊆ PNP, under

some weaker hypothesis? Another challenge is to compare Op
2 with the counting

classes. For instance, is Op
2 ⊆ PP?

We observed that Op
2 is low for NOp

2. Is NOp
2 ∩YOp

2 low for NOp
2? A positive

answer would imply that ONP∩coNP
2 ⊆ Sp

2, which in turn would settle a open
question raised in [4]: if NP is contained in (NP∩ coNP)/poly, does PH collapse
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to Sp
2? (The best known collapse is to SNP∩coNP

2 ). We conclude with an open
problem that we find interesting and challenging: can we put the graph isomor-
phism problem in NOp

2 ∩YOp
2?
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Abstract. In this work we introduce and study the question of combin-
ing multiple heuristics. Given a problem instance, each of the multiple
heuristics is capable of computing the correct solution, but has a differ-
ent cost. In our models the user executes multiple heuristics until one of
them terminates with a solution. Given a set of problem instances, we
show how to efficiently compute an optimal fixed schedule for a constant
number of heuristics, and show that in general, the problem is computa-
tionally hard even to approximate (to within a constant factor). We also
discuss a probabilistic configuration, in which the problem instances are
drawn from some unknown fixed distribution, and show how to compute
a near optimal schedule for this setup.

1 Introduction

Many important optimization and decision problems are computationally in-
tractable and are sometimes even hard to approximate. The computational as-
pect of these problems is often depressing from the theoretical perspective. In
reality however, in many cases, some of these hard problems are central and re-
quire a solution. Given that an efficient algorithm for these problems is (proba-
bly) out of the question, practical research is devoted to the discovery of heuristic
methods which would optimistically be efficient over a large variety of problem
instances.

One example of the above is the constraint satisfaction problem (SAT), which
is highly important in the field of hardware and software verification. The fact
that in general it admits no efficient algorithm has not stopped people from
routinely solving impressively large instances of SAT problems. Quite to the
contrary, the research community has come up with a large variety of heuristic
methods for solving SAT problems (see [10, 9, 6] for example). A live proof of the
efforts and interest in these problems is the fact that there are even organized
competitions between the different academic and industrial implementations (see
http://www.satcompetition.org/). One major difficulty concerting SAT solvers
as well as heuristic methods for other problems is that the running time over
a particular problem instance cannot be guaranteed. For this reason, once a
heuristic consumes too much resources (e.g., time or space) one might suspend
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it and start running a different heuristic instead. The main goal of our model
is to abstract this switching between different heuristics for solving the same
instance of the problem.

Our model includes k distinct heuristics. Given a problem instance each
heuristic has a different cost for solving it (for simplicity, the cost can be thought
as the time needed by the heuristic to compute a solution). The cost of solving
an instance of a problem is the total cost invested until one of the heuristics
terminates with a solution. If we had only one problem instance then it would
clearly be optimal to simply run the best heuristic (assuming it was known). We
however, are interested in a case where we have n different problem instances,
and the same schedule is used for all the problem instances. The total cost of a
set of problem instances is the sum of the costs of the various problem instances.
As a solution, we study two types of fixed schedulers. The first is a resource
sharing scheduler that devotes a fixed fraction of its resources to each heuristic
until some heuristic terminates with a solution. The second is a task switching
scheduler in which only one heuristic is executed in each time unit. In both mod-
els, the schedulers are kept fixed for all problem instances, and the optimization
problem is to find an optimal fixed scheduler for a given set of problem instances
(and their related costs).

Our main result is an algorithm that computes an optimal resource sharing
schedule in time O(n log n) for two heuristics (e.g., k = 2) and O(nk−1) for a
constant k ≥ 3. For computing an optimal task switching schedule we briefly
report an O(nk+1) time algorithm. Note that both algorithms run in polynomial
time algorithm for a constant number of heuristics. We also show that in general
finding the optimal resource sharing schedule is NP-hard even to approximate.
To make our setup more realistic, we study a probabilistic model in which the
problem instances are drawn from some fixed unknown distribution. In this
setup, one can search for a near optimal scheduler by sampling a number of
problem instances and finding an optimal scheduler for them (in such case, the
assumption that the cost of every heuristics over each problem instance in the
sample is known in advance, becomes reasonable). Conceptually, in the initial
learning phase we invest in learning the cost of each heuristic and the goal is
to select a near optimal fixed scheduler. For the probabilistic model we show
that if the number of problem instances (i.e., n) is a large enough sample, then,
with high probability, the performance of any scheduler on the sample is close
to its expected cost on the distribution (simultaneously for all schedulers). We
note that since the number of schedulers might be infinite, we employ tools from
computational learning theory to ensure the uniform convergence of the best
scheduler on the sample to the optimal scheduler for the (unknown) distribution.

Our scheduling models have a similar flavor to the classical job scheduling
models [11, 8]. The problem instances can be viewed as different jobs while the
heuristics can be viewed as different machines. Since each pair of heuristic and
problem instance have some arbitrary cost, the setup resembles the parallel
unrelated machines model of job scheduling. The main conceptual difference
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lies in the optimization function, which as we will see, is not linear, and hence,
introduces new computational challenges.

Another related research topic is competing with the best expert in an online
setting (e.g., [3]). In that setting one competes with the best single expert, which
is in our case the best single heuristic. One should note that the performance of
the best single heuristic can be significantly inferior even with respect to a round
robin task switching (or equal weight resource sharing) schedule. This is since
each heuristic might have a problem instance on which it performs very poorly.
We note that both of our scheduling models do compare, implicitly, to single
best heuristic (by simply assigning all the weight to one heuristic). However, we
would like to stress that our scheduling models encompass a much wider class
of schedulers, which is especially beneficial for cases in which problem instances
have significantly different processing costs by various heuristics.

The rest of this paper is organized as follows. Section 2 introduces the model
and the two scheduling schemes. The algorithm for the resource sharing schedul-
ing problem appears in Section 3 in which we also state the hardness of approx-
imation result. Section 4 introduces and discusses the probabilistic setup. We
conclude with some empirical results in Section 5. Due to space limitations the
proofs are deferred to the full version of the paper.

2 Model

We consider computing solutions to a set J of n problem instances using k
different heuristics hj , for j ∈ [1, k]. The cost (e.g., time) of solving the prob-
lem instance xi using heuristic hj is τi,j , therefore, the input to the problem is
modelled by a processing cost matrix T = [τi,j ] ∈ (R+)n×k.

The resource sharing model encapsulates a scenario in which we execute all
the heuristics concurrently, while devoting to each heuristic a fixed fraction of
the resources. A resource sharing scheduler has a vector of shares s ∈ -k, where
-k = {(s1, . . . , sk) :

∑k
i=1 si = 1; si ∈ [0, 1]}. Conceptually, si is the fraction of

resources we devote to execute heuristic hi. Assume that heuristic hi has cost τi,
this implies that if we invest a total cost of c = τi/si then heuristic hi receives τi
resources and terminates with a solution. For the global cost we consider the first
heuristic that terminates, which for a given problem instance x and schedule s
we call the completing heuristic. Formally, the cost of a resource sharing schedule
s for a problem instance x with costs τ = (τ1, . . . , τk) is given by

costrs(x, s) := min
1≤j≤k

τj

sj

and the completing heuristic is arg min1≤j≤k
τj

sj
.

The cost of a resource sharing schedule s for a set of problem instances J
is
∑

x∈J costrs(x, s). The optimization task is, given a processing cost matrix
T ∈ (R+)n×k, compute a schedule s∗ of minimum cost, i.e., costrs(T , s∗) =
mins∈�k

costrs(T , s).
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The task switching model divides the resources (e.g., time) to units and at
each unit assigns all the resources to a single heuristic. (We assume here that
all the costs are also integral number of units.) A task switching scheduler for k
heuristics is a function W (t) : N �→ [1, k]. The cost of a task switching scheduler
W for a problem instance x with processing costs T = (τ1, . . . τk) is defined
recursively,

costWts (x, t) =
{

1 + costWts (T − eW (t), t + 1), ∀i, τi > 0
0, otherwise.

where  e1, . . .  ek be the standard unit vectors in Rk. In other words, we count the
total number of resource units until one of the heuristics, say hi, was executed
at least τi times and thus terminates with a solution. Again, the cost for a set
of problem instances J with processing cost matrix T is the sum of costs, i.e.,
costts(T ,W ) =

∑
x∈J costWts (x, 0).

To see the difference between the performance of the different schedulers,
consider the following processing cost matrix:

T =
(

2 10
10 1

)
.

The best single heuristic has cost 11. The optimal resource sharing model is not
the trivial (0.5, 0.5) but rather (2−

√
2,
√

2− 1) which has cost of about 5.8284.
The optimal task switching schedule has cost 4.

The following lemma relates the optimal cost of the two models,

Lemma 1. Let s be a resource sharing schedule, for any processing cost matrix
T there is a task switching schedule W such that costts(T ,W ) ≤ costrs(T , s).

We can also compare the performance of the above fixed scheduling schemes
with the optimal dynamic scheme that selects the best heuristic for each problem
instance, i.e., best(T ) =

∑n
i=1 mink≥j≥1 {τi,j}.

Theorem 2. Let s∗ = s∗(T ) (W ∗ = W ∗(T ), respectively), be an optimal re-
source sharing (task switching) scheduler for the processing cost matrix T . The
following bounds hold: (1) For any T we have costts(T ,W∗)

best(T ) ≤ costrs(T ,s∗)
best(T ) ≤ k.

(2) There is a matrix T such that costrs(T ,s∗)
best(T ) ≥ costts(T ,W∗)

best(T ) ≥ k+1
2 .

3 Resource Sharing Scheduler

In this section we present an algorithm for the resource sharing scheduling prob-
lem, whose performance is stated in the following theorem,

Theorem 3. Given a set of problem instances J and T , the related process-
ing cost matrix, an optimal resource sharing schedule can be computed in time1

O(n log n) for k = 2, and time O(nk−1) for a constant k ≥ 3.
1 We remark that our “O” notation has a constant that depends exponentially on the

number of heuristics k.
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Algorithm overview: Consider a set of problem instances J . Fix a resource
sharing schedule s, and observe that for each x ∈ J , the minimum cost for x is
attained on one of the k heuristics, i.e., the completing heuristic. The key idea
of the algorithm is to divide the space of possible resource sharing schedules
into disjoint cells with the following special property. In each such cell c, for
each problem instance x ∈ J and for any schedule s ∈ c, the same heuristic
achieves the minimum cost, i.e., for every x ∈ J the completing heuristic is the
same for every s ∈ c. This implies that we can rewrite the total cost function
for any schedule s ∈ c as costrs(T , s) = A1

s1
+ A2

s2
+ . . . + Ak

sk
, where A1, . . . ,Ak

are constants which depend only on the cell c. The main benefit is that we can
efficiently minimize such a function over s ∈ c. This suggests that an influential
complexity term would be the number of cells that we need in order to cover the
entire space of resource sharing schedules.

For the resource sharing schedules, we show that the cells are obtained from
hyperplane arrangements, for which there is a well established theory that allows
us to bound the number of cells and their complexity. In addition, it allows us
an efficient traversal of the cells.

Our arguments are organized as follows: we first introduce some basic facts
about hyperplane arrangements, which are the main theoretical tool that we use.
We then introduce a specific hyperplane arrangement we use to analyze our cost
function. Finally, we describe the algorithm that finds an optimal schedule s∗

and state its time complexity.

Hyperplane Arrangements: Hyperplane arrangements are well studied ob-
jects in computational geometry (see [4, 7, 5]). Informally, given a finite collection
H of hyperplanes in Rd, the hyperplanes in H induce a decomposition of Rd into
connected open cells. We denote the arrangement of H by A(H). We now briefly
review some definitions and basic results regarding hyperplanes arrangements.
A hyperplane H ⊂ Rd is defined by an equation of the form L(x) = b where
L : Rd → R is a linear functional and b is a constant. A hyperplane arrange-
ment A is a collection of hyperplanes in Rd. Such a collection defines cells or
regions (sometimes also called faces), namely the connected components of the
set Rd − ∪H∈AH . More formally, let H1, H2, . . .Hn be the set of hyperplane in
A. For a point p define

ui(p) =:

⎧⎨⎩+1, if p ∈ H+
i ;

0, if p ∈ Hi;
−1, if p ∈ H−

i ,

for 1 ≤ i ≤ n. The vector u(p) = (u1(p), u2(p), . . .un(p)) is called the position
vector of p. If u(p) = u(q), then we say that the points p and q are equivalent,
and the equivalence classes thus defined are called the cells of the arrangement
A. A d-dimensional cell in the arrangement is a maximal connected region of Rd

that is not intersected by any hyperplane in H . An i-dimensional cell in A(H),
for 1 ≤ i ≤ d − 1 is a maximal connected region in the intersection of a subset
of the hyperplanes in H , that is not intersected by any other hyperplane in H .
Special names are used to denote i-cells for special i values: a 0-cell is called a
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vertex, a 1-cell is an edge, (d − 1)-cell is a facet and a d-cell is called a cell. For
each (d-dimensional) cell c let fi(c) denote the number of i-dimensional cells on
the boundary of c. We refer to f(c) =

∑d−1
i=0 fi(c) as the complexity of the cell c.

The complexity of an arrangement A is defined as
∑

c∈A f(c).
The following results from [5] and [2] bound the hyperplane arrangement

complexity.

Theorem 4 ([5]). Let A be an arrangement of n hyperplanes in Rd, for a
constant d ≥ 1. Then, the number of cells is O(nd),

∑
c∈A f(c) = O(nd) and for

every cell c ∈ A we have f(c) = O(n
 d
2 �).

Representing Hyperplane Arrangements: The common data structure that
represents an arrangement is the incidence graph I(A). (We briefly describe
it and refer the interested reader to [5] for a more detailed exposition.) The
incidence graph I(A) contains a node v(c) for each i-cell of A; if two i-cells
c and c′ are incident upon each other then v(c) and v(c′) are connected by an
edge. When implemented, each node v(c) of an incidence graph has a record that
contains some auxiliary information (see [5]) among which is the coordinates of
some point p(v(c)) inside the cell c and two lists containing pointers L(v(c)) to
the sub-cells2 and to the super-cells of c. (When convenient, we will use the term
cell to represent the data structure v(c).) Note, that the size of the representation
of a cell c ∈ A, is O(f(c)). The following theorem from [5] builds the incidence
graph for a hyperplane arrangement.

Theorem 5 ([5], Theorem 7.6). Let A be an arrangement of n hyperplanes
in Rd, for a constant d ≥ 2. There is an algorithm that constructs the incidence
graph I(A) in time O(nd).

Two Heuristics: Before we describe our algorithm for the general case of k ≥ 3
heuristics, it is instructive to review the above definitions and the main steps
of our algorithm for the simple case of two heuristics. Further, this case is of
interest since it does not admit the same time complexity result we obtain later
for k ≥ 3, instead, we have an O(n log n) algorithm for this case.

Recall that for k = 2 we have a processing cost matrix T ∈ (R+)n×2,
and we seek to find a resource sharing schedule s∗ such that costrs(s∗) =
mins∈[0,1]

∑n
i=1 min( τi,1

s ,
τi,2
1−s). (Note that for k = 2 we have effectively only one

parameter for the scheduler.) We describe our algorithm in terms that would be
useful for the general case of k ≥ 3. Our algorithm iterates the high dimensional
cells of the arrangement one by one, minimizing the cost function for the cell
and its sub-cells (we slightly abuse the notation here and use sub-cells to denote
all cells of lower dimension that are on the boundary of c).

We now describe the above procedure in more detail (for the special case
of k = 2). Given a set of problem instances J and T the related processing
cost matrix, we construct a hyperplane arrangement of dimension k − 1(= 1)
2 A cell c′ is said to be a sub-cell of another cell c if the dimension of c′ is one less

then the dimension of c and c′ is contained in the boundary of c. Similarly, a cell c′

is a super-cell of c if c is a sub-cell of c′.
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consisting of n + 2 hyperplanes of dimension 0 (i.e., points). Our hyperplanes
(i.e., the points) define where the cost of two heuristics is identical. Namely, the
hyperplanes:

Hi :
τi,1
s

=
τi,2

1− s
,

for i = 1, . . .n. Additionally, we add the hyperplanes s = 0 and s = 1. The
resulting hyperplane arrangement A(T ) has two types of cells: at most n + 2
points (which are the 0-cells) that lie on the segment [0, 1] and at most n + 1
line segments (which are the 1-cells). It is easy to see that the line segments
are exactly the cells we are after. Specifically, for each schedule s inside each
such line segment or cell c, the minimal cost for each problem instance x ∈ J
is attained by the same heuristic. Our algorithm now needs to traverse the cells
and write the cost function for each cell. Computing A1 and A2 for a specific
cell directly requires to iterate through the problem instances and decide which
of the two heuristics has the minimal cost (for all schedules inside c), we can
then accumulate the relevant quantities to obtain A1 and A2 for the cell. This
procedure takes O(n) steps for each cell, and since there are O(n) cells, this gives
an O(n2) algorithm.

To improve the time complexity, observe that for schedules that are in the
left most line segment [0, a], for all problem instances the second heuristic is the
completing heuristic. In the segment [a, b], which is just to the right of [0, a],
only the problem instance corresponding to the point a changes its completing
heuristic. Thus, given the cost function for [0, a] we can use a simple update
rule and in time O(1) write the cost function for [a, b]. This method takes O(n)
steps for the first segment and only O(1) for each of the remaining segments.
To support this update scheme, we need a simple data structure that supports
a sorted traversal of the cells. This adds a factor of O(n log n) time which turns
out to be dominant in our algorithm.

Having shown how to write the cost function for each line segment, it is left
to verify that the resulting functions can be easily minimized. Direct calculation
shows that a local minimum for A

s + B
1−s is attained at s̄ =

√
A/(

√
A +

√
B).

This means that for each of the O(n) segments, we consider at most three points
as possible global minimum (s̄ and the two end points – the subcells of the
interval). The following lemma summarizes the above,

Lemma 6. Given a processing cost matrix T , an optimal resource sharing
schedule can be found in time O(n log n) for k = 2.

Hyperplane Arrangement for Resource Sharing: We now return to the
general case of a constant k ≥ 3 and show that the ideas used for k = 2 can
be applied here as well. One difference is that instead of sorting the cells we
use Theorem 5 and a special data structure that allows the cell traversal that is
required for the efficient update of the cost function.

Given the processing cost matrix T we construct a hyperplane arrangement
A(T ) consisting of

(
k
2

)
· n = O(k2 · n) hyperplanes. We first consider the set of

O(k2 ·n) functionals indexed by 1 ≤ i < j ≤ k and 1 ≤ r ≤ n. They are define by
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Li,j,r(s1, . . . , sk−1) =
si

τr,i
− sj

τr,j

Note that when j = k we interpret sk as 1 − s1 − ... − sk−1. We consider the
hyperplane Hi,j,r in Rk−1 defined by Li,j,r(x) = 0. We also consider the hyper-
planes si = 0 for 1 ≤ i ≤ k and the hyperplane s1 + ... + sk−1 = 1. Thus the
arrangement A consists of N =

(
k
2

)
n + k + 1 = O(k2n) hyperplanes in Rk−1.

The Cost Function in Each Cell: To motivate the choice of this particular
hyperplane arrangement we study the cost function on each cell c ∈ A(T ). The
key observation is that for each schedule s ∈ c, exactly one unique heuristic has
minimal cost for x ∈ J , which is true by definition of c. (If for some problem
instance xr ∈ J there are two schedules si, sj ∈ c with different completing
heuristics, then the hyperplane Li,j,r must intersect the cell.) The following
lemma formalizes this argument.

Lemma 7. In each cell c of the arrangement A(T ) the function costrs(T , s) has
the form A1

s1
+ ...+ Ak

sk
. Moreover, given a cell c, we can obtain this representation

(i.e., the constants A1, . . . Ak) in time O(kn).

To support a more efficient update of the cost functions for the cells, we define
a partition graph P(A), which we use to efficiently compute the cost functions
in the simplified form for the highest dimensional cells,

Definition 8. For I(A(T )), the incidence graph of A(T ), we define the parti-
tion graph P (A(T )) = (V, E) where V = {v(c) ∈ I(A(T )), s.t. dim(c) = k− 1}
(i.e., V has a vertex representing each highest dimensional cell in A(T )), and
an edge (u, v) ∈ E if there is a path (u,w, v) in the incidence graph and
dim(w) = k−2 (i.e., two vertices v(c), v(c′) are connected in P(A(T )) if there is
a cell of dimension k−2 that is on the boundary of c and c′ in the arrangement).
As an auxiliary information, each vertex v in the partition graph P(A(T )) points
to the corresponding vertex in I(A(T )).

Lemma 9. Given an incidence graph I(A(T )), (1) there is an algorithm that
constructs its partition graph P(A(T )) in time O(nk−1) and, (2) P(A(T )) is
connected.

Recall that for any cell Lemma 7 computes the values of A1, . . . Ak in time O(kn).
To reduce the time complexity, we note that given these values for an initial
(k − 1)-cell, along with the partition graph, it is straight forward to compute
these constants for a neighbor (k − 1)-cell in O(k) time. This implies that this
computation, for all cells, can be done in time O(k · nk−1) = O(nk−1). The idea
is that we use the partition graph to update the cost function for a neighboring
(k − 1)-cell (i.e., a highest dimensional cell). Once the constants for a (k − 1)-
cell are known, we can compute the cost function in any subcell of (k − 1)-cell
using an algebraic manipulation taking advantage of the additional hyperplane
equation that is satisfied on the boundary (the details are deferred to the full
version of this paper).
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Next, we show how to find the minimal value of the specific cost function in
a given cell,

Observation 10. Given an i-cell c and the constants A1, . . . Ad of the cost func-
tion costrs(T , s) =

∑
j Aj/sj, there is an algorithm that rejects all schedules s

inside c as possible minimal points of costrs(T , s) and works in time O(fi−1(c))
where fi−1(c) denotes the number of faces on the boundary of c.

Our algorithm visits each (k − 1) dimensional cell c (a vertex in the partition
graph) and finds the minimal value of the specific cost function inside c and on
its boundaries (which are sub-cells that are reachable from c in the incidence
graph). The correctness follows from the fact that we visit all the (k − 1)-cells,
and test each of them along with its sub-cells.

Theorem 11. There is an algorithm that finds an optimal resource sharing
schedule in time O(nk−1), for a constant k ≥ 3.

We also derive an algorithm to compute the optimal task switching schedule.
Our algorithm uses a dynamic programming like approach, and the following
theorem summarizes our result,

Theorem 12. Given a set of problem instances J and T , the related processing
cost matrix, an optimal task switching schedule can be found in time O(nk+1).

Both our algorithms are polynomial only for a constant k. For an arbitrary k we
show a hardness result. Namely, we show that finding a near optimal resource
sharing schedule is NP-hard. First we formalize the related decision problem.

Definition 13 (RS). The (decision version) of a resource sharing scheduling
problem is a pair (T , C) where T = [τi,j ] ∈ Rn×k is a processing time matrix
and C ∈ R is a goal cost. The question is whether there is a resource sharing
scheduler s ∈ -k with costrs(T , s) =

∑n
i=1 mink

j=1(
τi,j

sj
) ≤ C.

Using a reduction from 3-dimensional matching (3-DM) we show that the re-
source sharing scheduling problem is NP-hard to approximate.

Theorem 14. RS is NP-complete, and there is a constant α > 1 such that
it is hard to approximate RS to within α, i.e., to find a schedule s such that
costrs(T , s) ≤ α·costrs(T , s∗), where s∗ is the optimal resource sharing schedule.

4 Probabilistic Model

The main reason for studying a resource sharing or a task switching schedules is
the fact that we hope to be able to fix such a schedule, based on a small number
of problem instances, and expect it to behave similarly on future unseen problem
instances. A crucial point is that once a schedule was fixed, the various processing
costs of the problem instance are not needed in order to run the schedule. This
methodology can be viewed as having a learning phase (in which we determine
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the schedule) and an execution phase (where we use the schedule). For the above
methodology to work, we need that the performance in the learning phase and
execution phase is similar, something which is not always guaranteed.

In this section we extend our scheduling models and describe a probabilistic
model of generation of problem instances, this helps demonstrate the feasibility
of the above methodology. Namely, first observing a small sample of problem
instances (for each problem instance in the sample we have full information about
all its processing costs), and then, computing an optimal schedule (resource
sharing or task switching). The main contribution of this section is that we show
that if the sample size is large enough then the observed cost on the sample is
close to the expected cost on the distribution (simultaneously for all schedulers).
The results and techniques that we use in this section are in the spirit of the
classical uniform convergence results in computational learning theory (see [1]).

We first define the probabilistic model. Let X be the set of all possible problem
instance and H be the set of all heuristics. For each pair of heuristic h ∈ H and
problem instance x ∈ X let τx,h ∈ [1, B] be the cost of heuristic h on problem
instance x, where B is an upper bound on the processing cost. (Note that the
processing costs are arbitrary!)

Let Q be some fixed unknown probability measure on X . When we draw
a problem instance x ∈ X , we are given an access to an oracle that given a
heuristic h ∈ H returns τx,h. Let z = (x1, . . .xm) ∈ Xm be a sample of m
problem instances identically distributed drawn independently from Q.

Let W be the set of all possible task switching schedules for k heuristics, i.e.,
W = {W : W ∈ [1, kB] �→ [1, k]} for problem instances in X . (Note that any
problem instance in X is completed after at most kB steps.)

Slightly abusing our previous notation, let costts(Q,W ) = Ex∼Q [costts(W,x)]
be the expected processing cost of W under the distribution Q. Similarly, let
costts(z,W ) = 1

m

∑m
i=1 costts(W,xi) be the average cost of schedule W on the

set of problem instances z. Finally, denote by W ∗ = argminW costts(Q,W ) the
optimal schedule with respect to the probability distribution Q and by Ŵ ∗(z) =
argminW costts(z,W ) the optimal task switching schedule on the set of problem
instances z. Our main result is that with high probability, simultaneously for
all schedules, the error by estimating the cost of a schedule on the sample is at
most ε.

Theorem 15. Let Q be a fixed distribution over X and ε, δ > 0 be fixed pa-
rameters. There exists a constant m0(ε, δ) = O(k3B3

ε2 log(k/δ)), such that for
any sample z of size m ≥ m0(ε, δ), with probability at least 1 − δ we have,
|costts(z,W )− costts(Q,W )| ≤ ε, for all W ∈ W.

An immediate implication of Theorem 15 is that computing an optimal task
switching for a sample results in a near optimal task switching schedule. Note
that our result has the accuracy (denoted by ε) converging to zero at rate of
O( 1√

m
), as in the classical convergence bounds in computational learning theory

[1]. We also show a similar result for the case of resource sharing scheduling,
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Theorem 16. For any fixed probability distribution Q on X , any ε, δ ∈ (0, 1),
there is a constant m0 = Ω̃(k2B2

ε2 ln 1
δ ) 3 such that with probability at least 1−δ,

for any sample z of size m > m0(ε, δ) we have, |costrs(z, s)− costrs(Q, s)| ≤ ε,
for every resource sharing schedule s.

5 Empirical Results

The original motivation for this line of research was related to scheduling multiple
SAT heuristics and improving over the performance of the best single heuristic.
In the experiment design here we considered only two heuristics and tested on
real verification data the performance of the optimal resource sharing sched-
ule. Even in this simple case one can see the potential for improvements using
our methodology. We note that these results are not obtained using the sam-
pling probabilistic algorithm but instead we calculate the exact optimal resource
sharing scheduler to emphasize the performance boost.

As input to our experiment we used real data that was generated to test
the performance of several SAT solvers. Each data set contains several hundred
problem instances that were generated for property testing of hardware circuits
composed of various adders and multipliers (The data sets contain real SAT ver-
ification problems provided with the curtsey of IBMR© research lab). In addition
to the different type of circuits, each data sets is also different in the size of the
problems (i.e. the number of variables) they contain. Since all these SAT solvers
are DPLL based, we used the number of branch actions as the performance
measure of a SAT solver on a problem instance (this measure has a very high
correlation with real computation time and has the benefit of being machine
independent).

Table 1. Resource Sharing vs Best Heuristics on SAT instances

Data Set instances #Variables Best Heu. 2nd Best RS Ratio

ADD 441 40,000 287,579,911 740,846,088 286,561,199 0.99
MADD 162 40,000 4,414,139,866 8,401,158,224 2,981,405,433 0.67
ADDI 281 1,500 1,178,621 1,178,621 1,178,621 1.00
MULI 265 < 5,000 541,765 541,765 541,765 1.00

To obtain these empirical results we picked the two best heuristics for each
data set and computed the optimal resource sharing scheduler, we then compare
its performance to these two best heuristics. Table 1 summarizes the performance
of the optimal resource sharing compared to the top two heuristics. Clearly, the
resource sharing algorithm is never worse than the best heuristic. In some cases it
is significantly better (for the MADD set, the optimal resource sharing schedule
has a cost of only 67% of the best heuristic, a very significant improvement).
For the two small sets, the optimal resource sharing schedule is simply the best

3 We use the notation Ω̃(f) = Ω(f logc f), for some constant c > 0.



Combining Multiple Heuristics 253

heuristic (which explains why the ratio is precisely 1), for the two larger data
sets the improvements are significant.
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Abstract. Given the range space (P,R), where P is a set of n points in IR2

and R is the family of subsets of P induced by all axis-parallel rectangles, the
conflict-free coloring problem asks for a coloring of P with the minimum number
of colors such that (P,R) is conflict-free. We study the following question: Given
P , is it possible to add a small set of points Q such that (P ∪ Q,R) can be
colored with fewer colors than (P,R)? Our main result is the following: given
P , and any ε ≥ 0, one can always add a set Q of O(n1−ε) points such that

P ∪ Q can be conflict-free colored using Õ(n
3
8 (1+ε))1 colors. Moreover, the

set Q and the conflict-free coloring can be computed in polynomial time, with
high probability. Our result is obtained by introducing a general probabilistic re-
coloring technique, which we call quasi-conflict-free coloring, and which may be
of independent interest. A further application of this technique is also given.

1 Introduction

A set of points P in IR2, together with a set R of ranges (say, the set of all discs or
rectangles in the plane) is called a range space (P,R). For a given range space (P,R),
the goal is to assign a color to each point p ∈ P such that for any range R ∈ R with
R ∩ P �= 0, the set R ∩ P contains a point of unique color. Call such a coloring of the
points P a conflict-free coloring of (P,R). The problem then is to assign a conflict-free
coloring to the range space (P,R) with the minimum number of colors.

The study of the above problem was initiated in [ELRS03, Smo03], motivated by
the problem of frequency-assignment in cellular networks. The work in [ELRS03] pre-
sented a general framework for computing a conflict-free coloring for shrinkable range
spaces. In particular, for the case where the ranges are discs in the plane, they present
a polynomial-time coloring algorithm that uses O(log n) colors for a conflict-free col-
oring. They also present an algorithm that conflict-free colors the set of points P when
the ranges are scaled translates of a compact convex region in the plane. This result was
then extended in [HS05] by considering the case where the ranges are rectangles in the
plane. This seems harder than the disc case, and the work in [HS05] presented a simple
algorithm that uses O(

√
n) 2 colors for a conflict-free coloring. They also show that

for the case of random points in a unit square, O(log4 n) colors suffice for rectangle
ranges. Finally, they show that if the points lie on an exact uniform

√
n×

√
n grid, then

also O(log n) colors are sufficient. This result very strongly uses the degeneracy of the

1 Ignoring poly-logarithmic factors.
2 Ignoring poly-logarithmic improvements [PT03].

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 254–263, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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grid (i.e.,
√
n points lie on each grid line), and it is not known what is the minimum

number of colors needed if each point is perturbed within a small distance of its original
location.

In this paper, we study the following question: Given P , is it possible to add a small
set of points Q such that (P ∪ Q,R) can be colored with fewer colors than (P,R)?
It is instructive to look at the one-dimensional case as an example. Here we are given
n points in IR, and would like to color them such that any interval contains a point of
unique color. It is not hard to see that the geometric location of the points is irrelevant –
any set of n such points would require the same number of colors. Hence, adding points
will only increase the total number of colors required.

Does a similar situation hold in higher dimensions? For example, given n points in
IR2, and where the ranges are discs, is it possible to add f(n) points such that the total
number of colors for a conflict-free coloring is at most o(log(n+ f(n))) (as mentioned
earlier, for disc ranges, it is always possible to conflict-free color usingO(log n) colors).
The result of Pach and Toth [PT03] answers the question negatively: any set of n points
need Ω(log n) colors for a conflict-free coloring.

A more interesting case is that of axis-parallel rectangle ranges, where the current
best bounds are much worse than for the disc case: Õ(n1/2) colors for n points. We
prove here that by adding a small (sub-linear, in fact) number of points, the total num-
ber of colors can be reduced substantially. We now state our results more precisely.

Our results. Let P be a set of n points in the plane, and (P,R) the axis-parallel rectan-
gle range space over P . Our main theorem is the following, stating that one can always
decrease the number of colors needed by adding a small number of new points.

Theorem 1. Given a set P of n points in IR2, and any ε ≥ 0, it is always possible
to add a set Q of O(n1−ε) points such that P ∪ Q can be conflict-free colored us-
ing Õ(n

3
8 (1+ε)) colors. Furthermore, the set Q and the conflict-free coloring can be

computed in polynomial time with high probability.

We prove the above theorem by using a probabilistic re-coloring technique that can
be used to get a coloring with weaker properties, which we call a quasi-conflict-free
coloring. As another application of quasi-conflict-free colorings, we show that points
that are “regularly placed” can be colored using fewer colors than for the general case.
More precisely, if one can partition P by a set of vertical and horizontal lines such that
each cell contains at least one point (i.e., a non-uniform grid), then one can color P
using few colors:

Theorem 2. Given any
√
n ×

√
n grid G such that each cell contains one point of

P , there exists a conflict-free coloring of P using O(n3/8+ε + 28/3ε) colors, for any
constant ε > 0. Furthermore, this coloring can be computed in expected time O(n5/4).

Outline. We start by definitions and briefly describing the framework for conflict-free
coloring proposed in [ELRS03] in Section 2. Section 3 describes our quasi-conflict-
free coloring technique. We then prove, using quasi-conflict-free colorings, our main
Theorem 1 in Section 4, and Theorem 2 in Section 5.
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2 Preliminaries

Definitions. Let P = {p1, . . . , pn} be a set of n points in the plane, and (P,R) any
shrinkable range space over P . Define the conflict-free graph (with vertex set V and
edge set E) of the range space (P,R) as follows: each vertex vi ∈ V corresponds to
the point pi ∈ P , and (vi, vj) ∈ E iff there exists a range T ∈ R such that T contains
both pi and pj and no other point of P . Call a range T ∈ R conflict-free if it contains a
point of unique color.

Let G be a
√

r ×√
r (non-uniform) grid consisting of r cells. Let P (G) denote the

set of r points when each grid cell contains exactly one such point, and where the point
pij ∈ P lies in the i-th row and j-th column of G. Let Ci ⊆ P (respectively, Ri ⊆ P )
denote the sequence of

√
r points lying in the i-th column (respectively, i-th row) of the

grid. Namely, Ci = 〈p1i, p2i, . . . , p√ri〉, and Ri = 〈pi1, pi1, . . . , pi
√

r〉. Note that Ci

and Ri are ordered sequences.
Observe that for axis-parallel rectangle ranges, if we perturb the points such that the

sorted order of the points in both the x and y-coordinates is unchanged, then the conflict-
free graph would also be unchanged. Hence, for the general case, one can assume that
the points lie at the vertices of an n× n integer grid and no two points have the same x
or y coordinates.

A general framework. In [ELRS03], a general framework for computing conflict-free
colorings of (P,R) is presented, as follows. Iteratively, compute a large independent
set, say I1, in the conflict-free graph of (P,R) and color all the points in I1 with the
same color, say c1. Now repeat the above procedure for the range (P \ I1,R), coloring
the next independent set with color c2, and so forth. It is shown in [ELRS03] that firstly,
for certain range spaces, discs for example, one can guarantee an independent set of size
linear in the number of points. Therefore, for disc ranges, the above procedure finishes
after at most a logarithmic number of steps, and hence the number of colors used are
logarithmic. Second, the above coloring procedure yields a conflict-free coloring.

The above framework therefore reduces the conflict-free coloring problem to one of
showing large independent sets in certain graphs. This can then be applied to computing
conflict-free coloring for other, more general range spaces. In [HS05], a conflict-free
coloring of rectangle ranges using Õ(n1/2) colors is presented. The underlying lemma
used to derive this result is the following.

Lemma 1 (Erdős-Szkeres Theorem). Given any sequence S of n numbers, there ex-
ists a monotone subsequence of S of size at least

√
n. Furthermore, one can partition

S into O(
√
n) monotone subsequences in time O(n3/2 logn).

Now take the set of points P , and sort them by their increasing x-coordinates. Take the
corresponding y-coordinates of points in this sequence as the sequence S, and compute
the largest monotone subsequence. It is easy to see that the points corresponding to this
subsequence form a monotone sequence in both x (because of the initial sorting) and y
(monotone subsequence). Now, picking every other point in this sequence forms a set
of
√
n/2 points which are independent in the conflict-free graph. Iteratively repeating

this gives the above-mentioned result.
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3 Quasi-conflict Free Colorings

Given a set P of n points in IR2 and a parameter k, denote by Gk a n
k ×

n
k grid such

that every row and column of Gk has exactly k points of P . Note that each cell of Gk

need not contain any point; see Figure 1(a).
Given P and k, we call a coloring of P quasi-conflict-free with respect to k, if ev-

ery rectangle which contains points from the same row or the same column of Gk is
conflict-free. Note that every conflict-free coloring of P is quasi-conflict-free, though
the converse might not be true. We now prove that P can be quasi-conflict-free col-
ored with fewer colors. The coloring procedure is probabilistic [MR95]: we show that
with high probability, a certain coloring is quasi-conflict-free. The existence of such a
coloring then follows.

Theorem 3. Given any point-set P and a parameter k ≥ nc for c > 0, there exists
a quasi-conflict-free coloring of Gk using Õ(k3/4) colors. This coloring can be com-
puted, with high probability, in polynomial time.

PROOF. Set r = n/k to be the number of rows and columns. We use the following
coloring procedure:

Step 1. By Lemma 1, partition the points in column j, for j = 1, . . . , r, into h = θ(
√
k)

independent sets, each of size at most
√
k. Note that by simply iteratively extracting the

largest monotone subsequence, one can get O(
√
k) independent sets, where, however,

some sets can be of size much larger than
√
k. This considerably complicates the analy-

sis later on, by forcing the consideration of large and small independent sets separately.
To avoid that (without affecting the worst-case analysis), at each iteration we only ex-
tract an independent set of size θ(

√
k), forcing a decomposition into θ(

√
k) independent

sets, each of size θ(
√
k).

Step 2. Pick, independently for each column j, j = 1, . . . , r, πj ∈ Sh to be a random
permutation. Equivalently, we can think of πj as an assignment of h distinct colors to
the independent sets of column j (all columns share the same set of h colors). From
here on, it is assumed that assigning a color to a given set of points means assigning the
same color to all points in the set. Thus πj(S) is the color assigned to set S and πj(p)
is the color assigned to the independent set containing point p. For l = 1 . . . h, let Sl

j be
the set of points in column j with the color l (i.e., belonging to the same independent
set).

Let X1, . . . ,Xh be a family of h pairwise-distinct sets of colors. We shall recolor the
points of Gk using these sets of colors, such that the final coloring is quasi-conflict free:
we assign colors from Xl to points which were colored l above.

Step 3. Fix a row i ∈ [r], and a color � ∈ [h]. Let Al
i be the set of points with color �,

taken from all the cells of row i, i.e.,

Al
i =

r⋃
j=1

Sl
j ∩Ri

We recolor the set of points Al
i using colors fromX, such that any rectangle containing

points from this set is conflict-free. The number of colors needed for this step is, from
Lemma 1,



258 K. Elbassioni and N.H. Mustafa

Δ
def=

h∑
=1

max{
√
|A

i | : i = 1, . . . , r}. (1)

Now, the theorem follows from the following two lemmas.

Lemma 2. The coloring procedure described above is quasi-conflict-free.

PROOF. Take any rectangle T that lies completely inside a row or a column of Gk:

– The column case. If T contains only points belonging to a single column Cj of
Gk, then the fact that the coloring of Step 1 was conflict-free within each column
implies that T contains a point p ∈ Cj such that πj(p) �= πj(p′) for all p′ �= p
inside T . But then p maintains a unique color inside T also after recoloring in Step
2, since points with different πj values are colored using different sets of colors.

– The row case. Now assume that T contains only points belonging to a single row i
of Gk. If there is an � ∈ [h] such that T ∩A

i �= ∅, then by the conflict-free coloring
of A

i in Step 3 above, and the fact that X is distinct from all other colors used for
row i, we know that there exists a point of Al

i inside T having a unique color.

Lemma 3. With probability 1− o(1), the procedure uses Õ(k3/4) colors.

PROOF. Fix i ∈ [r] and � ∈ [h]. Define t = k/h to be the size of the largest independent
set in any column (as defined in Step 1.). We now upper-bound Δ by estimating the
maximum size of the union of sets of a fixed color � in row i. The sizes of these sets
vary from 1, . . . , t, so we first partition A

i into approximately same-sized sets, and
estimate each separately as follows.

For m = 1, 2, . . . , log t, let

Am
i,j = ∪h

=1{S : S = Cj ∩A
i , 2m−1 ≤ |S| ≤ 2m}

be the family of sets in cell ij with size in the interval [2m−1, 2m]. Note that

r∑
j=1

|Am
i,j | ≤

k

2m−1
, (2)

since the total number of points in row i is at most k, and each set in Am
i,j has at least

2m−1 points.
Let Y m,

i,j be the indicator random variable that takes value 1 if and only if there

exists a set S ∈ Am
i,j with πj(S) = �. Let Y m,

i =
∑r

j=1 Y m,
i,j . Then,

E[Y m,
i,j ] = Pr[Y m,

i,j = 1] =
|Am

i,j |
(

h−1
|Am

i,j |−1

)
(|Am

i,j | − 1)!(
h

|Am
i,j |
)
|Am

i,j |!
=
|Am

i,j |
h

E[Y m,
i ] =

r∑
j=1

|Am
i,j |
h

≤ k

h2m−1
=

t

2m−1
,

where the last inequality follows from (2).
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Note that the variable Y m,
i is the sum of independent Bernoulli trials, and thus

applying the Chernoff bound3, we get

Pr[Y m,
i >

t log k
2m−1

] ≤ e
− t log k

4·2m−1 ln t log k

E[Y m,�
i

]·2m−1
. (3)

Using E[Y i,
m ] ≤ t/2m−1 and 2m ≤ t, we deduce from (3) that

Pr[Y m,
i >

t log k
2m−1

] ≤ (log k)−(log k)/2.

Thus, the probability that there exist i, m, and � such that Y m,
i > t log k/2m−1 is at

most rh(log t)(log k)−(log k)/2 = o(1). Therefore with probability 1 − o(1), Y m,
i ≤

t log k/2m−1 for all i, �, and m. In particular, with high probability,

|A
i | ≤

log t∑
m=1

Y m,
i · 2m ≤ 2t log k log t.

Combining this with (1), we get Δ ≤ h
√

2t log k log t =
√

2hk log k log t = Õ(k3/4),
as desired.

4 Conflict-Free Coloring of General Point Sets

In this section, we prove Theorem 1 which states that by adding a small number of points,
the total number of colors for a conflict-free coloring can be significantly reduced.

First note that it is quite easy to add a super-linear number of points to get better col-
orings. Indeed, by adding n2 points, one can get a conflict-free coloring using O(log n)
colors: simply partition the point set into a n × n grid, where each row and column
contains exactly one point. Add the n2 points on an exact uniform grid such that each
cell contains one point, and conflict-free color these points using O(log n) colors 4.

We now prove our main theorem.

Proof of Theorem 1. Let k be an integer, and set r = n
k . We start by putting the set of

points P into an r × r grid G, in which each row and each column contains exactly k
points. See Figure 1(a) for an illustration. We let Q be a set of r2 points organized in a
uniform grid G′, such that every cell of G contains a point of G′ in its interior. Next we
partition G into 4 grids G0,0, G0,1, G1,0 and G1,1, where Gi,j consists of cells lying in
even rows (resp. columns) if i (resp. j) is 0, and odd rows (resp. columns) if i (resp. j)
is 1. Finally, we color these grids by 5 pairwise-disjoint sets of colors, such that Q(G′)
is conflict-free and G0,0, . . . , G1,1 are quasi-conflict-free.

3 In particular, the following version [MR95]: Pr[X ≥ (1 + δ)μ] ≤ e−(1+δ) ln(1+δ)μ/4, for
δ > 1 and μ = E[X].

4 In fact, as pointed out by an anonymous referee, it follows from [HS05] that one can add a set
Q of O(n log n) points such that P ∪Q can be colored using O(log2 n) colors: project all the
points onto the vertical bisector in the x-ordering, color the projected points using O(log n)
colors, and recurse on the two sides.
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(b)(a)

Fig. 1. (a) The grid Gk , k = 6. The solid points are part of the input P , while the empty ones are
the newly added ones, Q (that lie on a uniform grid). (b) Partitioning the grid into k2 grids; here
k = 3. The points in these grids will be colored with distinct sets of colors (indicated by the cell
colors).

Clearly the resulting coloring of P ∪Q is conflict-free: any rectangle spanning more
than two rows and two columns of G must contain a point of Q. Otherwise it contains
points from a single row or single column of one of Gi,j , which are quasi-conflict-free
colored.

Since Q lies on the uniform grid G′, the number of colors needed for G′ is O(log r)
[HS05]. Furthermore, by Theorem 3, the number of colors needed for the other four
grids is Õ(k3/4). Finally, setting k = n(1+ε)/2, it follows that one can add the set Q of
n2/k2 = n1−ε points to P to get a conflict-free coloring of P ∪ Q using Õ(k3/4) =
Õ(n

3
8 (1+ε)) colors.

Remark: The set Q of points we add lies on an exact uniform grid. This can be relaxed
by instead placing points anywhere inside the cells of Gk, and using Theorem 2 to
compute the conflict-free coloring of Q. This allows one greater freedom to place the
new points, although the bounds become correspondingly worse.

5 Conflict-Free Colorings of Points in a Grid

We are given a set P of n points and a
√
n×√n grid G such that each cell of G contains

exactly one point of P . We now first show that Theorem 3 can be used, together with
shifted dissection, to obtain a conflict-free coloring of P (G) which uses fewer colors
than the general case. We also observe that this case is not much easier than the general
case, i.e., coloring a grid with fewer than O(n1/4) colors would imply that the general
case can be colored with fewer than O(n1/2) colors.
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Given G and an integer k ≤ √
n, we can partition G into a set of k2 grids in a

natural way (see Figure 1(b)): For x = 0, 1, . . . , k − 1 and y = 0, 1, . . . , k − 1, grid
Gx,y consists of all the points pij of G such that i mod k = x and j mod k = y,
namely,

P (Gx,y) = {px+ik,y+jk ∈ P (G) | i, j ∈ Z : 0 ≤ x + ik, y + jk <
√
n}.

Now we color the points of G as follows. Let r = n
k2 . Each of the k2 different grids

(of size
√
n/k ×

√
n/k) will be colored with a different set of colors. One grid, say

G0,0 is recursively conflict-free colored. For the other k2 − 1 grids, we use Theorem 3
to get a quasi-conflict-free coloring of the points of each grid using O(r3/8) colors.

Lemma 4. The coloring of P (G) described above is conflict-free.

PROOF. Let T be a rectangle in the plane containing at least one point of P (G). Con-
sider the following two cases:

First, if T contains only points from at most k − 1 rows of G, then let R be any row
of G such that R∩T is non-empty. Take any grid Gx,y such that P (Gx,y)∩R∩T �= ∅.
Then T is a rectangle containing points belonging to only one row of Gx,y (since T
spans less than k − 1 rows), and consequently a point with a unique color exists inside
T , since (i) the grid Gx,y is quasi-conflict-free colored, and (ii) the points belonging to
all other grids are colored with a different set of colors than the one used for Gx,y. The
case when T contains points from at most k − 1 columns of G is similar.

Second, if T is a large rectangle, i.e., contains points from at least k rows and at least
k columns of G, then T must contain a point from G0,0. By the conflict-free coloring
of G0,0 we know that T ∩P (G0,0) contains a point with a unique color. The same point
has a unique color among all other points in T ∩ P (G) since, again, the different grids
are colored with different sets of colors.

Proof of Theorem 2. Using the above coloring scheme, the number of colors needed is
at most

f(n) = min
1≤k≤

√
n

{
k2
( n

k2

)3/8

+ f(
n

k2
)
}
.

We prove by induction that

f(n) ≤ n3/8+ε + 28/3ε

The base case is when the number of points is small, more precisely, when n ≤ 216/3ε.
Using Lemma 1, one can color them with at most

√
n ≤ 28/3ε colors. When n ≥ 216/3ε,

then by setting k2 = nε/(1+ε), and applying the inductive hypothesis, we have
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f(n) ≤ k2
( n

k2

)3/8

+ (
n

k2
)3/8+ε + 28/3ε

= (nε/(1+ε))(n1/(1+ε))3/8 + (n1/(1+ε))3/8+ε + 28/3ε

= 2(n1/(1+ε))3/8+ε + 28/3ε

= (28/(3+8ε)n1/(1+ε))3/8+ε + 28/3ε ≤ (28/3n1/(1+ε))3/8+ε + 28/3ε

≤ (nε/(1+ε)n1/(1+ε))3/8+ε + 28/3ε = n3/8+ε + 28/3ε

where the last inequality follows from the assumption that n ≥ 216/3ε.

Remark 1: One can also consider computing an independent set of the points in a grid.
In fact, using similar ideas, one can show the existence of an independent set of size
Ω(n5/8). However, this does not immediately yield a conflict-free coloring of P (G)
using O(n3/8) colors. This is because, once we extract an independent set of points P ′

from P (G) of size Ω(n5/8), the remaining set P (G) \P ′ is no longer a grid. However,
we have seen above, within an arbitrarily small additive constant in the exponent, such
a coloring can indeed be achieved.

Remark 2: Having partitioned the grid G into k2 grids, we need not color all these
grids with distinct sets of colors. In fact, we can assign only O(k) sets of colors to the
different grids such that the whole grid G can be conflict-free colored.

Finally, observe that this grid case is not much easier than the general case.

Observation 1. If there always exists an independent set of size at least nc for a point
set P (G) lying on a

√
n ×

√
n grid, then, for any general set of points, there exists an

independent set of size at least n2c−1.

PROOF. Assume otherwise. Then there exists a general point set Q of size
√
n whose

maximum independent set has size at most nc−1/2. We construct P (G) of size n by
putting

√
n copies of Q in each column, i.e., set each Ci to be a (translated copy)

of Q. By our earlier observation, this can be done since we can always move the y-
coordinates of each point in Q to lie in a different row. The maximum independent set
of this new point set can contain at most nc−1/2 points from each column, and therefore
has maximum independent set of size less than nc, a contradiction.

In particular, if one could show the existence of a linear sized independent set for the
grid case, that would imply a linear sized independent set for the general case, for which
the current best bound is roughly Õ(n1/2).

Finally, we have used the algorithm for conflict-free coloring general pointsets as
a black-box to get the decomposition into a small number of independent sets (in the
conflict-free graph). Therefore, any improved bounds on the general problem imply an
improvement in our bounds.

Acknowledgements. We would like to thank Sathish Govindarajan for many helpful
discussions, and two anonymous reviewers for useful suggestions that improved the
content and presentation of this paper.
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Abstract. An edge-unfolding of a polyhedron is produced by cutting
along edges and flattening the faces to a net, a connected planar piece
with no overlaps. A grid unfolding allows additional cuts along grid edges
induced by coordinate planes passing through every vertex. A vertex-
unfolding permits faces in the net to be connected at single vertices, not
necessarily along edges. We show that any orthogonal polyhedra of genus
zero has a grid vertex-unfolding. (There are orthogonal polyhedra that
cannot be vertex-unfolded, so some type of “gridding” of the faces is nec-
essary.) For any orthogonal polyhedron P with n vertices, we describe
an algorithm that vertex-unfolds P in O(n2) time. Enroute to explain-
ing this algorithm, we present a simpler vertex-unfolding algorithm that
requires a 3 × 1 refinement of the vertex grid.

1 Introduction

Two unfolding problems have remained unsolved for many years [DO05]: (1) Can
every convex polyhedron be edge-unfolded? (2) Can every polyhedron be un-
folded? An unfolding of a 3D object is an isometric mapping of its surface to a
single, connected planar piece, the “net” for the object, that avoids overlap. An
edge-unfolding achieves the unfolding by cutting edges of a polyhedron, whereas
a general unfolding places no restriction on the cuts.

It is known that some nonconvex polyhedra cannot be unfolded without over-
lap with cuts along edges. However, no example is known of a nonconvex polyhe-
dron that cannot be unfolded with unrestricted cuts. Advances on these difficult
problems have been made by specializing the class of polyhedra, or easing the
stringency of the unfolding criteria. On one hand, it was established in [BDD+98]
that certain subclasses of orthogonal polyhedra—those whose faces meet at an-
gles that are multiples of 90◦—have an unfolding. In particular, the class of
orthostacks, stacks of extruded orthogonal polygons, was proven to have an un-
folding (but not an edge-unfolding). On the other hand, loosening the criteria
of what constitutes a net to permit connection through points/vertices, the so-
called vertex-unfoldings, led to an algorithm to vertex-unfold any triangulated
manifold [DEE+03].

A second loosening of the criteria is the notion of grid unfoldings, which
are especially natural for orthogonal polyhedra. A grid unfolding adds edges

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 264–276, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Grid Vertex-Unfolding Orthogonal Polyhedra 265

to the surface by intersecting the polyhedron with planes parallel to Cartesian
coordinate planes through every vertex. It was recently established that any
orthostack may be grid vertex-unfolded [DIL04]. For orthogonal polyhedra, a
grid unfolding is a natural median between edge-unfoldings and unrestricted
unfoldings.

Our main result is that any orthogonal polyhedron, without shape restriction
except that its surface be homeomorphic to a sphere, has a grid vertex-unfolding.
We present an algorithm that grid vertex-unfolds any orthogonal polyhedron
with n vertices in O(n2) time. We also present, along the way, a simpler algorithm
for 3 × 1 refinement unfolding, a weakening of grid unfolding that we define
below. We believe that the techniques in our algorithms can be further exploited
to show that all orthogonal polyhedra can be grid edge-unfolded.

2 Definitions

A k1× k2 refinement of a surface [DO04] partitions each face into a k1× k2 grid
of faces. We will consider refinements of grid unfoldings, with the convention
that a 1× 1 refinement is an unrefined grid unfolding.

Following the physical model of cutting out the net from a sheet of paper, we
permit cuts representing edge overlap, where the boundary touches but no inte-
rior points overlap. We also insist as part of the definition of a vertex-unfolding,
again keeping in spirit with the physical model, that the unfolding “path” never
self-crosses on the surface in the following sense. If (A, B, C,D) are four faces
incident in that cyclic order to a common vertex v, then the net does not include
both the connections AvC and BvD.1

We use the following notation to describe the six type of faces of an orthogonal
polyhedron, depending on the direction in which the outward normal points:
front: −y; back: +y; left: −x; right: +x; bottom: −z; top: +z. We take the z-axis
to define the vertical direction; vertical faces are parallel to the xz-plane. We
distinguish between an original vertex of the polyhedron, which we call a corner
vertex or just a vertex, and a gridpoint, a vertex of the grid (might be an original
vertex). A gridedge is an edge segment with both endpoint gridpoints.

Let O be a solid orthogonal polyhedron with the surface homeomorphic to
a sphere (i.e, genus zero). Let Yi be the plane y = yi orthogonal to the y-
axis. Let Y0,Y1, . . . ,Yi, . . . be a finite sequence of parallel planes passing through
every vertex of O, with y0 < y1 < · · · < yi < · · ·. We call the portion of O
between planes Yi and Yi+1 layer i; it includes a collection of disjoint connected
components of O. We call each such component a slab. Referring to Figure 1a,
layer 0, 1 and 2 each contain one slab (C, B and A, respectively). The surface
piece that surrounds a slab is called a band (shaded in Figure 1a). Each slab
is bounded by an outer band, but it may also contain inner bands, bounding
holes. Outer bands are called protrusions and inner bands are called dents (D
in Figure 1a). For a band A, ri(A) is the closed region of Yi enclosed by A.
1 This was not part of the original definition in [DEE+03] but was achieved by those

unfoldings.
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Fig. 1. Definitions: A, B and C are protrusions; D is a dent

3 Dents vs. Protrusions

We observe that dents may be treated exactly the same as protrusions with
respect to unfolding, because unfolding of a 2-manifold to another surface (in
our case, a plane) depends only on the intrinsic geometry of the surface, and not
on how it is embedded in R3. All that matters for unfolding is the faces sharing an
edge, and the cyclic ordering of the faces incident to a vertex, i.e., our unfolding
algorithms will make local decisions and will be oblivious to the embedding in
R3. These local relationships are identical if we conceptually “pop-out” dents to
become protrusions (this popping-out is conceptual only, for it could produce
self-intersecting objects.) Henceforth, we will describe only protrusions in our
algorithms, with the understanding that nothing changes for dents.

4 Overview

The two algorithms we present share a common central structure, with the sec-
ond achieving a stronger result; both are vertex-unfoldings that use orthogonal
cuts only. We note that it is the restriction to orthogonal cuts that makes the
vertex-unfolding problem difficult: if arbitrary cuts are allowed, then a general
vertex unfolding can be obtained by simply triangulating each face and applying
the algorithm from [DEE+03].

The (3 × 1)-algorithm unfolds any genus-0 orthogonal polyhedron that has
been refined in one direction 3-fold. The bands themselves are never split (unlike
in [BDD+98]). The (1× 1)-algorithm also unfolds any genus-0 orthogonal poly-
hedron, but this time achieving a grid vertex-unfolding, i.e., without refinement.
This algorithm is more delicate, with several cases not present in the (3 × 1)-
algorithm that need careful detailing. Clearly this latter algorithm is stronger,
and we vary the detail of presentation to favor it. The overall structure of the
two algorithms is the same:

1. A band “unfolding tree” TU is constructed by shooting rays vertically from
the top of bands. The root of TU is a backmost band (of largest y-coordinate),
with ties arbitrarily broken.

2. A forward and return connecting path of vertical faces is identified, each of
which connects a parent band to a child band in TU .

3. Each band is unfolded horizontally as a unit, but interrupted when a connect-
ing path to a child is encountered. The parent band unfolding is suspended
at that point, and the child band is unfolded recursively.
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4. The vertical front and back faces of each slab are partitioned according to an
illumination model, with variations for the more complex (1× 1)-algorithm.
These vertical faces are attached below and above appropriate sections of
the band unfolding.

The final unfolding lays out all bands horizontally, with the vertical faces hang-
ing below and above the bands. Non-overlap is guaranteed by this strict two-
direction structure.

Although our result is a broadening of that in [DIL04] from orthostacks to all
orthogonal polyhedra, we found it necessary to employ techniques different from
those used in that work. The main reason is that, in an orthostack, the adjacency
structure of bands yields a path, which allows the unfolding to proceed from one
band to the next along this path, never having to return. In an orthogonal
polyhedron, the adjacency structure of bands yields a tree (cf. Figure 1b). Thus
unfolding band by band leads to a tree traversal, which requires traversing each
arc of the tree in both directions. It is this aspect which we consider our main
novelty, and which leads us to hope for application to edge-unfoldings as well.

5 (3 × 1)-Algorithm

5.1 Computing the Unfolding Tree TU

We first describe finding an unfolding tree TU that spans all bands in O. For
each i, consider in turn each pair of bands A and B separated by Yi such that
regions ri(A) and ri(B) are not disjoint. Let e be the highest horizontal gridedge
of ri(A) ∩ ri(B), breaking ties for highest arbitrarily. Since A and B are non-
disjoint, e always exists. W.l.o.g., assume e is on B (as in Figure 2a). We partition
e into three equal segments, and define the pivot point xb to be the 1

3 -point of e
(or, in circumstances to be explained below, the 2

3 -point.) These pivot points are
base points of the connecting rays, which determine the unfolding tree TU (refer
to Figure 2b). Note that if e belongs to both A and B, then the ray connecting
A and B degenerates to a point. To either side of a connecting ray we have two
connecting paths of vertical faces, the forward and return path. In Figure 2a,
these connecting paths are the shaded strips on the front face of A.

5.2 Unfolding Bands

Starting from a backmost root band, each band is unfolded as a conceptual unit,
but interrupted by the connecting rays incident to it from its front and back
faces. In Fig. 2, band A is unfolded as a rectangle, but interrupted at the rays
connecting to B, B′ and C. At each such ray the parent band unfolding is
suspended, the unfolding follows the forward connecting path to the child, the
child band is recursively unfolded, then the unfolding returns along the return
connecting path back to the parent, resuming the parent band unfolding from
the point it left off.

Fig. 2 illustrates this unfolding algorithm. The cw unfolding of A, laid out
horizontal to the right, is interrupted to traverse the forward path down to B,
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Fig. 2. (a) Orthogonal polyhedron. (b) Unfolding tree TU . (c) Unfolding of bands and
front face pieces. Vertex connection through the pivots points xb, xb′ , xc, xd is shown
exaggerated for clarity.

and B is then unfolded as a rectangle (composed of its contiguous faces). The
base xb of the connecting ray is called a pivot point because the unfolding of
B is rotated 180◦ ccw about xb so that the unfolding of B is also horizontal to
the right. The unfolding of B proceeds ccw back to xb, crosses over A to unfold
B′, then a cw rotation by 180◦ around the second image of pivot x′

b orients the
return path to A so that the unfolding of A continues horizontal to the right.
Note that the unfolding of C is itself interrupted to unfold child D. Also note
that there is edge overlap in the unfolding at each of the pivot points.

The reason for the 3×1 refinement is that the upper edge e′ of the back child
band B′ has the same (x, z)-coordinates as the upper edge e of B on the front
face. In this case, the faces of band A induced by the connecting paths to B
would be “overutilized” if there were only two. Let a1, a2, a3 be the three faces
of A induced by the 3× 1 refinement of the connecting path to B, as in Fig. 2.
Then the unfolding path winds around A to a1, follows the forward connecting
path to B, returns along the return connecting path to a2, crosses over A and
unfolds B′ on the back face, with the return path now joining to a3, at which
point the unfolding of A resumes. In this case, the pivot point xb′ for B′ is the
2
3 -point of e′. Other such conflicts are resolved similarly. It is now easy to see
that the unfolding of the bands and the connecting-path faces has the general
form illustrated in Fig. 2c. The unfolding is an orthogonal polygon monotone
with respect to the horizontal.

5.3 Attaching Front and Back Faces

Finally, we “hang” front and back faces from the bands as follows. The front
face of each band A is partitioned by imagining A to illuminate downward ligh-
trays in the front face. The pieces that are illuminated are then hung vertically
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downwards from the horizontal unfolding of the A band. The portions unillumi-
nated will be attached to the obscuring bands.

In the example in Figure 2, this illumination model partitions the front face
of A into three pieces (the striped pieces from Figure 2c). These three pieces are
attached under A; the portions of the front face obscured by B but illuminated
downwards by B are hung beneath the unfolding of B (not shown in the figure),
and so on. Because the vertical illumination model produces vertical strips, and
because the strips above and below the band unfoldings are empty, there is
always room to hang the partitioned front face. Thus, any orthogonal polygon
may be vertex-unfolded with a 3× 1 refinement of the vertex grid.

Although we believe this algorithm can be improved to 2 × 1 refinement,
the complications needed to achieve this are similar to what is needed to avoid
refinement entirely, so we instead turn directly to 1× 1 refinement.

6 (1 × 1)-Algorithm

This algorithm follows the same sequence of steps as the 3 × 1 algorithm, with
each step involving more complex techniques discussed in detail in subsequent
sections:

1. Compute TU (Section 6.1)
2. Select Pivot Points (Section 6.2)
3. Select Connecting Paths (Section 6.3)
4. Recurse:

a. Unfold Bands (Section 6.4)
b. Attach Front and Back Faces (Section 6.5)

6.1 Computing the Unfolding Tree TU

Let A be a band separated by planes Yi and Yi+1 (initially the root band). We
select zero or more connecting vertical rays for A in each of Yi and Yi+1 according
to the following rules (which we describe only for Yi, as they are identical for
Yi+1). Refer to Fig. 3(a,b):

(1) For each band B that shares a gridpoint u with A, select u to be the (de-
generate) ray connecting A to B (if several candidates for u, pick any one).
Add arc (A, B) to TU .

(2) If there is a band C such that ri(A) lies interior to ri(C), do the following.
Let u be the topmost corner among the vertical leftmost (rightmost) edges
of A, provided that A unfolds cw(ccw). Shoot a vertical ray r from u upward
in Yi, terminating at the first band B it hits (it may be that B = C.) Select
r to be the ray connecting A to B, and add arc (A, B) to TU .

In either case, if A unfolds cw, B unfolds ccw and vice-versa (the root band
always unfolds cw). We then recurse on the children of A in TU .

Lemma 1. TU is a tree that spans all bands.
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6.2 Selecting Pivot Points

The pivot point xa for a band A is the gridpoint of A where the unfolding of A
starts and ends. The y-edge of A incident to xa is the first edge of A we cut to
unfold A.

The pivot point for the root band is always the front, topmost point among
the leftmost faces. For each child B of A that does not intersect A, select xb to
be the base point of the ray connecting B to A. Any other child B shares one
or more grid points with A. Our goal is to select pivot points for the children of
A such that no two pivots are incident to the same y-edge of A.

For any child B such that ri(A) intersects ri(B), define g(B) to be the set of
gridpoints shared by noncoplanar faces of A and B; these are candidate pivot
points for B. Note that g(B) always contains at least two gridpoints. At each
stage of the algorithm, define u to be the pivot point selected in the previous
stage; initially, u = xa. Let s = (u,w) be the y-edge extending from u to a point
w on the other side of A. Say that a band is pivoted if a pivot point for it has
been selected, and otherwise unpivoted. The algorithm repeats as long as there
is some unpivoted band. Each step of the algorithm assigns one child band of
A (to either side) a pivot. The goal is to avoid assigning w from the previous
iteration as a pivot, for that represents a conflict.

(1 ) If there is no child X with w ∈ g(X) (i.e., there is no conflict with w)
choose any unpivoted band B, and select u to be any gridpoint of g(B).

(2a) If there is child X with w ∈ g(X) (potential conflict) but X is already
pivoted (necessarily at a gridpoint other than w, so there is no actual
conflict), choose any unpivoted band B, and select u to be any gridpoint
of g(B).

(2b) If there is an unpivoted child B with w ∈ g(B) (potential conflict), select
u to be any vertex in g(B) other than w. Because g(B) contains two or
more points, u always exists.

Band B is pivoted at gridpoint xb = u and the next iteration of the algorithm
begins. Fig. 3(c,d) illustrates Cases (2a) and (2b).
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Fig. 3. (a) Bands B,C, D share gridpoints with A; ri(E) . . . ri(I) lie interior to ri(A).
(b) TU for the example in (a). (c) Selecting pivot points. (d) TU for the example in (c).

Lemma 2. The Pivot Selection Algorithm terminates with each child B assigned
a unique conflict-free pivot u = xb.
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6.3 Selecting Connecting Paths

Having established a pivot point for each band, we are now ready to define the
forward and return connecting paths for a child band in TU . Let B be an arbitrary
child of a band A. If B intersects A, both forward and return connection paths
for B reduce to the pivot point xb (e.g., u in Fig. 4). If B does not intersect A,
then a ray r connects xb to A (Figs. 5a and 6a). The connecting paths are the
two vertical paths separated by r comprised of the grid faces sharing an edge
with r (paths a1 and a2 in Figs. 5a and 6a). The path first encountered in the
unfolding of A is used as a forward connecting path; the other path is used as a
return connecting path.

6.4 Unfolding Bands

Let A be a band to unfold, initially the root band. The unfolding of A starts
at xa and proceeds cw or ccw around A (cw for the root band); henceforth we
assume cw w.l.o.g. In the following we describe our method to unfold every child
B of A recursively, which falls naturally into several cases.

Case 1: B intersects A. Then, whenever the unfolding of A reaches xb, we unfold
B as in Fig. 4a or 4b, depending on whether B is encountered along A after (4a)
or before (4b) xb. The unfolding uses the two band faces of A incident to xb (a0

and a1 in Fig. 4). Because the pivots of any two children that intersect A are
conflict-free, there is no competition over the use of these two faces. Note also
that the unfolding path does not self-cross. For example, the cyclic order of the
faces incident to u in Fig. 4a is (a0,Afront, b0, b1, Bback, a1), and the unfolding
path follows (a0, b0, . . . , b1, a1).

(a)

a0

a1

b0

b1a0 a1
b0

...

A

B

b1
u

u u

z

xy

(b)
uu

b1 a1
b0

...

a0

b0

A

b1

a1

B
u

a0

Fig. 4. Unfolding B; u = xb; B extends (a) cw, and (b) ccw from u along A

Case 2: B does not intersect A. This case is more complex, because it involves
conflicts over the use of the connecting paths for B; i.e, it may happen that a
connecting path for B overlaps a connecting path for another descendant of A.
We discuss these conflicts after settling some notation (cf. Figs 5a and 6a): r is
the ray connecting B to A; a1 and a2 are forward and return connecting paths
for B (one to either side of r); u1 is the endpoint of r that lies on A; and u2 is
the other endpoint of the y-edge of A incident to u1.
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Case 2a: u2 is neither incident to a connecting ray, nor is it a pivot for a child
that intersects A. This means that no other child of A competes over the use of
the two band faces of A incident to u1 (see faces a0 and a3 in Fig. 5a); so these
faces can be used in the unfolding of B.

Assume first that the forward path a1 for B does not overlap the return path
for another descendant of A. In this case, whenever the unfolding of A reaches
a1, unfold B recursively as follows. If u1 is not a corner vertex of A, unfold B as
in Fig. 5a. Otherwise, if u1 is a left corner vertex of A, unfold B as in Fig. 6a.
Otherwise, u1 must be a right corner vertex of A: unfold B as in Fig. 6b.

Assume now that the forward path a1 for B overlaps the return path for
another descendant C of A. Then C must be positioned as in Fig. 7a, since xc

must lie on a left face of C. In this case, we unfold B as soon as (or as late as,
if the unfolding of A starts at u2) the unfolding of C along the return path to
A meets the left face of B incident to xb. At that point we recursively unfold B
as in Fig. 7b, then continue the unfolding along the return path for C back to
A. Fig. 7b shows face a1 in two positions: we let a1 hang down only if the next
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Fig. 7. (a) Return path for C includes c20, c21, a1; Forward path for B is a1. (b) Un-
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Return path for B is a2; Forward path for C includes a2, c21. (e) Forward path for B
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face to unfold is a right face of a child of A (see the transition from k7 to c5 in
Fig. 8); for all other cases, use a1 in the upward position.

The return path a2 for B always goes back to A. However, if the unfolding of
a2 encounters a child C of A, recursively unfold C as described in above, then
continue along a2 back to A.

Case 2b: u2 is incident to the connecting ray for a child D that does not intersect
A. This situation creates a conflict over the use of the two band faces of A incident
to u1 and u2 (see a0 and a3 in Fig. 5a). We resolve this conflict by arbitrarily
picking either B or D to unfold first. Suppose for instance that the method picks
D to unfold first. Then, once the unfolding returns from D back to A, we proceed
to unfolding B as in Fig. 5b or 5c.

We must again consider the situation in which the return path for B overlaps
the forward path for another child C of A. This situation is illustrated in Figs. 7c
and 7d. The case depicted in Fig. 7c is similar to the one in Fig. 7a and is resolved
in the same manner. For the case depicted in Fig. 7d, notice that a2 is on both
the forward path for C and the return path for B. However, no conflict occurs
here: from a2 the unfolding continues downward along the forward path to C
and unfolds C next.

A close look at the situation illustrated in Fig. 5b suggests that, in this case,
it is also possible that the forward path for B overlaps the forward path for an-
other descendant C of A, as shown in Fig. 7e. We handle this situation slightly
differently: on the way to B, unfold the entire subband of C that extends ccw be-
tween the highest and the lowest left faces of C that align with the forward path
to B – with the understanding that, if any children of C attach to this subband,
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they are recursively unfolded when encountered. After recursively unfolding B,
resume the unfolding of C on the return path back for B. This approach is
illustrated in Fig. 7f.

Case 2c: u2 is a pivot point xd for a child D that intersects A. We resolve this
conflict by always unfolding D first as in Case 1; then unfold B as in Case 2b.

Fig. 8 shows a more complex example that emphasizes these subtle unfolding
issues. Note that the return path k1, k8, k9 for B overlaps the forward path k9

for C; and the return path k5, k6 and k7 for G overlaps the forward path for
H , which includes k7. The unfolding produced by the method described in this
section is depicted in Fig. 8(b).

6.5 Attaching Front and Back Faces

The front and back faces of a slab are “hung” from bands following the basic idea
of the illumination model discussed in Section 5.3. There are three differences,
however, caused by the employment of some front and back gridfaces for the
connecting paths, which can block illumination from the bands: (1) We illuminate
both upward and downward from each band: each x-edge illuminates the vertical
face it attaches to. (2) Some gridfaces may be obscured both above and below
by paths in connecting faces. Therefore we incorporate connecting faces into the
band for the purposes of illumination. The reason this works is that, with two
exceptions, each vertical connecting strip remains vertical in the unfolding, and
so illuminated strips can be hung safely without overlap. (3) The two exceptions
are the return connecting path a2 in Fig. 5b, and the forward connecting path
a1 in Fig. 6a. These two paths unfold “on their side”. Note, however, that the
face x below each of these paths (a face always present), is oriented vertically.
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We thus consider x to be part of the connecting path for illumination purposes,
permitting the strip below to be hung under x.

6.6 Algorithm Complexity

Because there are so few unfolding algorithms, that there is some algorithm for a
class of objects is more important than the speed of the algorithm. Nevertheless,
we offer an analysis of the complexity of our algorithm. Let n be the number
of corner vertices of the polyhedron, and N = O(n2) the number of gridpoints.
The vertex grid can be easily constructed in O(N) time, leaving a planar surface
map consisting of O(N) gridpoints, gridedges, and gridfaces. The computation of
connecting rays (Sec. 6.1) requires determining a common vertex between bands
A and B, or, if A∩B = ∅, determining whether ri(A) ⊂ ri(B) or ri(A) ⊃ ri(B).
The former can be easily read off in O(n2) from the planar map by running
through the n vertices and noting which of the O(n) bands share a vertex. The
latter can be accomplished with O(n) ray shooting queries. Each connecting ray
determines an arc of TU , with the band nesting implicit. Although an implemen-
tation would employ an efficient data structure, perhaps BSP trees [PY92], for
complexity purposes the naive O(n) query cost suffices to lead to O(n2) time to
construct TU . Selecting pivots (Sec. 6.2) takes O(n) constant-time iterations. Un-
folding bands (Sec. 6.4) involves a depth-first traversal of TU , which takes O(n)
time, and laying out the O(N) gridfaces in O(N) time. Thus, the algorithm can
be implemented to run in O(N) = O(n2) time.

7 Further Work

Extending these algorithms to arbitrary genus orthogonal polyhedra remains
an interesting open problem. Holes that extend only in the x and z directions
within a slab seem unproblematic, as they simply disconnect the slab into several
components. Holes that penetrate several slabs (i.e, extend in the y direction)
present new challenges. One idea to handle such holes is to place a virtual xz-face
midway through the hole, and treat each half-hole as a dent (protrusion).
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Abstract. We introduce the notion of the width bounded geometric sep-
arator and develop the techniques for the existence of the width bounded
separator in any d-dimensional Euclidean space. The separator is applied
in obtaining 2O(

√
n) time exact algorithms for a class of NP-complete ge-

ometric problems, whose previous algorithms take nO(
√

n) time [2,5,1].
One of those problems is the well known disk covering problem, which
seeks to determine the minimal number of fixed size disks to cover n
points on a plane [10]. They also include some NP-hard problems on
disk graphs such as the maximum independent set problem, the vertex
cover problem, and the minimum dominating set problem.

1 Introduction

The geometric separator has applications in many problems . It plays an impor-
tant role in the divide and conquer algorithms for geometric problems. Lipton
and Tarjan [18] showed the well known geometric separator for planar graphs.
They proved that every n vertices planar graph has at most

√
8n vertices whose

removal separates the graph into two disconnected parts of size at most 2
3n. Their

2
3 -separator was improved to

√
6n by Djidjev [8],

√
5n by Gazit [13],

√
4.5n by

Alon, Seymour and Thomas [6] and 1.97
√
n by Djidjev and Venkatesan [9]. Spiel-

man and Teng [25] showed a 3
4 -separator with size 1.82

√
n for planar graphs.

Separators for more general graphs were derived in (e.g.[14]). Some other forms
of the geometric separators were studied by Miller, Teng, Thurston, and Vavasis
[22,21] and Smith and Wormald [24]. For a set of points on the plane, assume
each point is covered by a regular geometric object such as circle, rectangle, etc.
If every point on the plane is covered by at most k objects, it is called k-thick.
Some O(

√
k · n) size separators and their algorithms were derived in [22,21,24].

The planar graph separators were applied in deriving some 2O(
√

n)-time algo-
rithms for certain NP-hard problems on planar graphs by Lipton, Tarjan [19],
Ravi and Hunt [23]. Those problems include computing the maximum inde-
pendence set, minimum vertex covers and three-colorings of a planar graph,
and the number of satisfying truth assignments to a planar 3CNF formula [17].
� This research is supported by Louisiana Board of Regents fund under contract num-

ber LEQSF(2004-07)-RD-A-35.
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In [24], their separators were applied in deriving nO(
√

n)-time algorithms for
some geometric problems such as the planar Traveling Salesman and Steiner
Tree problems. The separators were applied to the parameterized independent
set problem on planar graphs by Alber, Fernau and Niedermeier [3,4] and disk
graphs by Alber and Fiala [5].

We introduce the concept of width bounded separator. For a set of points
Q on the plane, an a-wide separator is the region between two parallel lines
of distance a. It partitions the set Q into two balanced subsets and its size is
measured by the number of points of Q in the strip region. Our width bounded
separator concept is geometrically natural and can achieve a much smaller con-
stant c for its size upper bound c

√
n than the previously approaches. Fu and

Wang [11] developed a method for deriving sharper upper bound separator for
grid points by controlling the distance to the separator line. They proved that
for a set of n grid points on the plane, there is a separator that has ≤ 1.129

√
n

points and has ≤ 2
3n points on each side. That method was used to obtain

the first sub-exponential time algorithm for the protein folding problem in the
HP model. This paper not only generalizes the results of [11], but also sub-
stantially improves the techniques in [11]. We would like to mention our new
technical developments in this paper. 1) In order to apply the separator to
more general geometric problems with arbitrary input points other than grid
points, we use weighted points in Euclid space and the sum of weights to mea-
sure the separator size instead of counting the number of points close to it. We
introduce the local binding method to merge some points into a nearby grid
point. This method is combined with our separator in deriving 2O(

√
n) time

exact algorithms for a class of NP-complete geometric problems, whose pre-
vious algorithms take nO(

√
n) time [2,5,1]. One of those problems is the well

known disk covering problem, which seeks to determine the minimal number
of fixed size disks to cover n points on a plane [10]. They also include some
NP-hard problems on disk graphs such as the maximum independent set prob-
lem, the vertex cover problem, and minimum dominating set problem. 2) We
will handle the case of higher dimension. We develop an area ratio method to
replace the previous angle ratio method [11] for obtaining higher dimensional
separators. 3) We develop a similar separator theorem for a set of points with
distance of at least 1 between any two of them, called 1-separated set, we es-
tablish the connection between this problem and the famous fixed size discs
packing problem. The discs packing problem in 2D was solved in the combina-
torial geometry (see [26]). The 3D case, which is the Kepler conjecture, has
a very long proof (see [16]). It is still a very elusive problem at higher di-
mensions. Our Theorem 2 shows how the separator size depends on packing
density. 4) We develop a simple polynomial time algorithm to find the width-
bounded separator for a fixed dimensional space. This is a starting point for
the algorithms finding the width bounded geometric separator, and it is enough
to obtain the 2O(

√
n) time exact algorithms for a class of NP-hard geometric

problems.
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2 Width-Bounded Separators on the d-Dimension

Throughout section 2 we assume the dimensional number d to be fixed. We will
use the following well known fact that can be easily derived from Helly theorem
(see [15,26]) to obtain our width bounded separator.

Lemma 1. For an n-element set P in d-dimensional space, there is a point q
with the property that any half-space that does not contain q, covers at most

d
d+1n elements of P . (Such a point q is called a centerpoint of P ).

Definition 1. For two points p1, p2 in the d-dimensional Euclidean space
Rd, dist(p1, p2) is the Euclidean distance between p1 and p2. For a set A ⊆ Rd,
dist(p1,A) = minq∈A dist(p1, q). In particular, if L is a hyper-plane in Rd,
dist(p, L) is the regular distance from the point p to L. For a > 0 and a set
A of points on d-dimensional space, if the distance between every two points
is at least a, the set A is called a-separated. For ε > 0 and a set of points
Q ⊆ Rd, an ε-sketch of Q is a set of points P ⊆ Rd such that each point in Q
has distance ≤ ε to some point in P . We say that P is a sketch of Q if P is
an ε-sketch of Q for some positive constant ε (ε does not depend on the size of
Q). A sketch set is usually an 1-separated set such as a set of grid points. A
weight function w : P → [0,∞) is often used to measure the point density of
Q near each point of P . A hyper-plane in Rd through a fixed point p0 ∈ Rd is
defined by the equation (p − p0) · v = 0, where v is normal vector of the plane
and “ .” is the regular inner product (u · v =

∑d
i=1 uivi for u = (u1, · · · , ud)

and v = (v1, · · · , vd)). For Q ⊆ Rd with sketch P ⊆ Rd, the width parame-
ter a > 0, and the weight function w : P → [0,∞), a (2a)-wide-separator is
determined by a hyper-plane L. The separator has two measurements for its
quality of separation: (1) balance(L,Q) = max(|Q1|,|Q2|)

|Q| , where Q1 is the set of
all points of Q on one side of L and Q2 is the set of all points of Q on the
other side of L (Note: Q1 or Q2 does not contain any point on L); and (2)
measure(L,P, a, w) =

∑
p∈P,dist(p,L)≤a w(p).

2.1 Volume, Area, Integrations and Probability

We need some integrations in order to compute volume and surface area size at
arbitrary dimensional space. Some of the materials can be found in
standard calculus books. We will treat the case of any fixed dimension. We
recommend the reader understands the cases d = 2 and 3 first. We use the stan-
dard polar transformation: xd = r cos θd−1;xd−1 = r sin θd−1 cos θd−2; · · · ;x2 =
r sin θd−1 sin θd−2 · · · sin θ2 cos θ1; and x1 = r sin θd−1 sin θd−2 · · · sin θ2 sin θ1.

It is a smooth map from [0, R]×[0, π]×· · ·×[0, π]×[0, 2π] to the d-dimensional
ball of radius R with center at the origin. The Jacobian form is

Jd(r, θd−1, · · · , θ1) =
∂(xd, xd−1, · · · , x1)
∂(r, θd−1, · · · , θ1)

=

∣∣∣∣∣∣∣∣∣
∂xd

∂r
∂xd−1

∂r · · · ∂x1
∂r

∂xd

∂θd−1

∂xd−1
∂θd−1

· · · ∂x1
∂θd−1

· · ·
∂xd

∂θ1

∂xd−1
∂θ1

· · · ∂x1
∂θ1

∣∣∣∣∣∣∣∣∣ .
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It has the recursive equation: Jd(r, θd−1, · · · , θ1) = r · (sin θd−1)d−2 · Jd−1(r,
θd−2, · · · , θ1) for d > 2, which in turn gives the explicit expression: Jd(r, θd−1, · · · ,
θ1) = rd−1 ·(sin θd−1)d−2 ·(sin θd−2)d−3 · · · (sin θ2). Let Bd(R, o) be the d- dimen-
sional ball of radius R and center o. The volume of the d-dimensional ball of ra-
dius R is Vd(R) =

∫
Bd(R,o)

1dz =
∫ R

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
|Jd(r, θd−1, · · · , θ2, θ1)|drdθd−1

· · · dθ2dθ1 = 2(d+1)/2π(d−1)/2

1·3···(d−2)·d Rd if d is odd, and 2d/2πd/2

2·4···(d−2)·dR
d, otherwise.

Let the d-dimensional ball have the center at o. We also need the integration∫
Bd(R,o)

1
dist(z,o)dz, which is equal to

∫ R

0

∫ π

0 · · ·
∫ π

0

∫ 2π

0
|Jd(r,θd−1,···,θ2,θ1)|

r drdθd−1 · · ·
dθ2dθ1 = d

(d−1)RVd(R). Thus,

∫
Bd(R,o)

1
dist(z, o)

dz =
d

(d− 1)R
Vd(R) (1)

Let Vd(r) = vd·rd, where vd is constant for fixed dimensional number d. In par-
ticular, v1 = 2, v2 = π and v3 = 4π

3 . Define Ad(h,R) = {(x1, · · · , xd)|
∑d

i=1 x
2
i ≤

R2 and 0 ≤ x1 ≤ h}, which is a horizontal cross section of d-dimensional half
ball of the radius R. The volume of Ad(h,R) in the d-dimensional space is cal-
culated by

Ud(h,R) =
∫ h

0

Vd−1(
√

R2 − x2
1) dx1 = vd−1

∫ h

0

(√
R2 − x2

1

)d−1

dx1 (2)

The surface area size of 3D ball (4πR2) is the derivative of its volume (4
3πR

3).
The boundary length of circle (2πR) is the derivative of its area size (πR2). This
fact can be extended to both a higher dimensional ball and a cross section of a
ball. The surface area size of Bd(R, o) is Wd(R) = ∂Vd(R)

∂R = d · vd · Rd−1. The
side surface of Ad(h,R) is {(x1, · · · , xd)|

∑d
i=1 x

2
i = R2 and 0 ≤ x1 ≤ h}. Its

area size is

Sd(h,R) =
∂Ud(h,R)

∂R
= (d− 1)vd−1R

∫ h

0

(√
R2 − x2

1

)d−3

dx1

When R is fixed and h is small, we have Sd(h,R) = vd−1 · (d− 1) ·Rd−2 · h+
O(h2). For a a > 0, the probability that a d-dimensional point p has the distance
≤ a to a random plane through origin will be determined. This probability at
dimension 3 was not well treated in [11].

Lemma 2. Let a be a real number ≥ 0. Let p and o be the two points on a
d-dimensional space. Then the probability that p has distance ≤ a to a ran-
dom plane through o is in [ hd·a

dist(p,o) −
c0·a2

dist2(p,o)
, hd·a

dist(p,o) + c0·a2

dist2(p,o)
], where hd =

2(d−1)vd−1
d·vd

and co are constants for a fixed d. In particular, h2 = 2
π and h3 = 1.

Proof. Without loss of generality, let o be the origin (0, · · · , 0) (notice that the
probability is invariant under translation). The point p can be moved to an
axis via rotation that does not change the probability. Let’s assume the point
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p = (x1, 0, · · · , 0), where x1 = dist(p, o). For an unit vector v = (v1, · · · , vd) with
v1 ≥ 0 in the d-dimensional space, the plane through the origin with normal
vector v is defined as u · v = 0, where · represents the regular inner product
between two vectors. The distance between p to the plane is |p · v| = x1v1. If
x1v1 ≤ a, then v1 ≤ a

x1
. The area size of {(v1, · · · , vd)|

∑d
i=1 v2

i = 1 and 0 ≤
v1 ≤ a

x1
} is Sd( a

x1
, 1). The probability that p has a distance ≤ a to a random

hyper-plane through the origin is
Sd( a

x1
,1)

1
2 ·Wd(1)

= hd · a
dist(p,o) + O( a2

dist2(p,o)
).

2.2 Width Bounded Separator

Definition 2. The diameter of a region R is supp1,p2∈R dist(p1, p2). A (b, c)-
partition of a d-dimensional space makes the space as the disjoint unions of
regions P1, P2, · · · such that each Pi, called a regular region, has the volume to
be equal to b and the diameter of each Pi is ≤ c. A (b, c)-regular point set A is a
set of points on a d-dimensional space with (b, c)-partition P1, P2, · · · such that
each Pi contains at most one point from A. For two regions A and B, if A ⊆ B
(A ∩B �= ∅), we say B contains (intersects resp.) A.

Lemma 3. Assume that P1, P2, · · · form a (b, c)-partition on a d-dimensional
space. Then (i) every d-dimensional ball of radius r intersects at most vd·(r+c)d

b

regular regions; (ii) every d-dimensional ball of radius r contains at least vd·(r−c)d

b

regular regions; (iii) every d-dimensional ball of radius (nb/vd)
1
d + c contains at

least n (b, c)-regular regions in it; and (iv) every d-dimensional ball of radius
(nb/vd)

1
d − c intersects at most n (b, c)-regular regions.

Proof. (i) If a (b, c)-regular region Pi intersects a ball C of radius r at center
o, the regular region Pi is contained by the ball C′ of radius r + c at the same
center o. As the volume of each regular region is b, the number of regular regions
contained by C′ is no more than the volume size of the ball C′ divided by b.
(ii) If a regular region Pi intersects a ball C′′ of radius r − c at center o, Pi is
contained in the ball C of radius r at the same center o. The number of those
regular regions intersecting C′′ is at least the volume size of the ball C′′ divided
by b. (iii) Apply r = ( bn

vd
)

1
d + c to (ii). (iv) Apply r = ( bn

vd
)

1
d − c to (i).

Definition 3. Let a be a non-negative real number. Let p and o be two points
in a d-dimensional space. Define P rd(a, p0, p) as the probability that the point p
has ≤ a perpendicular distance to a random hyper-plane L through the point p0.
Let L be a hyper-plane. Then define the function fa,p,o(L) = 1 if p has distance
≤ a to the hyper-plane L and L is through o; and 0 otherwise.

The expectation of function fa,p,o is E(fa,p,o) = P rd(a, o, p). Assume that P =
{p1, p2, · · · , pn} is a set of n points in Rd and each pi has weight w(pi) ≥ 0.
Define function Fa,P,o(L) =

∑
p∈P w(p)fa,p,o(L). We give an upper bound for

the expectation E(Fa,P,o) for Fa,P,o in the lemma below.
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Lemma 4. Let a be a non-negative real number, b and c be positive constants,
and δ > 0 be a small constant. Assume that P1, P2, · · · form a (b, c) partition in
Rd. Let w1 > w2 > · · · > wk > 0 be positive weights, and P = {p1, · · · , pn} be a
set of (b, c)-regular points in Rd. Let w be a mapping from P to {w1, · · · , wk} and
nj be the number of points p ∈ P with w(p) = wj. Let o (the center point) be a
fixed point in Rd. Then for a random hyper-plane passing through o, E(Fa,P,o) ≤
( d·hd·vd

(d−1)·b + δ) ·a ·
∑k

j=1 wj(rd−1
j − rd−1

j−1 )+ c2
∑k−1

j=1 wj+1 · rd−2
j +O((a+ c1)d) ·w1,

where (1) r0 = 0 and ri(i > 0) is the least radius such that Bd(ri, o) intersects
at least

∑i
j=1 nj regular regions, (2) c1 and c2 are constants for a fixed d, and

(3) hd and vd are constants as defined in section 2.1.

Proof. Assume p is a point of P and L is a random plane passing through the
center o. Let C be the ball of radius r and center o such that C covers all the
points in P . Let C′ be the ball of radius r′ = r + c and the same center o.
It is easy to see that every regular region with a point in P is inside C′. The
probability that the point p has a distance ≤ a to L is ≤ hd · a

dist(o,p) + c0·a2

dist(o,p)2

(by Lemma 2).
Let ε > 0 be a small constant which will be determined later. Select

a large constant r0 > 0 and R0 = c0·a
hd·ε + r0 such that for every point

p with dist(o, p) ≥ R0, c0·a
hd·dist(o,p)2 < ε

dist(o,p) and for every point p′ with
dist(p′, p) ≤ c, 1

dist(o,p′) ≤ 1+ε
dist(o,p) . Let P1 be the set of all points p in P

such that dist(o, p) < R0. For each point p ∈ P1, P rd(a, o, p) ≤ 1. For every
point p ∈ P − P1, P rd(a, o, p) ≤ hd · a

dist(o,p) + c0·a2

dist(o,p)2 < hd·a(1+ε)
dist(o,p) . From the

transformation E(Fa,P,o) = E(
∑n

i=1 w(pi) · fa,pi,o) =
∑n

i=1 w(pi) · E(fa,pi,o) =∑k
j=1 wj

∑
w(pi)=wj

E(fa,pi,o) =
∑k

j=1 wj

∑
w(pi)=wj

P rd(a, o, pi), we have

E(Fa,P,o) ≤ w1|P1|+
k∑

j=1

wj

∑
w(pi)=wj

hd · a · (1 + ε)
b

· 1
dist(o, pi)

· b (3)

The contribution to E(Fa,P,o) from the points in P1 is ≤ w1|P1| ≤= w1 ·
vd(R0+c)d

b = w1 ·O((a + c1)d) for some constant c1 > 0 (by Lemma 3). Next we
only consider those points from P − P1. The sum (3) is at a maximum when
dist(p, o) ≤ dist(p′, o) implies w(p) ≥ w(p′). The ball C′ is partitioned into k
ring regions such that the j-th area is between Bd(rj , o) and Bd(rj−1, o) and it is
mainly used to hold those points with weight wj . Notice that each regular region
has diameter ≤ c and holds at most one point in P . It is easy to see that all
points of {pi ∈ P |w(pi) = wj} are located between Bd(rj , o) and Bd(rj−1 − c, o)
when (3) is maximal.∑

w(pi)=wj

hd · a · (1 + ε)
b

· 1
dist(o, pi)

· b (4)

≤ hd · a · (1 + ε)2

b

∫
Bd(rj,o)−Bd(rj−1−c,o)

1
dist(o, z)

dz (5)
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=
hda(1 + ε)2

b

∫ rj

rj−1−c

∫ π

0

· · ·
∫ π

0

∫ 2π

0

Jd(r, θn−1, · · · , θ1)
r

drdθn−1 · · ·dθ1 (6)

=
hd · a · (1 + ε)2

b
· d

(d− 1)
·
(

Vd(rj)
rj

− Vd(rj−1 − c)
rj−1 − c

)
(7)

<

(
d · hd · vd

(d− 1) · b + δ

)
· a · (rd−1

j − rd−1
j−1 ) + O(rd−2

j−1 ). (8)

Note: (6) → (7) → (8) follows from (1), and selecting ε small enough.

Lemma 5. Assume a = O(n
d−2
d2 ). Let o be a point on the plane, b and c be

positive constants, and ε, δ > 0 be small constants. Assume that P1, P2, · · · form
a (b, c) partition in Rd. The weights w1 > · · · > wk > 0 satisfy k ·maxk

i=1{wi} =
O(nε). Let P be a set of n weighted (b, c)-regular points in a d-dimensional
space with w(p) ∈ {w1, · · · , wk} for each p ∈ P . Let nj be the number of points
p ∈ P with w(p) = wj for j = 1, · · · , k. Then E(Fa,P,o) ≤ (kd · (1

b )
1
d + δ) · a ·∑k

j=1 wj · n
d−1

d

j + O(n
d−2

d +ε), where kd = d·hd

d−1 · v
1
d

d . In particular, k2 = 4√
π

and

k3 = 3
2

(
4π
3

) 1
3 .

Proof. Let rj be the least radius such that the ball of radius rj intersects at least∑j
i=1 ni regular regions (j = 1, · · · , k). By Lemma 3,

(
( j

i=1 ni)b

vd

) 1
d − c ≤ rj ≤(

( j
i=1 ni)b

vd

) 1
d

+ c for j = 1, · · · , k.

rd−1
j − rd−1

j−1 ≤

⎛⎝( (
∑j

i=1 ni)b
vd

) 1
d

+ c

⎞⎠d−1

−

⎛⎝( (
∑j−1

i=1 ni)b
vd

) 1
d

− c

⎞⎠d−1

(9)

=
(

b

vd

) d−1
d

(
(

j∑
i=1

ni)
d−1

d − (
j−1∑
i=1

ni)
d−1

d

)
+ O((

j∑
i=1

ni)
d−2

d ) (10)

=
(

b

vd

) d−1
d

n
d−1

d

j + O((
j∑

i=1

ni)
d−2

d ) (11)

By Lemma 4, Lemma 5 is proven.

Definition 4. Let a1, · · · , ad > 0 be positive constants. A (a1, · · · , ad)-grid reg-
ular partition divides the d-dimensional space into disjoint union of a1×· · ·×ad

rectangular regions. A (a1, · · · , ad)-grid regular point is a corner point of a rect-
angular region. Under certain translation and rotation, each (a1, · · · , ad)-grid
regular point has coordinates (a1t1, · · · , adtd) for some integers t1, · · · , td.

Theorem 1. Let a = O(n
d−2
d2 ). Let a1, · · · , ad be positive constants and ε, δ > 0

be small constants. Let P be a set of n (a1, · · · , ad)-grid points in Rd, and Q
be another set of m points in Rd with sketch P . Let w1 > w2 · · · > wk > 0 be
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positive weights with k · maxk
i=1{wi} = O(nε), and w be a mapping from P to

{w1, · · · , wk}. Then there is a hyper-plane L such that (1) each half space has
≤ d

d+1m points from Q, and (2) for the subset A ⊆ P containing all points in P

with ≤ a distance to L has the property
∑

p∈A w(p) ≤
(
kd ·
(∏d

i=1 ai

)−1
d

+ δ

)
·

a ·
∑k

j=1 wj ·n
d−1

d
j +O(n

d−2
d +ε) for all large n, where nj = |{p ∈ P |w(p) = wj}|.

Proof. Let b =
∏d

i=1 ai, c =
√∑d

i=1 a
2
i , and the point o be the center point of

Q via Lemma 1. Apply Lemma 5.

Corollary 1. [11] Let Q be a set of n (1, 1)-grid points on the plane. Then
there is a line L such that each half plane has ≤ 2n

3 points in Q and the number
of points in Q with ≤ 1

2 distance to L is ≤ 1.129
√
n.

Proof. Let each weight be 1, k = 1, a = 1
2 and P = Q. Apply Theorem 1.

Corollary 2. Let Q be a set of n (1, 1, 1)-grid points on the 3D Euclidean space.
Then there is a plane L such that each half space has ≤ 3n

4 points in Q and the
number of points in Q with a ≤ 1

2 distance to L is ≤ 1.209n
2
3 .

Corollaries 1 and 2 are the separators for the 2D grid graphs and, respectively,
3D grid graphs. An edge connecting two neighbor grid points has a distance of
1. If two neighbor grid points are at different sides of the separator, one of them
has distance ≤ 1

2 to the separator. We have a separator for the 1-separated set.

Theorem 2. Assume that the packing density (see [26]) for the d-dimensional
congruent balls is at most Dd. Then for every 1-separated set Q on the d-
dimensional Euclidean space, there is a hyper-plane L with balance(L,Q) ≤ d

d+1

and the number of points with distance ≤ a to L is ≤ (2kd · (Dd/vd)
1
d + o(1))a ·

|Q| d−1
d .

We develop a brute force method to find the width-bounded separator. In order
to determine the position of the hyper-plane in d-dimensional space. For every
integer pair s1, s2 ≥ 0 with s1 + s2 = d, select all possible s1 points p1, · · · , ps1

from P and all possible s2 points q1, · · · , qs2 from Q. Try all the hyper-planes L
that are through q1, · · · , qs2 and tangent to Bd(a + δ, pi) (i = 1, · · · , s1). Then
select the one that satisfies the balance condition and has small sum of weights
for the points of P close to L. A more involved sub-linear time algorithm for
finding width-bounded separator was recently developed by Fu and Chen [12].

Theorem 3. Assume a = O(n
d−2
d2 ). Let a1, · · · , ad be positive constants and

δ, ε > 0 be small constants. Let P be a set of n (a1, · · · , ad)-grid points and
Q be another set of points on d-dimensional space. The weights w1 > · · · >
wk > 0 have k · maxk

i=1{wi} = o(nε). There is an O(nd+1) time algorithm
that finds a separator such that balance(L,Q) ≤ d−1

d , and measure(L,P, a, w) ≤(
kd

(a1···ad)1/d + δ
)
a
∑k

i=1 win
d−1

d
i + O(n

d−2
d +ε) for all large n, where ni = |{p ∈

P |w(p) = wi}|.
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3 Application of Width Bounded Separator

In this section, we apply our geometric separator to the well-known disk covering
problem: Given a set of points on the plane, find the minimal number of discs
with fixed radius to cover all of those points. The d-dimensional ball covering
problem is to cover n points on the d-dimensional Euclid space with minimal
number of d-dimensional ball of fixed radius.

Before proving Theorem 4, we briefly explain our method. To cover a set of
points Q on the plane, select a set P of grid points such that each point in Q
is close to at least one point in P . A grid point p is assigned the weight i if
there are 2i to 2i+1 points of Q on the 1× 1 grid square with p as the center. A
balanced separator line for Q also has a small sum of weights (O(

√
n)) for the

points of P near the line. This gives at most 2O(
√

n) ways to cover all points of
Q close to the separator line and decompose the problem into two problems Q1

and Q2 that can be covered independently. This method takes the total time of
2O(

√
n).

Theorem 4. There is a 2O(
√

n)-time exact algorithm for the disk covering prob-
lem on the 2D plane.

Proof. Assume the diameter of any disk is 1. Assume that Q is the set of n input
points on the plane. Let’s set up an (1, 1)-grid regular partition. For a grid point
p = (i, j) (i and j are integers) on the plane, define grid(p) = {(x, y)|i− 1

2 ≤ x <
i+ 1

2 , j−
1
2 < y ≤ j+ 1

2}, which is a half close and half open 1×1 square. There is
no intersection between grid(p) and grid(q) for two different grid points p and q.
Our “local binding” method is to merge the points of Q∩grid(p) to the grid point
p and assign certain weight to p to measure the Q points density in grid(p). The
function Partition(Q) divides the set Q into Q = Q(p1) ∪Q(p2) ∪ · · · ∪ Q(pm),
where pi is a grid point for i = 1, 2, · · · ,m and Q(pi) = Q ∩ grid(pi) �= ∅.

Let ni be the number of grid points pj ∈ P with gi−1 ≤ |Q(pj)| < gi, where
g is a constant > 1 (for example, g = 2). From this definition, we have

&logg n'∑
i=1

gi · ni ≤ g · n, (12)

where &x' is the least integer ≥ x. Let P = {p1, · · · , pm} be the set grid points
derived from partitioning set Q in Partition(Q). Define function w : P →
{1, 2, · · · ,

⌈
logg n

⌉
} such that w(p) = i if gi−1 ≤ |Q(p)| < gi.

Select small δ > 0 and a = 3
2 +

√
2

2 . By Theorem 3, we can get a line L on
the plane such that balance(L,Q) ≤ 2

3 and measure(L,P, a, w) ≤ (k2 + δ) · a ·
(
∑&logg n'

i=1 i · √ni). Let J(L) = {p|p ∈ P and dist(q, L) ≤ 1
2 for some q ∈ Q(p)}.

After those points of Q with distance ≤ 1
2 to the separator line L are covered,

the rest of points of Q on the different sides of L can be covered independently.
Therefore, the covering problem is solved by divide and conquer method as
described by the algorithm below.
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Algorithm
Input a set of points Q on the plane.
run Partition(Q) to get P = {p1, · · · , pm} and Q(p1), · · · , Q(pm)
find a separator line L (by Theorem 3) for P,Q with

balance(L,Q) ≤ 2
3 and measure(L,P, a, w) ≤ (k2 + δ)a

∑log n�
i=1 i

√
ni

for each covering to the points in Q with ≤ 1/2 distance to L
let Q1 ⊆ Q be the those points on the left of L and not covered
let Q2 ⊆ Q be the those points on the right of L and not covered
recursively cover Q1 and Q2

merge the solutions from Q1 and Q2

Output the solution with the minimal number of discs covering Q
End of Algorithm

For each grid area grid(pi), the number of discs containing the points in Q(pi)
is no more than the number of discs covering the 3×3 area, which needs no more

than c3 = (
⌈

3√
2

2

⌉
)2 = 25 discs. Two grid points p = (i, j) and p′ = (i′, j′) are

neighbors if max(|i− i′|, |j− j′|) ≤ 1. For each grid point p, define m(p) to be the
neighbor grid point q of p (q may be equal to p) with largest weight w(q). For a
grid point p = (i, j), the 3×3 region {(x, y)|i− 3

2 ≤ x < i+ 3
2 and j− 3

2 < y ≤ j+ 3
2}

has ≤ 9× gw(m(p)) points in Q. The number of ways to put one disc covering at
least one point in Q(p) is ≤ (9 × gw(m(p)))2 (let each disc have two points from
Q on its boundary whenever it covers at least two points). The number of ways
to arrange ≤ c3 discs to cover points in Q(p) is ≤ (9 × gw(m(p)))2c3 . The total
number of cases to cover all points with distance ≤ 1

2 to L in ∪p∈J(L)Q(p) is

≤
∏

p∈J(L)

(9 · gw(m(p)))2c3 =
∏

p∈J(L)

2(log2 9+w(m(p))·log2 g)2c3 (13)

≤
∏

p∈J(L)

22c3(log2 9+log2 g)w(m(p)) (14)

= 22c3(log2 9+log2 g) p∈J(L) w(m(p)) ≤ 22c3(log2 9+log2 g)9·measure(L,P,a,w) (15)

≤ 22c3(log2 9+log2 g)9(k2·a+δ)(
	log n

i=1 i·√ni) (16)

This is because that for each grid point q, there are at most 9 grid points p

with m(p) = q. Furthermore, for each p ∈ J(L), p has a distance ≤ 1
2 +

√
2

2 to
L and m(p) has a distance ≤ 3

2 +
√

2
2 = a to L. Let the exponent of (16) be

represented by u = 2c3(log2 9 + log2 g)9(k2 + δ)a(
∑log n�

i=1 i · √ni). By Cauchy-
Schwarz inequality (

∑m
i=1 ai · bi)2 ≤ (

∑m
i=1 a

2
i ) · (

∑m
i=1 b

2
i ),

(
&logg n'∑

i=1

i
√
ni)2 =(

&logg n'∑
i=1

i

gi/2
· gi/2√ni)2 ≤ (

&logg n'∑
i=1

i2

gi
) · (

&logg n'∑
i=1

gini) (17)

Using standard calculus,
∑∞

i=1
i2

gi = g(g+1)
(g−1)3 . By (17) and (12), u ≤ e(g)

√
n,

where e(g) = 2c3(log2 9 + log2 g)(k2 + δ)a
√

g(g+1)
(g−1)3 · √g. Let T (n) be the
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maximal computational time of the algorithm for covering n points. The prob-
lem T (n) is reduced to two problems T (2

3n). We have T (n) ≤ 2 ·2e(g)
√

nT (2n
3 ) ≤

2log3/2 n2e(g)(1+α+α2+···)√n = 2e(g)( 1
1−α )

√
n+log3/2 n = 2O(

√
n), where α =

√
2
3 .

Definition 5. We consider undirected graphs G = (V, E), where V denotes the
vertex set and E denotes the edge set. An independent set I of a graph G = (V, E)
is a set of pairwise nonadjacent vertices of a graph. A vertex cover C of a graph
G = (V, E) is a subset of vertices such that each edge in E has at least one
end point in C. A dominating set D is a set of vertices such that the rest of
the vertices in G has at least one neighbor in D. For a point p on the plane
and r > 0, Cr(p) is the disk with center at p and radius r. For a set of disks
D = {Cr1(p1), Cr2(p2), · · · , Crn(pn)}, the disk graph is GD = (VD, ED), where
vertices set VD = {p1, p2, · · · , pn} and ED = {(pi, pj)|Cri(pi) ∩ Crj (pj) �= ∅}.
DG is the class of all disk graphs. DGσ is the class of all disk graphs GD such
that D is the set of disks {Cr1(p1), Cr2(p2), · · · , Crn(pn)} with maxn

i=1 ri

minn
i=1 ri

≤ σ.

Several standard graph theoretic problems for GD1 are NP-hard [7,10,20,27].
The nO(

√
n)-time exact algorithm for the maximum independent set problem

for DGσ with constant σ was derived by Alber and Fiala [5] via parameterized
approach, which was further simplified by Agarwal, Overmars and Sharir [1] for
DG1. We obtain 2O(

√
n)-time algorithms for maximum independent set, mini-

mum vertex cover, and minimum dominating set problems for DGσ with con-
stant σ. Their algorithms are similar each other. The d-dimensional versions
of those problems, including the ball covering problem, have algorithms with
computational time 2O(n1−1/d).

Acknowledgments. The author is very grateful to Sorinel A Oprisan for his
many helpful comments on an earlier version of this paper, and also the reviewers
of STACS’06 whose comments improve the presentation of this paper.
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Abstract. Automatic structures are countable structures finitely pre-
sentable by a collection of automata. We study questions related to prop-
erties invariant with respect to the choice of an automatic presentation.
We give a negative answer to a question of Rubin concerning defin-
ability of intrinsically regular relations by showing that order-invariant
first-order logic can be stronger than first-order logic with counting on
automatic structures. We introduce a notion of equivalence of auto-
matic presentations, define semi-synchronous transductions, and show
how these concepts correspond. Our main result is that a one-to-one
function on words preserves regularity as well as non-regularity of all
relations iff it is a semi-synchronous transduction. We also characterize
automatic presentations of the complete structures of Blumensath and
Grädel.

1 Introduction

Automatic structures are countable structures presentable by a tuple of finite
automata. Informally, a structure is automatic if it is isomorphic to one consisting
of a regular set of words as universe and having only regular relations, i.e.,
which are recognizable by a finite synchronous multi-tape automaton. Every
such isomorphic copy, and any collection of automata representing it, as well
as the isomorphism itself may, and will, ambiguously, be called an automatic
presentation (a.p.) of the structure. It follows from basic results of automata
theory [9] that the first-order theory of every automatic structure is decidable.
Using automata on ω-words or finite- or infinite trees in the presentations, one
obtains yet other classes of structures with a decidable first-order theory [4,6].
This paper is solely concerned with presentations via automata on finite words.

The notion of (ω-)automatic structures first appeared in [12]. Khoussainov
and Nerode [13] have reintroduced and elaborated the concept, and [5] has given
momentum to its systematic investigation. Prior to that, automatic groups [8],
automatic sequences [1], and expansions of Presburger arithmetic [3,7] by rela-
tions regular in various numeration systems have been studied thoroughly. These
investigations concern only certain naturally restricted automatic presentations
of the structures involved.
� Part of this work was conducted during the author’s visit to LIAFA, Université Paris
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The first logical characterization of regularity is due to Büchi. Along the
same lines Blumensath and Grädel characterized automatic structures in terms
of interpretations [4,6]. They have shown that for each finite non-unary alphabet
Σ, SΣ = (Σ∗, (Sa)a∈Σ ,/, el) is a complete automatic structure, i.e. such that
all automatic structures, and only those, are first-order interpretable in it. (See
Example 1 and Prop. 2 below.) In this setting each interpretation, as a tuple of
formulas, corresponds to an a.p. given by the tuple of corresponding automata.

An aspect of automatic structures, which has remained largely unexplored
concerns the richness of the various automatic presentations a structure may
possess. The few exceptions being numeration systems for (N,+) [3,7], automatic
presentations of (Q, <) [17], as well as of (N, <) and (N, S) [16]. The paper at
hand presents contributions to this area.

Recently, Khoussainov et al. have introduced the notion of intrinsic regularity
[16]. A relation is intrinsically regular wrt. a given structure, if it is mapped to a
regular relation in every automatic presentation of that structure. Khoussainov
et al. have shown that with respect to each automatic structure every relation
definable in it using first-order logic with counting quantifiers is intrinsically
regular. In [20, Problem 3] Rubin asked whether the converse of this is also true.
In Section 3 we show that this is not the case. First, we observe that relations
order-invariantly definable in first-order logic (with counting) are intrinsically
regular with respect to each structure. Next, by adapting a technique of Otto [19]
we exhibit an automatic structure together with an order-invariantly definable
relation, which is not definable in any extension of first-order logic with unary
generalized quantifiers. In [16, Question 1.4] Khoussainov et al. have called for a
logical characterization of intrinsic regularity. Our example shows that it is not
sufficient to add only unary generalized quantifiers to the language.

We propose to call two automatic presentations of the same structure equiva-
lent, whenever they map exactly the same relations to regular ones. In Section 4
we investigate automatic presentations of SΣ, where Σ is non-unary. Due to
completeness, every a.p. of SΣ maps regular relations to regular ones. Our first
result, Theorem 1, establishes, that, conversely, every a.p. of SΣ maps non-
regular relations to non-regular ones. As a consequence we observe that SΣ

has, up to equivalence, but one automatic presentation and that non-definable
relations over SΣ are therefore intrinsically non-regular with respect to it.

Turning our attention to regularity-preserving mappings we introduce semi-
synchronous rational transducers. These are essentially synchronized transducers
in the sense of [10] with the relaxation that they may read each tape at a
different, but constant pace. Our main result, Theorem 2 of Section 5, is that a
bijection between regular languages preserves regularity of all relations in both
directions if and only if it is a semi-synchronous transduction. It follows that two
automatic presentations of an automatic structure are equivalent precisely when
the bijection translating names of elements from one automatic presentation to
the other is a semi-synchronous transduction.

I thank Luc Segoufin for our numerous fruitful discussions on the topic, and
the anonymous referees for valuable remarks as to the presentation of the paper.
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2 Preliminaries

Multi-tape automata. Let Σ be a finite alphabet. The length of a word
w ∈ Σ∗ is denoted by |w|, the empty word by ε, and for each 0 < i ≤ |w| the
ith symbol of w is written as w[i]. We consider relations on words, i.e. subsets
R of (Σ∗)n for some n > 0. Asynchronous n-tape automata accept precisely
the rational relations, i.e., rational subsets of the product monoid (Σ∗)n. Finite
transducers, recognizing rational transductions [2], are asynchronous 2-tape au-
tomata. A relation R ⊆ (Σ∗)n is synchronized rational [10] or regular [15] if
it is accepted by a synchronous n-tape automaton. We introduce the following
generalization.

Definition 1 (Semi-synchronous rational relations). Let � be a special
end-marker symbol, � �∈ Σ, and Σ� = Σ ∪ {�}. Let α = (a1, . . . , an) be a
vector of positive integers and consider a relation R ⊆ (Σ∗)n. Its α-convolution
is �αR = {(w1�m1 , . . . , wn�mn) | (w1, . . . , wn) ∈ R and the mi are minimal,
such that there is a k, with kai = |wi| + mi for every i}. This allows us to
identify �αR with a subset of the monoid ((Σ�)a1 ×· · ·× (Σ�)an)∗. If �αR thus
corresponds to a regular set, then we say that R is α-synchronous (rational). R
is semi-synchronous if it is α-synchronous for some α.

Intuitively, our definition expresses that although R requires an asynchronous
automaton to accept it, synchronicity can be regained when processing words in
blocks, the size of which are component-wise fixed by α. As a special case, for α =
1, we obtain the regular relations. Recall that a relationR ⊆ (Σ∗)n is recognizable
if it is saturated by a congruence (of the product monoid (Σ∗)n) of finite index,
equivalently, if it is a finite union of direct products of regular languages [10]. We
denote by Rat, SRat, SαRat, Reg, Rec the classes of rational, semi-synchronous,
α-synchronous, regular, and recognizable relations respectively.

Automatic structures. We take all structures to be relational with functions
represented by their graphs.

Definition 2 (Automatic structures). A structure A = (A, {Ri}i) consisting
of relations Ri over the universe dom(A) = A is automatic if there is a finite
alphabet Σ and an injective naming function f : A → Σ∗ such that f(A) is a
regular subset of Σ∗, and the images of all relations of A under f are in turn
regular in the above sense. In this case we say that f is an (injective) automatic
presentation of A. The class of all injective automatic presentations of A is
denoted AP(A). AutStr designates the class of automatic structures.

Example 1. Let Σ be a finite alphabet. Let Sa, / and el denote the a-successor
relation, the prefix ordering, and the relation consisting of pairs of words of
equal length. These relations are clearly regular, thus SΣ = (Σ∗, (Sa)a∈Σ ,/, el)
is automatic, having id ∈ AP(SΣ). Note that S{1} is essentially (N,≤).

We use the abbreviation FO for first-order logic, and FO∞,mod for its extension
by infinity (∃∞) and modulo counting quantifiers (∃(r,m)). The meaning of the
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formulae ∃∞x θ and ∃(r,m)x θ is that there are infinitely many elements x, respec-
tively r many elements x modulo m, such that θ holds. We shall make extensive
use of the following facts, often without any reference.

Proposition 1. (Consult [4,6] and [16,20].)
i) Let A ∈ AutStr, f ∈ AP(A). Then one can effectively construct for each

FO∞,mod-formula ϕ(a,x) with parameters a from A, defining a k-ary rela-
tion R over A, a k-tape synchronous automaton recognizing f(R).

ii) The FO∞,mod-theory of any automatic structure is decidable.
iii) AutStr is effectively closed under FO∞,mod-interpretations.

Moreover, for each non-unary Σ, SΣ is complete, in the sense of item ii) below,
for AutStr with respect to first-order interpretations.

Proposition 2. [6] Let Σ be a finite, non-unary alphabet.
i) A relation R over Σ∗ is regular if and only if it is definable in SΣ.
ii) A structure A is automatic if and only if it is first-order interpretable in SΣ.

Intrinsic regularity. Let A = (A, {Ri}i) ∈ AutStr and f ∈ AP(A). By defi-
nition f maps every relation Ri of A to a regular one. The previous observations
yield that f also maps all relations FO∞,mod-definable in A to regular ones. In-
trinsically regular relations of structures were introduced in [16]. We shall also
be concerned with the dual notion of intrinsic non-regularity.

Definition 3 (Intrinsic regularity). Let A be automatic. The intrinsically
(non-)regular relations of A are those, which are (non-)regular in every a.p.
of A. Formally, IR(A) = {R ⊆ Ar | r ∈ N, ∀f ∈ AP(A) f(R) ∈ Reg} and
INR(A) = {R ⊆ Ar | r ∈ N, ∀f ∈ AP(A) f(R) �∈ Reg}.

For any given logic L extending FO let L(A) denote the set of relations over
dom(A) definable by an L-formula using a finite number of parameters.

Remark 1. [16] FO∞,mod(A) ⊆ IR(A) holds, by Prop. 1 i), for every A ∈ AutStr.

Khoussainov et al. asked whether there is a logic L capturing intrinsic regularity,
i.e., such that L(A) = IR(A) for all A ∈ AutStr. We address this question in
Section 3.

Example 2. Consider the structure N = (N,+). For any integer p ≥ 2 the base p
(least-significant digit first) encoding provides an automatic presentation of N .
None of these presentations can be considered “canonical”. On the contrary, by
a deep result of Cobham and Semenov base−1

p [Reg] ∩ base−1
q [Reg] = FO(N ) for

any p and q having no common power (cf. [3,7]), hence FO(N ) = IR(N ).

When studying intrinsic regularity, it is natural to distinguish automatic pre-
sentations based on which relations they map to regular ones. To this end we
introduce the following notion.

Definition 4 (Equivalence of automatic presentations). For any f, g ∈
AP(A) let f ∼ g

def⇐⇒ f−1[Reg] = g−1[Reg].
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Translations. Let A ∈ AutStr and f, g ∈ AP(A). The mapping t = g ◦ f−1 is
a bijection between regular languages, which translates names of elements of A
from one presentation to the other. Additionally, t preserves regularity of (the
presentation of) all intrinsically regular relations of A.

Definition 5 (Translations). A translation is a bijection t : D → C between
regular sets D ⊆ Σ∗, C ⊆ Γ ∗. If D = Σ∗ then t is a total- otherwise a partial
translation. A translation t preserves regularity (non-regularity) if the image of
every regular relation under t (respectively under t−1) is again regular. Finally,
t is weakly regular if it preserves both regularity and non-regularity.

Note that by Proposition 2 all automatic presentations of SΣ are regularity
preserving total translations. In general, one can fix a presentation f ∈ AP(A)
of every A ∈ AutStr and consider instead of each presentation g ∈ AP(A) the
translation t = g ◦ f−1 ∈ AP(f(A)) according to the correspondence AP(A) =
AP(f(A))◦f . Also observe that t = g◦f−1 is weakly regular if and only if f ∼ g.
This holds, in particular, when t is a bijective synchronized rational transduc-
tion, referred to as an “automatic isomorphism” in [17] and [15]. Clearly, every
bijective rational transduction qualifies as a translation, however, not necessar-
ily weakly regular. In Section 5 we will show that weakly regular translations
coincide with bijective semi-synchronous transductions.

We associate to each translation f its growth function Gf defined as Gf (n) =
max{|f(u)| : u ∈ Σ∗, |u| ≤ n} for each n and say that f is length-preserving
if |f(x)| = |x| for every word x, further, f is monotonic if |x| ≤ |y| implies
|f(x)| ≤ |f(y)| for every x and y, finally, f has bounded delay if there exists a
constant δ such that |x|+ δ < |y| implies |f(x)| < |f(y)| for every x and y.

3 Order-Invariant Logic

In [16, Question 1.4] Khoussainov et al. have called for a logical characterization
of intrinsic regularity over all automatic structures. The same question, and
in particular, whether FO∞,mod is capable of defining all intrinsically regular
relations over any automatic structure is raised in [20, Problem 3]. In this section
we answer the latter question negatively. We do this by exhibiting an automatic
structure B together with a relation, which is order-invariantly definable, but
not FO∞,mod-definable in B.

Let A be a structure of signature τ . Assume that < is a binary relation symbol
not occurring in τ . A formula φ(x) ∈ FO[τ,<] is order-invariant over A if for
any linear ordering <A of the elements of A, when < is interpreted as <A,
φ(x) defines the same relation R over A. The relation R is in this case order-
invariantly definable. We denote the set of order-invariantly definable relations
over A by FO<−inv(A), and by FO∞,mod

<−inv (A) when counting quantifiers are also
allowed. Although it is only appropriate to speak of order-invariantly definable
relations, rather than of relations definable in “order-invariant logic”, we will
tacitly use the latter term as well.
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The fact that over any A ∈ AutStr order-invariantly definable relations are
intrinsically regular is obvious. Indeed, given a particular automatic presentation
of A one just has to “plug in” any regular ordering (e.g. the lexicographic order-
ing, which does of course depend on the automatic presentation chosen) into the
order-invariant formula defining a particular relation, thereby yielding a regular
relation, which, by order-invariance, will always represent the same relation.

Proposition 3. FO∞,mod
<−inv (A) ⊆ IR(A).

Order-invariant first-order logic has played an important role in finite model the-
ory. It is well known that FO<−inv is strictly more expressive than FO on finite
structures. Gurevich was the first to exhibit an order-invariantly definable class
of finite structures, which is not first-order definable [18, Sect. 5.2]. However, his
class is FO∞,mod-definable. In [19] Otto showed how to use order-invariance to
express connectivity, which is not definable even in infinitary counting logic. Both
constructions use order-invariance and some auxiliary structure to exploit the
power of monadic second order logic (MSO). We adopt Otto’s technique to show
that FO<−inv can be strictly more expressive than FO∞,mod on automatic struc-
tures. The proof involves a version of the bijective Ehrenfeucht-Fräıssé games,
introduced by Hella [11], which capture equivalence modulo FO(Q1), the exten-
sion of FO with unary generalized quantifiers [18, Chapter 8]. The simples ones
of these are ∃∞ and ∃(r,m). Therefore, as also observed by Otto, the separation
result applies not only to FO∞,mod but to the much more powerful logic FO(Q1).

Consider the structure B = (N 0 Pfin(4N + {2, 3}), S, ε, ι,⊆), illustrated in
Figure 1, where Pfin(H) consists of the finite subsets of H , S is the relation
{(4n, 4n+ 4), (4n+ 1, 4n+ 5) |n ∈ N}, ε is the equivalence relation consisting of
classes {4n, 4n+ 1, 4n + 2, 4n + 3} for each n ∈ N, ι is the set of pairs (n, {n})
with n ∈ 4N + {2, 3}, and ⊆ is the usual subset inclusion.

1
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4

5

6

7

8

9

0

10

0

{2} {6} {7}{3}

{2,3,6}

{10} ...

{2,3} {2,6} {3,6} {7,10}... ...

...

Fig. 1. B, a separating example

To give an automatic presentation of B over the alphabet {b, 0, 1}we represent
(N, S, ε) in the unary encoding using the symbol b, and the finite sets by their
(shortest) characteristic words over {0, 1}. Regularity of ι and ⊆ is obvious.
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Proposition 4. The transitive closure S∗ of S is order-invariantly definable,
hence intrinsically regular, but not FO(Q1)-definable in B.

Proof. The proof is a straightforward adaptation of the one presented in [19].
S∗ ∈ FO<−inv(B): Given any ordering ≺ of the universe of B we can first-order
define a bijection ν = ν≺ : 4N ∪ 4N + 1 → 4N + 2 ∪ 4N + 3 as follows. Each
ε-class contains two points, 4n + 2 and 4n + 3, having an outgoing ι edge and
two points, 4n and 4n+ 1, having an S-successor. Using ≺ we can map e.g. the
smaller (larger) of the latter to the smaller (larger) of the former. This bijection,
regardless of the actual mapping, provides access to the subset structure, thus
unleashing full power of weak-MSO. Transform, using ν and the built-in subset
structure, any weak-MSO definition of transitive closure into one expressing S∗.
S∗ �∈ FO(Q1)(B) : The proof of this statement involves a fairly standard appli-
cation of bijective Ehrenfeucht-Fräıssé games as hinted in [19]. !"
Corollary 1. No extension of FO with unary generalized quantifiers is capable
of capturing intrinsic regularity over all automatic structures.

4 Automatic Presentations of SΣ

Recall SΣ of Example 1. Let Σ be non-unary. The main result of this section is
that automatic presentations of SΣ are weakly regular translations, hence are
all equivalent. We treat the case of length-preserving presentations first.

Proposition 5. Let f : Σ∗ → Γ ∗ be a length-preserving automatic presentation
of SΣ. Then (the graph of) f is regular.

Proof. Consider {(u, v) ∈ (Σ∗)2 : |u| ≤ |v| ∧ v[|u|] = a}, which is clearly regular
for each a ∈ Σ. Their images under f are regular relations over Γ ∗. Since only the
length of the first component plays a role in these relations, and it is preserved
by f , the following “variants” over Σ∗ × Γ ∗ are also regular.

Ra = {(u, x) ∈ Σ∗ × f(Σ∗) : |u| ≤ |x| ∧ f−1(x)[|u|] = a} (a ∈ Σ)

Thus, we may define the graph of f as follows showing that it is indeed regular.

graph(f) = {(u, x) ∈ Σ∗ × Γ ∗ : |u| = |x| ∧ ∀v / u
∧
a∈Σ

v[|v|] = a→ Ra(v, x)} !"

Theorem 1. f ∈ AP(SΣ) ⇐⇒ f is a total and weakly regular translation.

Proof. We only need to prove “⇒”. Let f ∈ AP(SΣ). In two steps of transfor-
mations we will show that f is equivalent to a length-preserving presentation h
of SΣ . The claim then follows by Proposition 5.

The relations |y| ≤ |x|, and Sa (a ∈ Σ) are locally finite and regular. A
standard pumping argument (e.g. [14, Lemma 3.1]) then shows, that there are
constants K and C such that |y| ≤ |x| → |f(y)| ≤ |f(x)| + K and |f(xa)| ≤
|f(x)|+C for every a ∈ Σ and x, y ∈ Σ∗. It is easily seen, that by suffixing each
codeword f(x) by an appropriate (≤ K) number of some new padding symbols,
we can obtain an equivalent monotonic presentation g.



296 V. Bárány

Lemma 1. ∀f ∈ AP(SΣ) ∃g ∈ AP(SΣ) : g ∼ f, g is monotonic and Gg = Gf .

Proof. By the choice of K above, we have Gf (|x|) ≤ |f(x)| + K, and for each
s = 0..K the set Ds = {x : Gf (|x|) − |f(x)| = s} is regular, being definable.
This observation allows us to pad each codeword accordingly. Let us therefore
define g by letting g(x) = f(x)@Gf (|x|)−|f(x)| for every (x ∈ Σ∗). where @ is
a new padding symbol. The domain of the new presentation, that is g(Σ∗) =⋃k

s=1 f(Ds) ·@s is by the above argument regular. Moreover, since this padding
is definable f and g map the same relations to regular ones. Finally, it is clear
that g is monotonic, because |g(x)| = Gf (|x|) = Gg(|x|) holds for every word x,
and the growth function Gf is by definition always monotonic. !"

The decisive step of the construction requires two key lemmas.

Lemma 2. ∀f ∈ AP(SΣ) : f has bounded delay.

Proof. Consider the equivalent presentation g obtained from f by padding each
codeword with at most K new symbols as in Lemma 1. If g has bounded delay
with bound δ then f has bounded delay with bound ≤ Kδ. Assume therefore
that f is monotonic. Let D = f(Σ∗), s = |Σ| ≥ 2, and D≤n = {x ∈ D | |x| ≤ n}
for each n ∈ N. Assume, that for some n and t we find the following situation.

Gf (n− 1) < Gf (n) = Gf (n + 1) = . . . = Gf (n + t− 1) < Gf (n + t)

Then |D≤Gf (n−1)| = (sn − 1)/(s− 1) and |D≤Gf (n)| = |D≤Gf (n+t−1)| = (sn+t −
1)/(s−1) since they contain (due to monotonicity) precisely the images of words
of length at most n − 1 and n + t − 1 respectively. On the other hand, by the
choice of C, we have Gf (n) ≤ Gf (n − 1) + C, hence D≤Gf (n) ⊆ D≤Gf (n−1)+C

for every n ∈ N. In [14, Lemma 3.12] it is shown that |D≤n+C | ∈ Θ(|D≤n|) for
each C. Thus, there is a constant β (certainly, β ≥ 1) such that |D≤Gf (n)| ≤
|D≤Gf (n−1)+C | ≤ β · |D≤Gf (n−1)|. By simple arithmetic, t ≤ logs(β), which
proves that f has bounded delay, namely, bounded by δ = logs(β) + 1. !"

Lemma 3. For all f ∈ AP(SΣ) the infinite sequence of increments of the growth
function of f , ∂Gf = 〈Gf (1)−Gf (0), . . . , Gf (n+1)−Gf (n), . . .〉 ∈ {0, . . . , C}ω,
is ultimately periodic.

Proof. Consider the monotonic mapping g obtained from f by padding as in
Lemma 1, and the language L = {x = g(u) | ∀y = g(v)(|u| = |v| → x ≤llex y)}
consisting of the length-lexicographically least g-representants of some word of
length n for each non-negative n. L is regular and since g has bounded delay,
say with bound δ, it is δ-thin, meaning that there are at most δ many words in
L of each length. We can thus write L as disjoint union of the regular languages
Lk = {x ∈ L | ∃=ky ∈ L |x| = |y|} for k = 1, . . . , δ. Let us project L as well as
Lk’s onto 1∗ in length-preserving manner. Gg = Gf is a non-decreasing sequence
of naturals in which each number can occur at most δ times. The projection of
L corresponds, in the unary encoding, to the pruned sequence obtained from
Gf by omitting the repetitions, whereas Lk is mapped onto those 1n for which
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n is repeated exactly k times in Gf . All these projections are regular unary
languages, which is the same as saying that the corresponding sets of naturals
are ultimately periodic. The claim follows. !"

This last result allows us to construct an equivalent length-preserving a.p. h by
factoring each word g(u) of length Gg(|u|) into “blocks” according to ∂Gg.

Lemma 4. ∀g ∈ AP(SΣ) : g is monotonic → ∃h ∼ g : h is length-preserving.

Proof. Let g : Σ∗ → Γ ∗ be a monotonic a.p. of AP(SΣ) with D = g(Σ∗). The
fact that ∂Gg is ultimately periodic allows us to construct an equivalent length-
preserving presentation h by subdividing codewords produced by g into blocks
according to ∂Gg. (For this we need to assume that Gg(0) = 0, i.e. the empty
word is represented by itself. Clearly, this is no serious restriction as changing
an a.p. on a finite number of words always yields an equivalent a.p.)

Consider some word u ∈ Σ∗ of size n and its image v = g(u) ∈ Γ ∗. Since g is
monotonic |v| = Gg(|u|) = Gg(n). Thus we can factorize v as v1v2 · · · vn where
|vi| = ∂Gg[i] for each i ≤ n. Since ∂Gg[i] ≤ C for every i, we can consider each
vi as a single symbol of the alphabet Θ = Γ≤C = {w ∈ Γ ∗ : |w| ≤ C}. Let β be
the natural projection mapping elements of Θ to the corresponding words over
Γ , and let λ(w) = |β(w)| for each w ∈ Θ.

We define the mapping h : Σ∗ → Θ∗ by setting for each u ∈ Σ∗, with
factorization as above, h(u) = v1 ·v2 · . . . ·vn when considered as a word of length
n over Θ. Thus, h is by definition length-preserving and maps Σ∗ injectively
onto the set D′ = {x ∈ Θ∗ |β(x) ∈ D ∧ (∀i = 1..|x|) λ(x[i]) = ∂Gg(i)}. Because
β is a homomorphism, D regular and ∂Gg ultimately periodic, D′ can clearly
be accepted by a finite automaton. Moreover, the fact that any two words w,w′

belonging to D′ are synchronously blocked (in the sense that x[i] and x′[i] have
the same length for all i ≤ |x|, |x′|) enables us to easily simulate any n-tape
automaton A accepting a relation over D by an automaton A′ accepting the
“same” relation over D′ and vice versa. !"

This concludes the proof of Theorem 1. !"

Corollary 2. Non-regular relations are intrinsically non-regular wrt. SΣ.

Corollary 3. Every total translation that preserves regularity also preserves
non-regularity, hence is weakly regular.

Theorem 1 fails for unary alphabets, because, as can easily be checked, the map-
ping from unary to binary presentation of the naturals does preserve regularity,
but also maps some non-regular relations to regular ones. The same argument
shows that Corollary 3 does not hold for partial translations: simply take a
“variant” of the unary presentation over the partial domain (ab)∗ � {a, b}∗.

Corollary 4. The complete structures SΣ have, up to equivalence, only a single
automatic presentation: AP(SΣ)/∼ = {[id]}.
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Not all complete structures have this property. Let C = A
⊎

B be the disjoint
union of A and B having an additional unary predicate A identifying elements
belonging to A. Thus, A and B are trivially FO-interpretable in C, and C ∈
AutStr iff A,B ∈ AutStr. It follows from Proposition 7 below, that A

⊎
B

has infinitely many inequivalent automatic presentations, provided both A and
B are infinite. In particular, this holds for the complete structure SΣ

⊎
SΣ. Let

us therefore say that a structure is rigidly automatic if it has but one automatic
presentation up to equivalence. Finite structures are trivially rigidly automatic.

Question 1. Is every infinite, rigidly automatic structure complete?

5 Equivalence Via Semi-synchronous Transductions

Observe that we have proved more than what is claimed in Theorem 1. The
above proof shows indeed, that every f ∈ AP(SΣ) can be decomposed as

f = π−1 ◦ β−1 ◦ h

where π applies the padding, β the cutting of words into blocks, and where h is
length-preserving and regular. Since both π−1 and β−1 are projections the com-
position is a rational transduction.1 Moreover, we know that ∂Gf is ultimately
periodic, say from threshold N with period p. Let q = Gf (N + p) − Gf (N) be
the total length of any p consecutive blocks with sufficiently high indices. This
means that after reading the first N input symbols and the first Gf (N) output
symbols a transducer accepting f can proceed by reading blocks of p input- and
q output symbols in each step, which shows that f is in fact a (p, q)-synchronous
transduction. This decomposition is the idea underlying one direction of the
main result of this section, the next lemma constitutes the other.

Lemma 5. For every vector α of nonnegative integers SαRat is closed under
taking images (hence also inverse images) of semi-synchronous transductions.

Proof. Let T be a (p, q)-synchronous transduction, R an α-synchronous n-ary
relation with α = (a1, . . . , an). T (R) = {v | ∃u ∈ R ∀i ≤ n (ui, vi) ∈ T } is the
projection of the (pa1, . . . , pan, qa1, . . . , qan)-synchronous relation {(u,v) | u ∈
R ∀i ≤ n (ui, vi) ∈ T }. Hence, by Propositions 6 and 7, T (R) is α-synchronous.
Closure under taking inverse images follows from the fact, that the inverse of a
(p, q)-synchronous transduction is (q, p)-synchronous. !"

Theorem 2. A translation f is weakly regular if and only if it is a semi-
synchronous transduction.

Proof. The “if” part is a special case of Lemma 5. To prove the “only if” part
we show that, under the assumption of weak-regularity, all lemmas used to prove

1 Knowing this, Proposition 5 follows from [9, Corollary 6.6] stating that length-
preserving transductions are synchronized rational. (See also [10].)
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Theorem 1 hold even for partial translations. We only note that lemmas 1, 3 and
4 carry over without modification. To prove that a monotonic, possibly partial,
weakly-regular translation g has bounded delay it suffices to consider the inverse
image of the predicate |x| ≤ |y| under g. A pumping argument shows that there
is a constant D such that |g−1(x)| ≤ |g−1(y)| + D whenever |x| ≤ |y|, in other
words |u| > |v|+ D implies that |g(u)| > |g(v)|, i. e. g has bounded delay. This
proves the analog of Lemma 2.2 Finally, note that our proof of Proposition 5
works only assuming that the domain (hence the range) of the length-preserving
weakly regular mapping considered contains at least one word of every length.
This requirement is not essential. Instead of Ra’s (a ∈ Σ) one can just as well
use the relations Rw defined for each w ∈ Σk in the obvious way for a sufficiently
large k. Thus, we obtain the same decomposition f = π−1◦β−1◦h, which shows,
as above, that f is a semi-synchronous transduction. !"
Corollary 5. Let A ∈ AutStr and f, g ∈ AP (A). Then f ∼ g if and only if
the translation g ◦ f−1 (and f ◦ g−1) is a semi-synchronous transduction.

Basic properties of semi-synchronous relations. Note that the composi-
tion of a (p, q)-synchronous and an (r, s)-synchronous transduction is (pr, qs)-
synchronous, thus, the class of semi-synchronous transductions is closed under
composition. Alternative to our definition of SαRat based on α-convolution one
can introduce α-synchronous automata, defined in the obvious way, accepting
α-synchronous relations. These automata, being essentially synchronous, can be
determinized, taken product of, etc. Hence the following.

Proposition 6. SαRat is an effective boolean algebra for each α. The projec-
tion of every αβ-synchronous relation onto the first |α| many components, is
α-synchronous.

Evidently, Reg ⊂ SRat ⊂ Rat and both containments are strict as illustrated
by the examples {(an, a2n) | n ∈ N} and {(an, a2n), (bn, b3n) | n ∈ N}. SRat is
closed under complement but not under union, as also shown by the latter ex-
ample. Comparing classes SαRat and SβRat we observe the following “Cobham-
Semenov-like” relationship. Let us say that α and β are dependent if k ·α = l ·β
for some k, l ∈ N \ {0}, where multiplication is meant component-wise.

Proposition 7. Let n, p, q ∈ N and α,β ∈ Nn.
i) If α and β are dependent, then SαRat = SβRat.
ii) If (p, q) and (r, s) are independent, then S(p,q)Rat

⋂
S(r,s)Rat = Rec.

Adapting techniques from [2,10], used to prove undecidability of whether a given
rational relation is synchronized rational, we obtain the following results.

Proposition 8. For any given p, q ∈ N the following problems are undecidable.
i) Given a rational transduction R ∈ Rat is R ∈ S(p,q)Rat?
ii) Given a rational transduction R ∈ Rat is R ∈ SRat?
2 Note that this argument was not applicable in the proof of Lemma 2, since at that

point we could not rely on the mapping preserving non-regularity but only on it
being total.
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6 Future Work

Themes of follow-up work include generalizing results to ω-automatic structures,
questions concerning the number of automatic presentations modulo equivalence,
and a finer analysis of definability of intrinsically regular relations on restricted
classes of structures.
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Abstract. We show that, from a topological point of view, 2-tape Büchi
automata have the same accepting power than Turing machines equipped
with a Büchi acceptance condition. In particular, for every non null re-
cursive ordinal α, there exist some Σ0

α-complete and some Π0
α-complete

infinitary rational relations accepted by 2-tape Büchi automata. This
surprising result gives answers to questions of Simonnet [Sim92] and of
Lescow and Thomas [Tho90, LT94].

Keywords: 2-tape Büchi automata; infinitary rational relations; Cantor
topology; topological complexity; Borel hierarchy; complete sets.

1 Introduction

In the sixties, automata accepting infinite words were firstly considered by Büchi
in order to study decidability of the monadic second order theory S1S of one
successor over the integers [Büc62]. Then the so called ω-regular languages
have been intensively studied and have found many applications for specification
and verification of non terminating systems, see [Tho90, Sta97, PP04] for many
results and references. On the other hand, rational relations on finite words were
also studied in the sixties, and played a fundamental role in the study of families
of context free languages [Ber79]. Investigations on their extension to rational
relations on infinite words were carried out or mentioned in the books [BT70,
LS77]. Gire and Nivat studied infinitary rational relations in [Gir81, GN84].
These relations are sets of pairs of infinite words which are accepted by 2-tape
finite Büchi automata with asynchronous reading heads. The class of infinitary
rational relations, which extends both the class of finitary rational relations and
the class of ω-regular languages, and the rational functions they may define,
have been much studied, see for example [CG99, BCPS00, Sim92, Sta97, Pri00].

Notice that a rational relation R ⊆ Σω
1 ×Σω

2 may be seen as an ω-language
over the alphabet Σ1 ×Σ2.

A way to study the complexity of languages of infinite words accepted by fi-
nite machines is to study their topological complexity and firstly to locate them
with regard to the Borel and the projective hierarchies. This work is analysed
for example in [Sta86, Tho90, EH93, LT94, Sta97]. It is well known that every
ω-language accepted by a Turing machine with a Büchi or Muller acceptance
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condition is an analytic set and that ω-regular languages are boolean combina-
tions of Π0

2-sets hence Δ0
3-sets, [Sta97, PP04].

The question of the topological complexity of relations on infinite words also
naturally arises and is asked by Simonnet in [Sim92]. It is also posed in a more
general form by Lescow and Thomas in [LT94] (for infinite labelled partial or-
ders) and in [Tho89] where Thomas suggested to study reducibility notions and
associated completeness results.

Every infinitary rational relation is an analytic set. We showed in [Fin03a]
that there exist some infinitary rational relations which are analytic but non
Borel, and in [Fin03c] that there are some Σ0

3-complete and some Π0
3-complete

infinitary rational relations, using a coding of ω2-words by pairs of infinite words.
Using a different coding we proved in [Fin03d] that there exist such infinitary
rational relations which have a very simple structure and can be easily de-
scribed by their sections. Using this very simple structure, we constructed also
some infinitary rational relations, accepted by 3-tape Büchi automata, which are
Σ0

4-complete.
On the other hand we recently proved in [Fin05a, Fin05b] that the Borel hier-

archy of ω-languages accepted by Büchi real time 1-counter automata is equal to
the Borel hierarchy of ω-languages accepted by Büchi Turing machines. In par-
ticular, for each non null recursive ordinal α, there exist some Σ0

α-complete and
some Π0

α-complete ω-languages accepted by Büchi real time 1-counter automata.
Using a simulation of real time 1-counter automata we prove in this paper a

similar result: the Borel hierarchy of the class of infinitary rational relations is
equal to the Borel hierarchy of ω-languages accepted by Büchi real time 1-counter
automata which is also equal to the Borel hierarchy of ω-languages accepted by
Büchi Turing machines. In particular, for each non null recursive ordinal α, there
exist some Σ0

α-complete and some Π0
α-complete infinitary rational relations.

This gives answers to questions of Simonnet [Sim92] and of Lescow and Thomas
[Tho90, LT94].

The paper is organized as follows. In section 2 we recall the notion of 2-tape
automata and of real time 1-counter automata with Büchi acceptance condition.
In section 3 we recall definitions of Borel and analytic sets, and we prove our
main result in section 4.

2 2-Tape Automata and 1-Counter Automata

We assume the reader to be familiar with the theory of formal (ω)-languages
[Tho90, Sta97]. We shall use usual notations of formal language theory.

When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k
and x[0] = λ. Σ� is the set of finite words (including the empty word) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
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σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.

The prefix relation is denoted 1: a finite word u is a prefix of a finite word
v (respectively, an infinite word v), denoted u 1 v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω. The complement (in Σω) of an ω-language V ⊆ Σω is
Σω − V , denoted V −.

Infinitary rational relations are subsets of Σω ×Γω, where Σ and Γ are finite
alphabets, which are accepted by 2-tape Büchi automata (2-BA).

Definition 1. A 2-tape Büchi automaton is a sextuple T = (K,Σ, Γ,Δ, q0,F ),
where K is a finite set of states, Σ and Γ are finite alphabets, Δ is a finite
subset of K × Σ� × Γ � ×K called the set of transitions, q0 is the initial state,
and F ⊆ K is the set of accepting states.

A computation C of the 2-tape Büchi automaton T is an infinite sequence of
transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf .
The input word of the computation is u = u1.u2.u3 . . .
The output word of the computation is v = v1.v2.v3 . . .
Then the input and the output words may be finite or infinite.

The infinitary rational relation R(T ) ⊆ Σω×Γω accepted by the 2-tape Büchi
automaton T is the set of couples (u, v) ∈ Σω × Γω such that u and v are the
input and the output words of some successful computation C of T .

The set of infinitary rational relations will be denoted RATω.

Definition 2. A (real time) 1-counter machine is a 4-tuple M=(K,Σ,Δ, q0),
where K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial
state, and the transition relation Δ is a subset of K×Σ×{0, 1}×K×{0, 1,−1}.
If the machine M is in state q and c ∈ N is the content of the counter then the
configuration (or global state) of M is (q, c).

For a ∈ Σ, q, q′ ∈ K and c ∈ N, if (q, a, i, q′, j) ∈ Δ where i = 0 if c = 0 and
i = 1 if c �= 0 then we write:

a : (q, c) 	→M (q′, c + j)

	→�
M is the transitive and reflexive closure of 	→M.

Thus we see that the transition relation must satisfy:
if (q, a, i, q′, j)∈Δ and i=0 then j=0 or j=1 (but j may not be equal to −1).

Let σ = a1a2 . . . an be a finite word over Σ. A sequence of configurations
r = (qi, ci)1≤i≤n+1 is called a run of M on σ, starting in configuration (p, c), iff:
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(1) (q1, c1) = (p, c)
(2) for each i ∈ [1, n], ai : (qi, ci) 	→M (qi+1, ci+1)

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations
r = (qi, ci)i≥1 is called a run of M on σ, starting in configuration (p, c), iff:

(1) (q1, c1) = (p, c)
(2) for each i ≥ 1, ai : (qi, ci) 	→M (qi+1, ci+1)

For every such run, In(r) is the set of all states entered infinitely often during
run r.

A run r of M on σ, starting in configuration (q0, 0), will be simply called “a
run of M on σ”.

Definition 3. A (real time) Büchi 1-counter automaton is a 5-tuple

M=(K,Σ,Δ, q0,F ),

where M′=(K,Σ,Δ, q0) is a (real time) 1-counter machine and F ⊆ K is the
set of accepting states. The ω-language accepted by M is

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F �= ∅}

The class of (real time) Büchi 1-counter automata will be denoted r-BC(1).
The class of ω-languages accepted by real time Büchi 1-counter automata

will be denoted r-BCL(1)ω.

3 Borel Hierarchy

We assume the reader to be familiar with basic notions of topology which may
be found in [Mos80, LT94, Kec95, Sta97, PP04]. There is a natural metric on the
set Σω of infinite words over a finite alphabet Σ which is called the prefix metric
and defined as follows. For u, v ∈ Σω and u �= v let δ(u, v) = 2−lpref(u,v) where
lpref(u,v) is the first integer n such that the (n+ 1)st letter of u is different from
the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology for
which open subsets of Σω are in the form W.Σω, where W ⊆ Σ�. A set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set. Define now the Borel
Hierarchy of subsets of Σω:

Definition 4. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows: Σ0

1 is the
class of open subsets of Σω, Π0

1 is the class of closed subsets of Σω,
and for any countable ordinal α ≥ 2:

Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π0

γ .
Π0

α is the class of countable intersections of subsets of Σω in
⋃

γ<α Σ0
γ .

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in
Σ0

α ∪Π0
α but not in

⋃
γ<α(Σ0

γ ∪Π0
γ).
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There are also some subsets of Σω which are not Borel. In particular the
class of Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets
which are obtained by projection of Borel sets, see for example [Sta97, LT94,
PP04, Kec95] for more details. The (lightface) class Σ1

1 of effective analytic sets
is the class of sets which are obtained by projection of arithmetical sets. It is
well known that a set L ⊆ Σω, where Σ is a finite alphabet, is in the class Σ1

1 iff
it is accepted by a Turing machine with a Büchi or Muller acceptance condition
[Sta97].

We now define completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,
Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω →
Σω such that E = f−1(F ). Σ0

n (respectively Π0
n)-complete sets, with n an

integer ≥ 1, are thoroughly characterized in [Sta86].

4 Topology and Infinitary Rational Relations

The first non-recursive ordinal, usually called the Church-Kleene ordinal, will be
denoted below by ωCK

1 .
We have proved in [Fin05a, Fin05b] the following result.

Theorem 5. For every non null countable ordinal α < ωCK
1 , there exist some

Σ0
α-complete and some Π0

α-complete ω-languages in the class r-BCL(1)ω.

We are going to prove a similar result for the class RATω, using a simulation of
1-counter automata.

We now first define a coding of an ω-word over a finite alphabet Σ by an
ω-word over the alphabet Γ = Σ ∪ {A}, where A is an additionnal letter not
in Σ.

For x ∈ Σω the ω-word h(x) is defined by:

h(x) = A.0.x(1).A.02.x(2).A.03.x(3).A.04.x(4).A . . . A.0n.x(n).A.0n+1.x(n + 1).A . . .

Then it is easy to see that the mapping h from Σω into (Σ∪{A})ω is continuous
and injective.

Lemma 6. Let Σ be a finite alphabet and α ≥ 2 be a countable ordinal. If
L ⊆ Σω is Π0

α-complete (respectively, Σ0
α-complete) then

h(L) ∪ h(Σω)−

is a Π0
α-complete (respectively, Σ0

α-complete) subset of (Σ ∪ {A})ω.

Proof. Let L be a Π0
α-complete (respectively, Σ0

α-complete) subset of Σω, for
some countable ordinal α ≥ 2 .
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The topological space Σω is compact thus its image by the continuous function
h is also a compact subset of the topological space (Σ ∪ {A})ω. The set h(Σω)
is compact hence it is a closed subset of (Σ ∪ {A})ω and its complement

(h(Σω))− = (Σ ∪ {A})ω − h(Σω)

is an open (i.e. a Σ0
1) subset of (Σ ∪ {A})ω.

On the other side the function h is also injective thus it is a bijection from
Σω onto h(Σω). But a continuous bijection between two compact sets is an
homeomorphism therefore h induces an homeomorphism between Σω and h(Σω).
By hypothesis L is a Π0

α (respectively, Σ0
α)-subset of Σω thus h(L) is a Π0

α

(respectively, Σ0
α)-subset of h(Σω) (where Borel sets of the topological space

h(Σω) are defined from open sets as in the case of the topological space Σω).
The topological space h(Σω) is a topological subspace of (Σ ∪ {A})ω and

its topology is induced by the topology on (Σ ∪ {A})ω: open sets of h(Σω) are
traces on h(Σω) of open sets of (Σ ∪{A})ω and the same result holds for closed
sets. Then one can easily show by induction that for every ordinal β ≥ 1, Π0

β-
subsets (resp. Σ0

β-subsets) of h(Σω) are traces on h(Σω) of Π0
β-subsets (resp.

Σ0
β-subsets) of (Σ∪{A})ω, i.e. are intersections with h(Σω) of Π0

β-subsets (resp.
Σ0

β-subsets) of (Σ ∪ {A})ω.
But h(L) is a Π0

α (respectively, Σ0
α)-subset of h(Σω) hence there exists a

Π0
α (respectively, Σ0

α)-subset T of (Σ∪{A})ω such that h(L)=T ∩h(Σω). But
h(Σω) is a closed i.e. Π0

1-subset (hence also a Π0
α (respectively, Σ0

α)-subset)
of (Σ ∪{A})ω and the class of Π0

α (respectively, Σ0
α)-subsets of (Σ ∪{A})ω is

closed under finite intersection thus h(L) is a Π0
α (respectively, Σ0

α)-subset of
(Σ∪{A})ω.

Now h(L) ∪ (h(Σω))− is the union of a Π0
α (respectively, Σ0

α)-subset and
of a Σ0

1-subset of (Σ ∪ {A})ω therefore it is a Π0
α (respectively, Σ0

α)-subset of
(Σ ∪ {A})ω because the class of Π0

α (respectively, Σ0
α)-subsets of (Σ ∪ {A})ω is

closed under finite union.
In order to prove that h(L) ∪ (h(Σω))− is Π0

α (respectively, Σ0
α)--complete

it suffices to remark that

L = h−1[h(L) ∪ (h(Σω))−]

This implies that h(L)∪ (h(Σω))− is Π0
α (respectively, Σ0

α)-complete because L
is assumed to be Π0

α (respectively, Σ0
α)-complete. �

Let now Σ be a finite alphabet such that 0 ∈ Σ and let α be the ω-word over
the alphabet Σ ∪ {A} which is defined by:

α = A.0.A.02.A.03.A.04.A.05.A . . .A.0n.A.0n+1.A . . .

We can now state the following Lemma.

Lemma 7. Let Σ be a finite alphabet such that 0 ∈ Σ, α be the ω-word over
Σ ∪ {A} defined as above, and L ⊆ Σω be in r-BCL(1)ω. Then there exists an
infinitary rational relation R1 ⊆ (Σ ∪ {A})ω × (Σ ∪ {A})ω such that:

∀x ∈ Σω (x ∈ L) iff ((h(x), α) ∈ R1)
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Proof. Let Σ be a finite alphabet such that 0 ∈ Σ, α be the ω-word over Σ∪{A}
defined as above, and L = L(A) ⊆ Σω, where A=(K,Σ,Δ, q0,F ) is a 1-counter
Büchi automaton.

We define now the relation R1. A pair y = (y1, y2) of ω-words over the alpha-
bet Σ ∪ {A} is in R1 if and only if it is in the form

y1 = A.u1.v1.x(1).A.u2.v2.x(2).A.u3.v3.x(3).A . . .A.un.vn.x(n).A. . . .
y2 = A.w1.z1.A.w2.z2.A.w3.z3.A . . .A.wn.zn.A . . .

where |v1| = 0 and for all integers i ≥ 1,

ui, vi, wi, zi ∈ 0� and x(i) ∈ Σ and

|ui+1| = |zi|+ 1

and there is a sequence (qi)i≥0 of states of K such that for all integers i ≥ 1:

x(i) : (qi−1, |vi|) 	→A (qi, |wi|)
Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.
Let now x ∈ Σω such that (h(x), α) ∈ R1. We are going to prove that x ∈ L.
By hypothesis (h(x), α) ∈ R1 thus there are finite words ui, vi, wi, zi ∈ 0�

such that |v1| = 0 and for all integers i ≥ 1, |ui+1| = |zi|+ 1, and

h(x) = A.u1.v1.x(1).A.u2.v2.x(2).A.u3.v3.x(3).A . . .A.un.vn.x(n).A. . . .

α = A.w1.z1.A.w2.z2.A.w3.z3.A . . .A.wn.zn.A . . .

Moreover there is a sequence (qi)i≥0 of states of K such that for all integers
i ≥ 1:

x(i) : (qi−1, |vi|) 	→A (qi, |wi|)
and some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.

On the other side we have:

h(x) = A.0.x(1).A.02.x(2).A.03.x(3).A . . .A.0n.x(n).A.0n+1.x(n + 1).A . . .
α = A.0.A.02.A.03.A.04.A . . .A.0n.A . . .

So we have |u1.v1| = 1 and |v1| = 0 and x(1) : (q0, |v1|) 	→A (q1, |w1|). But
|w1.z1| = 1, |u2.v2| = 2, and |u2| = |z1|+ 1 thus |v2| = |w1|.

We are going to prove in a similar way that for all integers i ≥ 1 it holds that
|vi+1| = |wi|.

We know that |wi.zi| = i, |ui+1.vi+1| = i + 1, and |ui+1| = |zi| + 1 thus
|wi| = |vi+1|.

Then for all i ≥ 1, x(i) : (qi−1, |vi|) 	→A (qi, |vi+1|).
So if we set ci = |vi|, (qi−1, ci)i≥1 is an accepting run of A on x and this implies
that x ∈ L.

Conversely it is easy to prove that if x ∈ L then (h(x), α) may be written in
the form of (y1, y2) ∈ R1.
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It remains to prove that the above defined relation R1 is an infinitary rational
relation. It is easy to find a 2-tape Büchi automaton T accepting the infinitary
rational relation R1.

Lemma 8. The set

R2 = (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω)× {α})

is an infinitary rational relation.

Proof. By definition of the mapping h, we know that a pair of ω-words over the
alphabet (Σ∪{A}) is in h(Σω)×{α} iff it is in the form (σ1, σ2), where
σ1 = A.0.x(1).A.02.x(2).A.03.x(3).A . . . .A.0n.x(n).A.0n+1.x(n + 1).A . . .
σ2 = α = A.0.A.02.A.03.A . . .A.0n.A.0n+1.A . . .

where for all integers i ≥ 1, x(i) ∈ Σ.

So it is easy to see that (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω)× {α}) is the union
of the sets Cj where:

– C1 is formed by pairs (σ1, σ2) where
σ1 has not any initial segment in A.Σ2.A.Σ3.A, or σ2 has not any initial
segment in A.Σ.A.Σ2.A.

– C2 is formed by pairs (σ1, σ2) where
σ2 /∈ (A.0+)ω , or σ1 /∈ (A.0+.Σ)ω.

– C3 is formed by pairs (σ1, σ2) where
σ1 = A.w1.A.w2.A.w3.A . . .A.wn.A.u.A.z1

σ2 = A.w′
1.A.w′

2.A.w′
3.A . . .A.w′

n.A.v.A.z2

where n is an integer ≥ 1, for all i ≤ n wi, w
′
i ∈ Σ�, z1, z2 ∈ (Σ∪{A})ω and

u, v ∈ Σ� and |u| �= |v|+ 1

– C4 is formed by pairs (σ1, σ2) where
σ1 = A.w1.A.w2.A.w3.A.w4 . . .A.wn.A.wn+1.A.v.A.z1

σ2 = A.w′
1.A.w′

2.A.w′
3.A.w′

4 . . .A.w′
n.A.u.A.z2

where n is an integer ≥ 1, for all i ≤ n wi, w
′
i ∈ Σ�, wn+1 ∈ Σ�, z1, z2 ∈

(Σ ∪ {A})ω and
u, v ∈ Σ� and |v| �= |u|+ 2

Each set Cj , 1 ≤ j ≤ 4, is easily seen to be an infinitary rational relation
⊆ (Σ ∪ {A})ω × (Σ ∪ {A})ω (the detailed proof is left to the reader). The class
RATω is closed under finite union thus

R2 = (Σ ∪ {A})ω × (Σ ∪ {A})ω − (h(Σω)× {α}) =
⋃

1≤j≤4

Cj

is an infinitary rational relation. �
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We can now state the following result:

Theorem 9. For every non null countable ordinal γ < ωCK
1 , there exists some

Σ0
γ-complete and some Π0

γ-complete infinitary rational relations in the class
RATω.

Proof. For γ = 1 (and even γ = 2) the result is already true for regular
ω-languages.

Let then γ ≥ 2 be a countable non null recursive ordinal and L = L(A) ⊆ Σω

be a Π0
γ-complete (respectively, Σ0

γ-complete) ω-language accepted by a (real
time) Büchi 1-counter automaton A.

Let Γ = Σ ∪ {A} and R1 ⊆ Γω × Γω be the infinitary rational relation
constructed from L(A) as in the proof of Lemma 7 and let

R = R1 ∪R2 ⊆ Γω × Γω

The class RATω is closed under finite union therefore R is an infinitary rational
relation.

Lemma 7 and the definition of R2 imply that Rα = {σ ∈ Γω | (σ, α) ∈ R}
is equal to the set L = h(L) ∪ (h(Σω))− which is a Π0

γ-complete (respectively,
Σ0

γ-complete) subset of (Σ ∪ {A})ω by Lemma 6.
Moreover, for all u ∈ Γω − {α}, Ru = {σ ∈ Γω | (σ, u) ∈ R} = Γω holds by

definition of R2.
In order to prove that R is a Π0

γ (respectively, Σ0
γ)-complete set remark first

that R may be written as the union:

R = L × {α}
⋃

Γω × (Γω − {α})

We already know that L is a Π0
γ (respectively, Σ0

γ)-complete subset of (Σ ∪
{A})ω. Then it is easy to show that L × {α} is also a Π0

γ (respectively, Σ0
γ)-

subset of (Σ ∪ {A})ω × (Σ ∪ {A})ω. On the other side it is easy to see that
Γω × (Γω − {α}) is an open subset of Γω × Γω. Thus R is a Π0

γ (respectively,
Σ0

γ)-set because the Borel class Π0
γ (respectively, Σ0

γ) is closed under finite union.
Moreover let g : Σω → (Σ ∪ {A})ω × (Σ ∪ {A})ω be the function defined by:

∀x ∈ Σω g(x) = (h(x), α)

It is easy to see that g is continuous because h is continuous. By construction it
turns out that for all ω-words x ∈ Σω, (x ∈ L) iff ((h(x), α) ∈ R) iff (g(x) ∈ R).
This means that g−1(R) = L. This implies that R is Π0

γ (respectively, Σ0
γ)-

complete because L is Π0
γ (respectively, Σ0

γ)-complete. �

Remark 10. The structure of the infinitary rational relation R can be described
very simply by the sections Ru, u ∈ Γω. All sections but one are equal to Γω,
so they have the lowest topological complexity and exactly one section ( Rα ) is
a Π0

γ (respectively, Σ0
γ)-complete subset of Γω.



310 O. Finkel

5 Concluding Remarks

The Wadge hierarchy is a great refinement of the Borel hierarchy and we have
proved in [Fin05a, Fin05b] that the Wadge hierarchy of the class r-BCL(1)ω

is equal to the Wadge hierarchy of the class of ω-languages accepted by Büchi
Turing machines. Using the above coding and similar reasoning as in [Fin05b],
we can easily infer that the Wadge hierarchy of the class RATω and the Wadge
hierarchy of the class r-BCL(1)ω are equal. Thus the Wadge hierarchy of the
class RATω is also the Wadge hierarchy of the (lightface) class Σ1

1 of ω-languages
accepted by Turing machines with a Büchi acceptance condition. In particular
their Borel hierarchies are also equal.

We have to indicate here a mistake in [Fin05a]. We wrote in that paper that it
is well known that if L ⊆ Σω is a Σ1

1 set (i.e. accepted by a Turing machine with
a Büchi acceptance condition), and is a Borel set of rank α, then α is smaller
than ωCK

1 . This fact, which is true if we replace Σ1
1 by Δ1

1, seemed to us an
obvious fact, and was accepted by many people as true, but it is actually not
true. Kechris, Marker and Sami proved in [KMS89] that the supremum of the
set of Borel ranks of (lightface) Π1

1 , so also of (lightface) Σ1
1 , sets is the ordinal

γ1
2 . This ordinal is defined in [KMS89] and it is proved to be strictly greater than

the ordinal δ1
2 which is the first non Δ1

2 ordinal. Thus it holds that ωCK
1 < γ1

2 .
The ordinal γ1

2 is also the supremum of the set of Borel ranks of ω-languages in
the class r-BCL(1)ω or in the class RATω. Notice however that it is not proved
in [KMS89] that every non null ordinal γ < γ1

2 is the Borel rank of a (lightface)
Π1

1 (or Σ1
1) set, while it is known that every ordinal γ < ωCK

1 is the Borel rank
of a (lightface) Δ1

1 set. The situation is then much more complicated than it
could be expected. More details will be given in the full versions of [Fin05a] and
of this paper.

Acknowledgements. Thanks to the anonymous referees for useful comments
on a preliminary version of this paper.
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Abstract. The theory of two-dimensional languages, generalizing formal string
languages, was motivated by problems arising from image processing and mod-
els of parallel computing. Weighted automata and series over pictures map pic-
tures to some semiring and provide an extension to a quantitative setting. We
establish a notion of a weighted MSO logics over pictures. The semantics of a
weighted formula will be a picture series. We introduce weighted 2-dimensional
online tessellation automata (W2OTA) extending the common automata-theoretic
model for picture languages. We prove that the class of picture series defined by
sentences of the weighted logics coincides with the family of picture series that
are computable by W2OTA. Moreover, behaviours of W2OTA coincide precisely
with the recognizable picture series characterized in [18].

1 Introduction

In the literature, a variety of formal models to recognize or generate two-dimensional
arrays of symbols, called pictures, have been proposed [2,11,13,15]. This research was
motivated by problems arising from the area of image processing and pattern recogni-
tion [8,19], and also plays a role in frameworks concerning cellular automata and other
models of parallel computing. Different authors obtained an equivalence theorem for
picture languages describing languages in terms of types of automata, sets of tiles, ra-
tional operations or existential monadic second-order (MSO) logic [10,12,13,15]. New
notions of weighted recognizability for picture languages defined by weighted pic-
ture automata and picture series were introduced in [3]. The weights are taken from
some commutative semiring. In [18], we showed that the family of behaviours of such
weighted picture automata coincides with the class of projections of certain rational
picture series and can be characterized also by using tiling and domino systems. These
equivalent weighted picture devices can be used to model several application examples.

Recently, Droste and Gastin [4] introduced the framework of a weighted logic over
words and characterized recognizable formal power series, computed by weighted finite
automata, as semantics of monadic second-order sentences within their logic. Here, we
will establish a weighted MSO logic for pictures. The semantics of a weighted sentence
will be a picture series that maps pictures over the underlying alphabet to elements of
a commutative semiring. We also introduce weighted 2-dimensional online tessellation
automata (W2OTA). This model extends the known notion of 2-dimensional online tes-
sellation automata (2OTA) [13] for picture languages and is equivalent to the concept
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of recognizability in [18,3]. Our main result proves that for an alphabet and any com-
mutative semiring the family of picture series computable by W2OTA coincides with
the family of series that are definable by weighted monadic second-order sentences.

For the syntax, we basically follow classical logic. But additionally, similar to [4],
we also let elements of the semiring be atomic formulas, hence are able to formulate
quantitative properties of picture languages: imagine for instance the number of a’s
occurring in a picture. The other atomic formulas will have a semantics with values in
{0, 1}. Problems arise when negation is applied, because it is not clear how to define the
semantics of a negated formula. Therefore, we apply negation only to atomic formulas.
Universal quantification does not preserve recognizability. Hence, as in [4], we disallow
universal set quantification, but here we restrict universal first-order (FO) quantification
in a new way to particular formulas, since not every recognizable picture language is
determinizable and the proof in [4] does not work for two dimensions.

Crucial for proving the main theorem is to show, that the universal FO quantifica-
tion of a formula, with restricted semantics, defines a recognizable series. Unlike to the
word-case, we build a formula instead of constructing a certain (unweighted) automa-
ton. This formula defines a picture language which is computable by a 2OTA that is
unambiguous. Also, we use successor relations instead of built-in relations≤v and≤h,
since there are (≤v,≤h)-definable picture languages that are not recognizable [16]. Us-
ing successor relations, in contrast to words, not every (unweighted) FO-formulas can
be made unambiguous.

Considering (unweighted) logic, our restriction of the formulas is not an essential re-
striction, since every (unweighted) existential MSO-formula is equivalent (in the sense
of defining identical languages) to a formula in which negation is only applied to atomic
formulas, and since every recognizable picture language is definable by a restricted
formula. We obtain the corresponding classical equivalence when restricting to the
Boolean semiring. The main result of the paper indicates that the notion of weighted
recognizability for picture series is robust, since it can be characterized in terms of a
logic and different automata-theoretic devices and generalizes the common frameworks
for picture languages.

2 Pictures and EMSO-Logic

We recall notions and results of two-dimensional languages and MSO-logic
over pictures. We assume the reader is familiar with principles in MSO logic and the
equivalence theorem for picture languages [11,12,13,21].

Let = {0, 1, . . .} and Σ and Γ be finite alphabets. A picture over Σ is a non-
empty rectangular array of elements in Σ.1 A picture language is a set of pictures. The
set of all pictures over Σ is denoted by Σ++. Let p ∈ Σ++. We write p(i, j) or pi,j

for the component of p at position (i, j) and let lv(p) (lh(p)) be the number of rows
(columns) of p (v stands for vertical, h for horizontal). The pair (lv(p), lh(p)) is the
size of p. The set Σm×n comprises all pictures with size (m,n). The domain of p is
Dom(p) = {1, . . . , lv(p)}×{1, . . . , lh(p)}. A mapping π : Γ → Σ is called projection.
It can be extended pointwise to pictures and languages as usual.

1 We assume a picture to be non-empty for technical simplicity, as in [2,13,15].
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We fix an alphabet Σ. In the literature, there are many equivalent models defining or
recognizing picture languages [9,10,11,13,15]. These devices define recognizable pic-
ture languages and form the class Rec(Σ++). The set MSO(Σ++) of MSO-formulas
over Σ is defined recursively by

ϕ ::= Pa(x) | xSvy | xShy | x ∈ X | x = y | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ
| ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where a ∈ Σ, x, y are FO variables and X is a second-order variable. A picture p is re-
presented by the relational structure (Dom(p), Sv, Sh, (Ra)a∈Σ) where Ra = {(i, j) ∈
Dom(p) | p(i, j) = a}, (a ∈ Σ) and Sv, Sh are the two successor relations of both
directions: (i, j)Sv(i+1, j), (i, j)Sh(i, j+1). Formulas containing no set quantification
are collected in FO(Σ++). We denote by EMSO(Σ++) the set of formulas of the
form ∃X1, . . .∃Xn.ψ such that ψ ∈ FO(Σ++). Languages definable by formulas in
Z ⊆ MSO(Σ++) form the set L(Z).

For a finite set V of variables, a (V , p)-assignment σ maps FO variables in V to
elements of Dom(p) and second-order variables in V to subsets of Dom(p). If x is a
FO variable and (i, j) ∈ Dom(p) then σ[x → (i, j)] coincides with σ on V \ {x} and
assigns (i, j) to x (similarly σ[X → I] for I ⊆ Dom(p)). We encode (p, σ) where σ
is a (V , p)-assignment as a picture over ΣV = Σ × {0, 1}V . Conversely, an element
in ΣV

++ is a pair (p, σ) where p is the projection over Σ and σ is the projection over
{0, 1}V . Then σ represents a valid assignment over V if for each FO variable x ∈ V ,
the projection of σ to the x-coordinate contains exactly one 1. In this case, we identify
σ with the (V , p)-assignment. Let NV ⊆ Σ++

V comprise {(p, σ) | σ is valid}. Clearly,
NV is a recognizable picture language. We write Free(ϕ) for the set of all free variables
in ϕ and Nϕ = NFree(ϕ). If V contains Free(ϕ), the definition that (p, σ) satisfies ϕ,
i.e. (p, σ) |= ϕ is as usual and we let LV(ϕ) = {(p, σ) ∈ NV | (p, σ) |= ϕ}. We say
that the formula ϕ defines the picture language LFree(ϕ)(ϕ) =: L(ϕ).

Proposition 2.1 ([12]). A language is EMSO-definable iff it is recognizable.

The aim of this paper is to generalize this result to a quantitative setting. For this, we will
define weighted 2-dimensional online tessellation automata (W2OTA). The weights are
taken from a commutative semiring.

3 Weighted Automata over Pictures

A semiring (K,+, ·, 0, 1) is a structure K such that (K,+, 0) is a commutative monoid,
(K, ·, 1) is a monoid, multiplication distributes over addition, and x · 0 = 0 = 0 · x for
all x ∈ K . If multiplication is commutative, K is called commutative. Examples of
semirings useful to model problems in operations research and carrying quantitative
properties for many devices include e.g. the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
the natural numbers =( ,+, ·, 0, 1), the tropical semiring T = ( ∪ {∞},min,+,
∞, 0), the arctical (or max-plus) semiring Arc = ( ∪ {−∞},max,+,−∞, 0), the
language-semiring (P(Σ∗),∪,∩, ∅,Σ∗) and ([0, 1],max, ·, 0, 1) (to capture
probabilities).
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We will now assign weights to pictures. This provides a generalization of the theory
of picture languages to formal power series over pictures, cf. [18] and [1,7,14,20]. Ex-
amples are given below. Subsequently, K will always denote a commutative semiring
and Σ,Δ, Γ are alphabets.

A picture series is a mapping S : Σ++ → K . We let K〈〈Σ++〉〉 comprise all
picture series. We write (S, p) for S(p), then a series S often is written as a formal sum
S =

∑
p∈Σ++(S, p) · p. The set supp(S) = {p ∈ Σ++ | (S, p) �= 0} is the support of

S. For a language L ⊆ Σ++, the characteristic series L : Σ++ → K is defined by
( L, p) = 1 if p ∈ L, and ( L, p) = 0 otherwise. For K = B, the mapping L 	→ L

gives a natural bijection between languages over Σ and series in B〈〈Σ++〉〉.

Definition 3.1. A weighted 2-dimensional online tessellation automaton over Σ is a
tuple A = (Σ, Q, I,F, E), consisting of a finite set Q of states, sets of initial and final
states I,F ⊆ Q, respectively, and a finite set of transitions E ⊆ Q×Q×Σ×K ×Q.

For r = (qv, qh, a, k, q) ∈ E, we set σv(r) = qv, σh(r) = qh, σ(r) = q, label(r) =
a, weight(r) = k, and, extending this to pictures, get a function label : E++ → Σ++.
A run (or computation) in A is an element in Em×n satisfying natural compatibility
properties, more precisely, for c = (ci,j) ∈ Em×n we have

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n : σv(ci,j) = σ(ci−1,j), σh(ci,j) = σ(ci,j−1).

We put weight(c) =
∏

i,j weight(ci,j). A run c in A is successful if for all 1 ≤
i ≤ m and 1 ≤ j ≤ n, we have σv(c1,j), σh(ci,1) ∈ I and σ(cm,n) ∈ F . The

set of all successful runs labelled with p is denoted by I
p
� F . The automaton A

computes (or recognizes) the picture series ‖A‖ : Σ++ → K , defined for a picture
p ∈ Σ++, as (‖A‖, p) =

∑
c∈I

p
�F

weight(c). We call ‖A‖ the behaviour of A and
write Krec〈〈Σ++〉〉 for the family of series that are computable by W2OTA over Σ.

Considering the unweighted case, instead of E, one could also define a transition
function δ : Q × Q × Σ → 2Q. If |I| = 1 and δ : Q × Q × Σ → Q, we call
A deterministic. W2OTA generalize in a straightforward way the automata-theoretic
recognizability of 2OTA for picture languages.

For motivation, we now give two examples of functions S : Σ++ → ∪ {∞} and
T : Σ++ → .

Example 3.2. Let D ⊂ [0, 1] be a finite set of discrete values and let L ⊆ D++ be
recognizable. Consider S : D++ → ∪{∞}, mapping p to S(p) =

∑
i,j pi,j if p ∈ L

and to ∞ otherwise. One could interpret the values in D as different levels of gray [6].
Then, for each picture p ∈ L, the series S provides the total value S(p) of light of p.

Example 3.3. Let C be a finite set of colors and consider T : C++ → , defined by
(T, p) = max{lv(q) · lh(q) | q is a monochrome subpicture of p}, (p ∈ C++). Then
T (p) gives the largest size of a monochrome rectangle, contained in p.

One can prove that the functions S and T are computable by W2OTA, more precisely
S ∈ Trec〈〈D++〉〉 and T ∈ Arcrec〈〈C++〉〉.

We define rational operations ⊕ and 2, referred to as sum and Hadamard product,
and also scalar multiplications, in the following way. For S, T ∈ K〈〈Σ++〉〉, k ∈ K
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and p ∈ Σ++, we set (S ⊕ T, p) := (S, p) + (T, p), (S 2 T, p) := (S, p) · (T, p)
and (k · S, p) := k · (S, p). Extending projections and inverse projections to series, for
π : Γ → Σ, R ∈ K〈〈Γ++〉〉 and q ∈ Γ++, we set (π(R), p) :=

∑
π(p′)=p(R, p′) and(

π−1(S), q
)

:=
(
S, π(q)

)
. Then , π(R) ∈ K〈〈Σ++〉〉 and π−1(S) ∈ K〈〈Γ++〉〉.

Now, similar to common constructions and using ideas in [3], we can prove

Proposition 3.4. Recognizable picture series are closed under 2,⊕, ·, projections
and inverse projections. For languages, inverse projections preserve deterministic
devices. If L is deterministically recognizable then L is recognizable.

4 Weighted Logics

In this section we introduce the syntax and semantics of the weighted MSO-logic on
pictures. We fix K and Σ. For a ∈ Σ, Pa denotes a unary predicate symbol. Formulas
of the weighted MSO-logic are defined recursively as follows:

ϕ ::= k | Pa(x) | ¬Pa(x) | xSvy | ¬(xSvy) | xShy | ¬(xShy) | x ∈ X | ¬(x ∈ X)
| x = y | ¬(x = y) | ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K, a ∈ Σ and x, y (resp. X) are first (resp. second)-order variables.
The class MSO(K,Σ) comprises all such weighted MSO-formulas ϕ. The formulas
k, Pa(x), xSvy, xShy and x = y are referred to as atomic formulas. Subsequently, we
will also consider the class FO(K,Σ) ⊂ MSO(K,Σ) of all formulas having no set
quantification. Clearly, formulas in MSO(K,Σ), containing no fragment of the form k,
may also be regarded as unweighted formula defining a language L(ϕ). Now, similar
to [4] we give the semantics of weighted MSO-formulas ϕ.

Definition 4.1. Let ϕ ∈ MSO(K,Σ) and V be a finite set of variables containing
Free(ϕ). The semantics ofϕ is a series [[ϕ]]V : Σ++

V → K . Let (p, σ) ∈ Σ++
V . If σ is not

a valid V-assignmen, then we set [[ϕ]]V (p, σ) = 0. Otherwise, we define [[ϕ]]V (p, σ) ∈ K
inductively as:

[[k]]V (p, σ) = k [[Pa(x)]]V (p, σ) =

{
1 if p(σ(x)) = a

0 otherwise

[[xSvy]]V(p, σ) =

{
1 if σ(x)Svσ(y)
0 otherwise

[[xShy]]V(p, σ) =

{
1 if σ(x)Shσ(y)
0 otherwise

[[x ∈ X ]]V(p, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

[[x = y]]V(p, σ) =

{
1 if σ(x) = σ(y)
0 otherwise

[[¬ϕ]]V (p, σ) =

{
1 if [[ϕ]]V(p, σ) = 0 if ϕ is of the form Pa(x), x = y,

0 if [[ϕ]]V(p, σ) = 1 (xSvy), (xShy) or (x ∈ X)

[[ϕ ∨ ψ]]V (p, σ) = [[ϕ]]V (p, σ) + [[ψ]]V (p, σ)
[[ϕ ∧ ψ]]V (p, σ) = [[ϕ]]V (p, σ) · [[ψ]]V(p, σ)

[[∃x.ϕ]]V (p, σ) =
∑

(i,j)∈Dom(p)

[[ϕ]]V∪{x}(p, σ[x→ (i, j)])
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[[∃X.ϕ]]V(p, σ) =
∑

I⊆Dom(p)

[[ϕ]]V∪{X}(p, σ[X → I])

[[∀x.ϕ]]V (p, σ) =
∏

(i,j)∈Dom(p)

[[ϕ]]V∪{x}(p, σ[x→ (i, j)])

[[∀X.ϕ]]V(p, σ) =
∏

I⊆Dom(p)

[[ϕ]]V∪{X}(p, σ[X → I]).

We write [[ϕ]] for [[ϕ]]Free(ϕ). In case ϕ is a sentence, then [[ϕ]] ∈ K〈〈Σ++〉〉. For Z ⊆
MSO(K,Σ), we call a series S : Σ++ → K Z-definable if there exists a sentence
ϕ ∈ Z satisfying [[ϕ]] = S.

Example 4.2. Consider the formula ϕ = ∃x.Pa(x) ∈ MSO( , {a, b, c}). Then [[ϕ]]
is the series that computes for a picture p ∈ {a, b, c}++ the number of occurrences
of the letter a in p. Also, consider Example 3.2 of Section 3 again. For L = D++, the
formula ψ = ∀x.

(∨
d∈D(Pd(x) ∧ d)

)
∈ MSO(T, D) satisfies [[ψ]] = S.

For different sets of variables V , we show that our semantics are consistent:

Proposition 4.3. Let ϕ ∈ MSO(K,Σ), V be finite containing Free(ϕ) and (p, σ) ∈
NV . Then [[ϕ]]V(p, σ) = [[ϕ]](p, σ|Free(ϕ)), and [[ϕ]] is recognizable iff [[ϕ]]V is
recognizable.

Proof. The first claim is proved by induction. Let [[ϕ]] ∈ Krec〈〈Σ++
ϕ 〉〉 and π : ΣV →

Σϕ the projection. Then, [[ϕ]]V = (π−1[[ϕ]]) 2 NV ∈ Krec〈〈Σ++
V 〉〉 by Proposition

3.4. Now, let [[ϕ]]V ∈ Krec〈〈Σ++
V 〉〉 and V1 (resp. V2) be the set of first (resp. second)-

order variables in V . Then, N norm =
{
(p, σ) ∈ NV | ∀x∈V1\Free(ϕ):σ(x)=(1,1),

∀X∈V2\Free(ϕ):σ(X)={(1,1)}

}
is

deterministically recognizable. For (p, σ) ∈ Nϕ, π maps exactly one element (p, σnorm)
∈ N norm on (p, σ). With the above and Proposition 3.4, we conclude(

π([[ϕ]]V 2 N norm), (p, σ)
)
=

∑
π(p,σ′)=(p,σ)
(p,σ′)∈Nnorm

[[ϕ]]V (p, σ′)=[[ϕ]]V (p, σnorm) = [[ϕ]](p, σ).

For words, examples show that unrestricted application of universal first-order quantifi-
cation does not preserve recognizability [4, Ex. 3.3, 3.4]. These settings are contained
in our context of the weighted MSO logic and series over pictures.

Definition 4.4. A picture series S : Σ++ → K is a first-order step function (FO
step function), if S =

⊕n
i=1 ki · Li for some n ∈ , ki ∈ K and languages Li ∈

L(FO(Σ++)) (i = 1, . . . , n) that are definable by FO formulas.

We will call ϕ ∈ MSO(K,Σ) restricted, if ϕ contains no universal set quantifica-
tion of the form ∀X.ψ, and whenever ϕ contains a universal quantification ∀x.ψ, then
[[ψ]] is a FO step function. We let RMSO(K,Σ) comprise all restricted formulas of
MSO(K,Σ). Furthermore, let REMSO(K,Σ) contain all restricted existential MSO-
formulas ϕ, i.e. ϕ is of the form ϕ = ∃X1, . . . ,Xn.ψ such that ψ ∈ FO(K,Σ) ∩
RMSO(K,Σ). The families Krmso〈〈Σ++〉〉 (resp. Kremso〈〈Σ++〉〉) contain all picture
series S ∈ K〈〈Σ++〉〉 which are definable by some sentence in RMSO(K,Σ) (resp. in
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REMSO(K,Σ)). The following equivalence theorem states that for an alphabet Σ and
any commutative semiring K , the family of recognizable picture series coincides with
the families of series defined in terms of weighted RMSO resp. REMSO logic.

Theorem 4.5. We have Krec〈〈Σ++〉〉 = Krmso〈〈Σ++〉〉 = Kremso〈〈Σ++〉〉.
In parts of our proofs, we follow ideas of [4]. The crucial difference concerns the univer-
sal FO quantification. For pictures, not every recognizable language is determinizable,
but this is one important property within the proofs of [4]. Here we consider a restric-
tion of this quantification to formulas having a semantics which is a FO step function.
But still the proof of the word-case does not work due to the two dimensions of a run in
an automaton. We therefore rather build a formula instead of constructing a certain (un-
weighted) automaton. For the disposition of weights, the key property will be that this
unweighted formula defines a language which is computable by a 2OTA that is unam-
biguous. Also, observe that, in the Theorem 4.5, going from RMSO to REMSO is not
at all clear, since unlike to the situation of words [4, Lemma 5.2], in the framework of
pictures using successor relations, instead of ≤v and ≤h, not every (unweighted) FO-
formula can be made unambiguous. However, we have to handle successor relations,
since there are (≤v,≤h)-definable picture languages that are not recognizable.

5 Unambiguous Picture Languages

We call a possibly weighted 2OTA A unambiguous if for any input picture there ex-
ists at most one successful run in A. Simulating the proof of Proposition 3.4, if L is
unambiguously computable, then L ∈ Krec〈〈Σ++〉〉. For L ⊆ Γ++ and a projection
π : Γ → Σ, we call π injective on L if π : L → Σ++ is an injective mapping. For
p ∈ Σ++, p̂ denotes the picture that results from p by surrounding it with the (new)
boundary symbol #. If p has size (m,n) then p̂ has size (m+2, n+2). Tiles are pictures
of size (2, 2). We denote by T (p) the set of all sub-tiles of p. A languageL ⊆ Γ++ is lo-
cal if there exists a set Θ of tiles over Γ ∪{#}, such that L = {p ∈ Γ++ | T (p̂) ⊆ Θ}.
Then (Γ,Θ) characterizes L. We write L = L(Θ). In [9], the authors briefly mention
the notion of ambiguity for picture languages in the context of tiling systems (TS). We
define L ⊆ Σ++ as unambiguously tiling recognizable if there exists a local language
L′ ⊆ Γ++, characterized by (Γ,Θ), and a projection π : Γ → Σ such that π is injective
on L′ and π(L′) = L. In this case, we call (Σ, Γ,Θ, π) an unambiguous TS computing
L. If the projection is not necessarily injective, we obtain the known definition of a TS.
Unambiguously tiling recognizable languages over Σ are collected in UPLoc(Σ++).

Lemma 5.1. UPLoc(Σ++) is closed under injective projections and disjoint union. A
language L is recognizable by an unambiguous 2OTA if and only if it is computable by
an unambiguous tiling system.

Proof. Let Σ, Γ,Δ be alphabets and (Γ,Δ,Θ, ψ) unambiguous for L ⊆ Γ++. If
π : Γ → Σ is injective on L, then τ := (Σ,Δ,Θ, ψ ◦ π) is unambiguous for π(L). Let
L1, L2 ∈ UPLocΣ++, L1∩L2 = ∅. We follow the construction in [11, Theorem 7.4].
The given TS for L := L1 ∪L2 is unambiguous since the union is disjoint. For the sec-
ond claim, the TS, constructed in [11, Lemma 8.1] and also the automaton constructed
in [11, Lemma 8.2] are unambiguous.
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We call languages in UPLoc(Σ++) unambiguous. We obtain further equivalences by
injective projections of unambiguous rational operations and unambiguously domino
recognizable series, cf. [17]. We now show, that FO definable picture languages are
unambiguous. This will be crucial for proving Lemma 6.3 below. The idea for the course
of the proof is to follow constructions in [12]. But, we now need unambiguous picture
languages, hence we have to construct injective projections and disjoint unions.

Proposition 5.2. If L be FO(Σ++)-definable. Then L is unambiguous.

Proof. For d, t ≥ 1, (d, t)-locally threshold testable (LTT) picture languages can be
characterized by subsquares of dimension ≤ d, where the occurrences are counted up
to a threshold t. A language is FO-definable iff it is LTT and every LTT language L
is recognizable [12]. We show that LTT languages are unambiguous. Let L ⊆ Σ++

be LTT for (d, t). As in Lemma 3.7 [12], we partition L into a union of strictly LTT
languages (where strictly means, only squares of dimension d are considered). This
union is easily proved as disjoint. Strictly LTT languages are projections d-local lan-
guages (for d-locality we use a set Θ(d) of (d× d)-tiles instead of (2× 2)-tiles for local
sets)[12, Lemma 3.9]. For a given (d, t)-strictly LTT language L′, in the construction,
one performs a scanning of p′ ∈ L′ using certain d-squares and counts occurrences up
to t. For acceptance, one compares these computed values with the tuples character-
izing L′. It defines a d-local language L′′ and a projection π satisfying π(L′′) = L′.
We can modify the d-tiles (and hence L′′) by strengthening their border-conditions in
such a way that for every p′ ∈ L′ there exists one uniquely determined p′′ ∈ L′′ with
π(p′′) = p′. Hence, the modified projection then is injective on L′′.

It remains to show that every d-local language M is unambiguous. For this, let Δ
be arbitrary, d ≥ 3 and M characterized by (Δ,Θ(d)). We can assume M ⊆ Δm×n

such that m,n ≥ d− 2 ([12, Lemma 3.10]). We prove that M is an injective projection
of a local set, that is, M is computable by an unambiguous tiling system. We define
T = (Δ, Γ,Θ, π) as

– Θ(d) :=
{

A B

C D
∈ (Δ .∪ {#} .∪ {+})d×d | B = C = D ≡ + , ∃ A1 A2

A3 A
∈ Θ(d)

}
– Γ := Θ(d) \ {p | p1,1 = #}; border symbols: {p ∈ Θ(d) | p1,1 = #}
– Θ :=

{
A B

C D
∈ Γ 2×2|A = a N

W Q
, B = N b

Q E
, C = W Q

c S
, D = Q E

S d

}
where Q ∈ (Δ .∪ {#} .∪ {+})(d−1)×(d−1) and W,S,E,N, a, b, c, d accordant.

We set π : Γ → Δ, p 	→ p1,1 and show π(L(Θ)) = M . Let p ∈ M . We extend p to
p̄ ∈ (Δ .∪ {#} .∪ {+})(m+d−1)×(n+d−1) and define p′ ∈ Γm×n, as

p̄(i, j)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p(i, j) i ≤ m, j ≤ n

#
i = m + 1, j ≤ n + 1

or i ≤ m + 1, j = n + 1

+ otherwise.

, p′(i, j) =
p̄(i, j) p̄(i, j + d− 1)

· · ·
p̄(i + d− 1, j) p̄(i + d− 1, j + d− 1)

.

Then, p′ ∈ L(Θ) and π(p′) = p. Now let p′ ∈ L(Θ) and q be a (d×d)-subpicture of p̂′.
It suffices to show π(q) ∈ Θ(d). With the construction of Θ(d) we have q1,1 ∈ Θ(d). But,
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q1,1 = π(q). By the structure of the d-tiles in Θ, one can show that T is unambiguous,
i.e., π is injective onL(Θ). We constructed unambiguous languages and disjoint unions.
With Lemma 5.1, L is unambiguous.

6 Definable Picture Series Are Recognizable

The aim of this section is to show that semantics of sentences in RMSO(K,Σ) are
recognizable series. We prove this implication by structural induction on the formulas
in RMSO(K,Σ).

Lemma 6.1. Let V be a set of variables. Then the set NV is FO-definable. The class
L(FO(Σ++)) is closed under boolean operations.

Lemma 6.2. Let ϕ, ψ ∈ MSO(K,Σ). Then the following holds.

(a) If ϕ is atomic or the negation of an atomic formula, then ϕ is recognizable.
(b) If [[ϕ]] and [[ψ]] are recognizable, then [[ϕ ∨ ψ]] and [[ϕ ∧ ψ]] are recognizable.
(c) If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable.

Proof. (a) We construct W2OTA using Proposition 3.4. The other proofs are similar to
the word-case ([4, Lemma 4.1]) and use Propositions 4.3 and 3.4.

The next Lemma shows that for FO step functions the application of the universal first-
order quantification provides a recognizable semantics. We use ideas of [4, Lemma 4.2],
but these did not completely work in this setting.

Lemma 6.3. Let ϕ ∈ MSO(K,Σ) such that [[ϕ]] is a first-order step function. Then
[[∀x.ϕ]] is a recognizable picture series.

Proof. As prerequisite, let W = Free(ϕ), V = Free(∀x.ϕ) = W \ {x} and assume
[[ϕ]] =

⊕
l=1,...,n kl · Ll

with n ∈ , kl ∈ K and Ll ∈ L(FO(Σ++
W )) (l = 1, . . . , n)

such that the languages Ll form a partition (use Lemma 6.1). Assume x ∈ W .
The definition of the semantics of the universal FO quantification of a formula maps

a picture p to the product over all positions in p of certain values in K . In our setting,
the factors are the elements kl corresponding to the supports of [[ϕ]]. We mark positions
of p by their respective index l of kl. Let Σ̃ = Σ × {1, . . . , n}. A picture in (Σ̃V)++

will be written as (p, ν, σ) where (p, σ) ∈ Σ++
V and ν ∈ {1, . . . , n}++ is interpreted

as a mapping from Dom(p) to {1, . . . , n}. Let L̃ be the set of (p, ν, σ) ∈ (Σ̃V)++

such that ν(i, j) = l ⇐⇒ (p, σ[x → (i, j)]) ∈ Ll for all (i, j) ∈ Dom(p) and
l ∈ {1, . . . , n}. We prove L̃ ∈ FO(Σ̃++

V ) by presenting a formula. Let 1 ≤ l ≤
n and ϕl be an FO-sentence over ΣW

++ for Ll. We define ϕ̃l ∈ FO((Σ̃W )++) as
ϕl where all occurrences of P(a,r)(y) (here, a ∈ Σ, r ∈ {0, 1}W) are replaced by∨

1≤l≤n P(a,r,l)(y). Then, for (p, τ, ν) ∈ Σ̃W
++

, we conclude (p, τ, ν) ∈ L(ϕ̃l) iff
(p, τ) ∈ L(ϕl). Additionally, we define ϕ̃l

′ as ϕ̃l, modified as follows. Occurrences
of P(a,r,l)(y) satisfying r(x) = 1 become P(a,r′,l)(y) ∧ (x = y) and occurrences of
P(a,r,l)(y) with r(x) = 0 become P(a,r′,l)(y)∧¬(x = y), where r′ is the restriction of

r to W \ {x}. Then, ϕ̃l
′ is an FO-formula over the alphabet Σ̃V with Free(ϕ̃l

′) = {x}
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satisfying for all (p, τ, ν) ∈ Nϕl
′ , that (p, τ ′, ν) ∈ L(ϕ̃l

′) if and only if (p, τ, ν) ∈
L(ϕ̃l). Now, set ϕ̃ := ∀x.

∧
1≤l≤n

[
(ν(x) = l) ⇔ ϕ̃l

′] where ν(x) = l and ⇔ are

standard abbreviations. Now, ϕ̃ is an FO-sentence over Σ̃V . We show L(ϕ̃) = L̃.
Let (q, ν) ∈ (Σ̃V)++ (here, q ∈ Σ++

V ). Then (q, ν) |= ϕ̃ iff for all (i, j) ∈ Dom(q)
and all 1 ≤ l ≤ n, (q, ν, [x → (i, j)]) ∈ L

(
(ν(x) = l) ⇔ ϕ̃l

′), where [x → (i, j)]
denotes the assignment defined on {x} mapping x to (i, j). Now, (q, ν, [x → (i, j)]) ∈
L(ν(x) = l) iff ν(i, j) = l and (q, ν, [x → (i, j)]) ∈ L(ϕ̃l

′) iff (q, ν, σ[x → (i, j)]) ∈
L(ϕ̃l) iff (q, [x → (i, j)]) ∈ L(ϕl) iff (q, [x → (i, j)]) ∈ Ll. Hence the constructed
formula ϕ̃ defines L̃.

Now, using Proposition 5.2 and Lemma 5.1, there exists an unambiguous 2OTA
Ã =

(
Σ̃V , Q, I,F, E

)
computing L̃. We obtain a W2OTA Ã =

(
Σ̃V , Q, I,F, Ē

)
dis-

posing weights along Ã as:
(
p, q, (a, l, s), r

)
∈ E iff

(
p, q, (a, l, s), kl, r

)
∈ Ē, where

[[ϕ]] =
⊕

l=1,...,n kl · Ll
. Then Ã is unambiguous. Similar to [4, Lemma 4.2], using

Proposition 3.4 and Lemma 6.2, for the projection π : Σ̃V → ΣV , one proves for
(p, σ) ∈ Σ++

V :
(
π(‖Ã‖), (p, σ)

)
= [[∀x.ϕ]](p, σ), hence [[∀x.ϕ]] is recognizable. The

case x /∈ W is reduced to above.

Theorem 6.4. We have Krmso〈〈Σ++〉〉 ⊆ Krec〈〈Σ++〉〉.

7 Recognizable Picture Series Are Definable

We want to show that recognizable series are REMSO-definable. Similar to [4,5], for
a W2OTA A we construct a weighted EMSO-sentence γ such that ‖A‖ = [[γ]]. It then
remains to prove that γ is restricted. We also need the notion of unambiguous formulas.
We note that, unlike to the word-cases, we use successor relations, here not every (un-
weighted) FO-formula can be made unambiguous. The class of unambiguous formulas
in FO(K,Σ) is defined inductively as follows: All atomic formulas and their nega-
tions are unambiguous. If ϕ, ψ are unambiguous, then ϕ ∧ ψ, ∀x.ϕ are unambiguous.
If ϕ, ψ are unambiguous and supp([[ϕ]]) ∩ supp([[ψ]]) = ∅, then ϕ ∨ ψ is unambiguous.
Let V = Free(ϕ). If ϕ is unambiguous and for any (p, σ) ∈ Σ++

V there is at most
one element (i, j) ∈ Dom(p) such that [[ϕ]]V∪{x}(p, σ[x → (i, j)]) �= 0, then ∃x.ϕ is
unambiguous.

By qf-MSO−(K,Σ), we denote formulas in MSO(K,Σ) having no quantification
and no subformula of the form k. To make such formulas unambiguous we perform
a syntactic transformations (.)+ and (.)− in a simultaneous induction such that, for
ϕ, ψ ∈ qf-MSO−(K,Σ), we have L(ϕ+) = L(ϕ) and L(ϕ−) = Σ++

Free(ϕ) \ L(ϕ).
Now, similar to [4, Prop. 5.1], we get:

Lemma 7.1. Let ϕ ∈ FO(K,Σ) be unambiguous. Then [[ϕ]] = L(ϕ). For ψ ∈
qf-MSO−(K,Σ), the formula ψ+ is unambiguous.

Notions like minv(x),maxh(z) or part(X1, . . . ,Xl) abbreviate common formulas. We
set (analog initW):

initN := ∀x.
([

minv(x) ∧ (
∨

qx
h,qx∈Q,qx

v∈I,a∈Σ

x ∈ X(qx
v ,qx

h,a,qx))+
]
∨ ∃s.(sSvx)

)
.
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For intuition, the formulas initN (resp. initW) simulate accepting conditions of the
automaton for the first row (resp. first column) of an input picture.

Theorem 7.2. We have Krec〈〈Σ++〉〉 ⊆ Kremso〈〈Σ++〉〉.

Proof (sketch). Let A = (Σ, Q, I,F, E) be a W2OTA. For a ∈ Σ, qv, qh, q ∈ Q,
we set μ(qv ,qh,q)(a) =

∑
(qv ,qh,a,k,q)∈E k. Let V =

{
X(qv,qh,a,q) | (qv, qh, a, q) ∈

Q2 ×Σ ×Q
}

the set of set variables, (X1, . . . ,Xl) an enumeration of V . We set

α(X1, . . . , Xl) := part(X1, . . . ,Xl) ∧
∧

qv ,qh,a,q

∀x.
(

(x ∈ X(qv ,qh,a,q)) → Pa(x)
)

∧ ∀x∀z.
(
(xSvz) →

∨
qx

v ,qx
h,qx,qz

h,qz∈Q;a,b∈Σ

(x ∈ X(qx
v ,qx

h,a,qx)) ∧ (z ∈ X(qx,qz
h,b,qz))

)+

∧ ∀y∀z.
(

(yShz) →
∨

qy
v ,qy

h,qy,qz
v ,qz∈Q;c,b∈Σ

(y ∈ X(qy
v ,qy

h,c,qy)) ∧ (z ∈ X(qz
v ,qy,b,qz))

)+

.

The formula α qualifies unweighted runs in A. Now, let β(X1, . . . ,Xl) :=

α ∧
∧

qv ,qh,a,q

∀x.
(
x ∈ X(qv,qh,a,q)) → μ(qv ,qh,q)(a)

)
∧ initN ∧ initW

∧ ∃z.
(

maxv(z) ∧maxh(z) ∧
∨

qz
v ,qz

h∈Q,qz∈F,b∈Σ

(z ∈ X(qz
v ,qz

h
,b,qz)

)
.

Here, β simulates the distribution of weights along transitions and successful runs. Let
γ := ∃X1 · · · ∃Xl.β(X1, . . . ,Xl) and p ∈ Σ++. Then [[γ]](p) = (‖A‖, p), hence
‖A‖ = [[γ]]. Furthermore, using Lemma 7.1 and remarks above, one can show that the
specified formula γ lies in REMSO(K,Σ).

8 Conclusion

In [18] we assigned weights to tiling systems, domino systems or weighted (quadra-
polic) picture automata and proved for an alphabet Σ and any commutative semiring K
the coincidence of the corresponding series with the projections of series defined by ra-
tional operations. In fact, one can prove that this very class coincides with Krec〈〈Σ++〉〉
[17]. With Theorem 4.5, this implies that the notion of weighted recognizability pre-
sented here is robust and extends the main result of [11] to the weighted case. Further-
more, in [3] it is shown, that a picture language is recognizable if and only if it is the
support of a recognizable series with coefficients in B. Hence, we obtain the classical
equivalence in [12] by restricting to B.

Acknowledgements. I would like to thank Manfred Droste and Dietrich Kuske for their
helpful discussions and comments, as well as the unknown referees whose remarks
resulted in improvements of this paper.
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17. I. Mäurer. Characterizations of weighted picture series. In preparation, 2005.
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Abstract. We consider Markov decision processes (MDPs) with multi-
ple discounted reward objectives. Such MDPs occur in design problems
where one wishes to simultaneously optimize several criteria, for exam-
ple, latency and power. The possible trade-offs between the different
objectives are characterized by the Pareto curve. We show that every
Pareto-optimal point can be achieved by a memoryless strategy; how-
ever, unlike in the single-objective case, the memoryless strategy may
require randomization. Moreover, we show that the Pareto curve can
be approximated in polynomial time in the size of the MDP. Addition-
ally, we study the problem if a given value vector is realizable by any
strategy, and show that it can be decided in polynomial time; but the
question whether it is realizable by a deterministic memoryless strat-
egy is NP-complete. These results provide efficient algorithms for design
exploration in MDP models with multiple objectives.

1 Introduction

Markov decision processes (MDPs) are a widely studied model for dynamic and
stochastic systems [2,8]. An MDP models a dynamic system that evolves through
stages. In each stage, a controller chooses one of several actions, and the system
stochastically evolves to a new state based on the current state and the chosen
action. In addition, one associates a cost or reward with each state and transi-
tion, and the central question is to find a strategy of choosing the actions that
optimizes the rewards obtained over the run of the system, where the rewards
are combined using a discounted sum. In many modeling domains, however,
there is no unique objective to be optimized, but multiple, potentially depen-
dent and conflicting objectives. For example, in designing a computer system,
one is interested not only in maximizing performance but also in minimizing
power. Similarly, in an inventory management system, one wishes to optimize
several potentially dependent costs for maintaining each kind of product, and in
AI planning, one wishes to find a plan that optimizes several distinct goals. The
usual MDP model is insufficient to express these natural problems.
� This research was supported in part by the AFOSR MURI grant F49620-00-1-0327,

and the NSF grants CCR-0225610, CCR-0234690, and CCR-0427202.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 325–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



326 K. Chatterjee, R. Majumdar, and T.A. Henzinger

We study MDPs with multiple objectives, an extension of the MDP model
where there are several reward functions [4,10]. In MDPs with multiple objec-
tives, we are interested not in a single solution that is simultaneously optimal in
all objectives (which may not exist), but in a notion of “trade-offs” called the
Pareto curve. Informally, the Pareto curve consists of the set of realizable value
profiles (or dually, the strategies that realize them) which are not dominated (in
every dimension) by any other value profile. Pareto optimality has been studied
in co-operative game theory [6], and in multi-criterion optimization and decision
making in both economics and engineering [5,9,11]. Finding some Pareto-optimal
point can be reduced to optimizing a single objective: optimize a convex com-
bination of objectives using a set of positive weights; the optimal strategy must
be Pareto-optimal as well (the “weighted factor method”) [4]. In design space
exploration, however, we want to find not one, but all Pareto-optimal points in
order to better understand the trade-offs in the design. Unfortunately, even with
just two reward functions, the Pareto curve may have infinitely many points,
and also contain irrational payoff values. Thus, previous work has focused on
constructing a sampling of the Pareto curve, either by choosing a variety of
weights in the weighted factor method, or by imposing a lexicographic ordering
on the objectives and sequentially optimizing each objective according to the or-
der [1,2]. Unfortunately, this does not provide any guarantee about the quality
of the solutions.

Instead, we study the approximate version of the problem: the ε-approximate
Pareto curve [7] for MDPs with multiple discounted reward criteria. Informally,
the ε-approximate Pareto curve for ε > 0 contains a set of strategies (or dually,
their payoff values) such that there is no other strategy whose value dominates
the values in the Pareto curve by a factor of 1 + ε. Surprisingly, a polynomial-
sized ε-approximate Pareto curve always exists. Moreover, we show that such
an approximate Pareto curve may be computed efficiently (in polynomial time)
in the size of the MDP. Our proof is based on the following characterization of
Pareto-optimal points: every Pareto-optimal value profile can be realized by a
memoryless (but possibly randomized) strategy. This enables the reduction of
the problem to multi-objective linear programs, and we can apply the methods
of [7].

We also study the Pareto realizability decision problem: given a profile of
values, is there a Pareto-optimal strategy that dominates it? We show that the
Pareto realizability problem can be solved in polynomial time. However, if we
restrict the set of strategies to be pure (i.e., no randomization), then the problem
becomes NP-hard. Our complexities are comparable to the single discounted
reward case, where linear programming provides a polynomial-time solution [8].
However, unlike in the single-reward case, where pure and memoryless optimal
strategies always exist, here, checking pure and memoryless realizability is hard.

The results of this paper provide polynomial-time algorithms for both the de-
cision problem and the optimization problem for MDPs with multiple discounted
reward objectives. Since the Pareto curve forms a useful “user interface” for
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desirable solutions, we believe that these results will lead to efficient design
space exploration algorithms in multi-criterion design.

The rest of the paper is organized as follows. In Section 2, we give the basic
definitions, and show in Section 3 the sufficiency of memoryless strategies. Sec-
tion 4 gives a polynomial-time algorithm to construct the ε-approximate Pareto
curve. Section 5 studies the decision version of the problem. Finally, in Section
6, we discuss the extension to MDPs with limit-average (not discounted) reward
objectives, and mention some open problems.

2 Discounted Reward Markov Decision Processes

We denote the set of probability distributions on a set U by D(U).

Markov decision processes (MDPs). A Markov decision process (MDP)
G = (S,A, δ) consists of a finite, non-empty set S of states, a finite, non-empty
set A of actions, and a probabilistic transition function δ : S ×A → D(S) that,
given a state s ∈ S and an action a ∈ A, gives the probability δ(s, a)(t) of
the next state t. We denote by Dest(s, a) = Support(δ(s, a)) the set of possible
successors of s when the action a is chosen. Given an MDP G, we define the set of
edges by E = { (s, t) | ∃a ∈ A. t ∈ Dest(s, a) }, and write E(s) = { t | (s, t) ∈ E }
for the set of possible successors of s.

Plays and strategies. A play of G is an infinite sequence 〈s0, s1, . . .〉 of states
such that for all i ≥ 0, we have (si, si+1) ∈ E. A strategy σ is a recipe that
specifies how to extend a play. Formally, a strategy σ is a function σ: S+ →
D(A) that, given a finite and non-empty sequence of states representing the
history of the play so far, chooses a probability distribution over the set A of
actions. In general, a strategy depends on the history and uses randomization.
A strategy that depends only on the current state is a memoryless or stationary
strategy, and can be represented as a function σ: S → D(A). A strategy that does
not use randomization is a deterministic or pure strategy, i.e., for all histories
〈s0, s1, . . . , sk〉 there exists a ∈ A such that σ(〈s0, s1, . . . , sk〉)(a) = 1. A pure
memoryless strategy is both pure and memoryless, and can be represented as a
function σ: S → A. We denote by Σ, ΣM , ΣP , and ΣPM the sets of all strategies,
all memoryless strategies, all pure strategies, and all pure memoryless strategies,
respectively.

Outcomes. For a strategy σ and an initial state s, we denote by Outcome(s, σ)
the set of possible plays that start from s given strategy σ, that is,
Outcome(s, σ) = { 〈s0, s1, . . .〉 | ∀k ≥ 0. ∃ak ∈ A. σ(〈s0, s1, . . . , sk〉)(ak) >
0 and sk+1 ∈ Dest(sk, ak) }. Once the initial state and a strategy is chosen,
the MDP is reduced to a stochastic process. We denote by Xi and θi random
variables for the i-th state and the i-th action, respectively, in this stochastic
process. An event is a measurable subset of Outcome(s, σ), and the probabilities
of events are uniquely defined. Given a strategy σ, an initial state s, and an
event Φ, we denote by Prσ

s (Φ) the probability that a play belongs to Φ when the
MDP starts in state s and the strategy σ is used. For a measurable function f
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that maps plays to reals, we write Eσ
s [f ] for the expected value of f when the

MDP starts in state s and the strategy σ is used.

Rewards and objectives. Let r: S × A → R be a reward function that asso-
ciates with every state and action a real-valued reward. For a reward function r
the discounted reward objective is to maximize the discounted sum of rewards,
which is defined as follows. Given a discount factor 0 ≤ β < 1, the discounted
reward or payoff value for a strategy σ and an initial state s with respect to the
reward function r is Valσdis(r, s,β) =

∑∞
t=0 βt · Eσ

s [r(Xt, θt)].
We consider MDPs with k different reward functions r1, . . . , rk. Given an

initial state s, a strategy σ, and a discount factor 0 ≤ β < 1, the discounted
reward value vector, or payoff profile, at s for σ with respect to r = 〈r1, . . . , rk〉
is defined as Valσdis (r, s,β) = 〈Valσdis(r1, s,β), . . . ,Valσdis(rk, s,β)〉.

Comparison operators on vectors are interpreted in a point-wise fashion, i.e.,
given two real-valued vectors v1 = 〈v1

1 , . . . , v
k
1 〉 and v2 = 〈v1

2 , . . . , v
k
2 〉, and $%∈

{ <,≤,= }, we write v1 $% v2 if and only if for all 1 ≤ i ≤ k, we have vi
1 $% vi

2.
We write v1 �= v2 to denote that vector v1 is not equal to v2, that is, it is not
the case that v1 = v2.

Pareto-optimal strategies. Given an MDP G and reward functions r1, . . . , rk,
a strategy σ is a Pareto-optimal strategy [6] from a state s if there is no strat-
egy σ′ ∈ Σ such that both Valσdis(r, s,β) ≤ Valσ

′

dis(r, s,β) and Valσdis(r, s,β) �=
Valσ

′

dis(r, s,β); that is, there is no strategy σ′ such that for all 1 ≤ j ≤ k,
we have Valσdis (rj , s,β) ≤ Valσ

′

dis (rj , s,β), and there exists 1 ≤ j ≤ k with
Valσdis(rj , s,β) < Valσ

′

dis(rj , s,β). For a Pareto-optimal strategy σ, the corre-
sponding payoff profile Valσdis(r, s,β) is referred to as a Pareto-optimal point. In
case k = 1, the class of Pareto-optimal strategies are called optimal strategies.

Sufficiency of strategies. Given reward functions r1, . . . , rk, a family ΣC of
strategies suffices for Pareto optimality for discounted reward objectives if for
every discount factor β, state s, and Pareto-optimal strategy σ ∈ Σ, there is a
strategy σ′ ∈ ΣC such that Valσdis(r, s,β) ≤ Valσ

′

dis(r, s,β).

Theorem 1. [2] In MDPs with a single reward function r, the pure memoryless
strategies suffice for optimality for the discounted reward objective, i.e., for all
discount factors 0 ≤ β < 1 and states s ∈ S, there exists a pure memoryless
strategy σ∗ ∈ ΣPM such that for all strategies σ ∈ Σ, we have Valσdis(r, s,β) ≤
Valσ

∗

dis(r, s,β).

3 Memoryless Strategies Suffice for Pareto Optimality

In the sequel, we fix a discount factor β such that 0 ≤ β < 1. Proposition 1
shows the existence of pure memoryless Pareto-optimal strategies.

Proposition 1. There exist pure memoryless Pareto-optimal strategies for
MDPs with multiple discounted reward objectives.
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(0,0)
a

(0,0)
b

(0,1)

a, b

(1,0)

a, b
s1 s2s0

Fig. 1. MDP for Example 1

Proof. Given reward functions r1, . . . , rk, consider a reward function r+ =
r1 + · · · + rk, that is, for all s ∈ S, we have r+(s) = r1(s) + · · · + rk(s). Let
σ∗ ∈ ΣPM be a pure memoryless optimal strategy for the reward function r+

with the discounted reward objective with discount β (such a strategy exists
by Theorem 1). We show that σ∗ is Pareto-optimal. Assume towards contra-
diction that σ∗ is not a Pareto-optimal strategy, then let σ ∈ Σ be such that
Valσ

∗

dis(r, s,β) ≤ Valσdis(r, s,β), and for some j, Valσ
∗

dis (rj , s,β) < Valσdis (rj , s,β).
Then we have Valσ

∗

dis (r+, s,β) =
∑k

j=1 Valσ
∗

dis (rj , s,β) <
∑k

j=1 Valσdis(rj , s,β) =
Valσdis(r+, s,β). This contradicts that σ∗ is optimal for r+.

The above proof can be generalized to any convex combination of the multiple
objectives, that is, for positive weights w1, . . . , wk, the optimal strategy for the
single objective

∑
i wi ·ri is Pareto-optimal. This technique is called the weighted

factor method [4,10], and used commonly in engineering practice to find subsets
of the Pareto set [5]. However, not all Pareto-optimal points are obtained in this
fashion, as the following example shows.

Example 1. Consider the MDP from Fig. 1, with two actions a and b, and two
reward functions r1 and r2. The transitions and the respective rewards are shown
as labeled edges in the figure. Consider the discounted reward objectives for
reward functions r1 and r2. For the pure memoryless strategies (and also the
pure strategies) in this MDP, the possible value vectors are ( β

1−β , 0) and (0, β
1−β ).

However, consider a memoryless strategy σm that at state s0 chooses action a
and b each with probability 1/2. For r = (r1, r2), we have Valσm

dis (r, s0,β) =
( β
2·(1−β) ,

β
2·(1−β) ). The strategy σm is Pareto-optimal and no pure memoryless

strategy can achieve the corresponding value vector. Hence it follows that the
pure strategies (and the pure memoryless strategies) do not suffice for Pareto
optimality. Note that for all 0 < x < 1, the memoryless strategy that chooses a

with probability x, is a Pareto-optimal strategy, with value vector ( x·β
1−β ,

(1−x)·β
1−β ).

Hence the set of Pareto-optimal value vectors may be uncountable and value
vectors may have irrational values.

We now show that the family of memoryless strategies suffices for Pareto
optimality. We assume the state space S is enumerated as S = { 1, . . . , n }. For
a state t ∈ S, we define the reward function rt by rt(s, a) = 1 if s = t, and 0
otherwise, i.e., a reward of value 1 is gained whenever state t is visited. Similarly,
we define the reward function rt,b for a state t ∈ S and an action b ∈ A by
rt,b(s, a) = 1 if s = t and b = a, and 0 otherwise, i.e., a reward of value 1 is
gained whenever state t is visited and action b is chosen. Given a strategy σ ∈ Σ
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and a state s ∈ S, we define the discounted frequency of the state-action pair
(t, a) as

Freqσ
s (t, a,β) = Valσdis (rt,a, s,β) =

∞∑
k=0

βk · Eσ
s [1(Xk=t,θk=a)],

and the discounted frequency of the state t as

Freqσ
s (t,β) = Valσdis (rt, s,β) =

∞∑
k=0

βk · Eσ
s [1(Xk=t)].

Observe that
∑

a∈A Freqσ
s (t, a,β) = Freqσ

s (t,β) for all s, t ∈ S and σ ∈ Σ. For
a memoryless strategy σm ∈ ΣM and a transition function δ, we denote by
δσm(s, t) =

∑
a∈A σm(s)(a) · δ(s, a)(t) the probability of the transition from s to

t given δ and σm.

Proposition 2. Given a memoryless strategy σm ∈ ΣM , consider a vector z =
〈z1, . . . , zn〉 of variables, where S = { 1, . . . , n }. The set of n equations

zi = rs(i) + β ·
∑
j∈S

δσm(j, i) · zj, for i ∈ S,

has the unique solution zi = Freqσm
s (i,β) for all 1 ≤ i ≤ n.

Proof. To establish the desired claim we show that for all i ∈ S, we have
Freqσm

s (i,β) = rs(i) + β ·
∑

j∈S δσm(j, i) · Freqσm
s (j,β). The uniqueness follows

from arguments similar to the uniqueness of values under memoryless strategies
(see [2]).

Freqσm
s (i,β) =

∑∞
k=0 βk · Eσm

s [1(Xk=i)]
=
∑∞

k=0 βk · Eσm
s [
∑

j∈S 1(Xk−1=j) δσm(j, i)]
= rs(i) +

∑∞
k=1 βk ·

∑
j∈S Eσm

s [1(Xk−1=j)] · δσm(j, i)
= rs(i) + β ·

∑
j∈S

(∑∞
k=1 βk−1Eσm

s [1(Xk−1=j)]
)
· δσm(j, i)

= rs(i) + β ·
∑

j∈S

(∑∞
z=0 βz · Eσm

s [1(Xz=j)]
)
· δσm(j, i)

= rs(i) + β ·
∑

j∈S Freqσm
s (j,β) · δσm(j, i).

Given a strategy σ ∈ Σ and an initial state s, we define a memoryless strategy
σf,s ∈ ΣM from the discounted frequency of the strategy σ as follows:

σf,s(t)(a) =
Freqσ

s (t, a,β)
Freqσ

s (t,β)
, for all t ∈ S and a ∈ A.

Since
∑

a∈A Freqσ
s (t, a,β) = Freqσ

s (t,β) and Freqσ
s (t, a,β) ≥ 0, it follows that

σf,s(t) is a probability distribution. Thus σf,s is a memoryless strategy. From
Proposition 2, and the identity Freqσ

s (i,β) = rs(i)+β ·
∑

j∈S Freqσ
s (j,β)·δσf,s

(j),
we obtain the following lemma.

Lemma 1. For all strategies σ ∈ Σ and states i, s ∈ S, we have Freqσ
s (i,β) =

Freqσf,s
s (i,β).
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Proof. We show that Freqσ
s (i,β) = rs(i) + β ·

∑
j∈S Freqσ

s (j,β) · δσf,s
(j). The

result then follows from Proposition 2.

Freqσ
s (i,β) =

∑∞
k=0 βk · Eσ

s [1(Xk=i)]
=
∑∞

k=0 βk · Eσ
s [
∑

j∈S

∑
a∈A 1(Xk−1=j,θk−1=a)δ(j, a)(i)]

= rs(i) +
∑∞

k=1 βk ·
∑

j∈S

∑
a∈A Eσ

s [1(Xk−1=j,θk−1=a)] · δ(j, a)(i)
= rs(i) + β ·

∑
j∈S

∑
a∈A(

∑∞
k=1 βk−1Eσ

s [1(Xk−1=j,θk−1=a)]) · δ(j, a)(i)
= rs(i) + β ·

∑
j∈S

∑
a∈A Freqσ

s (j, a,β) · δ(j, a)(i)
= rs(i) + β ·

∑
j∈S

∑
a∈A

(
Freqσ

s (j,β) · Freqσ
s (j,a,β)

Freqσ
s (j,β)

)
· δ(j, a)(i)

= rs(i) + β ·
∑

j∈S Freqσ
s (j,β) ·

(∑
a∈A

Freqσ
s (j,a,β)

Freqσ
s (j,β)

)
· δ(j, a)(i)

= rs(i) + β ·
∑

j∈S Freqσ
s (j,β) ·

∑
a∈A σf,s(j)(a) · δ(j, a)(i)

= rs(i) + β ·
∑

j∈S Freqσ
s (j,β) · δσf,s

(j, i).

Corollary 1. For all strategies σ ∈ Σ, all states i, s ∈ S, and all actions a ∈ A,
we have Freqσ

s (i, a,β) = Freqσf,s
s (i, a,β).

Proof. The following equalities follow from the definitions and Lemma 1:

Freqσf,s
s (i, a,β) = Freqσf,s

s (i,β) · σf,s(i)(a)
= Freqσ

s (i,β) · Freqσ
s (i,a,β)

Freqσ
s (i,β)

= Freqσ
s (i, a,β).

Theorem 2. For all reward functions r, all strategies σ ∈ Σ, and all states
s ∈ S, we have Valσdis(r, s,β) = Valσf,s

dis (r, s,β).

Proof. The result is proved as follows:

Valσdis(r, s,β) =
∑∞

k=0 βk · Eσ
s [r(Xk, θk)]

=
∑∞

k=0 βk · Eσ
s [
∑

i∈S

∑
a∈A r(i, a) · 1(Xk=i,θk=a)]

=
∑

i∈S

∑
a∈A(

∑∞
k=0 βk · Eσ

s [1(Xk=i,θk=a)]) · r(i, a)
=
∑

i∈S

∑
a∈A Freqσ

s (i, a,β) · r(i, a)
=
∑

i∈S

∑
a∈A Freqσf,s

s (i, a,β) · r(i, a) (by Corollary 1).

Similarly, it follows that Valσf,s

dis (r, s,β) =
∑

i∈S

∑
a∈A Freqσf,s

s (i, a,β) · r(i, a).
This establishes the result.

Theorem 2 yields Theorem 3, and since the set of memoryless strategies is convex,
it also shows that the set of Pareto-optimal points is convex.

Theorem 3. Given an MDP with multiple reward functions r, for all strate-
gies σ ∈ Σ and all states s ∈ S, the memoryless strategy σf,s ∈ ΣM satisfies
Valσdis(r, s,β) = Valσf,s

dis (r, s,β). Consequently, the memoryless strategies suffice
for Pareto optimality for MDPs with multiple discounted reward objectives.

4 Approximating the Pareto Curve

Pareto curve. Let M be an MDP with k reward functions r = 〈r1, . . . , rk〉.
The Pareto curve Pdis (M, s,β, r) of the MDP M at state s with respect to
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discounted reward objectives is the set of all k-vectors of values such that
for each v ∈ Pdis (M, s,β, r), there is a Pareto-optimal strategy σ such that
Valσdis(r, s,β) = v. We are interested not only in the values, but also in the
Pareto-optimal strategies. We often blur the distinction and refer to the Pareto
curve Pdis (M, s,β, r) as a set of strategies that achieve the Pareto-optimal val-
ues (if there is more than one strategy that achieves the same value vector,
then Pdis (M, s,β, r) contains at least one of them). For an MDP M and a real
ε > 0, an ε-approximate Pareto curve, denoted P ε

dis(M, s,β, r), is a set of strate-
gies in Σ such that there is no strategy σ′ ∈ Σ such that for all strategies
σ ∈ P ε

dis (M, s,β, r), we have Valσ
′

dis(ri, s,β) ≥ (1 + ε) · Valσdis(ri, s,β) for all
1 ≤ i ≤ k. That is, an ε-approximate Pareto curve contains enough strategies
such that every Pareto-optimal strategy is “almost” dominated by some strategy
in P ε

dis(M, s,β, r).

Multi-objective linear programming. A multi-objective linear program L
consists of (i) a set of k objective functions o1, . . . , ok, where oi(x) = cT

i · x, for
a vector ci of coefficients and a vector x of variables; and (ii) a set of linear con-
straints specified by A·x ≥ b, for a matrix A and a value vector b. A valuation of
x is a solution if it satisfies the set (ii) of linear constraints. A solution x is Pareto-
optimal if there is no other solution x′ such that both 〈o1(x), . . . , ok(x)〉 ≤
〈o1(x′), . . . , ok(x′)〉 and 〈o1(x), . . . , ok(x)〉 �= 〈o1(x′), . . . , ok(x′)〉. Given a multi-
objective linear program L, the Pareto curve for L, denoted P (L), is the set of
k-vectors v of values such that there is a Pareto-optimal solution x of L with
v = 〈o1(x), . . . , ok(x)〉. The definition of ε-approximate Pareto curves P ε(L) for
a multi-objective linear program L and a real ε > 0, is analogous to the definition
of ε-approximate Pareto curves for multi-objective MDPs given above.

Theorem 4. [7] Given a multi-objective linear program L with k objective func-
tions, the following assertions hold:

1. For all ε > 0, there exists an ε-approximate Pareto curve P ε(L) whose size
is is polynomial in |L| and 1

ε , and exponential in k.
2. For all ε > 0, there exists an algorithm to construct an ε-approximate Pareto

curve P ε(L) in time polynomial in |L| and 1
ε , and exponential in k.

Proof. Part 1 is a direct consequence of Theorem 1 of [7]. Part 2 follows from
Theorem 3 of [7] and the fact that linear programming can be solved in polyno-
mial time.

Solving MDPs by linear programming. Given an MDP M = (S,A, δ) with
state space S = {1, . . . , n}, a reward function r, and a discount factor 0 ≤ β < 1,
the discounted reward objective can be computed as the optimal solution of a
linear program [2]. For multi-objective MDPs, we extend the standard linear
programming formulation as follows. Given MDP M an discount factor β as
before, an initial state s, and reward functions r1, . . . , rk, the multi-objective
linear program has the set { x(t, a) | t ∈ S and a ∈ A } of variables. Intuitvely,
the variable x(t, a) represents the discounted frequency of the state-action pair



Markov Decision Processes with Multiple Objectives 333

(t, a) when the starting state is s. The constraints of the multi-objective linear
program over the variables x(·, ·) are given by:∑

a∈A x(t, a) = rs(t) + β ·
∑

u∈S

∑
a1∈A δ(u, a1)(t) · x(u, a1), for t ∈ S;

x(t, a) ≥ 0, for t ∈ S, a ∈ A.
(1)

Equation (1) provides constraints on the discounted frequencies. The k objective
functions are

max
∑
t∈S

∑
a∈A

ri(t, a) · x(t, a), for i ∈ { 1, . . . , k }.

Consider any solution x(t, a), for t ∈ S and a ∈ A, of this linear program. Let
x(t) =

∑
a∈A x(t, a). The solution derives a memoryless strategy that chooses

action a at state t with probability x(t,a)
x(t) . The linear program with the i-th

objective function asks to maximize the discounted reward for the i-th reward
function ri over the set of all memoryless strategies. The optimal solution for the
linear program with only the i-th objective also derives an optimal memoryless
strategy for the reward function ri. Furthermore, given a solution of the linear
program, or equivalently, the memoryless strategy derived from the solution, we
can compute the corresponding payoff profile in polynomial time, because the
MDP reduces to a Markov chain when the strategy is fixed.

We denote by Ldis(M, s,β, r) the multi-objective linear program defined
above for the memoryless strategies of an MDP M , state s of M , discount
factor β, and reward functions r = 〈r1, . . . , rk〉. Let P (Ldis(M, s,β, r)) be the
Pareto curve for this multi-objective linear program. With abuse of notation,
we write P (Ldis(M, s,β, r)) also for the set of memoryless strategies that are
derived from the Pareto-optimal solutions of the multi-objective linear program.
It follows that the Pareto curve P (Ldis(M, s,β, r)) characterizes the set of mem-
oryless Pareto-optimal points for the MDP with k discounted reward objectives.
Since memoryless strategies suffice for Pareto optimality for discounted reward
objectives (Theorem 3), the following lemma is immediate. Theorem 5 follows
from Theorem 4 and Lemma 2.

Lemma 2. Given an MDP M with k reward functions r, a state s of M , and
a discount factor 0 ≤ β < 1, let Ldis(M, s,β, r) be the corresponding multi-
objective linear program. The following assertions hold:

1. P (Ldis(M, s,β, r)) = Pdis (M, s,β, r), that is, the Pareto curves for the linear
program and the discounted reward MDP coincide.

2. For all ε > 0 and all ε-approximate Pareto curves P ε(Ldis(M, s,β, r)) of
Ldis(M, s,β, r), there is an ε-approximate Pareto curve P ε

dis (M, s,β, r) such
that P ε(Ldis (M, s,β, r)) = P ε

dis(M, s,β, r).

Theorem 5. Given an MDP M with k reward functions r and a discount factor
0 ≤ β < 1, the following assertions hold:
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1. For all ε > 0, there exists an ε-approximate Pareto curve P ε
dis (M, s,β, r)

whose size is polynomial in |M |, |β|, |r|, and 1
ε , and exponential in k.

2. For all ε > 0, there exists an algorithm to construct an ε-approximate Pareto
curve P ε

dis (M, s,β, r) in time polynomial in |M |, |β|, |r|, and 1
ε , and expo-

nential in k.

Theorem 5 shows that the Pareto curve can be efficiently ε-approximated. Recall
that it follows from Example 1 that the set of Pareto-optimal points may be
uncountable and the values may be irrational. Hence the ε-approximation of the
Pareto curve is a useful finite approximation. The approximate Pareto curve
allows us to answer trade-off queries about multi-objective MDPs. Specifically,
given a multi-objective MDP M with k reward functions r and discount factor
β, and a value profile w = 〈w1, . . . , wk〉, we can check whether w is ε-close to
a Pareto-optimal point at state s by constructing P ε

dis(M, s,β, r) in polynomial
time, and checking that there is some strategy in P ε

dis(M, s,β, r) whose payoff
profile is ε-close to w.

5 Pareto Realizability

In this section we study two related aspects of multi-objective MDPs: Pareto
realizability, and pure memoryless Pareto realizability. The Pareto realizabil-
ity problem asks, given a multi-objective MDP M with reward functions r =
〈r1, . . . , rk〉 and discount factor 0 ≤ β < 1, a state s of M , and a value profile
w = 〈w1, . . . , wk〉 of k rational numbers, whether there exists a strategy σ such
that Valσdis (r, s,β) ≥ w. Observe that such a strategy exists if and only if there
is a Pareto-optimal strategy σ′ such that Valσ

′

dis (r, s,β) ≥ w. Also observe that
it follows from Lemma 2 that a value profile w is realizable if and only if it is
realizable by a memoryless strategy. The pure memoryless Pareto realizability
problem further requires this strategy to be pure and memoryless.

The Pareto realizability problem arises when certain target behaviors are
required, and one wishes to check if they can be attained on the model. Pure
Pareto realizability arises in situations, such as circuit implementations, where
the implemented strategy does not have access to randomization.

Theorem 6. The Pareto realizability problem for MDPs with multiple dis-
counted reward objectives can be solved in polynomial time. The pure memoryless
Pareto realizability problem for MDPs with multiple discounted reward objectives
is NP-complete.

Proof. We show that Pareto realizability is in polynomial time by reduction
to linear programming. The reduction is obtained as follows: along with the
constraints defined by Equation (1) we add the constraints

wi ≤
∑
t∈S

∑
a∈A

x(t, a) · ri(t, a), for i ∈ { 1, . . . , k }.

The original constraints from Equation (1) provide constraints on the discounted
frequencies. The additional new constraints ensure that the payoff value for each
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reward function ri is greater than or equal to the corresponding profile value wi.
Thus, if the set is consistent, then the answer to the Pareto realizability problem
is “yes,” and if inconsistent, the answer is “no.” Consistency of this set can be
checked in polynomial time using linear programming.

Pure and memoryless Pareto realizability is in NP since we can guess a pure
memoryless strategy and compute its payoff values in polynomial time. We can
then check that each payoff value is greater than or equal to the given profile
value. It is NP-hard by reduction from subset sum. The subset sum problem
takes as input natural numbers { a1, . . . , an }, and a natural number p, and asks
if there exist v1, . . . , vn in { 0, 1 } such that a1 · v1 + · · · + an · vn = p. It is
NP-complete [3].

For an instance of the subset sum problem, we construct an MDP with two
reward functions as follows. We assume for clarity that β = 1. The construction
can be adapted for any fixed discount factor by suitably scaling the rewards. The
MDP has n + 1 states, numbered from 1 to n + 1. We fix the start state to be
1. There are two actions, L and R. The transition relation is deterministic, for
state i ∈ { 1, . . . , n }, we have δ(i, L)(i+ 1) = δ(i, R)(i+ 1) = 1. For state n+ 1,
we have δ(n + 1, L)(n + 1) = δ(n + 1, R)(n + 1) = 1. The reward function r1 is
defined as r1(i, L) = ai, and r1(i, R) = 0 for i ∈ { 1, . . . , n }, and r1(n + 1, L) =
r1(n+1, R) = 0. Similarly, the reward function r2 is defined as r2(i, R) = ai, and
r2(i, L) = 0 for i ∈ { 1, . . . , n }, and r2(n+ 1, L) = r2(n+ 1, R) = 0. We now ask
if the value profile (p,

∑
i ai − p) is pure Pareto realizable for this MDP. From

the construction, it is clear that this profile is pure memoryless Pareto realizable
iff the answer to the subset sum problem is “yes”. In fact, the pure strategy that
realizes the profile provides the required vi’s: if action L is played at state i, then
vi = 1, else vi = 0. Since the MDP is a DAG, the hardness construction holds if
we require the realizing strategy to be pure (not necessarily memoryless).

The pure Pareto realizability problem requires the realizing strategy to be pure,
but not necessarily memoryless. It follows from the reduction given above that
the pure Pareto realizability problem for MDPs with multiple discounted reward
objectives is NP-hard; however, we do not have a characterization of the exact
complexity of the problem.

6 Limit-Average Reward Objectives

We now briefly discuss the class of limit-average reward objectives, which
is widely studied in the context of MDPs. Given a reward function r, the
limit-average reward for a strategy σ at an initial state s is Valσavg(r, s) =

s0s1

b (0,1)

b (1,0)

(0,1)
aa

(1,0)

Fig. 2. MDP for Example 2
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lim supk→∞
1
k ·
∑k

t=0 Eσ
s [r(Xt, θt)]. With this definition, Theorem 1 holds for

a single limit-average reward objective, and Proposition 1 extends to multiple
limit-average reward objectives. Moreover, a simple adaptation of Example 1
shows that the pure strategies do not suffice for Pareto optimality for limit-
average reward objectives. Unfortunately, Theorem 3 does not generalize. Ex-
ample 2 below shows that for limit-average reward objectives, the family of
memoryless strategies does not capture all Pareto-optimal strategies. However,
it is still possible that the Pareto curve for limit-average reward objectives can
be approximated in polynomial time. This remains an open problem.

Example 2. Fig. 2 shows an MDP with two actions a and b, and two reward
functions r1 and r2. The transitions and the respective rewards are shown as
labeled edges in the figure. Consider the limit-average reward objectives for
r1 and r2. Given any memoryless strategy σm, at s0 we have Valσm

avg(s0, r1) +
Valσm

avg(s0, r2) = 1. We now consider the following strategy σ, which is played
in rounds. In round j, the strategy σ first goes to state s1, chooses action a
(i.e., stays in s1) unless the average for reward r1 is at least 1 − 1

j , then goes
to state s0, chooses action a unless the average reward for reward r2 is at least
1− 1

j , and then proceeds to round j +1. Given σ, we have Valσavg(s0, r1) = 1 and
Valσavg(s0, r2) = 1. There is no memoryless Pareto-optimal strategy to achieve
this value vector.
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Abstract. We study mechanisms for cooperative cost-sharing games
satisfying: voluntary participation (i.e., no user is forced to pay more
her valuation of the service), consumer sovereignty (i.e, every user can
get the service if her valuation is large enough), no positive transfer (i.e.,
no user receives money from the mechanism), budget balance (i.e., the
total amount of money that users pay is equal to the cost of servicing
them), and group strategyproofness (i.e., the mechanism is resistant to
coalitions).

We show that mechanisms satisfying all these requirements must obey
certain algorithmic properties (which basically specify how the serviced
users are selected). Our results yield a characterization of upper continu-
ous mechanisms (this class is interesting as all known general techniques
yield mechanisms of this type). Finally, we extend some of our negative
results and obtain the first negative results on the existence of mech-
anisms satisfying all requirements above. We apply these results to an
interesting generalization of cost-sharing games in which the mechanism
cannot service certain “forbidden” subsets of users. These generalized
cost-sharing games correspond to natural variants of known cost-sharing
games and have interesting practical applications (e.g., sharing the cost
of multicast transmissions which cannot be encrypted).

1 Introduction

Consider a set U of n users that wish to buy a certain service from some service
providing company P. Each user i ∈ U valuates the service offered an amount
equal to vi. This value represents how much user i would benefit from being
serviced. Alternatively, vi quantifies the maximum amount of money that user i
is willing to pay for getting the service. The service provider must then develop
a so called mechanism, that is, a policy for deciding (i) which users should be
serviced and (ii) the price that each of them should pay for getting the service.

Mechanisms are complex auctions where users are asked to report their will-
ingness to pay which, in the end, determines the mechanism outcome (i.e., the
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serviced users and the prices). In particular, the value vi is known to user i but
not to the provider. Hence, users may act selfishly and misreport vi (e.g., try-
ing to get the service for a better price). Group strategyproof mechanisms are
“resistent” to coalitions of selfish users (see below for a formal definition), and
thus particularly appealing for cost-sharing games requiring some “reasonable”
share of the costs among the (possibly selfish) users.

An instance of a cost-sharing games is a pair I = (U,C), where U is a set of
n users, and the cost function C : 2U → R+ ∪ {0} gives the cost C(Q) > 0 of
servicing all users in a non-empty set Q ⊆ U . Each user is a selfish agent report-
ing some bid value bi (possibly different from vi); the true value vi is privately
known to agent i. Based on the reported values b = (b1, . . . , bn) a mechanism
M = (A, P ) uses an algorithm A to select a subset A(b|I) ∈ 2U of users to
service. Moreover, according to the payment functions P = (P 1, . . . , Pn), each
user i ∈ A(b|I) must pay P i(b|I) for getting the service. (Users that do not get
serviced do not pay.) Hence, the utility of agent i when she reports bi, and the
other agents report b−i := (b1, . . . , bi−1, bi+1, . . . , bn), is equal to

uM
i (bi,b−i|I) :=

{
vi − P i(bi,b−i|I) if i ∈ A(bi,b−i|I),
0 otherwise.

Developing economically viable cost-sharing mechanisms is a central problem
in (cooperative) game theory. In particular, there is a number of natural con-
straints/goals that, for every instance I = (U,C) and for every v = (v1, . . . , vn),
a mechanism M = (A, P ) should satisfy/meet: 1

1. α-Approximate Budget Balance (α-BB). The prices charged to all users
should recover the cost of servicing them and, at the same time, should not
be more than α > 1 times this cost. In particular, we require that

C(A(b)) ≤
∑

i∈A(b|I)

P i(b|I) ≤ α · C(A(b)). (1)

The lower bound guarantees that there is no loss for the provider. The upper
bound implies that a competitor could offer a better price to all users only if
coming up with payments such that the above condition is satisfied for some
1 ≤ α′ < α. Ideally, one wishes the budget-balance (BB) condition, that
is, the case α = 1. In this case, no competitor can offer better prices to all
users in A(b) without running into a loss. (The cost C(Q) is “common” to
all providers and represents the “minimum” cost for servicing Q.)

2. No Positive Transfer (NPT). No user receives money from the mecha-
nism, i.e., P i(·) ≥ 0.

3. Voluntary Participation (VP). We never charge a user an amount of
money greater than her reported valuation, that is, ∀bi, ∀b−i it holds that
bi ≥ P i(bi,b−i|I). In particular, a user has always the option of not paying
for a service for which she is not interested. Moreover, P i(b|I) = 0, for all
i /∈ A(b|I), i.e., only the users getting the service will pay.

1 Notice that we need to consider all possible v = (v1, . . . , vn) since the mechanism
does not known these values.
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4. Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation, that is, ∀ b−i, ∃ bi = bi(b−i) such
that i ∈ A(bi,b−i|I).

5. Group Strategyproofness (GSP). We require that a user i ∈ U that
misreport her valuation (i.e., bi �= vi) cannot improve her utility nor improve
the utility of other users without worsening her own utility (otherwise, a
coalition C containing i would secede). Consider a coalition C ⊆ U of users.
For any two vectors x and y of length n, (xC ,y−C) denotes the vector
z = (z1, . . . , zn) such that zi = xi if i ∈ C and zi = yi if i /∈ C. The group
strategyproofness requires that if the inequality

uM
i (bC ,v−C) ≥ uM

i (vC ,v−C) (2)

holds for all i ∈ C then it must hold with equality for all i ∈ C as well.
Notice that, since we require the condition on Eq. 2 to hold for every v =
(vC ,v−C), replacing b−C by v−C does not change the definition of group
strategyproofness. Hence, the special case of C = {i} yields the weaker
notion of strategyproofness : ∀bi and ∀b−i it holds that

uM
i (vi,b−i) ≥ uM

i (bi,b−i), (3)

for every user i.

Mechanisms satisfying all requirements above have been deeply investigated (see
e.g. [10,9,3]). All known techniques yield mechanisms which select the final set
Q = A(b) among a “sufficiently reach” family PA ⊆ 2U of candidates. More
specifically, an invariant of known mechanisms is that one can always find an
order i1, . . . , in of the users such that each of the following subsets is given in
output for some bid vector b:

{i1, . . . , in}︸ ︷︷ ︸
Q1=U

, {i2, . . . , in}︸ ︷︷ ︸
Q2

, . . . , {ij, . . . , in}︸ ︷︷ ︸
Qj

, . . . , ∅. (4)

In general, an algorithm A may consider all possible subsets of U , that is,
PA = 2U , meaning that every Q ⊆ U is returned for some bid vector b. In some
cases, however, it may be convenient/necessary to never output certain subsets.
There are (at least) two main reasons for this:

1. Computational complexity. Computing C(Q) may be NP-hard for certain
Q ⊆ U . In this case, it may be good to avoid Q = A(b) since otherwise
M = (A, P ) will not run in polynomial time, or it will only guarantee α-BB
condition, for some α > 1, unless P=NP.

2. Generalized cost-sharing games. In many practical applications, certain sub-
sets Q ⊆ U may be “forbidden” in the sense that it is impossible to service all
and only those users in Q. We model these applications by introducing gen-
eralized cost-sharing games where instances are triples I = (U,P , C), with
P ⊆ 2U and C : P → R+ ∪ {0}. The set P contains the non-forbidden sets
and thus we require A(b) ∈ P, for all b. (We assume ∅ ∈ P and C(Q) > 0
for Q �= ∅.)
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As mentioned above, all known techniques yield mechanisms which are se-
quential, that is, there exists σ = (i1, . . . , in) such that Pσ ⊆ PA, where Pσ

consists of all the subsets listed in Eq. 4 (see Def. 1). This poses severe limi-
tations on which (generalized) cost-sharing games these techniques can “solve
efficiently”: (i) Polynomial running time can be achieved only if C(·) can be
approximated in polynomial time within a factor α for all sets in Pσ; (ii) For
generalized cost-sharing games, the instance I = (U,P, C) must satisfy Pσ ⊆ P .
It is then natural to ask whether there exist mechanisms of a totally different
type (i.e., not sequential) which are more powerful, that is, they are computa-
tionally more efficient and/or solve more (generalized) cost-sharing games.

In this work we prove that, for the natural class of upper continuous mecha-
nisms [2] (see also Def. 2), the answer to this question is “no”. And it remains
“no” even if we allow the α-BB condition for an arbitrarily large α < ∞ (e.g.,
α = n). More specifically, for every upper continuous mechanism M = (A, P )
which is α-BB, VP, CS, NPT and GSP, it must be the case that A is sequential,
for every α ≥ 1. Our proofs show an interesting phenomenon: for upper contin-
uous mechanisms satisfying all but the α-BB condition above, the fact that A
is not sequential creates a “gap” in the payments which either must be all 0 or
cannot be bounded from above (i.e., for every β > 0 there exists b such that
P i(b) > β).

Our result, combined with a simple upper continuous mechanism given in [14,2],
shows that sequential algorithms characterize upper continuous mechanisms.
This implies that generalized cost-sharing games admits such upper continuous
mechanisms if and only if they admit sequential algorithms (see Corollary 5). In
particular, relaxing BB to α-BB, for any α > 1, would not allow for solving a
wider class of problems; and the “simple” technique in [14,2] is not less powerful
than more complex ones which yield upper continuous mechanisms.

Given our characterization, we can better understand which are the limita-
tions of upper continuous mechanisms satisfying α-BB, NPT, VP, CS and GSP:

1. Polynomial-time mechanisms exist only if C(·) is approximable within poly-
nomial time over Pσ, for some σ. If we require BB, then C(·) must be
polynomial-time computable over Pσ, for some σ.

2. For generalized cost-sharing games, these mechanisms exist only for those
instances I = (U,P, C) satisfying Pσ ⊆ P , for some σ. Moreover, the factor
α in the α-BB condition is totally irrelevant: if α-BB is possible then BB is
possible too, for any α > 1.

We stress that these are the first lower bounds on (upper continuous) mecha-
nisms satisfying α-BB, NPT, VP, CS and GSP. On one hand, one cannot derive
any lower bound on polynomial-time mechanisms from the computational com-
plexity of approximating C(·): indeed, there exists cost-sharing games which
admit (upper continuous) polynomial-time BB mechanisms satisfying NPT, VP,
CS and GSP [14,15], while the cost function C(·) is NP-hard to approximate
within some α > 1. On the other hand, generalized cost-sharing games have
not been investigated before, though many practical applications require them
(see Sect. 4).
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We also obtain necessary conditions for general (i.e., non upper continuous)
mechanisms. We use these conditions (Def.s 3 and 4) to prove general lower
bounds and that, for two users, upper continuous mechanisms are not less pow-
erful than general ones (basically, every mechanism must be sequential – Corol-
lary 3). We describe several applications of generalized cost-sharing games and
of our results in Sect. 4.

Due to lack of space, some of the proofs are omitted; these proofs are available
in the full version of the paper [13].

Related Work. Probably the simplest BB, NPT, VP, CS and GSP mechanism is
the one independently described in [14,2]: Starting from U , drop users in some
fixed order σ = (i1, . . . , in), until some user ir accepts to pay for the total cost
of the current set, that is, bir ≥ C({ir, . . . , in}).

More sophisticated mechanisms were already known from the seminal works
by Moulin and Shenker [10,9]. Their mechanisms employ so called cross-monoto-
nic cost-sharing methods which essentially divide the cost C(Q) among all users
in Q so that user i would not pay more if the mechanism expands the set Q
to some Q′ ⊃ Q. Cross-monotonic functions do not exists for several games of
interest, thus requiring relaxing BB to α-BB, for some factor α > 1 [8,2,1,7,5].
Moreover, cross-monotonicity is difficult to obtain in general (e.g., the works
[3,12,6,1,5] derive these cost-sharing methods from the execution of non-trivial
primal-dual algorithms).

In [14] the authors prove that Moulin and Shenker mechanisms also work for
a wider class of cost-sharing methods termed self cross-monotonic. The simple
mechanism described above is one of such mechanisms [14]. Also the polynomial-
time mechanisms for the Steiner tree game in [14,15] are in this class.

Basically, all known mechanisms are upper continuous, except for the one
in [2] which, however, requires C(·) being subadditive. All mechanisms in the
literature are either variants of Moulin and Shenker mechanisms [10,9], or have
been presented in [2]. In all cases, the mechanisms are sequential (and apart
from those in [14,15], they use algorithms such that PA = 2U ).

Characterizations of BB, NPT, VP, CS and GSP mechanisms are known only
for the following two cases: (i) the cost function C(·) is submodular [10,9], or (ii)
the mechanism is upper continuous and with no free riders 2 [2]. In both cases,
these mechanisms are characterized by cross-monotonic cost-sharing methods.

1.1 Preliminaries and Basic Results

Throughout the paper we let Ai(b) = 1 if i ∈ A(b), and Ai(b) = 0 otherwise,
for all i and all b.

Definition 1. For any ordering σ = (i1, . . . , in) of the users, we let

Pσ := {∅} ∪ {ij, ij+1, . . . , in}1≤j≤n.

2 Mechanisms without free riders guarantee that all users in A(b) pay something.
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An algorithm A is sequential if there exists σ such that Pσ ⊆ PA. An instance
I = (U,P, C) of a generalized cost-sharing game admits a sequential algorithm
if Pσ ⊆ P, for some σ. A generalized cost-sharing game admits a sequential
algorithm if every instance of the game does.

Theorem 1 ([14,2]). For any ordering σ of the users, there exists an upper
continuous BB, NPT, VP, CS and GSP mechanism M = (A, P ) such that PA =
Pσ. Hence, every instance of a generalized cost-sharing game which admits a
sequential algorithm, admits an upper continuous BB, NPT, VP, CS and GSP
mechanism.

The following lemma is a well-known result in mechanism design. (See also [13]
for a proof.)

Lemma 1 ([16,11]). For any strategyproof mechanism M = (A, P ) the follow-
ing conditions must hold:

Ai(bi,b−i) = 1 ⇒ ∀b′i > bi, Ai(b′i,b−i) = 1; (5)
Ai(bi,b−i) = Ai(b′i,b−i) ⇒ P i(bi,b−i) = P i(b′i,b−i). (6)

Lemma 1 and the CS condition imply that, for every i and every b−i, there
exists a threshold θi(b−i) such that agent i is serviced for all bi > θ(b−i), while
for bi < θi(b−i) agent i is not serviced. The following kind of mechanism breaks
ties, i.e. the case bi = θi(b−i), in a fixed manner:

Definition 2 (upper continuous mechanisms [2]). A mechanism M =
(A, P ) is upper-continuous if Ai(x,b−i) = 1 for all x ≥ θi(b−i), where θi(b−i) :=
inf{y| Ai(y,b−i) = 1} (This value exists unless the CS condition is violated.)

We will use the following technical lemma to show that, if payments are bounded
from above, then once a user i bids a “very high” bi, then this user will have to
be serviced no matter what the other agents report.

Lemma 2. Let M = (A, P ) be a strategyproof mechanism satisfying NPT, CS
and

∑
i∈U P i(b) ≤ β, for all b. Then, there exists B = B(β) ≥ 0 such that, for

all i and all b−i, Ai(B,b−i) = 1.

2 Cost-Sharing Mechanisms and Strategyproofness

2.1 Two Necessary Conditions

We next show that strategyproof α-BB, NPT, VP, CS mechanisms must be able
to service (i) all users and (ii) exactly one out of any pair i, j ∈ U . (Of course,
for some bid vector b.)

Definition 3. An algorithm A satisfies the full coverage property if U ∈ PA,
that is, the algorithm decides to service all users for some bid vector b.



The Algorithmic Structure 343

We next show that full coverage is a necessary condition for obtaining strate-
gyproof mechanisms satisfying NPT and CS and whose prices are bounded from
above (a necessary condition for α-BB).

Theorem 2. If A does not satisfy the full coverage property, then any strate-
gyproof mechanism M = (A, P ) satisfying NPT and CS will run in an unbounded
surplus, that is, for every β > 0, there exists b such that

∑
i∈U P i(b) > β.

Proof. We prove the contraposition. Suppose
∑

i∈U P i(b) ≤ β, for all b. Then,
Lemma 2 implies that A(B) = U , for some constant B ≥ 0 and for B =
(B, . . . , B).

Theorem 2 states that, if the mechanism is not able to service all users, then an
unbounded surplus must be created. The result we will prove next is a sort of
“dual”: if the mechanism is not able to selectively service two users, then it will
not collect any money.

Definition 4. An algorithm A satisfies the weak separation property if, for any
i, j ∈ U , the algorithm can return a feasible solution to service only one of them,
that is, there exists Q ∈ PA such that |Q ∩ {i, j}| = 1.

Condition weak separation is also necessary for strategyproof mechanisms:

Theorem 3. If A does not satisfy the weak separation condition, then any strat-
egyproof mechanism M = (A, P ) satisfying NPT, VP and CS will not collect any
money from the users when they report some bid vector b. Moreover, mechanism
M will service a subset Q �= ∅, thus implying that, mechanism M cannot be α-
BB, for any α > 1.

Proof. Since A does not satisfy the weak separation condition there exist j, k ∈ U
such that

∀b, Aj(b) = Ak(b). (7)

Let (x,0−l) denote the vector having the l-th component equal to x and all
others being equal 0. Consider the following three bid vectors:

b(j) := (bj ,0−j) = (0, . . . , 0, bj , 0, . . . , 0, 0, 0, . . . , 0)

b(k) := (bk,0−k) = (0, . . . , 0, 0, 0, . . . , 0, bk, 0, . . . , 0)
b(j,k) := (0, . . . , 0, bj , 0, . . . , 0, bk, 0, . . . , 0)

with bj and bk such that Aj(b(j)) = 1 and Ak(b(k)) = 1. (These two values exist
by the CS condition.) Then, Eq. 7 implies Aj(b(k)) = 1 and Ak(b(j)) = 1. The
CS and NPT conditions imply that P j(b(k)) = 0 and P k(b(j)) = 0. We apply
Lemma 1 and obtain the following implications:

Aj(b(k)) = 1 ⇒ Aj(b(j,k)) = 1 (8)

⇒ P j(b(j,k)) = P j(b(k)) = 0, (9)
Ak(b(j)) = 1 ⇒ Ak(b(j,k)) = 1 (10)

⇒ P k(b(j,k)) = P k(b(j)) = 0. (11)
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The VP condition, Eq. 9, and Eq. 11 imply that, P i(b(j,k)) = 0, for 1 ≤ i ≤ n.
Taking b = b(j,k), we get the first part of the theorem. Moreover, Eq.s 8 and 10
prove the second part.

The following result follows from Theorems 2 and 3:

Corollary 1. Any α-BB strategyproof mechanism M = (A, P ), also satisfying
NPT, VP and CS, must use an algorithm A satisfying both the full coverage and
weak separation properties.

The above result implies the first lower bound on polynomial-time α-BB, NPT,
VP, CS, and GSP mechanisms:

Corollary 2. If C(U) is NP-hard to approximate within a factor α ≥ 1, then no
α-BB mechanism satisfying NPT, VP, CS and GSP can run in polynomial-time.

2.2 Characterization of Mechanisms for Two Users

We will prove that, for the case of two users, full coverage and weak separa-
tion suffice for the existence of mechanisms. The following fact will be the key
property:

Fact 4. Any algorithm A satisfying the full coverage and weak separation con-
ditions is a sequential algorithm for the case of two users. (Indeed, U ∈ PA and
{1} ∈ PA or {2} ∈ PA.)

The above fact and Corollary 1 imply the following:

Corollary 3. For generalized cost-sharing games involving two users, the fol-
lowing are equivalent:

1. There exists a strategyproof α-BB mechanism Mα = (Aα, Pα) satisfying
NPT, VP and CS;

2. Every instance I = (U,P , C) admits a sequential algorithm A;
3. There exists a group strategyproof BB mechanism M = (A, P ) satisfying

NPT, VP and CS.

Our next result, whose proof is given in the full version of this work [13], shows
that Corollary 3 does not apply to the case of three (or more) users.

Theorem 5. There exists an instance I = (U,P , C), with |U | = 3, which does
not admit sequential algorithms. However, there exist a strategyproof mechanism
M = (A, P ) satisfying BB, NPT, VP and CS for this instance. Hence, A is not
sequential.

We stress that the mechanism of the above theorem is not upper continuous nor
GSP.
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3 Characterization of Upper Continuous Mechanisms

We begin with the following technical lemma.

Lemma 3. Let M = (A, P ) be a GSP mechanism satisfying NPT and VP. For
all b′ = (b′i,b−i) and b′′ = (b′′i ,b−i) such that Ai(b′) = Ai(b′′), the following
holds for all j ∈ U : if Aj(b′) = Aj(b′′) then P j(b′) = P j(b′′).

In this section we will consider bid vectors which take values 0 or some “suf-
ficiently large” B ≥ 0. Recall that a user bidding B is serviced no matter the
other agents bids.

Definition 5. For any mechanism M = (A, P ) such that
∑

i∈U P i(b) ≤ β, for
all b, we let B = B(β) be the constant of Lemma 2, and PA

β := {A(b)|b ∈
{0, B}n} ⊆ PA. Moreover, βQ denotes the vector whose i-th component is equal
to B for i ∈ Q, and 0 otherwise.

Lemma 4. Let M = (A, P ) be an upper continuous GSP mechanism satisfying
NPT, VP and CS. Moreover, let

∑
i∈U P i(b) ≤ β, for all b. Then, for all

Q ∈ PA
β, it holds that Q = A(βQ).

Theorem 6. Let M = (A, P ) be an upper continuous α-BB mechanism satisfy-
ing GSP, NPT, VP and CS. Then, for every Q ∈ PA

β , there exists iQ ∈ Q such
that Q \ {iQ} ∈ PA

β.

Proof. Notice that α-BB implies
∑

i∈U P i(b) ≤ β for all bid vectors b with
β = max

Q∈PA αC(Q). Thus from Lemma 4, we can assume Q = A(βQ). First of
all, we claim that there is at least one user iQ ∈ Q such that iQ /∈ A(βQ\{iQ}).
Indeed, Lemma 1 implies that, for all i ∈ A(βQ\{i}), it must be the case that
P i(βQ\{i}) = 0. Hence, if such an iQ does not exist, then

∑
i∈Q P i(b) = 0, which

contradicts the α-BB condition (i.e.
∑

i∈U P i(b) > 0 for all bid vectors b).
Let us then consider iQ ∈ Q such that iQ /∈ A(βQ\{iQ}), and let R := Q\{iQ}.

Lemma 2 implies R ⊆ A(βR). By contradiction, assume R ⊂ A(βR) and let
k ∈ A(βR) \ R. We will show that a coalition C = {iQ, k} will violate the GSP
condition. To this end, consider the following bid vectors which differ only in the
iQ-th coordinate. We let ∗ ∈ {0, B} denote the coordinates of these two vectors
other than iQ and k:

b(1) = βQ = (∗, . . . , ∗, B, ∗, . . . , ∗, 0, ∗, . . . , ∗) (12)

b(2) = βR = (∗, . . . , ∗, 0, ∗, . . . , ∗, 0, ∗, . . . , ∗) (13)

Since k /∈ R and k �= iQ, it must be the case k /∈ Q = R ∪ {iQ} = A(b(1)).
From the fact that M is upper continuous, we can choose bk such that 0 < bk <

θk(b(1)
−k). Let biQ = P iQ(b(1)) and consider the following bid vector which differs

from b(1) only in the iQ-th and k-th entries:

b(3) = (∗, . . . , ∗, biQ , ∗, . . . , ∗, bk, ∗, . . . , ∗).

The proof of the following fact is given in the full version [13].
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Fact 7. In the sequel we will use the fact that uM
iQ

(b(3)) = uM
iQ

(b(1)) and uM
k (b(3))

= uM
k (b(1)), for vk = bk.

We are now ready to show that, under the hypothesis k ∈ A(b(2)), the coalition
C = {iQ, k} violates the GSP condition. Indeed, consider vC = (viQ , vk) =
(biQ , bk), bC = (0, 0) and v−C = b(1)

−C = b(2)
−C = b(3)

−C . Hence, (vC ,v−C) = b(3)

and (bC ,v−C) = b(2). Fact 7 implies

uM
iQ(vC ,v−C) = uM

iQ(b(3)) = uM
iQ(b(1)) = viQ − P iQ(b(1)) = 0 = uM

iQ(b(2)),

where the last inequality is due to the definition of b(2) and to the VP condition.
(Observe that it must hold P iQ(b(2)) = 0.) Similarly,

uM
k (vC ,v−C) = uM

k (b(3)) = uM
k (b(1)) = 0 < vk = uM

iQ(b(2)),

where the last equality follows from the definition of b(2), from the VP condition,
and from k ∈ A(b(2)). The above two inequalities thus imply that the coalition
C = {iQ, k} violates the GSP condition. Hence a contradiction derived from the
assumption R ⊂ A(βR). It must then hold Q\{iQ} = R = A(βR) = A(βQ\{iQ}).

Corollary 4. If M = (A, P ) is an upper-continuous mechanism satisfying α-
BB, NPT, VP, CS and GSP, then A must be sequential.

Proof. Let Q1 := U and observe that, from the proof of Theorem 2, Q1 = U ∈
PA

β . We proceed inductively and apply Theorem 6 so to prove that Qj ∈ PA
β and

therefore we can define ij := iQj such that Qj+1 := Qj \ {ij} ∈ PA
β .

Corollary 5. For generalized cost-sharing games involving any number of users,
the following are equivalent:

1. There exists an upper-continuous mechanism Mα = (Aα, Pα) satisfying α-
BB, NPT, VP, CS and GSP;

2. Every instance I = (U,P , C) admits a sequential algorithm A;
3. There exists an upper-continuous mechanism M = (A, P ) satisfying BB,

NPT, VP, CS and GSP.

4 Applications, Extensions and Open Questions

Cost-sharing games have been studied under the following (underlying) assump-
tion: given any subset Q of users, it is possible to provide the service to exactly
those users in Q.

This hypothesis cannot be taken for granted in several applications. Indeed,
consider the following (simple) scenarios:

Fig. 1(a). A network connecting a source node s to another node t, and n ≥ 2
users all sitting on node t. If the source s transmits to any of them, then
all the others will also receive it. (Consider the scenario in which there is no
encryption and one users can “sniff” what is sent to the others. This problem
is a variant of the games considered in [8,4,3,5].



The Algorithmic Structure 347

ss s

beam 2beam 1

(c)(b)(a)

t

Fig. 1. (a) A variant of the Steiner tree game in [3]; (b) A variant of the wireless
multicast game in [1]; (c) Another variant of the wireless multicast game obtained by
considering stations with switched-beams antennae and limited battery capacity

Fig. 1(b). The wireless multicast game in which a source station s and n ≥ 2
other stations/users located all in the transmission range of s. Similarly to
the previous example, station s can only choose to transmit to all of the
them or to none. This game is a variant of the one in [1], where the authors
implicitly assume that stations/users receiving a physical signal are not able
to get the transmission.

Fig. 1(c). As above, but now the source s uses a switched beam antenna: the
coverage area is divided into independent sectors or beams. The energy spent
by s depends on the number of used sectors. It may be the case that the
battery level of s is sufficient to reach one user, but not both.

The first two problems are equivalent to a simple generalized cost-sharing
game with P = {U, ∅}. The latter, instead, corresponds to the case U �∈ P .
Corollary 1 implies that none of the three instances above admits an α-BB, NPT,
VP, CS, and GSP mechanism. The same holds for several natural variants of cost-
sharing games studied in the literature [10,9,3,1,12,6,2,5], where connectivity
games on graphs allow more than one user per node but no “encryption”: either
all users in that node are serviced or none.

A similar negative result holds if the service provider is not able to service
all of its potential customers (i.e., U /∈ PA), as in the third example. This
requirement implies some lower bounds on polynomial-time mechanisms which

Table 1. A summary of upper/lower bounds on ‘α’ for mechanisms satisfying α-BB,
NPT, VP, CS and GSP. Quantity ρ(X ) is the best approximation guarantee of any
polynomial-time algorithm approximating C(·) over X ⊆ 2U ). Results marked ‘∗’ holds
in general (i.e., for non-upper continuous mechanisms too).

(Generalized) Cost-Sharing Games Upper Continuous Mechanisms
any (non polytime) poly-time

P = 2U 1 [14,2] α ≤ ρ(2U ) [14]
With Sequential Algorithms α ≥ ρ({U}) [Cor. 2]∗

Pσ ⊆ P 1 [14,2] α ≤ ρ(Pσ) [14]
α ≥ ρ({U}) [Cor. 2]∗

With No Sequential Algorithm Pσ 
⊆ P unbounded [Cor. 4] unbounded [Cor. 4]
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relate the computational hardness of approximating C(U) to the factor α-BB
condition (Corollary 2).

If one ignores computational issues, than Corollary 5 states that, for upper
continuous mechanisms, generalized games which are “solvable” are all and only
those that admit a sequential algorithm. Here the factor α plays no role. In
other words, if we stick to properties NPT, VP, CS and GSP only, then it makes
sense to relax BB to α-BB only for computational reasons. This contrasts with
prior results in [2] where adding a “fairness” requirement (i.e., no free riders)
then paying a factor α > 1 is necessary (and sometimes sufficient) for upper
continuous mechanisms, regardless of their running time.

References
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Abstract. We study the speed of convergence to approximately optimal
states in two classes of potential games. We provide bounds in terms of
the number of rounds, where a round consists of a sequence of movements,
with each player appearing at least once in each round. We model the
sequential interaction between players by a best-response walk in the state
graph, where every transition in the walk corresponds to a best response
of a player. Our goal is to bound the social value of the states at the end
of such walks. In this paper, we focus on two classes of potential games:
selfish routing games, and cut games (or party affiliation games [7]).

1 Introduction

The main tool for analyzing the performance of systems where selfish players
interact without central coordination, is the notion of the price of anarchy in a
game [16]; this is the worst case ratio between an optimal social solution and a
Nash equilibrium. Intuitively, a high price of anarchy indicates that the system
under consideration requires central regulation to achieve good performance. On
the other hand, a low price of anarchy does not necessarily imply high perfor-
mance of the system. One main reason for this phenomenon is that in many
games, the repeated selfish behavior of players may not lead to a Nash equi-
librium. Moreover, even if the selfish behavior of players converges to a Nash
equilibrium, the rate of convergence might be very slow. Thus, from a practical
and computational viewpoint, it is important to evaluate the rate of convergence
to approximate solutions.

By modeling the repeated selfish behavior of the players as a sequence of
atomic improvements, the resulting convergence question is related to the run-
ning time of local search algorithms. In fact, the theory of PLS-completeness [22]
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and the existence of exponentially long walks in local optimization problems such
as Max-2SAT and Max-Cut, indicate that in many of these settings, we cannot
hope for a polynomial-time convergence to a Nash equilibrium. Therefore, for
such games, it is not sufficient to just study the value of the social function at
Nash equilibria. To deal with this issue, we need to bound the social value of a
strategy profile after polynomially many best-response improvements by players.

Potential games are games in which any sequence of improvements by players
converges to a pure Nash equilibrium. Equivalently, in potential games, there is
no cycle of strict improvements of players. This is equivalent to the existence of
a potential function that is strictly increasing after any strict improvement. In
this paper, we study the speed of convergence to approximate solutions in two
classes of potential games: selfish routing (or congestion) games and cut games.

Related Work. This work is motivated by the negative results of the conver-
gence in congestion games [7], and the study of convergence to approximate
solutions games [14,11]. Fabrikant, Papadimitriou, and Talwar [7] show that for
general congestion and asymmetric selfish routing games, the problem of finding
a pure Nash equilibrium is PLS-complete. This implies exponentially long walks
to equilibria for these games. Our model is based on the model introduced by
Mirrokni and Vetta [14] who addressed the convergence to approximate solutions
in basic-utility and valid-utility games. They prove that starting from any state,
one round of selfish behavior of players converges to a 1/3-approximate solution
in basic-utility games. Goemans, Mirrokni, and Vetta [11] study a new equilib-
rium concept (i.e. sink equilibria) inspired from convergence on best-response
walks and proved fast convergence to approximate solutions on random best-
response walks in (weighted) congestion games. In particular, their result on
the price of sinking of the congestion games implies polynomial convergence
to constant-factor solutions on random best-response walks in selfish routing
games with linear latency functions. Other related papers studied convergence
for different classes of games such as load balancing games [6], market sharing
games [10], and distributed caching games [8].

A main subclass of potential games is the class of congestion games introduced
by Rosenthal [18]. Monderer and Shapley [15] proved that congestion games are
equivalent to the class of exact potential games. In an exact potential game, the
increase in the payoff of a player is equal to the increase in the potential function.
Both selfish routing games and cut games are a subclass of exact potential games,
or equivalently, congestion games. Tight bounds for the price of anarchy is known
for both of these games in different settings [19,1,5,4]. Despite all the recent
progress in bounding the price of anarchy in these games, many problems about
the speed of convergence to approximate solutions for them are still open.

Two main known results for the convergence of selfish routing games are the
existence of exponentially long best-response walks to equilibria [7] and fast
convergence to constant-factor solutions on random best-response walks [11]. To
the best of our knowledge, no results are known for the speed of convergence to
approximate solutions on deterministic best-response walks in the general self-
ish routing game. Preliminary results of this type in some special load balancing
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games are due to Suri, Tóth and Zhou [20,21]. Our results for general selfish
routing games generalize their results.

The Max-Cut problem has been studied extensively [12], even in the local
search setting. It is well known that finding a local optimum for Max-Cut is
PLS-complete [13,22], and there are some configurations from which walks to
a local optimum are exponentially long. In the positive side, Poljak [17] proved
that for cubic graphs the convergence to a local optimum requires at most O(n2)
steps. The total happiness social function is considered in the context of correla-
tion clustering [2], and is similar to the total agreement minus disagreement in
that context. The best approximation algorithm known for this problem gives a
O(log n)-approximation [3], and is based on a semidefinite relaxation.

Our Contribution. Our work deviates from bounding the distance to a Nash
equilibrium [22,7], and focuses in studying the rate of convergence to an approx-
imate solution [14,11]. We consider two types of walks of best responses: random
walks and deterministic fair walks. On random walks, we choose a random player
at each step. On deterministic fair walks, the time complexity of a game is mea-
sured in terms of the number of rounds, where a round consists of a sequence of
movements, with each player appearing at least once in each round.

First, we give tight bounds for the approximation factor of the solution after
one round of best responses of players in selfish routing games. In particular,
we prove that starting from an arbitrary state, the approximation factor after
one round of best responses of players is at most O(n) of the optimum and
this is tight up to a constant factor. We extend the lower bound for the case of
multiple rounds, where we show that for any constant number of rounds t, the
approximation guarantee cannot be better than nε(t), for some ε(t) > 0. On the
other hand, we show that starting from an empty state, the state resulting after
one round of best responses is a constant-factor approximation.

We also study the convergence in cut games, that are motivated by the party
affiliation game [7], and are closely related to the local search algorithm for the
Max-Cut problem [22]. In the party affiliation game, each player’s strategy is
to choose one of two parties, i.e, si ∈ {1,−1} and the payoff of player i for the
strategy profile (s1, s2, . . . , sn) is

∑
j sjsiwij . The weight of an edge corresponds

to the level of disagreement of the endpoints of that edge. This game models
the clustering of a society into two parties that minimizes the disagreement
within each party, or maximizes the disagreement between different parties. Such
problems play a key role in the study of social networks.

We can model the party affiliation game as the following cut game: each vertex
of a graph is a player, with payoff its contribution in the cut (i.e. the total weight
of its adjacent edges that have endpoints in different parts of the cut). It follows
that a player moves if he can improve his contribution in the cut, or equivalently,
he can improve the value of the cut. The pure Nash equilibria exist in this game,
and selfish behavior of players converges to a Nash equilibrium.

We consider two social functions: the cut and the total happiness, defined as
the value of the cut minus the weight of the rest of edges. First, we prove fast
convergence on random walks. More precisely, the selfish behavior of players in a
round in which the ordering of the player is picked uniformly at random, results
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in a cut that is a 1
8 -approximation in expectation. We complement our positive

results by examples that exhibit poor deterministic convergence. That is, we show
the existence of fair walks with exponential length, that result in a poor social
value. We also model the selfish behavior of mildly greedy players that move if
their payoff increases by at least a factor of 1 + ε. We prove that in contrast to
the case of (totally) greedy players, mildly greedy players converge to a constant-
factor cut after one round, under any ordering. For unweighted graphs, we give
an Ω(

√
n) lower bound and an O(n) upper bound for the number of rounds

required in the worst case to converge to a constant-factor cut.
Finally, for the total happiness social function, we show that for unweighted

graphs of large girth, starting from a random configuration, greedy behavior of
players in a random order converges to an approximate solution after one round.
We remark that this implies a combinatorial algorithm with sub-logarithmic
approximation ratio, for graphs of sufficiently large girth, while the best known
approximation ratio for the general problem is O(log n) [3], and is obtained using
semidefinite programming.

2 Definitions and Preliminaries

In order to model the selfish behavior of players, we use the notion of a state
graph. Each vertex in the state graph represents a strategy state S = (s1, s2, . . . ,
sn), and corresponds to a pure strategy profile (e.g an allocation for a congestion
game, or a cut for a cut game). The arcs in the state graph correspond to best
response moves by the players.

Definition 1. A state graph D = (V , E) is a directed graph, where each vertex
in V corresponds to a strategy state. There is an arc from state S to state S′

with label j iff by letting player j play his best response in state S, the resulting
state is S′.

Observe that the state graph may contain loops. A best response walk is a di-
rected walk in the state graph. We say that player i plays in the best response
walk P , if at least one of the edges of P has label i. Note that players play
their best responses sequentially, and not in parallel. Given a best response walk
starting from an arbitrary state, we are interested in the social value of the last
state on the walk. Notice that if we do not allow every player to make a best
response on a walk P , then we cannot bound the social value of the final state
with respect to the optimal solution. This follows from the fact that the actions
of a single player may be very important for producing solutions of high social
value1. Motivated by this simple observation, we introduce the following models
that capture the intuitive notion of a fair sequence of moves.

One-round walk: Consider an arbitrary ordering of all players i1, . . . , in. A
walk P of length n in the state graph is a one-round walk if for each j ∈ [n],
the jth edge of P has label ij.

1 E.g. in the cut social function, most of the weight of the edges of the graph might
be concentrated to the edges that are adjacent to a single vertex.



Convergence and Approximation in Potential Games 353

Covering walk: A walk P in the state graph is a covering walk if for each
player i, there exists an edge of P with label i.

k-Covering walk: A walk P in the state graph is a k-covering walk if there are
k covering walks P1,P2, . . . ,Pk, such that P = (P1,P2, . . . ,Pk).

Random walk: A walk P in the state graph is a random walk, if at each step
the next player is chosen uniformly at random.

Random one-round walk: Let σ be an ordering of players picked uniformly
at random from the set of all possible orderings. Then, the one-round walk
P corresponding to the ordering σ, is a random one-round walk.

Note that unless otherwise stated, all walks are assumed to start from an
arbitrary initial state. This model has been used by Mirrokni and Vetta [14], in
the context of extensive games with complete information.

Congestion games. A congestion game is defined by a tuple (N,E, (Si)i∈N ,
(fe)e∈E) where N is a set of players, E is a set of facilities, Si ⊆ 2E is the
pure strategy set for player i: a pure strategy si ∈ Si for player i is a set of
facilities, and fe is a latency function for the facility e depending on its load. We
focus on linear delay functions with nonnegative coefficients; fe(x) = aex + be.

Let S = (s1, . . . , sN ) ∈ ×i∈NSi be a state (strategy profile) for a set of N
players. The cost of player i, in a state S is ci(S) =

∑
e∈si

fe(ne(S)) where by
ne(S) we denote the number of players that use facility e in S. The objective
of a player is to minimize its own cost. We consider as a social cost of a state
S, the sum of the players’ costs and we denote it by C(S) =

∑
i∈N ci(S) =∑

e∈E ne(S)fe(ne(S)).
In weighted congestion games, player i has weighted demand wi. By θe(S),

we denote the total load on a facility e in a state S. The cost of a player in a
state S is ci(S) =

∑
e∈si

fe(θe(S)). We consider as a social cost of a state S,
the weighted sum C(S) =

∑
i∈N wici(S) =

∑
e∈E θe(S)fe(θe(S)). We will use

subscripts to distinguish players and superscripts to distinguish states.
Note that the selfish routing game is a special case of congestion games. Al-

though we state all the results for congestion games with linear latency functions,
all of the results (including the lower and upper bounds) hold for selfish routing
games.

Cut Games. In a cut game, we are given an undirected graph G(V, E), with
n vertices and edge weights w : E(G) → Q+. We will always assume that
G is connected, simple, and does not contain loops. For each v ∈ V (G), let
deg(v) be the degree of v, and let Adj(v) be the set of neighbors of v. Let also
wv =

∑
u∈Adj(v) wuv. A cut in G is a partition of V (G) into two sets, T and

T̄ = V (G)− T , and is denoted by (T, T̄ ). The value of a cut is the sum of edges
between the two sets T and T̄ , i.e

∑
v∈T,u∈T̄ wuv.

The cut game on a graph G(V, E), is defined as follows: each vertex v ∈ V (G)
is a player, and the strategy of v is to chose one side of the cut, i.e. v can
chose sv = −1 or sv = 1. A strategy profile S = (s1, s2, . . . , sn), corresponds
to a cut (T, T̄ ), where T = {i|si = 1}. The payoff of player v in a strategy
profile S, denoted by αv(S), is equal to the contribution of v in the cut, i.e.
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αv(S) =
∑

i:si �=sv
wiv. It follows that the cut value is equal to 1

2

∑
v∈V αv(S).

If S is clear from the context, we use αv instead of αv(S) to denote the payoff
of v. We denote the maximum value of a cut in G, by c(G). The happiness of a
vertex v is equal to

∑
i:si �=sv

wiv −
∑

i:si=sv
wiv .

We consider two social functions: the cut value and the cut value minus the
value of the rest of the edges in the graph. It is easy to see that the cut value is
half the sum of the payoffs of vertices. The second social function is half the sum
of the happiness of vertices. We call the second social function, total happiness.

3 Congestion Games

In this section, we focus on the convergence to approximate solutions in conges-
tion games with linear latency functions. It is known [15,18] that any best-
response walk on the state graph leads to a pure Nash equilibrium, and a
pure equilibrium is a constant-factor approximate solution [1,5,4]. Unless other-
wise stated, we assume without loss of generality, that the players’ ordering is
1, . . . , N .

3.1 Upper Bounds for One-Round Walks

In this section, we bound the total delay after one round of best responses of
players. We prove that starting from an arbitrary state, the solution after one
round of best responses is a Θ(N)-approximate solution. We will also prove that
starting from an empty state, the approximation factor after one round of best
responses is a constant factor. This shows that the assumption about the initial
state is critical for this problem.

Theorem 1. Starting from an arbitrary initial state S0, any one-round walk P
leads to a state SN that has approximation ratio O(N).

Proof. Let X be the optimal allocation and Si = (sN
1 , . . . , sN

i , s0
i+1, . . . , s

0
N)

an intermediate state. Let me(Si), ke(Si) be the number of the players of the
final and of the initial state respectively, using facility e in a state Si, and
M(Si),K(Si) the corresponding sums. Clearly ne(Si) = me(Si) + ke(Si) and
K(Si) = K(Si−1) −

∑
e∈s0

i
(ae − be − 2aeke(Si−1)). By summing over all inter-

mediate states and using the fact K(SN) = 0, it follows that:

K(S0) = C(S0) =
∑
e∈E

ke(S0)fe(ke(S0)) =
∑
i∈N

∑
e∈s0

i

(2aeke(Si−1)− ae + be) (1)

Since player i in state Si−1 prefers strategy sN
i than xi, we get∑

e∈sN
i

fe(ne(Si−1)) +
∑

e∈sN
i −s0

i

ae ≤
∑
e∈xi

fe(ne(Si−1) + 1)

For every intermediate state Si, the social cost is

C(Si) = C(Si−1)+
∑

e∈sN
i −s0

i

(2aene(Si−1)+ae+be)+
∑

e∈s0
i−sN

i

(ae−be−2aene(Si−1))
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Summing over all intermediate states and using equality (1), we get

C(SN ) =
∑
i∈N

∑
e∈sN

i −s0
i

(2aene(Si−1) + ae + be) +
∑
i∈N

∑
e∈s0

i

(2aeke(Si−1)− ae + be)

+
∑
i∈N

∑
e∈s0

i −sN
i

(ae − be − 2aene(Si−1))

=
∑
i∈N

∑
e∈sN

i −s0
i

(2aene(Si−1) + ae+be)+
∑
i∈N

∑
e∈s0

i ∩sN
i

(2aeke(Si−1)−ae+be)

−
∑
i∈N

∑
e∈s0

i −sN
i

2aeme(Si−1)

≤ 2
∑
i∈N

∑
e∈sN

i

fe(ne(Si−1)) + 2
∑
i∈N

∑
e∈sN

i −s0
i

ae

≤
∑
i∈N

∑
e∈xi

2fe(ne(Si−1) + 1)

≤
∑
i∈N

∑
e∈xi

2fe(N + 1) =
∑
e∈E

2ne(X)fe(N + 1) = O(N)C(X)

!"
In the next section, we will show that the above bound is tight up to a constant
factor. As mentioned earlier, the assumption about the initial state is critical
for this problem. We will call a state empty, if no player is committed to any
of its strategies. Note that the one-round walk starting from an empty state
is essentially equivalent to the greedy algorithm for a generalized scheduling
problem, where a task may be assigned into many machines. Suri et al. [20,21]
address similar questions for the special case of the congestion games where the
available strategies are single sets (i.e. each player can choose just one facility).
They give a 3.08 lower bound and a 17/3 upper bound. For the special case of
identical facilities (equal speed machines) they give an upper bound of (φ+1)2

φ ≈
4.24. We generalize this result for our more general setting.

Theorem 2. Starting from the empty state S0, any one-round walk P leads to
a state SN that has approximation ratio of at most (φ+1)2

φ ≈ 4.24.

Now we turn our attention to weighted congestion games with linear latency
functions, where player i has weighted demand wi. Fotakis et al. [9] showed that
this game with linear latency functions is a potential game.

Theorem 3. In weighted congestion games with linear latency functions, start-
ing from the initial empty state S0, any one-round walk P leads to a state SN

that has approximation ratio of at most (1 +
√

3)2 ≈ 7.46.

3.2 Lower Bounds

The next theorem shows that the result of Theorem 1 is tight and explains why
it is necessary in the upper bounds given above to consider walks starting from
an empty allocation.
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Theorem 4. For any N > 0, there exists an N -player instance of the un-
weighted congestion game, and an initial state S0 such that for any one-round
walk P starting from S0, the state at the end of P is an Ω(N)-approximate
solution.

Proof. Consider 2N players and 2N +2 facilities {0, 1, . . .2N +1}. The available
strategies for the first players are {{0}, {i}, {N + 1, . . . , 2N}} and for the N last
{{2N + 1}, {i}, {1, . . . , N}}. In the initial allocation, every player plays its third
strategy. Consider any order on the players and let them begin to choose their
best responses. It is easy to see that in the first steps, the players would prefer
their first strategy. If this happens until the end of the round, the resulting cost
is Ω(N2). Thus, we can assume that at some step, the (k+1)-th player from the
set {1, . . . , N} prefers his second strategy while all the previous k players of the
same set have chosen their first strategies. The status of the game at this step is
as follows: k players of the first group play their first strategy, m players of the
second group play their first strategy and the remaining players play their initial
strategy. Since player k + 1 prefers his second strategy, this means k = N −m
and so one of the m,N is at least N/2. The cost at the end will be at least
m2 + k2 +N = Ω(N2). On the other hand, in the optimal allocation everybody
chooses its second strategy which gives cost 2N . Thus, the approximation ratio
is Ω(N). !"

We extend theorem 4 for the case of t-covering walks, for t > 1. We remark that
the following result holds only for a fixed ordering of the players.

Theorem 5. For any t > 0, and for any sufficiently large N > 0, there exists
an N -player instance of the unweighted congestion game, an initial state S0,
and an ordering σ of the players, such that starting from S0, after t rounds
where the players play according to σ, the cost of the resulting allocation is a
(N/t)ε-approximation, where ε = 2−O(t).

4 Cut Games: The Cut Social Function

4.1 Fast Convergence on Random Walks

First we prove positive results for the convergence to constant-factor approxi-
mate solutions with random walks. We show that the expected value of the cut
after a random one-round walk is within a constant factor of the maximum cut.

Theorem 6. In weighted graphs, the expected value of the cut at the end of a
random one-round walk is at least 1

8 of the maximum cut.

Proof. It suffices to show that after a random one-round walk, for every v ∈
V (G), E[αv] ≥ 1

8wv.
Consider a vertex v. The probability that v occurs after exactly k of its

neighbors is 1
deg(v)+1 . After v moves, the contribution of v in the cut is at

least wv

2 . Conditioning on the fact that v occurs after exactly k neighbors, for
each vertex u in the neighborhood of v, the probability that it occurs after v
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is deg(v)−k
deg(v) , and only in this case u can decrease the contribution of v in the

cut by at most wuv. Thus the expected contribution of v in the cut is at least
max(0, wv(1

2 −
deg(v)−k

deg(v) )). Summing over all values of k, we obtain E[αv] ≥∑deg(v)
k=0

1
deg(v)+1 max(0, wv(1

2 −
deg(v)−k

deg(v) )) = wv

deg(v)+1

∑
 deg(v)
2 �+1

k=0
2k−deg(v)
2deg(v) ≥

wv

8 . The result follows by the linearity of expectation. !"

The next theorem studies a random walk of best responses (not necessarily a
one-round walk).

Theorem 7. There exists a constant c > 0 such that the expected value of the
cut at the end of a random walk of length cn logn is a constant-factor of the
maximum cut.

4.2 Poor Deterministic Convergence

We now give lower bounds for the convergence to approximate solutions for
the cut social function. First, we give a simple example for which we need at
least Ω(n) rounds of best responses to converge to a constant-factor cut. The
construction resembles a result of Poljak [17].

Theorem 8. There exists a weighted graph G(V, E), with |V (G)| = n, and an
ordering of vertices such that for any k > 0, the value of the cut after k rounds
of letting players play in this ordering is at most O(k/n) of the maximum cut.

We next combine a modified version of the above construction with a result of
Schaffer and Yannakakis for the Max-Cut local search problem [22], to obtain
an exponentially-long walk with poor cut value.

Theorem 9. There exists a weighted graph G(V, E), with |V (G)| = Θ(n), and
a k-covering walk P in the state graph, for some k exponentially large in n, such
that the value of the cut at the end of P, is at most O(1/n) of the optimum cut.

Proof. In [22], it is shown that there exists a weighted graph G0(V, E), and
an initial cut (T0, T̄0), such that the length of any walk in the state graph,
from (T0, T̄0) to a pure strategy Nash equilibrium, is exponentially long. Con-
sider such a graph of size Θ(n), with V (G0) = {v0, v1, . . . , vN}. Let P0 be an
exponentially long walk from (T0, T̄0) to a Nash equilibrium in which we let
vertices v0, v1, . . . , vN play in this order for exponential an number of rounds.
Let S0, S1, . . . , S|P0| be the sequence of states visited by P0 and let yi be the
vertex that plays his best response from state Si to state Si+1. The result of [22]
guarantees that there exists a vertex, say v0, which wants to change side (i.e.
strategy) an exponential number of times along the walk P0 (since otherwise we
can find a small walk to a pure Nash equilibrium). Let t0 = 0, and for i ≥ 1, let
ti be the time in which v0 changes side for the i-th time along the walk P0. For
i ≥ 1, let Qi be the sequence of vertices yti−1+1, . . . , yti . Observe that each Qi

contains all of the vertices in G0.
Consider now a graph G, which consists of a path L = x1, x2, . . . , xn, and a

copy of G0. For each i ∈ {1, . . . , n − 1}, the weight of the edge {xi, xi+1} is 1.
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We scale the weights of G0, such that the total weight of the edges of G0 is less
than 1. Finally, for each i ∈ {1, . . . , n}, we add the edge {xi, v0}, of weight ε,
for some sufficiently small ε. Intuitively, we can pick the value of ε, such that
the moves made by the vertices in G0, are independent of the positions of the
vertices of the path L in the current cut.

For each i ≥ 1, we consider an ordering Ri of the vertices of L, as follows: If
i is odd, then Ri = x1, x2, . . . , xn, and if i is even, then Ri = xn, xn−1, . . . , x1.

We are now ready to describe the exponentially long path in the state graph.
Assume w.l.o.g., that in the initial cut for G0, we have v0 ∈ T0. The initial cut
for G is (T, T̄ ), with T = {x1}∪T0, and T̄ = {x2, . . . , xn}∪T̄0. It is now straight-
forward to verify that there exists an exponentially large k, such that for any
i, with 1 ≤ i ≤ k, if we let the vertices of G play according to the sequence
Q1,R1,Q2,R2, . . . ,Qi,Ri, then we have (see Figure 1):

Ti

T̄i

v0 x1

x2 . . . xn−1 xn

(a) i is even

Ti

T̄i v0

x1 x2 . . . xn−1

xn

(b) i is odd

Fig. 1. The cut (Ti, T̄i) along the walk of the proof of Theorem 9

– If i is even, then {v0, x1} ⊂ T , and {x2, . . . , xn} ⊂ T̄ .
– If i is odd, then {x1, . . . , xn−1} ⊂ T , and {v0, xn} ⊂ T̄ .

It follows that for each i, with 1 ≤ i ≤ k, the size of the cut is at most O(1/n)
times the value of the optimal cut. The result follows since each walk in the state
graph induced by the sequence Qi and Ri is a covering walk. !"

4.3 Mildly Greedy Players

By Theorem 6, it follows that for any graph, and starting from an arbitrary
cut, there exists a walk of length at most n to an Ω(1)-approximate cut, while
Theorems 8 and 9, show that there are cases where a deterministic ordering of
players may result to very long walks that do reach an approximately good cut.

We observe that if we change the game by assuming that a vertex changes
side in the cut if his payoff is multiplied by at least a factor 1+ ε, for a constant
ε > 0, then the convergence is faster. We call such vertices (1 + ε)-greedy. In the
following, we prove that if all vertices are (1 + ε)-greedy for a constant ε > 0,
then the value of the cut after any one-round walk is within a constant factor of
the optimum.

Theorem 10. If all vertices are (1 + ε)-greedy, then the cut value at the end of
any one-round walk is within a min{ 1

4+2ε ,
ε

4+2ε} factor of the optimal cut.
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4.4 Unweighted Graphs

In unweighted simple graphs, it is straight-forward to verify that the value of
the cut at the end of an n2-covering walk is at least 1

2 of the optimum. The
following theorem shows that in unweighted graphs, the value of the cut after
any Ω(n)-covering walk is a constant-factor approximation.

Theorem 11. For unweighted graphs,the value of the cut after anΩ(n)-covering
walk is within a constant-factor of the maximum cut.

Proof. Consider a k-covering walk P = (P1, . . . ,Pk), where each Pi is a covering
walk. Let M0 = 0, and for any i ≥ 1, let Mi be the size of the cut at the end
of Pi. Note that if Mi −Mi−1 ≥ |E(G)|

10n , for all i, with 1 ≤ i ≤ k, then clearly
Mk ≥ k |E(G)|

10n , and since the maximum size of a cut is at most |E(G)|, the
Lemma follows.

It remains to consider the case where there exists i, with 1 ≤ i ≤ k, such that
Mi −Mi−1 < |E(G)|

10n . Let V1 be the set of vertices that change their side in the
cut on the walk Pi, and V2 = V (G) \V1. Observe that when a vertex changes its
side in the cut, the size of the cut increases by at least 1. Thus, |V1| < |E(G)|

10n ,
and since the degree of each vertex is at most n− 1, it follows that the number
of edges that are incident to vertices in V1, is less than |E(G)|

10 .
On the other hand, if a vertex of degree d remains in the same part of the

cut, then exactly after it plays, at least &d/2' of its adjacent edges are in the
cut. Thus, at least half of the edges that are incident to at least one vertex in
V2, were in the cut, at some point during walk Pi. At most |E(G)|

10 of these edges
have an end-point in V1, and thus at most that many of these edges may not
appear in the cut at the end of Pi. Thus, the total number of edges that remain
in the cut at the end of walk Pi, is at least |E(G)|−|E(G)|/10

2 − |E(G)|
10 = 7|E(G)|

20 .
Since the maximum size of a cut is at most |E(G)|, we obtain that at the end of
Pi, the value of the cut is within a constant factor of the optimum. !"

Theorem 12. There exists an unweighted graph G(V, E), with |V (G)| = n,
and an ordering of the vertices such that for any k > 0, the value of the cut
after k rounds of letting players play in this ordering is at most O(k/

√
n) of the

maximum cut.

5 The Total Happiness Social Function

Due to space limitations, this section has been left to the full version.

Acknowledgments. We wish to thank Michel Goemans and Piotr Indyk
for many helpful discussions. We also thank Ioannis Caragiannis for read-
ing an earlier version of this work, and for improving the bound given in
Theorem 7.
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Fast FPT-Algorithms for Cleaning Grids�
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Abstract. We consider the problem that, given a graph G and a pa-
rameter k, asks whether the edit distance of G and a rectangular grid
is at most k. We examine the general case where the edit operations
are vertex/edge removals and additions. If the dimensions of the grid
are given in advance, we give a parameterized algorithm that runs
in 2O(log k·k) + O(n3) steps. In the case where the dimensions of the
grid are not given we give a parameterized algorithm that runs in
2O(log k·k) +O(k2 ·n3) steps. We insist on parameterized algorithms with
running times where the relation between the polynomial and the non-
polynomial part is additive. Our algorithm is based on the technique of
kernelization. In particular we prove that for each version of the above
problem there exists a kernel of size O(k4).

1 Introduction

We consider the problem of measuring the degree of similarity of two graphs G
and H , where the degree of similarity is considered to be the minimum number
of edit operations needed to transform one graph into the other. This measure
of similarity is also known as the edit distance between graphs. The problem has
received a lot of attention due to its multiple applications in patten recognition
and computer vision among others topics. In the more usual setting the edit op-
erations are: contract an edge, applying an inverse contraction1 of a vertex and
(in case of labeled graphs) relabel an edge. In general, the problem is NP-hard
and can be computed in polynomial time on trees (see for ex. [11]). For a recent
update on the heuristics developed for the graph edit distance problem see [9].

In this paper, we examine decision problems associated with the editing dis-
tance betweenG andH whenH is a grid of size p×q. We call such a grid (p, q)-grid
and we denote it as Hp,q. We consider as edit operations the removal or the inser-
tion of either an edge or a vertex. We represent these operations by the members
of the set U = {e-out, e-in, v-out, v-in}. Given E ⊆ U , we denote E-dist(G,H) as

� This research was supported by the spanish CICYT project TIN-2004-07925
(GRAMMARS). The first author was partially supported by the Distinció per a
la Promoció de la Recerca de la GC, 2002.

1 H ′ is the result of the inverse contraction of a vertex v of H if H is the result of the
contraction of an edge to vertex v.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 361–371, 2006.
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the edit distance of G and H with respect to E , which is the minimum number of
operations in the set E that when applied to G can transform G into H .

Our problem setting has been motivated by the problem of regularity ex-
traction in digital systems, where we are looking for regular patterns in com-
plicated circuits (usually VLSI circuits) indicating ways to organize or embed
them (see [8] for an example). In particular, we study the decision version of
the problem that, given a graph G, a pair p, q ∈ N and a set E ⊆ U , asks for
the minimum number of operations needed to transform G to a (p, q)-grid. This
problem is NP-complete, as can be seeing considering the particular case where
q = 1 and E contains only the erasing a vertex operation, is equivalent to the
Longest Induced Path problem, i.e. the problem of given a graph G and a
constant k ≥ 0 decide if G contains a simple path of length at least k as an
induced subgraph (we just set k ← |V (G)| − k).

Our study adopts the point of view of parameterized complexity introduced
by Downey and Fellows (see [2]). We consider parameterizations of hard prob-
lems, i.e. problems whose input contains some (in general small) parameter k
and some main part. A parameterized problem belongs in the class FPT if it
can be solved by an algorithm of time complexity g(k) · nO(1) where g is a non-
polynomial function of k and n is the size of the problem. We call such an
algorithm FPT-algorithm. A popular technique on the design of parameter-
ized algorithms is kernelization. Briefly, this technique, consists in finding a
polynomial-time reduction of a parameterized problem to itself in a way that
the sizes of the instances of the new problem, we call it kernel, depend only on
the parameter k. The function that bounds the size of the main part of the re-
duced problem determines the size of the kernel and is usually of polynomial (on
k) size. Notice that if a parameterized problem admits a reduction to a prob-
lem kernel, then it is in FPT because any brute force algorithm can solve the
reduced problem in time that does not depend on the main part of the original
problem. Notice also that this technique provides FPT-algorithms of time com-
plexity g(k) + nO(1) where the non-polynomial part g(k) is just additive to the
overall complexity.

In Section 3, we prove that the k-Almost grid problem defined below is
FPT2 by giving a kernel of size O(k4) or O(k3) depending on the size of the grid
we are looking for.

k-Almost grid
Input: A graph G, two positive integers p, q, a non-negative integer k, and a
set E ⊆ U .
Parameter: A non-negative integer k.
Question: Can G be transformed to a (p, q)-grid after at most k edit opera-
tions from E?

Notice that our parameterization also includes the “dual” parameterization of
the Longest Induced Path problem, in the sense that now the parameter is not
2 In an abuse of notation, we indistinctly refer to FPT problem or to problem in the

FPT class.
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the length of the induced path but the number of vertices in G that are absent in
such a path. Theparameterized complexity of the “primal”parameterization of the
Longest Induced Path problem remains, to our knowledge, an open problem.

In Section 4 we consider the following more general problem:

k-Almost some Grid
Input: A graph G and a set E ⊆ U .
Parameter: A non-negative integer k.
Question: Decide if there exist some pair p, q such that E-dist(G,Hp,q) ≤ k.

The above problem can be solved applying the algorithm for k-Almost Grid
for all possible values of p and q. This implies an algorithm of time complexity
O(log n(g(k) + nO(1))). In Section 4, we explain how to avoid this O(logn) over-
head and prove that there exists also a time O(g(k) + nO(1)) algorithm for the
k-Almost some Grid problem. That way, both of our algorithms can be seen
as pre-processing algorithms that reduce the size of the problem input to a func-
tion depending only on the parameter k and not on the main part of the problem.

A different but somehow related sets of problems, which have received plenty
of attention is the following: Given a graph G and a property Π , decide what
is the minimum number of edges (nodes) that must be removed in order to
obtain a subgraph of G with property Π . In general all these problems are NP-
hard [10,4,7]. Some of those problems have been studied from the parameterized
point of view [5], however, all these problems have the characteristic that the
property Π must be an hereditary property. We stress that the k-Almost Grid
and k-Almost any Grid problems completely different nature, as the property
of containing a grid is not hereditary.

2 Definitions and Basic Results

All graphs we consider are undirected, loop-less and without multiple edges.
Define the neighbourhood of a vertex v ∈ V (G) as NG(v) = {u ∈ V (G) | (u, v) ∈
E(G)}, and let Δ(G) = max{|NG(v)| | v ∈ V (G)}.

Denote by (p, q)-grid, any graph Hp,q that is isomorphic to a graph with vertex
set {0, . . . , p− 1} × {0, . . . , q − 1} and edge set

{{(i, j), (k, l)} | (i, j), (k, l) ∈ V (H) and |i− k|+ |j − l| = 1}.

In the above definition p is the column number and q is the row number of
the grid. The r-border of Hs,r is defined as B(r)(Hs,r) = ((i, 0), (i, r − 1) | i =
1, . . . , s− 1). We call a vertex/edge/column of Hs,r internal if it is not in/none
of its endpoints is in/none of its vertices is in B(r)(Hs,r).

All the algorithms and results in this paper work for the general case where
E = U . The other cases are straightforward simplifications of our results3.

3 Our results also hold for more general sets of operations given that they locally
change the structure of the input graph (See Section 5).
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Fig. 1. A graph G whith dist(G, H15,15) ≤ 13 with a (6, 15)-band J in it and the result
of a 3-contraction of J in G

Subsequently, we will also drop the E part in the E-dist(G,H) notation. If
dist(G,H) ≤ k we will denote as Vdead/Edead the vertices/edge that should be
removed and Vadd/Eadd the vertices/edges that should be added towards trans-
forming G to H . In order to well define Vadd/Eadd we always fix one of the
possible ways that such a transformation can be accomplished. Without loss of
generality, we assume that the transformation procedure gives priority first to
vertex removals then to edge removals, then to vertex insertions, and finally to
edge insertions. We also use the notation k1 = |Vdead|, k2 = |Edead|, k3 = |Vadd|
and k4 = |Eadd|. Observe that k1 + k2 + k3 + k4 ≤ k.

We say that a graph G contains an r-band J of width s or, alternatively, an
(r, s)-band, if the following conditions are satisfied:

a) G contains Hs,r as induced subgraph.
b) �{x, y} ∈ E(G) such that x ∈ V (G)− V (Hs,r) and y ∈ V (Hs,r)−B(r)(J).

If G is a graph and Hp,q is a (p, q)-band in G where p ≥ 3 and q ≥ 1, for
0 ≤ w ≤ p−3, a w-contraction of Hp,q in G is the graph obtained by contracting
in G all the edges of Hp,q that are in the set {{(i,m), (i + 1,m)} | 2 ≤ i ≤
w+1, 1 ≤ m ≤ q}. We use the notation contract(G,Hp,q, w) to denote the result
of the operation just described. Notice that the routine contract(G,Hp,q , w) runs
in O(wq) in steps. For an example of a c-contraction, see Figure 1.

Lemma 1. Let G be a graph containing a (3 + c, q)-band H3+c,q for some
c ≥ &k

q ', and let G′ = contract(G,H3+c,q, w), where w = c − &k
q ' + 1. Then

dist(G,Hp,q) ≤ k iff dist(G′, Hp−w,q) ≤ k.

Given a positive integer q, we call an edge of a graph q-extremal if q > 1 and
both its endpoints have degree 3; q = 1 and both its endpoints have degree 2.
For the set of q-extremal edges of a graph G we use the notation E

(q)
ext(G).

Lemma 2. There exists an algorithm find-edge-max-band(G, q, e)) that, given a
graph G, a positive integer q, and a q-extremal edge e of G, returns a maximal
length (3+ c, q)-band H3+c,q where c ≥ 0 and e is also an extremal edge of H. If
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such a (3 + c, q)-band does not exists, then return “NO”. If the answer is “NO”
the algorithm finishes in O(q) steps. If the answer is a vertex set with (3 + c)q
vertices, then the algorithm finishes in O(qc) steps.

Proof sketch: Algorithm find-edge-max-band(G, q, e) checks first whether e is
the “upper” edge of some pair of neighboring columns by “guessing” neighbors
of degree that agree to the corresponding sub-grid pattern. If this guess finishes
successfully, then the algorithm ties to extend this (q, 2)-band to the right or
to the left. If this extension is possible to some of the two directions then the
output is the corresponding (q, c)-band, where c ≥ 2. �
The proof of the following lemma is based on a contradiction argument.

Lemma 3. If G is a graph where Δ(G) ≤ d and dist(G,Hp,q) ≤ k where p ≥ q,
then G contains at most 2(p− 2) + 2(q − 2) + 2dk q-extremal edges.

The algorithm of the following lemma makes use of Lemma 3 and Algorithm
find-edge-max-band(G, q, e) in Lemma 2.

Lemma 4. There exists an algorithm find-max-band(G, q, c)) that, given a graph
G and two positive integers q, c, returns a maximal length (3 + c′, q)-band
H3+c,q where c′ ≥ c. If such a (3 + c′, q)-band does not exists, then find-max-
band(G, q, c) returns “NO”. In case of negative answer find-max-band(G, q, c)
runs in O(q|Eq

ext(G)|) steps. In case of a positive answer find-max-band(G, q, c)
runs in O(qc|Eq

ext|) steps.

Suppose that G can be transformed to H after a sequence of edit operations. We
call a vertex v ∈ G safe if is not removed by a vertex removal operation in this
sequence. If a vertex of G is not safe then we call it dead. We also say that an safe
vertex v is dirty if some of the edit operations alters the set of edges incident to v
in G (i.e. either adds or removes some edge incident to v). If a safe vertex is not
dirty, then it is clean. A vertex of H is new if it was introduced during some vertex
insertion operation. Notice that if dist(G,H) ≤ k, then there are at most k new
vertices in H and at most k dead vertices in G, which implies the following lemma.

Lemma 5. Let G and H be two graphs where dist(G,H) ≤ k and such that the
transformation of G to H involves k1 vertex removals and k2 vertex additions.
Then, |V (H)| − k2 ≤ |V (G)| ≤ |V (H)|+ k1.

A straightforward counting argument gives the following lemma.

Lemma 6. Let G be a graph such that dist(G,Hp,q) ≤ k. Supose also that G
does not contain a (3 + c, q)-band where q · c > k and Hp,q contains ≤ d dirty
vertices. Then p ≤ (&k

q '+ 3)(d + k + 1).

Lemma 7. Let G be a graph with a vertex v of degree more than k + 4 in G and let
Hp,q be a grid. Then any transformation ofG toHp,q should involve the operation of
the removal of v. In particular, dist(G,Hp,q)≤k iff dist(G[V (G)− v], H)≤k − 1.

Proof sketch: Notice that more than k of the edges of v should be removed
towards transforming G to Hp,q while it is possible to apply at most k edit
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operations on G. Therefore, any sequence on E able to transform G to Hp,q,
should include the removal of v. �

Notice that if v is a dirty vertex of H then v is either adjacent to a vertex
v′ ∈ Vdead or is incident to an edge in Eadd ∪ Edead. As v′ ∈ Vdead can be
adjacent to at most Δ(G) dirty vertices of H and an edge in Eadd ∪ Edead can
be incident to at most two dirty vertices of H , then each edit operation creates
at most max{2,Δ(G)} dirty vertices. Therefore,

Lemma 8. Let G be a graph and, let H be some grid. If dist(G,H) ≤ k, then
H contains at most max{Δ(G), 2} · k dirty vertices.

3 Looking for a Given Grid Hp,q

In this section, we show that the k-Almost grid problem is in FPT. For this,
we first combine Lemmata 5, 8, and 6 and prove the following bound f to the
size of the kernel.

Lemma 9. Let G be a graph where dist(G,Hp,q) ≤ k. Suppose also that Δ(G) ≤
b and that G does not contain a (3+c, q)-band where c ≥ &k/q' or any (3+c, p)-
band where c ≥ &k/p'. Then |V (G)| ≤ f(k, b, p, q) where

f(k, b, p, q) =

⎧⎨⎩k + k2 if p ≤ k and q ≤ k,
k + 5k(b · k + k + 1) if min{p, q} ≤ k < max{p, q},
k + 16(b · k + k + 1)2 if p > k and q > k.

Next, we present the algorithm to construct the kernel.

Kernel-for-Check-Grid(G, p, q, k)
Input: A graph G, two positive integers p, q, and a non-negative integer k
Output: Either returns “NO”, meaning that that dist(G, Hp,q) > k, or returns a
graph G′ and a triple p′, q′, k′ such that: dist(G, Hp,q) ≤ k iff dist(G′, Hp′,q′) ≤ k′.
0. Set k′ = k, G′ = G, p′ = p and q′ = q.
1. As long as G′ has a vertex of degree ≥ k′+4, remove it from G′ and set k′ ← k′−1.
If at the end of this proccess k′ < 0,, then return “NO”.
2. Apply any of the following procedures as long as it is possible:
• If find-max-band(G′, q′, �k′

q′ �) = H3+c,q′ ,

then set w = c − � k′

q′ � + 1, G′ = contract(G′, H3+c,q′ , w) and p′ ← p′ − w.

• If find-max-band(G′, p′, �k′

p′ �) = H3+c,p′ ,

then set w = c − � k′

p′ � + 1, G′ = contract(G′, H3+c,p′ , w) and q′ ← q′ − w.
3. If |V (G′)| > f(k′, k + 4, p′, q′), then return “NO”.
4. return G′, p′, q′, k′.

Theorem 1. Algorithm Kernel-for-Check-Grid(G, p, q, k) is correct and if it out-
puts the graph G′ then |V (G′)| ≤ f(k, k + 4, p, q). Moreover, it runs in
O(pq(p + q + k2)) steps.
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Proof: Step 1 is justified by Lemma 7. Notice that before the algorithm enters
Step 2, Δ(G) ≤ k+4. Step 2 creates equivalent instances of the problem because
of Lemma 1. From Lemmata 3 and 4, each time a contraction of step 2 is
applied, the detection and contraction of the corresponding q-band (p-band)
requires O(q′c(p′ + q′ + k′2)) (O(p′c(p′ + q′ + k′2))) steps. As the the sum of the
lengths of the bands cannot exceed q(p) we obtain that step 2 requires, in total,
O(pq(p+ q+ k′2)) steps. Moreover, before the check of Step 3, all the conditions
of Lemma 9 are satisfied. Therefore, if the algorithm returns G′, p′, q′, k′, then
|V (G′)| ≤ f(k′, k + 4, p′, q′) ≤ f(k, k + 4, p, q). �

Theorem 2. There exists an algorithmCheck-Grid(G, p, q, k) that given a graphG,
twopositive integersp, q, andanon-negative integerk either returns“NO”,meaning
that that dist(G,Hp,q) > k, or it returns a sequence of at most k operations that
transformsG toHp,q. Check-Grid(G, p, q, k) runs inO(16k · (2n + 3k)2k) steps.

We stress that Algorithm Check-Grid(G, p, q, k) can be replaced by a faster one
when we do not consider edge additions in the set of edit operations.

Now comes the main algorithm of this section which implements the
kernelization.

Almost-grid(G, p, q, k)
Input: A graph G, two positive integers p, q, and a non-negative integer k
Output: Either returns “NO”, meaning that that dist(G, Hp,q) > k, or returns a
sequence of at most k operations that transforms G to Hp,q.

1. If Kernel-for-Check-Grid(G, p, q, k) = (G′, p′, q′, k′) then return
Check-Grid(G, p, q, k)

2. return “NO”

We conclude with the following.

Theorem 3. Algorithm Almost-grid(G, p, q, k) solves the k-Almost-Grid prob-
lem in 2O(k log k) + O(n3) steps.

4 Looking for Any Grid

To solve the k-Almost some Grid problem it is enough to apply Check-
Grid(G, p, q, k) for all (p, q) ∈ A(n, k) =

⋃
n−k≤i≤n+k{(p, q) | p · q = i}.

As |A(n, k)| ≤ 2k log(k + n), k-Almost some Grid can be solved after
O(k log(n + k)) calls of Almost-grid(G, p, q, k) which gives a running time of
O(log n)(2O(k log k)) + O(k2n3 logn) steps. We call this algorithm check-all-
cases(G, k). We stress that there are cases where |A(n, k)| ≥ 1

2 log n and there-
fore, that way, we may not avoid the “logn”-overhead. In this section, we will
give an alternative approach that gives running times of the same type as the
case of k-Almost Grid.
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We call r-band collection C of a graph G a collection of |C| r-bands in G, with
widths s1, . . . , s|C|, where no pair of them have common interior vertices. The
width of such a collection is

∑
i=1,...,|C|(si − 2).

The following algorithm uses the Algorithm find-edge-max-band in order to
identify the possible components of an r-band collection. Notice that the al-
gorithm has two levels of “guessing” edges: The first level guesses a starting
r-extremal edge, if the edge belongs to some (3 + c, q)-band, the algorithm ex-
tends the collection by guessing r-extremal edges of new components, excluding
r-extremal edges that already belong to bands included in the collection.

The algorithm of the following lemma makes use of Algorithm find-edge-max-
band(G, q, e).

Lemma 10. There exists an algorithm find-max-band-collection(G, r, w) that,
given a graph G and two positive integers r and w, returns “YES” if G con-
tains an r-band collection of width ≥ w; otherwise, returns “NO”. The algorithm
find-max-band-collection(G, r, w) runs in O(rw|Eext(G)|+ n) steps.

The following lemma identifies a bound on the size of a graph without a q-band
collection of sufficient big width.

Lemma 11. Let G be a graph where Δ(G) ≤ b and let Hp,q be a grid where
dist(G,H) ≤ k. Then if G does not contain any q-band collection of width > k
we have that |V (H)| ≤ (b · k + 2)2.

Check-some-Grid(G, k)

Input: A graph Gand a non-negative integer k
Output: The answer to the k-Almost-some-Grid problem with instance G

and parameter k.
1. While G has a vertex of degree ≥ k + 4, remove it from G and

set k ← k − 1. If at the end of this proccess k < 0 then return “NO”.
2. R ← ∅
3. for i = 1, . . . , n, if find-max-band-collection(G, i, 3k + 1) =“YES”, then

set R ← R ∪ {i}
4. If |R| = 0 then if V (G) > k + ((k + 4)k + 2)2, then return “NO”,

otherwise, goto Step 7
5. For any r ∈ R,

If r > 2k, then
begin
If N ∩ [n−k

r
, n+k

r
] = ∅, then return “NO”, otherwise,

return Almost-Grid(G, r, s, k) where {s} = N ∩ [n−k
r

, n+k
r

].
end

otherwise, for (i, j) ∈ n−k≤i≤n+k{(p, q) | p ≤ 2k, p · q ≤ i},
begin
If Almost-Grid(G, i, j, k) = YES, then return Almost-Grid(G, i, j, k).
end

6. Return “NO”.
7. check-all-cases(G, k).
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Lemma 12. Let G be a graph where Δ(G) ≤ b and let H be a grid where
dist(G,H) ≤ k. Then, if G contains an r-band collection of width > 3k then
H = Hs,r for some s ∈ [n−k

r , n+k
r ]. Moreover such an r-band collection can exist

for at most two distinct values of r and s will be unique when r > 2k.

We now proceed with the main algorithm of this Section, which states that
k-Almost any Grid is in FPT.

Theorem 4. Algorithm Check-some-Grid(G, k) is correct. Moreover, the k-
Almost-any-Grid problem can be solved in time 2O(k log k) + O(k2 · n3).

Proof: Step 1 is justified by Lemma 7 and we may assume that before the
algorithm enters Step 2, Δ(G) ≤ k + 4. Steps 2–4 are based on Lemma 11.
Step 3 involves O(n) calls of find-max-band-collection(G, i, 3k+1) which requires
O(kn2) steps because of Lemma 10. Theorefore, Step 3 requires O(kn3) steps.
Finally the loop in Step 5 is correct because of Lemma 12. Note that the first loop
in step 5 is applied at most 2 times and that |

⋃
n−k≤i≤n+k{(p, q) | p ≤ 2k, p ·q ≤

i}| = O(k2). Therefore, step 5 runs in 2O(k log k) +O(k2 ·n3) steps. As we noticed
in the begining of this section, check-all-cases(G, k) requires O(log n′)(2O(k log k)+
O(log n′ · n′3 · k2)) steps where n′ is the number of vertices of G in step 7. As
n′ ≤ O(k4), this means that step 7 requires 2O(k log k) steps. �

5 Extensions

The ideas of the kernelization algorithm Kernel-for-Check-Grid can be also used
for more general “cleanning” problems. The directions in which our results can
be extended are the following:

Other Patterns. Algorithm Find-edge-max-band intents to find “regions of reg-
ularity” (r-bands) in the input graph that can be safely contracted. This is used
by the kernelization Algorithm Kernel-for-Check-Grid in order to output an equiv-
alent instance of the problem (of small size) containing the “essential” part of
the “dirtinesss” of the input graph. While Algorithm Find-edge-max-band works
for grids, it can be adapted for other “regular” patterns as well. In Figure 2 we
depict some examples of such patterns. In each of them one has to define the
adequate notion of regularity pattern and design the analogous of Algorithm
Find-edge-max-band for its detection. It is enough to adapt Lemma 1 in order

Fig. 2. Patterns of graphs for which the edit distance problem is in FPT
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(iii)(i) (ii) (iv)

Fig. 3. (i) identification of two vertices, (ii) Δ-Y transformation, (iii) vertex duplica-
tion, and (iv) addition of any number of incident edges

to justify the compression of this regular patterns and to modify Lemma 9 to
prove that when no further compression is possible. Therefore, the graph has a
size that depends only on the parameter k (the proofs are based on the same
arguments as in the case of grid).

Other Operations. Observe that the set U = {e-out, e-in, v-out, v-in} is not
the most general set of edit operations, where the arguments of our proofs can
be applied. In fact, all the proofs in this paper exploit the “locality” of these
operations. All our results hold also for any set of operations, where each opera-
tion is equivalent to the detection of a constant size subgraph H , together with
the application of a constant number of edge removals, edge additions, edge con-
tractions, vertex removals, vertex additions (with the addition of an arbitrary
number of incident edges), or inverse contractions on H . Some examples of such
transformations are depicted in Figure 3.
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Abstract. An N-superconcentrator is a directed graph with N input
vertices and N output vertices and some intermediate vertices, such that
for k = 1, 2, . . . , N , between any set of k input vertices and any set
of k output vertices, there are k vertex disjoint paths. In a depth-two
N-superconcentrator each edge either connects an input vertex to an
intermediate vertex or an intermediate vertex to an output vertex. We
consider tradeoffs between the number of edges incident on the input
vertices and the number of edges incident on the output vertices in a
depth-two N-superconcentrator. For an N-superconcentrator G, let a(G)
be the average degree of the input vertices and b(G) be the average degree
of the output vertices. Assume that b(G) ≥ a(G). We show that there is
a constant k1 > 0 such that

a(G) log
2b(G)
a(G)

log b(G) ≥ k1 · log2 N .

We further show a complementary sufficient condition: there is a constant
k2 > 0, such that if some a and b (a ≤ b) satisfy the above inequality with
k1 replaced by k2, then there is an N-superconcentrator G with a(G) ≤ a
and b(G) ≤ b. In particular, these results imply that the minimum size
of a depth-two N-superconcentrator is θ N log2 N

log log N
, which was already

known [9].
Our results are motivated by the connection between the size of depth-

two superconcentrators and the problem of maintaining the Discrete
Fourier Transform (DFT) in the straight-line program model [3]. Our
necessary condition implies that in this model, for any solution to the
problem of maintaining the DFT of a vector of length N over an alge-
braically closed field of characteristic 0, if each update is processed using

at most d atomic operations (for d ≤ log N
log log N

2

), then at least N
Ω( 1√

d
)

atomic operations are required to process a query, in the worst case. In
particular, if each update is to be processed in constant time, then some
query takes Ω (Nε) worst-case time (for some constant ε > 0). Before
this work, it was only known [3] that one of these operations requires
Ω log2 N

log log N
time.
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1 Introduction

Valiant [11] showed that the graphs underlying the algorithms for a number of
important arithmetic problems, e.g. polynomial multiplication, matrix multipli-
cation and discrete Fourier transform, have properties closely related to con-
centration networks. This opened up the intriguing possibility of showing lower
bounds on running time, by showing lower bounds on the size of such networks.

Superconcentrators (defined by Valiant [11]) are directed graphs with disjoint
sets of input, output and intermediate vertices, such that any subset of inputs is
connected to any equinumerous subset of outputs by vertex disjoint paths. The
depth of a superconcentrator is the maximum length of a path from an input to
an output; its size is the number of edges.

Superconcentrators have been the subject of intensive research as they are useful
in proving lower bounds in complexity theory [11, 3], demonstrating optimality of
algorithms [5], andconstructinghigh connectivitynetworks.Valiant [12, 11] showed
the existence ofN -superconcentrators of sizeO(N) andwithdepthO(log2 N). Pip-
penger [6] gave a simpler recursive construction for an N -supercon-centrator with
O(N) edges and depth O(log N). On the other hand, Pippenger [7] proved a lower
bound of Ω(N log N) and an upper bound of O(N log2 N) for the minimum size of
a depth-two N -superconcentrator.

This led researchers to investigate the exact tradeoff between depth and
size [2, 1, 8]. These results together determined the size of the smallest depth-
d superconcentrator for all depths d ≥ 3. For depth-two superconcentrators,
Alon and Pudlák [1] improved the lower bound of Pippenger to Ω(N log

3
2 N).

Radhakrishnan and Ta-Shma [9] showed that the smallest size of a depth-two
N -superconcentrator is Θ(N log2 N

log log N ).
The work presented in this paper is motivated by a result of Frandsen et

al. [3] who used the tight lower bound for the minimum size of a depth-two
superconcentrator to show a lower bound for the time complexity of dynamic
evaluation of certain algebraic functions in the straight line program model. They
considered the setup of Reif and Tate [10] for dynamic algebraic algorithms where
two kinds of on-line operations can be handled: update an input variable or query
an output variable. They proved a lower bound of Ω( log2 N

log log N ) for the worst-case
time complexity per operation of any algorithm for maintaining the Discrete
Fourier Transform of a vector of length N . Earlier, Reif and Tate [10] had shown
an upper bound of O(

√
N) in this model.

1.1 Definitions and Results

Definition 1 (Depth-two superconcentrator). A depth-two N -superconcen-
trator is a directed graph G(A, B, C,E), where A is the set of N input vertices, B
is the set of N output vertices and C is the set of intermediate vertices. The edge
set E is a subset of A × C ∪ C × B. Furthermore, for k = 1, 2, . . . , N , between
any two subsets S ⊆ A and T ⊆ B consisting of k vertices each, there are k vertex
disjoint paths. Let a(G) be the average degree of the vertices in A and b(G) be the
average degree of the vertices in B.
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Remark: Since the roles of the input and output vertices are interchangeable,
we will assume without loss of generality that b(G) ≥ a(G).

We study the tradeoff between the number of edges in the two levels of a depth-
two superconcentrator and obtain matching (but for constants) necessary and
sufficient conditions relating them.

Theorem 1 (Necessary condition). For all large enough N and all depth-two
N -superconcentrators G,

a(G) log
(

2b(G)
a(G)

)
log b(G) ≥ 1

200
log2 N .

Theorem 2 (Sufficient condition). For all large enough N and all b ≥ a ≥ 1
such that

a log
(

2b
a

)
log b ≥ 4000 log2 N ,

there is an N -superconcentrator G with a(G) ≤ a and b(G) ≤ b.

These two theorems have the following corollaries.

Corollary 1. (a) The minimum number of edges in a depth-two N -supercon-
centrator is θ

(
N log2 N

log log N

)
.

(b) There is a constant c1 ≥ 1, such that for all large N and all depth-two N -

superconcentrators G with a(G) ∈
[
1,
(

log N
log log N

)2
]

we have b(G) ≥ N
c1√
a(G) .

Furthermore, this condition is tight: there is a constant c2 such that for all

large N , if a ∈
[
1,
(

log N
log log N

)2
]

and b satisfies b ≥ N
c2√

a , then there there

is depth-two N -superconcentrator G with a(G) ≤ a and b(G) ≤ b.

Theorem 1 has the following consequence for the dynamic DFTN problem in the
straight-line program model (the formal definitions appear in the next section).

Theorem 3 (Tradeoff for DFT). In any solution to dynamic DFTN in the
straight-line program model, supporting updates and queries over an algebraically
closed field of characteristic 0, if one operation is implemented with worst-case
time a = a(N), and the other operation with worst-case time b = b(N) ≥ a(N),
then for all large N ,

a log
(

2b
a

)
log b ≥ c3 · log2 N ,

where c3 > 0 is a a fixed constant. In particular, as in Corollary 1(b), if a ∈[
1,
(

log N
log log N

)2
]
, then b ≥ N

c4√
a , for some c4 > 0.
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The main contributions of this work are the matching necessary and sufficient
conditions for the existence of depth-two superconcentrators. Previous studies of
depth-two superconcentrators focused on the overall size, and did not consider the
tradeoff between the number of edges in the two levels. This work was motivated
by the application of this tradeoff result to the Dynamic FFT problem.

Our proof for the necessary condition is based on a probabilistic argument
used by Radhakrishnan and Ta-Shma [9] to show an Ω(N log2 N

log log N ) lower bound
for the size of depth-two superconcentrators. The proof that the condition is
sufficient is similar to the argument in [9] for obtaining the upper bound of
O(N log2 N

log log N ); in particular, we use Meshulam’s [4] sufficient condition.
In the next section, we describe the framework for the dynamic Discrete

Fourier Transform problem and derive Thm. 3 assuming that Thm. 1 holds.
In Sect. 3, we prove Thm. 1 and in Sect. 4 we prove Thm. 2.

2 The DFT Problem

Reif and Tate [10] and Frandsen et al. [3] considered the following setup for dy-
namic algebraic algorithms. Let f1, f2, · · · , fM be a system of N -variate polyno-
mials over a commutative ring or rational functions over a field. Let the variables
be x1, x2, . . . , xN . A dynamic algorithm for this system is one that when given
an initial input vector, does some pre-processing and then can efficiently handle
online requests of the following two kinds: updatek(v) asks for changing the input
xk to the new value v, and queryk asks for the value of the output fk. There are
several natural and important examples for this setup like dynamic polynomial
evaluation, dynamic polynomial multiplication, dynamic matrix-vector multi-
plication, dynamic matrix-matrix multiplication, and dynamic discrete Fourier
transform.

Definition 2 (Discrete Fourier Transform). Fix N ≥ 1. Let k be an al-
gebraically closed field and ω ∈ k be a primitive N -th root of unity. Let F be
the N × N matrix defined by (F )ij = ωij. The Discrete Fourier Transform,
DFTN : kN → kN , is the map x → Fx, ∀x ∈ kN .

The most basic model of computation for dynamic algorithms is the straight line
program model. In this model, given the problem of evaluating f : kN → kM ,
we assign a straight line program to each of the operations update1, update2,
· · ·, updateN , and query1, query2, · · ·, queryM . We allow addition, subtraction,
multiplication and division as the basic operations.

Theorem 4 (Frandsen, Hansen and Miltersen [3]). If there is a solution
to the DFTN problem over an algebraically closed field of characteristic 0 in the
straight-line program model, where the update operations need worst-case time
u and the query operations need worst-case time q, then there is a depth-two
L-superconcentrator G with L = Ω( 3

√
N

log log N ) such that a(G) ≤ min(u, q) and
b(G) ≤ max(u, q).

Proof (Thm. 3.). Immediate by combining Thm. 4 with Thm. 1 and Cor. 1. !"
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3 Necessity: Proof of Theorem 1

Assume N is large, and G(A, B, C,E) is a depth-two N -superconcentrator. From
the lower bound of [9], we know that b(G) ≥ log N . Also, if b(G) > N

1
10 , it

is easy to see that the claim holds. So, in the following, we will assume that
log N ≤ b ≤ N

1
10 . Also, we will write a instead of a(G) and b instead of b(G).

Now, suppose the theorem does not hold, that is,

a log
(

2b
a

)
log b <

1
200

log2 N . (1)

Let L
Δ=
⌊

1
10

log N
log b

⌋
. Using the assumption on b, we conclude that L ≥ 1 and

in general L ≥ 1
20

log N
log b . We will classify the vertices v ∈ C according to their

number of neighbours in B, which we denote by degB(v). For i = 1, 2, . . . , L, let
Ki

Δ= b5i, and

Ci
Δ=
{
v ∈ C :

N

b2Ki
≤ degB(v) ≤ b2N

Ki

}
;

Di
Δ=
{
v ∈ C : degB(v) <

N

b2Ki

}
.

The idea of the proof is as follows. When considering subsets of A and B of size
Ki, we will examine how these sets get connected. For this task the set Di will
be thought of as low degree vertices and the set Ci will be thought of as medium
degree vertices; those not in Di or Ci are the high degree vertices. We will argue
that the paths connecting sets of size Ki cannot all pass though high degree
vertices. Also, by averaging, we find an i such that the set Ci has few edges
incident on it. This will imply that many sets have common neighbors among
low degree vertices. This will lead to the final contradiction.

Our definition of Ki ensures that the sets Ci are disjoint. If i is chosen uni-
formly at random from [L], then the expected number of edges between A and
Ci is at most aN/L and the expected number of edges between B and Ci is at
most bN/L. Using, Markov’s inequality we conclude that there is an � ∈ [L], such
that the number of edges between A and C� is at most 2aN/L and the number
of edges between B and C� is at most 2bN/L. Fix such an �. For u ∈ A ∪B, let
du be the number of neighbors of u in C�. Let A′ be the set of N

2 vertices u ∈ A

with the smallest du, and similarly B′ be the set of N
2 vertices v ∈ B with the

smallest dv. We thus have that the degree du for each vertex u ∈ A′ is at most

a�
Δ=

4a
L

≤ 80a log b

log N
.

Similarly, the degree dv for each vertex v ∈ B′ is at most

b�
Δ=

4b
L

.
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Now, consider subsets S ⊆ A′ and T ⊆ B′, each of size K�. We claim that
S and T have a common neighbor in C� ∪D�. For otherwise, there must be K�

(high degree) vertices in C \ (C� ∪D�), each with degB more than b2N
K�

. But this

implies that the number of edges between B and C is more than K� · b2N
K�

> bN ,
a contradiction.

We will now analyze the connections between S and T via C� ∪ D�. As in
[9], we identify large sets A′′ ⊆ A′ and B′′ ⊆ B′ such that A′′ and B′′ have no
common neighbor in C�. So, every two subsets S ⊆ A′′ and T ⊆ B′′ of size K�

must have a common (low degree) neighbor in D�. Since, vertices in D� have few
neighbors in B′′, we will be able to derive a contradiction from this.

The set A′′ and B′′ are obtained using the following randomized procedure.
For each v ∈ C�, with probability a�

a�+b�
delete all its neighbors in B′, and with

probability b�

a�+b�
delete all its neighbors in A′. These operations are executed

independently for each v ∈ C�. Thus, for u ∈ A′, the probability that it survives

is exactly
(

a�

a�+b�

)du

. We then delete this vertex u again with probability 1 −(
a�

a�+b�

)a�−du

, so that the probability that u survives is exactly

pA =
(

a�

a� + b�

)a�

≥
(

a�

2b�

)a�

≥ N− 2
5 .

To justify the last inequality, first substitute the values for a and b in terms of
a� and b� in our assumption (1):

a�

(
L

4

)
log
(

2b�

a�

)
log b <

1
200

log2 N ;

next using the bound L ≥ 1
20

log N
log b , obtain a� log

(
2b�

a�

)
< 2

5 log N .
Similarly, we ensure that every vertex in B′ survives with probability exactly

pB =
(

b�

a� + b�

)b�

=
(

a� + b�

b�

)−b�

≥ exp(−a�) ≥ N− 2
5 .

Again, for the last inequality, we use our assumption (1) and the definition of
a�.

The (random) set of vertices in A′ that survive is our A′′. Similarly, the set of
vertices in B′ that survive is the set B′′. Our construction ensures that A′′ and
B′′ don’t have any common neighbors in C�. So, all connections between subsets
of size K� contained in A′′ and B′′ must go through the (low degree) vertices in
D�. Let

F = {(u, v) ∈ A′′ ×B′′ : u and v have a common neighbor in D�} .

Thus, the pairs in F contains the connections between A′′ and B′′ that are
available via vertices in D�. These connections must suffice to connect every two
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subsets S ⊆ A′′ and T ⊆ B′′ of size K�. It can be shown (see Claim 3.8 of [9])
that we then have

|F | ≥ |A′′||B′′|
K�

− |A′′| − |B′′| .

We then have the same inequality between the expected value (note that F , A′′

and B′′ are random variables) of the two sides:

E[|F |] ≥ E
[
|A′′||B′′|

K�

]
− E[|A′′|]− E[|B′′|] . (2)

We will estimate the terms in this inequality separately and derive our final
contradiction.
Upper bound for E[|F |]: We first count the number of pairs (u, v) ∈ A′ ×B′

that have a common neighbor in D�: this number is at most the number of
edges incident on A′, times maximum the number of neighbors in B′ for a
vertex in D�, that is, aN ·

(
N

b2K�

)
≤ N2

bK�
. Such a pair is included in F only

if both u and v survive, which happens with probability at most pApB (if
u and v have a common neighbor in C�, this probability is zero, otherwise,
they survive independently, with probability pA and pB respectively). Thus,

E[|F |] ≤
(

N2

bK�

)
· pApB ≤ N2pApB

bK�
= o

(
N2pApB

bK�

)
.

Lower bound for E[ |A
′′||B′′|
K�

]: Note that |A′′||B′′| is precisely the number of
pairs (u, v) ∈ A′ × B′ where both u and v survive. Note that if u ∈ A′ and
v ∈ B′ have no common neighbor in C�, then the events u ∈ A′′ and v ∈ B′′

are independent. Now, a fixed u ∈ A′ has at most a� neighbors in C�, and
each vertex in C� has at most b2N

K�
≤ N

b3 neighbors in B′ (by the definition of
C�). Thus, the number of pairs (u, v) ∈ A′ ×B′ that do not have a common
neighbor in C� is at least

N

2

(
N

2
− a� ·

N

b3

)
≥ N

2

(
N

2
− 4N

b2

)
≥ N2

8
.

The probability that both vertices in such a pair survive is exactly pApB.
Thus,

E
[
|A′′||B′′|

K�

]
≥
(

N2

8K�

)
pApB .

Upper bounds for E[|A′′|] and E[|B′′|]: We have

E[|A′′|] = NpA = o

(
N2

K�

)
pApB ,

where, for the last inequality, we used K� ≤ N1/2 and pB ≥ N− 2
5 . Similarly,

E[|B′′|] = NpB = o

(
N2

K�

)
pApB .

Now, returning to (2), we see that the first term on the right hand side is
Ω
((

N2

K�

)
pApB

)
, but all other terms are o

((
N2

K�

)
pApB

)
– a contradiction.
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4 Sufficiency

In this section, we give a probabilistic construction of depth-two superconcen-
trators in order to show that the condition stated in Thm. 2 is sufficient. Instead
of working directly with that condition, we will first construct superconcentra-
tors parametrized by a variable �; later we will choose � suitably and establish
Thm. 2.

Lemma 1. For all large N and all � ∈ [1, log N ], there is a depth-two N -
superconcentrator G(A, B, C,E) with at most

50
(

log N

log(�N
1
� )

)
�N

edges between A and C and at most

50
(

(log N)2

log(�N
1
� )

)
N1+ 2

�

edges between C and B.

We now assume this lemma and complete the proof of Thm. 2.

Proof (Thm. 2). Assume that N is large and that a and b satisfy

a log
(

2b
a

)
log b ≥ 4000 log2 N . (3)

The proof will split into three parts depending on whether a is small, large or
medium.

Small a: Suppose a ∈ [1, 3000]. Then, (3) implies that b ≥ N . To justify our
theorem consider the superconcentrator with N intermediate vertices, each
connected to a different input vertex and to all output vertices.

Large a: Suppose a ≥ 200 log2 N
log(2 log N) . In this case, Lemma 1 with � = log N ,

gives us the required superconcentrator.
Medium a: We may now assume that a ∈ [3000, 200 log2 N

log(2 log N) ]. Let � ≥ 0 be
such that

a = 200
(

log N

log �N
1
�

)
� . (4)

It is easy to see that such an � ∈ [1, log N ] exists. Further, we have a ≤ 200�2,
and since a ≥ 3000, we have a ≤ �6. Now, the idea is to invoke Lemma 1 with
this value for �. To complete the proof we need to show that (3) implies that

b ≥ 50
(

log N

log �N
1
�

)
N

2
� . (5)
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We rewrite (3) as log2 b− log
(

a
2

)
log b−4000 log2 N

a ≥ 0. Thus, log b is at least

as big as the positive root of the polynomial X2 − log(a
2 )X − 4000 log2 N

a :

log b ≥ 1
2

⎛⎝log
(a

2

)
+

√
log2

(a

2

)
+ 16000

log2 N

a

⎞⎠
=

1
2

(
log
(a

2

)
+
√

log2
(a

2

)
+ 80 logN

1
� log(�N

1
� )
)

(using (4))

≥ 1
2

(
log
(a

2

)
+
√

log2
(a

2

)
+ 80 log2 N

1
� + 80 log(�) log N

1
�

)
≥ 1

2

(
log
(a

2

)
+
√

log2
(a

2

)
+ 36 log2 N

1
� + 12 log

(a

2

)
log N

1
�

)
≥ 1

2

(
log
(a

2

)
+

√(
log
(a

2

)
+ 6 log N

1
�

)2
)

= log
(a

2

)
+ 3 logN

1
� .

For the third inequality we used �6 ≥ a ≥ a
2 . By exponentiating both sides

and using (4), we can now derive (5):

b ≥
(a

2

)
N

3
� ≥ 200

2

(
log N

log �N
1
�

)
� ·N 3

� ≥ 100
(

log2 N

log �N
1
�

)
N

2
� .

[For the last inequality, note that the �N
1
� is minimum when � = lnN , and

then we have �N
1
� = e lnN ≥ log N .] !"

4.1 Proof of Lemma 1

We will use the following sufficient condition shown by Meshulam [4].

Lemma 2 (Meshulam [4]). A depth-two network G(A, B, C,E), with A and
B of size N , is a superconcentrator if and only if every two subsets S ⊆ A and
T ⊆ B of the same size s have at least s common neighbors in C.

Idea of the construction: Fix a δ ∈ (0, 1]. Our goal is to produce a network
G that satisfies the sufficient condition given in Meshulam’s characterization.
Now, s can take N values, namely, 1, 2, . . . , N . We think of this range as the
union of roughly 1

δ intervals, and dedicate one subnetwork for each interval. The
first interval will consist of all sizes in [1,M ], the second interval will consists
of sizes in [M,M2], and so on, where M ≈ N δ. Our final N -superconcentrator
will be obtained by putting these O(log N/ logM) subnetworks together. This
motivates the following definition.

Definition 3 (Connector network). For N ≥ 1, k ∈ [1, N ], and 0 < ε ≤ 1,
an (N, k, ε)-connector is a depth-two network H(A, B, C,E) with |A|, |B| = N ,
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such that every S ⊆ A and T ⊆ B of the same size s ∈ [k, kN ε] have at least⌊
ε−1s

⌋
+ 1 common neighbors in C.

Lemma 3. If N is large enough, 1
log N < ε ≤ 1 and k ∈ [1, N ], there is an

(N, k, ε)-connector with at most
⌈
8ε−1

⌉
N edges between A and C and at most⌈

20N1+2ε log N
⌉

edges between C and B.

Proof. We take C to be a set of size
⌈
2ε−1kN2ε

⌉
. Our graph will consist of two

random bipartite graphs, one between A and C and the other between B and C.
In the first graph, each vertex in A is independently assigned

⌈
8ε−1

⌉
neighbors

chosen uniformly with replacement from |C|. In the second graph, each vertex
in B is similarly assigned

⌈
20N2ε log N

⌉
neighbors in C. We have two claims.

Claim 1. With probability at least 3
4 , for all S ⊆ A of size s ∈ [k, kN ε], we have

|N(S)| ≥ 2
⌊
ε−1s

⌋
+ 1.

Claim 2. With probability at least 3
4 , for all T ⊆ B of size t ∈ [k, kN ε], we have

|N(T )| ≥ |C| −
⌊
ε−1t

⌋
.

We will justify these claims below. First, let us see that they immediately
imply our lemma. With probability at least 1

2 the events in both the claims hold
simultaneously. But then, every two sets S and T of the same size s ∈ [k, kN ε]
have at least

⌊
ε−1s

⌋
+ 1 neighbors in common. !"

We still need to establish the two claims above. These claims are about the ex-
istence of expander or disperser-like graphs. In [9], probabilistic constructions
of disperser graphs were used for this purpose. But in Claim 1, we require ex-
pansion not just for a set of fixed size, but for sets of a whole range of sizes,
and this does not immediately fit in the disperser-graph framework. It is sim-
pler, therefore, to provide routine probabilistic arguments to prove these claims,
rather than deduce them from similar constructions in the literature.

Proof (Claim 1). We first fix a subset S ⊆ A of size s ∈ [k, kN ε] and a subset R
of C of size 2

⌊
ε−1s

⌋
, and estimate the probability that all neighbors of S lie in

R. This probability is at most(
2ε−1s

2ε−1kN2ε

)( 8
ε )s

≤ 1
N8s

.

There are at most
(
N
s

)
choices for S and at most

( |C|
2
ε−1s�

)
choices for R. Fur-

thermore, s takes integral values in [k, kN ε]. We conclude that the probability
that some S ⊆ A of size s ∈ [k, kN ε] has 2

⌊
ε−1s

⌋
or fewer neighbors in C is at

most

∑
s∈[k,kNε]

1
N8s

·
(

N

s

)
·
(

|C|
2 �ε−1s�

)
≤

N∑
s=1

1
N8s

·Ns ·
(

e|C|
2 �ε−1s�

)2�ε−1s�
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≤
N∑

s=1

1
N8s

·Ns ·
(

e ·
⌈
2ε−1kN2ε

⌉
2ε−1s

)2ε−1s

≤
N∑

s=1

1
N0.1s

≤ 1
4

.

For the second inequality, we used the fact that the function (eM/x)x is an
increasing function of x for x ≤ M . For the third inequality, we used the as-
sumption that ε−1 ≤ log N . For the last inequality, we assumed that N is large
enough. !"

Proof (Claim 2). This is similar to the proof above. Let t be the smallest integer
in [k, kN ε]. Clearly, it is enough to show that the claim holds for sets of size t.
Fix a set T of size t and a subset R of C of size |C| −

⌊
ε−1t

⌋
− 1, and estimate

the probability that all neighbors of T lie in R. This probability is at most(
1−

⌊
ε−1t

⌋
+ 1

|C|

)(20N2ε log N)t

≤
(

1− ε−1t

&2ε−1kN2ε'

)(20N2ε log N)t

≤ 1
N9t

.

There are at most
(
N
t

)
choices for T and at most

( |C|

ε−1t�+1

)
choices for R. We

conclude that the probability that some set T ⊆ B of size t has at most |C| −⌊
ε−1t

⌋
− 1 neighbors is at most

1
N9t

·
(

N

t

)
·
(

|C|
�ε−1t�+ 1

)
≤ 1

N9t
·N t ·

(
e
⌈
2ε−1kN2ε

⌉
ε−1t + 1

)ε−1t+1

≤ 1
N9t

·N t ·N2t+2 · 8ε−1t+1

≤ 8
N3t−2

≤ 1
4

.

For the third inequality, we used our assumption ε−1 ≤ log N . For the last
inequality, we assumed that N is large. !"

Finally, we put together connectors to obtain the N -superconcentrators as
claimed in Lemma 1.

Proof (Lemma 1). Fix � ∈ [1, logN ]. Let M = �N
1
� , p =

⌈
log N
log M

⌉
≤ 2 log N

log M , and

for j = 0, 1, . . . , p−1, define kj = N
j
p . Using Lemma 3 (with ε = 1

� ), we conclude
that there is an (N, kj ,

1
� )-connector Hj with &8�'N edges between A and C and⌈

20N1+2
� log N

⌉
edges between C and B. Note that in this connector, any two

sets, S ⊆ A and T ⊆ B, of size s ∈ [kj , kjM ] have at least s common neighbors.
By putting these p connectors together, we obtain an N -superconcentrator. The
total number of edges between A and C is then at most

&8�'Np ≤ 50
(

log N

log(�N
1
� )

)
�N ,
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and between B is C is at most⌈
20N1+ 2

� log N
⌉
p ≤ 50

(
(log N)2

log(�N
1
� )

)
N1+ 2

� .

!"
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Abstract. Using logspace counting classes we study the computational
complexity of hypergraph and graph isomorphism where the vertex sets
have bounded color classes for certain specific bounds. We also give
a polynomial-time algorithm for hypergraph isomorphism for bounded
color classes of arbitrary size.

1 Introduction

In this paper we explore the complexity of Graph Isomorphism (GI) and Hy-
pergraph Isomorphism (HGI) in the bounded color class setting. This means
that the vertices of the input graphs are colored and we are only interested in
isomorphisms that preserve the colors. The restriction of graph isomorphism
to graphs with n vertices where the number of vertices with the same color is
bounded by b(n) is very well studied (we call this problem GIb). In fact, for
b(n) = O(1) it was the first restricted version of GI to be put in polynomial
time using group-theoretic methods [5] (as usual we denote GIO(1) by BCGI).
Later Luks put BCGI in NC using nontrivial group theory [8], whereas Torán
showed that BCGI is hard for the logspace counting classes ModkL, k ≥ 2 [11].
Actually, Torán’s proof shows that for k ≥ 2, GIk2 (as well as GA2k2) is hard for
ModkL. More recently, in [1] it is shown by carefully examining Luks’ algorithm
and Torán’s hardness result that BCGI is in the ModkL hierarchy and is in fact
hard for this hierarchy.

For a fixed constant b, there is still a gap between the general upper bound
result of [1] for GIb and Torán’s hardness result. More precisely, if GIb is upper
bounded by, say, the t-th level of the ModjL hierarchy, and is hard for the s-th
level of the ModkL hierarchy, the constants t and j are much larger than s and
k respectively. In the absence of a general result closing this gap, it is interesting
to investigate the complexity of GIb for specific values of b. In [6] GI2 and GI3
are shown to be equivalent to undirected graph reachability implying that they
are complete for L [10]. In the present paper, we take a linear-algebraic approach
to proving upper and lower bounds for GIb. This is natural because the ModkL
classes for prime k have linear-algebraic complete problems. Using linear algebra
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over F2 we are able to show that GIb is⊕L complete for b ∈ {4, 5}. Our techniques
involve a combination of linear algebra with a partial Weisfeiler-Lehman type of
labeling procedure (see e.g. [4]).

Another natural question to investigate is the complexity of Hypergraph Iso-
morphism when the vertex set is divided into color classes of size at most b(n)
(call it HGIb). Firstly, notice that even for constant b, it is not clear whether
HGIb is reducible to BCGI. At least the usual reduction from HGI to GI does
not give a constant bound on the color classes. The reason is that hyperedges can
be of unbounded size. Hence a hyperedge’s orbit can be exponentially large even
under color-preserving vertex permutations. Thus, we need to directly examine
the complexity of HGIb. We show using group theory and linear algebra that
HGI2 is ⊕L complete. Further we show that for any prime p, HGAp (as well as
GAp2) is ModpL hard.

Next we consider HGIb for arbitrary b. Since HGI is polynomial-time many-
one equivalent to GI, complexity-theoretic upper bounds for GI like NP∩ coAM
and SPP hold for HGI. However, consider an instance of HGI: a pair of hyper-
graphs (X1,X2), with n vertices and m edges each. The reduction to GI maps it
to a pair of graphs (Y1,Y2) with vertex sets of size m+n. The best known isomor-
phism testing algorithm (see [2]) which has running time c

√
n lg n will take time

c
√

(m+n) lg(m+n) when combined with the above reduction and applied to HGI.
The question whether HGI has a simply exponential time (i.e. cn time) algorithm
was settled positively by Luks by using a dynamic programming approach [9]. In
Section 5 we give a polynomial-time upper bound for HGIb when b is bounded
by a constant. This result is based on Luks’ polynomial-time algorithm [7] for
the set stabilizer problem for a permutation group in the class Γd.

2 Preliminaries

We first fix some notation. Let X = (V, E) denote a (finite) hypergraph, i.e., E
is a subset of the power set P(V ) of V , and let g be a permutation on V . We
can extend g to a mapping on subsets U = {u1, . . . , uk} of V by

g(U) = {g(u1), . . . , g(uk)}.

g is an isomorphism between hypergraphs X = (V, E) and X ′ = (V, E′), if

∀e ⊆ V : e ∈ E ⇔ g(e) ∈ E′.

We also say that g maps X to X ′ and write g(X) = X ′. If g(X) = X , then g
is called an automorphism of X . Note that the identity mapping on V is always
an automorphism. Any other automorphism is called nontrivial.

A coloring of a hypergraph (V, E) is given by a partition C = (C1, . . . , Cm)
of V into disjoint color classes Ci. We call X = (V, E, C) a colored hypergraph.
In case ‖Ci‖ ≤ b for all i = 1, . . . ,m, we refer to X as a b-bounded hypergraph.
Further, for 1 ≤ k ≤ b, we use Ck = {C ∈ C | ‖C‖ = k} to denote the set of all
color classes having size exactly k.
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A permutation g on V is called an isomorphism between two colored hyper-
graphs X = (V, E, C) and X ′ = (V, E′, C′) with colorings C = (C1, . . . , Cm) and
C′ = (C′

1, . . . , C
′
m), if g preserves the hyperedges (i.e., g(V, E1) = (V, E2)) and g

preserves the colorings (i.e., g(Ci) = g(C′
i) for all i = 1, . . . ,m).

The decision problem HGIb consists of deciding whether two given b-bounded
hypergraphs X1 and X2 are isomorphic. A related problem is the hypergraph
automorphism problem HGAb of deciding if a given b-bounded hypergraph X
has a nontrivial automorphism. For usual b-bounded graphs X = (V, E) (i.e.,
each edge e ∈ E contains exactly 2 nodes), we denote the isomorphism and
automorphism problems by GIb and GAb, respectively.

Let X = (V, E) be a graph. For a subset U ⊆ V , we use X [U ] to denote the
induced subgraph (U,E(U)) of X , where E(U) = {e ∈ E | e ⊆ U}. Further,
for disjoint subsets U,U ′ ⊆ V , we use X [U,U ′] to denote the induced bipartite
subgraph (U∪U ′, E(U,U ′)), where E(U,U ′) contains all edges e ∈ E with e∩U �=
∅ and e∩U ′ �= ∅. For a set U of nodes, we use ΓX(U) to denote the neighborhood
{v ∈ V | ∃u ∈ U : (u, v) ∈ E} of U in X .

We denote the symmetric group of all permutations on a set A by Sym(A)
and by Sn in case A = {1, . . . , n}. Let G be a subgroup of Sym(A) and let a ∈ A.
Then the set {b ∈ A | ∃π ∈ G : π(a) = b} of all elements b ∈ A reachable from a
via a permutation π ∈ G is called the orbit of a in G.

3 Graphs with Color Classes of Size 5

In this section we prove that GA4 is contained in⊕L. The proof is easily extended
to GI4 as well as to GA5 and GI5. Let X = (V, E, C) be a 4-bounded graph (an
instance of GA4) and let C = (C1, . . . , Cm). We use Xi to denote the graph
X [Ci] induced by Ci and Xij to denote the bipartite graph X [Ci, Cj ] induced
by the pair of color classes Ci and Cj . We assume that all vertices in the same
color class have the same degree and that the edge set Ei of Xi is either empty
or consists of two disjoint edges (only if ‖Ci‖ = 4), since otherwise we can either
split Ci into smaller color classes or we can replace Xi by the complement graph
without changing the automorphism group Aut(X) of X . Further, we assume
that the edge set Eij of Xij is of size at most ‖Ci‖ · ‖Cj‖/2, since otherwise, we
can replace Xij by the complement bipartite graph without changing Aut(X).

Any π ∈ Aut(X) can be written as π = (π1, . . . , πm) in Aut(X1) × · · · ×
Aut(Xm), where πi is an automorphism of Xi. Furthermore, for any pair of
color classes Ci and Cj , (πi, πj) has to be an automorphism of Xij . These are
precisely the constraints that any automorphism in Aut(X) must satisfy.

Since each Aut(Xi) is isomorphic to a subgroup of S4, the only prime factors
of ‖Aut(X)‖ (if any) are 2 and 3. Thus, Aut(X) is nontrivial if and only if it has
either an automorphism of order 2 or of order 3. By a case analysis, we will show
that the problem of testing whether X has a nontrivial automorphism can be
reduced to either undirected graph reachability or to solving a system of linear
equations over F2, implying that the problem is in ⊕L. In fact, as we will see, it
is also possible to compute a generating set for Aut(X) in FL⊕L.
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Let Gi be the intersection of Aut(Xi) with the projections of Aut(Xij) on Ci

for all j �= i. Any subgroup of the symmetric group Sym(Ci) of all permutations
on Ci is called a constraint for Ci. We call Gi the direct constraint for Ci.

The algorithm proceeds in several preprocessing steps which progressively
eliminate different cases and simplify the graph. We describe some base steps of
the algorithm in a sequence of claims.

Claim 1. The direct constraints can be determined in deterministic logspace.

Proof. Follows easily from the fact that the color classes are of constant size. !"

Next we consider a specific way in which the direct constraints get propagated
to other color classes in X . To this end, we define a symmetric binary relation
T on the set C. Let Ci, Cj ∈ C such that ‖Ci‖ = ‖Cj‖. Then (Ci, Cj) ∈ T if

– ‖Ci‖ ∈ {1, 2, 3} and Xij is a perfect matching or
– ‖Ci‖ = 4 and Xij is either a perfect matching or an 8-cycle.

The following easy lemma states a specific useful way in which the constraints
get propagated over color classes related via T .

Lemma 2. For each pair (Ci, Cj) ∈ T there is a bijection fij : Ci → Cj such
that for any automorphism π = (π1, . . . , πm) ∈ Aut(X) the permutations πi ∈ Gi

and πj ∈ Gj are related as follows:

∀u, v ∈ Ci : πi(u) = v ⇐⇒ πj(fij(u)) = fij(v).

In other words, if (Ci, Cj) ∈ T via fij and π = (π1, . . . , πm) ∈ Aut(X) is an
automorphism, then πj(fij(u)) = fij(πi(u)), i.e., πj is the image of πi under the
bijection gij : Sym(Ci) → Sym(Cj) defined by π 	→ fij ◦ π ◦ f−1

ij (here we use
g ◦ h to denote the mapping x 	→ g(h(x))).

We use Lemma 2 to define a symmetric relation on constraints. Let G and
H be constraints of two different color classes Ci and Cj , respectively, where
(Ci, Cj) ∈ T . We say that G is directly induced by H , if gij is an isomorphism
between G and H . Further, G is induced by H , if G is reachable from H via a
chain of directly induced constraints. Note that the latter relation is an equiva-
lence on the set of all constraints. We call the intersection of all constraints of
Ci that are induced by some direct constraint the induced constraint of Ci and
denote it by G′

i. Note that Aut(X) is a subgroup of the m-fold product group∏m
i=1 G

′
i of all induced constraints.

Claim 3. The induced constraints can be determined in deterministic logspace.

Proof. Consider the undirected graph X ′ = (V ′, E′) where V ′ consists of all
constraints G in X and E′ = {(G,H) | G is directly induced by H}. In this graph
we mark all direct constraints computed by Claim 1 as special nodes. Now, the
algorithm outputs for each color class Ci the intersection of all constraints for
Ci that are reachable from some special node, and since SL = L [10], this can
be done in deterministic logspace. !"
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We define two special types of constraints. We say that Ci is split, if G′
i has at

least two orbits, and we call the partition of Ci in the orbits of G′
i the splitting

partition of Ci. Further, a partition {H0, H1} of Ci with ‖H0‖ = ‖H1‖ = 2 is
called a halving of Ci, if any π ∈ G′

i either maps H0 to itself or to H1. Any class
Ci which has a halving, is called halved, and all color classes that are neither
split nor halved are called whole. Now let Cs, Ch and Cw denote the subclasses of
C containing all split, halved, and whole color classes, respectively, and consider
the following two cases:

Case A: All color classes in C4 are halved (i.e., C ⊆ Ch ∪ C3 ∪ C2 ∪ C1).
Case B: All color classes in C4 are halved and C3 is empty (i.e., C ⊆ Ch∪C2∪C1).

We first show how the general case logspace reduces to Case A. Then we
reduce Case A to Case B in logspace, and finally we show how Case B is solved
in logspace with a ⊕L oracle. We start by summarizing some properties of whole
color classes which are easily proved by a case analysis.

Lemma 4. Let Ci, Cj ∈ C be color classes, where Ci is whole and Eij �= ∅.

– All vertices in Ci have the same degree in Xij . Likewise, all vertices in the
neighborhood ΓXij (Ci) have the same degree in Xij .

– If Cj is whole, then ‖Ci‖ = ‖Cj‖ and (Ci, Cj) ∈ T .
– If Cj is halved, then ‖Ci‖ ≤ 3.
– If Cj is halved and Ej �= ∅, then ‖Ci‖ ≤ 2.
– If Cj is split and ‖Cj‖ ≤ ‖Ci‖, then all vertices in Ci have the same neigh-

borhood in Xij.

Lemma 4 tells us that the action of an automorphism on a whole color class
C ∈ C4 is not influenced by its action on color classes that are either smaller or
halved or split, i.e., only other whole color classes in C4 can influence C. This
means that we can write Aut(X) as the product Aut(X ′)×Aut(X ′′), where X ′

is the induced subgraph of X containing the nodes of all color classes in C4 ∩Cw

and X ′′ is induced by the set of all other nodes. Clearly, it suffices to compute
generating sets for Aut(X ′) and Aut(X ′′).

Claim 5. A generating set for Aut(X ′) can be computed in FL.

Proof. The algorithm will work by reducing the problem to reachability in undi-
rected graphs. For each whole color class Ci ∈ C4 we create a set Pi of 4!
nodes (one for each permutation of Ci). Consider Ci, Cj ∈ C4 ∩ Cw such that
(Ci, Cj) ∈ T and let fij be the bijection from Lemma 2. Recall that for each
π ∈ Pi the bijection fij induces a unique permutation ψ = gij(π) on Cj and
hence, we put an undirected edge between π and ψ. We thus get an undirected
graph X̂ with 4!‖C4 ∩ Cw‖ nodes.

A connected component P in X̂ that picks out at most one element πi from
each set Pi defines a valid automorphism π for the graph X ′, if P contains only
elements πi ∈ Aut(Xi). On the color classes Ci, for which P contains an element
πi ∈ Pi, π acts as πi, and it fixes all nodes of the other color classes. By collecting
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these automorphisms we get a generating set for Aut(X ′) and since SL = L [10],
this can be done in deterministic logspace. !"
By using Claim 5 we can already assume that C4 only contains halved or split
color classes. To fulfil the assumption of Case A, we now take all the split color
classes and break them up into smaller color classes defined by the split. Then
only halved color classes remain in C4. Further, we can assume that if Ci is
halved, then Ei consists of two disjoint edges.

Next we consider the reduction of Case A to Case B. Since C4 only contains
halved color classes with two disjoint edges, Lemma 4 now guarantees that a
whole color class C ∈ C3 can only influence other whole color classes in C3.
Hence, we can remove all whole color classes in C3 exactly as we removed the
whole color classes in C4, by applying an analogue of Claim 5. Now we can again
break up all split color classes yielding a graph that fulfils Case B. Observe that
the splitting partition of a halved color class only contains sets of size 1, 2 or 4.

It remains to compute a generating set for a 4-bounded graph which only
has color classes of size 1, 2 or 4, where all the size 4 color classes are halved.
Clearly, in this case X can only have nontrivial automorphisms of orders 2 or 4.
We continue by defining an encoding of the candidate automorphisms of Aut(X)
as vectors over F2. Later we show how one can reduce the problem of finding
Aut(X) to the problem of solving linear equations over F2.

An Encoding Trick
We now describe how to encode the automorphisms of X with vectors over F2.
We introduce some F2 indeterminates for each color class C in X of size more
than 1. More precisely, we encode each automorphism π ∈ Aut(Xi) by a vector
vπ ∈ Fni−1

2 , where ni = ‖Ci‖.

1. To each color class Ci = {u0, u1} of size 2 we introduce a single variable x.
Here x = 1 denotes the transposition (u0 u1) and x = 0 denotes the identity
mapping on Ci.

2. If Ci is a halved color class of size 4, let e0 = {u00, u01} and e1 = {u10, u11}
be the two disjoint edges in Ei. Notice that each vertex index is encoded
with two bits. The first bit encodes the edge and the second bit the vertex
in that edge. Then we encode an automorphism π ∈ Aut(Xi) by a three bit
vector vπ = xyz, where π(u00) = uxy and π(u10) = ux̄z. In other words, the
permutation π encoded by vπ maps

uab 	→ ua′b′ , where a′ = a + x and b′ =

{
b + y, a = 0,
b + z, a = 1.

Notice that the addition of the 3-bit representations in F3
2 does not capture

the permutation group structure of Aut(Xi), since the latter is nonabelian.

Let t =
∑m

i=1(ni − 1) denote the sum of the lengths of the F2 representa-
tions for each color class. Thus, every element π = (π1, . . . , πm) of Aut(X) is
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encoded as a vector vπ = (vπ1 , . . . , vπm) in Ft
2, and each vector in Ft

2 repre-
sents a potential automorphism. Recall that a permutation π = (π1, . . . , πm) ∈
Aut(X1)×· · ·×Aut(Xm) is in Aut(X) if and only if for each Ci and Cj , (πi, πj)
is an automorphism of Xij . We now show that each of these constraints yields
a set of linear equalities on the indeterminates that encode (πi, πj). Hence, we
claim that a vector in Ft

2 encodes an automorphism of X if and only if it satisfies
the set of all these linear equalities.

Lemma 6. For any pair of color classes Ci and Cj in X the set

Fij = {vπvϕ | π ∈ Aut(Xi), ϕ ∈ Aut(Xj) and (π, ϕ) ∈ Aut(Xij)}

forms a subspace of Fni+nj−2
2 .

Proofsketch. The proof is by a case analysis checking all the possibilities. First
note that for any color class Ci of size more than 1, the encodings of all auto-
morphisms in Aut(Xi) form the space Fni−1

2 . Hence, Fij = Fni+nj−2
2 if Eij = ∅.

To simplify the analysis if Eij is not empty, notice that if Ci, Cj are unsplit
halved color classes, then either (Ci, Cj) ∈ T or Eij is the union of two 4-
cycles. In the latter case we can modify Xij by removing the two 4-cycles and
introducing a new color class C = {c1, c2}.

Ci Cj Ci CjC

c1

c2

The nodes c1 and c2 represent the two deleted 4-cycles in the following sense:
the node c1 is adjacent to the 4 nodes that were part of one of the 4-cycles (two
each in Ci and Cj). Similarly, c2 is adjacent to the 4 nodes on the other 4-cycle
(two each in Ci and Cj). Then the modified graph has the same automorphism
group as Xij , after we project out the new color class C. Hence, we can assume
that if Ci and Cj are both halved, then (Ci, Cj) ∈ T .

Now consider the case that both Ci and Cj are of size 2. This case is easy,
since the addition of the representations vπvϕ captures the permutation group
structure. In fact, the only interesting case is when Eij is a perfect matching
where Fij = {xixj | xi = xj} (see the following picture).

Ci Cj

xi=xj

Ci Cj

xi=xj

Ci Cj

yi=zi=xj

Ci Cj

xi=xj+yi,
yi=zi

xi=xj+yj,
yi=zi=yj=zj

Ci Cj
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Next we consider the case ni = 4 and nj = 2. It is easy to see by considering
the different cases that the elements xiyizixj of Fij form a subspace of F4

2 (see
the picture for three interesting cases).

Finally, if ni = nj = 4, we can assume that (Ci, Cj) ∈ T . It is easy to check
that exactly one of the following two possibilities can occur: either the projec-
tion of (Aut(Xi) × Aut(Xj)) ∩ Aut(Xij) on Ci contains all 8 automorphisms
(this case is similar to the case Eij = ∅), or it is a subgroup that contains no
automorphisms of order four. An interesting property of the encoding is that all
subgroups containing no order four elements are such that permutation compo-
sition coincides with vector addition in Fni−1

2 . It follows from this observation
that the elements xiyizixjyjzj of Fij form a subspace of F6

2 (see the picture for
an example). !"

As a direct consequence of the above lemma and the fact that the solution space
for a system of linear equations over F2 can be computed in FL⊕L (see [3]) we
get the following upper bound.

Claim 7. Let X be a 4-bounded graph fulfilling the assumption of Case B. Then
the problem of computing a generating set for its automorphism group is in FL⊕L.

By refining Torán’s proof [11] that GA is hard for ⊕L, it can be shown that also
GA4 is hard for ⊕L. By combining this hardness result with the ⊕L upper bound
for GA4 established in this section we get the following completeness result.

Theorem 8. GA4 is complete for ⊕L.

We end this section by remarking that Theorem 8 easily extends to GA5 as well
as to GI5. Color classes of size 5 are either whole or split. The halved classes can
only be of size 4. Thus, the ⊕L upper bound goes through for GA5 with minor
changes.

4 Hypergraphs with Color Classes of Size 2

In this section we show that HGA2 and HGI2 are complete for ⊕L under logspace
reductions. We only give the proof for HGA2. The proof for HGI2 is similar. Let
X = (V, E) be a 2-bounded hypergraph. Thus V is partitioned into color classes
Ci with ‖Ci‖ ≤ 2 for i = 1, . . . ,m. To each color class Ci of size 2 we associate
an indeterminate xi over F2 which indicates by its value whether the vertices of
Ci flip or not. Thus we can represent any color preserving permutation of X by
a vector x = x1 · · ·xm in Fm

2 .
Our aim is to compute in deterministic logspace a set of linear constraints on

x1, . . . , xm over F2 that determines Aut(X). This will imply that HGA2 is in
⊕L. Hyperedges e and e′ have the same type if ‖e∩Ci‖ = ‖e′ ∩Ci‖ for all i. We
can partition E into subsets E1, . . . , Et of distinct types. Clearly, automorphisms
preserve edge types. Thus, Aut(X) is expressible as the intersection of Aut(V, Ej)
over all edge types.
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Proposition 9. A vector x in Fm
2 represents an element in Aut(X) if and only

if it represents an element in Aut(V, Ej) for each Ej .

If for each Ej we can compute in logspace a set of linear constraints on x1, . . . , xm

that determines Aut(V, Ej), then the union of these constraints will determine
Aut(X). Thus, it suffices to consider the case that all edges in E are of the same
type. Further, by ignoring color classes Ci with ‖e ∩ Ci‖ ∈ {0, 2} for all e, we
can assume that ‖e ∩ Ci‖ = 1 for all e ∈ E and i = 1, . . . ,m.

Let Ci = {u0i, u1i} for i = 1, . . . ,m. We can represent the hyperedges e ∈ E
by vectors ve = v1 · · · vm ∈ Fm

2 with vj = 1 if u1j ∈ e and vj = 0 if u0j ∈ e. With
this representation, a candidate automorphism x ∈ Fm

2 acts on the hyperedges
by vector addition in Fm

2 :
x : ve 	→ ve + x.

Since every automorphism x maps ve to some hyperedge ve′ , the candidate auto-
morphisms are in S = {ve + ve′ | e′ ∈ E}, for a fixed e ∈ E. A logspace machine
M can easily check whether each vector x ∈ S represents an automorphism, by
testing if x + ve ∈ E for each e ∈ E .

Thus, M can compute the set F ⊆ S containing the encodings of all auto-
morphisms. Notice that F is a subspace of Fm

2 .
Finally, we can easily see that M can compute the dual space in terms of

a matrix A over F2 such that x ∈ F if and only if Ax = 0. This matrix A
provides the desired set of linear constraints. Combining the constraints of all
edge types gives the overall system of linear constraints, whose solutions are the
automorphisms. In summary, we have proved the following theorem.

Theorem 10. Let X be a 2-bounded hypergraph. Then the problem of comput-
ing a generating set for its automorphism group is in FL⊕L. In particular, the
problem HGA2 is in ⊕L.

By modifying Torán’s proof [11] that GA is hard for ⊕L, it can be shown that
for any prime p, HGAp is hard for ModpL. Combined with the above theorem
this gives the following completeness result.

Corollary 11. HGA2 is complete for ⊕L under logspace many-one reductions.

5 Hypergraphs with Constant Size Color Classes

In this section we give a polynomial time upper bound for the problem of com-
puting a generating set of Aut(X) for a b-bounded hypergraph X = (V, E).
Further we show that for any prime p ≤ k, HGAk is hard for ModpL (and hence
also hard for ModjL under logspace conjunctive truth-table reductions, by clo-
sure properties of ModjL classes, where j is the product of all primes p ≤ k [3]).
Since the orbit size of the hyperedges in the reduced hypergraphs is bounded by
p2, we also get that GAp2) is ModpL hard. For prime k, this slightly improves
Torán’s result that GA2k2 is hard for ModkL.
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Theorem 12. For any prime p, HGAp is logspace many-one hard for ModpL.

Proofsketch. It is well-known that the evaluation problem CirValp for arithmetic
circuits with ⊕p-gates is complete for ModpL, where ⊕p denotes addition modulo
p (see e.g. [11]). To evaluate a single ⊕p-gate we consider the following hyper-
graph H = (V, E), where

V ={ai, bi, ci | i = 0, . . . , p− 1},
E ={{ai, bj, ck} | i⊕p j = k}.

The following figure shows H for the case p = 3, where we use triangles to
depict hyperedges.

a b

c

⊕3

a0 a1 a2 b0 b1 b2

c0 c1 c2

Observe that for every pair of input nodes ai, bj , there is exactly one hyperedge
e in E which contains ai and bj:

e = {ai, bj, ck}, where k = i⊕3 j

Hence, it follows for any automorphism f that

f(a0) = ai ∧ f(b0) = bj

⇒ f({a0, b0, c0}) = {ai, bj , f(c0)} ∈ E

⇒ f(c0) = ck, where k = i⊕3 j.

By replacing all ⊕p-gates by such a gadget we can transform C into a hypergraph
H which has a nontrivial automorphism g if and only if C evaluates to 1. Note
that in order to force g to fix the p input nodes corresponding to a 0 input we
can color them differently. Also, in order to force g to move the p input nodes
corresponding to a 1 input we additionally insert p parallel feedback edges from
the p output nodes to these nodes. Finally, by inserting additional vertices and
edges we can force g to cyclically shift the p output nodes. !"
Next we give a polynomial time algorithm for computing a generating set of
Aut(X) for a b-bounded hypergraph X = (V, E). More precisely, we give an nO(b)

algorithm for the problem, where n = ‖V ‖. We remark that if the hyperedges
are all of constant size, i.e. ‖e‖ ≤ k for all e ∈ E and constant k, then the
problem is deterministic logspace reducible to BCGI which is known to be in
NC [8]. However, when hyperedges are of unbounded size, it is not clear whether
HGIb is reducible to BCGI. Our polynomial time algorithm for HGIb applies
ideas from a different result of Luks [7]. We recall some definitions.
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Definition 13. Let k ≥ 1. A finite group G is said to be in the class Γk if all
nonabelian composition factors of G are isomorphic to subgroups of Sk.

Theorem 14. [7] Let Δ ⊆ Ω and let G ≤ Sym(Ω) be given by a generating set
S. If G ∈ Γk then there is an nO(k) algorithm for computing the set stabilizer
subgroup GΔ = {g ∈ G | g(Δ) = Δ}.

For a colored hypergraph X = (V, E, C) with C = (C′, C′′) let X ′ denote the
hypergraph (C′, E′) where E′ = {e ∩ C′ | e ∈ E}. X ′′ is defined accordingly.
We first give an algorithm for the following problem, that we repeatedly use as
a subroutine. Suppose X = (V, E, C) is such a hypergraph where the automor-
phism groups Aut(X ′) and Aut(X ′′) are in Γk. The problem is to compute in
polynomial time a generating set of Aut(X) from generating sets of Aut(X ′) and
Aut(X ′′).

We first consider the embedding map

ϕ : Aut(X ′) → Sym(C′)× Sym(E′) given by ϕ(π) = (π, τ),

where τ is simply defined as the action of π on E′. Similarly, we have the em-
bedding map ψ : Aut(X ′′) → Sym(C′′) × Sym(E′′). Since ϕ and ψ are easy to
compute, we can easily compute the generating set for ϕ(Aut(X ′)) as the image
of the given generating set of Aut(X ′). Similarly, we can compute a generating
set for ψ(Aut(X ′′)). Thus, we can compute a generating set for the product group
ϕ(Aut(X ′))×ψ(Aut(X ′′)) as a permutation group acting on C′ ∪E′ ∪C′′ ∪E′′.

Furthermore, since this permutation group action extends uniquely to E′×E′′,
we can easily compute a generating set S for the product group ϕ(Aut(X ′)) ×
ψ(Aut(X ′′)) as a permutation group acting on C′ ∪ E′ ∪ C′′ ∪ E′′ ∪ (E′ × E′′).

Notice that we can see Aut(X) as a subgroup of ϕ(Aut(X ′)) × ψ(Aut(X ′′)).
To compute Aut(X) we construct a bipartite graph Z with W = E′ ∪E′′ as the
vertex set and edge set F , where for e′ ∈ E′ and e′′ ∈ E′′ we include (e′, e′′) in
F if and only if e′ ∪ e′′ ∈ E.

Now, in order to invoke Theorem 14, let Ω denote the set

Ω = C′ ∪ E′ ∪ C′′ ∪ E′′ ∪ (E′ × E′′)

and let G ≤ Sym(Ω) be the group ϕ(Aut(X ′)) × ψ(Aut(X ′′)). Since Aut(X ′)
and Aut(X ′′) are in Γk and since Γk is closed under homomorphic images and
products [7], it follows that ϕ(Aut(X ′)) × ψ(Aut(X ′′)) is also in Γk. Hence,
letting Δ = F , Theorem 14 implies that we can compute GΔ (which is Aut(X))
in time nO(k). Notice that it suffices to retain the action of GΔ on V = C′ ∪C′′

and we can discard the remaining part.
We now consider the problem of computing Aut(X) from scratch. For each

s = 1, . . . ,m we define hypergraphs X1,s = (C1,s, E1,s), where C1,s =
⋃s

i=1 Ci

and E1,s = {e ∩ C1,s | e ∈ E}. Notice that X itself is X1,m. We also define
Xs = (Cs, Es), where Es = {e ∩ Cs | e ∈ E}. Notice that Xs is a constant-size
hypergraph for each s and Aut(Xs) can be computed easily in polynomial time.
Our polynomial time algorithm starts by first computing Aut(X1,1) = Aut(X1).
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Then for increasing values of s = 1, . . . ,m it progressively computes the group
Aut(X1,s) from the already computed groups Aut(X1,s−1) and Aut(Xs) by using
the algorithm explained above. Notice that the groups Aut(X1,s−1) and Aut(Xs)
are in Γk because their orbits are bounded by k. This completes the proof of the
following result.

Theorem 15. Given a hypergraph X = (V, E) with color classes of size bounded
by k, there is an nO(k) time algorithm that computes Aut(X) as a generating set
in Sym(V ). In particular, HGI and HGA are in P.
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Forbidden Substrings, Kolmogorov Complexity
and Almost Periodic Sequences

A.Yu. Rumyantsev and M.A. Ushakov

Logic and algorithms theory division, Mathematics Department,
Moscow State University, Russia

Abstract. Assume that for some α < 1 and for all nutural n a set Fn of
at most 2αn “forbidden” binary strings of length n is fixed. Then there
exists an infinite binary sequence ω that does not have (long) forbidden
substrings.

We prove this combinatorial statement by translating it into a state-
ment about Kolmogorov complexity and compare this proofl with a com-
binatorial one based on Laslo Lovasz local lemma.

Then we construct an almost periodic sequence with the same prop-
erty (thus combines the results from [1] and [2]).

Both the combinatorial proof and Kolmogorov complexity argument
can be generalized to the multidimensional case.

1 Forbidden Strings

Fix some positive constant α < 1. Assume that for each natural n a set Fn

of binary strings of length n is fixed. Assume that Fn consists of at most 2αn

strings.
We look for an infinite binary sequence ω that does not contain forbidden

substrings.

Proposition 1. There exists an infinite binary sequence ω and a constant N
such that for any n > N the sequence ω does not have a substring x of length n
that belongs to Fn.

One may consider strings in Fn as “forbidden” strings of length n; proposition
then says that there exists an infinite sequence without (sufficiently long) for-
bidden substrings.

For example, we can forbid strings having low Kolmogorov complexity. Let
Fn be the set of all strings of length n whose complexity is less than αn. Then
#Fn does not exceed 2αn (there are at most 2αn programs of size less than αn).

Therefore Proposition 1 implies the following statement that was used in [1]:

Proposition 2. For any α < 1 there exists a number N and an infinite bi-
nary sequence ω such that any its substring x of length greater than N has high
complexity:

K(x) ≥ α|x|.
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Here K(x) stands for Kolmogorov complexity of x (the length of the shortest
program producing x, the definition is given in [3]); it does not matter which
version of Kolmogorov compexity (prefix, plain, etc.) we consider since the log-
arithmic difference between them can be compensated by a small change in α.
The notation |x| means the length of string x.

Our observation is that the reverse implication is true, i.e., Proposition 2 im-
plies Proposition 1. It is easy to see if we consider a stronger version of Propo-
sition 2 when K is replaced by a relativized version KA where A is an arbitrary
oracle (an external procedure that can be called). Indeed, consider the set of all
forbidden strings as an oracle. Then the relativized complexity of any string in
Fn does not exceed αn + O(1) since its ordinal number in the length-sorted list
of all forbidden strings is at most

∑
k≤n 2αk = O(2αn). The constant O(1) can

be absorbed by a small change in α, and we get the statement of Proposition 1.
More interestingly, we can avoid relativization and derive Proposition 1 from

(non-relativized) Propostion 2. It can be done as follows.
First note that we may assume (without loss of generality) that α is rational.

Assume that for some set F of forbidden strings the statement of Proposition 1
is false. Then for each c ∈ IN there exists a set F c with the following properties:

(a) F c consists of strings of length greater than c;
(b) F c contains at most 2αk strings of length k for any k;
(c) any infinite binary string has at least one substring that belongs to F c.

(Indeed, let F c be the set of all forbidden strings that have length more
than c.)

The statement (c) can be reformulated as follows: the family of open sets
Sx for all x ∈ F c covers the set Ω of all binary sequences, where Sx is a set
of all sequences that have substring x. The standard compactness argument
implies that F c can be replaced by its finite subset, so we assume without loss
of generality that F c is finite.

The properties (a), (b) and (c) are enumerable (for finite F c): each Sx is an
enumerable union of intervals, so if the sets Sx for x ∈ F c cover Ω, this can
be discovered at a finite step. (In fact, they are decidable, but this does not
matter.) So the first set Fc encountered in the enumeration (for a given c) is a
computable function of c.

Now we can construct a decidable set of forbidden strings that does not satisfy
the statement of Proposition 1. Indeed, construct a sequence c1 < c2 < c3 < . . .
where ci+1 is greater than the length of all strings in F ci and take the union of
all F ci . We obtain the decidable set F̂ such that F̂ contains at most 2αk strings
of length k for any k, and any infinite binary string has (for any i) at least one
substring of length greater that ci that belongs to F̂ . For this decidable set we
need no special oracle, q.e.d.

The proof of Proposition 2 given in [1] uses prefix complexity. See below
Section 3 where we prove the stronger version of this Proposition needed for our
purposes.
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2 Combinatorial Proof

The statement of Proposition 1 has nothing to do with Kolmogorov complexity.
So it would be natural to look for a combinatorial proof.

The simplest idea is to use the random bits as the elements of the sequence.
Then the probability of running into a forbidden string in a given k positions

ωnωn+1 . . . ωn+k−1

is bounded by 2−(1−α)k, i.e., exponentially decreases when k → ∞. However,
the number of positions where a forbidden string of a given length can appear is
infinite, and the sum of probablities is infinite too. And, indeed, a truly random
sequence contains any string as its substring, so we need to use something else.

Note that two non-overlapping fragments of a random sequence are inde-
pendent. So the dependence can be localized and we can apply the following
well-known statement:

Proposition 3 (Laslo Lovasz local lemma). Let G be a graph with vertex
set V = {v1, . . . , vn} and edge set E. Let Ai be some event associated with vertex
vi. Assume that for each i the event Ai is independent with the random variable
“outcomes of all Aj such that vj is not connected to vi by an edge”. Let pi ∈ (0, 1)
be a number associated with Ai in such a way that

Pr[Ai] ≤ pi

∏
vj∼vi

(1− pj)

where the product is taken over all neighbour vertices vj (connected to vi by an
edge). Then

Pr[neither of Ai happens] ≥
n∏

i=1

(1 − pi)

and, therefore, this event is non-empty.

The proof of this Lemma could be found, e.g., in [4], p. 115.
To apply this Lemma to our case consider a finite random string of some

fixed length N where all bits are independent and unbiased (both outcomes
have probability 1/2). Consider a graph whose vertices are intervals of indices
(i.e., places where a substring is located) of length at least L (some constant to
be chosen later). Two intervals are connected by an edge if they are not disjoint
(share some bit). For each interval v consider the event Av: “substring of the
random string located at v is forbidden”. This event is independent with all
events that deal with bits outside v, so the independence condition is fulfilled.

Let pv = 2−δ|v| for all v and some δ (to be chosen later). To apply the lemma,
we need to prove that

Pr[Av] ≤ pv

∏
v and w are
not disjoint

(1 − pw).
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Let l ≥ L be the length of the string v and let

R =
∏

v and w are
not disjoint

(1 − pw).

Then

R ≥
N∏

k=L

(1− 2−δk)l+k

(strings w have length between L and N and there are at most l + k strings of
length k that share bits with v), and

R ≥

⎡⎣∏
k≥L

(1− 2−δk)

⎤⎦l ∏
k≥L

(1− 2−δk)k

(we split the product in two parts and replace finite products by infinite ones).
The product

∏
(1 − εi) converges if and only if the series

∑
εi converges. The

corresponding series ∑
k≥L

2−δk and
∑
k≥L

k · 2−δk

do converge. Therefore both products converge and for a large L both products
are close to 1:

R ≥ Cl
1C2 ≥ Dl

where C1, C2 and D are some constants that could be made close to 1 by choosing
a large enough L (not depending on l). Then

pvR ≥ 2−δlDl ≥ 2−δl2−γl = 2−(δ+γ)l,

where γ = − logD could be arbitrarily small for some L. We choose δ and L in
such a way that δ < (1 − α)/2 and γ < (1− α)/2. Then

pvR ≥ 2−(1−α)l ≥ Pr[Av]

(forbidden strings form a 2−(1−α)l-fraction of all strings having length l) and
conditions of Lovasz lemma are fulfilled.

So we see that for some large L and for all sufficiently large N there exists a
string of length N that does not contain forbidden strings of length L or more.
Standard compactness argument shows that there exists an infinite binary string
with the same property.

This finishes the combinatorial proof of Proposition 1.
Note that this combinatorial proof hardly can be considered as a mere trans-

lation of Kolmogorov complexity argument. Another reason to consider it as a
different proof is that it has a straightforward generalization for several dimen-
sions. (The Kolmogorov complexity argument has this too, as we see in Section 5,
but requires significant changes.)
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A d-dimensional sequence is a function ω:ZZd → {0, 1}. Instead of substrings
we consider d-dimensional “subcubes” in the sequence, i.e., restrictions of ω to
some cube in ZZd. For any n there are 2nd

different cubes with side n. Assume
that for every n > 1 a set Fn of not more than 2αnd

“forbidden cubes” is fixed.

Proposition 4. There exists a number L and d-dimensional sequence that does
not contain forbidden subcube with side greater than L.

The proof repeats the combinatorial proof of Proposition 1 with the following
changes. The bound for R now is

R ≥
N∏

k=L

(1− 2−δkd

)(l+k)d

,

since there are at most (l + k)d cubes with side k intersecting a given cube
with side l. Then we represent (l + k)d as a sum of d + 1 monomials and get
a representation of this bound as a product of infinite products, each for one
monomial. Every product has the following form (for some i in 0 . . . d and for
some ci that depends on d and i, but not k and l):

∏
k≥L

(1− 2−δkd

)cil
ikj

=

⎡⎣∏
k≥L

(1− 2−δkd

)k
j

⎤⎦cil
i

.

The corresponding series obviously converge (due to the same reasons as before),
and again we can make expression [. . .] as close to 1 as needed by choosing L
(and again the choice of L does not depend on l). Then the estimate for R takes
the form:

R ≥
d∏

i=0

Dcil
i

i ≥
d∏

i=1

DCld

i ≥
[

d∏
i=1

DC
i

]ld

≥ Dld ,

where ci, Di, C and D are some constants, and C and D could be made as close
to 1 as needed.

Then the proof goes exactly as before.

3 Construction of Almost Periodic Sequences

A sequence is called almost periodic if each of its substrings has infinitely many
occurences at limited distances, i.e., for any substring x there exists a number k
such that any substring y of ω of length k contains x.

The following result is proven in [2] (in the paper almost periodic sequences
were called strongly almost periodic sequences):

Proposition 5. Let α < 1 be a constant. There exists an almost periodic se-
quence ω such that any sufficiently long prefix x of ω has large complexity:
K(x) ≥ α|x|.
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Comparing this statement with Proposition 2, we see that there is an additional
requirement for the sequence to be almost periodic; on the other hand high
complexity is guaranteed only for prefixes (and not for all substrings).

Now we combine these two results:

Proposition 6. Let α < 1 be a constant. There exists an almost periodic se-
quence ω such that any sufficiently long substring x of ω has large complexity:
K(x) ≥ α|x|.

The paper [2] provides a universal construction for almost periodic sequences.
Now we suggest another, less general construction that is more suitable for our
purposes.

Namely, we define some equivalence relation on the set of indices (IN). Then
we construct a sequence

ω = ω0ω1ω2 . . .

with the following property: i ≡ j ⇒ ωi = ωj . In other words, all the places that
belong to one equivalence class carry the same bit. This property guarantees
that ω is almost periodic if the equivalence relation is chosen in a proper way.

Let n0, n1, n2, . . . be an increasing sequence of natural numbers such that ni+1

is a multiple of ni for each i. The prefix of length n0, i.e., the interval [0, n0),
is repeated with period n1. This means that for any i such that 0 ≤ i < n0 the
numbers

i, i + n1, i + 2n1, i + 3n1, . . .

belong to the same equivalence class. In the similar way the interval [0, n1) is
repeated with period n2: for any i such that 0 ≤ i < n2 the numbers

i, i + n2, i + 2n2, i + 3n2, . . .

are equivalent. (Note that n2 is a multiple of n1, therefore the equivalence classes
constructed at the first step are not changed.) And so on: for any i ∈ [0, ns) and
for any k the numbers i and i + kns+1 are equivalent.

The following statement is almost evident:

Proposition 7. If a sequence ω respects this equivalence relation, i.e., the equiv-
alent positions have equal bits, then the sequence in almost periodic.

Indeed, in the definition of an almost periodic sequence we may require that
each prefix of the sequence has infinitely many occurences at limited distances
(since each substring is a part of some prefix). And this is guaranteed: any prefix
of length l < ns appears with period ns+1.

The same construction can be explained in a different way. Consider the
positional system where the last digit of integer x is x mod n0, the previous
digit is (x div n0) mod n1 etc. Then all numbers of the form . . . 0z (for any given
z ∈ [0, n0)) are equivalent; we say that they have rank 1. Then we make (for
any y, z such that y �= 0) all numbers of the form . . . 0yz equivalent and assign
rank 2 to them, etc.
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n0 n0 n0 n0 n0 n0 n0

n1 n1

n2

Fig. 1. Primary (shaded) and secondary bits in a sequence

If the sequence of periods n0 < n1 < n2 < . . . is growing fast enough, then
the equivalence relation does not restrict significantly the freedom of bit choice:
going from left to right, we see that most of the bits are “primary” bits (are
leftmost bits in their equivalence class, not copies of previous bits; these copies
are called “secondary” bits, see Fig. 1).

Indeed, bits of rank 1 start with n0 primary bits, these bits are repeated as
secondary bits with period n1, so secondary bits of rank 1 form a n0/n1-fraction
of all bits in the sequence; secondary bits of rank 2 form a n1/n2-fraction etc.
So the sum

∑
i

ni

ni+1
is the upper bound of the density of “non-fresh” bits. More

precise estimate: prefix of any length N has at least DN fresh bits where

D =
∏

i

(1− ni/ni+1).

This gives a simple proof of Proposition 5. For a given α choose a computable
sequence n0 < n1 < n2 < . . . that grows fast enough and has D > α. Then
take a Martin-Löf random sequence ξ and place its bits (from left to right) at
all free positions (duplicating bits as required by the equivalence relation). We
get an almost periodic sequence ω; at least DN bits of ξ can be algorithmically
reconstructed from ω’s prefix of length N . It remains to note that algorithmic
transformation cannot increase complexity and that complexity of m-bit prefix
of a random sequence is at least m− o(m) (it would be at least m for monotone
or prefix complexity, but could be O(logm) smaller for plain complexity).

4 Proof of the Main Result

Could we apply the same argument (with sequence ω from Proposition 2 instead
of a random sequence) to prove Proposition 6? Not directly. To explain the
difficulty and the way to overcome it, consider the simplified picture where only
the equivalence of rank 1 is used. Then the sequence constructed has the form

ω = AB0 AB1 AB2 AB3 A . . .

where A is the group of primary bits of rank 1 (repeated with period n1); A and
Bi are taken from a sequence

ξ = AB0 B1 B2 B3 . . .

(provided by Proposition 2). If some substring x of ω is located entirely in A
or some Bi, its high complexity is guaranteed by Proposition 2. However, if x
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appears on the boundary between A and Bi for some i > 0, then x is composed
from two substrings of ξ and its complexity is not guaranteed to be high.

To overcome this difficulty, we need the following stronger version of
Proposition 2.

Proposition 8. For any α < 1 there exists a number N and an infinite binary
sequence ω such that any its substring

x = ωnωn+1ωn+2 . . . ωn+k−1

of length k > N has high conditional complexity with respect to previous bits:

K(ωnωn+1ωn+2 . . . ωn+k−1 | ω0ω1ω2 . . . ωn−1) ≥ αk.

The proof follows the scheme from [1]. Let β < 1 be greater than α. Let m
be some integer number (we will fix it later). Let the first m bits of ω be the
sequence x of length m with maximal prefix complexity (denoted by KP). Then
add the next m bits to get the maximal prefix complexity of the entire sequence.
This increase would be at least m−O(logm).

[Indeed, for any strings x and y we have

KP(x, y) = KP(x) + KP(y | x,KP(x)) + O(1);

(Kolmogorov – Levin theorem); if y has been chosen to maximize the second
term in the sum, then KP(y | . . .) ≥ |y| and KP(x, y) ≥ KP(x) + |y| − O(1).
Therefore, for this y

KP(xy) ≥ KP(x, y)−KP(|y|)−O(1) ≥ KP(x) + |y| −O(log |y|),

since (x, y) can be reconstructed from xy and |y| and KP(|y|) = O(log |y|). See [1]
for details.]

Then we add string z of length m that maximizes KP(xyz) and so on.
In this way we construct a sequence ω = xyz . . . such that the prefix com-

plexity of its initial segments increases by m − c logm for every added block of
m bits. We can choose m such that m− c logm−O(1) > βm.

Then the statementof theProposition follows fromKolmogorov–Levin theorem
if the substring is “aligned” (starts and ends on the boundaries of lengthm blocks).
Sincem is fixed, the statement is true for non-aligned blocks of large enough length
(boundary effects are compensated by the difference between α and β).

Proposition 8 is proven.
Let us explain why this modification helps in the model situation considered

above. If a substring x of the sequence AB0AB1AB2 . . . is on the boundary
between A and some Bi, then it can be split into two parts xA and xB . The
string xA is a substring of A and therefore has high complexity. The string xB

is a substring of some Bi and therefore also has high complexity and even high
conditional complexity with respect to some prefix containing A. If we prove
that xA is simple relatively this prifix we can use Kolmogorov – Levin theorem
to prove that x has high complexity.
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Similar arguments work in general case when we have to consider bits of all
ranks. To finish the proof we need the following Lemma:

Lemma. Let ω be the sequence satisfying the statement of Proposition 8. Then

K(V (a0, b0),V (a1, b1), . . . ,V (as−1, bs−1)) ≥
αL−O(s logL)−K(a0 | a1)−K(a1 | a2)− . . .−K(as−2 | as−1)

for any a0 < b0 ≤ a1 < b1 ≤ . . . ≤ as−1 < bs−1, where V (a, b) stands for
ωaωa+1 . . . ωb−1 and L = (b0 − a0) + (b1 − a1) + . . . + (bs−1 − as−1).

In fact, for Proposition 6 we need only the case s = 3 of this Lemma.
The proof of Lemma is based on Kolmogorov – Levin theorem about complex-

ity of pairs. The statement of Proposition 8 guarantees the following inequality:

K(V (as−1, bs−1) | V (0, as−1)) ≥ α(bs−1 − as−1)−O(logL). (∗)
We will prove the following inequality of any i = 0, 1, . . . , s− 2:

K(V (ai, bi),V (ai+1, bi+1), . . . ,V (as−1, bs−1) | V (0, ai))−
K(V (ai+1, bi+1), . . . ,V (as−1, bs−1) | V (0, ai+1)) ≥

α(bi − ai)−O(logL)−K(ai | ai+1).
(∗∗)

If we add up (∗∗) for all i = 0, 1, . . . , s − 2 with (∗) we obtain the required
inequality (and even stronger one with relative complexity in the left-hand
side). Let us prove the inequality (∗∗) now. By W we denote the sequence
(V (ai+1, bi+1), . . . ,V (as−1, bs−1)). The following inequality follows from the Kol-
mogorov – Levin theorem and the statement of Proposition 8:

K(V (ai, bi),W | V (0, ai))−K(W | V (0, ai),V (ai, bi)) =
K(V (ai, bi) | V (0, ai))−O(logL) ≥ α(bi − ai)−O(logL).

To finish the proof of Lemma, let us prove the inequality

K(W | V (0, ai+1)) ≤ K(W | V (0, ai),V (ai, bi)) + K(ai | ai+1) + O(logL).

One can obtain W from V (0, ai+1) in the following way: find ai+1 using the length
of the string V (0, ai+1), convert ai+1 into ai by the shortest program, compute bi

by adding difference bi − ai to ai, cut intervals [0, ai) and [ai, bi) from string
V (0, ai+1) and execute the shortest program that converts (V (0, ai),V (ai, bi))
into W . This needs K(W | V (0, ai),V (ai, bi)) + K(ai | ai+1) + O(logL) bits to
obtain W from V (0, ai+1). The inequality is proven, q.e.d.

The proof of Proposition 6 uses the same construction as proof of Proposi-
tion 5 but it takes a sequence satisfying the statement of Proposition 8 instead
of a random sequence.

Let v be a sequence satisfying the statement of Proposition 8 with some
α′ > α and ω be the resulting sequence (if we apply the construction of an
almost periodic sequence to the sequence v). It has been proved before that ω is
an almost periodic sequence. We need only to prove the following estimate of a
complexity of any substring of ω:

K(ωmωm+1ωm+2 . . . ωm+k−1) ≥ αk.

for any sufficiently long k and for any m.
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Suppose that sequence {ni} grows fast enough, i.e. ni+1 > 4ni

α′−α . Suppose i is
the smallest index such that ni ≥ k. Due to our construction of sequence ω any el-
ement of ω corresponds to some element of v. Different elements of
ωmωm+1 . . . ωm+k−1 of rank not less than i (i.e. elements repeated with period ni

or greater by our construction) correspond to different elements of v because the
distance between elements of the given substring of ω is less than ni (and less
than the period). It is easy to prove that in this substring the density of elements
of small rank (less than i) is not greater than α′ − α.

So the substring ωm . . . ωm+k−1 corresponds to some intervals in v. Throw
away all elements of small ranks from these intervals of v and denote the remain-
ing intervals by [a0, b0), . . . , [as−1, bs−1), where a0 < b0 ≤ . . . ≤ as−1 < bs−1. The
number of these intervals is at most 3. Indeed, we can enumerate all elements of
ωm . . . ωm+k−1 from left to right, not counting elements of small ranks, and for
each element find the corresponding element of v. The index of corresponding
element will increase by 1 every time except when we cross a point of type nij
or nij +ni−1 (where j is integer). But there are at most 2 points of this type in
the interval of length k so there are at most 3 corresponding intervals.

Substrings V (a0, b0), . . . ,V (as−1, bs−1) (defined as in Lemma) can be com-
puted by an algorithm using the given substring of ω. The algorithm needs only
to know the value of m mod ni−1 for finding elements with small rank (less
than i) and the relative positions of elements of ωm . . . ωm+k−1 corresponding
to vaj and vbj−1 where j = 0, 1, . . . , s − 1. Because s ≤ 3 only a logarithmical
amount of additional bits is needed. So we can prove the following inequality to
finish the proof of Proposition 6:

K(V (a0, b0), . . . ,V (as−1, bs−1)) ≥ αk −O(log k).

We can use Lemma for this because α′L > αk, where L = (b0−a0)+ (b1−a1)+
. . .+ (bs−1− as−1) (we have already proved that in this substring the density of
elements of small rank is not greater than α′ − α, hence k − L ≤ (α′ − α)k).

If we prove that K(aj | aj+1) = O(log k) we will finish the proof of the
proposition. Suppose we know aj+1. We can find aj in the following way. Find
the element of the given substring of ω corresponding to vaj+1 . Add to the index
of the found element the difference between the indexes of the elements of the
given substring corresponding to vaj and vaj+1 (this difference is not greater
than the lenght of the given substring, i.e., we use only a logarithmical amount
of memory). We get an element of ω corresponding to vaj . It can be used to
calculate aj . But the first step of this algorithm uses knowing the position of
the given substring which needs an unlimited amount of memory. We can avoid
using this position if we notice that the rank i of elements of ω corresponding
to vaj is not greater than the rank I of elements of ω corresponding to vaj+1

(because aj < aj+1). So nI is a multiple of ni. Hence at the first step we can take
any element of ω corrensponding to vaj+1 (for example, the first one). We get
the same result since the elements corresponding to vaj repeat with period ni

and the elements corresponding to vaj+1 repeat with period nI .
Therefore we construct the algorithm proving that K(aj | aj+1) = O(log k),

and so the proof of Proposition 6 is complete.
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Remarks.

1. Proposition 6 implies the existence of a bi-infinite almost periodic sequence
with complex substrings (using the standard compactness argument; this
argument can be even simplified for the special case of almost periodic se-
quences).

2. The proof of Proposition 6 works for relativized version of complexity. There-
fore we get (as explained above) the following (pure combinatorial) strong
version of Proposition 1:

Corollary. Assume that for each n a set Fn of forbidden substrings of length n
is fixed, and the size of Fn is at most 2αn. Then there exists an infinite almost
periodic binary sequence ω and a constant N such that for any n > N the
sequence ω does not have a substring x that belongs to Fn.

5 Multidimensional Case

Similar but more delicate arguments could be applied to multidimensional
case too.

A d-dimensional sequence ω : ZZd → {0, 1} is almost periodic if for any cube x
that appears in ω there exists a number k such that any subcube with side k
contains x inside.

Proposition 9. Fix an integer d ≥ 1. Let α be a positive number less than 1.
There exists an almost periodic d-dimensional sequence ω such that any suffi-
ciently large subcube x of ω has large complexity:

K(x) ≥ α · volume(x)

Here volume is the number of points, i.e., sided.
In the multidimensional case the complexity argument needs Proposition 8

even if we do not insist that ω is almost periodic.
Informally, the idea of the proof can be explained as follows. Consider, for

example, the case d = 2. Take a sequence ξ from Proposition 8 and write down
its terms along a spiral.

Then we need to bound the complexity of a cube (i.e., square). This square
contains several substrings of the sequence ξ. (Unlike the previous case where
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only 3 substrings were needed, now the number of substrings is proportional to
the side of the square.) Then we apply the Lemma to these substrings to get the
bound for the complexity of the entire square.

This works if we do not require ω to be almost periodic (so the argument above
could replace the combinatorial proof using Lovasz lemma). It needs additional
modifications to get the almost periodic sequence. Similar to one-dimensional
construction, the cube of size n0 is duplicated periodically in all directions with
shifts being multiples of n1; the cube of size n1 is duplicated with shifts being
multiples of n2, etc.

As in one-dimensional case, it is easy to see that this construction guarantees
that ω is almost periodic. Then we fill the positions in a spiral order respecting
the duplication structure described.

6 Remarks

Kolmogorov complexity is often used in combinatorial constructions as the re-
placement of counting arguments. (Instead of proving that the total number
of objects is larger that the number of “bad” objects we prove that an object
of maximal complexity is “good”.) Sometimes people even say that the use of
Kolmogorov complexity is just a simple reformulation that often hides the com-
binatorial essence of the argument.

In our opinion this is not always true. Even without the almost periodicity
requirement the two natural proofs of Proposition 1 (using complexity argument
and Lovasz lemma) are quite different. The proof of Proposition 2 uses prefix
complexity and cannot be directly translated into a counting argument. On the
other hand, the use of Lovasz lemma in a combinatorial proof cannot be easily
reformulated in terms of Kolmogorov complexity. (Moreover, for almost periodic
case we don’t know how to apply Lovasz lemma argument and complexity proof
remains the only one known to us.)
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Online Learning and Resource-Bounded
Dimension: Winnow Yields New Lower Bounds

for Hard Sets�
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Abstract. We establish a relationship between the online mistake-bound
model of learning and resource-bounded dimension. This connection is
combined with the Winnow algorithm to obtain new results about the
density of hard sets under adaptive reductions. This improves previous
work of Fu (1995) and Lutz and Zhao (2000), and solves one of Lutz and
Mayordomo’s “Twelve Problems in Resource-Bounded Measure” (1999).

1 Introduction

This paper has two main contributions: (i) establishing a close relationship
between resource-bounded dimension and Littlestone’s online mistake-bound
model of learning, and (ii) using this relationship along with the Winnow al-
gorithm to resolve an open problem in computational complexity. In this intro-
duction we briefly describe these contributions.

1.1 Online Learning and Dimension

Lindner, Schuler, and Watanabe [14] studied connections between computational
learning theory and resource-bounded measure, primarily working with the prob-
ably approximately correct (PAC) model. They also included the observation
that any “admissible” subclass of P/poly that is polynomial-time learnable in
Angluin’s exact learning model [2] must have p-measure 0. The proof of this
made use of the essential equivalence between Angluin’s model and Littlestone’s
online mistake-bound model [15].

In the online mistake-bound model, a learner is presented a sequence of ex-
amples, and is asked to predict whether or not they belong to some unknown
target concept. The concept is drawn from some concept class, which is known
to the learner, and the examples may be chosen by an adversary. After making
its prediction about each example, the learner is told the correct classification
for the example, and learner may use this knowledge in making future predic-
tions. The mistake bound of the learner is the maximum number of incorrect
predictions the learner will make, over any choice of target concept and sequence
of examples.
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We push the observation of [14] much further, developing a powerful, gen-
eral framework for showing that classes have resource-bounded dimension 0.
Resource-bounded measure and dimension involve betting on the membership
of strings in an unknown set. To prove that a class has dimension 0, we show
that it suffices to give a reduction to a family of concept classes that has a good
mistake-bound learning algorithm. It is possible that the reduction can take
exponential-time and that the learning algorithm can also take exponential-time,
as long as the mistake bound of the algorithm is subexponential. If we have a
reduction from the unknown set to a concept in learnable concept class, we can
view the reduction as generating a sequence of examples, apply the learning algo-
rithm to these examples, and use the learning algorithm’s predictions to design
a good betting strategy. Formal details of this framework are given in Section 3.

1.2 Density of Hard Sets

The two most common notions of polynomial-time reductions are many-one (≤p
m)

and Turing (≤p
T). A many-one reduction from A to B maps instances of A to

instance of B, preserving membership. A Turing reduction from A to B makes
many, possibly adaptive, queries to B in order to solve A. Many-one reductions
are a special case of Turing reductions. In between ≤p

m and ≤p
T is a wide variety

of polynomial-time reductions of different strengths.
A common use of reductions is to demonstrate hardness for a complexity class.

Let ≤p
τ be a polynomial-time reducibility. For any set B, let Pτ (B) = {A | A ≤p

τ

B} be the class of all problems that ≤p
τ -reduce to B. We say that B is ≤p

τ -hard
for a complexity class C if C ⊆ Pτ (B), that is, every problem in C ≤p

τ -reduces to
B. For a class D of sets, a useful notation is Pτ (D) =

⋃
B∈D Pτ (B).

A problem B is dense if there exists ε > 0 such that |B≤n| > 2nε

for all
but finitely many n. All known hard sets for the exponential-time complexity
classes E = DTIME(2O(n)) or EXP = DTIME(2nO(1)

) are dense. Whether every
hard set must be dense has been often studied. First, Meyer [24] showed that
every ≤p

m-hard set for E must be dense, and he observed that proving the same
for ≤p

T-reductions would imply that E has exponential circuit-size complexity.
Since then, a line of research has obtained results for a variety of reductions
between ≤p

m and ≤p
T, specifically the conjunctive (≤p

c ) and disjunctive (≤p
d)

reductions, and for various functions f(n), the bounded query ≤p
f(n)−tt and

≤p
f(n)−T reductions:

1. Watanabe [26,9] showed that every hard set for E under the ≤p
c , ≤

p
d, or

≤p
O(log n)−tt reductions is dense.

2. Lutz andMayordomo [19] showed that for allα < 1, the classPnα−tt(DENSEc)
has p-measure 0, where DENSE is the class of all dense sets. Since E does
not have p-measure 0, their result implies that every ≤p

nα−tt-hard set for E
is dense.

3. Fu [8] showed that for all α < 1/2, every ≤p
nα−T-hard set for E is dense, and

that for all α < 1, every ≤p
nα−T-hard set for EXP is dense.
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4. Lutz and Zhao [21] gave a measure-theoretic strengthening of Fu’s results,
showing that for all α < 1/2, Pnα−T(DENSEc) has p-measure 0, and that
for all α < 1, Pnα−T(DENSEc) has p2-measure 0.

This contrast between E and EXP in the last two references was left as a
curious open problem, and exposited by Lutz and Mayordomo [20] as one of
their “Twelve Problems in Resource-Bounded Measure”:

Problem 6. For α ≤ 1
2 < 1, is it the case that Pnα−T(DENSEc) has

p-measure 0 (or at least, that E �⊆ Pnα−T(SPARSE))?

We resolve this problem, showing the much stronger conclusion that the
classes in question have p-dimension 0. But first, in Section 4, we prove a theorem
about disjunctive reductions that illustrates the basic idea of our technique. We
show that the class Pd(DENSEc) has p-dimension 0. The proof uses the learning
framework of Section 3 and Littlestone’s Winnow algorithm [15]. Suppose that
A ≤p

d S, where S is a nondense set. Then there is a reduction g mapping strings
to sets of strings such that x ∈ A if and only if at least one string in g(x) belongs
to S. We view the reduction g as generating examples that we can use to learn a
disjunction based on S. Because S is subexponentially dense, the target disjunc-
tion involves a subexponential number of variables out of exponentially many
variables. This is truly a case “when irrelevant attributes abound” [15] and the
Winnow algorithm perfoms exceedingly well to establish our dimension result. In
the same section we also use the learning framework to show that Pc(DENSEc)
has p-dimension 0. These results give new proofs of Watanabe’s aforementioned
theorems about ≤p

d-hard and ≤p
c -hard sets for E.

Our main theorem, presented in Section 5, is that for allα<1, Pnα−T(DENSEc)
has p-dimension 0. This substantially improves the results of [19,8,21]. The
resource-bounded measure proofs in [19,21] use the concept of weak stochas-
ticity. As observed by Mayordomo [23], this stochasticity approach can be ex-
tended to show a −1st-order scaled dimension [11] result, but it seems a different
technique is needed for an (unscaled) dimension result. Our learning framework
turns out to be just what is needed. We reduce the class Pnα−T(DENSEc) to
a family of learnable disjunctions. For this, we make use of a technique that
Allender, Hemaspaandra, Ogiwara, and Watanabe [1] used to prove a surprising
result converting bounded-query reductions to sparse sets into disjunctive re-
ductions to sparse sets: Pbtt(SPARSE) ⊆ Pd(SPARSE). Carefully applying the
same technique on a sublinear-query Turing-reduction to a nondense set results
in a disjunction with a nearly exponential blowup, but it can still be learned by
Winnow in our dimension setting.

The density of complete and hard sets for NP has also been studied often, with
motivation coming originally from the Berman-Hartmanis isomorphism conjec-
ture [5]: all many-one complete sets are dense if the isomorphism conjecture
holds. Since no absolute results about the density of NP-complete or NP-hard
sets can be proved without separating P from NP, the approach has been to
prove conditional results under a hypothesis on NP. Mahaney [22] showed that
if P �= NP, then no sparse set is ≤p

m-hard for NP. Ogiwara and Watanabe
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[25] extended Mahaney’s theorem to the ≤p
btt-hard sets. Deriving a result from

P �= NP about NP-hard sets under unbounded truth-table reductions is still
an open problem, but a measure-theoretic assumption yields very strong con-
sequences. Lutz and Zhao [21] showed that under the hypothesis “NP does not
have p-measure 0,” every ≤p

nα−T-hard set for NP must be dense, for all α < 1.
In Section 6 we present the same conclusion under the weaker hypothesis “NP
has positive p-dimension,” and some additional consequences.

2 Preliminaries

The set of all binary strings is {0, 1}∗. The length of a string x ∈ {0, 1}∗ is |x|.
We write λ for the empty string. For n ∈ N, {0, 1}n is the set of strings of length
n and {0, 1}≤n is the set of strings of length at most n.

A language is a subset L ⊆ {0, 1}∗. We write L≤n = L ∩ {0, 1}≤n and L=n =
L ∩ {0, 1}n. We say that L is sparse if there is a polynomial p(n) such that for
all n, |L=n| ≤ p(n). We say that L is (exponentially) dense if there is a constant
ε > 0 such that |L≤n| > 2nε

for all sufficiently large n. We write SPARSE
and DENSE for the classes of all sparse languages and all dense languages. The
complement DENSEc of DENSE is the class of all nondense languages.

2.1 Resource-Bounded Measure and Dimension

Resource-bounded measure and dimension were introduced in [16,18,4]. Here
we briefly review the definitions and basic properties. We refer to the original
sources and also the surveys [17,20,12] for more information.

The Cantor space is C = {0, 1}∞. Each language A ⊆ {0, 1}∗ is identified with
its characteristic sequence χ

A
∈ C according to the standard (lexicographic) enu-

meration of {0, 1}∗. We typically write A in place of χ
A
. In this way a complexity

class C ⊆ P({0, 1}∗) is viewed as a subset C ⊆ C. We use the notation S �n to
denote the first n bits of a sequence S ∈ C.

Let s > 0 be a real number. An s-gale is a function d : {0, 1}∗ → [0,∞) such
that for all w ∈ {0, 1}∗, d(w) = d(w0)+d(w1)

2s . A martingale is a 1-gale.
The goal of an s-gale is to obtain large values on sequences:

Definition 2.1. Let d be an s-gale and S ∈ C.
1. d succeeds on S if lim sup

n→∞
d(S �n) = ∞.

2. d succeeds strongly on S if lim inf
n→∞

d(S �n) = ∞.

3. The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.
4. The strong success set of d is S∞

str[d] = {S ∈ C | d succeeds strongly on S}.

Notice that the smaller s is, the more difficult it is for an s-gale to obtain large
values. Succeeding martingales (s = 1) imply measure 0, and the infimum s for
which an s-gale can succeed (or strongly succeed) gives the dimension (or strong
dimension):
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Definition 2.2. Let X ⊆ C.
1. X has p-measure 0, written μp(X) = 0, if there is a polynomial-time com-

putable martingale d such that X ⊆ S∞[d].
2. The p-dimension of X, written dimp(X), is the infimum of all s such that

there exists a polynomial-time computable s-gale d with X ⊆ S∞[d].
3. The strong p-dimension of X, written Dimp(X), is the infimum of all s such

that there exists a polynomial-time computable s-gale d with X ⊆ S∞
str[d].

We now summarize some of the basic properties of the p-dimensions and
p-measure.

Proposition 2.3. ([18,4]) Let X,Y ⊆ C.
1. 0 ≤ dimp(X) ≤ Dimp(X) ≤ 1.
2. If dimp(X) < 1, then μp(X) = 0.
3. If X ⊆ Y , then dimp(X) ≤ dimp(Y ) and Dimp(X) ≤ Dimp(Y ).

The following theorem indicates that the p-dimensions are useful for studies
within the complexity class E.

Theorem 2.4. ([16,18,4])
1. μp(E) �= 0. In particular, dimp(E) = Dimp(E) = 1.
2. For all c ∈ N, Dimp(DTIME(2cn)) = 0.

2.2 Online Mistake-Bound Model of Learning

A concept is a set C ⊆ U , where U is some universe. A concept C is often
identified with its characteristic function fC : U → {0, 1}. A concept class is a
set of concepts C ⊆ P(U).

Given a concept class C and a universe U , a learning algorithm tries to learn an
unknown target concept C ∈ C. The algorithm is given a sequence of examples
x1, x2, . . . in U . When given each example xi, the algorithm must predict if
xi ∈ C or xi �∈ C. The algorithm is then told the correct answer and given the
next example. The algorithm makes a mistake if its prediction for membership of
xi in C is wrong. This proceeds until every member of U is given as an example.

The goal is to minimize the number of mistakes. The mistake bound of a learn-
ing algorithm A for a concept class C is the maximum over all C ∈ C of the num-
ber of mistakes A makes when learning C, over all possible sequences of examples.
The running time of A on C is the maximum time A takes to make a prediction.

2.3 Disjunctions and Winnow

An interesting concept class is the class of monotone disjunctions, which can be
efficiently learned by Littlestone’s Winnow algorithm [15]. A monotone disjunc-
tion on {0, 1}n is a formula of the form φV =

∨
i∈V xi, where V ⊆ {1, . . . , n}

and we write a string x ∈ {0, 1}n as x = x1 · · ·xn. The concept φV can also be
viewed as the set {x ∈ {0, 1}n | φV (x) = 1} or equivalently as {A ⊆ {1, . . . , n} |
A ∩ V �= ∅}.
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The Winnow algorithm has two parameters α (a weight update multiplier)
and θ (a threshold value). Initially, each variable xi has a weight wi = 1. To
classify a string x, the algorithm predicts that x is in the concept if

∑
i wixi > θ,

and not in the concept otherwise. The weights are updated as follows whenever
a mistake is made.

– If a negative example x is incorrectly classified, then set wi := 0 for all i
such that xi = 1. (Certainly these xi’s are not in the disjunction.)

– If a positive example x is incorrectly classified, then set wi := α · wi for all
i such that xi = 1. (It is considered more likely that these xi’s are in the
disjunction.)

A useful setting of the parameters is α = 2 and θ = n/2. With these param-
eters, Littlestone proved that Winnow will make at most 2k logn + 2 mistakes
when the target disjunction has at most k literals. Also, the algorithm uses O(n)
time to classify each example and update the weights.

3 Learning and Dimension

In this section we present a framework relating online learning to resource-
bounded dimension. This framework is based on reducibility to learnable concept
class families.

Definition 3.1. A sequence C = (Cn | n ∈ N) of concept classes is called a
concept class family.

We consider two types of reductions:

Definition 3.2. Let L ⊆ {0, 1}∗, C = (Cn | n ∈ N) be a concept class family,
and r(n) be a time bound.
1. We say L strongly reduces to C in r(n) time, and we write L ≤r

str C, if
there exists a sequence of target concepts (cn ∈ Cn | n ∈ N) and a reduction
f computable in O(r(n)) time such that for all but finitely many n, for all
x ∈ {0, 1}n, x ∈ L if and only if f(x) ∈ cn.

2. We say L weakly reduces to C in r(n) time, we write L ≤r
wk C if there

a reduction f computable in O(r(n)) time such that for infinitely many n,
there is a concept cn ∈ Cn such that for all x ∈ {0, 1}≤n, x ∈ L if and only
if f(0n, x) ∈ cn.

It is necessary to quantify both the time complexity and mistake bound for
learning a concept class family:

Definition 3.3. Let t,m : N → N. We say that C ∈ L(t,m) if there is an
algorithm that learns Cn in O(t(n)) time with mistake bound m(n).

Combining the two previous definitions we arrive at our central technical
concept:
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Definition 3.4. Let r, t,m : N → N.
1. RLstr(r, t,m) is the class of all languages that ≤r

str-reduce to some concept
class family in L(t,m).

2. RLwk(r, t,m) is the class of all languages that ≤r
wk-reduce to some concept

class family in L(t,m).

A remark about the parameters in this definition is in order. If A ∈ RLstr(r, t,m),
then A ≤r

str C for some concept class family C = (Cn | n ∈ N). Then x ∈ A=n if
and only if f(x) ∈ cn, where cn ∈ Cn is the target concept and f is the reduction.
We emphasize that the complexity of learning Cn is measured in terms of n = |x|,
and not the size of cn or f(x). Instead Cn is learnable in time O(t(n)) with
mistake bound m(n).

The following theorem is the main technical tool in this paper. Here we
consider exponential-time reductions to concept classes that can be learned in
exponetial-time, but with subexponentially-many mistakes.

Theorem 3.5. Let c ∈ N.
1. RLstr(2cn, 2cn, o(2n)) has strong p-dimension 0.
2. RLwk(2cn, 2cn, o(2n)) has p-dimension 0.

4 Disjunctive and Conjunctive Reductions

In this section, as a warmup to our main theorem, we present two basic appli-
cations of Theorem 3.5. First, we consider disjunctive reductions.

Theorem 4.1. Pd(DENSEc) has p-dimension 0.

Proof. We will show that Pd(DENSEc) ⊆ RLwk(22n, 22n, o(2n)). For this, let
A ∈ Pd(DENSEc) be arbitrary. Then there is a set S ∈ DENSEc and a reduction
f : {0, 1}∗ → P({0, 1}∗) computable in polynomial time p(n) such that for all
x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∩ S �= ∅. Note that on an input of length
n, all queries of f have length bounded by p(n). Also, since S is nondense, for
any ε > 0 there are infinitely many n such that

|S≤p(n)| ≤ 2nε

. (4.1)

Let Qn =
⋃

|x|≤n f(x) be the set of all queries made by f up through length n.
Then |Qn| ≤ 2n+1p(n). EnumerateQn as q1, . . . , qN . Then each subset of R ⊆ Qn

can be identified with its characteristic string χ
R
∈ {0, 1}N according to this

enumeration. We define Cn to be the concept class of all monotone disjunctions
on {0, 1}N that have at most 2nε

literals. Our target disjunction is

φn =
∨

i:qi∈S

qi,

which is a member of Cn whenever (4.1) holds. For any x ∈ {0, 1}≤n,

x ∈ A ⇐⇒ φn(χ
f(x)) = 1.
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Given x, χ
f(x) can be computed in O(22n) time. Therefore A ≤O(22n)

wk C = (Cn |
n ∈ N). Since Winnow learns Cn making at most 2 · 2nε

log |Qn| + 2 = o(2n)
mistakes, it follows that A ∈ RLwk(22n, 22n, o(2n)). �

Next, we consider conjunctive reductions.

Theorem 4.2. Pc(DENSEc) has p-dimension 0.

Proof. We will show that Pc(DENSEc) ⊆ RLwk(2n, 22n, o(2n)). For this, let
A ≤p

c S ∈ DENSEc. Then there is a reduction f : {0, 1}∗ → P({0, 1}∗) com-
putable in polynomial time p(n) such that for all x ∈ {0, 1}∗, x ∈ A if and only
if f(x) ⊆ S.

Fix an input length n, and let Qn =
⋃

|x|≤n f(x). Let ε > 0 and consider
the concept class Cn = {P(X) | X ⊆ Qn and |X | ≤ 2nε}. Our target concept is
Cn = P(S ∩ Qn). For infinitely many n, |S ∩ Qn| ≤ |S≤p(n)| ≤ 2nε

, in which
case Cn ∈ Cn. For any x ∈ {0, 1}≤n, we have x ∈ A if and only if f(x) ∈ Cn.

Therefore A ≤p(n)
wk C = (Cn | n ∈ N).

The class Cn can be learned by a simple algorithm that makes at most |X |
mistakes when learning P(X). The hypothesis for X is simply the union of all
positive examples seen so far. More explicitly, the algorithm begins with the
hypothesis H = ∅. In any stage, given an example Q, the algorithm predicts
‘yes’ if Q ⊆ H and ‘no’ otherwise. If the prediction is ‘no,’ but Q is revealed
to be a positive example, then the hypothesis is updated as H := H ∪ Q. The
algorithm will never make a mistake on a negative example, and can make at
most |X | mistakes on positive examples.

This algorithm shows that C ∈ L(22n, o(2n)), so A ∈ RLwk(p(n), 22n, o(2n)).
It follows that Pc(DENSEc) ⊆ RLwk(2n, 22n, 2nε

). �

Since dimp(E) = 1, we have new proofs of the following results of Watanabe.

Corollary 4.3. (Watanabe [26]) E �⊆ Pd(DENSEc) and E �⊆ Pc(DENSEc).
That is, every ≤p

d-hard or ≤p
c -hard set for E is dense.

5 Adaptive Reductions

In this section we prove our main theorem, which concerns adaptive reductions
that make a sublinear number of queries to a nondense set. It turns out that
this problem can also be reduced to learning disjunctions.

In a surprising result (refuting a conjecture of Ko [13]), Allender, Hemaspaan-
dra, Ogiwara, and Watanabe [1] showed that Pbtt(SPARSE) ⊆ Pd(SPARSE).
The disjunctive reduction they obtain will not be polynomial-time computable
if the original reduction has more than a constant number of queries. However,
in the proof of the following theorem we are still able to exploit their technique,
and obtain an exponential-time reduction to a disjunction. Then we can apply
the Winnow algorithm as in the previous section.
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Theorem 5.1. For all α < 1, Pnα−T(DENSEc) has p-dimension 0.

Proof. Let L ≤p
nα−T S ∈ DENSEc via some oracle machine M . We will show

how to reduce L to a class of disjunctions.
Fix an input length n. For an input x ∈ {0, 1}≤n, consider using each z ∈

{0, 1}nα

as the sequence of yes/no answers to M ’s queries. Each z causes M
to produce a sequence of queries wx,z

0 , . . . , wx,z
k(x,z), where k(x, z) < nα, and an

accepting or rejecting decision. Let Zx ⊆ {0, 1}nα

be the set of all query answer
sequences that cause M to accept x. Then we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) S[wx,z
j ] = z[j],

which is equivalent to (∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) z[j] · wx,z
j ∈ Sc ⊕ S, where

Sc ⊕ S is the disjoint union {0x | x ∈ Sc} ∪ {1x | x ∈ S}.
A key part of the proof that Pbtt(SPARSE) ⊆ Pd(SPARSE) in [1] is to show

that P1−tt(SPARSE) is contained in Pd(SPARSE). The same argument yields
that P1−tt(DENSEc) ⊆ Pd(DENSEc). Therefore, there is a set U ∈ DENSEc

such that Sc⊕S ≤p
d U . Letting g be this polynomial-time disjunctive reduction,

we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) g(z[j] · wx,z
j ) ∩ U �= ∅.

For each z ∈ Zx, let

Hx,z = {〈u0, . . . , uk(x,z)〉 | (∀0 ≤ j ≤ k(x, z)) uj ∈ g(z[j] · wx,z
j )}.

Define
An = {〈u0, . . . , uk〉 | k < nα and (∀0 ≤ j ≤ k) uj ∈ U}.

Then we have x ∈ L if and only if (∃z ∈ Zx)(∃v ∈ Hx,z) v ∈ An. Letting
Hx =

⋃
z∈Zx

Hx,z, we can rewrite this as

x ∈ L ⇐⇒ Hx ∩An �= ∅. (5.1)

Let r(n) be a polynomial bounding the number of queries g outputs on an
input of form z[j] · wx,z

j , where |x| ≤ n. Then |Hx,z| ≤ r(n)n
α

, so

|Hx| ≤ |Zx| · r(n)n
α ≤ 2nα·(1+log r(n)). (5.2)

Also, |An| ≤ nα · |U≤r(n)|n
α

. Let ε ∈ (0, 1−α), and let δ ∈ (α+ ε, 1). Then since
U is nondense, for infinitely many n, we have |U≤r(n)| ≤ 2nε

. This implies

(∃∞n) |An| ≤ nα · 2nα+ε

≤ 2nδ

. (5.3)

Let
Hn =

⋃
x∈{0,1}≤n

Hx.

Then from (5.2), |Hn| ≤ 22n if n is sufficiently large.
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Enumerate Hn as h1, · · · , hN . We identify any R ⊆ Hn with its characteristic
string χ(n)

R
∈ {0, 1}N according to this enumeration. Let Cn be the concept class

of all monotone disjunctions on {0, 1}N that have at most 2nδ

literals.
Define the disjunction φn =

∨
i:hi∈An

hi, which by (5.3) is in Cn for infinitely

many n. For any x ∈ {0, 1}≤n, from (5.1) it follows that

x ∈ L ⇐⇒ φn(χ(n)
Hx

) = 1.

Given x ∈ {0, 1}≤n, we can compute χ(n)
Hx

in O(2n · poly(n) + |Hn|) time. There-

fore, letting C = (Cn | n ∈ N), we have L ≤22n

wk C. Since Cn is learnable by
Winnow with at most 2 · 2nδ · log |Hn| + 2 = o(2n) mistakes, it follows that
L ∈ RLwk(22n, 22n, o(2n)). �

As a corollary, we have a positive answer to the question of Lutz and Mayordomo
[20] mentioned in the introduction:

Corollary 5.2. For all α < 1, Pnα−T(DENSEc) has p-measure 0.

Corollary 5.3. For all α < 1, E �⊆ Pnα−T(DENSEc). That is, every ≤p
nα−T-

hard set for E is dense.

We remark that if we scale down from nondense sets to sparse sets, the same
proof technique can handle more queries.

Theorem 5.4. Po(n/ log n)−T(SPARSE) has strong p-dimension 0.

The following corollary improves the result of Fu [8] that E �⊆ Po(n/ log n)−T

(TALLY).

Corollary 5.5. E �⊆ Po(n/ log n)−T(SPARSE).

6 Hard Sets for NP

The hypothesis “NP has positive p-dimension,” written dimp(NP) > 0, was
first used in [10] to study the inapproximability of MAX3SAT. This positive
dimension hypothesis is apparently much weaker than Lutz’s often-investigated
μp(NP) �= 0 hypothesis, but is a stronger assumption than P �= NP:

μp(NP) �= 0 ⇒ dimp(NP) = 1 ⇒ dimp(NP) > 0 ⇒ P �= NP.

The measure hypothesis μp(NP) �= 0 has many plausible consequences that
are not known to follow from P �= NP (see e.g. [20]). So far few consequences
of dimp(NP) > 0 are known. The following corollary of our results begins to
remedy this.

Theorem 6.1. If dimp(NP) > 0, then every set that is hard for NP under ≤p
d-

reductions, ≤p
c -reductions, or ≤p

nα−T-reductions (α < 1) is dense, and every set
that is hard under ≤p

o(n/ log n)−T-reductions is not sparse.
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The consequences in Theorem 6.1 are much stronger than what is known to
follow from P �= NP. If P �= NP, then no ≤p

btt-hard or ≤p
c -hard set is sparse

[25,3], but it is not known whether hard sets under disjunctive reductions or
unbounded Turing reductions can be sparse.

Another result is that if NP �= RP, then no ≤p
d-hard set for NP is sparse [7,6].

It is interesting to see that while the hypotheses dimp(NP) > 0 and NP �= RP
are apparently incomparable, they both have implications for the density of the
disjunctively-hard sets for NP.

7 Conclusion

Our connection between online learning and resource-bounded dimension ap-
pears to be a powerful tool for computational complexity. We have used it to
give relatively simple proofs and improvements of several previous results.

An interesting observation is that for all reductions ≤p
τ for which we know

how to prove “every ≤p
τ -hard set for E is dense,” by the results presented here we

can actually prove “Pτ(DENSEc) has p-dimension 0.” Indeed, we have proven
the strongest results for Turing reductions in this way.
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wara, U. Schöning, R. Silvestri, and T. Thierauf. Reductions to sets of low informa-
tion content. In K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity
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Abstract. Visibly pushdown automata are special pushdown automata
whose stack behavior is driven by the input symbols according to a par-
tition of the alphabet. We show that it is decidable for a given visibly
pushdown automaton whether it is equivalent to a visibly counter au-
tomaton, i.e. an automaton that uses its stack only as counter. In par-
ticular, this allows to decide whether a given visibly pushdown language
is a regular restriction of the set of well-matched words, meaning that
the language can be accepted by a finite automaton if only well-matched
words are considered as input.

1 Introduction

The class of context-free languages (Cfl) plays an important role in several
areas of computer science. Besides its definition using context-free grammars
it has various other characterizations, the most prominent being the one via
nondeterministic pushdown automata. It is well known that Cfl does not enjoy
good closure properties, e.g. it is not closed under complement and intersection,
and that several interesting problems are undecidable, e.g. checking whether a
context free language is regular, or whether it contains all words. This situation
only slightly improves when considering the subclass of deterministic context free
languages, i.e. languages accepted by deterministic pushdown automata (see [10]
for an overview).

Another subclass of Cfl that has recently been defined in [2] is the class of
visibly pushdown languages. These are languages that are accepted by pushdown
automata whose stack behavior (i.e. whether to execute a push, a pop, or no stack
operation) is completely determined by the input symbol according to a fixed
partition of the input alphabet. These automata are called visibly pushdown
automata (Vpa). As shown in [2, 3] this class of visibly pushdown languages
enjoys many good properties similar to those of the class of regular languages, the
main reason for this being that each nondeterministic Vpa can be transformed
into an equivalent deterministic one. Visibly pushdown automata have turned
out to be useful in various context, e.g. as specification formalism for verification
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and synthesis problems for pushdown systems [1, 11], and as automaton model
for processing XML streams [14, 12].

As each nondeterministic Vpa can be determinized, all problems that con-
cern the accepted language and that are decidable for deterministic pushdown
automata are also decidable for Vpas. For example, in [15] and later with im-
proved complexity in [16] it is shown that for a given deterministic pushdown
automaton it is decidable whether its accepted language is regular. Hence, this
problem is also decidable for Vpas.

In the context of validating streaming XML documents a similar question
has been addressed in [14]. Phrased in the terminology of finite automata on
words and trees the problem of validating streaming documents is the following:
given the coding of a tree by a word using opening and closing tags around each
subtree, check whether the corresponding tree belongs to a given regular tree
language. It is rather simple to see that this task can be solved by a deterministic
pushdown automaton that pushes a symbol onto the stack for each opening tag
and pops a symbol for each closing tag. One of the questions raised and analyzed
in [14] is whether one can decide for a given tree language if the streaming
validation task can be solved by a finite automaton. As such an automaton has
to verify that the input codes a tree, the class of these tree languages is rather
restricted. The question gets more involved under the assumption that the input
indeed codes a tree.

Coming back to Vpas, this assumption on the input being the coding of a
tree corresponds to the assumption that the input is well-matched in the sense
that each symbol that is pushed is popped eventually (each opening tag has a
matching closing tag). The question of regularity of the accepted language then
becomes: given a Vpa, is there an equivalent finite automaton, where equiva-
lence is restricted to the set of well-matched words? Restricting the equivalence
to well-matched words can also be seen as allowing the finite automaton to count
the difference between opening and closing tags to know in the end if the input
was well-matched. This model is what we refer to as a visibly counter automa-
ton (Vca). The main result of this paper is that it is decidable for a given Vpa
whether it is equivalent to a Vca. This problem is mentioned in [16] for deter-
ministic pushdown automata and deterministic one-counter automata, and is to
our knowledge still open.

The remainder of this paper is organized as follows. In Section 2 we provide
the basic definitions of visibly pushdown and counter automata and state the
main questions that we address. In Section 3 we give some basic concepts and
constructions on which the decidability proofs are based. In Section 4 we show
that it is decidable for a given visibly pushdown automaton whether it is equiv-
alent to a visibly counter automaton that is allowed to test its counter value up
to a certain threshold, and in Section 5 we prove that it is decidable whether
such a threshold can be reduced.

We thank Victor Vianu and Luc Segoufin for drawing our attention to this
topic.
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2 Definitions

For a finite set X we denote the set of finite words over X by X∗. We denote
by ε the empty word. For u ∈ X∗, we write u(n) for the nth letter in u and u�n

for the prefix of length n of u, i.e., u�0= ε and u�n= u(0) · · ·u(n− 1) for n ≥ 1.
A pushdown alphabet is a tuple Σ̃ = 〈Σc,Σr,Σint〉 that comprises three

disjoint finite alphabets: Σc is a finite set of calls, Σr is a finite set of returns,
and Σint is a finite set of internal actions. For any such Σ̃, let Σ = Σc∪Σr∪Σint.

We define visibly pushdown automata over Σ̃. Intuitively, a visibly pushdown
automaton is a pushdown automaton restricted such that it pushes onto the
stack only when it reads a call, it pops the stack only on reading a return, and
it does not use the stack when reading an internal action.

Definition 1 (Visibly pushdown automaton [2]). A visibly pushdown au-
tomaton (Vpa) over Σ̃ is a tuple A = (Q,Σ, Γ,Qin ,F,Δ) where Q is a finite set
of states, Qin ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, Γ is a
finite stack alphabet, and Δ ⊆ (Q×Σc×Q×Γ )∪(Q×Σr×Γ×Q)∪(Q×Σint×Q)
is the transition relation.

To represent stacks we use a special bottom-of-stack symbol ⊥ that is not in Γ .
A stack is a finite sequence from the set ⊥ · Γ ∗ starting with the special symbol
⊥ on the left, and ending with the top symbol on the right.1 The empty stack is
the one that only contains the symbol ⊥.

A transition (q, a, q′, γ) with a ∈ Σc is a push-transition where on reading a,
γ is pushed onto the stack and the control changes from state q to q′. Similarly,
(q, a, γ, q′) with a ∈ Σr is a pop-transition where γ is read from the top of
the stack and popped (if the top of stack is ⊥, then no pop-transition can be
applied), and the control state changes from q to q′. Our model (in contrast to
the original definition from [2]) is therefore inherently restricted to input words
having no prefix of negative stack height (to be defined below). Note that on
internal actions, there is no stack operation.

A configuration of a Vpa A is a pair (σ, q), where q ∈ Q and σ ∈ ⊥·Γ ∗. There
is an a-transition from a configuration (σ, q) to (σ′, q′), denoted (σ, q) a−→(σ′, q′)
(A will be clear from context), if the following are satisfied.

– If a is a call, then σ′ = σγ for some (q, a, q′, γ) ∈ Δ.
– If a is a return, then σ = σ′γ for some (q, a, γ, q′) ∈ Δ.
– If a is an internal action, then σ = σ′ and (q, a, q′) ∈ Δ .

For a finite word u = a0a1 · · · an in Σ∗, a run of A on u is a sequence
of configurations (σ0, q0)(σ1, q1) · · · (σn+1, qn+1), where q0 ∈ Qin , σ0 = ⊥ and
for every 0 ≤ i ≤ n, (σi, qi)

ai−→(σi+1, qi+1) holds. In this case we also use the
notation (σ0, q0)

u−→(σn+1, qn+1). A word u ∈ Σ∗ is accepted by a Vpa if there
is a run over u which ends in a final configuration, that is a configuration with
1 Note that we are using here the reverse of the more common notation of stacks,

having the top symbol on the left and the bottom on the right.
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empty stack and a control state, which is final. The language L(A) of a Vpa A
is the set of words accepted by A.

A Vpa is deterministic if it has a unique initial state qin , and for each in-
put letter and configuration there is at most one successor configuration. For
deterministic Vpas (Dvpas) we denote the transition relation by δ instead of
Δ and write δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ δ if a ∈ Σc, δ(q, a, γ) = q′

instead of (q, a, γ, q′) ∈ δ if a ∈ Σr, and δ(q, a) = q′ instead of (q, a, q′) ∈ δ if
a ∈ Σint.

Let us stress, that during the run of any Vpa A on a given word u ∈ Σ∗

the automaton A controls only which symbols are pushed on the stack, but not
when a symbol is pushed or popped. At each step, the height of the stack is
pre-determined by the prefix of u read thus far. Let χ(a) be the sign of the
symbol a ∈ Σ defined as χ(a) = 1 if a ∈ Σc, χ(a) = 0 if a ∈ Σint, and χ(a) = −1
if a ∈ Σr. We define the stack height sh(u) of a word u ∈ Σ∗ as the sum of the
signs of its constituent symbols, with sh(ε) = 0. Furthermore, let minsh(u) =
min{sh(u�n) | 0 ≤ n ≤ |u|} and maxsh(u) = max{sh(u�n) | 0 ≤ n ≤ |u|}. A
word u is well matched if sh(u) = minsh(u) = 0.

Given a Dvpa A with control states Q each well-matched word u ∈ Σ∗

induces a transformation TA
u : Q → Q defined as {(q, q′) | (⊥, q) u−→(⊥, q′)},

which completely describes the behavior of A on reading u in any context. The
set of all transformations induced by a well-matched word is denoted T A

wm. In
the following we write just Twm and Tu when A is understood.

The fact that Vpas control only the content of their stack but not its height
allows one to determinize every Vpa as shown in [2]. In the rest of the paper we
will therefore assume that all Vpas considered are deterministic.

Note that we have defined acceptance with empty stack. This implies, together
with the noted implicit restriction imposed by the visibility condition, that only
well-matched words can be accepted. Therefore, we are considering only lan-
guages that are subsets of the language Lwm = {u ∈ Σ∗ | sh(u) = minsh(u) = 0}
of well-matched words. Observe that Lwm is accepted by a trivial single state
Dvpa Awm having a single stack symbol, hence using its stack solely as a counter
to keep track of the stack height of the word being read. The following definition
generalizes this concept.

Definition 2 (Visibly counter automaton). A visibly counter automaton
with threshold m (m-Vca) over Σ̃ is a tuple A = (Q,Σ, qin,F, δ0, . . . , δm) where
Q is a finite set of states, qin ∈ Q is the initial state, F ⊆ Q is a set of final
states, m ≥ 0 is a threshold, and δi : Q × Σ → Q is a transition function for
every i = 0, . . . ,m.

A configuration of A is a pair (k, q) of counter value k ∈ N and state q ∈ Q. For
a ∈ Σ, there is an a-transition from (k, q) to (k′, q′), denoted (k, q) a−→(k′, q′), if
k′ = k + χ(a), and q′ = δk(q, a) if k < m and q′ = δm(q, a) if k ≥ m.

For a finite word u = a0a1 · · · an in Σ∗, the run of A on u is the sequence
(k0, q0)(k1, q1) · · · (kn+1, qn+1) of configurations, where q0 = qin, k0 = 0, and
(ki, qi)

ai−→(ki+1, qi+1) for every 0 ≤ i ≤ n. A word u ∈ Σ∗ is accepted by a Vca
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A if the run of A over u ends in a final configuration, that is a configuration
with counter value 0 and control state from F . The language L(A) of a Vca A
is the set of words accepted by A.

Observe that a 0-Vca has absolutely no access to its counter, which can
be perceived as an auxiliary device ensuring that only well-matched words are
accepted. Other than that, a zero threshold Vca is essentially a finite automaton.
Indeed, it is easy to see that a language L is accepted by some 0-Vca if and
only if L = L′∩Lwm for some regular language L′. The next example shows that
(m + 1)-Vcas are more powerful than m-Vcas.

Example 1. Consider the languages Lm = {Σn
c Σ

n−m
r Σl−m

c Σl
r | m ≤ l, n ∈ N}

defined for each m ∈ N. Each Lm consists of well-matched words and is clearly
accepted by an appropriate (m+1)-Vca. Moreover, it is easy to show that there
is no m-Vca accepting Lm.

Note that we have defined Vcas to be deterministic. In Section 5 we also use non-
deterministic Vcas with the natural definition. The standard subset construction
that is used to determinize finite automata can also be used to determinize Vcas.

Based on the preceding definitions we can now state the problems that we
address:

(1) Given a Dvpa A and m ∈ N, is there an m-Vca that accepts L(A)?
(2) Given a Dvpa A, is there m ∈ N and an m-Vca that accepts L(A)?
(3) Given an m-Vca A and m′ ∈ N, is there an m′-Vca that accepts L(A)?

Note that decidability of the two last questions implies decidability of the
first one. The following example illustrates that for (2) and (3) an exponential
blow-up in the size of the automaton is unavoidable.

Example 2. Let Σ be the alphabet with Σc = {ca, cb}, Σr = {ra, rb} and
Σint = ∅. For a given m ∈ N let Lm = {cx1 · · · cxmwrxm · · · rx1 | x1, . . . , xm ∈
{a, b} and w ∈ Lwm} be the set of well-matched words starting with m initial
calls and ending with m corresponding returns. For each m, it is easily seen that
Lm is accepted by a Dvpa with O(m) states that stores the first m calls on
its stack and then compares them to the m final returns. Instead of storing the
initial calls on the stack it is also possible to memorize them in the control state,
leading to an (m+ 1)-Vca with O(2m) states. A pumping argument shows that
this exponential blow-up is unavoidable.

For each m, let L′
m be the set of well-matched words that end with a sequence

of m returns, where the first return in this sequence is ra: such a language
is easily accepted by an m-Vca with two states. It can also be accepted by
an exponentially larger 0-Vca that remembers in its control states the last m
returns. Again, a pumping argument shows that this exponential blow-up is
unavoidable.

The rest of the paper is devoted to the proof of the following result (cf. Theorem 2
in Section 4 and Theorem 3 in Section 5).
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Theorem 1. Questions (1), (2) and (3) are decidable and lead to effective con-
structions.

From a prior remark concerning languages accepted by 0-Vcas and from the
decidability of (1) for m = 0 we obtain the following result.

Corollary 1. It is decidable, whether a given Vpa A accepts a regular restric-
tion of the set of well-matched words, i.e. whether L(A) = L ∩ Lwm for some
regular language L. When so, then a finite automaton recognizing L can be ef-
fectively constructed.

Concerning the restriction that we only consider languages that are subsets of
Lwm, note that the case where acceptance is defined only via final states can
be reduced to our setting as follows. By adding a fresh symbol to Σr used to
close unmatched calls, one can pass to a language consisting of well-matched
words only. This new language can be recognized by a Vca (accepting with final
states and counter value 0) iff the original language can be recognized by a Vca
accepting with final states only.

3 Basic Tools and Constructions

We shall now introduce the basic concepts and tools that we are using. Through-
out the rest of the paper let A = (Q,Σ, Γ, qin,F, δ) be a given Dvpa.

We use finite single-tape and multi-tape letter-to-letter automata to represent
sets and relations of configurations respectively. Therefore we assume w.l.o.g.
that Q and Γ are disjoint, and identify each configuration (σ, q) of A with
the word σq. Letter-to-letter 2-tape finite automata accept precisely the length-
preserving rational relations. Basic results on length-preserving and synchronized
rational relations can be found in [9]. Letter-to-letter multi-tape finite automata
can be seen as classical single-tape finite automata over the product alphabet.
Hence, all classical constructions and results of automata theory apply. Below
we often use this fact without explicit reference. In various estimates we use the
binary function exp(k, n) denoting a tower of exponentials of height k defined
inductively by letting exp(0, n) = n and exp(k +1, n) = 2exp(k,n) for all k and n.

When considering language acceptance only those configurations of A are of
concern that are reachable from the initial configuration. Accordingly, in our
constructions we restrict our attention to the set VA of configurations of A
reachable from the initial configuration. The fact, first observed by Büchi [7],
that VA is regular is therefore essential. Moreover, an obvious adaptation of the
construction of [6] (see also [8]) shows that a non-deterministic finite automa-
ton recognizing VA with O(|Q|) states can be constructed in polynomial time.
From now on by configuration we always mean reachable configuration, unless
explicitly stated otherwise.

First we define equivalence (denoted ∼) of configurations of A in a standard
way according to the languages they accept, and observe a necessary condition
(2’) for a positive answer for question (2). Next we show that ∼, when considered
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as a binary relation on words describing the configurations, can be accepted by
a letter-to-letter two-tape automaton. This allows us not only to decide (2’) but
also to prove its sufficiency.

The configuration graph ofA is the edge-labelled graph GA = (VA, EA), where
VA is, as above, the set of reachable configurations of A and EA is the set that
contains all triples of the form ((σ, q), a, (σ′, q′)) such that (σ, q), (σ′, q′) ∈ VA,
a ∈ Σ, and (σ, q) a−→(σ′, q′). Below we often suppress the index A.

Definition 3 (Equivalence of configurations). Two configurations σq, σ′q′

of A are equivalent, in symbols σq ∼ σ′q′, if |σ| = |σ′| and for every word u ∈ Σ∗

there is an accepting run of A labelled by u from (σ, q) to a final configuration
iff there is one from (σ′, q′).

BecauseA is deterministic ∼ is in fact a congruence with respect to the transition
relations a−→ (a ∈ Σ) restricted to the set of reachable configurations. This allows
us to define the quotient graph G/∼ as follows.

Definition 4 (Quotient of the configuration graph). We define the quo-
tient of the configuration graph G = (V, E) with respect to the congruence ∼
as G/∼ = (V /∼, E/∼), where V /∼ consists of equivalence classes of V under
∼ and for all C1, C2 ∈ V /∼, and for any letter a ∈ Σ, (C1, a, C2) ∈ E/∼ if
and only if there are some (equivalently for all) v1 ∈ C1 and v2 ∈ C2 such that
(v1, a, v2) ∈ E.

Note that by definition σq ∼ σ′q′ implies that |σ| = |σ′|. In other words,∼ refines
the equivalence defined according to stack height, i.e. ∼ is length-preserving. If
we denote by V |n the set of reachable configurations that contain n stack sym-
bols, i.e. V |n = V ∩ (⊥ · ΓnQ), then ∼ induces a certain number of equivalence
classes on each set V |n. In case A is equivalent to some m-Vca, this number of
equivalence classes must be bounded by a bound independent of n, because con-
figurations of a Vca that have the same counter value can only be distinguished
by finitely many control states.

Proposition 1. The following is necessary for (2) to have a positive answer.

(2’) ∃K ∀n V |n is partitioned into at most K ∼-equivalence classes.

It is, however, not immediate that the above condition is also sufficient. Both
to show equivalence of (2) and (2’) and to prove their decidability the following
observation is crucial.

Lemma 1. One can effectively construct a letter-to-letter 2-tape automaton A∼
having at most 2O(|Q|2) states and recognizing ∼.

This lemma can be shown by noting that an automaton can guess a separating
word for two configurations of the same length n. Such a word consists of n
returns interleaved with well-matched words. As not the particular well-matched
words u but only the transformations Tu (from the finite set Twm) induced by
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them are interesting, a finite automaton can check whether two configurations
are not equivalent. Then one can conclude using the closure properties of finite
letter-to-letter 2-tape automata.

We are interested in the number of equivalence classes of ∼ for each stack
height and therefore want to elect representatives for these classes. For this pur-
pose we fix some linear ordering of the symbols of Γ and Q, thus determining
the lexicographic ordering <lex of all configurations. Note that <lex is synchro-
nized rational, hence, its restriction to words of equal length is recognized by
a letter-to-letter automaton. Using the automata recognizing <lex, ∼, and V
we can further construct an automaton recognizing the set Rep = {σq ∈ V |
¬∃σ′q′ ∈ V (σq ∼ σ′q′ ∧ σ′q′ <lex σq)} of lexicographically smallest representa-
tives of each ∼-class as follows: One can construct a letter-to-letter automaton
recognizing pairs of equivalent reachable configurations, such that the first com-
ponent precedes the second one in the lexicographic ordering. After projection
onto the second component, determinization, and complementation (with re-
spect to V ) one obtains a deterministic automaton ARep recognizing Rep. The
largest one of the components is the automaton A∼ and the costliest operation
is, of course, determinization potentially causing an exponential increase in the
number of states. Thus, we obtain exp(2,O(|Q|2)) as an upper bound on the
size of ARep.

We now observe that (2’) is equivalent to the slenderness of Rep. Following
[13] and [4] we say that a language L ⊆ Γ ∗ is slender if there is a constant K such
that |L∩Γn| ≤ K for all n ∈ N, in which case we may also say that L is K-thin.
Let us therefore introduce the notation Repn = Rep∩ V |n. Analogously, we say
that the graph G/∼ is slender if there is a constant K such that |(V |n)/∼| ≤ K
for all n ≥ 0. Relying on results of [4] and [13] we immediately obtain the
following.

Proposition 2. Condition (2’) is decidable, moreover, if Rep is K-thin, then
K ≤ |Γ |N−2 · |Q| = exp(3,O(|Q|2)), where N is the number of states of the
minimal deterministic automaton recognizing Rep.

Let us assume that G/∼ is slender. We identify each of its nodes C with the
pair (sh(C), index(C)) ∈ N× {1, · · · ,K}, where the stack height of a class C is
the stack height of any (hence all) of the configurations belonging to C and the
index of C is the position of its representative w ∈ C ∩Rep with respect to <lex

among Repsh(C). In the next section we will show that in case G/∼ is slender it
is (in the above representation) actually the configuration graph of a Vca. The
following lemma constitutes an important step in the proof of this result.

Lemma 2. Assuming condition (2’) holds with slenderness bound K we can
effectively construct an automaton C∼ reading stack contents and whose states
q∼ encode mappings ρq∼ : Q → {0, . . . ,K} where K is the slenderness index of
G/∼. After reading a stack content σ the automaton C∼ is in a state q∼ such
that index((σ, q)) = ρq∼(q) for all q ∈ Q. Moreover exp(5,O(|Q|2)) is an upper
bound on the number of states of C∼.
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4 From Pushdown to Counter Automata: Decidability of
Question (2)

In this section we prove that slenderness is actually a sufficient condition for
(2) to hold. As it is also necessary and decidable, it shows the decidability of
question (2). Effectiveness follows from the proof.

Assume that A is a Dvpa (with the usual components) such that GA/∼ is
slender, and let K be a slenderness bound, i.e. there are at most K classes on
each level of GA/∼.

The proof and the construction are split in two steps. First we show that
GA/∼ can be effectively described by an ultimately periodic word. Then, in the
second step, it easily follows that A is equivalent to an m-Vca with m being the
offset of the ultimately periodic word.

The infinite word describing GA/∼ is such that the nth letter codes the edges
of EA/∼ that leave the vertices from the nth level, i.e., the outgoing edges from
the vertex set {(n, i) | i ∈ {1, . . . ,K}}. These edges are fully described by a
(partial) mapping assigning to each pair (i, a) of class index and input letter the
index of the class reached from class i on level n when reading an a. If there are
less than i classes on level n, then the value for (i, a) is undefined.

More formally, the description τn : {1, . . . ,K} × Σ → {1, . . . ,K} of the nth
level of GA/∼ is defined by τn(i, a) = j iff ((n, i), a, (n + χ(a), j)) ∈ EA/∼ and
τn(i, a) is undefined if (n, i) is not a vertex of GA/∼.

The sequence α := τ0τ1 . . . completely describes GA/∼. Using the automaton
C∼ (cf. Lemma 2) it is possible to construct a finite state machine that outputs
this sequence. This implies the main technical result of this section, namely that
α is ultimately periodic.

Lemma 3. The description α = τ0τ1τ2, . . . of GA/∼ is an ultimately periodic
sequence that can be constructed effectively.

As α is ultimately periodic there are numbers m and k such that α = τ0 · · ·
τm−1(τm · · · τm+k−1)ω . We call m the offset and k the period of α. It is not
difficult to verify that a Vca that knows whether it is in the offset part of
α (using its threshold) or in the periodic part (using a modulo k counter to
keep track of the position) can simulate A. This is established in the following
proposition.

Proposition 3. If the description α=τ0τ1 . . . of GA/∼ is ultimately periodic
with offset m and period k, then one can build an m-Vca B such that L(A)=
L(B).

Combining Propositions 1, 2, and 3 we get the following theorem answering
question (2) from Section 3.

Theorem 2. It is decidable if for a given Vpa there exists an equivalent Vca. If
such a Vca exists it can be effectively constructed and has O((|Γ |·|QC∼ |·K)2K ·K)
states and its threshold is bounded by O((|Γ | · |QC∼ | ·K)2K).
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5 Reducing the Threshold: Decidability of Question (3)

In all this section, we assume that A = (Q,Σ, qin,F, δ0, . . . , δm) is an m-Vca
for some threshold m. Given m′ < m, we want to decide whether there is an
m′-Vca B such that L(A) = L(B). If such a B exists, we want to provide an
effective construction of it.

The decision procedure that we present consists of two steps. First, we build an
m′-VcaA′ and show that if A is equivalent to some m′-Vca then L(A) = L(A′).
Intuitively, A′ is a canonical candidate to be equivalent to A. Then, we have to
check whether L(A) = L(A′) holds, which is known to be decidable [2].

As the technical details of the construction of A′ and the correctness proofs
are quite involved we restrict ourselves in the following to an explanation of the
underlying ideas.

The difference between A and an m′-Vca is that for a word w of stack height
h with m′ ≤ h < m the automaton A exactly knows the current stack height
because it uses δh to compute the next configuration, whereas the m′-Vca only
knows that the stack height is at least m′. Such a situation is depicted in Figure 1
(where for now we ignore all annotations except m and m′).

sh

m′

m

M

A′ uses δm

Fig. 1. A critical situation when simulating threshold m by threshold m′

The main idea is to show that, under the assumption that A is indeed equiv-
alent to some m′-Vca, this additional information gained by A when using δh is
not used (under certain conditions) so that instead of using δh to compute the
next configuration one could also have used δm. The conditions under which it
is possible to use δm instead of the correct transition function δh are also illus-
trated in Figure 1. If the input exceeds a certain stack height (denoted by M , a
parameter depending on the size of A), then comes back into the area between
m and m′, and then again goes beyond M , then one can also use δm when the
stack height is between m and m′, without changing the acceptance behavior of
A. The condition on the stack height is needed for the correctness proof to be
able to apply pumping arguments without changing the transformation on the
state space that is induced by the input.
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This allows to construct a nondeterministic m′-Vca A′ that maintains in its
state space a counter up to M that is updated according to the stack height. As
long as the stack height stays below M , A′ can exactly simulate A. If the stack
height exceeds M , A′ starts using δm for its transitions, and it guesses the points
where it can switch back to exact simulation of A. These are the points where
the stack height falls below M and reaches a value less than m′ before exceeding
M again. These guesses can be verified as correct by A′ at the moment where
the stack height goes below m′ (because then it can compare the counter value
maintained in the state space with the real stack height).

As nondeterministic Vcas can be determinized as explained in Section 2, we
obtain the following lemma.

Lemma 4. From A one can construct an m′-Vca A′ such that L(A) �= L(A′)
implies that there is no m′-Vca that is equivalent to A.

Finally, using the fact that equivalence for Vpas (hence for Vcas) is decidable,
we obtain the following result answering question (3) from Section 2.

Theorem 3. It is decidable, given an m-Vca A and m′ < m, whether A is
equivalent to some m′-Vca, in which case such an m′-Vca A′ can be constructed
effectively.

Concerning complexity, we note that the number of states of (the nondeterminis-
tic)A′ is inO(|Q|2|Q|) (stemming from the definition of M). To check equivalence
of A′ with A, one determinizes A′ (exponential blow-up) and transforms it into
a Vpa: hence the complexity is doubly exponential in |Q|.

6 Conclusion

We have introduced the notion of visibly counter automaton as a direct adap-
tion of standard one-counter automata to the framework of visibly pushdown
automata. We have shown that it is decidable for a given Vpa if it is equiv-
alent to some Vca, even if we allow the counter to be tested up to a certain
threshold, and provided an algorithm to construct such a counter automaton if
it exists. This solves a special case of a problem that was posed in [16] for general
deterministic pushdown automata.

A drawback of the presented proof is the high complexity of the resulting
construction. The upper bound on the size of the Vca that we construct is 6-
fold exponential in the size of the given visibly pushdown automaton, whereas
the lower bound (Example 2) that we can prove is only singly exponential.

As a corollary of our main result we obtain that it is decidable for a given
Vpa whether it accepts a regular restriction of the set of well-matched words,
i.e. whether its language is of the form L ∩ Lwm for a regular language L. To
answer the question from [14] one would have to solve the corresponding problem
with Lwm replaced by another language: If we consider inputs as obtained when
coding trees by words using opening and closing tags for the subtrees, then Lwm
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describes those words for which each opening tag is closed by some closing tag.
To be a valid coding of a tree (in the sense of [14]) each opening tag has to
be closed by a unique corresponding tag, i.e. the word has to be strongly well
matched (see also [5]). Hence, to decide whether membership for a set L(A) of
coded trees can be tested by a finite automaton under the assumption that the
input is well formed in the above sense, one has to check if L(A) is of the form
L ∩ Lswm for some regular language L and for Lswm being the set of strongly
well-matched words.

Currently, we are working on the following generalization of these problems:
Given two Vpas A and B, is the language accepted by A a regular restriction of
the language accepted by B, i.e. L(A) = L∩L(B) for some regular language L?
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Abstract. We consider the problem of converting regular expressions
of length n over an alphabet of size k into ε-free NFAs with as few
transitions as possible. Whereas the previously best construction uses
O(n·min{k, log2 n}·log2 n) transitions, we show that O(n·log2 2k ·log2 n)
transitions suffice. For small alphabets we further improve the upper
bound to O(n · log2 2k · kLk(n)+1), where Lk(n) = O(log∗

2 n). In particu-
lar, n · 2O(log∗

2 n) transitions and hence almost linear size suffice for the
binary alphabet! Finally we show the lower bound Ω(n · log2

2 2k) and as a
consequence the upper bound O(n · log2

2 n) of [7] for general alphabets is
best possible. Thus the conversion problem is solved for large alphabets
(k = nΩ(1)) and almost solved for small alphabets (k = O(1)).

Classification. Automata and formal languages, descriptional complex-
ity, nondeterministic automata, regular expressions.

1 Introduction

One of the central tasks on the border between formal language theory and
complexity theory is to describe infinite objects such as languages by finite for-
malisms such as automata, grammars, expressions etc., and to investigate the
descriptional complexity and capability of these formalisms. Formalisms like ex-
pressions and finite automata have proven to be very useful in building compilers,
and techniques converting a regular expression into an ε-free nondeterministic
finite automaton were used as basic tools in the design of computer systems such
as UNIX ([5], p. 123, and [11]). The descriptional complexity of an expression R
is its length, i.e., the number of symbols occurring in R, and the descriptional
complexity of a nondeterministic finite automaton (NFA) is the number of its
transitions, where identical edges with distinct labels are differentiated.

All classical conversions [1,3,9,11] produce ε-free NFAs with worst-case size
quadratic in the length of the given regular expression and for some time this
was assumed to be optimal [10]. But then Hromkovic, Seibert and Wilke [7] con-
structed ε-free NFAs with just O(n · (log2 n)2) transitions for regular expressions
� Work supported by DFG grant SCHN 503/2-2.
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of length n and this transformation can even be implemented to run in time
O(n · log2 n + m), where m is the size of the output [4]. Subsequently Geffert
[2] showed that even ε-free NFAs with O(n · k · log2 n) transitions suffice for
alphabets of size k, improving the bound of [7] for small alphabets.

We considerably improve the upper bound of [2] for alphabets of (small) size
k. To describe our result we define l0 = 2k, lj+1 = (2k)lj/ log2 lj and set Lk(n) to
be the smallest i with li ≥ n. Observe that Lk(n) = O(log∗ n) for all k ≥ 2.

Theorem 1. Every regular expression R of length n over an alphabet of size k
can be recognized by an ε-free NFA with at most

O(n ·min{log2 n, kLk(n)+1} · log2 2k)

transitions.

As a first consequence we obtain ε-free NFAs of size O(n · log2 n · log2 2k) for
regular expressions of length n over an alphabet of size k. For small alphabets,
for instance if k = O(log2 log2 n), the upper bound O(n · kLk(n)+1 · log2 2k) is
better. In particular, n · 2O(log∗

2 n) transitions and hence almost linear size suffice
for the binary alphabet.

[8] shows that regular expressions of length n require ε-free NFAs with at least
Ω(n(log2 n)2/ log2 log2 n) transitions, improving the lower bound Ω(n · log2 n)
of [7]. We also improve the lower bound.

Theorem 2. There are regular expressions of length n over an alphabet of size
k such that any equivalent ε-free NFA has at least Ω(n · log2

2 2k) transitions.

Thus the construction of [7] is optimal for large alphabets, i.e., if k = nΩ(1).
Since Theorem 1 is almost optimal for alphabets of fixed size, improvements for
alphabets of intermediate size, i.e., ω(1) = k = no(1), are still required.

In Section 2 we show how to construct small ε-free NFAs for a given regular ex-
pression R using ideas from [2,7]. We obtain the upper bound O(n·log2 n·log2 2k)
by short-cutting ε-paths within the canonical NFA. Whereas the canonical NFA
is derived from the expression tree of R, the shortcuts are derived from a de-
composition tree, a balanced version of the expression tree. The subsequent
improvement for small alphabets is based on repeatedly applying the previous
upper bound to larger and larger subexpressions. We give a brief sketch of the
lower bound for En in Section 3. Conclusions and open problems are stated in
Section 4.

2 Small ε-Free NFAs for Regular Expressions

Assume that the regular expression R is given. Then we have R = R1
+◦ R2 or

R = S∗ for subexpressions R1, R2, S of R. Fig. 1 shows this recursive expansion
in NFA-notation. Thus, after completing this recursive expansion, we arrive at
an NFA NR with a unique initial state q0 and a unique final state qf . Moreover,
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Fig. 1. The initial step in determining the NFA NR for a regular expression R. The
undirected version of NR is a series-parallel graph.

no transition enters q0 and no transition leaves qf . Finally observe that NR has
at most O(n) transitions for any regular expression R of length n.

Let TR be the expression tree of R with root r. We say that C is a partial
cut iff for no pair (x, y) of different vertices in C is x a descendant of y. We
define T v

R(C), for a vertex v and a partial cut C of TR, as the subtree of TR

with root v, where we remove all children-links for vertices in C. Hence vertices
in C which are also descendants of v are (artificial) leaves in T v

R(C). Moreover
we label the leaf for x ∈ C with an artificial symbol denoting the regular subex-
pression determined by x in TR. Rv(C) denotes the subexpression specified by
T v

R(C); in particular Rv(C) contains for each artificial leaf the corresponding
artificial symbol. Finally Nv

R(C) is the NFA obtained by recursively expanding
Rv(C) except for the artificial symbols of Rv(C) which correspond to artificial
transitions.

We introduce the decomposition tree T ∗
R for R as a balanced, small depth

version of TR. We begin by determining a separating vertex v of TR, namely
a vertex of TR with a subtree of at least n

3 , but less than 2n
3 leaves. Then

T1 = T v
R(∅) is the subtree of TR with root v and T1 determines the regular

expression S = Rv(∅). We remove the edge connecting v to its parent, reattach
v as an artificial leaf labeled with the artificial symbol S and obtain the second
subtree T2 = T r

R({v}). T2 specifies the regular expression Rr({v}) and we obtain
the original expression R after replacing the artificial symbol S in Rr({v}) by
the expression Rv(∅). N r

R({v}) contains a unique transition q1
S→ q2 with label

S. We obtain NR from N r
R({v}) after identifying the unique initial and final

states of Nv
R(∅) with q1 and q2 respectively and then replacing the transition

q1
S→ q2 by Nv

R(∅).
To define the decomposition tree T ∗

R we create a root s. We say that q1
S→ q2

is the artificial transition of s and label s with the quadruple (r, ∅, qs
1, q

s
2)

where qs
1 = q1 and qs

2 = q2. (In general, if we label a vertex t of T ∗
R with

(u,C, qt
1, q

t
2), then t represents the expression tree T u

R(C). qt
1, q

t
2 are the endpoints

of the artificial transition of t.) We introduce a left child representing T v
R(∅) as

well as a right child representing T r
R({v}). We recursively repeat this expansion

process for each child of r. However from now on separating vertices have to have
at least N

3 , but less than 2N
3 original (i.e., non-artificial) leaves in their subtrees,

where N is the current number of original leaves. We continue to expand until
all trees contain at most one original leaf. If we have reached a vertex t of
T ∗

R whose expression tree T u
R(C) has exactly one original leaf representing the
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original transition qt
1

a→ qt
2, then we label t by the quadruple (u,C, qt

1, q
t
2). We

summarize the important properties of T ∗
R.

Proposition 1. Let R be a regular expression of length n.

(a) Each ε-free transition of NR appears exactly once as an artificial transition
of a leaf of T ∗

R.
(b) A left child in T ∗

R represents a subtree of TR.
(c) Let p

a→ q and r
b→ s be two transitions of NR corresponding to leaves l1 and

l2 respectively. If t is the lowest common ancestor of l1 and l2 and if there is
an ε-path q

∗→ r in NR, then the path traverses an endpoint of the artificial
transition of t.

(d) The depth of T ∗
R is bounded by O(log2 n).

Proof. (a) Any ε-free transition of NR appears exactly once as a leaf of the
expression tree TR. The claim follows, since each expansion step for T ∗

R decom-
poses TR. (b) Assume that t is a left child and let v be the separating vertex
of its parent. Then t represents T v

R(∅), the subtree of TR with root v. (c) The
lowest common ancestor t represents the expression Ru(C) for some vertex u
and a cut C. If w is the separating vertex of t, then Ru(C) is decomposed into
the expressions Rw(C), recognized by Nw

R (C), and Ru(C ∪ {w}), recognized by
Nu

R(C ∪ {w}). Both endpoints of, say, p
a→ q belong to Nw

R (C), the endpoints

of r b→ s lie outside. But Nw
R (C) can only be entered through its initial or final

state which coincides with an endpoint of the artificial transition of t. (d) follows,
since the number of original leaves is reduced each time by at least 2

3 . !"

2.1 Constructing ε-Free NFAs from the Decomposition Tree

We use ideas from [7] to convert a regular expression of length n over an alphabet
of size k into an ε-free NFA with O(n·log2 n·log2 2k) transitions. Thus we improve
upon the conversion of [2], where O(n · log2 n ·k) transitions are shown to suffice.

Lemma 1. Let R be a regular expression of length n over an alphabet of size k.
Then there is an ε-free NFA N for R with O(n · log2 n · log2 2k) transitions. N
has a unique initial state. If ε �∈ L(R), then N has one final state and otherwise
N has at most two final states.

Proof. Assume that q0 is the unique initial state of NR and qf its unique final
state. We moreover assume that all states of NR have an ε-loop. We choose q0

and qf as well as all endpoints of artificial transitions of T ∗
R as states for our ε-free

NFA. q0 is still the initial state and qf is (jointly with q0, whenever ε ∈ L(R))
the only final state. Thus the ε-free NFA results from NR after removing all ε-
transitions (and all states which are incident to ε-transitions only) and inserting
new ε-free transitions.

Let p
a→ q be a transition of NR and let l be the corresponding leaf of T ∗

R. We
define the set A to contain q0, qf as well as all ancestors of l including l itself.
We assume that q0 and qf are roots of imaginary trees such that all leaves of
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T ∗
R belong to the “right subtree” of q0 as well as to the “left subtree” of qf .

Consider any two vertices s, t ∈ A and let qs
1, q

s
2 and qt

1, q
t
2 be the endpoints of

the artificial transitions for s and t respectively. (We set qs
1 = qs

2 = q0 for s = q0

and qt
1 = qt

2 = qf for t = qf .) We interconnect states for i, j ∈ {1, 2} as follows.

Insert the transition qs
i

a→ qt
j , if there are ε-paths qs

i
∗→ p and q

∗→ qt
j in NR.

Let N be the NFA obtained from NR after these insertions and after removing all
ε-transitions. Obviously any accepting path from q0 to qf in N can be extended
by ε-transitions to an accepting path in NR and hence L(N) ⊆ L(NR). Now
consider an accepting path

q0
ε→ · · · ε→ p1

a1→ q1
ε→ · · · ε→ pr

ar→ qr
ε→ · · · ε→ qf

for the word a1 ◦ · · · ◦ ar in NR. Since all states of NR have ε-loops, we may
assume that all ε-free transitions are separated by non-trivial ε-paths. Let li be
the leaf of T ∗

R corresponding to the transition pi
ai→ qi. To obtain an accepting

path in N , let v0 = q0, v1, . . . , vr−1, vr = qf be the sequence of vertices, where
vi (1 ≤ i ≤ r − 1) is the lowest common ancestor of li and li+1 in T ∗

R. By
Proposition 1(c) the ε-paths from qj−1 to pj and from qj to pj+1 have to hit
endpoints q

vj−1
ij−1

∈ {qvj−1
1 , q

vj−1
2 } and q

vj

ij
∈ {qvj

1 , q
vj

2 } of the respective artificial

transition. But then N contains the transition q
vj−1
ij−1

aj→ q
vj

ij
and

q0
a1→ qv1

i1

a2→ · · · aj−1→ q
vj−1
ij−1

aj→ q
vj

ij

aj+1→ q
vj+1
ij+1

aj+2→ · · · ar→ qf

is an accepting path in N . Hence L(NR) ⊆ L(N) and N and NR are equivalent.
We still have to count the number of transitions of N . We introduce transi-

tions qs
i

a→ qt
j (resp. qt

i
a→ qs

j ) only for transitions p
a→ q which are represented

by leaves belonging to the subtrees of s and t. Hence s must be an ancestor
or a descendant of t in T ∗

R and, for given vertices s, t, we introduce at most
min{|s|, |t|, k} transitions, where |s| and |t| are the number of leaves in the sub-
trees of s and t respectively.

We fix s. There are O(|s|/k) descendants t of s with |t| ≥ k and O(|s|)
transitions correspond to those “large” vertices t. The remaining small vertices
are partitioned into O(log2 k) levels, where one level produces O(|s|) transitions.
Thus the number of transitions between qs

i and qt
j for descendants t of s is

bounded by O(|s| · (1+log2 k)) and hence by O(|s| · log2 2k). Finally we partition
all vertices s of T ∗

R into O(log2 n) levels, where one level requires O(n · log2 2k)
transitions, and overall O(n · log2 n · log2 2k) transitions suffice. !"

2.2 A Recursive Construction of Small ε-Free NFAs

How can we come up with even smaller ε-free NFAs? Assume that we have par-
titioned the regular expression R into (very small) subexpressions of roughly
same size η. We apply the construction of Lemma 1 to all subexpressions and
introduce at most O(n · log2 η · log2 2k) transitions, a significant reduction if η is
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drastically smaller than n. However now we have to connect different subex-
pressions with “global” transitions and Lemma 1 inserts the vast majority of
transitions, leading to a total of O(n · log2 n · log2 2k) transitions. But we can
do far better, if we are willing to increase the size of ε-free NFAs for every
subexpression S.

Definition 1. Let N be an ε-free NFA with initial state q0 and let F be the set
of final states. We say that a transition (q0, r) is an initial transition and that
r is a post-initial state. Analogously a transition (r, s) is a final transition,
provided s ∈ F , and r is a pre-final state.

Observe that it suffices to connect a global transition for a subexpression S with
a post-initial or pre-final state of an ε-free NFA for S. As a consequence, the
number of global transitions for S is reduced drastically, provided we have only
few post-initial and pre-final states. But, given an ε-free NFA, how large are
equivalent ε-free NFAs with relatively few initial or final states?

Proposition 2. Let N be an ε-free NFA with s transitions over an alphabet Σ of
size k. Then there is an equivalent ε-free NFA N ′ with O(k2+k·s) transitions and
at most 3k +k2 initial or final transitions. N ′ has one initial state. If ε �∈ L(N),
then N ′ has one final state and otherwise at most two final states.

Proof. Assume that q′0 is the initial state of N , F is the set of final states and
Σ = {1, . . . , k}. Let ρ1, . . . , ρp be the post-initial states of N and σ1, . . . , σq be
the pre-final states of N . Moreover let Ri be the set of post-initial states in N
receiving an i-transitions from q′0 and let Si be the set of pre-final states of N
sending an i-transitions into a state of F .

We introduce a new initial state q0 and a new final state qf . (q0 is the second
accepting state, if ε ∈ L(N).) For every a ∈ Σ ∩ L(N) we insert the transition
from q0

a→ qf . We introduce new post-initial states r1, . . . , rk, new pre-final
states s1, . . . , sk and insert i-transitions from q0 to ri as well as from si to qf .

If ρj ∈ Ri and if (ρj , s) is a transition with label b, then insert the transition
(ri, s) with label b. Analogously, if σj ∈ Si and if (r, σj) is a transition with
label b, then we insert the transition (r, si) with label b. Thus the new states ri
and si inherit their outgoing respectively incoming transitions from the states
they “are responsible for”. Finally, to accept all words of length two in L(N),
we introduce at most k2 further initial and final transitions incident with q0, qf
and post-initial states.

Observe that the new NFA N ′ is equivalent with N , since, after leaving the
new states ri and before reaching the new states sj , N ′ works like N . The states
q0 and qf are incident with at most k + 2 · k + k2 transitions: up to k transitions
link q0 and qf , 2 · k transitions connect q0 and the ri’s (or the si’s and qf ) and
at most k2 transitions accept words of length two. Finally at most ks transitions
leave states ri, not more than ks transitions enter states sj and hence the number
of transitions increases from s to at most s · (2k + 1) + 3 · k + k2. !"

We now observe that the combination of Lemma 1 and Proposition 2 provides
a significant savings for alphabets of small size.
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Proof of Theorem 1. As in the proof of Lemma 1 we assume that all states
of NR have an ε-loop. We begin by growing the decomposition tree T ∗

R. Assume
that vertex u is labeled with the quadruple (v, C, qu

1 , qu
2 ) and hence u represents

the subtree T v
R(C) and the expression Rv(C). If T v

R(C) has no original leaves,
then we stop expansion and remove u. If T v

R(C) has exactly one original leaf l,
then we perform one more expansion step with l as separating vertex and remove
the right child. (Any left child of T ∗

R represents a subtree of the expression tree
TR, see Proposition 1b). Let T ∗

R(u) be the subtree of T ∗
R with root u.

2.2.1 The Initial Phase 0
We first consider all vertices u of T ∗

R whose subtree T ∗
R(u) has at least L0, but

less than 3 ·L0 original leaves. (We set L0 = 2k). Then we process all left children
of vertices on the rightmost path in T ∗

R(u) starting in root u. If l(u) is such a left
child, then it represents a subtree Tl(u) of TR. We apply the procedure of Lemma
1 to Tl(u) and obtain an ε-free NFA Nl(u) recognizing the expression defined by
Tl(u). According to Lemma 1 we insert O(N · log2 N · log2 2k) transitions for
regular expressions of length N and hence u triggers the insertion of at most
O(x0) transitions, where

x0 = L0 · log2 L0 · log2 2k.

2.2.2 Phase j
We consider all vertices u of T ∗

R with at least Lj , but less than 3 · Lj original
leaves in their subtrees T ∗

R(u). (We require Lj−1 < Lj and fix Lj later). Again
we process all left children of vertices on the rightmost path in T ∗

R(u) starting
in root u. Pick any such left child l(u). We build an ε-free NFA Nl(u) from the
ε-free NFAs Nw for those descendants w of l(u) in T ∗

R(u) which we processed in
the previous phase.

We call any such descendant w a (j − 1)-descendant of l(u). Nw is an ε-free
NFA with O(xj−1) transitions which recognizes the expression represented by
w. We apply Proposition 2 to Nw and obtain an ε-free NFA N∗

w with at most
O(k2) initial or final transitions and size bounded by O(k · xj−1). Observe that
the same asymptotic bound holds for the entire chain of left children to which
w belongs, since sizes decrease almost geometrically.

We utilize the few initial or final transitions to cheaply interconnect N∗
w with

(endpoints of artificial transitions assigned to) ancestors of w within T ∗
R(u). We

proceed as in Lemma 1, but now we are working with full-fledged ε-free NFAs
instead of ε-free transitions. In particular we have to differentiate three cases,
namely firstly the new case ε ∈ L(N∗

w), then the original case considered in
Lemma 1, namely a ∈ L(N∗

w) for some letter a, and finally the second new case,
namely that N∗

w contributes at least two subsequent (ε-free) transitions. Let
q1, q2 be the unique initial and final states of N∗

w.

(0) Assume ε ∈ L(N∗
w). This case establishes ε-paths and is of interest only for

the two remaining cases.
(1) Assume a ∈ L(N∗

w) for some letter a. If vertices t1, t2 of T ∗
R(u) are ancestors

of w and if there are ε-paths qt1
i

∗→ q1 and q2
∗→ qt2

j for i, j ∈ {1, 2}, then
introduce the transition qt1

i
a→ qt2

j .
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(2) Let p
a→ q be an arbitrary initial transition of N∗

w. Then, for any ancestor
t of w in T ∗

R(u), for any i ∈ {1, 2} and for any ε-path qt
i

∗→ p introduce the
transition qt

i
a→ q. Analogously, if r a→ s is an arbitrary final transition of

N∗
w and if there is an ε-path s

∗→ qt
i , then introduce the transition r

a→ qt
i .

Assume that l(u) is labeled by the quadruple (v, C, qu
1 , qu

2 ). The states of the
ε-free NFA Nl(u) are either states of some NFA N∗

w, for a (j − 1)-descendant
w of l(u), or are endpoints of artificial transitions assigned to ancestors of w
within T ∗

R(u). Transitions are defined by the transitions of N∗(w) and by the
links introduced above. qu

1 and qu
2 are the initial and final state respectively.

We claim that Nl(u) is equivalent with the NFA Nv
R(C) of l(u). We insert a

transition p
a→ q into Nl(u) only if there is a path p

∗→ r
a→ s

∗→ q in NR. Thus
L(Nl(u)) ⊆ L(Nv

R(C)) follows and L(Nv
R(C)) ⊆ L(Nl(u)) remains to be shown.

Any accepting path P in Nv
R(C) traverses sub-NFAs corresponding to some

sequence (w1, . . . , ws) of (j − 1) descendants of l(u), where we require that at
least one letter is read for each wi. We have assumed that each state of NR is
equipped with an ε-loop and hence we know that there are ε-paths from (an
endpoint of the artificial transition of) wi to (an endpoint of the artificial tran-
sition of) wi+1 in Nv

R(C). Moreover, if s and t are the least common ancestors
of wi−1 and wi in T ∗

R(u), respectively of wi and wi+1, then there are ε-paths
s

∗→ wi and wi
∗→ t. If at least two letters are read for wi then the corresponding

accepting path Q in Nl(u) runs from s to wi and then to t; otherwise it runs
from s directly to t.

2.2.3 Accounting
How many transitions did we introduce overall? To count transitions from class
(1), observe that T ∗

R(l(u)) has at most O(log2 Lj) levels. At most O(k ·Lj/Lj−1)
new transitions connect vertices of a fixed level of T ∗

R(l(u)) with vertices from
some descendant level above the (j−1)-descendants of l(u). However the O(Lj/
Lj−1) chains of left children contribute additionally up to O(k · log2 Lj−1) tran-
sitions to the fixed ancestor level and hence the total number of transitions in
the first class is bounded by O(k · Lj/Lj−1 · log2 Lj−1 · log2 Lj).

The transitions in class (2) connect one of the O(k2) post-initial and pre-final
states of some N∗

w with endpoints of artificial transitions for at most O(log2 Lj)
ancestors within T ∗

R(l(u)). Since the vertices w come from O(Lj/Lj−1) chains
of left children, we have introduced at most O(k2 · Lj

Lj−1
· log2 Lj−1 · log2 Lj)

transitions from the second class. Observe that all (j − 1) descendants have
at most O(k · Lj

Lj−1
· xj−1) transitions even if we include the blow-up due to

Proposition 2, and hence Nl(u) has at most O(xj) transitions, where

xj = k · Lj

Lj−1
· xj−1 + (k · Lj

Lj−1
· log2 Lj + k2 · Lj

Lj−1
· log2 Lj) · log2 Lj−1

≤ k · Lj

Lj−1
· xj−1 + 2k2 · Lj

Lj−1
· log2 Lj · log2 Lj−1. (1)
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We iterate recurrence (1) and get for 1 ≤ r ≤ j

xj ≤ kr · Lj

Lj−r
· xj−r +

r−1∑
s=0

2ks+2 · Lj

Lj−1−s
· log2 Lj−s · log2 Lj−s−1. (2)

Thus, if we assume that n = Li and set j = i = r in (2), then we introduce at
most O(xi) transitions, where

xi = ki · n

L0
· x0 +

i−1∑
s=0

2ks+2 · n

Li−s−1
· log2 Li−s · log2 Li−s−1

The first term coincides with O(ki · n · log2 L0 · log2 2k), since x0 = L0 · log2 L0 ·
log2 2k. We set Lj = (2k)Lj−1·log2 L0/(k·log2 Lj−1) and both terms in (2) are
bounded by O(ki ·n · log2 L0 · log2 2k) = O(ki+1 ·n · log2 2k), since L0 = 2k. Thus
xi = O(ki+1 · n · log2 2k) and Lj = (2k)Lj−1/ log2 Lj−1 . !"

3 A Sketch of the Lower Bound

Our main result is the following lower bound for the regular expression

En = (1 + ε) ◦ (2 + ε) ◦ · · · ◦ (n + ε)

which improves upon the Ω(n · log2
2 n/ log2 log2 n) bound of [8].

Lemma 2. ε-free NFAs for En have at least Ω(n · log2
2 n) transitions.

Before giving a proof sketch we show that Theorem 2 is a consequence of
Lemma 2. We set Rn,k = (Ek)n/k and assume that Nn,k is an ε-free NFA recog-
nizing Rn,k. We say that a transition e of Nn,k belongs to copy i iff e is traversed
by an accepting path with label sequence (1◦2◦· · ·◦k)i−1◦σ◦(1◦2◦· · ·◦k)n/k−i

while reading σ �= ε. Now assume that there is a transition e which belongs to
two different copies i, j with i < j. Then we can construct an accepting path
with label sequence (1 ◦ 2 ◦ · · · ◦ k)j−1 ◦ τ ◦ (1 ◦ 2 ◦ · · · ◦ k)n/k−i and Nn,k ac-
cepts a word outside of Rn,k. Thus any transition belongs to at most one copy.
As a consequence of Lemma 2 Nn,k has Ω(k · log2

2 k) transitions for each copy
and hence Nn,k has at least Ω(n

k · k · log2
2 k) transitions. Observe that the unary

regular expression 1n requires NFAs of linear size and hence we actually get the
lower bound Ω(n · log2

2 2k).

A Proof Sketch of Lemma 2. Let n = 2k. We define the ordered complete
binary tree Tn with vertex set {1, . . . , n−1} and depth k−1. We assign names to
vertices such that an inorder traversal of Tn produces the sequence (1, . . . , n−1).
We label the root r of Tn with the set L(r) = {1, . . . , n}. If vertex v is labeled
with the set L(v) = {i + 1, . . . , i + 2t}, then we label its left child vl with
L(vl) = {i+1, . . . , i+ t} and its right child vr with L(vr) = {i+ t+1, . . . , i+2t}.
L(vl) coincides with the set of vertices in the left subtree of v including v and
L(vr) coincides with the set of vertices in the right subtree including the lowest
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ancestor w with v in its left subtree. Finally define |v| = |L(v)| as the size of v.
Observe that |v| = 2 holds for every leaf v and we interpret its children vl, resp.
vr as “virtual leaves”.

Let Nn be an arbitrary ε-free NFA for En. Our basic approach follows the
argument of [8]. In particular, we assume that Nn is in normal form, i.e.,
{0, 1, . . . , n} is the set of states of Nn and any transition i

l→ j satisfies i < l ≤ j.
We say that vertex v of Tn is crossed from the left in Nn iff for all i ∈ L(vl)
and all sequences σ with σ ◦ i ∈ En there is a path in Nn with label sequence
σ ◦ i which ends in a state y ∈ L(vr); in particular the last transition of the path
“crosses” v, since it ends in L(vr) and is labeled with a letter from L(vl). If all
sequences i ◦ τ ∈ En with arbitrary i ∈ L(vr) have a path which starts in some
state x ∈ L(vl), then we say that v is crossed from the right.

Proposition 3. [8] Let v be an arbitrary vertex of Tn. Then, for any ε-free NFA
in normal form, v is crossed from the left or v is crossed from the right.

Proof. Assume that v is not crossed from the left. Then there is a word σ◦i ∈ En

with i ∈ L(vl) such that no path in Nn with label sequence σ ◦ i has a final
transition crossing v. If v is also not crossed from the right, then there is a word
j ◦ τ ∈ En with j ∈ L(vr) such that no path in Nn with label sequence j ◦ τ has
an initial transition crossing v. But then Nn rejects σ ◦ i ◦ j ◦ τ ∈ En. !"

Let C be the set of vertices v ∈ Tn which are crossed from the left. We assume
that “more” vertices are crossed from the left and hence we concentrate on C.
Assume that w ∈ Tn belongs to C and that vertex v belongs to Left(w), the
set of vertices of Tn which belong to the left subtree of w. Then any sequence
σ ◦ j ∈ En with j ∈ L(vr), and hence j ∈ L(wl), has a path p(σ, j) in Nn

with label sequence σ ◦ j which ends in a state y ∈ L(wr). Observe that the
last transition e = (x, y) of p(σ, j) identifies w as the unique tree vertex with
j ∈ L(wl) and y ∈ L(wr). Moreover, if x ∈ L(vl), then e also identifies v as the
unique tree vertex with x ∈ L(vl) and j ∈ L(vr).

For h′ < h ≤ k−1 define N(h, h′) as the number of pairs (i, w), where w ∈ Tn

has height h and i belongs to the right subtree of a vertex v ∈ Left(w) with height
h′. Then N(h, h′) = n/4 and

∑
h′<h≤k−1 N(h, h′) = Ω(n · log2

2 n) holds. Hence
it suffices to show that each pair (v, w) with w ∈ C and v ∈ Left(w) has Ω(|vr|)
transitions which identify v as well as w.

Labels j ∈ L(vr) are problematic if all j-transitions e = (x, y) with x ∈ L(v)
and y ∈ L(wr) are short for (v, w), i.e., any such transition e starts in x ∈ L(vr).
If label j ∈ L(vr) is short, then j-transitions “into” L(wr) depart close to j.
Thus, if vr has many short labels for (v, w), then many copies of a preceding i-
transition, for i ∈ L(u) and u ∈ Left(v), are required to reach the many different
starting points of j-transitions for short labels j ∈ L(vr).

To formalize this intuition we determine how far to the left short j-transitions
extend, but not relative to transitions starting in L(v) and ending in L(wr) for
some specific w, but rather relative to a worst-case sequence τ = j ◦ σ ◦ k ∈
En(with k ∈ L(wl) for an arbitrary w ∈ C) such that any path with sequence τ
starts very close to j, if we require the path to start in L(v) and to end in L(wr).
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Definition 2. (a) For vertices v ∈ Tn, w ∈ C (with v < w) and labels j ∈ L(vr),
k ∈ L(wl) define

dv,w(j, k) = min
τ=j◦σ◦k∈En

max
x∈L(v),y∈L(wr)

{j − x | ∃ path x
∗→ y with sequence τ}.

(b) For a real number s ≥ 1/2 let Xs(v) be the set of all labels j ∈ L(vr) with
minw∈C,k∈L(wl) dv,w(j, k) ≤ |vr |

s . Finally define s(v) to be the maximal s with
|Xs(v)| ≥ |vr|

2 .

Thus Xs(v) is the set of all letters j ∈ L(vr) for which distance at most |vr|/s
between left endpoint and label j can be enforced. Moreover distance at most
|vr|/s(v) is obtained for all labels in Xs(v)(v) and hence for at least one half of
all labels in j ∈ L(vr).

If v is crossed from the left and if u belongs to Left(v), then at least Ω(s(v))
i-transitions with fixed label i ∈ L(u) end in vr, since all labels j ∈ Xs(v)(v)
have to be approached with distance at most |vr |/s(v). All in all Ω(|u| · s(v))
i-transitions for i ∈ L(u) are required. Any such transition identifies v, however
there will be some double counting, since the same i-transition may be counted
for several vertices u ∈ Left(v) with i ∈ L(u). In particular we show

Lemma 3. Nn has at least Ω(
∑

v∈C

∑
u∈Left(v) |u| ·

s(v)
log2

2(4s(u))
) transitions.

We omit the proof due to space limitations. Lemma 2 follows after some further
accounting arguments.

4 Conclusions and Open Problems

We have shown that every regular expression R of length n over an alphabet
of size k can be recognized by an ε-free NFA with O(n ·min{log2 n, kLk(n)+1} ·
log2 2k) transitions. For alphabets of fixed size (i.e., k = O(1)) our result implies
that O(n · 2O(log∗

2 n)) transitions and hence almost linear size suffice. We have
also shown the lower bound Ω(n · log2

2 2k) and hence the construction of [7] is
optimal for large alphabets, i.e., if k = nΩ(1).

A first important open question concerns the binary alphabet: do ε-free NFAs
of linear size exist or is it possible to show a super-linear lower bound? Although
we have considerably narrowed the gap between lower and upper bounds, the
gap for alphabets of intermediate size, i.e., ω(1) = k = no(1) remains to be closed
and this is the second important open problem. For instance, for k = log2 n the
lower bound Ω(n · (log2 log2 n)2) and the upper bound O(n · log2 n · log2 log2 n)
are still by a factor of log2 n/ log2 log2 n apart.

Thirdly the size blowup when converting an NFA into an equivalent ε-free
NFA remains to be determined. In [6] a family Nn of NFAs is constructed which
has equivalent ε-free NFAs of size Ω(n2/ log2

2 n) only. However the alphabet of
Nn has size n/ log2 n and the upper bound is O(n2 · |Σ|).
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Abstract. We show that a set is m-autoreducible if and only if it is m-
mitotic. This solves a long standing open question in a surprising way.
As a consequence of this unconditional result and recent work by Glaßer
et al. [12], complete sets for all of the following complexity classes are
m-mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of
PH, MODPH, and the Boolean hierarchy over NP. In the cases of NP,
PSPACE, NEXP, and PH, this at once answers several well-studied open
questions. These results tell us that complete sets share a redundancy
that was not known before. In particular, every NP-complete set A splits
into two NP-complete sets A1 and A2.

We disprove the equivalence between autoreducibility and mitoticity
for all polynomial-time-bounded reducibilities between 3-tt-reducibility
and Turing-reducibility: There exists a sparse set in EXP that is poly-
nomi al-time 3-tt-autoreducible, but not weakly polynomial-time T-mitot
ic. In particular, polynomial-time T-autoreducibility does not imply poly-
nomia l-time weak T-mitoticity, which solves an open question by
Buhrman and Torenvliet.

We generalize autoreducibility to define poly-autoreducibility and give
evidence that NP-complete sets are poly-autoreducible.

1 Introduction

It is a well known observation that for many interesting complexity classes, all
known complete sets contain “redundant” information. For example, consider
SAT. Given a boolean formula φ one can produce two different formulas φ1 and
φ2 such that the question of whether φ is satisfiable or not is equivalent to the
question of whether φ1 or φ2 are satisfiable. Thus φ1 and φ2 contain information
about φ. Another example is the Permanent. Given a matrix M , we can reduce
the computation of the permanent of M to computing the permanent of M +R,
M + 2R, . . . ,M + nR, where R is a randomly chosen matrix. Thus information
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about the permanent of M is contained in a few random looking matrices. We
interpret this as “SAT and Permanent contain redundant information”.

In this paper we study the question of how much redundancy is contained in
complete sets of complexity classes. There are several ways to measure “redun-
dancy”. We focus on the two notions autoreducibility and mitoticity.

Trakhtenbrot [18] defined a set A to be autoreducible if there is an oracle
Turing machine M such that A = L(MA) and M on input x never queries x.
For complexity classes like NP and PSPACE refined measures are needed. In
this spirit, Ambos-Spies [2] defined the notion of polynomial-time autoreducibil-
ity and the more restricted form m-autoreducibility. A set A is polynomial-time
autoreducible if it is autoreducible via a oracle Turing machine that runs in
polynomial-time. A is m-autoreducible if A is polynomial-time many-one re-
ducible to A via a function f such that f(x) �= x for every x. Both notions
demand information contained in A(x) to be present among strings different
from x. In the case of m-autoreducibility, the redundancy in A is even more
apparent—if a set A is m-autoreducible, then x and f(x) have the same infor-
mation about A.

A stronger form of redundancy is described by the notion of mitoticity which
was introduced by Ladner [15] for the recursive setting and by Ambos-Spies [2]
for the polynomial-time setting. A set A is m-mitotic if there is a set S ∈ P such
that A, A ∩ S, and A ∩ S are polynomial-time many-one equivalent. Thus if a
set is m-mitotic, then A can be split into two parts such that both parts have
exactly the same information as the original set has.

Ambos-Spies [2] showed that if a set is m-mitotic, then it is m-autoreducible
and he raised the question of whether the converse holds. In this paper we re-
solve this question and show that every m-autoreducible set is m-mitotic. This is
our main result. Since its proof is very involved, we present our main idea with
help of a simplified graph problem which will be described in Section 3. This
simplification drops many of the important details from our formal proof, but
still captures the spirt of the core problem. Our main result is all the more sur-
prising, because it is known [2] that polynomial-time T-autoreducibility does not
imply polynomial-time T-mitoticity. We improve this and disprove the equiva-
lence between autoreducibility and mitoticity for all polynomial-time-bounded
reducibilities between 3-tt-reducibility and Turing-reducibility: There exists a
sparse set in EXP that is polynomial-time 3-tt-autoreducible, but not weakly
polynomial-time T-mitotic. In particular, polynomial-time T-autoreducible does
not imply polynomial-time weakly T-mitotic. This result settles another open
question raised by Buhrman and Torenvliet [9].

Our main result relates local redundancy to global redundancy in the following
sense. If a set A is m-autoreducible, then x and f(x) contain the same information
about A. This can be viewed as local redundancy. Whereas if A is m-mitotic, then
A can be split into two sets B and C such that A, B, and C are polynomial-time
many-one equivalent. Thus the sets B and C have exactly the same information
as the original set A. This can be viewed as global redundancy in A. Our main
result states that local redundancy is the same as global redundancy.
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As a consequence of this result and recent work of Glaßer et al. [13, 12], we can
show that all complete sets for many interesting classes such as NP, PSPACE,
NEXP,and levels ofPHarem-mitotic.Thus theyall contain redundant information
inastrongsense.ThisresolvesseverallongstandingopenquestionsraisedbyAmbos-
Spies[2],Buhrman,Hoene,andTorenvliet[8],andBuhrmanandTorenvliet[9].

Our result can also be viewed as a step towards understanding the isomor-
phism conjecture [5]. This conjecture states that all NP-complete sets are iso-
morphic to each other. In spite of several years of research, we do not have any
concrete evidence either in support or against the isomorphism conjecture1. It
is easy to see that if the isomorphism conjecture holds for classes such as NP,
PSPACE, and EXP, then complete sets for these classes are m-autoreducible as
well as m-mitotic. Given our current inability to make progress about the iso-
morphism conjecture, the next best thing we can hope for is to make progress on
statements that the isomorphism conjecture implies. We note that this is not an
entirely new approach. For example, if the isomorphism conjecture is true, then
NP-complete sets cannot be sparse. This motivated researchers to consider the
question of whether complete sets for NP can be sparse. This line of research led
to the beautiful results of Mahaney [16] and Ogiwara and Watanabe [17] who
showed that complete sets for NP cannot be sparse unless P = NP. Our results
show that another consequence of isomorphism, namely “NP-complete sets are
m-mitotic” holds. Note that this is an unconditional result.

Buhrman et al. [7] and Buhrman and Torenvliet [10, 11] argue that it is critical
to study the notions of autoreducibility and mitoticity. They showed that resolv-
ing questions regarding autoreducibility of complete sets leads to unconditional
separation results. For example, consider the question of whether truth-table
complete sets for PSPACE are non-adaptive autoreducible. An affirmative an-
swer separates NP from NL, while a negative answer separates the polynomial-
time hierarchy from PSPACE. They argue that this approach does not have the
curse of relativization and is worth pursuing. We refer the reader to the recent
survey by Buhrman and Torenvliet [11] for more details.

In Section 4, we extend the notion of autoreducibility and define poly-autored-
ucibility. A motivation for this is to understand the isomorphism conjecture and
the notion of paddability. Recall that the isomorphism conjecture is true if and
only if all NP-complete sets are paddable. Paddability implies the following: If
L is paddable, then given x and a polynomial p, we can produce p(|x|) distinct
strings such that if x is in L, then all these strings are in L and if x is not
in L, then none of these strings are in L. Autoreducibility implies that given
x we can produce a single string y different from x such that L(x) = L(y).
A natural question that arises is whether we can produce more strings whose
membership in L is the same as the membership of x in L. This leads us to the
notion of f -autoreducibility: A set L is f -autoreducible, if there is a polynomial-
time algorithm that on input x outputs f(|x|) distinct strings (different from x)
whose membership in L is the same as the membership of x in L. It is obvious

1 It is currently believed that if one-way functions exist, then the isomorphism conjec-
ture is false. However, we do not have a proof of this.



Redundancy in Complete Sets 447

that paddability implies poly-autoreducibility. The question of whether “NP
complete sets are poly-autoreducible” is weaker than the question of whether
“NP-complete sets are paddable.”

We provide evidence for poly-autoreducibility of NP-complete sets. We show
that if one-way permutations exist, then NP-complete sets are log-autoreducible.
Moreover, ifone-waypermutationsandquickpseudo-randomgeneratorsexist, then
NP-complete setsarepoly-autoreducible.Wealso showthat ifNP-complete setsare
poly-autoreducible, then they have infinite subsets that can be decided in linear-
exponential time. A complete version of this paper can be found at ECCC [14].

1.1 Previous Work

The question of whether complete sets for various classes are autoreducible has
been studied extensively [19, 4, 7]. Beigel and Feigenbaum [4] showed that Tur-
ing complete sets for the classes that form the polynomial hierarchy, ΣP

i , ΠP
i ,

and ΔP
i , are Turing autoreducible. Thus, all Turing complete sets for NP are

Turing autoreducible. Buhrman et al. [7] showed that Turing complete sets for
EXP and ΔEXP

i are autoreducible, whereas there exists a Turing complete set for
EESPACE that is not Turing auto-reducible. Regarding NP, Buhrman et al. [7]
showed that truth-table complete sets for NP are probabilistic truth-table au-
toreducible. Recently, Glaßer et al. [13, 12] showed that complete sets for classes
such as NP, PSPACE, ΣP

i are m-autoreducible.
Buhrman, Hoene, and Torenvliet [8] showed that EXP complete sets are

weakly many-one mitotic. This result was recently improved independently by
Kurtz [11] and Glaßer et al. [13, 12]. Buhrman and Torenvliet [11] observed that
Kurtz’ proof can be extended to show that 2-tt complete sets for EXP are 2-tt
mitotic. This cannot be extended to 3-tt reductions: There exist 3-tt complete
sets for EXP that are not btt-autoreducible and hence not btt-mitotic [6]. Glaßer
et al. also showed that NEXP complete sets are weakly m-mitotic and PSPACE-
complete sets are weak Turing-mitotic.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-
bounded reductions. We consider words in lexicographic order. All used reduc-
tions are polynomial-time computable.

Definition 1 ([2]). A set A is polynomially T-autoreducible (T-autoreducible,
for short) if there exists a polynomial-time-bounded oracle Turing machine M
such that A = L(MA) and for all x, M on input x never queries x. A set
A is polynomially m-autoreducible (m-autoreducible, for short) if A≤p

mA via a
reduction function f such that for all x, f(x) �= x.

Definition 2 ([2]). A recursive set A is polynomial-time T-mitotic (T-mitotic,
for short) if there exists a set B ∈ P such that A ≡p

T A ∩ B ≡p
T A ∩ B. A is

polynomial-time m-mitotic (m-mitotic, for short) if there exists a set B ∈ P
such that A ≡p

m A ∩B ≡p
m A ∩B.
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Definition 3 ([2]). A recursive set A is polynomial-time weakly T-mitotic
(weakly T-mitotic, for short) if there exist disjoint sets A0 and A1 such that
A0 ∪ A1 = A, and A ≡p

T A0 ≡p
T A1. A is polynomial-time weakly m-mitotic

(weakly m-mitotic, for short) if there exist disjoint sets A0 and A1 such that
A0 ∪A1 = A, and A ≡p

m A0 ≡p
m A1.

Definition 4. Let f be a function from N to N. A set L is f -autoreducible, if
there is a polynomial-time algorithm A that on input x outputs y1, y2, · · · , ym

such that f(|x|) = m, if x ∈ L, then {y1, y2, · · · , ym} ⊆ L, and if x /∈ L, then
{y1, y2, · · · , ym} ∩ L = ∅. A set is poly-autoreducible, if it is nk-autoreducible
for every k ≥ 1.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n))
almost everywhere; that is, every Turing machine M that accepts L runs in time
greater than T (|x|), for all but finitely many words x. A language L is immune
to a complexity class C, or C-immune, if L is infinite and no infinite subset of
L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if both L and L are C-immune. Balcázar and Schöning [3] proved that
for every time-constructible function T , L is DTIME(T (n))-complex if and only
if L is bi-immune to DTIME(T (n)).

3 m-Autoreducibility Equals m-Mitoticity

It is easy to see that if a nontrivial language L is m-mitotic, then it is m-
autoreducible. If L is m-mitotic, then there is a set S ∈ P such that L∩S ≤p

m L∩S
via some f and L ∩ S ≤p

m L ∩ S via some g. On input x, the m-autoreduction
for L works as follows: If x ∈ S and f(x) /∈ S, then output f(x). If x /∈ S and
g(x) ∈ S, then output g(x). Otherwise, output a fixed element from L− {x}.

So m-mitoticity implies m-autoreducibility. The main result of this paper
shows that surprisingly the converse holds true as well, i.e., m-mitoticity and
m-autoreducibility are equivalent notions.

Theorem 1. Let L be any set such that |L| ≥ 2. L is m-autoreducible if and
only if L is m-mitotic.

We mention the main ideas and the intuition behind the proof and describe the
combinatorial core of the problem.

Assume that L is m-autoreducible via reduction function f . Given x, the
repeated application of f yields a sequence of words x, f(x), f(f(x)), . . ., which
we call the trajectory of x. These trajectories either are infinite or end in a cycle
of length at least 2. Note that as f is an autoreduction, x �= f(x).

At first glance it seems that m-mitoticity can be easily established by the
following idea: In every trajectory, label the words at even positions with +
and all other words with −. Define S to be the set of strings whose label is +.
With this ‘definition’ of S it seems that f reduces L ∩ S to L ∩ S and L ∩ S to
L ∩ S.
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However, this labeling strategy has at least two problems. First, it is not
clear that S ∈ P; because given a string y, we have to compute the parity of
the position of y in a trajectory. As trajectories can be of exponential length,
this might take exponential time. The second and more fundamental problem
is the following: The labeling generated above is inconsistent and not well de-
fined. For example, let f(x) = y. To label y which trajectory should we use?
The trajectory of x or the trajectory of y? If we use trajectory of x, y gets a
label of +, whereas if we use the trajectory of y, then it gets a label of −. Thus
S is not well defined and so this idea does not work. It fails because the label-
ing strategy is a global strategy. To label a string we have to consider all the
trajectories in which x occurs. Every single x gives rise to a labeling of possi-
bly infinitely many words, and these labelings may overlap in an inconsistent
way.

We resolve this by using a local labeling strategy. More precisely, we compute a
label for a given x just by looking at the neighboring values x, f(x), and f(f(x)).
It is immediately clear that such a strategy is well-defined and therefore defines
a consistent labeling. We also should guarantee that this local strategy strictly
alternates labels, i.e., x gets + if and only if f(x) gets −. Such an alternation of
labels would help us to establish the m-mitoticity of L.

Thus our goal will be to find a local labeling strategy that has a nice al-
ternation behavior. However, we settle for something less. Instead of requiring
that the labels strictly alternate, we only require that given x, at least one of
f(x), f(f(x)), · · · , fm(x) gets a label that is different from the label of x, where
m is polynomially bounded in the length of x. This suffices to show m-mitoticity.

The most difficult part in our proof is to show that there exists a local labeling
strategy that has this weaker alternation property.

We now formulate the core underlying problem. To keep this proof sketch
simpler, we make several assumptions and ignore several technical but important
details. If we assume (for simplicity) that on strings x /∈ 1∗ the autoreduction
is length preserving such that f(x) > x, then we arrive at the following graph
labeling problem.

Core Problem. Let Gn be a directed graph with 2n vertices such that every
string of length n is a vertex of Gn. Assume that 1n is a sink, that nodes u �= 1n

have outdegree 1, and that u < v for edges (u, v). For u �= 1n let s(u) denote u’s
unique successor, i.e., s(u) = v if (u, v) is an edge. Find a strategy that labels
each node with either + or − such that:

(i) Given a node u, its label can be computed in polynomial time in n.
(ii) There exists a polynomial p such that for every node u, at least one of the

nodes s(u), s(s(u)), . . . , sp(n)(u) gets a label that is different from the label
of u.

We exhibit a labeling strategy with these properties. To define this labeling,
we use the following distance function: d(x, y) df=�log |y − x|� (our formal proof
uses a variant of this function). The core problem is solved by the following local
strategy.
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0 // Strategy for labeling node x
1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z) then output −
3 if d(x, y) < d(y, z) then output +
4 r := d(x, y)
5 output + iff �x/2r+1� is even

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the
proof that it also satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um

be a path in the graph. It suffices to show that not all the nodes u1, u2, . . . , um

obtain the same label. Assume that this does not hold, say all these nodes get
label +. So no output is made in line 2 and therefore, the distances d(ui, ui+1)
do not decrease. Note that the distance function maps to natural numbers. If we
have more than n increases, then the distance between um−1 and um is bigger
than n. Therefore, um − um−1 > 2n+1, which is impossible for words of length
n. So along the path u1, u2, . . . , um there exist at least m − n = 4n positions
where the distance stays the same. By a pigeon hole argument there exist four
consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2, y = ui+3,
z = ui+4 such that d(v, w) = d(w, x) = d(x, y) = d(y, z). So for the inputs v, w,
and x, we reach line 4 where the algorithm will assign r = d(v, w). Observe that
for all words w1 and w2, the value d(w1, w2) allows an approximation of w2−w1

up to a factor of 2. More precisely, w− v, x−w, and y−x belong to the interval
[2r, 2r+1). It is an easy observation that this implies that not all of the following
values can have the same parity: �v/2r+1�, �w/2r+1�, and �x/2r+1�. According
to line 5, not all words v, w, and x obtain the same label. This is a contradiction
which shows that not all the nodes u1, u2, . . . , um obtain the same label. This
proves (ii) and solves the core of the labeling problem.

The labeling strategy allows the definition of a set S ∈ P such that whenever
we follow the trajectory of x for more than 5|x| steps, then we find at least one
alternation between S and S. This establishes m-mitoticity for L.

Call a set L nontrivial if ‖L‖ ≥ 2 and ‖L‖ ≥ 2. We have the following
corollaries of the main theorem.

Corollary 1. Every nontrivial set that is many-one complete for one of the
following complexity classes is m-mitotic.

– NP, coNP, ⊕P, PSPACE, EXP, NEXP
– any level of PH, MODPH, or the Boolean hierarchy over NP

Proof. Glaßer et al. [12] showed that all many-one complete sets of the above
classes are m-autoreducible. By Theorem 1, these sets are m-mitotic. !"

Corollary 2. A nontrivial set L is NP-complete if and only if L is the union
of two disjoint P-separable NP-complete sets.

So unions of disjoint P-separable NP-complete sets form exactly the class of
NP-complete sets. What class is obtained when we drop P-separability? Does this



Redundancy in Complete Sets 451

class contain a set that is not NP-complete? In other words, is the union of disjoint
NP-complete sets always NP-complete? We leave this as an open question.

Ambos-Spies [2] defined a set A to be ω-m-mitotic if for every n ≥ 2 there
exists a partition (Q1, . . . , Qn) of Σ∗ such that each Qi is polynomial-time
decidable and the following sets are polynomial-time many-one equivalent: A,
A ∩Q1, . . . ,A ∩Qn.

Corollary 3. Every nontrivial infinite set that is many-one complete for a class
mentioned in Corollary 1 is ω-m-mitotic.

We note that the proof of the main theorem actually yields the following theorem.

Theorem 2. Every 1-tt-autoreducible set is 1-tt-mitotic.

The following theorem shows in a strong way that T-autoreducible does not
imply weakly T-mitotic. Hence, our main theorem cannot be generalized.

Theorem 3. There exists L ∈ SPARSE ∩ EXP such that

– L is 3-tt-autoreducible, but
– L is not weakly T-mitotic.

Thus there exist 3-tt-autoreducible sets that are not even T-mitotic, whereas
every 1-tt-autoreducible set is 1-tt mitotic. We do not know what happens when
we consider 2-tt reductions. Is every 2-tt-autoreducible set 2-tt-mitotic or does
there exist a 2-tt-autoreducible set that is not 2-tt-mitotic? We leave this as an
open question.

4 Poly-Autoreducibility

In this section we consider the question of whether NP-complete sets are
f -autoreducible, for some growing function f .

Lemma 1. Let L be an NP-complete language. For every polynomial q(.) there
is a polynomial-time algorithm A such that A on input x, |x| = n,

– either decides the membership of x in L
– or outputs strings y1, · · · , ym such that

• x ∈ L ⇒ {y1, y2, · · · , ym} ⊆ L,
• x /∈ L ⇒ {y1, y2, · · · , ym} ∩ L = ∅,
• m = q(n), and x �= y1, �= y2 �= · · · �= ym.

This above lemma comes close to showing that NP-complete sets are poly-
autoreducible, except for a small caveat. Let L be any NP-complete language.
If the algorithm from Lemma 1 neither accepts x or rejects x, then it produces
polynomially many equivalent strings. However, to show L is poly-autoreducible,
we must produce polynomially-many equivalent strings even when the algorithm
accepts or rejects.

This boils down to the following problem: Let L be an NP-complete language.
Given 0n as input, in polynomial time output polynomially many distinct strings
such that all of them are in L. Similarly, output polynomially many distinct
strings such that none of them are in L.
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Below, we show that if one-way permutations exist, then we can achieve this
task. We start with a result by Agrawal [1].

Definition 5. Let f be a many-one reduction from A to B. We say f is g(n)-
sparse, if for every n, no more than g(n) strings of length n are mapped to a
single string via f .

Lemma 2. ([1]) If one-way permutations exist, then NP-complete sets are com-
plete with respect reductions that are 2n/2nγ

sparse. Here γ is a fixed constant
less than 1.

Lemma 3. Let L be NP-complete. If one-way permutations exist, then there
exists a polynomial-time algorithm that on input 0n outputs log n distinct strings
in L and log n strings out of L.

If we consider probabilistic algorithms, then we obtain a stronger consequence.

Lemma 4. Let L be NP-complete. Assume one-way permutations exist. For ev-
ery polynomial q, there exists a polynomial-time probabilistic algorithm B that
on input 0n outputs q(n) distinct strings from L and q(n) distinct strings from
L with high probability.

If we assume quick pseudo-random generators exist, then we can derandomize
the above procedure.

Lemma 5. Let L be any NP-complete language. If one-way permutations and
quick pseudo-random generators exist, then for every polynomial q(n), there is a
polynomial-time algorithm that on input 0n outputs q(n) many distinct strings
from L and q(n) many distinct strings out of L.

Combining Lemmas 1 and 3, we obtain the following result.

Theorem 4. If one-way permutations exist, then every NP-complete language
is log n-autoreducible.

Combining Lemmas 1 and 5, we obtain the following result.

Theorem 5. If one-way permutations and quick pseudo-random generators
exist, NP-complete sets are poly-autoreducible.

Finally, we consider another hypothesis from which poly-autoreducibility of
NP-complete sets follows.

Theorem 6. If there exists a UP machine M that accepts 0∗ such that no
P-machine can compute infinitely many accepting computations of M(0n), then
NP-complete sets are poly-autoreducible.

Next we consider the possibility of an unconditional proof that NP-complete sets
are poly-autoreducible. We relate this with the notion of immunity. We show that
if NP-complete sets are poly-autoreducible, then they are not E-immune. It is
known that NP-complete sets are not generic [12]. This proof is based on the
fact that NP-complete sets are autoreducible. Genericity is stronger notion than



Redundancy in Complete Sets 453

immunity, i.e., if a language L is not immune, then it can not be generic. Our
result says that improving the autoreducibility result for NP-complete sets gives
a stronger consequence—namely they are not immune.

Theorem 7. If every NP-complete set is poly-autoreducible, then no NP-complete
set is E-immune.
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Abstract. It is well-known that the class of sets that can be computed
by polynomial size circuits is equal to the class of sets that are polynomial
time reducible to a sparse set. It is widely believed, but unfortunately up
to now unproven, that there are sets in EXPNP, or even in EXP that are
not computable by polynomial size circuits and hence are not reducible
to a sparse set. In this paper we study this question in a more restricted
setting: what is the computational complexity of sparse sets that are
selfreducible? It follows from earlier work of Lozano and Toran [10] that
EXPNP does not have sparse selfreducible hard sets. We define a nat-
ural version of selfreduction, tree-selfreducibility, and show that NEXP
does not have sparse tree-selfreducible hard sets. We also show that this
result is optimal with respect to relativizing proofs, by exhibiting an ora-
cle relative to which all of EXP is reducible to a sparse tree-selfreducible
set. These lower bounds are corollaries of more general results about the
computational complexity of sparse sets that are selfreducible, and can
be interpreted as super-polynomial circuit lower bounds for NEXP.

Keywords: Computational Complexity, Sparseness, Selfreducibility.

1 Introduction

Finding techniques to separate complexity classes is one of the, if not the, main
open problem in complexity theory. Our understanding towards solving problems
like the P versus NP problem is very limited. Not only do we not know how to
separate P from NP, we don’t even know how to separate EXPNP from the class of
sets that have polynomial size circuits. Work on derandomization assumes much
stronger separations than this, like for example that EXP requires exponential
size circuits.

It is long known that the class of sets that have polynomial size circuits equals
the class of sets that are polynomial time Turing reducible to a sparse set [11].
In this paper we address the question of whether EXPNP and smaller classes are
Turing reducible to a sparse set by restricting the sparse set to be selfreducible
and even tree selfreducible. A set S is selfreducible if there exists a polynomial
time machine that can decide membership of x in S by making queries to S
that are smaller than x in some well defined way (see Definition 2.2). A set is
tree-selfreducible if the underlying query graph of the selfreduction is a tree.
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We do not know of any examples of selfreductions that are not essentially tree-
selfreductions. These restrictions on the sparse set can also be interpreted as
restricted versions of polynomial size circuits.

It follows from work of Lozano and Toran [10] that EXPNP does not have
sparse selfreducible hard sets. We extend this result by showing that NEXP
does not have sparse sets hard that are tree-selfreducible. This result is optimal
with respect to relativizing proof techniques, since we also obtain a relativized
world where EXP has a sparse tree-selfreducible hard set. These results imply
super-polynomial lower bounds for NEXP with respect to a restricted class of
circuits.

These lower bounds are consequences from more general results on the com-
plexity of sparse selfreducible sets. Lozano and Toran showed that sparse selfre-
ducible sets are in PNP, we give a different proof of this result that allows us to
generalize it to sets of smaller density. We further show that tree-selfreducible
sparse sets are in PNP[O(log n)], the class of languages that can be decided with
logarithmically many queries to an NP oracle. It follows from this result, that
NEXP does not have sparse tree-selfreducible hard sets. Connecting this with
recent results of Fortnow et al. [6, 18] it follows that if EXP has a sparse tree-
selfreducible hard set, then it is in NP/log. We next exhibit a relativized world
where there exists a sparse 2-parity selfreducible set in PNP[O(log n)] that is not
in any lower complexity class, i.e., requires O(log n) queries to NP. This solves
an open question from [10]. We also show a relativized world where there is a
sparse Turing selfreducible set that is not truth-table selfreducible, and present
some absolute results about the complexity of selfreducible sets that have sub-
polynomial densities. Summarizing our results:

– Every sparse set that is tree-selfreducible can be computed in PNP[O(log n)].
This allows us to prove that NEXP does not have sparse tree-selfreducible
hard sets. On the other hand we show a relativized world where EXP does
have tree-selfreducible sparse hard sets.

– We construct a relativized world where there exists a sparse selfreducible
set in PNP[log n], that can not be computed with fewer queries to NP. This
partially answers an open question from [10].

– Every log-sparse selfreducible set is in PNP[O(log n)2], and every log-sparse
btt-selfreducible set is in P.

2 Definitions and Notation

We assume the reader to be familiar with standard complexity theory notation,
as for example in [15]. Let Σ = {0, 1}. We write λ for the empty word. For a set
A ⊆ Σ∗, let A=n be the set of strings from A of length n and A≤n =

⋃n
i=0 A

=i.
Note that Σn = (Σ∗)=n by this notation. The empty string will be denoted by
λ. Pairing functions will be denoted by 〈., .〉 and concatenation of strings x and
y by xy. Implicitly using a standard mapping between numbers and strings in
binary, we will use numbers as arguments to functions where strings are required
and vice versa.
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Definition 2.1. A partial order ≺ on Σ∗ is called polynomially related if and
only if there exists a k such that for all x, y ∈ Σ∗

1. y ≺ x → |y| ≤ |x|k
2. x ≺ y is decidable in time (|x|+ |y|)k

3. Every descending chain starting with x has length at most |x|k.

Let ≺ be polynomially related. The Directed Acyclic Graph that represents the
weak initial segment dominated by x, i.e., {y | y ∈ Σ∗ ∧ y ≺ x}∪ {x} is denoted
by Sx. The nodes of Sx are named by the strings in this weak initial segment,
and the edges run between strings that are related by the ordering. In this paper
we will happily make use of type-conflicting notations, like Y ⊆ Sx where Y is
a set of strings and Sx is the graph just defined. Here we mean that the strings
from Y are nodes in Sx. First we define selfreducibility for some ordering ≺.

Definition 2.2. Let r be some reduction type. A set S ⊆ Σ∗ is called ≤P
r -

selfreducible with respect to the polynomially related ordering ≺ on Σ∗ if and
only if

1. S ≤P
r S and

2. For any input x ∈ Σ∗ the reduction queries only elements y with y ≺ x

An example of a selfreducible set is SAT, the set of satisfiable boolean formu-
las. There exists a well-known ≤P

2d-selfreduction for SAT, which is even length
decreasing, where queries are formed by assigning values to variables.

We will say that a reduction M that witnesses the selfreducibility of S obeys
≺. We will denote the set of strings that is queried by oracle machine M on input
x, the query set of M on input x, by QM (x). If M is a non-adaptive machine
then this query set is independent of the oracle. If M is an adaptive machine
then this notation is sometimes enriched with the oracle, e.g., QA

M (x), or, if the
oracle is left out, the set of all potential queries is meant by this notation (of
exponential size for polynomial time bounded oracle machines, but sometimes
even bigger). This notation can also be used to denote an even bigger set. If V
is a set of strings, then QM (V ) =

⋃
v∈V QM (v).

We now define a very natural extension of self-reductions, see further below
for some comments.

Definition 2.3. Let S be a self-reducible set, witnessed by the deterministic
polynomial time oracle machine M , which obeys the ordering ≺.

For a string x define the graph G as follows:

1. The nodes of G are all strings y with y ≺ x.
2. for y, z ∈ G, there is a edge from y to z if and only if z ∈ QO

M (y) for some
oracle O.

Let SM
x be the (connected) component of G that contains x. We say that M is a

tree-selfreduction if for all x, SM
x is always a tree.

If L(MS) = S for some tree-selfreduction M , then this S is tree-selfreducible.
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Note that SM
x contains all strings y which could be possibly queried in the self-

reduction of x, no matter which (possibly wrong) answers M gets.

Definition 2.4. Let ≺ be a polynomially related order and let Tx ⊆ Sx be a tree
that has root x. For y ∈ Tx we define the depth of y as dx(y) = #nodes on the
path from x to y in Tx. Consider a labeling l : Tx �→ {0, 1}. Let TD be the set of
nodes from l−1(1) that are minimal w.r.t. ≺, i.e., TD = {y ∈ l−1(1)| there is no
z ∈ l−1(1)− {y} such that y is on the path from z to the root x}. We define the
weight of Tx as weight(Tx) =

∑
y∈TD

dx(y).

Definition 2.5. Let M be a selfreduction obeying ≺ and T some set. Consider
a labeling l : T �→ {0, 1} of T . We call l consistent with M , or M -consistent, if
and only if (∀y ∈ T )[l(y) = 1 ⇔ M(y) accepts when queries of M(y) in T are
answered according to l and queries outside T are answered NO].

Note that for each set T there is a unique M -consistent labeling for T , which
can be easily found in a bottom-up fashion.

We want to mention that all selfreducible sets we know of can be made (or even
are) tree-selfreducible. Take SAT as a simple example. Consider the standard
reduction which on input φ(x1, . . . , xn) with n > 0 queries φ(0, x2, . . . , xn) and
φ(1, x2, . . . , xn), but does not simplify the terms, and accepts iff one of the
queries is true. For n = 0 it outputs the truth value of φ. Then this reduction is
obviously a tree-selfreduction.

We call a set S ⊆ Σ∗ sparse if and only if ||S≤n|| ∈ O(Pol(n)). S is called
log-sparse if and only if ||S≤n|| ∈ O(log(n)).

It is well-known that the class PNP[O(log n)] (P-machines that can make O(log n)
adaptive queries to an NP-oracle) is equivalent to the class PNP|| (P-machines
that can only make non-adaptive queries to an NP-oracle), see [19]. This class
is commonly referred to as ΘP

2 . The class PNP is commonly referred to as ΔP
2 .

3 Sparse Selfreducible Sets

We start by citing a result from [10].

Theorem 3.1. If S ⊆ Σ∗ is sparse and selfreducible then S is in ΔP
2 .

We want to note that we will later state a theorem (Theorem 5.1), whose proof
can be easily adapted to yield the same result, thus giving an alternative proof
for Theorem 3.1.

An open question from [10] is whether ΔP
2 in Theorem 3.1 is optimal. We will

first show in Theorem 3.3 that for the natural case of sparse, tree-selfreducible
sets we can find a better bound than ΔP

2 , namely ΘP
2 . Later, in Corollary 3.6,

we will show that this is probably tight by exhibiting a relativized world and a
sparse, tree-selfreducible set S in which S ∈ ΘP

2 but S is not lower. This will
follow from Theorem 3.4 and Lemma 3.5. We will first isolate and prove the
crucial lemma.
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Lemma 3.2. Let M be a tree-selfreduction obeying ≺ and witnessing the self-
reducibility of some set S and let x be some input. Let T ⊆ SM

x be a tree with
root x which has maximal weight among all trees T ⊆ SM

x , which can be labeled
M -consistently. Then it holds that S ∩ SM

x ⊆ T .1

Proof. Let l be the M -consistent labeling of T . Assume that (S ∩ SM
x ) − T is

nonempty. Let y be the deepest node in (S ∩ SM
x ) − T . Note, that this implies

that y has no children in S. Let p be the (unique) path from y to the root x in
SM

x . Let p = poutpin such that pout is outside of T and pin is inside. Note that
pout contains at least y. Let T ′ be the same as T , but with path pout added and
let l′ be the (unique) M -consistent labeling of T ′. Note that l′(y) = 1, because
y has no children in S. For nodes in T , labelings l and l′ differ at most on the
path pin. But the total weight that pin contributes to the weight of T can be
at most |pin|. But path pout contributes |p| > |pin| to the weight of T ′, so the
weight of T ′ is larger than that of T . �

Theorem 3.3. If S is sparse and ≤P
T -tree-selfreducible then S ∈ ΘP

2 .

Proof. Fix x and a selfreduction machine M . We will give a ΘP
2 -algorithm to

compute x ∈ S. First find the maximum weight wmax(x) of any M -consistent
labeled T . It is clear that wmax(x) ∈ O(Pol(|x|)). Further, there is a k > 0 such
that for any x there is a maximally weighted tree T ⊆ SM

x with ||T || ≤ |x|k.
We can find wmax(x) with logarithmically many queries to an NP oracle of the
following type: “Given a weight w, guess a tree T of size at most |x|k, a labeling
l such that weight(T ) ≥ w. Accept if the labeling of l is M -consistent.”

Lemma 3.2 guarantees that any tree T of maximum weight will contain all
nodes in SM

x ∩ S. Recall that there is only one M -consistent labeling for any T .
But the true labeling of such maximally weighted T , i.e. l(y) = 1 ↔ y ∈ S, is of
course M -consistent. So the (unique) M -consistent labeling of T labels all nodes
correctly.

The final query will then be “Guess a tree T of size at most |x|k and an
M -consistent labeling l such that weight(T ) = wmax(x). Accept iff l(x) = 1.”
Our ΘP

2 -algorithm then just outputs the result of this query. �

Let us now prove a relativized lower bound on sparse, tree-selfreducible sets, see
Corollary 3.6. The proof follows easily from Theorem 3.4 and Lemma 3.5. In
Theorem 3.4 we show that if there are NE-machines with a certain structural
property, then one can easily derive an S as desired. In Lemma 3.5 we will then
show that there is a relativized world in which NE-machines have this property.

Theorem 3.4. Assume there is an NE-machine M and a set B such that

1. M has at most 2n accepting paths for all inputs of length n
2. x ∈ B if and only if the number of accepting paths of M(x) is odd
3. B �∈ EXPNP[n].

Then there is a sparse, tree-selfreducible set with S ∈ PNP[log n+1] − PNP[log n].

1 Here SM
x resp. T denote the nodes of the graphs SS,M

x , T .
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Proof. Define
S′ := {〈x, Pad′(x)〉 | x ∈ B},

where Pad′(x) and the pairing function are chosen such that |〈x, Pad′(x)〉| =
2|x|. First note that S′ is sparse.

Conditions 1 and 2 suggest the following PNP[log n+1]-algorithm A for S′ on
input 〈x, y〉: If y �= Pad′(x) reject. Set n = |x| and m = 2n = |〈x, Pad′(x)〉|.
Then M(x) runs in time m and has at most m accepting paths. Therefore the
number of accepting paths of M(x) can be computed with logm + 1 queries to
a suitable NP-oracle. Accept if this number is odd, otherwise reject.

Let us now prove S′ �∈ PNP[log n]. Assume there was a PNP[log n]-algorithm
A′ which decides S′. Then the following EXPNP[n]-algorithm for B shows a
contradiction to condition 3. On input x compute 〈x, Pad′(x)〉, which has length
m = 2n. Start A′ on 〈x, Pad′(x)〉 which can by assumption decide x ∈ B with
log m = n queries to an NP-oracle.

Now define we define the selfreducible set S.

S := {〈x, Pad(x), v〉 | ⊕||{w | vw is an accepting path of M(x)}|| = 1},

where this time Pad and 〈·, ·, ·〉 are chosen such that 〈x, Pad(x), λ〉 = 2|x|. We
have

χS(〈x, Pad(x), v〉) = χS(〈x, Pad(x), v0〉)⊕ χS(〈x, Pad(x), v1〉),

which means that S is 2-parity-selfreducible (χS is the characteristic function
of S). The fact that S ∈ PNP[log n+1] − PNP[log n] follows immediately from the
proof for S′. �

Lemma 3.5. There is an oracle O, an NE-machine M and a set B such that

1. MO has at most 2n accepting paths for all inputs of length n
2. x ∈ B if and only if the number of accepting paths of MO(x) is odd
3. B �∈ EXPO,NPO[n]

Proof. First we define the NE-machine M . On input 0n it non-deterministically
guesses all paths y with |y| = 2n and accepts on path y iff y ∈ O. On inputs
other than 0n it always rejects. Each oracle O defines B uniquely by condition 2.

Now we use a diagonalization argument to construct O such that conditions 1
and 3 hold. For any oracle O let KO be the standard linear time NPO-complete
set

〈x, i, t〉 ∈ KO ↔ the i-th NPO-machine accepts x after ≤ t steps.

Let NO be an NPO-machine accepting KO which runs in time O(n) on inputs
of length n. We will prove that B �∈ EXPO,NO[n] and by our choice of N this is
equivalent to condition 3.

Let {Mi}i be an enumeration of all exponential time bounded oracle machines
such that Mk on inputs of length n runs in time 2nk

and for any oracle O makes
at most 2nk

queries to O and at most n queries to NO.
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We now describe the k-th stage of the diagonalization. Set the function
m(k) to

m(k) = 22m(k−1)
+ m(k − 1) (1)

where m(0) = 2. For ease of notation we also write m for m(k). We will ensure
that

MO,NO

k (0m) accepts ↔ 0m �∈ B. (2)

As will be clear from the construction none of the later stages will change this
property. This implies condition 3.

Initially set F := ∅. In each stage of the diagonalization we will add elements
to F . These elements are “frozen” and are not allowed to be put into O later.

Let u be an m-bit string. Since Mk asks at most m queries to NO, this string
induces a computation of MO,NO

k (0m), if we define that the answer of the i-th
query to NO is given by the i-th bit of u. Let Qm be the set of all possible queries
of MO,NO

k (0m) to NO, for any such u. Note that |Qm| ≤ 1 + 2 + 4 + . . . 2m−1 =

2m − 1. For any such u, freeze all direct queries from Mk to O in MO,NO

k (0m)
and put them into F .

We now put some elements of length 2m into O such that we get (2).

1. Q := Qm

2. WHILE there is w ∈ (Σ2m − F ) ∪ {λ} and q ∈ Q such that NO∪{w}(q) = 1
DO

(a) Q := Q− {q};O := O ∪ {w}
(b) Add all queries on the left-most accepting path of NO∪{w}(q) to F

3. IF
(
MO,NO

k (0m)accepts and|O=2m | = odd
)

or
(
MO,NO

k (0m)rejects and

|O=2m | = even
)

THEN take any w ∈ Σ2m − F and set O := O ∪ {w}

The idea behind this algorithm is very simple: In the WHILE-loop we try to
find as many potential queries q ∈ Q to NO, for which NO(q) already accepts
(w = λ) or NO(q) becomes accepting if we add one element w of length 2m to
O. We do not want to undo the acceptance of NO(q) in later iterations, so we
“freeze” all queries on the left-most accepting path and put them into F .

Note that the WHILE-loop terminates after at most |Qm| ≤ 2m−1 iterations.
Observe that after the completion of the WHILE-loop adding one of these un-
frozen elemens of length 2m to O also cannot change the acceptance of NO(q) for
any of the remaining q ∈ Q. Since all direct queries from Mk to O in MO,NO

k (0m)

were also frozen initially, the acceptance of MO,NO

k (0m) cannot change in step 3.
On the other hand, adding a 2m-long element to O adds an accepting path to
MO(0m), which changes the predicate 0m ∈ B. Thus, line 3 ensures (2) if we
show that
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Claim 1. There is at least one unfrozen string of length 2m at the beginning of
line 3.

Proof. We first observe that by (1) none of the 22m

strings of length 2m were
frozen in one of the previous stages. We then freeze at most 2m × 2mk

direct
queries of Mk to O and in each of the at most 2m − 1 iterations of the WHILE-
loop at most 2mk

strings, altogether less than 2mk+m+1 strings. This is smaller
than 22m

by (1). �

Now, condition 3 follows from (2), since in the k-th stage we add only elements
to O, which by (1) are too long to be queried anywhere in any MO,NO

l (0ml)
for l < k . Furthermore, our procedure adds at most 2m elements of size 2m to
O and thus by construction of M condition 1 also holds. Condition 2 holds by
definition. �

From Theorem 3.4 and Lemma 3.5 we get

Corollary 3.6. There is an oracle O and a sparse set S, which is 2-parity-tree-
selfreducible in the relativized world O, but S �∈ PO,NPO [log n].

4 Applications: Lower Bounds for NEXP

In this section we apply the results about sparse tree selfreducible sets to obtain
lower bounds for NEXP. It is well-known that PSPARSE = P/poly. However the
question whether EXPNP is contained in P/poly is still open. The best known
lower bound along these lines shows that MAexp, the class of languages that
allow for exponential long Arthur-Merlin games, is not in P/poly [4].

We will show that Theorem 3.3 can be used directly to show that NEXP does
not reduce to a sparse set that is tree selfreducible. The class of sets that reduce
to sparse tree-selfreducible sets can be interpreted as sets that are computed by
some restricted form of polynomial size circuits, and hence this result yields some
lower bound for NEXP with respect to this class of polynomial size circuits. We
will show moreover that there exists a relativized world where EXP has a sparse
tree-selfreducible hard set.

Theorem 4.1. Let K be a Turing complete set for NEXP. There is no sparse
tree selfreducible set S such that K ≤p

T S.

Proof. This follows directly from [12], where it is shown that NEXP is not
contained in PNP[O(log n)] and Theorem 3.3. �

The same idea can be used to obtain a sub-exponential lower bound for the
density of tree-selfreducible hard sets for EXPNP|| . Details will follow in the full
version of the paper.

We next show that with relativizing techniques this is as far as one gets:
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Theorem 4.2. There exists an oracle A and a sparse tree-selfreducible set S

such that for every set B ∈ EXPA, B ≤pA

T S.

Proof. It is sufficient to show that KA, the standard 2n-time complete set for
EXPA, reduces to S. The proof goes along the same lines as [20], where an oracle
is constructed relative to which EXP is in P/poly.

For length n we will code for all the 2n strings xi of length n, KA(xi) into A.
Assume that we correctly coded all strings of length ≤ n− 1 into A. Let M be
such that L(MX) = KX for all X . Since MA runs in time 2n it can query at
most 2n strings to A on any input xi of length ≤ n. Let Q = QA

M ((Σ∗)≤n).
Then ||Q|| ≤ 23n and so (∃zn ∈ Σ4n)(∀v)[〈zn, v〉 /∈ Q]. Now we are able to

code for every string xi of length n, KA(xi) into A as follows.

〈zn, xi〉 ∈ A↔ KA(xi) = 1

It is clear that the above construction will yield a zn for every length n. We now
will code zn into a sparse tree selfreducible set S as follows:

S = {〈0n, v〉 | ∃w : vw = zn}

It is easy to see that given access to S one can recover zn and then decide for every
string x of length n whether it is in KA by querying 〈zn, x〉. In order to make the
set S tree-selfreducible we put 〈zn, λ〉 in A as well. The selfreduction for S is now
as follows: on input 〈0n, v〉 query whether 〈0n, v0〉 or 〈0n, v1〉 is in S, if |v| < 4n,
otherwise decide 〈0n, v〉 for |v| = 4n by querying whether 〈zn, λ〉 ∈ A. �

We don’t know how to prove that EXP does have a sparse tree-selfreducible hard
set, but we can connect this question to a recent line of research by Fortnow,
Klivans, Shaltiel, and Umans [6, 18]: If EXP has a sparse tree selfreducible hard
set then EXP ∈ NP/log. From Theorem 3.3 we would have under this assumption
that EXP ∈ PNP[O(log n)] and by the results in [6] that EXP ∈ NP/log.

5 Log-Sparse Selfreducible Sets

We will next prove that log-sparse selfreducible sets are in L ∈ PNP[O(log2 n)].
The proof of the theorem can easily be adapted to yield Theorem 3.1, which
was first proven in [10] with a different proof. The proof idea is the following.
Given a log-sparse selfreducible set S and a string x, then Sx ∩ S has at most
O(log|x|) elements. We will show a PNP[O(log2 n)] algorithm that recovers these
elements in a “depth first” fashion. The structure Sx is now no longer a tree,
since different paths can lead to the same element, but with the help of an NP
oracle, the longest path to such a string can be recovered. The length of such a
longest path is the depth of this string. Note that there can be different strings
with the same depth in Sx, but if there are, then their longest paths from x split.
Having recovered all elements in Sx∩L in this way, there can be only one string
in this set of depth 0, namely x.
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Theorem 5.1. IfL ⊆Σ∗ is log-sparse and≤P
T -selfreduciblethenL∈PNP[O(log2 n)].

Proof. Choose a constant c′ such that ||L ∩ (Σ∗)≤n|| ≤ c′ log n. Let ≺ be the
underlying polynomially related ordering and let M be a polynomial-time oracle
machine witnessing the selfreduction. Fix some input x. Choose s such that
Sx ⊆ (Σ∗)≤|x|s . Now ||Sx ∩ L|| ≤ c′s log n. Let c′s = c.

For y ≺ x let dx(y) = max{d | x � a1 � · · · � ad−1 � y}, where dx(x) = 0.
We call dx(y) the depth of y.

We define oracle O as 〈x, d1, . . . , dl〉 ∈ O if and only if there are distinct
strings a1, . . . , al such that (∀1 ≤ i < j ≤ l)[di < dj ∧ ai ≺ x ∧ dx(ai) ≥
di ∧M{a1,...,ai−1}(ai) = 1].

Clearly, O ∈ NP. We now give a PNP[log2 n]-algorithm that decides whether
x ∈ L.

1. i := 0
2. WHILE 〈x, d1, . . . , di, 0〉 ∈ O DO

(a) i := i + 1
(b) Use binary search to find the maximum value di such that 〈x, d1, . . . ,

di−1, di〉 ∈ O
3. ACCEPT if i > 0 and di = 0; otherwise REJECT

The following claim is immediate.

Claim 2. After the i-th iteration of line 2b, the algorithm has recovered d1, . . . , di

such that (∀y ∈ L ∩ Sx)[(∃j ≤ i)[dj = d(y)] or d(y) < di].

Claim 3. The algorithm stops after at most c log|x| iterations.

Proof. After c log|x| iterations, it has built a string of c log|x| values di, The
query in step 2b requires L∩Sx to have c log|x| distinct strings that are accepted
by M using this set of strings as an oracle. By Claim 2 these are the deepest
strings in L ∩ Sx since the second part of the disjunct can no longer be true.
Hence acceptance of M means that these strings are indeed in L ∩ Sx. So after
||Sx|| − 1 < c log|x| iterations, the next query requires recovering all strings in
L ∩ Sx. Furthermore, there is at most one string of depth 0. �

The proof of the theorem is now completed by observing that the depth of any
string in Sx is at most polynomial in |x|. Hence binary search can be performed
in O(log|x|) steps. �

If in Theorem 5.1 we assume ≤P
btt-selfreducibility then we get a stronger

conclusion.

Theorem 5.2. If L is log-sparse and ≤P
btt-selfreducible then L ∈ P.

Proof. Let c be a constant such that ||L≤n|| ≤ c log n and let s be a constant
such that (∀x)[Sx ⊆ (Σ∗)≤|x|s ]. This implies that ||Sx ∩ L|| ≤ cs log |x|. Let M
be an oracle machine that witnesses the ≤P

btt reduction and assume that M asks
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no more than b queries on any input. Because of the fact that queries are asked
non-adaptively, we can limit the structure Sx to queries “of interest,” i.e., we
can assume that the set of nodes that are direct descendants of x is QM (x), the
set of nodes that are direct descendants of these nodes is QM (QM (x)) etc. This
is what will make the algorithm below polynomial time bounded.

Of course, a string may be queried on different paths and therefore Sx is still a
DAG. For a node y in Sx this time define the depth dx(y) as the minimal length of
a path from x to y in Sx, where dx(x) = 0. Let Sk

x be the part of Sx which contains
all nodes up to depth k (inclusive). Set levelx(k) = {y ∈ Sx : dx(y) = k}. Note
that for i �= j it holds levelx(i) ∩ levelx(j) = ∅. Nodes in level k of Sk

x can only
have nodes in level k or k − 1 as ancestors. Therefore nodes in level k are the
sinks in the DAG Sk

x .

Claim 4. Consider a partial labeling l : Sk
x �→ {0, 1}. Call l correct if l(x) =

1 ⇔ x ∈ L. If all nodes in level k are labeled correctly, then Sk
x can be labeled

correctly using M .

Proof. With induction on the number of unlabeled nodes remaining. It is clear
that if this number is 1, i.e., only x remains unlabeled, then we know the answer
to the queries QM (x), so we can label x correctly. If this number is m, then
starting from x we can walk down a path to end up in a node y that has only
(correctly labeled) sinks as descendants, i.e., we know the answers to the queries
QM (y) and therefore can label y correctly. The DAG Sk

x
′ that is Sk

x with y
additionally labeled has one less unlabeled node. �

Surprisingly, the fact that makes the proof complete is that, for large enough k,
x can also be labeled correctly if some or all nodes in level k of Sk

x are labeled
incorrectly. Therefore, the following algorithm decides whether x ∈ L.

1. FOR k = 2cs log|x| to 3cs log|x| DO
(a) Compute the DAG Sk

x .
(b) Label all nodes in Sk

x as follows. Label all nodes in Sk
x of depth k with 0.

Compute from that the labels of all nodes in Sk
x with lower depth using

the selfreduction.
(c) IF the root, i.e., x is labeled 1 and Sk

x does not contain more than
cs log |x| 1-nodes THEN accept and HALT.

2. Reject.

Note that each Sk
x contains at most b3cs log |x|+1−1

b−1 ∈ O(Pol(|x|)) nodes. Thus,
this algorithm works in polynomial time. We now show that it is also correct.

Claim 5. If x ∈ L then A accepts.

Proof. It is clear that (the correct) selfreduction-DAG Sx always contains a
level k with 2cs log |x| ≤ k ≤ 3cs log |x| such that levelx(k) ∩ L = ∅, because
there can be at most cs log |x| elements from L in Sx. For such k A labels the
nodes in levelx(k) correctly. The claim now follows from Claim 4. �
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Claim 6. If A accepts then x ∈ L.

Proof. Assume contrarily that A accepts an x �∈ L, during iteration k. By
Claim 4 this can only happen if levelx(k) is not correctly labeled, which means:

levelx(k) ∩ L �= ∅.

Let Sk
x be labeled as given by step 1b. Since Sk

x contains k ≥ 2cs log |x|+1 levels
and A accepts x, the condition in 1c implies that Sk

x contains at least cs log |x|+1
levels whose nodes are all labeled with 0. Assume we now change the labels of
the nodes in levelx(k) ∩ L (correctly) from 0 to 1 and compute from that the
labels of all other levels in Sk

x . By Claim 4 Sx
k is then correctly labeled. We now

want to prove that this cannot have an effect on the label of x.
Suppose it changes the label of the root x. Changing the label of a node y

only has an effect if this changes the label of at least one of the parents of y and
nodes in level i can only have parents in levels ≤ i−1. So for each i = k−1, . . . , 0
there must be at least one node in levelx(i) which is changed. Thus, the changed
Sk

x has at least one 1-node in each of the ≥ cs log |x| + 1 levels which before
were completely labeled with 0. But this contradicts that Sx contains at most
cs log|x| 1-nodes. �

This completes the proof of Theorem 5.2. �

The same proof idea also establishes that log-sparse sets L, which are ≤P
tt-

selfreducible can be decided in time O(nlog n).

6 Conclusions

Selfreducible sets are all in PSPACE. Sparse sets can be of arbitrary complexity.
The intersection of these classes turns out to be of considerably less computa-
tional complexity. Since selfreducibility is a property that many problems share
and it is a crucial property that allows for recursive programs and divide and
conquer strategies, it is interesting to investigate properties of selfreducible sets
in different complexity classes and of different densities. Many open questions
remain here, especially with respect to different forms of selfreducibility and
the corresponding upper bounds on the computational complexity of problems.
This paper is just a starting point that shows some interesting and sometimes
unexpected cases.

Our results are also somewhat surprising with respect to structural prop-
erties of complexity classes. Sparse sets show, concerning their structural and
computational properties, great resemblance to P-selective sets [7]. Sparse sets
and P-selective sets are equivalent with respect to polynomial-time Turing re-
ductions [16, 17]. Both P-selective sets [8] and Sparse sets have polynomial size
circuits [11] and their difference in lowness (if any) is limited (see [9]). Both
P-selective sets [1, 2, 13] and Sparse sets [14] have the property that if NP btt
reduces to such a set, then P = NP. The situation becomes drastically different
when we limit these classes to their selfreducible subclasses. Where the class of
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selfreducible P-selective sets is just another name for P [5], the computational
complexity of the sparse selfreducible sets is quite a different matter as we have
shown in this paper.

Some specific open problems are the following:

1. Does there exist a sparse selfreducible set that is not in PNP[log n]? This would
yield a sparse selfreducible set that is not tree selfreducible.

2. Does there exist a relativized world where NEXP has a sparse selfreducible
hard set?

3. Prove that EXP does not have a sparse tree selfreducible hard set. This
proof needs to be non-relativizing, but it may be within reach using non-
relativizing techniques from for example the MIP = NEXP proof.

4. Can the super polynomial lower bounds for NEXP be used to prove some
kind of derandomization result? Is the selfreducibility restriction on the
sparse set a real restriction or could one show that if NEXP has a sparse
hard set then there also is a sparse hard set that is (tree) selfreducible?
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Abstract. We show that RL ⊆ L/O(n), i.e., any language computable
in randomized logarithmic space can be computed in deterministic log-
arithmic space with a linear amount of non-uniform advice. To prove
our result we use an ultra-low space walk on the Gabber-Galil expander
graph due to Gutfreund and Viola.

1 Introduction

The question of whether RL, randomized logarithmic space, can be simulated in
L, deterministic logarithmic space, remains a central challenge in complexity-
theory. The best known deterministic simulation of randomized logarithmic
space is due to Saks and Zhou [16] who, building on seminal work due to
Nisan [13], proved that BPL ⊆ L3/2. Recently in a breakthrough result, Rein-
gold [14] proved that the s-t connectivity problem on undirected graphs could
be solved in L; this implies SL, the symmetric analogue of NL, equals L. The
possibility of extending his techniques to prove RL = L has subsequently been
investigated by Reingold, Trevisan and Vadhan [15].

1.1 Randomness and Non-uniformity

The relationship between randomness and non-uniformity is a topic of funda-
mental importance in complexity theory. Derandomizing complexity classes fre-
quently involves a consideration of the smallest non-uniform complexity class
or circuit family which contains a particular randomized class. Adleman’s well
known result on BPP [1], for example, shows that BPP can be computed by
polynomial-size circuits. Goldreich and Wigderson [7] have recently proved an
interesting relationship between the non-uniform complexity of RL and the exis-
tence of deterministic algorithms for RL which work on almost every input. More
specifically they showed that if RL is computable in log-space with o(n) bits of
non-uniform advice and furthermore most of the advice strings are “good,” (i.e.
� Initial work done while visiting TTI-Chicago.
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result in a correct simulation of the RL machine by the advice-taking deter-
ministic logarithmic-space machine) then there exists a deterministic log-space
simulation of RL which errs on a o(1) fraction of inputs for every input length. In
other words, finding a log-space simulation with o(n) bits of non-uniform advice
is a step towards showing that RL is “almost” in L.

1.2 Our Results

We prove that every language in RL can be computed in L with O(n) bits of
additional non-uniform advice:

Theorem 1. Every language in RL can be computed by a deterministic, log-
space Turing machine which receives O(n) bits of non-uniform advice on a two-
way read-only input tape.

In Section 3, we state as a corollary of Nisan’s well-known pseudo-random gen-
erator for space bounded computation the inclusion RL ⊆ L/O(n log n). What is
more difficult is to show that RL ⊆ L/O(n). To do this we use a non-standard,
space-efficient walk on an expander graph when the edge labels are presented on
a two-way read-only input tape. Such a walk was used by Gutfreund and Viola
[8] in the context of building pseudorandom generators computable in AC0:

Theorem 2 (Gutfreund-Viola). There exists an O(log(n))-space algorithm
for taking a walk of length O(n) on a particular constant-degree expander graph
with 2O(n) nodes if the algorithm has access to an initial vertex and edge labels
describing the walk via a two-way read-only advice tape.

We present a proof of Theorem 2 for completeness. Note that a naive imple-
mentation of a walk on a graph of size 2O(n) would require O(n) space just to
remember the current vertex label. The main tool for using even less space is a
Gabber-Galil graph [6] in conjunction with log-space algorithms for converting
to and from Chinese Remainder Representations of integers [4].

We can then apply the above walk on an expander graph to amplify the success
probability of the RL algorithm using only O(n) random bits and O(log n) space.
Using Adleman’s trick [1] we can conclude that there must exist a good advice
string of length O(n) which works for all inputs.

1.3 Related Work

Bar-Yossef, Goldreich, and Wigderson [3] initiated a study of on-line, space-
efficient generation of walks on expander graphs. Their work shows how to am-
plify a space S algorithm using r random bits with error probability 1/3 to an
O(kS)-space algorithm that uses r+O(k) random bits and has error probability
εΩ(k) for any constant ε > 0. Note, however, that we need ε < 2−n and hence
must take k ≥ n. The space of their resulting algorithm will then be Ω(nS),
which is much too large for our application here. Our savings comes from the
fact that we have an initial vertex and the edge labels of a particular walk on an
expander graph on an advice tape– we thus do not need to remember an initial
vertex or the edge labels.
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2 Preliminaries

Karp and Lipton [10] give a general definition of complexity classes with advice.

Definition 1 (Karp-Lipton). For a complexity class C, the class C/f(n) is
the set of languages A such that there exists a language B in C and a sequence
of strings a0, a1, . . ., with |an| = f(n) and for all x in A,

x ∈ A ⇔ (x, a|x|) ∈ B.

Our main result shows that for every language A in RL there is a constant c
such that A is in L/cn. By Definition 1, the logarithmic space machine accepting
B will have access to the advice as part of the 2-way read-only input tape.

A randomized space algorithm on input x has read-once access to a string
of random bits r. As in the work of Nisan [13], we view a randomized space
algorithm as a deterministic branching program where the input x to the ran-
domized space algorithm has been fixed and the only remaining input to the
branching program is r (hence to derandomize a randomized space algorithm we
need only estimate the acceptance probability of a fixed deterministic branching
program):

Definition 2. A space(S(n)) algorithm is a deterministic branching program of
size 2S(n) mapping inputs of length n to {0, 1}. Often we simply write space(S)
and omit the input length n.

To achieve our result we start with pseudorandom generators for space-bounded
computations:

Definition 3. A generator G : {0, 1}m → {0, 1}n is called a pseudorandom
generator for space(S) with parameter ε if for every space(S) algorithm A with
input y we have

|Pr(A(y) accepts)− Pr(A(G(x)) accepts)| ≤ ε

where y is chosen uniformly at random in {0, 1}n and x uniformly in {0, 1}m.

We will also use expander graphs.

Definition 4. An graph G = (V, E) is an ε-expander if there exists a constant
ε > 0 such that for all U such that |U | ≤ |V |/2, |U ∪N(U)| ≥ (1 + ε)|U | where
N(U) is the neighborhood of U . A set of graphs {G1, G2, . . .} is a family of
constant-degree expander graphs if there are fixed constants d and ε such that
for all n, Gn has n vertices, the degree of every vertex of Gn is d and Gn is an
ε-expander.

We will use the now well-known fact that explicitly constructible constant-
degree expander graphs can be used to reduce the error of randomized decision
procedures:
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Theorem 3 ([5, 9]). Let L ∈ BPP be decided by a probabilistic turing machine
M using r(n) = nO(1) random bits. Then there exists a probabilistic polynomial-
time algorithm for deciding L using O(r(n)+t) random bits with error probability
2−t. The algorithm chooses a random vertex of an expander graph and walks for
t steps substituting the labels of the vertices in place of the truly random bits M
would have used.

For details on the history, constructions, spectral theory, and applications of
expander graphs see Motwani and Raghavan [12] or the lecture notes for a course
by Nati Linial and Avi Wigderson [11].

3 Starting Point: Nisan’s Generator

We will use Nisan’s well-known generator for space bounded computation [13]
as the starting point for the proof of our main result:

Theorem 4 (Nisan). For any R and S there exists a pseudorandom generator

G : {0, 1}O(S log(R/S)) → {0, 1}R

for space(S) with error parameter 2−S. Furthermore, if the seed is written on a
two-way read-only tape, the ith bit of the output of the generator can be computed
in O(S) space.

Corollary 1. For any language A in RL there is a probabilistic algorithm solv-
ing L with one-sided error 1/n using logarithmic space and O(log2 n) random
bits on a 2-way read-only tape.

Fix an RL language A. To prove the existence of a good advice string of length
O(n log n) for A we first apply Corollary 1 to get a randomized algorithm using
O(log2 n) random bits that for any fixed input x in A results in an answer which
is correct with probability at least 1−1/n and always rejects on inputs not in A.

Running the algorithm 2n/(log n) times independently results in a randomized
algorithm with error probability strictly less than 2−n. Thus, by a union bound
over all inputs, there must exist a sequence of n seeds to G which results in a
correct classification of any input x.

Hence the total advice string is of length O(n log n). Now assume that a
log-space machine is given access to this advice string on a read-only (multiple
access) input tape. Since the ith bit of Nisan’s generator is computable in log-
space, we can carry out Adleman’s trick in logarithmic space. Thus, as a corollary
to Nisan’s generator we have the following:

Corollary 2. RL ⊆ L/O(n log n).

We wish to reduce the size of the advice to O(n) bits. Note that any attempt to
construct an advice string using only Adleman’s trick cannot hope to achieve an
advice string of length less than n. This is because using k bits of randomness in
a black-box fashion can only drive the error probability of the algorithm down
to 2−k (without derandomizing the algorithm altogether).
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4 Space-Efficient Walks on Gabber-Galil Graphs

Consider a language L ∈ RL and its associated randomized Turing machine M .
A now standard approach for derandomizing algorithms [5, 9] is to “re-cycle”
random bits via a walk on a suitable expander graph. For example, if we have
a pseudorandom generator G with seed length s, and a suitable constant degree
expander graph E with 2s vertices, we can use the following randomness-efficient
algorithm to compute L:

– Associate each vertex of the graph with a seed of G (note each vertex has a
label of length s).

– Use s random bits to choose an initial vertex of E and walk randomly (by
choosing t random edge labels) for t more steps to select t more seeds for G.

– Simulate L using the output of the generator G instead of truly random bits.
Do this t times independently and accept if any of the t simulations result
in accept.

This algorithm uses O(s + t) random bits and requires space O(s) (plus the
space required to compute a neighbor of the current vertex). Applying Theorem
3 we see that the error probability of this algorithm is at most 2−t.

We would like to use the above algorithm where the vertices of an expander
graph correspond to seeds for Nisan’s pseudorandom generator. Unfortunately,
to simulate languages in RL using the output of Nisan’s generator the seed must
be of size Ω(log2 n), which means that the above algorithm will use at least
Ω(log2 n) space just to keep track of the current vertex. As such, we will have
to use a very space-efficient method for traversing an expander graph due to
Gutfreund and Viola [8]. The walk uses a result due to Gabber and Galil [6]:

Theorem 5 (Gabber-Galil). Let Zm be the integers modulo m and let E be
a graph with vertex set Zm×Zm and edge relations (x, y) ⇒ (x, y)∪ (x, x + y)∪
(x, x + y + 1) ∪ (x + y, y) ∪ (x + y + 1, y). (i.e. each vertex is connected to 5
other vertices via the above simple arithmetic operations mod m). Then E is an
expander graph with m2 vertices and degree 5.

We now present the walk due to Gutfreund and Viola [8], and for completeness
we include a proof of correctness.

Let m = Πk
i=1pi where each pi is a distinct prime. Then we can view each

vertex in the above expander graph via the Chinese remainder theorem as
(a1, . . . , ak) × (b1, . . . , bk) where each ai, bi ∈ Zpi . Since we are interested in
representing seeds of length O(log2 n), we can think of m as the product of
O(log n) primes, each of bit-length O(log n).

The idea is that to walk on this graph, we need only keep track of an index,
and two residues a, b ∈ Zp for p a prime of bit-length at most O(log n). That is
to say, we will store a residue of the Chinese Remainder Representation of m,
rather than the integer m itself, and we can update the current residue during
each step of the walk in log-space (the following lemma is implicit in Gutfreund
and Viola [8]):
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Lemma 1. Let E be the Gabber-Galil graph Zm × Zm as above where m =
Πa log n

i=1 pi, the product of a log n primes (for sufficiently large a) each of bit length
at most O(log n). There exists an O(log n) space algorithm W such that on
input s, a starting vertex of E, a sequence of edge labels t = (t1, . . . , t�), and
1 ≤ i ≤ a log n, a residue index, W outputs the ith residues of the two integers
representing the vertex reached by starting at s and traversing the edge labels
indicated by t.

Proof. Assume that s can be represented via the Chinese Remainder Theorem
as (a1, . . . , a�)× (b1, . . . , a�) where each ai, bi has bit-length O(log n). The edge
relations of the Gabber-Galil graph involve only an addition and may be carried
out component-wise. For example, if we are currently storing ai and bi and the
next edge label tj is equal to 1, then the new components we store are ai and
ai + bi mod pi. Hence we need only remember the two current residues, a prime
pi, and the number of steps we have already taken. This requires O(log n) space.

Thus, although we cannot store an entire vertex of our expander graph, we can
compute residues of vertices explored by a random walk on the graph. Unfortu-
nately, Nisan’s generator requires a seed described by the original representation
of vertices of the Gabber-Galil graph. As such we will require a space-efficient
routine for computing the ith bit of an integer m if we are only given access
to its residues modulo distinct primes. Following Gutfreund and Viola, we can
apply a recent space-efficient algorithm for coverting to and from the Chinese
Remainder Representation due to Chiu, Davida and Litow [4]:

Theorem 6 (Chiu-Davida-Litow). Let a1, . . . , a� be the Chinese Remainder
Representation of an integer m with respect to primes p1, . . . , p�. There exists a
log-space algorithm D such that on input a1, . . . , a�, primes p1, . . . , p�, and index
i, D outputs the ith bit of the binary representation of the integer m.

For a further discussion of space-efficient, uniform algorithms for arithmetic op-
erations such as division and converting from the Chinese Remainder Represen-
tation see Allender et al. [2].

5 Putting It All Together

We can combine these space-efficient tools to prove our main result:

Theorem 7. RL ⊆ L/O(n)

Proof. From the discussion at the beginning of Section 4, we know that for
polynomial-time advice taking Turing machines simulating RL, for every input
length n there must exist a good advice string A(n) of length O(n) consisting
of an initial vertex on a suitable Gabber-Galil expander graph with nO(log n)

vertices and a sequence of 2n edge labels. Let us assume that the vertices of
the graph equal Zm × Zm where m is a product of O(log n) primes p1, . . . , pk

each of bit length O(log n) (such primes are guaranteed to exist by the Prime
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Number Theorem). Augment our advice string A(n) with primes p1, . . . , pk. Call
this advice string A′(n).

Our claim is that A′(n) is a good advice string for a log-space Turing machine
M which computes the above simulation of RL using the following procedures:

1. Simulate the RL machine 2n times using the output from Nisan’s generator
on seeds corresponding to the vertices reached by the walk given on the
advice string. If any simulation results in accept then accept.

2. When Nisan’s generator requires a bit from the seed, walk on the Gabber-
Galil graph to obtain the ith bit of the binary representation of that vertex.

3. When the ith bit of a vertex from the graph is required, apply the Chinese Re-
mainder Representation algorithm given from Theorem 6 and use Lemma 1
to obtain any residue required by the CRR algorithm of Theorem 6.

Note that each procedure can be performed in log-space, and the entire al-
gorithm is a composition of three log-space procedures. Therefore, the entire
simulation carried out by M can be performed in log-space. We use the fact
that the initial vertex and edge labels are written on a tape in a critical way:
whenever the algorithm needs a bit of the ith vertex label from the walk on the
graph, we can move our tape head back to the initial vertex and walk from the
beginning for i steps.

We note that our results extend to BPL, the two-sided error version of RL.

6 Connectivity for Expander Graphs in NC1?

We conclude with the following question: is the undirected connectivity problem
for expander graphs in NC1? We have an NC1 algorithm for taking walks of length
O(log n) on the Gabber-Galil graphs used for our main theorem. Since expander
graphs have diameter O(log n), this yields an NC1 algorithm for connectivity on
Gabber-Galil graphs. Is it possible that for a general expander graph connectivity
is in RNC1? Such a result would lead to the intriguing possibility that more
general connectivity problems are not only in L but in NC1.
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Abstract. First-order logic with k-ary deterministic transitive closure
has the same power as two-way k-head deterministic automata that use
a finite set of nested pebbles. This result is valid for strings, ranked trees,
and in general for families of graphs having a fixed automaton that can
be used to traverse the nodes of each of the graphs in the family. Other
examples of such families are grids, toruses, and rectangular mazes.

1 Introduction

The complexity class DSPACE(log n) of string languages accepted in logarithmic
space by deterministic Turing machines, has two well-known distinct characteri-
zations. The first one is in terms of deterministic two-way automata with several
heads working on the input tape (and no additional storage). Second, Immerman
[20] showed that these languages can be specified using first-order logic with an
additional deterministic transitive closure operator – it is one of the main re-
sults in the field of descriptive complexity [11, 21]. Similar characterizations of
NSPACE(log n) hold for their nondeterministic counterparts.

The two characterizations each have a natural parameter indicating the rela-
tive complexity of the mechanism used. For multi-head automata the parameter
is the number of heads used to scan the input. It is known that k + 1 heads
are better than k, even for a single-letter input alphabet [26]. For transitive clo-
sure logics, the parameter is the arity of the transitive closure operators used. It
seems to be open whether (k + 1)-ary transitive closure is more powerful than
k-ary transitive closure.

Bargury and Makowsky [2] characterize k-head automata by a “k-regular”
subset of first-order logic with k-ary transitive closure but their characterization
only works in the nondeterministic case: “the modification of the k-regular for-
mulas needed to take out the nondeterminism will spoil their elegant form, and
we do not pursue this further”.

Here we set out from the other side and present an automata-theoretic char-
acterization of first-order logic with deterministic k-ary transitive closure. Our
deterministic two-way automaton model has k heads, as expected, but is aug-
mented with the possibility to put an arbitrary finite number of pebbles on its
input tape, to mark positions for further use. If these pebbles can be used at
will it is folklore that we obtain again DSPACE(log n), a family too large for
our purpose. Instead we only allow pebbles that are used in a nested (or LIFO)
fashion: all pebbles can be ‘seen’ by the automaton as usual, but only the last
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one dropped can be picked up [19, 13, 25, 16]. On the other hand our pebbles are
more flexible than the usual ones: they can be ‘retrieved from a distance’, i.e., a
pebble can be picked up even when no head is scanning its position.

Our equivalence result (Theorem 5) is stated and proved for ranked trees
in general, of which strings are a special case. The automaton model is the
deterministic tree-walking automaton (with nested pebbles) which generalizes
two-way automata on strings. One consequence of the result is that the class of
tree languages accepted by these automata is closed under complement [27].

In Section 3 we translate logical formulas into automata, following [13] and
additionally using the technique of Sipser [32] to deterministically search a com-
putation space. Section 4 considers the reverse. As in [2] we adapt Kleene’s con-
struction to obtain regular formulas from automata, thus getting rid of the states
of the automaton, but we need to iterate that construction: once for each nested
pebble. In Section 5 we discuss the main result for single-head tree-walking au-
tomata, which are relevant as a model of XML [25, 28, 23]. Finally, in Section 6
we show how to extend our results to more general graph-like structures, such
as unranked trees (important for XML), grids (as in [2]; important for picture
recognition [3, 18, 24]), toruses, and, for k ≥ 2, mazes [4, 8].

Due to space limitations many examples, technical details, explanations, foot-
notes, and references had to be omitted. The reader may find them in [14].

2 Preliminaries

A ranked alphabet is a finite set Σ together with a mapping rank : Σ → N. Terms
over Σ are recursively defined: if σ ∈ Σ is of rank n, and t1, . . . , tn are terms,
then σ(t1, . . . , tn) is a term. As usual, terms are visualized as trees, which are
special labelled graphs; σ(t1, . . . , tn) as a tree which has a root labelled by σ and
outgoing edges labelled by 1, . . . , n leading to the roots of trees for t1, . . . , tn.
The root of subtree ti has child number i; for the root of the full tree it is 0.

For k ≥ 1, a k-head tree-walking automaton or twa is a finite-state device
that moves its k heads from node to node along the edges of the input tree.
It determines its next move based on its present state, and the label and child
number of the nodes visited. Accordingly, it changes state and, for each of its
heads, it stays at the node, or moves either up to the parent of the node, or
down to a specified child. If the automaton has no next move, we say it halts.
The language accepted by the k-head twa A is the set of all trees on which A
has a computation starting with all its heads at the root of the tree in the ini-
tial state and halting in an accepting state, again at the root of the tree. The
family of languages accepted by k-head (deterministic) twa is denoted by NWkA
(DWkA).

A twa is able to make a systematic search of the tree (a preorder traversal),
even using a single head, as follows. When a node is reached for the first time
(entering it from above) the automaton continues in the direction of the first
child; when a leaf is reached, the automaton goes up again. If a node is reached
from below, from a child, it goes down again, to the next child, if that exists;
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otherwise it moves to the parent of the node. The search ends when the root is
entered from its last child. This traversal underlies our basic constructions.

In both [29] and [30], as an example, the authors explicitly construct a deter-
ministic 1-head twa that evaluates boolean trees, i.e., terms with binary opera-
tors ‘and’ and ‘or’ and constants 0 and 1.

Strings form a special case. Tree-walking automata on monadic trees (each
symbol has rank one except a special symbol with rank zero) are equivalent to
the usual two-way automata on strings.

For an overview of the theory of first-order and monadic second-order logic on
strings and trees in relation to formal language theory, see [34]. Here we consider
first-order logic, describing properties of trees. The logic has node variables
x, y, . . . , which for a given tree range over its nodes. There are four types of
atomic formulas over Σ: labσ(x), for every σ ∈ Σ, meaning that x has label σ;
edgi(x, y), for every i at most the rank of a symbol in Σ, meaning that the i-th
child of x is y; x ≤ y, meaning that x is an ancestor of y; and x = y. Formulas
are built using the connectives ¬, ∧, and ∨, and quantifiers ∃ and ∀ as usual.

If t is a tree with nodes u1, . . . , un, and φ is a formula such that its free
variables are x1, . . . , xn, then we write t |= φ(u1, . . . , un) if formula φ holds for t
where the free xi are valuated as ui.

For fixed k ≥ 1, by overlined symbols like x we denote k-tuples of objects of
the type referred to by x, like logical variables, nodes in a tree, or pebbles.

Let φ(x, y) be a formula where x, y are distinct k-tuples of variables occurring
free in φ. We use φ∗(x, y) to denote the k-ary transitive closure of φ with respect
to x, y. Informally, φ∗(x, y) means that we can make a series of jumps from nodes
x to nodes y such that each pair of consecutive k-tuples x′, y′ connected by a
jump satisfies φ(x′, y′). The formula φ may have additional free variables.

A predicate φ(x, y) with free variables x, y is functional (in x, y) if for every
tree t and k-tuple of nodes u there is at most one k-tuple v such that t |= φ(u, v).
If φ has more free variables than x, y, this should hold for each fixed valuation of
those variables. The transitive closure φ∗(x, y) is deterministic if φ is functional
(in the variables with respect to which the transitive closure is taken).

The tree language defined by a closed formula φ consists of all trees t such
that t |= φ. The family of all tree languages that are first-order definable is
denoted by FO; if one additionally allows k-ary (deterministic) transitive closure
we have the family FO+TCk (FO+DTCk). For strings, general (deterministic)
transitive closure (i.e., over unbounded values of k) characterizes the complexity
class NSPACE(log n) (DSPACE(log n)), see [11, 21].

3 From Logic to Nested Pebbles

A k-head tree-walking automaton with nested pebbles is a k-head twa that is
additionally equipped with a finite set of pebbles. During the computation it
may drop these pebbles (one by one) on nodes visited by its heads, to mark
specific positions. It may test the currently visited nodes to see which pebbles are
present. Moreover, it may retrieve a pebble from anywhere in the tree, provided
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the life times of the pebbles are nested (which means that only the last one
dropped can be retrieved). This can be formalized by keeping a (bounded) stack
in the configuration of the automaton, pushing and popping pebbles when they
are dropped and retrieved. Pebbles can be reused any number of times (but
there is only one copy of each pebble). Computations should start and end
with all heads at the root without pebbles on the input tree. The family of tree
languages accepted by (deterministic) k-head twa with nested pebbles is denoted
by NPWkA (DPWkA).

Note that pebbles (1) are nested, as in e.g., [19, 13, 25, 16]; without this re-
striction again the classes DSPACE(log n) and NSPACE(log n) are obtained, (2)
behave as pointers : we can store the address of a node when we visit it, and we
can later whipe the address from memory without returning to the node itself
(“abstract markers” [3] as opposed to the usual “physical markers”), (3) always
remain visible to the automaton (not only the last one dropped, as in [19]).

Example 1. As in [6], consider a ranked alphabet with one binary symbol and
two nullary symbols a and b, and consider the trees for which the path to each
a-labelled leaf contains an even number of nodes on the ‘branching structure’ of
the tree, i.e., nodes for which both the left and right subtree contain an a-labelled
leaf. This is a first-order definable tree language that cannot be accepted by any
single-head nondeterministic twa (without pebbles) [6].

However, it can be accepted by a (single-head) deterministic twa with two
nested pebbles as follows. Using a preorder traversal, the first pebble is placed
consecutively on a-labelled leaves. For each such leaf we follow the path upwards
to the root counting the number of nodes that belong to the branching structure.
To test whether a node belongs to that structure we place the second pebble on
the node and test whether its other subtree, i.e., the one that does not contain the
first pebble, contains an a-labelled leaf (using again a traversal of that subtree,
the root of which can be recognized through the second pebble). !"

We now generalize the inclusion FO ⊆ DPW1A from [13], introducing k-ary
transitive closure, as well as allowing k heads. Note that here we use ‘pointer-
like’ pebbles, rather than the usual pebbles.

Lemma 2. For ranked trees, FO+DTCk ⊆ DPWkA.

Proof. By induction on the structure of the formula φ we construct an automaton
A that always halts on its input tree t. Generally speaking, each variable of φ
acts as a pebble for A. In case of k-ary transitive closure we need 3k pebbles
to test the formula. Most features can be simulated using a single head, moving
pebbles around, only for transitive closure we need all the k heads.

For intermediate formulas with free variables we fix the valuation of these
variables by putting pebbles on the tree, one for each variable, and A should
evaluate the formula according to this valuation; it may test these pebbles but
is not allowed to retrieve them. Automaton A is started in the initial state with
all heads at the root of the tree t, it may use additional pebbles (in a nested
fashion), and it should halt again with all heads at the root.
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For the atomic formulas (single-head) automata are easily constructed. As an
example, for edgi(x, y) the automaton searches for pebble x, determines whether
x has an i-th child (the arity of the node can be seen from its label), moves to
that child, and checks there whether pebble y is present.

For the negation φ = ¬φ1 we use the automaton for φ1, changing its ac-
cepting states to the complementary set. This works thanks to the fact that the
automata we build are always halting. A similar argument works for conjunction
and disjunction, running the automata for the two constituents consecutively.

For quantification φ = (∀x)φ1 the automaton A makes a systematic traversal
through the tree, using a single head. Reaching a node it drops a pebble x, returns
to the root, and runs the automaton for φ1 as a subroutine; the free variable x
of φ1 is marked by the pebble, as requested by the inductive hypothesis. When
the test for φ1(x) is positive, A returns to the node marked x (searching for it),
picks up the pebble, and places it on the next node of the traversal; A accepts
if it has succesfully run the test for φ1 for each node. Existential quantification
is treated similarly.

For transitive closure φ = φ∗
1 we need to walk from one k-tuple of nodes x to

another k-tuple y with ‘jumps’ specified by the 2k-ary formula φ1. Doing this in
a straightforward way, we might end ‘jumping around’ in a cycle. To obtain an
automaton that always halts we use the technique of Sipser [32], and run this
walk backwards. It is based on the observation that the computation space is
actually a tree. Consider all k-tuples of nodes of the input tree t, and connect
vertex1 u to vertex v if the pair (u, v) in t satisfies φ1(x, y). As φ1 is functional,
for each vertex there is at most one outgoing arc. Choosing vertex y as root we
obtain a directed tree tk(y), with arcs defined by φ1 pointing towards the root
y; there is no bound on the number of arcs incident to each vertex. It consists
of all vertices u that satisfy t |= φ(u, y).

The automaton A traverses that tree tk(y) and tries to find the vertex marked
by pebbles x. However, tk(y) is not explicitly available and has to be recon-
structed while walking on the input tree t, using the automaton A1 for φ1 as a
subroutine. Note that k-tuples of nodes of t can be enumerated (ordered) using
the lexicographical ordering based on the preorder in t. To find the successor of
a k-tuple z we act like adding one to a k-ary number: change the last coordinate
of the tuple z into its successor (here the preorder successor in t) if that exists,
otherwise reset that coordinate to the first element in the ordering (here the root
of t), and consider the last-but-one coordinate, etc. In fact, this can be done by
a single-head twa using the pebbles marking z in a nested fashion.

We traverse the tree tk(y), with 2k pebbles x and y fixed, with the help of
3k additional pebbles x′, y′, and z′. Starting in y we determine whether vertex
x belongs to tk(y). During this traversal, A keeps track of the current vertex of
tk(y) with its k heads. The order of dropping the pebbles x′ and y′ differs in the
two algorithmic steps below: in the first we have to check φ1(x′, y′) ‘backwards’,
finding x′ given y′, while in the second it is the other way around.

1 For clarity we distinguish ‘node’ in the input tree from ‘vertex’ in the computation
space, i.e., a k-tuple of nodes. Similarly we use ‘edge’ and ‘arc’.
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Step one: check whether the current vertex has a first child in tk(y), and
go there if it exists. We drop pebbles y′ to fix the current vertex, and we ‘lex-
icographically’ place pebbles x′ on each candidate vertex (except v). For each
k-tuple x′ we check φ1(x′, y′) using automatonA1 as a subroutine. If the formula
is true, we have found the first child in tk(y) and we move the k heads to the
nodes marked by x′, lift pebbles x′, and retrieve pebbles y′ (from a distance).
Otherwise we move x′ to the next candidate vertex. If none of the candidates x′

satisfies φ1(x′, y′), the vertex y′ apparently has no child in tk(y).
Step two: check for a right sibling in tk(y), and go there if it exists, or go up

(to the parent of the current vertex) otherwise. The problem here is to adhere to
the proper nesting of the pebbles. First drop pebbles x′ on the current vertex.
Then determine its parent in tk(y); this is the unique vertex y′ that satisfies
φ1(x′, y′), thanks to the functionality of φ1. It can be found in a ‘lexicographic’
traversal of all k-tuples of nodes of t using pebbles y′ and subroutine A1. Leave
y′ on the parent and return to x′ (by searching for it in t). Using the third set
of k pebbles z′, traverse the k-tuples of nodes of t from x′ onwards and try to
find the next k-tuple that satisfies φ1(z′, y′) when z′ is dropped. If found, it is
the right sibling of x′; return there, lift z′, and retrieve y′ and x′. Otherwise, the
current vertex has no right sibling; go up in the tree tk(y), i.e., return to y′, lift
y′, and retrieve x′. !"

4 From Nested Pebbles to Logic

The classical result of Kleene shows how to transform a finite-state automaton
into a regular expression, which basically means that we have a way to dispose
of the states of the automaton. It is observed in [2] that this technique can also
be used to transform multi-head automata on grids into equivalent formulas
with transitive closure: transitive closure may very well specify sequences of
consecutive positions on the input, but has no direct means to store states. A
similar technique is used here. As our model includes pebbles, this imposes an
additional problem, which we solve by iterating the construction for each pebble.
Unlike [2] we have managed to find a formulation that works well for both the
nondeterministic and deterministic case.

If the step relation of a deterministic finite-state device with k heads is spec-
ified by logical formulas, then its computation relation can be expressed using
k-ary deterministic transitive closure. This is formalized as follows.

Let Φ be a Q×Q matrix of predicates φp,q(x, y), p, q ∈ Q for some finite set
Q (of states), where x, y each are k distinct variables occurring free in all φp,q.
We define the computation closure of Φ with respect to x, y as the matrix Φ#

consisting of predicates φ#
p,q(x, y) where t |= φ#

p,q(u, v) iff there exists a sequence
of k-tuples of nodes u0, u1, . . . , un and a sequence of states p0, p1, . . . , pn, n ≥ 1,
such that u = u0, v = un, p = p0, q = pn, and t |= φpi,pi+1(ui, ui+1) for 0 ≤ i <
n.(2) Intuitively t |= φ#

p,q(u, v) means that there is a Φ-path of consecutive steps
(as specified by Φ) leading from nodes u in state p to nodes v in state q.
2 For simplicity, we disregard the remaining free variables of the φp,q and φ#

p,q.
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We say that Φ is deterministic if its predicates are both functional and ex-
clusive, i.e., for any p, q, q′ ∈ Q and 3k nodes u, v, v′ of any tree t, if both
t |= φp,q(u, v) and t |= φp,q′ (u, v′) then q = q′ and v = v′.

Lemma 3. If Φ is in FO+DTCk and deterministic, then Φ# is in FO+DTCk.

Proof. Assume that Q = {1, 2, . . . ,m}. We construct matrices Φ(�) of formu-
las φ

(�)
p,q in FO+TCk which are defined as φ#

p,q, except that the intermediate
states p1, . . . , pn−1 are chosen from {1, . . . , �}. In particular, Φ(0) = Φ, and
Φ(m) = Φ#. Inductively we obtain Φ(�+1) as follows: φ

(�+1)
p,q (x, y) = φ

(�)
p,q(x, y) ∨

(∃x′ y′)[ φ
(�)
p,�+1(x, x′)∧ (φ(�)

�+1,�+1)
∗(x′, y′)∧ φ

(�)
�+1,q(y

′, y) ]. The transitive closure

is deterministic: φ
(�)
�+1,�+1 is functional because Φ is deterministic and because

Φ-paths ending in �+1 cannot be extended following the definition of Φ(�). !"

Lemma 4. For ranked trees, DPWkA ⊆ FO+DTCk.

Proof. Consider a k-head twa A with n pebbles xn, . . . , x1, used in the order
given, i.e., xn is always placed on the bottom of the pebble stack. View A as con-
sisting of n+1 ‘levels’ An, . . . ,A1,A0 such that A� is a k-head twa with � pebbles
x�, . . . , x1, available for dropping and retrieving, whereas pebbles xn, . . . , x�+1

have a fixed position on the tree and A� may test for their presence. Basically,
A� acts as a twa that drops pebble x�, then queries A�−1 where to go in the tree,
moves there, and retrieves pebble x� (from a distance).

The number of pebbles dropped can be kept in the finite control of A, so we
can unambiguously partition its state set as Q = Qn ∪ · · · ∪ Q1 ∪ Q0, where
Q� consists of states where � pebbles are still available. Automaton A� is the
restriction of A to the states in Q�.

For A� a matrix Φ(�) is constructed with predicates φ
(�)
p,q for p, q ∈ Q�. These

predicates represent the single steps of A�, so t |= φ
(�)#
p,q (u, v) iff A� has a

nonempty computation from configuration [p, u] to configuration [q, v]. Note that
Φ(�) has additional free variables xn, . . . , x�+1 that will hold the positions of the
pebbles already placed on the tree.

First assume that pebble x� has not been dropped. For each of its heads,
A� may test the presence of pebbles xn, . . . , x�+1, and the node label and child
number of the current node, and then it may move each of its heads. These steps,
relations between the current and next configurations [p, u] and [q, v], are easily
expressed in first-order logic. E.g., if the automaton can move head 5 to the first
child of a node with label σ, while the node under head 6 has child number 2 and
does not contain pebble x�+1, then φ

(�)
p,q(u, v) is the conjunction of the formulas

labσ(u[5]), (∃u′) edg2(u
′, u[6]), u[6] �= x�+1, edg1(u[5], v[5]), and u[j] = v[j] for

j �= 5 (where u[i] denotes the ith component of u).
Additionally when � ≥ 1, A� may drop pebble x� at the position of head i

in state p, call A�−1, and retrieve pebble x� returning to state q. Such a ‘macro
step’ from configuration [p, u] to [q, v] is only possible when there is a pair of
pebble instructions (p, dropi(x�), p′) and (q′, retrieve(x�), q), such that A�−1 has
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a (nonempty) computation from [p′, u] to [q′, v], i.e., t |= φ
(�−1)#
p′,q′ (u, v). (3) Hence,

A� can take that step iff the disjunction of φ
(�−1)#
p′,q′ (u, v) over all such q′ holds,

where the free variable x� in that formula is replaced by u[i], the position at
which the pebble is dropped.

The resulting step matrix Φ(�) is deterministic thanks to the determinism of
A and Φ(�−1). It is in FO+DTCk by Lemma 3. The computational behaviour
of A� is expressed by Φ(�)#, and that of A by the disjunction of all formulas
φ

(n)#
p,q (root, root) with p initial and q accepting. !"

Combining Lemmas 2 and 4, we immediately get the main result of this paper.
Note that it includes the case of strings.

Theorem 5. For ranked trees, DPWkA = FO+DTCk.

As a corollary we may transfer two obvious properties of FO+DTCk, closure
under complement and union, to deterministic twa with nested pebbles, where
the result is nontrivial. In the proof of Lemma 2 we have constructed automata
that are always halting. As all our constructions are effective this means that
‘always-halting’ is a normal form for deterministic twa with nested pebbles. In
fact, the two closure properties follow rather directly from this normal form.
This is further studied with regard to the number of pebbles needed in [27].

When the twa is not deterministic we no longer can assure the determinism of
the formulas Φ(�) in the proof of Lemma 4. However, they are in FO+TCk. The
proof of Lemma 4 uses negation only on atomic predicates, to model negative
tests of the automaton (to check there is no specific pebble on a node). Since
negation is not used in the proof of Lemma 3, we obtain positive formulas,
allowing transitive closure only within the scope of an even number of negations
(see, e.g., [11, 21]).

Conversely, for positive formulas there is also a result similar to Lemma 2.
For disjunction and existential quantification the automaton now uses nondeter-
minism in the obvious way. For transitive closure φ = φ∗

1 the Sipser technique is
not needed: A checks nondeterministically the existence of a path from vertex x
to vertex y in the directed graph determined by φ1.

Denoting the positive restriction of FO+TCk by FO+posTCk, we thus obtain a
characterization for the nondeterministic case. We do not know whether NPWkA
is closed under complement (i.e., whether ‘pos’ can be dropped from this result).

Theorem 6. For ranked trees, NPWkA = FO+posTCk.

5 Single Head on Trees

Single-head tree-walking automata (with output) were introduced as a device for
syntax-directed translation [1] (see [17]). Quite recently they came into fashion
again as a model for translation of XML specifications [25, 28, 23, 7].

3 Here we assume that instructions dropping and retrieving pebbles have no tests.
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The control of a single-head tree-walking automaton is at a single node of
the input tree, i.e., sequential. Thus it differs from the classic bottom-up/top-
down tree automata, which are inherently parallel in the sense that the control
is fused/split for every branching of the tree.

The power of the classic model is well known: it accepts the regular tree
languages. For twa however, the situation was unclear for a long time. They
recognize regular tree languages only, but it was conjectured in [12] (and later
in [15, 13, 7]) that they cannot recognize them all. Recently this has been proved
for deterministic and nondeterministic twa in [5] and [6], respectively.

To strengthen the power of the single-head twa, keeping its sequential nature,
in [13] the single-head twa was equipped with nested pebbles. We showed there
that the tree languages accepted by such twa are still regular.

As observed before, DSPACE(log n) is the class of languages accepted by
single-head two-way automata with (nonnested) pebbles. Thus, for k = 1 (single-
head automata vs. unary transitive closure), our main characterization for tree
languages, Theorem 5, can be seen as a ‘regular’ restriction of the result of
Immerman characterizing DSPACE(log n); on the one hand only automata with
nested pebbles are allowed, while on the other hand we consider only unary tran-
sitive closure, i.e., transitive closure for φ(x, y) where x, y are single variables.
Note that unary transitive closure can be simulated in monadic second-order
logic (MSO), which defines the family REG of regular tree languages [10, 33].

In the diagram we compare the family FO+DTC1 = DPW1A with several
next of kin. Lines without question mark denote proper inclusion. By LFO we
denote the family of languages definable in local first-order logic, i.e., dropping
the atomic formula x ≤ y. The regular language (aa)∗ shows that DW1A �⊆ FO.

Consider the binary trees that among their leaves have (exactly) three posi-
tions marked by a special symbol a in such a way that there is an internal node,
the left subtree of which contains a single a, while its right subtree contains the
other two. This example from [5] shows that DW1A ⊂ NW1A and moreover that
FO �⊆ DW1A.

The example to prove REG �⊆ NW1A [6] shows even that FO �⊆ NW1A, cf.
Example 1. Logical characterizations of DW1A and NW1A are given in [29],
using transitive closure in a restricted way. In [31] several logics for regular

FO

FO+DTC1 = DPW1A

FO+posTC1 = NPW1A

MSO = REG

LFO

DW1A

NW1A

[13]

[13]

[5]

?

[6]

?
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tree languages are studied; it is stated as an open problem whether all regular
tree languages can be defined using monadic transitive closure, i.e., whether
FO+TC1 = REG.

Some of the inclusions between the families of trees we have studied are not
known to be strict. In particular, can single-head twa with pebbles recognize
all regular tree languages? If, instead of with pebbles, they are equipped with a
synchronized pushdown or, equivalently, with ‘marbles’, then they do recognize
all regular tree languages [22, 15]. There are several other open questions. Is there
a hierarchy for tree languages accepted by (deterministic) twa with respect to the
number of pebbles these automata use? Are our ‘pointer’ pebbles more powerful
than the usual ‘physical’ ones? For nonnested pebbles the two types have the
same power, even when the number of pebbles is fixed [3].

6 Walking on Graphs

We generalize our results on trees (and strings) to more general families of graphs
(with both node and edge labels). To have a meaningful notion of graph-walking
automaton we only consider (connected) graphs with a natural locality condi-
tion: a node cannot have two incident edges with the same label and the same
direction. Trees over a ranked alphabet fall under this definition since we label
the edge from a parent to its i-th child by i. Unranked trees satisfy this condi-
tion when represented with ‘first child’ and ‘next sibling’ edges. Two-dimensional
grids satisfy it by distinguishing between horizontal and vertical edges.

A k-head graph-walking automaton with nested pebbles is like its relative for
trees, but it may additionally check whether one of its current nodes has an
incident incoming/outgoing edge with a specific label (generalizing the concepts
of child number and rank). Generally graphs do not have a distinguished node
(like the root for trees); thus for acceptance of an input graph we require that
the automaton has an accepting computation when started with all its heads on
any node of the input graph. Not all automata satisfy this requirement.

The first-order logic for graphs over the label alphabet Σ has atomic formulas
labσ(x), σ ∈ Σ, for a node x with label σ, edgσ(x, y), σ ∈ Σ, for an edge from x
to y with label σ, and x = y. We do not allow the predicate x ≤ y, although for
trees that can be defined in first-order logic with deterministic transitive closure.

For arbitrary families of graphs the computation of an automaton can be
specified in logic, like in Section 4. (We keep the notation for the families.)

Lemma 7. For every family of graphs, DPWkA ⊆ FO+DTCk.

The other direction holds for all families of graphs for which there exists a (fixed)
single-head deterministic graph-walking automaton (with nested pebbles) that
can traverse each graph of the family, visiting each node at least once. Such a
family is called searchable, and the fixed automaton a guide.

Unranked (ordered) trees, without bound on the number of children of a
node, are a searchable graph family in their representation as binary trees. The
(single-head) automata in this representation may move to the first child or to
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the next sibling of a node (and back), exactly as customary in the literature
[28, 30] (albeit without pebbles). Rectangular (directed) grids, edges pointing to
the right or downwards, with edge labels distinguishing these two types of edges,
form another example of a searchable family. This can be generalized to higher
dimensions [2].

Cyclic grids, or toruses, where the last node of each row has an edge to the
first node of that row, and similarly for columns, can be searched using two
pebbles. We search the grid row-by-row: the first pebble marks the position we
start with (in order to stop when all rows are visited; this pebble is not moved),
the second pebble moves down in the first column to mark the position in which
we started the row (in order to stop when we finish the row; we then move the
pebble down to the next row until we meet the first pebble).

Theorem 8. For every searchable family of graphs, DPWkA = FO+DTCk.

The family of all graphs is not searchable, not even with nonnested pebbles or
with several heads. This follows from results of Cook and Rackoff [9].

It is open whether we can search a maze (a connected subgraph of a grid)
with a single head using nested pebbles. However with two heads we can search
a maze [4]. To cover this family we need to extend the notion of searchability: a
family of graphs is k-searchable if there is a deterministic guide as before, now
having k heads. We have to extend our automaton model with a new instruction
that moves a given head to a given pebble (like the ‘jumping’ instruction from
[9]). This is quite natural if we see pebbles as pointers, storing the address of a
node. With this assumption we get a result as above for k-searchable families.

Some unresolved questions were stated in Section 5. Another question is
whether our results can be generalized to alternating automata and the alter-
nating transitive closure operator of [20].
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Abstract. We consider an extension of first-order logic by modular
quantifiers of a fixed modulus q. Drawing on collapse results from fi-
nite model theory and techniques of finite semigroup theory, we show
that if the only available numerical predicate is addition, then sentences
in this logic cannot define the set of bit strings in which the number of
1’s is divisible by a prime p that does not divide q. More generally, we
completely characterize the regular languages definable in this logic. The
corresponding statement, with addition replaced by arbitrary numerical
predicates, is equivalent to the conjectured separation of the circuit com-
plexity class ACC from NC1. Thus our theorem can be viewed as proving
a highly uniform version of the conjecture.

1 Background

The circuit complexity class ACC(q) is the family of languages recognized by
constant-depth polynomial-size families of circuits containing unbounded fan-in
AND, OR, and MODq gates for some fixed modulus q > 0. It is known that if
q is a prime power, and p is a prime that does not divide q, then ACC(q) does
not contain the language Lp consisting of all bit strings in which the number
of 1’s is divisible by p (Razborov [15], Smolensky [17]). But for moduli q that
have distinct prime divisors, little is known, and the task of separating ACC, the
union of the ACC(q), from NC1 is an outstanding unsolved problem in circuit
complexity.

ACC(q) has a model-theoretic characterization as the family of languages
definable in an extension of first-order logic which contains predicate symbols
for arbitrary relations on the natural numbers, and in which special “modular
quantifiers” of modulus q occur along with ordinary quantifiers. (Barrington, et.
al. [2], Straubing [18].) Since there are languages that are complete for NC1

under constant-depth reductions, in order to separate NC1 from ACC, it is
sufficient to show that for each q > 1 there is a language in NC1 that does not
belong to ACC(q). This suggests that one might be able to attack the problem
by model-theoretic means. However, the problem has resisted solution by this
or any other method, and little progress has been made since the appearance of
Smolensky’s work.

Recently, K.J. Lange [9] raised the possibility of proving the separation for
logics with a restricted class of numerical predicates. It is already known (Straub-
ing, Thérien and Thomas [19]) that if the only available numerical predicate is <,

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 489–499, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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then all the languages definable with ordinary and modular quantifiers of modu-
lus q are regular, and all the groups in the syntactic monoids of these languages
are solvable, of cardinality dividing a power of q. This implies, for example, that
if q is odd, then one cannot define the set of bit strings with an even number of
1’s in this logic. The natural next step is to allow the ternary relation x + y = z
on the natural numbers. One can prove the analogue of the separation between
AC0 and NC1 in this setting by purely model-theoretic means, without recourse
to results from circuit complexity. (Originally proved by Lynch [12]. The ques-
tion is discussed at length in Barrington, et. al. [4].) In the present paper we
extend this to formulas with ordinary and modular quantifiers over the numeri-
cal predicate x + y = z. This can be viewed as proving the separation between
ACC and NC1 in a highly uniform setting.

We note that natural uniform versions of AC0 and ACC result when one
allows both addition and multiplication as numerical predicates. (Barrington,
Immerman and Straubing [3].) These formulas behave very differently, and are
much harder to analyze by model-theoretic means. So separating ACC from
NC1 even in this natural uniform setting still appears to be a very difficult
problem.

We obtain our result by first showing, in Section 3, that it is sufficient to
consider sentences that only quantify over positions in a bit string that contain
a 1. The underlying quantifier-elimination procedure, while rather complicated
in the case of modular quantifiers, is based on an idea that goes back to Pres-
burger [14]. In Section 4, we use another model-theoretic collapse, this one based
on Ramsey’s Theorem, to show that it is sufficient to consider sentences in which
the only numerical predicate is <, which can be analyzed by known semigroup-
theoretic methods. Semigroup theory has been used in the past to obtain rather
weak lower bounds for computations by circuits and branching programs (e.g.,
Barrington and Straubing [5]). By coupling the algebra in this way with ideas
from model theory, we are able to extend its reach.

Nurmonen [13] establishes different nonexpressibility results for sentences with
modular quantifiers, using a version of Ehrenfeucht-Fräıssé games. Schweikardt
[16] proves nonexpressibility results for logics with different generalized quantifiers
over the base (N,+). Extension of the Ramsey property to generalized quantifiers
is discussed in Benedikt and Libkin [8].

Of course, we are most interested in proving the separation over arbitrary nu-
merical predicates, or, at the very least, over a class of numerical predicates that
includes both addition and multiplication. In the final section we discuss both
the prospects for generalizing the present work, and the obstacles to doing so.

Considerations of length oblige us to give only an outline of the main argu-
ment; the complete details will be given in the full paper.

We have relied heavily on the account of collapse results for embedded fi-
nite models contained in two works on finite model theory by L. Libkin: the
survey article [10] and the book [11]. We acknowledge helpful discussions with
Klaus-Jörn Lange, Denis Thérien, David Mix Barrington, and the late Clemens
Lautemann.
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2 Notation and Statement of Result

We consider first-order logic FO[+] with a single ternary relation x + y = z.
Formulas are interpreted in the natural numbers N. We supplement this with
a single unary relation π. The resulting formulas are interpreted in bit strings,
with π(x) taken to mean that the bit in position x is 1. In fact we can consider
several such interpretations: in finite bit strings (w ∈ {0, 1}∗), in infinite bit
strings (w ∈ {0, 1}N) and in infinite bit strings with a finite number of 1’s
(w ∈ {0, 1}∗0ω, where 0ω denotes an infinite sequence of 0’s). A sentence φ in
this logic accordingly defines three sets of strings:

Lfin
φ = {w ∈ {0, 1}∗ : w |= φ},

L∞
φ = {w ∈ {0, 1}N : w |= φ},

and
Lfs

φ = {w ∈ {0, 1}∗0ω : w |= φ}.
(The letters “fs” stand for “finite support.”)

For example, let φ be the sentence

∃x∃y((x = y + y) ∧ π(x)),

which asserts that there is a 1 in an even numbered position. Note that for this
sentence Lfs

φ is a proper subset of L∞
φ , and that Lfs

φ = Lfin
φ 0ω.

We denote this logic by FO[π,+]. More generally, if R is any set of relations
on N, we denote the analogous logic by FO[π,R]. We define the languages Lfin

φ ,
etc., in exactly the same way.

To this apparatus we adjoin modular quantifiers ∃r mod q for a fixed modulus
q. The interpretation of ∃r mod q x φ is, informally, ‘the number of positions x for
which φ holds is congruent to r modulo q.’ More precisely, let φ(x, y1, . . . , yk) be
a formula with free variables x, y1, . . . , yk. Let w ∈ {0, 1}∗ or w ∈ {0, 1}N, and
let a1, . . . , ak < |w|. (If w is infinite this last condition is automatically satisfied
for any natural numbers ai.) Then we define

w |= (∃r mod q x φ)(a1, . . . , ak)

if and only if

|{b < |w| : w |= φ(b, a1, . . . , ak)}| ≡ r (mod q).

(In particular, for infinite strings w, this implies that the set {b < |w| : w |=
φ(b, a1, . . . , ak)} is finite.) For example, the sentence

∃0 mod 2 x π(x)

defines, in all three interpretations, the set of strings with an even number of 1’s.
We denote this logic by (FO + MODq)[π,+].
Here is our main result. Let m > 1, and let Lm denote the set of all finite bit

strings in which the number of 1’s is divisible by m.
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Theorem 1. If m is a prime that does not divide q, then there is no sentence
φ in (FO + MODq)[π,+] such that Lfin

φ = Lm, or L∞
φ = Lm0ω.

Remark. If we consider instead the family N of all relations on N, then the
family of languages in {0, 1}∗ definable by sentences in (FO + MODq)(π,N ) is
precisely the nonuniform circuit complexity class ACC(q) ( [2, 18]). If we let ×
denote multiplication in N, then (FO + MODq)[π,+,×] is the natural uniform
version of ACC(q) ( [3]). For these logics, the analogues of Theorem 1 are equiv-
alent to the conjectured separation of ACC(q) and NC1 in the nonuniform and
uniform cases, respectively. Thus our theorem can be thought of as establishing
this separation in a highly uniform setting.

In our proof of Theorem 1, we will use some notions from the algebraic theory
of finite automata: To each regular language L ⊆ Σ∗ there is associated a finite
monoid M(L) (the syntactic monoid of L) and a homomorphism μL : Σ∗ →
M(L) (the syntactic morphism of L) such that the value μL(w) determines
whether or not w ∈ L. That is, there is a subset X of M(L) such that L =
μ−1

L (X). (M(L) is the smallest monoid with this property: it is the monoid of
transformations on the states of the minimal automaton of L induced by elements
of Σ∗. The homomorphism μL maps a word w to the transformation it induces,
and X is the set of transformations that take an initial state to an accepting
state.)

If L ⊆ Σ∗, and λ ∈ Σ, we say λ is a neutral letter for L if for any u, v ∈ Σ∗,
uλv ∈ L if and only if uv ∈ L. In other words, deleting or inserting occurrences
of λ does not affect a word’s membership in L. In the algebraic setting, λ is a
neutral letter for L if and only if μL(λ) is the identity of M(L).

3 Collapse to Active Domain Formulas

While our goal is to prove a result about definability sets of finite strings, most of
our argument concerns definability of sets of infinite strings. An easy reduction
makes the connection between the two models.

Lemma 1. Let φ be a sentence of (FO +MODq)[π,+] and let L = Lfin
φ . Then

there is a sentence φ′ of (FO + MODq)[π,+] such that

Lfs
φ′ = L∞

φ′ = L0ω.

Proof. We define a formula φ[≤ x] with a single free variable x by rewriting it
from the innermost quantifier outward, replacing each instance of

Qzα,

where Q is the quantifier ∃ or ∃r mod q, by

Qz((z ≤ x) ∧ α).

Then L0ω is defined by the sentence

∃x(∀y(π(y) → y ≤ x) ∧ φ[≤ x]).
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Remark. Obviously, Lemma 1 holds for any of the logics (FO + MODq)[π,R]
in which ≤ is definable.

An active domain formula in (FO+MODq)[π,+] is one in which every quan-
tifier occurs in the form

Qx(π(x) ∧ α),

where Q is either the ordinary existential quantifier or a modular quantifier,
and α is a formula. We call these active domain quantifiers. In other words,
we allow quantification only over positions that contain the bit 1. Libkin [10]
sketches a proof that one can replace every formula in FO[π,+] by an equivalent
active-domain formula, provided one extends the signature. (The “natural-active
collapse”.) Here we generalize this result to formulas that contain modular quan-
tifiers.

We consider the logic

(FO + MODq)[π,+, <, 0, 1, {≡s: s > 1}],

in which + is now treated as a binary function, 0 and 1 are constants, and ≡s

is a binary relation symbol denoting congruence modulo s. Of course, all these
new constants and relations are definable in FO[+], but we need to include them
formally as part of the language in order to carry out the quantifier elimination.

Theorem 2. Let φ be a formula of (FO + MODq)[π,+, <, 0, 1, {≡s: s > 1}],
with free variables in {x1, . . . , xr}. Then there is an active-domain formula ψ
in the same logic such that for all w ∈ {0, 1}∗0ω and a1, . . . , ar ∈ N, we have
w |= φ(a1, . . . , ar), if and only if w |= ψ(a1, . . . , ar).

Proof. The proof, which we only sketch, is by induction on the construction of
φ. There is nothing to prove in the base case of quantifier-free formulas. For the
inductive step, we assume

φ = Qz φ′ (1)

where Q is either an existential quantifier (∃) or a modular quantifier (∃k mod q)
and φ′ is a formula such that any quantifier appearing in φ′ is an active domain
quantifier. We assume that φ′ has free variables x1, x2, . . .xr and bound variables
(hence active domain variables) y1, y2, . . . , ys.

Notation. We shall write v̂m to denote the tuple (v1, v2, . . . , vm). When m is
obvious from the context or is irrelevant, we simply write v̂ and refer to the i-th
coordinate as v̂i.

By application of standard techniques, we may assume φ has the form

Q z
(
(z ≡d c) ∧ φ′

)
for some d > 0, whereQ is an ordinary existential or ordinary modular quantifier
and φ′ is an active domain formula in which every atomic formula involving z is
either of the form z < ρ or z = ρ or z > ρ. Moreover ρ has the form

a0 + a1w1 + · · ·+ akwk,
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where the ai are integers and the wi are variables different from z. Strictly
speaking, such an expression is not a term in our logic, since we do not assume
that subtraction is available. We thus must regard a formula like z < ρ as a kind
of shorthand for z + ρ1 = ρ2, where ρ1 and ρ2 are terms.

We now fix an instantiation of x̂r, the free variables of φ, by a tuple âr ∈
Nr. To simplify the notation, we will not make explicit reference to âr in the
remainder of the proof. Each ρ appearing on the right-hand side of one of our
atomic formulas accordingly defines a partial function g from Ns into N, where
s is the number of active-domain variables. We let {gi : i ∈ I} denote the set of
these partial functions.

Let w ∈ {0, 1}∗0ω, and let D ⊆ N denote the set of positions in w that contain
1’s. (That is, D is the active domain of w.) Let

B =
⋃
i∈I

{gi(ŷ)|ŷ ∈ Ds}.

Write B as an ordered set {b0, b1, . . . , bp−1} where b0 < b1 < b2 · · · < bp−1. We
denote by (a, b) the set {x ∈ N : a < x < b}. By an interval in B, we will
mean either the leftmost interval (−1, b0), or intervals of the form (bi, bi+1) for
0 ≤ i ≤ p− 2 or the rightmost interval (bp−1,∞).

Following Libkin [10], we show:

Lemma 2. If there exists an integer z0 in an interval in B such that

w |= φ′(z0).

then
w |= φ′(z′0).

for every z′0 in the interval.(That is, if an interval contains a witness, then every
point in the interval is a witness.)

The proof given in [10] only considers the case of ordinary quantifiers, not mod-
ular quantifiers, but in this lemma the modular quantifiers do not introduce any
new complication.

Corollary 1. Let (l, r) be an interval in B such that l ≡dq α. Then

w |= {(z0 ≡d c) ∧ φ′(z0)}

for some z0 ∈ (l, r) iff

w |= φ′(l + ((c− α) mod d))

We also have a special property concerning the infinite interval (bp−1,∞):

Corollary 2. Let bp−1 ≡dq α If

w |= ∃k mod q z {(z ≡d c) ∧ φ′}

then
w �|= φ′(bp−1 + ((c− α) mod d))
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We note as well the following fact;

Lemma 3. Let l, r ∈ Z and c, d, q, α,β ∈ N be such that

l ≡ α mod dq and r ≡ β mod dq.

Let η(α,β) denote the number of integers x in (l, r) such that x ≡d c. Then,

η(α,β) ≡ 1 +
β − α− ((c− α) mod d)− ((β − c) mod d)

d
(mod q).

(The point of the foregoing lemma is that given c, d, q, α and β, η(α,β) is
determined by the constants α,β, c, d, q. The exact form of the expression is
irrelevant.)

We now proceed to the quantifier elimination by building an active domain
formula equivalent to φ = ∃k mod qz((z ≡d c)∧φ′(z)). The idea is to write a for-
mula that counts, modulo q, the number of witnesses to (z ≡d c)∧ φ′(z) in each
interval of B. (We may restrict our argument to elimination of the modular quan-
tifier, since the much simpler case of the ordinary quantifier is treated in [11].)

Let us provisionally admit into our formulas a predicate “x ∈ B”. We first
show that we can replace φ by an equivalent formula that only quantifies over
elements of B; that is, in which each occurrence of a quantifier is of the form
Qx((x ∈ B) ∧ ψ). Indeed, with such restricted quantification we can say that
there are t mod q elements x of B such that x ≡d c and φ′(x), and also that
there are t′ mod q intervals (x, y) in B such that x ≡dq α, y ≡dq β, and
φ′(x+(c−α) mod d). It follows from Corollaries 1 and 2, and Lemma 3, that with
a boolean combination of such formulas we can express φ. (We need Corollary 2
to say that the infinite interval (bp−1,∞) contains no witnesses.)

Second, we can express quantification over elements of B by quantification
over tuples of active-domain elements. Of course, we can say “there exists x ∈ B
such that ψ(x)” by saying there exists a tuple ŷ such that ψ(gi(ŷ)) for some
i. But it is not clear how to extend this to modular quantification over active
domain elements, since a single element of B could be the image of many dif-
ferent tuples ŷ under more than one of the partial function gi. The trick is to
consider the tuples ŷ such that no lexicographically larger tuple has the same
image under gi, and no gj with j > i maps to gi(ŷ). It is easy to express that
a tuple is maximal in this sense, and thus we can replace our formula by one in
which we quantify over such maximal tuples.

Finally, we can express modular quantification over tuples ŷ in terms of mod-
ular quantification over individual elements by noting that

∃k mod q(y1, y2) α

is equivalent to the disjunction, over all functions f : Zq → Zq, where
∑q−1

i=0 if(i) =
k, of the following:

q−1∧
i=0

∃i mod qy1 ∃f(i) mod qy2 α.

We can extend this inductively to quantification over tuples of arbitrary size.
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4 Collapse to Formulas with < as the Only Numerical
Predicate

4.1 Ramsey Property

Our discussion here closely parallels that of Libkin [11]. Let R be any set of
relations on N, and let φ(x1, . . . , xk) be an active-domain formula in (FO +
MODq)[π,R]. We say that φ has the Ramsey property if for each infinite subset
X of N, there exist an infinite subset Y of X and an active-domain formula
ψ(x1, . . . , xk) in (FO + MODq)[π,<] that satisfies the following condition: If
w ∈ {0, 1}∗0ω and all the 1’s in w are in positions belonging to Y, then for all
a1, . . . , ak ∈ Y,

w |= φ(a1, . . . , ak) iff w |= ψ(a1, . . . , ak).

Lemma 4. Let N be the set of all relations on N. Every active-domain formula
in (FO + MODq)[π,N ] has the Ramsey property.

The proof is essentially the same as the one for formulas with ordinary first-order
quantifiers, given in [11]. The introduction of modular quantifiers does not alter
the argument.

The Ramsey property allows us to capture a subset of a language expressible
by a formula φ (which satisfies the Ramsey property) by a new formula over a
very limited vocabulary (the only numerical predicate allowed is <). This limited
vocabulary restricts the kind of language that can be expressed.

Lemma 5. Let Lψ = {w|w ∈ {0, 1}∗} be the set of finite bit strings defined by
an active-domain sentence ψ ∈ (FO + MODq)[π,<].

(i) The language Lψ is regular. Moreover, the syntactic monoid M(Lψ) con-
tains only solvable groups whose order divides a power of q.

(ii) Lψ has 0 as a neutral letter.
(iii) Let z ∈ Σ∗. Then z ∈ Lψ iff z0ω |= ψ.

Proof. Condition (i) follows from a result of Straubing, Thérien and Thomas [19].
Inserting or deleting 0’s from any string satisfying ψ does not alter the truth
value of any atomic formula of the form x < y provided the variables repre-
sent positions containing 1, which is the case here, since ψ is active-domain.
Conditions (ii) and (iii) follow from an easy induction on the quantifier depth.

4.2 Proof of Theorem 1

Let m be a prime that does not divide q, and suppose, contrary to the claim
in the theorem, that Lm is defined by a sentence φ of (FO + MODq)[π,+]. By
Lemma 1, Theorem 2, and Lemma 4, there exists an active-domain sentence ψ of
(FO+MODq)[π,<] and an infinite subset Y of N such that for all w ∈ {0, 1}∗0ω

in which all 1’s are in positions belonging to Y, w |= φ if and only if w ∈ Lm0ω.
Let Lψ denote the set of finite bit strings that satisfy ψ. We prove:
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Lemma 6. Lm = Lψ.

Proof. We first show that Lψ ⊆ Lm. Let z′ ∈ Lψ. We pad z′ with 0’s so that the
1’s in the new padded string z′′ appear in positions included in the set Y . Since
z′′ ∈ Lψ (by Lemma 5 (ii)), we conclude that z′′0ω |= ψ (by Lemma 5 (iii)).
Since the 1’s in z′′0ω appear in positions in Y , z′′0ω |= φ. Hence z′′0ω ∈ Lm0ω,
so z′′ ∈ Lm. Removing additional neutral letter 0’s introduced while padding z′,
we conclude that z′ ∈ Lm.

The opposite inclusion (Lm ⊆ Lψ) is proved by reversing each step above.

Since the syntactic monoid of Lm is the cyclic group Zm and that of Lψ has
groups of order dividing a power of q (via Lemma 5), we have a contradic-
tion since (m, q) = 1. Thus Lm cannot be defined by a sentence in (FO +
MODq)[π,+]. This completes the proof.

4.3 Other Non-definability Results

Here we show how to extend Theorem 1 to prove nonexpressibility results for
other languages. We begin by removing the restriction to binary alphabets.

Let Σ be a finite alphabet and let us consider languages definable in the logic
Lq,Σ,+ = (FO + MODq)[{πσ : σ ∈ Σ},+], where each πσ is a unary predicate:
πσx is interpreted to mean that the letter in position x is σ. We designate a
special letter λ ∈ Σ, and say that a formula is active-domain (with respect to λ)
if every existential and modular quantifier Q occurs in the form Qx(πσx ∧ α),
where σ �= λ. Note that we need never use the atomic formula πλx, even in
non-active-domain formulas, as it is equivalent to the conjunction of the ¬πσx
over all letters σ not equal to λ. All the preceding results hold in this broader
setting, with no changes to their proofs. We thus have:

Theorem 3. Let L ⊆ Σ∗, with λ ∈ Σ a neutral letter for L. If L is definable
in Lq,Σ,+, then it is definable by a sentence of (FO + MODq)[{πσ : σ ∈ Σ}, <].
In particular, L is regular, and every group in M(L) is solvable, with cardinality
dividing a power of q.

The foregoing theorem allows us to give an effective characterization of all the
regular languages in Lq,Σ,+.

Theorem 4. Let L⊆Σ∗, be regular. L is definable in Lq,Σ,+ if and only if for all
t>0, every group in μL(Σt) is solvable, and has cardinality dividing a power of q.

The reduction to the neutral letter case is somewhat involved, so we omit the
proof. The same property is known to characterize the regular languages in
ACC(q), provided that the conjectured separation of ACC(q) and NC1 holds.
([2]). (The condition is effective, because there are only finitely many distinct
sets μL(Σt), and these can be effectively enumerated.)

Here is an application of Theorem 4. Let G be a finite group and let Σ ⊆ G
be a set of generators of G. We treat G as a finite alphabet; to each word
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w ∈ Σ∗ we assign the group element φ(w) that results by multiplying together
the letters of w. The word problem for G (with respect to Σ) is the language
{w ∈ Σ∗ : φ(w) = 1}. Barrington [1] showed that the word problem for any
finite nonsolvable group is complete for NC1 with respect to constant-depth
reductions, so that the conjectured separation of ACC from NC1 is equivalent to
the assertion that no such word problem belongs to ACC. We can verify directly
that no such word problem L is definable in Lq,Σ,+: L is a regular language,
and it is easy to check that M(L) = G and μL = φ. If G is nonsolvable then
its commutator subgroup G′ is also non-solvable and thus every element of G′

is the image of a word over Σ of length divisible by G (each commutator is an
image of a word of the form uvu|G|−1v|G|−1 where u, v ∈ Σ). We can pad each
of these words with a sufficient number of copies of σ|G| (for some fixed σ ∈ Σ)
so that they all have the same length t. Thus G′ ⊆ φ(Σt).

Theorem 5. No word problem of a finite nonsolvable group is definable in any
Lq,Σ,+.

Note that it is precisely the nonsolvability of G, rather than the relation between
|G| and q, that is at issue here: For instance, a word problem of the alternating
group of degree 5, whose cardinality is 60, is not definable in L30,Σ,+. even
though the cardinality and modulus are consistent. On the other hand, the word
problem for any solvable group of order 60 is definable in this logic.

5 Directions for Further Research

In many steps of the algorithm for reducing a sentence defining Lm to an active-
domain sentence, we introduced ordinary quantifiers even when the original for-
mula had only modular quantifiers. If there were a way to avoid this, we could
also prove, by the same techniques, that the language 0∗1{0, 1}∗ cannot be de-
fined by a formula over (N,+) having only modular quantifiers. If addition is
replaced by arbitrary numerical predicates, this statement is equivalent to the
conjecture that the circuit complexity class CC0 does not contain the language
1∗. (CC0 is the class of languages recognized by constant-depth, polynomial-size
circuit families in which every gate is a MODq gate for a fixed modulus q. See
Barrington, et. al. [6].)

Of course, we would really like to prove our result over a base of arbitrary
numerical predicates, or at the very least, over the base {+,×}. Note, however,
that in these logics it is possible to define the set of infinite strings with an even
number of 1’s in first-order logic without using modular quantifiers! Let E(x)
be the numerical predicate “the binary expansion of x contains an even number
of 1’s, and B(x, y) the predicate “bit y in the binary expansion of x is 1”. Then
the set of infinite bit strings with an even number of 1’s is defined by

∃x(E(x) ∧ ∀y(π(y) ↔ B(x, y))).

Both E and B are definable over (+,×). This shows that we cannot extend the
natural-active collapse argument to these richer logics. It also shows (since we
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know, from circuit complexity, that first-order sentences cannot define PARITY
for finite strings) that there are important differences between finite and infinite
strings as regards definability.

One possible approach to more general formulas is to try to prove the collapse
for sentences that define regular languages.

We have not mentioned circuits at all, even though this work was inspired by a
problem in circuit complexity. Itwouldbe interesting to know if there is anynatural
interpretation of the classes FO[π,+] or (FO + MOD)[π,+] in terms of circuits.
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Abstract. It is well-known that modal satisfiability is PSPACE-
complete [Lad77]. However, the complexity may decrease if we restrict
the set of propositional operators used. Note that there exist an infinite
number of propositional operators, since a propositional operator is
simply a Boolean function. We completely classify the complexity of
modal satisfiability for every finite set of propositional operators, i.e., in
contrast to previous work, we classify an infinite number of problems.
We show that, depending on the set of propositional operators, modal
satisfiability is PSPACE-complete, coNP-complete, or in P. We obtain
this trichotomy not only for modal formulas, but also for their more
succinct representation using modal circuits.

Keywords: computational complexity, modal logic.

1 Introduction

Modal logic has been a subject of research for a long time. The first steps in
introducing modal logics into mathematics were taken by Lewis [Lew18, LL32].
Further important works are [vW51] and [Göd33]. In the 1960s modal logic
was enriched with relational semantics, and finally completeness results such
as presented in [LS77] and [Seg71] were feasible. This resulted in an increase
of research in this area. Especially Kripke contributed much to the relational
approach (see, e.g., [Kri63a, Kri63b]), that is why the most general logic in
our context is called K. A historical overview can be found in [BdRV01] and a
comprehensive view of its evolution is given by [Gol03].

Modal logic has been used as a powerful tool to reason about knowledge and
belief in artificial intelligence since the 1970s [Moo79, MSHI78]. Some decades
ago it was discovered that it can also be used in cryptographic and other proto-
cols (see, e.g., [HMT88, FI86, LR86]). Nowadays modal logic is still an important
issue. For example, Bennett and Galton introduced a new modal language called
Versatile Event Logic in [BG04] and Liau characterizes the relationship among
belief, information acquisition and trust by use of modal logic [Lia03]. With the
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recognition of the usefulness of modal logic for computer science, complexity
issues became interesting and still are: For example, in the context of knowledge
updates of an agent on the basis of the modal logic S5 [BZ05] or a tableau calcu-
lus for a description logic [DM00]. The first results in this area were obtained by
Ladner, who showed that modal satisfiability is PSPACE-complete [Lad77]. A
good guide to different aspects of the complexity of modal logic is the paper by
Halpern and Moses [HM92]. They not only look at the propositional single-agent
case, but also at the multi-agent case, which is still PSPACE-complete.

A natural question arising here is: Are there any restrictions of modal logic
that are easier from a complexity point of view? There are several possible re-
strictions to look at. When considering the usual possible-worlds semantics for
modal logic, an often-studied restriction is to consider special classes of frames
(reflexive, transitive, etc.). These restrictions are important in many applica-
tions, since, for example, a modal operator that represents “always” would typi-
cally require the accessibility relation in the frame to be reflexive and transitive;
for a modal operator that represents “a processor knows” the relation would be
reflexive, transitive, and symmetric. It should be noted that such restrictions
do not necessarily decrease the complexity; for many common restrictions, the
complexity remains the same [Lad77, HM92] and it is even possible that the
complexity increases.

Another natural restriction of modal logic is to restrict the set of formulas.
Halpern was able to decrease the complexity of different modal logics to linear
time by allowing only a finite set of variables and finite nesting of modal operators
[Hal95]. Restricted modal languages where only a subset of the relevant modal
operators are allowed have been studied in the context of linear temporal logic
(see, e.g., [SC85]). Some description logics can be viewed as modal logic with a
restriction on the propositional operators that are allowed. For the complexity
of description logics, see, e.g., [SS91, DHL+92, DLNN97]. For the complexity of
modal logic with other restrictions on the set of operators, see [Hem01].

There exist an infinite number of propositional operators, since a propositional
operator is simply a Boolean function. We completely classify the complexity of
modal satisfiability for every finite set of propositional operators, i.e., we classify
an infinite number of problems. The restriction on the propositional operators
leads to a classification following the structure of Post’s lattice [Pos41]. For
propositional logic, Lewis showed that this problem is dichotomic: Depending on
the set of operators, propositional satisfiability is either NP-complete or solvable
in polynomial time [Lew79]. For modal satisfiability, we achieve a trichotomy:
We show that modal satisfiability is PSPACE-complete, coNP-complete, or in P.

When considering sets of operations which do not include negation, the com-
plexity for the cases where one modal operator is allowed sometimes differs from
the case where we allow both operator ♦ and its dual operator �. With only
one of these, modal satisfiability is PSPACE-complete exactly in those cases in
which propositional satisfiability is NP-complete. When we allow both modal
operators, the jump to PSPACE-completeness happens earlier, i.e., with a set of
operations with less expressive power.
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We also look at modal circuits, which are a succinct way of representing modal
formulas. We show that this does not give us a significantly different complexity
than the formula case.

2 Preliminaries

Modal logic is an extension of classical propositional logic that talks about “pos-
sible worlds.” Modal formulas in our context are basically propositional formulas
with an additional unary operator ♦. A model for a given formula consists of a
graph with propositional assignments. To be more precise, a frame consists of a
set W of “worlds,” and a “successor” relation R ⊆W ×W . For (w,w′) ∈ R, we
say w′ is a successor of w. A model M consists of a frame (W,R), a set X of
propositional variables and a function π : X → P(W ). For x ∈ X , π(x) denotes
the set of worlds in which the variable x is true. �φ is defined as ¬♦¬φ. Intu-
itively, ♦φ means “there is a successor world in which φ holds,” and �φ means
“φ holds in all successor worlds.” For a class F of frames, we say a model M is
an F -model if the underlying frame is an element of F .

For a formula φ built over the variables X , propositional operators ∧ and ¬,
and the unary modal operator ♦, we define what “φ holds at world w” means for
model M (or M,w satisfies φ) with assignment function π, written as M,w |= φ.

If φ is a propositional variable x, then M,w |= φ if and only if w ∈ π(x). As
usual, M,w |= φ1∧φ2 if and only if (M,w |= φ1 and M,w |= φ2) and M,w |= ¬φ
iff M,w �|= φ. Finally, M,w |= ♦φ if and only if there is a world w′ ∈ W such
that (w,w′) ∈ R and M,w′ |= φ.

For a class F of frames, we say a formula φ is F -satisfiable if there exists an
F -model M = (W,R, π) and a world w ∈ W such that M,w |= φ. For φ and ψ
modal formulas, we write φ ≡F ψ if for every world in every F -model, φ holds if
and only if ψ holds. Formula φ is an F -tautology if φ ≡F 1, and φ is F -constant
if φ ≡F 0 or φ ≡F 1.

We now define some classes of frames commonly used in applications of modal
logic. To see how these frames correspond to axioms and proof systems, see, for
example, [BdRV01]. K is the class of all frames, KD is the class of frames in
which every world has a successor, T and K4 are the class of reflexive, resp.
transitive frames. The class of of reflexive and transitive frames is called S4,
and S5 is the class of reflexive, symmetric, and transitive frames. The reflexive
singleton is the frame consisting of one world w, and the relation {(w,w)}. Note
that all classes of frames F described above contain the reflexive singleton.

We also consider a more general notion of modal formulas, whose propositional
analog has been studied extensively. For a finite set B of Boolean functions, a
modal B-circuit is a propositional Boolean circuit with gates for functions from
B and additional gates representing the modal operators ♦ or �. To be more
precise, a modal B-circuit consists of a directed acyclic graph (interpreted as
gates and wires in the circuit), and a marking defining the type of gates, i.e.,
describing which function or operator they represent. An order on the edges
is defined for non-commutative operations appearing as gate functions. For a
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precise definition of Boolean circuits, see, e.g., [Vol99]. A modal B-formula can be
seen as a modal B-circuit where each gate has out-degree ≤ 1. This corresponds
to the intuitive idea of a formula: Such a circuit can be written down as a formula,
without growing significantly in size. Semantically we interpret a circuit as a
succinct representation of its formula expansion. For a modal B-circuit C, the
modal depth of C, md(C), is the maximal number of gates representing modal
operators on a directed path in the graph. If, in addition to input gates, gates
representing functions from B, and modal gates, we also allow negative literals
to occur (as happens, for example, in description logics), we say C is a modal
B-circuit with atomic negation. Since every Boolean function can be expressed
using only ¬ and ∧, the semantics for circuits allowing arbitrary connectives is
immediate.

We now define the various modal satisfiability problems we are interested in.

Definition 2.1. Let B be a finite set of Boolean functions, F a class of
frames, and M ⊆ {♦,�}. Then FORMM (B) (CIRCM (B)) is the set of
modal B-formulas (B-circuits) using modal operators in M . FORM∼

M (B)
(CIRC∼

M (B)) are the corresponding modal formulas (circuits) with atomic nega-
tion. F -MSATF

M (B) (F -MSATC
M (B)) is the problem, given a formula (circuit)

from FORMM (B) (CIRCM (B)), to determine if it is F-satisfiable. The problems
F -MSATF̃

M (B) and F -MSATC̃
M (B) are defined analogously, where the circuits

and formulas may also contain atomic negation.

We now state Ladner’s theorem in our notation.

Theorem 2.2 ([Lad77]). The problems K-MSATF
�(∧,¬), T-MSATF

�(∧,¬),
S4-MSATF

�(∧,¬) are PSPACE-complete and S5-MSATF
�(∧,¬) is NP-complete.

In [Hem01], Hemaspaandra examined the complexity of K-MSATF
M (B) and

K-MSATF̃
M (B) for all M ⊆ {�,♦} and B ⊆ {∧,∨,¬, 0, 1}. In this paper, we

classify the complexity of modal satisfiability for all finite sets of Boolean func-
tions, i.e., in contrast to previous results on the complexity of modal logics, we
classify an infinite number of modal logics.

To obtain our classification, we define some notions about Boolean functions.
A set B of Boolean functions is called a clone if it is closed under superposition,
that is, B contains all projection functions and is closed under permutation,
identification of variables, and arbitrary composition. The set of clones forms a
lattice, which has been completely classified by Post [Pos41] (see [Rei01, p. 24]).
For a set B of Boolean functions, let [B] be the smallest clone containing B.

We define the clones that arise in our complexity classification. For more in-
formation about Post’s lattice and its use in complexity classifications of propo-
sitional logic, see, for example, [BCRV03, BCRV04].

The smallest clone contains only projections and is named I2 = [{id}]. I1 =
[{id, 1}] (where id is the Boolean identity function). The largest clone BF =
[{∧,¬}] is the set of all Boolean functions. The set of all monotonic functions
forms a clone denoted by M = [{∨,∧, 0, 1}]. D consists of all self-dual functions,
i.e., f ∈ D if and only if f(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn). L = [{⊕, 1}] is the



504 M. Bauland et al.

clone of all linear Boolean functions (where ⊕ is the Boolean exclusive OR).
The clone of all Boolean functions that can be written using only disjunction
and constants is called V = [{∨, 1, 0}]; V0 = [{∨, 0}] and V2 = [{∨}]. Similarly,
the clone E = [{∧, 0, 1}] contains the Boolean functions that can be written as
conjunctions of variables and constants; E0 = [{∧, 0}] and E2 = [{∧}]. R1 is built
from all 1-reproducing functions, i.e., all functions f with f(1, . . . , 1) = 1. The
clone N = [{¬, 1}] consists of the projections, their negations, and all constant
Boolean functions. S1 = [{x ∧ y}] and S11 = S1 ∩M.

Clones have an important property: The functions in a clone [B] are exactly
those that can be composed from variables and functions from B only. If we in-
terpret Boolean formulas as Boolean functions, then [B] consists of all formulas
that are equivalent to a formula built with variables and connectives from B.
Therefore, this framework can be used to investigate problems related to Boolean
formulas depending on which connectives are allowed. Lewis presented the result
that the satisfiability problem for Boolean formulas with connectives from B is
NP-complete if S1 ⊆ [B] and in P otherwise [Lew79]. Another example is the
classification of the equivalence problem given by Reith: The problem to decide
whether formulas with connectives from B are equivalent is in LOGSPACE, if
[B] ⊆ V or [B] ⊆ E or [B] ⊆ L, and coNP-complete in all other cases [Rei01].
Dichotomy results for counting the solutions of formulas [RW00], finding the
minimal solutions of formulas [RV00], and learnability of Boolean formulas and
circuits [Dal00] were achieved as well. Post’s lattice has been a helpful tool in
the constraint satisfaction context. This is surprising, because constraint satis-
faction problems are not related to Post’s lattice by definition, but clones appear
through a Galois connection [JCG97]. Nordh used this technique in the context
of nonmonotonic logics and presented a trichotomy theorem for the inference
problem in propositional circumscription [Nor05].

An important point in the present paper is the result that the complexity of
the various satisfiability problems for sets B only depends on the clone generated
by B. This is not obvious, since expressing some function in a clone with the
base functions of the respective clone can lead to a formula with exponential
length. A crucial tool in restricting the length of the resulting formula is the
following lemma showing that for certain sets B there are always short formulas
representing the functions AND and OR. Part (2) and (3) follow directly from
the proofs in [Lew79], part (1) is from [Sch05].

Lemma 2.3. 1. Let B be a finite set of Boolean functions such that V ⊆ [B] ⊆
M (E ⊆ [B] ⊆ M, resp.). Then there exists a B-formula f(x, y) such that
f represents x ∨ y (x ∧ y, resp.) and each of the variables x and y occurs
exactly once in f(x, y).

2. Let B be a finite set of Boolean functions such that [B] = BF. Then there
are B-formulas f(x, y) and g(x, y) such that f represents x∨ y, g represents
x ∧ y, and both variables occur in each of these formulas exactly once.

3. Let B be a finite set of Boolean functions such that N ⊆ [B]. Then there is
a B-formula f(x) such that f represents ¬x and the variable x occurs in f
only once.
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3 Results

Our main result is the following trichotomy for modal satisfiability.

Theorem 3.1. Let B be a finite set of Boolean functions.

1. If [B] ⊇ S11, then K-MSATF
�,♦(B) and K-MSATC

�,♦(B) are PSPACE-
complete (Corollary 3.9).

2. If [B] ∈ {E,E0}, then K-MSATF
�,♦(B) and K-MSATC

�,♦(B) are coNP-
complete (Lemma 3.10, Lemma 3.5, and Lemma 3.11).

3. In all other cases, K-MSATF
�,♦(B) and K-MSATC

�,♦(B) are in P (Section 3.4
and the structure of Post’s lattice).

In the cases where only one modal operator is allowed we achieve a dichotomy.

Theorem 3.2. Let B be a finite set of Boolean functions.

1. If [B] ⊇ S1, then K-MSATF
�(B), K-MSATF

♦ (B), K-MSATC
�(B), and

K-MSATC
♦ (B) are PSPACE-complete (Corollary 3.9 and Corollary 3.6);

2. otherwise, they are in P (Section 3.4 and the structure of Post’s lattice).

This dichotomy is a natural analog of Lewis’s result that the satisfiability prob-
lem for Boolean formulas with connectives from B is NP-complete if S1 ⊆ [B]
and in P otherwise [Lew79].

From these theorems, we conclude that using the more succinct representation
of modal circuits does not increase the polynomial degree of the complexity of the
satisfiability problem (for two problems A and B, we write A ≡p

m B if A ≤p
m B

and B ≤p
m A).

Corollary 3.3. Let B be a finite set of Boolean functions. Then
K-MSATC

�,♦(B) ≡p
m K-MSATF

�,♦(B), K-MSATC
�(B) ≡p

m K-MSATF
�(B),

and K-MSATC
♦ (B) ≡p

m K-MSATF
♦ (B).

The remainder of this section is devoted to proving these theorems. We will
generalize many of these results to other classes of frames in Section 4. Because
of space limitations, most of the proofs are omitted; all proofs can be found in
the full version of this paper [BHSS05].

3.1 General Upper Bounds

It is well-known that the F -satisfiability problem for modal formulas using the
operators �,∧, and ¬ is solvable in PSPACE for a variety of classes F of frames
(see [Lad77]). The following theorem shows that the circuit case can be reduced
to the formula case, thus putting the circuit problems in PSPACE as well.

Theorem 3.4. Let F be a class of frames. Then F -MSATC
�(∧,¬) ≤log

m

F -MSATF
�(∧,¬).

To handle bases other than {∧,¬}, we need the following simple lemma. The
proof uses the standard gate replacement technique.
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Lemma 3.5. Let B1, B2 be finite sets of Boolean formulas, let F be a class
of frames, and let M ⊆ {�,♦}. If [B1] ⊆ [B2], then F -MSATC

M (B1) ≤log
m

F -MSATC
M (B2) and F -MSATC̃

M (B1) ≤log
m F -MSATC̃

M (B2).

Corollary 3.6. Let B be a finite set of Boolean formulas, and let F be a class
of frames. Then

1. S5-MSATC̃
�,♦(B) is in NP, and

2. K-MSATC̃
�,♦(B), KD-MSATC̃

�,♦(B), T-MSATC̃
�,♦(B), and S4-MSATC̃

�,♦(B)
are in PSPACE.

Proof. For K, T, S4, and S5, this follows from Theorem 3.4, the results in [Lad77]
(see Theorem 2.2), and Lemma 3.5. The KD upper bound easily follows from
[Lad77]. �

3.2 PSPACE-Completeness

We now show how to express general modal formulas and circuits using one
modal operator and any set B of Boolean functions such that [B] ⊇ S1. This
implies that the satisfiability problems for such sets B of Boolean functions are as
hard as the general case. The proof of the following theorem uses a generalization
of ideas from the proof of the main result in [Lew79].

Theorem 3.7. Let F be a class of frames, B a finite set of Boolean functions,
S1 ⊆ [B]. Let M ⊆ {�,♦} such that M �= ∅. Then F -MSATF

�,♦(∧,¬) ≤log
m

F -MSATF
M (B) and F -MSATC

�,♦(∧,¬) ≤log
m F -MSATC

M (B).

Proof. Let φ ∈ FORM�,♦(∧,¬). Without loss of generality, assume that φ con-
tains only modal operators from M . Let B′ := B∪{1}. Then [B′] = BF (since I1
is the smallest clone containing 1, and BF is the smallest clone containing I1 and
S1). It follows from Lemma 2.3 that there is a B′ formula f¬(x) that represents
¬x, and x occurs in f¬(x) only once, and there exist B′ formulas f∧(x, y) and
f∨(x, y) such that f∧ represents ∧, f∨(x, y) represents ∨, and x and y occur ex-
actly once in f∧(x, y) and exactly once in f∨(x, y). In φ, replace every occurrence
of ∧ with f∧, every occurrence of ∨ with f∨, and every occurrence of ¬ with f¬.
Call the resulting formula φ′. Clearly, φ′ is a formula in FORMM (B′) and φ′

is equivalent to φ. By choice of f∨, f∧, and f¬, φ′ is computable in polynomial
time.

Now replace every occurrence of 1 with a new variable t and force t to be 1
in every relevant world by adding ∧

∧md(φ)
i=0 �it. This is a conjunction of linearly

many terms (since md(φ) ≤ |φ|). We insert parentheses in such a way that we
get a tree of ∧’s of logarithmic depth. Now express the ∧’s in this tree with the
equivalent B-formula (which exists, since [B] ⊇ S1 ⊃ E2 = [∧]) with the result
only increasing polynomially in size.

For circuits, use the same construction; this is in fact easier, since short for-
mulas are not required. �
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The following theorem implies that for the class K, PSPACE-completeness al-
ready holds for a lower class in Post’s lattice. It can be proven in a similar way
as the preceding theorem.

Theorem 3.8. Let F be a class of frames, let B be a finite set of Boolean func-
tions such that S11 ⊆ [B], and let M ⊆ {�,♦}. Then F -MSATF

M (∧,∨, 0) ≤log
m

F -MSATF
M (B) and F -MSATC

M (∧,∨, 0) ≤log
m F -MSATC

M (B).

Corollary 3.9. 1. Let F be a class of frames such that S4 ⊆ F ⊆ K, and let B
be a finite set of Boolean functions such that [B] ⊇ S1. Let ∅ �= M ⊆ {�,♦}.
Then F -MSATF

M (B) and F -MSATC
M (B) are ≤log

m -hard for PSPACE.
2. Let B be a finite set of Boolean functions such that S11 ⊆ [B]. Then

K-MSATF
�,♦(B) and K-MSATC

�,♦(B) are PSPACE-complete.

Proof. Part 1 follows directly from Theorem 3.7 and [Lad77]. In [Hem01, Theo-
rem 6.5], it is shown that K-MSATF

�,♦(∧,∨, 0) is PSPACE-hard. Thus part (2)
follows from Theorem 3.8 and Corollary 3.6. �

3.3 coNP-Completeness

In [Hem01], the analogous result of the following lemma was shown for formulas.
We prove that this coNP upper bound also holds for circuits.

Lemma 3.10. K-MSATC̃
�,♦(∧, 0, 1) ∈ coNP.

In [Hem05], it is shown that K-MSATF
�,♦(∧, 0) is coNP-hard. Applying

Lemma 2.3, we obtain the following result.

Lemma 3.11. Let B be a finite set of Boolean functions such that [B] ⊇ E0.
Then K-MSATF

�,♦(B) is coNP-hard.

3.4 Polynomial Time

Every propositional formula φ representing a function belonging to the clone
R1 is satisfiable, since φ(1, . . . , 1) = 1. Similarly, formulas φ representing self-
dual functions (i.e., the functions in the clone D) are always satisfiable, since
if φ(0, . . . , 0) = 0, then φ(1, . . . , 1) = 1. These results transfer to the modal
case: For the reflexive singleton, an assignment to the propositional variables
satisfying the “de-modalized” version of a formula (where all modal operators
are replaced with identities) satisfies the original modal formula. This leads to
the following lemma.

Lemma 3.12. Let [B] ⊆ R1 or [B] ⊆ D, and let F be a class of frames that
contains the reflexive singleton. Then every formula from FORM�,♦(B) is F-
satisfiable. In particular, F -MSATF

�,♦(B),F -MSATC
�,♦(B) ∈ LOGSPACE.

The following can easily be proven when considering that [{¬, 1}] = N and that
a modal {¬, 1}-circuit is basically a linear graph.
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Lemma 3.13. Let B be a finite set of Boolean functions such that [B] ⊆ N.
Then K-MSATC

�,♦(B) ∈ LOGSPACE.

Another easy problem is when the set B contains only disjunctions.

Lemma 3.14. Let B be a finite set of Boolean functions such that V2 ⊆ [B] ⊆ V
and let M ⊆ {♦,�}. Then K-MSATC

M (B) and K-MSATC̃
M (B) are complete for

NLOGSPACE under ≤log
m reductions if 0 ∈ [B], and in LOGSPACE otherwise.

The corresponding formula problems are solvable in LOGSPACE.

Our satisfiability problems for formulas having only ⊕ and constants in the
propositional base are easy. For the propositional case, this holds because un-
satisfiable formulas of this kind are of a very easy form: Every variable and the
constant 1 appear an even number of times. In the modal case, unsatisfiable
formulas over these connectives are of a similarly regular form. The result also
holds for modal circuits.

Theorem 3.15. Let B be a finite set of Boolean functions such that [B] ⊆ L.
Then K-MSATC

�,♦(B) ∈ P.

We now look at satisfiability problems with only one modal operator present.
The following lemma can be proven in a similar way as [Hem01, Theorems 6.4.5
and 6.4.6].

Lemma 3.16. Let B be a finite set of Boolean functions such that [B] ⊆ M.
Then K-MSATC

♦ (B) and K-MSATC
�(B) are solvable in polynomial time.

4 Other Classes of Frames

While K-satisfiability for variable-free formulas using both modal operators, con-
stants, and the Boolean connectives ∧ and ∨ is complete for PSPACE, this
problem (even with variables) is solvable in polynomial time if we look only at
frames in which each world has a successor. The proof uses a reduction to the
propositional case, and then applies the results from [Rei01, Theorem 3.8].

Theorem 4.1. Let F be a non-empty class of frames such that F ⊆ KD, and
let B be a finite set of Boolean functions such that [B] ⊆ M.

1. If B ⊆ R1, then F -MSATC
�,♦(B) is in LOGSPACE.

2. If [B] ∈ {V0,V,E0,E}, then F -MSATC
�,♦(B) is ≤log

m -complete for
NLOGSPACE.

3. If [B] ⊇ S11, then F -MSATC
�,♦(B) is ≤log

m -complete for P.
4. F -MSATF

�,♦(B) is in LOGSPACE.

For KD, the other polynomial time results carry over from K. The PSPACE
upper bound follows from Corollary 3.6 and PSPACE-hardness follows from
Corollary 3.9 (since S4 ⊆ KD ⊆ K). This leads to the following classification.
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Theorem 4.2. Let B be a finite set of Boolean functions.

1. If [B] ⊇ S1, then KD-MSATF
�(B), KD-MSATF

♦ (B), KD-MSATF
�,♦(B),

KD-MSATC
�(B), KD-MSATC

♦ (B), and KD-MSATC
�,♦(B) are PSPACE-

complete;
2. otherwise, they are in P.

From our proofs it also follows that the classes S4 and T behave like KD, except
that a full classification for sets B such that [B] ⊆ L is still open. We conjecture
that Theorem 4.2 holds with KD replaced by T and with KD replaced by S4.
The class S5 shows behavior similar to S4, except that the cases which are
PSPACE-complete for S4 are NP-complete for S5.

5 Further Research

A natural next question to look at is the classification for other classes of frames.
For F ∈ {T, S4, S5}, our proofs already give a complete classification with the ex-
ception of the complexity of the problems F -MSATC

�,♦(B) and F -MSATF
�,♦(B)

where B ⊆ L. We conjecture that these cases are solvable in polynomial time
as well. Another interesting question is the exact complexity of our polynomial
cases, most notably the case where the propositional operators represent linear
functions. The complete classification for the cases with atomic negation is also
still open.

There are many other interesting directions for future research. For example,
one can look at other decision problems (e.g., global satisfiability and formula
minimization), one can look at extensions of modal logic (e.g., multi-modal logic,
description logic, temporal logic, logics of knowledge, etc.), and one can try to
generalize modal logic modally as well as propositionally.
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Abstract. A stochastic graph game is played by two players on a game
graph with probabilistic transitions. We consider stochastic graph games
with ω-regular winning conditions specified as parity objectives. These
games lie in NP ∩ coNP. We present a strategy improvement algorithm
for stochastic parity games; this is the first non-brute-force algorithm
for solving these games. From the strategy improvement algorithm we
obtain a randomized subexponential-time algorithm to solve such games.

1 Introduction

Graph games. A stochastic graph game [5] is played on a directed graph with
three kinds of states: player-1, player-2, and probabilistic states. At player-1
states, player 1 chooses a successor state; at player-2 states, player 2 chooses a
successor state; at probabilistic states, a successor state is chosen according to
a given probability distribution. The outcome of playing the game forever is an
infinite path through the graph. If there are no probabilistic states, we refer to
the game as a 2-player graph game; otherwise, as a 21/2-player graph game.

Parity objectives. The theory of graph games with ω-regular winning conditions
is the foundation for modeling and synthesizing reactive processes with fairness
constraints. In the case of 21/2-player graph games, the two players represent
a reactive system and its environment, and the probabilistic states represent
uncertainty. The parity objectives provide an adequate model, as the fairness
constraints of reactive processes are ω-regular, and every ω-regular winning con-
dition can be specified as a parity objective [11]. The solution problem for a
21/2-player game with parity objective Φ asks for each state s, for the maximal
probability with which player 1 can ensure the satisfaction of Φ if the game is
started from s (this probability is called the value of the game at s). An op-
timal strategy for player 1 is a strategy that enables player 1 to win with that
maximal probability. The existence of pure memoryless optimal strategies for
21/2-player games with parity objectives was established recently in [4] (a pure
memoryless strategy chooses for each player-1 state a unique successor state).
The existence of pure memoryless optimal strategies implies that the solution
problem for 21/2-player games with parity objectives lies in NP ∩ coNP.
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Previous algorithms. Emerson and Jutla [7] had showed in 1988 that 2-player
parity games (without probabilistic states) can be solved in NP ∩ coNP. However,
to date no polynomial-time algorithm is known to solve these games. In 2000,
Vöge and Jurdziński [12] gave a strategy improvement algorithm for 2-player
parity games. A strategy improvement scheme iterates local optimizations of a
pure memoryless strategy; this works if the iteration can be shown to converge
to a global optimum [8]. Although the best known bound for the worst-case
running time of Vöge and Jurdziński is exponential, it behaves very well in
practice. Moreover, Björklund et al. [1] used the strategy improvement scheme
to derive a randomized subexponential-time algorithm for 2-player parity games.
And recently, Jurdziński et al. [9] found a deterministic subexponential-time
algorithm for 2-player parity games.

For 21/2-player games (with probabilistic states), Condon [5] proved contain-
ment in NP ∩ coNP in 1992 for the restricted case of reachability objectives,
and she gave a strategy improvement algorithm for this subclass of 21/2-player
games. Again, no polynomial-time algorithm is known to solve these games, but
using strategy improvement, Ludwig [10] derived a randomized subexponential-
time algorithm for 21/2-player reachability games on binary game graphs (game
graphs with maximum out-degree 2). The techniques of [1] also yield a ran-
domized subexponential-time algorithm for the nonbinary class of 21/2-player
reachability games. However, the techniques of [9] do not extend to give a deter-
ministic subexponential-time algorithm for 21/2-player reachability games. For
the full class of 21/2-player games with general parity objectives, no algorithm
has been known which is better than a brute-force enumeration of the set of all
possible pure memoryless strategies, and chosing the best one.

Our results. We present the first strategy improvement algorithm for 21/2-player
parity games. Our algorithm combines both techniques for 2-player parity games
and for 21/2-player reachability games, employing a novel reduction from 21/2-
player parity games (with quantitative winning criteria) to 2-player parity games
(with qualitative winning criteria). We then show how the techniques of [1] can
be extended to our strategy improvement algorithm to obtain a randomized
subexponential algorithm for 21/2-player parity games. Given a game graph with
n states and a parity objective with d priorities, the expected running time of our

algorithm is 2O
(√

d·n·log(n)
)
. The algorithm is subexponential if d = O

(
n1−ε

log(n)

)
for some ε > 0. Thus, for the special case of reachability objectives, the expected
running time of our algorithm matches the bound of the best known algorithm.

2 Definitions

We consider turn-based probabilistic games and some of its subclasses.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
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state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possible successors. The turn-
based deterministic game graphs (2-player game graphs) are the special case of
the 21/2-player game graphs with S© = ∅. The Markov decision processes (11/2-
player game graphs) are the special case of the 21/2-player game graphs with
S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1 MDPs, and to
the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or a play, of the game graph G is an infinite
sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ∈ N. We
write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω for
the set of plays that start from the state s. A strategy for player 1 is a function
σ: S∗ · S1 → D(S) that assigns a probability distribution to all finite sequences
w ∈ S∗ ·S1 of states ending in a player-1 state (the sequence represents a prefix
of a play). Player 1 follows the strategy σ if in each player-1 move, given that the
current history of the game is w ∈ S∗ · S1, she chooses the next state according
to the probability distribution σ(w). A strategy must prescribe only available
moves, i.e., for all w ∈ S∗, s ∈ S1, and t ∈ S, if σ(w · s)(t) > 0, then (s, t) ∈ E.
The strategies for player 2 are defined analogously. We denote by Σ and Π the
set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given the
strategies σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A)
for the probability that a path belongs to A if the game starts from the state s
and the players follow the strategies σ and π, respectively.

Strategies that do not use randomization are called pure. A player-1 strategy σ
is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that σ(w·s)(t) = 1.
A memoryless player-1 strategy does not depend on the history of the play but
only on the current state; it can be represented as a function σ: S1 → D(S). A
pure memoryless strategy is a strategy that is both pure and memoryless. A pure
memoryless strategy for player 1 can be represented as a function σ: S1 → S.
We denote by ΣPM the set of pure memoryless strategies for player 1. The pure
memoryless player-2 strategies ΠPM are defined analogously.
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Given a pure memoryless strategy σ ∈ ΣPM , let Gσ be the game graph
obtained from G under the constraint that player 1 follows the strategy σ. The
corresponding definition Gπ for a player-2 strategy π ∈ ΠPM is analogous, and
we write Gσ,π for the game graph obtained from G if both players follow the
pure memoryless strategies σ and π, respectively. Observe that given a 21/2-
player game graph G and a pure memoryless player-1 strategy σ, the result Gσ

is a player-2 MDP. Similarly, for a player-1 MDP G and a pure memoryless
player-1 strategy σ, the result Gσ is a Markov chain. Hence, if G is a 21/2-player
game graph and the two players follow pure memoryless strategies σ and π, the
result Gσ,π is a Markov chain.

Objectives. We specify objectives for the players by providing a set of winning
plays Φ ⊆ Ω for each player. We say that a play ω satisfies the objective Φ if
ω ∈ Φ. We study only zero-sum games, where the objectives of the two play-
ers are complementary; i.e., if player 1 has the objective Φ, then player 2 has
the objective Ω \ Φ. We consider ω-regular objectives [11], specified as parity
conditions. We also define the special case of reachability objectives.

– Reachability objectives. Given a set T ⊆ S of “target” states, the reachability
objective requires that some state of T be visited. The set of winning plays
is Reach(T ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }.

– Parity objectives. For c, d ∈ N, we write [c..d] = { c, c + 1, . . . , d }. Let p:
S → [0..d] be a function that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. For a play ω = 〈s0, s1, . . .〉 ∈ Ω, we define Inf(ω) = { s ∈
S | sk = s for infinitely many k } to be the set of states that occur infinitely
often in ω. The even-parity objective is defined as Parity(p) = { ω ∈ Ω |
min

(
p(Inf(ω))

)
is even }, and the odd-parity objective as coParity(p) = {ω ∈

Ω | min
(
p(Inf(ω))

)
is odd }.

Sure winning, almost-sure winning, and optimality. Given a player-1 objective Φ,
a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if for every
strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. The strategy σ is
almost-sure winning for player 1 from the state s for the objective Φ if for every
player-2 strategy π, we have Prσ,π

s (Φ) = 1. The sure and almost-sure winning
strategies for player 2 are defined analogously. Given an objective Φ, the sure win-
ning set 〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1 has a sure
winning strategy. The almost-sure winning set 〈〈1〉〉almost (Φ) for player 1 is the
set of states from which player 1 has an almost-sure winning strategy. The sure
winning set 〈〈2〉〉sure(Ω \Φ) and the almost-sure winning set 〈〈2〉〉almost (Ω \Φ) for
player 2 are defined analogously. It follows from the definitions that for all 21/2-
player game graphs and all objectives Φ, we have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ).
A game is sure (resp. almost-sure) winning for player i if player i wins surely
(resp. almost-surely) from every state in the game.

Given objectives Φ ⊆ Ω for player 1 and Ω \ Φ for player 2, we define the
value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as the
following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
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supπ∈Π infσ∈Σ Prσ,π
s (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the

maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal strategies for player 2 are
defined analogously.

Consider a family ΣC ⊆ Σ of special strategies for player 1. We say that the
family ΣC suffices with respect to a player-1 objective Φ on a class G of game
graphs for sure winning if for every game graph G ∈ G and state s ∈ 〈〈1〉〉sure(Φ),
there is a player-1 strategy σ ∈ ΣC such that for every player-2 strategy π ∈ Π ,
we have Outcome(s, σ, π) ⊆ Φ. Similarly, the family ΣC suffices with respect
to the objective Φ on the class G of game graphs for almost-sure winning if for
every game graph G ∈ G and state s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy
σ ∈ ΣC such that for every player-2 strategy π ∈ Π , we have Prσ,π

s (Φ) = 1; and
for optimality, if for every game graph G ∈ G and state s ∈ S, there is a player-1
strategy σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). We now state the
classical determinacy results for 2-player and 21/2-player parity games.

Theorem 1 (Qualitative determinacy). [7] For all 2-player game graphs
and parity objectives Φ, we have 〈〈1〉〉sure(Φ) = S \ 〈〈2〉〉sure(Ω \Φ). Moreover, on
2-player game graphs, the family of pure memoryless strategies suffices for sure
winning with respect to parity objectives.

Theorem 2 (Quantitative determinacy). [4] For all 21/2-player game
graphs, all parity objectives Φ, and all states s, we have 〈〈1〉〉val (Φ)(s)+〈〈2〉〉val (Ω\
Φ)(s) = 1. The family of pure memoryless strategies suffices for optimality with
respect to parity objectives on 21/2-player game graphs.

Since in 21/2-player games with parity objectives pure memoryless strategies
suffice for optimality, in the sequel we consider only pure memoryless strategies.

3 Strategy Improvement Algorithm

The main result of this paper is a strategy improvement algorithm for 21/2-player
games with parity objectives. Before presenting the algorithm, we recall a few
key properties of 21/2-player parity games, which were proved in [2,3].

Useful properties. We first present a reduction of 21/2-player parity games to
2-player parity games, preserving the ability of player 1 to win almost-surely.

Reduction. Given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ) with
a priority function p: S → [0..d], we construct a 2-player game graph G =
((S,E), (S1, S2), δ) together with a priority function p : S → [0..d]. The con-
struction is specified as follows. For every nonprobabilistic state s ∈ S1∪S2, there
is a corresponding state s ∈ S such that (1) s ∈ S1 iff s ∈ S1, and (2) p(s) = p(s),
and (3) (s, t) ∈ E iff (s, t) ∈ E. From the state s with p(s) = p(s), the players
play the following 3-step game in G. First, in state s player 2 chooses a successor
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(s̃, 2k), for k ∈ {0, 1, . . . , j}, where p(s) = 2j or p(s) = 2j − 1. For every state
(s̃, 2k), we have p(s̃, 2k) = p(s). For k > 1, in state (s̃, 2k) player 1 chooses from
two successors: state (ŝ, 2k − 1) with p(ŝ, 2k − 1) = 2k − 1, or state (ŝ, 2k) with
p(ŝ, 2k) = 2k. The state (s̃, 0) has only one successor (ŝ, 0), with p(ŝ, 0) = 0.
Finally, in each state (ŝ, k) the choice is between all states t such that (s, t) ∈ E,
and it belongs to player 1 if k is odd, and to player 2 if k is even. We denote
by Tralmost(G) the 2-player game graph G, as defined by this reduction. Also
given a pure memoryless strategy σ for the 2-player game graph G, a strategy
Tralmost(σ) = σ for the 21/2-player game graph G is defined as follows: σ(s) = t
iff σ(s) = t, for all s ∈ S1. Similar definitions hold for player 2.

Lemma 1. [3] Given a 21/2-player game graph G with the parity objective
Parity(p) for player 1, let U1 and U2 be the sure winning sets for players 1 and 2,
respectively, in the 2-player game graph G = Tralmost(G) with the modified parity
objective Parity(p). Define the sets U1 and U2 in the original 21/2-player game
graph G by U1 = { s ∈ S | s ∈ U1 } and U2 = { s ∈ S | s ∈ U2 }. Then the
following assertions hold: (a) U1 = 〈〈1〉〉almost (Parity(p)) = S \ U2; and (b) if
σ is a pure memoryless sure winning strategy for player 1 from U1 in G, then
Tralmost(σ) is an almost-sure winning strategy for player 1 from U1 in G.

Subgames. A set U ⊆ S of states is δ-closed if for every probabilistic state u ∈
U ∩S©, if (u, t) ∈ E, then t ∈ U . The set U is δ-live if for every nonprobabilistic
state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that (s, t) ∈ E. A δ-closed
and δ-live subset U of S induces a subgame graph of G, denoted by G � U .

Boundary probabilistic states. Given a set U of states, let BP(U) = {s ∈ U∩S© |
∃t ∈ E(s). t �∈ U } be the set of boundary probabilistic states, which have an edge
out of U . Given a set U of states and a parity objective Parity(p) for player 1,
we define a transformation Trwin1(U) of U as follows: every state s in BP(U) is
converted to an absorbing state (a state with a self-loop) and assigned the even
priority 2 · �d

2�; thus, every state in BP(U) is changed to a sure winning state
for player 1. Observe that if U is δ-live, then Trwin1(G � U) is a game graph.

Value classes. Given a parity objective Φ, for every real r ∈ IR the value class
with value r, denoted VC(r) = { s ∈ S | 〈〈1〉〉val (Φ)(s) = r }, is the set of states
with value r for player 1. It follows easily that for every r > 0, the value class
VC(r) is δ-live. The following lemma establishes a connection between value
classes, the transformation Trwin1, and the almost-sure winning states.

Lemma 2. [2] For every real r > 0, for the value class VC(r) with parity objec-
tive Parity(p) for player 1, the game Trwin1(G � VC(r)) is almost-sure winning
for player 1.

It follows from Lemma 1 and Lemma 2 that for every value class VC(r) with
r > 0, the game Tralmost(Trwin1(G � VC(r))) is sure winning for player 1.

Strategy improvement algorithm. Given a strategy π and a set U of states,
we denote by π � U a strategy that for every state in U follows the strategy π.
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Values and value classes given by strategies. Given a player-2 strategy π and a
parity objective Φ for player 1, we denote the value of player 1 given the strategy
π as follows: 〈〈1〉〉πval (Φ)(s) = supσ∈ΣPM Prσ,π

s (Φ). Similarly, we define the value
classes given strategy π as VCπ(r) = { s ∈ S | 〈〈1〉〉πval (Φ)(s) = r }, for all r ∈ IR.

Witnesses for player 2. Given a 21/2-player game graph G and a parity objective
Φ for player 1, a witness w2 = (π, πQ) for player 2 is specified as follows: (a) the
strategy π is a player-2 strategy for the 21/2-player game graph G; and (b) for
every value class VCπ(r), the strategy πQ � VCπ(r) is a player-2 strategy for
the 2-player game graph Gr = Tralmost(Trwin1(G � VCπ(r))). We require that
π = Tralmost(πQ). The witness w2 = (π, πQ) for player 2 is an optimal witness
if π is an optimal strategy for player 2.

Ordering of witnesses. We define an ordering relation ≺ on witnesses as follows:
given two witnesses w2 = (π, πQ) and w ′

2 = (π′, π′
Q) for player 2, let w2 ≺ w ′

2 iff
one of the following two conditions holds:

1. for all states s, we have 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′

val (Φ)(s), and for some state s,
we have 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉π′

val (Φ)(s); or
2. for all states s, we have 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′

val (Φ)(s), and in some value
class VCπ(r) = VCπ′

(r), we have (πQ � VCπ(r)) ≺Q (π′
Q � VCπ(r)) in

the 2-player parity game Tralmost(Trwin1(G � VCπ(r))), where ≺Q denotes
the ordering of strategies for a strategy improvement algorithm for 2-player
parity games (e.g., as defined in [1,12]).

Profitable switches. Given a witness w2 = (π, πQ) for player 2, we specify a
procedure ProfitableSwitch to “improve” the witness according to the witness
ordering ≺. The procedure is described in Algorithm 1. An informal description
of the procedure is as follows: given a witness w2 = (π, πQ), the algorithm
computes the values 〈〈1〉〉πval (Φ)(s) for all states. If there is a state s ∈ S2 such
that the strategy can be “value improved,” i.e., there is a state t ∈ E(s) with
〈〈1〉〉πval (Φ)(t) < 〈〈1〉〉πval (Φ)(s), then the witness is modified by setting π(s) to t.
This step is similar to the strategy improvement step of [6] and is achieved in Step
2.1 of ProfitableSwitch. Otherwise, in every value class VCπ(r), the strategy
πQ is “improved” for the game Tralmost(Trwin1(G � VCπ(r))) with respect to the
ordering ≺Q of strategies for 2-player parity games. This is achieved in Step 2.2.

Proposition 1. Given a strategy π for player 2, for all states s ∈ VCπ(r) ∩ S1

and t ∈ E(s), we have 〈〈1〉〉πval (Φ)(t) ≤ r, that is, E(s) ⊆
⋃

0≤q≤r VCπ(q).

Proposition 2. Given a strategy π for player 2, for all strategies σ for player 1,
if there is a closed recurrent class C in the Markov chain Gσ,π with C ⊆ VCπ(r)
for r < 1, then min(p(C)) is odd.

Lemma 3. Let w2 = (π, πQ) be an input to Algorithm 1, and let w ′
2 = (π′, π′

Q)
be the corresponding output, that is, w ′

2 = ProfitableSwitch(G,w2). If the set
I in Step 2 of Algorithm 1 is nonempty, then (a) 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′

val (Φ)(s)
for all s ∈ S, and (b) 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉π′

val (Φ)(s) for all s ∈ I.
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Algorithm 1. ProfitableSwitch

Input: 21/2-player game G, parity objective Φ for pl. 1, witness w2 = (π, πQ) for pl. 2.
Output: a witness w ′

2 for player 2 such that either w2 = w ′
2 or w2 ≺ w ′

2.
1. (Step 1.) Compute 〈〈1〉〉πval(Φ)(s) for all states s.
2. (Step 2.) Consider the set I = { s ∈ S2 | ∃t ∈ E(s). 〈〈1〉〉πval(Φ)(s) > 〈〈1〉〉πval(Φ)(t) }.

2.1 (Value improvement) if I 
= ∅ then set π′ as follows:
π′(s) = π(s) for s ∈ S2 \ I,
π′(s) = t for s ∈ I and t ∈ E(s) such that 〈〈1〉〉πval(Φ)(s) > 〈〈1〉〉πval(Φ)(t);
and set π′

Q to be an arbitrary strategy such that π′ = Tralmost(π′
Q).

2.2 (Qualitative improvement) else for every value class VCπ(r):
let Gr be the 2-player game graph Tralmost(Trwin1(G � VCπ(r)));
set (π′

Q � VCπ(r)) = TwoPlSwitch(Gr, πQ � VCπ(r)) and π′ = Tralmost(π′
Q),

where TwoPlSwitch is a strategy improvement step for 2-player parity games.
3. return w ′

2 = (π′, π′
Q).

Proof. Consider a switch of the strategy of player 2 from π to π′, as constructed
in Step 2.1 of Algorithm 1. Consider a strategy σ for player 1 and a closed
recurrent class C in Gσ,π′ such that C ⊆

⋃
r<1 VCπ(r). Let z = min{ r <

1 | C ∩ VCπ(r) �= ∅ }, that is, VCπ(z) is the least value class with nonempty
intersection with C. A state s ∈ VCπ(z) ∩ C satisfies the following conditions:

1. If s ∈ S1, then σ(s) ∈ VCπ(z). This follows since, by Proposition 1, we have
E(s) ⊆

⋃
0≤q≤z VCπ(q) and C ∩VCπ(q) = ∅ for q < z.

2. If s ∈ S2, then π′(s) ∈ VCπ(z). This follows since, by construction, we have
π′(s) ∈

⋃
0≤q≤z VCπ(q) and C∩VCπ(q) = ∅ for q < z. Also, since s ∈ VCπ(z)

and π′(s) ∈ VCπ(z), it follows that π′(s) = π(s).
3. If s ∈ S©, then E(s) ⊆ VCπ(z). This follows since for s ∈ S©, if E(s) �

VCπ(z), then E(s) ∩ (
⋃

0≤q<z VCπ(q)) �= ∅. Since C is closed, and C ∩
VCπ(q) = ∅ for q < z, the claim follows.

It follows that C ⊆ VCπ(z) and for all states s ∈ C ∩ S2, we have π′(s) = π(s).
Hence by Proposition 2, min(p(C)) is odd.

It follows that if player 2 switches to the strategy π′, as constructed when
Step 2.1 of Algorithm 1 is executed, then for all strategies σ for player 1 the
following assertion holds: if there is a closed recurrent class C ⊆ S \ VCπ(1) in
the Markov chain Gσ,π′ , then C is winning for player 2, i.e., min(p(C)) is odd.
Hence, given strategy π′, an optimal counter-strategy for player 1 maximizes the
probability to reach VCπ(1). The desired result follows from arguments similar
to 21/2-player games with reachability objectives [6], with VCπ(1) as the target
for player 1, and the value improvement step (Step 2.1 of Algorithm 1).

Lemma 4. Let w2 = (π, πQ) be an input to Algorithm 1, and let w ′
2 = (π′, π′

Q)
be the corresponding output, that is, w ′

2 = ProfitableSwitch(G,w2), such that
w2 �= w ′

2. If the set I in Step 2 of Algorithm 1 is empty, then (a) 〈〈1〉〉πval (Φ)(s) ≥
〈〈1〉〉π′

val (Φ)(s) for all s ∈ S, and (b) if 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′

val (Φ)(s) for all s ∈ S,
then (πQ � VCπ(r)) ≺Q (π′

Q � VCπ(r)) for some value class VCπ(r).
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Proof. (sketch) It follows from Proposition 2 that for all strategies σ for player 1,
if C is a closed recurrent class in Gσ,π and C ⊆ VCπ(r) for r < 1, then min(p(C))
is odd. Let π′ be the strategy constructed from π in Step 2.2 of Algorithm 1.
Since π′ is obtained as qualitative improvement of π, it can be shown that if
C is a closed recurrent class in Gσ,π′ and C ⊆ VCπ(r), then min(p(C)) is odd.
Arguments similar to Lemma 3 show that: for all strategies σ for player 1, if
there is a closed recurrent class C ⊆ S \ VCπ(1) in Gσ,π′ , then C is winning
for player 2, that is, min(p(C)) is odd. Since in strategy π′ player 2 chooses
every edge in the same value class as π, it can be shown that for all states s,
we have 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′

val (Φ)(s). If 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′

val (Φ)(s) for all
states s, then VCπ(r) = VCπ′

(r) for all r, that is, the value classes given π and
π′ coincide. Then, by the properties of the procedure TwoPlSwitch and since
w2 �= w ′

2, condition 2 of the lemma holds.

Lemma 5. For every 21/2-player game graph G and witness w2 for player 2, if
w2 �= ProfitableSwitch(G,w2), then w2 ≺ ProfitableSwitch(G,w2).

Lemma 3 and Lemma 4 yield Lemma 5. The key argument to establish
that if w2 = ProfitableSwitch(G,w2), then w2 is an optimal witness for
player 2, goes as follows. Let w2 be a player-2 witness such that w2 =
ProfitableSwitch(G,w2), and let w1 = (σ, σQ) be the optimal counter-witness
for player 1. Consider a value class VCπ(r) with r > 0, and the game graph
Gr = Tralmost(Trwin1(G � VCπ(r))). Since πQ cannot be improved against σQ

with respect to the ordering ≺Q in any value class, it follows that σQ is a sure
winning strategy in Gr. Hence it follows from Lemma 1 that σ is an almost-sure
winning strategy for player 1 in Trwin1(G � VCπ(r)), since σ = Tralmost(σQ).
Consider any strategy π′ for player 2 against σ, and consider the Markov chain
Gσ,π′ . Since σ is almost-sure winning in Trwin1(G � VCπ(r)) for all r > 0, it fol-
lows that for any closed recurrent class C of Gσ,π′ such that C ⊆

⋃
r>0 VCπ(r),

the set C is winning for player 1 (i.e., min(p(C)) is even). Moreover, since the
strategy π cannot be “value improved,” it follows from arguments similar to
[6] for 21/2-player reachability games that for all player-2 strategies π′ and all
states s ∈ VCπ(r), we have Prσ,π′

s (Φ) ≥ r. Hence 〈〈1〉〉val (Φ)(s) ≥ r. Since σ is
an optimal strategy against π, we have r = 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉val (Φ)(s) for all
states s ∈ VCπ(r). This establishes the optimality of π.

Lemma 6. For every 21/2-player game graph G and witness w2 for player 2, if
w2 = ProfitableSwitch(G,w2), then w2 is an optimal witness.

A strategy improvement algorithm using the ProfitableSwitch procedure is de-
scribed in Algorithm2. The correctness of the algorithm follows from Lemma 6. Let
I2(k) and IR(k) denote bounds on the number of iterations of strategy improve-
ment algorithms for 2-player parity games and 21/2-player reachability games, re-
spectively, for game graphs with k states. The number of iterations of Algorithm 2
between two value improvement steps can be bounded by n·I2(n·d), and hence the
total number of iterations of Algorithm 2 can be bounded by n ·I2(n ·d) ·IR(n ·d).
Given an optimal strategy π for player 2, the values for both the players can be
computed in polytime by computing the values of the MDP Gπ [4].
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Algorithm 2. StrategyImprovementAlgorithm

Input: a 21/2-player game graph G with parity objective Φ for player 1.
Output: a witness w∗

2 for player 2.
1. Choose an arbitrary witness w2 for player 2.
2. while w2 
= ProfitableSwitch(G,w2) do w2 = ProfitableSwitch(G,w2).
3. return w∗

2 = w2.

Theorem 3 (Correctness of Algorithm 2). The output w∗
2 of Algorithm 2

is an optimal witness for player 2.

4 Randomized Subexponential Algorithm

We now present a randomized subexponential-time algorithm for 21/2-player
parity games, by combining an algorithm of Björklund et al. [1] and the witness
improvement procedure ProfitableSwitch.
Games and improving subgames. Given l,m ∈ N, let G(l,m) be the class of
21/2-player game graphs with the set S2 of player 2 states partitioned into two
sets as follows: (a) O1 = { s ∈ S2 | |E(s)| = 1 }, i.e., the set of states with
out-degree 1; and (b) O2 = S2 \O1, with O2 ≤ l and

∑
s∈O2

|E(s)| ≤ m. There
is no restriction for player 1. Given a game G ∈ G(l,m), a state s ∈ O2, and an
edge e = (s, t), we define the subgame G̃e by deleting all edges from s other than
the edge e. Observe that G̃e ∈ G(l− 1,m− |E(s)|), and hence also G̃e ∈ G(l,m).
If w2 = (π, πQ) is a witness for player 2 in G ∈ G(l,m), then a subgame G̃ is
w2-improving if some witness w ′

2 = (π′, π′
Q) in G̃ satisfies w2 ≺ w ′

2.

Informal description of Algorithm 3. The algorithm takes a 21/2-player parity
game and an initial witness w0

2 , and proceeds in three steps. In Step 1, it con-
structs r pairs of w0

2 -improving subgames G̃ and corresponding improved wit-
nesses w2 in G̃. This is achieved by the procedure ImprovingSubgames. The
parameter r will be chosen to obtain a suitable complexity analysis. In Step 2,
the algorithm selects uniformly at random one of the improving subgames G̃
with corresponding witness w2, and recursively computes an optimal witness w∗

2

in G̃ from w2 as the initial witness. If the witness w∗
2 is optimal in the original

game G, then the algorithm terminates and returns w∗
2 . Otherwise it improves

w∗
2 by a call to ProfitableSwitch, and continues at Step 1 with the improved

witness ProfitableSwitch(G,w∗
2 ) as the initial witness.

The procedure ImprovingSubgames constructs a sequence of game graphs
G0, G1, . . . , Gr−l with Gi ∈ G(l, l + i) such that all (l + i)-subgames G̃i

e of Gi are
w0

2 -improving. The subgame Gi+1 is constructed from Gi as follows: we compute
an optimal witness w i

2 in Gi, and if w i
2 is optimal in G, then we have discov-

ered an optimal witness; otherwise we construct Gi+1 by adding any target edge e



522 K. Chatterjee and T.A. Henzinger

Algorithm 3. RandomizedAlgorithm (2 1/2-player parity games)

Input: a 21/2-player game graph G ∈ G(l, m), a parity objective Parity(p) for pl. 1
and an initial witness w0

2 for pl. 2.
Output : an optimal witness w∗

2 = (π∗, π∗
Q) for player 2.

1. (Step 1) Collect a set I of r pairs (G,w2) of subgames G of G, and
corresponding witnesses w2 in G such that w0

2 ≺ w2.
(This is achieved by the procedure ImprovingSubgames below).

2. (Step 2) Select a pair (G,w2) from I uniformly at random.
2.1 Find an optimal witness in w∗

2 ∈ G by applying the algorithm recursively,
with w2 as the initial witness.

3. (Step 3) if w∗
2 is an optimal witness in the original game G then return w∗

2 .
else let w2 = ProfitableSwitch(G,w∗

2 ), and
goto Step 1 with G and w2 as the initial witness.

procedure ImprovingSubgames

1. Construct sequence G0, G1, . . . , Gr−l of subgames with Gi ∈ G(l, l + i) as follows:
1.1 G0 is the game where each edge is fixed according to w0

2 .
1.2 Let w i

2 be an optimal witness in Gi;
1.2.1 if w i

2 is an optimal witness in the original game G
then return w i

2.
1.2.2 else let e be any target of ProfitableSwitch(G,w i

2);
the subgame Gi+1 is Gi with the edge e added.

2. return r subgames (fixing one of the r edges in Gr−l) and associated witnesses.

of ProfitableSwitch(G,w i
2) in Gi, i.e., e is an edge required in the witness

ProfitableSwitch(G,w i
2) that is not in the witness w i

2.
The correctness of the algorithm can be seen as follows. Observe that ev-

ery time Step 1 is executed, the initial witness is improved with respect to the
ordering ≺ on witnesses. Since the number of witnesses is bounded, the termi-
nation of the algorithm is guaranteed. Step 3 of Algorithm 3 and Step 1.2.1 of
procedure ImprovingSubgames ensure that on termination of the algorithm, the
returned witness is optimal. Lemma 7 bounds the expected number of iterations
of Algorithm 3. The analysis is similar to the results of [1].

Lemma 7. Algorithm 3 computes an optimal witness. The expected number of
iterations T (·, ·) of Algorithm 3 for a game G ∈ G(l,m) is bounded by the follow-
ing recurrence: T (l,m) ≤

∑r
i=l T (l, i)+T (l−1,m−2)+ 1

r ·
∑r

i=1 T (l,m− i)+1.

For a game graph G with |S| = n, we obtain a bound of n2 for m. Applying a
symmetric version of Algorithm 3 for player 1 if |S1| ≤ |S2|, we can bound l by
min{ |S1|, |S2| }. Using this fact and an analysis of Kalai for linear programming,

Björklund et al. [1] showed that mO
(√

l/ log(l)
)

= 2O
(√

l·log (l)
)

is a solution to the
recurrence of Lemma 7, by choosing r = max{ l, m

2 }, where l = min{ |S1|, |S2| }.

Lemma 8. Procedure ProfitableSwitch can be computed in polynomial time.
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A call to ProfitableSwitch requires solving an MDP with parity objectives
quantitatively (Step 1 of ProfitableSwitch; for a polynomial-time procedure,
see [4]) and computing a profitable switch for 2-player parity games (Step 2.2 of
ProfitableSwitch; for a polynomial-time procedure, see [1,12]). Thus Lemma 8
follows. We obtain Theorem 4 as follows. Observe that the reduction Tralmost of
21/2 player games to 2-player games causes a blow-up by a factor of d for states in
S©. This fact, along with the solution for the recurrence of Lemma 7, using l =
d·n0+min{n1, n2} in the solution, yields that the expected number of iterations

of Algorithm 3 is bounded by 2O
(√

z·log(z)
)
, where z = d·n0+min{n1, n2}. Each

iteration of the algorithm requires a call to ProfitableSwitch. This analysis
with Lemma 8 proves Theorem 4.

Theorem 4. Given a 21/2-player game graph G with a priority function p: S →
[0..d], the value 〈〈1〉〉val (Parity(p))(s) can be computed for all states s ∈ S in

time 2O
(√

z·log(z)
)
· O
(
poly(n)

)
, where n1 = |S1|, n2 = |S2|, n0 = |S©|, z =

(n0 · d + min{ n1, n2 }), and poly represents a polynomial function.
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Abstract. Tree-width is a well-known metric on undirected graphs that measures
how tree-like a graph is and gives a notion of graph decomposition that proves
useful in algorithm development. Tree-width is characterised by a game known as
the cops-and-robber game where a number of cops chase a robber on the graph.
We consider the natural adaptation of this game to directed graphs and show that
monotone strategies in the game yield a measure with an associated notion of
graph decomposition that can be seen to describe how close a directed graph is
to a directed acyclic graph (DAG). This promises to be useful in developing algo-
rithms on directed graphs. In particular, we show that the problem of determining
the winner of a parity game is solvable in polynomial time on graphs of bounded
DAG-width. We also consider the relationship between DAG-width and other mea-
sures such as entanglement and directed tree-width. One consequence we obtain
is that certain NP-complete problems such as Hamiltonicity and disjoint paths are
polynomial-time computable on graphs of bounded DAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in their graph minor project has
focused much attention on tree-decompositions of graphs and associated measures of
graph connectivity such as tree-width [13]. Aside from their interest in graph structure
theory, these notions have also proved very useful in the development of algorithms.
The tree-width of a graph is a measure of how tree-like the graph is, and it is found that
small tree-width allows for graph decompositions along which recursive algorithms can
work. Many problems that are intractable in general can be solved efficiently on graphs
of bounded tree-width. These include such classical NP-complete problems as finding
a Hamiltonian cycle in a graph or detecting if a graph is three-colourable. Indeed, a
general result of Courcelle [4] shows that any property definable in monadic second-
order logic is solvable in linear time on graphs of fixed tree-width.

The idea of designing algorithms that work on tree-decompositions of the input has
been generalised from graphs to other kinds of structures. Usually the tree-width of a
structure is defined as that of the underlying connectivity (or Gaifman) graph. For in-
stance, the tree-width of a directed graph is simply that of the undirected graph we get
by forgetting the direction of edges, a process which leads to some loss of information.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 524–536, 2006.
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This loss may be significant if the algorithmic problems we are interested in are inher-
ently directed. A good example is the problem of detecting Hamiltonian cycles. While
we know that this can be solved easily on graphs with small tree-width, there are also
directed graphs with very simple connectivity structure which have large tree-width. A
directed acyclic graph (DAG) is a particularly simple structure, but we lose sight of this
when we erase the direction on the edges and find the underlying undirected graph to
be dense. Several proposals have been made (see [12,8,2,14]) which extend notions of
tree-decompositions and tree-width to directed graphs. In particular, Johnson et al. [8]
introduce the notion of directed tree-width where directed acyclic graphs have width 0
and they show that Hamiltonicity can be solved for graphs of bounded directed tree-
width in polynomial time. However, the definition and characterisations of this measure
are somewhat unwieldy and they have not, so far, resulted in many further developments
in algorithms.

We are especially interested in one particular problem on directed graphs, that of
determining the winner of a parity game. This is an infinite two-player game played
on a directed graph where the nodes are labelled by priorities. The players take turns
pushing a token along edges of the graph. The winner is determined by the parity of the
least priority occurring infinitely often in this infinite play. Parity games have proved
useful in the development of model-checking algorithms used in the verification of
concurrent systems. The modal μ-calculus, introduced in [10], is a widely used logic for
the specification of such systems, encompassing a variety of modal and temporal logics.
The problem of determining, given a system A and a formula ϕ of the μ-calculus,
whether or not A satisfies ϕ can be turned into a parity game (see [6]). The exact
complexity of solving parity games is an open problem that has received a large amount
of attention. It is known [9] that the problem is in NP ∩ co-NP and no polynomial time
algorithm is known. Obdržàlek [11] showed that for each k there is a polynomial time
algorithm that solves parity games on graphs of tree-width at most k. He points out that
the algorithm would not give good bounds, for instance, on directed acyclic graphs even
though solving the games on such graphs is easy. He asks whether there is a structural
property of directed graphs that would allow a fast algorithm on both bounded tree-
width structures and on DAGs.

In this paper, we give just such a generalisation. We introduce a new measure of the
connectivity of graphs that we call DAG-width1. It is intermediate between tree-width
and directed tree-width, in that for any graph G, the directed tree-width of G is no greater
than its DAG-width which, in turn, is no greater than its tree-width. Thus, the class of
structures of DAG-width k + 1 or less includes all structures of tree-width k and more
(in particular, DAGs of arbitrarily high tree-width all have DAG-width 1).

The notion of DAG-width can be understood as a simple adaptation of the game
of cops and robber (which characterises tree-width) to directed graphs. The game is
played by two players, one of whom controls a set of k cops attempting to catch a
robber controlled by the other player. The cop player can move any set of cops to any
nodes on the graph, while the robber can move along any path in the graph as long
as there is no cop currently on the path. Such games have been extensively studied

1 We understand that Obdržàlek has defined a similar measure in a paper to appear at SODA’06.
We have not yet had an opportunity to see that paper.
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(see [15,5,7,1,2]). It is known [15] that the cop player has a winning strategy on an
undirected graph G using k + 1 cops if, and only if, G has tree-width k. We consider
the natural adaptation of this game to directed graphs, by constraining the robber to
move along directed paths. We show that the class of directed graphs where there is a
monotone (in a sense we make precise) strategy for k cops to win is characterised by its
width in a decomposition that is a generalisation of tree-decompositions. We are then
able to show that the problem of determining the winner of a parity game is solvable in
polynomial time on the class of graphs of DAG-width k, for any fixed k.

In Section 2, we introduce some notation. Section 3 introduces the cops and robber
game, DAG-decompositions and DAG-width and shows the equivalence between the ex-
istence of monotone winning strategies and DAG-width. Also in Section 3 we discuss
some algorithmic aspects of DAG-width. Section 4 relates DAG-width to other mea-
sures of graph connectivity, and Section 5 demonstrates a polynomial time algorithm
for solving parity games on graphs with bounded DAG-width. All proofs appear in the
full version of the paper, available on the authors’ homepages.

2 Preliminaries

We first fix some notation used throughout the paper. All graphs used are finite, directed
and simple unless otherwise stated.

We write ω for the set of finite ordinals, i.e. natural numbers. For every n ∈ ω, we
write [n] for the set {1, . . . , n}. For every set V and every k ∈ ω, we write [V ]k for
the set of all k-element subsets of V , that is, [V ]k := {{x1, . . . , xk} ⊆ V : xi �= xj

whenever i �= j}. We write [V ]≤k for the set of all X ⊆ V with |X | ≤ k.
Let G be a directed graph. We write V G for the set of its vertices and EG for the set of

its edges. Eop denotes the set of edges that results from reversing the edges in E ⊆ EG ,
i.e. Eop = {(w, v) : (v, w) ∈ E}. The graph Gop is defined to be (V G , (EG)op).

A tree-decomposition of a graph G is a labelled tree (T , (Xt)t∈V T ) where Xt ⊆ V G

for each vertex t ∈ V T , for each edge (u, v) ∈ EG there is a t ∈ V T such that
{u, v} ⊆ Xt, and for each v ∈ V G , the set {t ∈ V T : v ∈ Xt} forms a connected
subtree of T . The width of a tree-decomposition is the cardinality of the largest Xt

minus one. The tree-width of G is the smallest k such that G has a tree-decomposition
of width k.

Let D := (D,A) be a directed, acyclic graph (DAG). The partial order /D (or /A)
on D is the reflexive, transitive closure of A. A root of a set X ⊆ D is a /D-minimal
element of X , that is, r ∈ X is a root of X if there is no y ∈ X such that y /D r.
Analogously, a leaf of X ⊆ D is a /D-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph theoretical part of this paper. We define DAG-width and
its relation to graph searching games. As mentioned in the introduction, the notion of
tree-width has a natural characterisation in terms of a cops and robber game. Directed
tree-width has also been characterised in terms of such games [8], but these games ap-
pear to be less intuitive. In this paper, we consider the straightforward extension of the
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cops and robber game to directed graphs. We show that these games give a characterisa-
tion of the graph connectivity measure that we call DAG-width and introduce in Section
3.2. We comment on algorithmic properties in Section 3.3.

3.1 Cops and Robber Games

The Game. The Cops and Robber game on a digraph is a game where k cops try to
catch a robber who may run along paths in the digraph. While the robber is confined
to moving along paths in the graph, the cops may move to any vertex at any time. A
formal definition follows.

Definition 3.1 (Cops and Robber Game). Given a graph G := (V, E), the k-cops and
robber game on G is played between two players, the cop and the robber player, as
follows:

– At the beginning, the cop player chooses X0 ∈ [V ]≤k, and the robber player
chooses a vertex r0 of V \X0, giving position (X0, r0).

– From position (Xi, ri), the cop player chooses Xi+1 ∈ [V ]≤k, and the robber
player chooses a vertex ri+1 of V \Xi+1 such that there is a path from ri to ri+1

which does not pass through a vertex in Xi ∩Xi+1. If no such vertex exists then
the robber player loses.

A play in the game is a (finite or infinite) sequence π := (X0, r0)(X1, r1) . . . of posi-
tions such that the transition from (Xi, ri) to (Xi+1, rr+1) is a valid move by the rules
above and such that the play is finite if, and only if, rn ∈ Xn for the final position
(Xn, rn). A play is winning for the robber player if it is infinite.

As always when dealing with games we are less interested in a single play in the game
as in strategies that allow a player to win every play in the game. Winning strategies
for the cop player play a crucial role throughout this paper. We therefore give a precise
definition of this notion.

Definition 3.2. Let G := (V, E) be a directed graph. A (k-cop) strategy for the cop
player is a function f from [V ]≤k × V to [V ]≤k. A play (X0, r0), (X1, r1), . . . is con-
sistent with a strategy f if Xi+1 = f(Xi, ri) for all i. The strategy f is called a winning
strategy, if every play consistent with f is winning for the cop player.

Definition 3.3 (Game-width). The game-width gw(G) of G is the least k such that the
cop player has a strategy to win the k-cops and robber game on G.

Variants of the game where the robber moves first or only one cop can be moved at a
time or the cops are lifted and placed in separate moves are all equivalent in that the
game-width of a graph does not depend on the variant.

Lemma 3.4. For every finite, non-empty, directed graph G the game-width gw(G) is at
least one and gw(G) = 1 if, and only if, G is acyclic.
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Games similar to the one defined above have been used to give game characterisations of
concepts like undirected tree-width [15] and also the directed tree-width of [8]. Directed
tree-width is invariant under reversing the edges of a graph. As we see below, this is not
true of the game-width we have defined. One exception are graphs of game-width 1,
i.e. acyclic graphs.

Proposition 3.5. gw(G) = 1 if, and only if gw(Gop) = 1.

Proposition 3.6. For any j, k with 2 ≤ j ≤ k, there exists a graph T j
k such that

gw(T j
k ) = j and gw((T j

k )op) = k.

In the sequel we consider a restriction of the cop player to monotone strategies.

Definition 3.7 (Monotone strategy).

(i) A strategy for the cop player is cop-monotone if in playing the strategy, no vertex
is visited twice by cops. That is, if (X0, r0), (X1, r1) . . . is a play consistent with
the strategy, then for every 0 ≤ i < n and v ∈ Xi \Xi+1, v /∈ Xj for all j > i.

(ii) A strategy for the cop player is robber-monotone if in playing the strategy, the set
of vertices reachable by the robber is non-increasing.

Lemma 3.8. If the cop player has a cop-monotone or robber-monotone winning strat-
egy then it also has a winning strategy that is both, cop- and robber-monotone.

From this lemma we can define a monotone winning strategy in the obvious way.

3.2 DAG-Decompositions and DAG-Width

In this section we define the notion of DAG-width which measures how close a given
graph is to being acyclic. We present a decomposition of directed graphs that is some-
what similar in style to tree-decompositions of undirected graphs. We show then that a
graph has DAG-width k if, and only if, the cop player has a monotone winning strategy
in the k-cops and robber game played on that graph. We conclude with some properties
enjoyed by DAG-width.

Definition 3.9. Let G := (V, E) be a graph. A set W ⊆ V guards a set V ′ ⊆ V if
whenever there is an edge (u, v) ∈ E such that u ∈ V ′ and v �∈ V ′ then v ∈ W .

Definition 3.10 (DAG-decomposition). Let G := (V, E) be a directed graph. A DAG-
decomposition is a tuple D = (D, (Xd)d∈V D) such that

(D1) D is a DAG.
(D2)

⋃
d∈V D Xd = V .

(D3) For all d /D d′ /D d′′, Xd ∩Xd′′ ⊆ Xd′ .
(D4) For a root d, Xd is guarded by ∅.
(D5) For all (d, d′) ∈ ED , Xd ∩Xd′ guards Xd′ \Xd , where Xd′ :=

⋃
d′�Dd′′ Xd′′ .

The width of D is defined as max{|Xd| : d ∈ V D}. The DAG-width of a graph is
defined as the minimal width of any of its DAG-decompositions.
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The main result of this section is an equivalence between monotone strategies for the
cop player and DAG-decompositions.

Theorem 3.11. For any graph G there is a DAG-decomposition of G of width k if, and
only if, the cop player has a monotone winning strategy in the k-cops and robber game
on G.

For algorithmic purposes, it is often useful to have a normal form for decompositions.
The following is similar to one for tree-decompositions as presented in [3].

Definition 3.12. A DAG-decomposition (D, (Xd)d∈V D) is nice if

(N1) D has a unique root.
(N2) Every d ∈ V D has at most two successors.
(N3) If d1, d2 are two successors of d0, then Xd0 = Xd1 = Xd2 .
(N4) If d1 is the unique successor of d0, then |Xd0ΔXd1 | ≤ 1, where Δ is the sym-

metric set difference operator (AΔB = (A \B) ∪ (B \A)).

Nice decompositions can be seen as corresponding to strategies where we place or re-
move only one cop at a time. It should therefore not be surprising that we can transform
any DAG-decomposition into one which is nice.

Theorem 3.13. If G has a DAG-decomposition of width k, it has a nice DAG-
decomposition of width k.

Tree-width on undirected graphs also has a useful characterisation in terms of balanced
separators. We are able to obtain one direction of a similar characterisation for DAG-
width by showing that graphs of small DAG-width admit small balanced directed sepa-
rators. The definition and proofs can be found in the full version. We also show that the
DAG-width of graphs is closed under directed unions, which is considered (see [8]) an
important property of a reasonable decomposition of directed graphs.

3.3 Algorithmic Aspects of Bounded DAG-Width

We now consider algorithmic applications of DAG-width as well as the complexity of
deciding the DAG-width of a graph and computing an optimal decomposition. The fol-
lowing is a direct consequence of the similar result for tree-width.

Theorem 3.14. Given a digraph G and a natural number k, deciding if the DAG-width
of G is at most k is NP-complete.

However, for any fixed k, it is possible, in polynomial time, to decide if a graph has
DAG-width at most k and to compute a DAG-decomposition of this width if it has. We
give an algorithm for this that is based on computing monotone winning strategies in
the k-cops and robber game.

Theorem 3.15. Let G be a directed graph and let k < ω. There is a polynomial time
algorithm for deciding if the cop player has a monotone winning strategy in the k-cops
and robber game on G and for computing such a strategy.
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Note also that the translation of strategies into decompositions is computationally easy,
i.e. can be done in polynomial time. Since winning strategies can be computed in poly-
nomial time in the size of the graph, we get the following.

Proposition 3.16. Given a graph G of DAG-width k, a DAG-decomposition of G of
width k can be computed in time O(|G|O(k)).

Algorithms on Graphs of Bounded DAG-Width. As the directed tree-width of a graph
is bounded above by a constant factor of its DAG-width (see Proposition 4.1), any graph
property that can be decided in polynomial time on classes of graphs of bounded di-
rected tree-width can be decided on classes of graphs of bounded DAG-width also. This
implies that properties such as Hamiltonicity that are known to be polynomial time
on graphs of bounded directed tree-width [8] can be solved efficiently on graphs of
bounded DAG-width too. We give a nontrivial application of DAG-width in Section 5
where we show that parity games can be solved on graphs of bounded DAG-width,
something which is not known for directed tree-width.

As for the relation to undirected tree-width, it is clear that not all graph properties
that can be decided in polynomial time on graphs of bounded tree-width can also be
decided efficiently on graphs of bounded DAG-width. For instance, the 3-colourability
problem is known to be decidable in polynomial time on graphs of bounded tree-width.
However, the problem does not depend on the direction of edges. So if the problem
was solvable in polynomial time on graphs of bounded DAG-width then for every given
graph we could simply direct the edges so that it becomes acyclic, i.e. of DAG-width 1,
and solve the problem then. This shows that 3-colourability is not solvable efficiently
on graphs of bounded DAG-width unless PTIME = NP. It also implies that Courcelle’s
theorem does fail for DAG-width, as 3-colourability is easily seen to be MSO-definable.

The obvious question that arises is whether one can define a suitable notion of “di-
rected problem” and then show that every MSO-definable “directed” graph problem can
be decided efficiently on graphs of bounded DAG-width. This is part of ongoing work.

4 Relation to Other Graph Connectivity Measures

As a structural measure for undirected graphs, the concept of tree-width is of unrivalled
robustness. On the realm of directed graphs, however, its heritage seems to be split
among several different concepts. Comparing DAG-width with tree-width, it is easily
seen that every tree-decomposition of an undirected graph G is a DAG-decomposition of
the directed graph formed by replacing every edge by two edges, one in each direction.
Conversely, the DAG-width of the graph formed in this way is exactly its tree-width. On
the other hand a clique with an acyclic orientation provides an example of a digraph with
small DAG-width but arbitrarily large tree-width. In the sequel we compare DAG-width
with other connectivity measures for digraphs, namely directed tree-width introduced
by Johnson et al. [8], and entanglement proposed by Berwanger and Grädel [2].

Directed Tree-Width. Aiming to reproduce the success of tree-decompositions in allow-
ing divide-and-conquer algorithms, directed tree-width is associated to a tree-shaped
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representation of the input graph. It was proved that this representation leads to effi-
cient algorithms for solving a particular class of NP-complete problems, including, e.g.,
Hamiltonicity, when directed tree-width is bounded. Unfortunately this generic method
does not cover many interesting problems. In particular, the efficient solution of parity
games on bounded tree-width has failed so far to generalise to directed tree-width.

In terms of games, directed tree-width is characterised by a restriction of the cops-
and-robber game for DAG-width, in which the robber is only permitted to move to ver-
tices where there exists a directed cop-free path from his intended destination back to
his current position. On the basis of the game characterisation, it is clear that the di-
rected tree-width of a graph provides a lower bound for its DAG-width. Conversely, the
DAG-width of a graph cannot be bounded in terms of its directed tree-width.

Proposition 4.1.

(i) If a graph has DAG-width k, its directed tree-width is at most 3k + 1.
(ii) There are graphs with arbitrarily large DAG-width and directed tree-width 1.

Entanglement. The notion of entanglement measures the nesting depth of directed cy-
cles in a graph. In terms of cops-and-robber games, it is obtained by restricting the
mobility of both the robber and the cops so that in any round, the cop player may send
one cop to the robber’s current position (or do nothing) while the robber can only move
to a successor of his current residence.

Unlike the other graph widths considered here, entanglement is not associated to an
efficient tree-shaped graph representation. Nevertheless, it was shown that parity games
on arenas of bounded entanglement can be solved in polynomial time.

The following proposition shows that having bounded DAG-width is more general
than having bounded entanglement. On the other hand, the gap between DAG-width and
entanglement can be at most logarithmic in the number of graph vertices.

Proposition 4.2.

(i) If a graph has entanglement k, its DAG-width is at most k + 1.
(ii) There are graphs with arbitrarily large entanglement but with DAG-width 2.

(iii) If a graph G has DAG-width k, its entanglement is at most (k + 1) · log |V G |.

We conclude that, despite their conceptual affinity, directed tree-width, entanglement,
and DAG-width are rather different measures.

5 Parity Games on Graphs of Bounded DAG-Width

A parity game P is a tuple (V,V0, E,Ω) where (V, E) is a directed graph, V0 ⊆ V and
Ω : V → ω is a function assigning a priority to each node. There is no loss of generality
in assuming that the range of Ω is contained in [n] where n = |V | and we will make
this assumption from now on.

Intuitively, two players called Odd and Even play a parity game by pushing a token
along the edges of the graph with Even playing when the token is on a vertex in V0

and Odd playing otherwise. Formally, a play of the game P is an infinite sequence
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π = (vi | i ∈ ω) such that (vi, vi+1) ∈ E for all i. We say π is winning for Even if
lim infi→∞ Ω(vi) is even and π is winning for Odd otherwise.

A strategy is a map f : V <ω → V such that for any sequence (v0 · · · vi) ∈ V <ω,
(vi, f(v0 · · · vi)) ∈ E. A play π = (vi | i ∈ ω) is consistent with Even playing f
if whenever vi ∈ V0, vi+1 = f(v0 · · · vi). Similarly, π is consistent with Odd play-
ing f if whenever vi �∈ V0, vi+1 = f(v0 · · · vi). A strategy f is winning for Even if
every play consistent with Even playing f is winning for Even. A strategy is memory-
less if whenever u0 · · ·ui and v0 · · · vj are two sequences in V <ω with ui = vj , then
f(u0 · · ·ui) = f(v0 · · · vj). It is known that parity games are determined, i.e. for any
game and starting position, either Even or Odd has a winning strategy and indeed, a
memoryless one. However, we do not assume in our construction that the strategies we
consider are memoryless.

The following ordering on [n] is useful in evaluating competing strategies. For pri-
orities i, j ∈ [n] we say i 1 j if either

(i) i is odd and j is even, or
(ii) i and j are both odd and i ≤ j, or

(iii) i and j are both even and j ≤ i.

Intuitively, i 1 j if the priority i is “better” for player Odd than j.
We are interested in the problem of determining, given a parity game and starting

node, which player has a winning strategy. The complexity of this problem in general
remains a major open question, as explained in Section 1. We demonstrate that parity
games are solvable on arenas of bounded DAG-width by an algorithm similar in spirit to
that of Obdržàlek [11]. That algorithm relies on the fact that in a tree-decomposition, a
set of k nodes guards all entries and exits to the part of the graph below it, and thus all
cycles must pass through this set. In the case of a DAG-decomposition, while the small
set guards all exits from the subgraph below it, there may be an unlimited number of
edges going into this subgraph. This is the main challenge that our algorithm addresses,
and is specifically solved in Lemmas 5.1, 5.2 and 5.3.

For a parity gameP = (V,V0, E,Ω) consider U ⊆ V and a set W that guards U . Fix
a pair of strategies f and g. For any v ∈ U , there is exactly one play π = (vi : i ∈ ω)
that is consistent with Even playing f and Odd playing g. Let π′ be the maximal initial
segment of π that is contained in U . The outcome of the pair of strategies (f, g) (given U
and v) is defined as follows.

outf,g(U, v) :=

⎧⎪⎨⎪⎩
winEven if π′ = π and π is winning for Even;

winOdd if π′ = π and π is winning for Odd;

(vi+1, p) if π′ = v0 · · · vi and p = min{Ω(vj) | 0 ≤ j ≤ i + 1}.

By construction, if outf,g(U, v) = (w, p) then w ∈ W . More generally, for any set
W ⊆ V , define the set of potential outcomes in W , written pot-out(W ), to be the set
{winEven, winOdd} ∪ {(w, p) : w ∈ W and p ∈ [n]}. We define a partial order � on
pot-out(W ) which orders potential outcomes according to how good they are for player
Odd. It is the least partial order satisfying the following conditions:
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(i) winOdd � o for all outcomes o;
(ii) o � winEven for all outcomes o;

(iii) (w, p) � (w, p′) if p 1 p′ for all w ∈ W .

In particular, (w, p) and (w′, p′) are incomparable if w �= w′. The idea is that if g and g′

are strategies such that outf,g(U, v)�outf,g′(U, v) then player Odd is better off playing
strategy g rather than g′ in response to Even playing according to f .

A single outcome is the result of fixing the strategies played by both players in the
sub-game induced by a set of vertices U . If we fix the strategy of player Even to be f
but consider all possible strategies that Odd may play, we can order these strategies ac-
cording to their outcome. If one strategy achieves outcome o and another o′ with o� o′,
there is no reason for Odd to consider the latter strategy. Thus, we define resultf (U, v)
to be the set of outcomes that are achieved by the best strategies that Odd may follow,
in response to Even playing according to f . More formally, resultf (U, v) is the set of
�-minimal elements in the set {o : o = outf,g(U, v) for some g}. Thus, resultf (U, v)
is an anti-chain in the partial order (pot-out(W ),�), where W is a set of guards for U .
We write pot-res(W ) for the set of potential results in W . To be precise, pot-res(W ) is
the set of all anti-chains in the partial order (pot-out(W ),�). By definition of the order
�, if either of winEven or winOdd is in the set resultf (U, v), then it is the sole element
of the set. Also, for each w ∈ W , there is at most one p such that (w, p) ∈ resultf (U, v)
so the number of distinct values that resultf (U, v) can take is at most (|U |+ 1)|W | + 2
(in fact, (d + 1)|W |, where d is the number of different priorities in U ). This is the
cardinality of the set pot-res(W ).

We also abuse notation and extend the order � to the set pot-res(W ) pointwise. That
is, for r, s ∈ pot-res(W ) we write r� s if, for each o ∈ s, there is an o′ ∈ r with o′ � o.
With this definition, the order � on pot-res(W ) admits greatest lower bounds. Indeed,
the greatest lower bound r!s of r and s can be obtained by taking the set of � minimal
elements in the set of outcomes r ∪ s. One further piece of notation we use is that we
write Res(U, v) for the set {resultf (U, v) : f is a strategy}.

Suppose now that P = (V,V0, E,Ω) is a parity game and we are given a DAG

decomposition (D, (Xd)d∈V D ) of (V, E) of width k that is nice in the sense of Defini-
tion 3.12. For each d ∈ V D, we write Vd for the set Xd \Xd. The key to the algorithm
is that we construct the set of results Res(Vd, v) for each v ∈ Vd. Since Vd is guarded
by Xd, |Xd| ≤ k and |Vd| ≤ n, the number of distinct values of resultf (Vd, v) as f
ranges over all possible strategies is at most (n + 1)k + 2.

We define the following, which is our key data structure: Frontier(d) = {(v, r) :
v ∈ Vd and r = resultf (Vd, v) for some strategy f}. Note that in the definitions of
resultf (U, v) and Frontier(d), f and g range over all strategies and not just memoryless
ones. The bound on the number of possible values of resultf (Vd, v) guarantees that
|Frontier(d)| ≤ n((n + 1)k + 2). We aim to show how Frontier(d) can be constructed
from the set of frontiers of the successors of d in polynomial time. When d is a leaf,
Vd = ∅ and thus Frontier(d) = ∅. There are four inductive cases to consider.

Case 1: d has two successors e1 and e2. In this case, Xd = Xe1 = Xe2 by (N2). We
claim that Frontier(d) = Frontier(e1) ∪ Frontier(e2).
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Case 2: d has one successor e and Xd = Xe. In this case, Frontier(d) = Frontier(e).
Case 3: d has one successor e and Xd \ Xe = {u}. Then, by (D3), u �∈ Ve. Also,

by definition of Vd, u �∈ Vd. We conclude that Vd = Ve. Moreover, since Xe guards Ve,
there is no path from any element of Ve to u except through Xe. Hence, Frontier(d) =
Frontier(e).

Case 4: d has one successor e and Xe \ Xd = {u}. This is the critical case. Here
Vd = Ve ∪ {u} and in order to construct Frontier(d) we must determine the results of
all plays beginning at u.

Consider the set of vertices v in Xd such that (u, v) ∈ EG . These fall into two
categories. Either v ∈ Xd or v ∈ Ve. Let x1, . . . , xs enumerate the first category and
let v1, . . . , vm enumerate the second. Let O = {(xi,min{Ω(xi), Ω(u)}) : 1 ≤ i ≤ s}.
This is the set of outcomes obtained if play in the parity game proceeds directly from u
to an element of Xd. Note that as no two outcomes in O are comparable with respect to
�, O ∈ pot-res(Xd). We write O for {{o} : o ∈ O} That is O is the set of singleton
results obtained from O. For each vi we know, from Frontier(e), the set Res(Ve, vi).
For each result r ∈ Res(Ve, vi), we write mod(r) for the set of outcomes defined by
modifying r as follows. First, if r contains an outcome (u, p), we replace it by winEven
if min{p,Ω(u)} is even and winOdd if it is odd. Secondly, for any pair (w, p) ∈ r where
w �= u, we replace it with (w,min{p,Ω(u)}). Finally, we take the set of �-minimal
elements from the resulting set. This is mod(r). Note that mod(r) ∈ pot-res(Xd). The
intuition is that mod(resultf (Ve, vi)) defines the set of best possible outcomes for player
Odd, if starting at u, the play goes to vi and from that point on, player Even plays
according to strategy f . For each 1 ≤ i ≤ m, let Mi = {mod(r) : r ∈ Res(Ve, vi)}.

We now wish to use the sets of results Mi, O and O to construct the Res(Vd, u). We
need to distinguish between the cases when u ∈ V0 (i.e. player Even plays from u in
the parity game) and u ∈ V \ V0 (i.e. player Odd plays).

The simpler case is when u ∈ V0.

Lemma 5.1. If u ∈ V0, then Res(Vd, u) =
⋃

i Mi ∪ O.

The case when u �∈ V0 is somewhat trickier. To explain how we can obtain Res(Vd, u)
in this case, we formulate the following lemma.

Lemma 5.2. If u �∈ V0, then r ∈ Res(Vd, u) if, and only if, there is a function c on the
set [m] with c(i) ∈ Mi such that r = O !

�
i∈[m] c(i).

Lemma 5.2 suggests constructing Res(Vd, u) by considering all possible choice func-
tions c. However, as each set Mi may have as many as (n + 1)k + 2 elements, there are
m(n+1)k+2 possibilities for c and our algorithm would be exponential. We consider an
alternative way of constructing Res(Vd, u). Recall that Res(Vd, u) ⊆ pot-res(Xd) and
the latter set has at most (n + 1)k + 2 elements. We check, for each r ∈ pot-res(Xd),
in polynomial time, whether there is a choice function c as in Lemma 5.2 that yields r.
In particular, we take the following alternative characterisation of Res(Vd, u).

Lemma 5.3. If u �∈ V0, then r ∈ Res(Vd, u) if, and only if, there is a set D ⊆ [m] with
|D| ≤ |r| and a function d on D with d(i) ∈ Mi such that



DAG-Width and Parity Games 535

(i) r = O !
�

i∈D d(i); and
(ii) for each i �∈ D there is an ri ∈ Mi with r � ri.

Now, any r ∈ pot-res(Xd) has at most k elements. Thus, to check whether such an r is
in Res(Vd, u) we cycle through all sets D ⊆ [m] with k or fewer elements (and there
areO(nk) such sets) and for each one consider all candidate functions d (of which there
are O(nk2

)). Having found a d which gives r = O !
�

D d(i), we then need to find a
suitable ri in each i ∈ [m] \D. For this we must, at worst, go through all elements of
all the sets Mi and compare them to r. This can be done in time O(nk+1).

We have now obtained the set Res(Vd, u). One barrier remains to completing the
construction of Frontier(d). Elements (v, r) of Frontier(e) may have outcomes in r
of the form (u, p). Since u is not in Xd, these must be resolved by combining them
with results from Res(Vd, u). To be precise, let r ∈ Res(Ve, v) for some v ∈ Ve and
s ∈ Res(Vd, u). Define the combined result c(r, s) as follows:

– if r does not contain an outcome of the form (u, p), then c(r, s) = r;
– otherwise, r contains a pair (u, p). Let s′ be obtained from s by replacing every

pair (w, q) by (w,min{p, q}). c(r, s) = r ! s′.

Intuitively, if r = resultf (Ve, v) and s = resultf ′(Vd, u) then c(r, s) is the set of �-
minimal outcomes that can be obtained if player Even plays according to f starting at
v until the node u is encountered and then switches to strategy f ′.

Lemma 5.4. For v ∈ Ve, Res(Vd, v) = {c(r, s) : r ∈ Res(Ve, v) and s ∈ Res(Vd, u)}.

We now obtain Frontier(d) = {(v, r) : r ∈ Res(Vd, v)}.

Theorem 5.5. For each k, there is a polynomial p and an algorithm running
in time O(p(n)) which determines the winner of parity games on all graphs with
DAG-width at most k.
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2. D. BERWANGER AND E. GRÄDEL, Entanglement – a measure for the complexity of directed
graphs with applications to logic and games, in LPAR, 2004, pp. 209–223.

3. H. L. BODLAENDER, Treewidth: Algorithmic techniques and results, in MFCS, 1997,
pp. 19–36.

4. B. COURCELLE, Graph rewriting: An algebraic and logic approach, in Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Sematics (B), J. van Leeuwan, ed.,
1990, pp. 193–242.

5. N. D. DENDRIS, L. M. KIROUSIS, AND D. M. THILIKOS, Fugitive-search games on graphs
and related parameters, TCS, 172 (1997), pp. 233–254.

6. E. EMERSON, C. JUTLA, AND A. SISTLA, On model checking for the μ-calculus and its
fragments, TCS, 258 (2001), pp. 491–522.

7. G. GOTTLOB, N. LEONE, AND F. SCARCELLO, Robbers, marshals, and guards: Game
theoretic and logical characterizations of hypertree width, in PODS, 2001, pp. 195–201.



536 D. Berwanger et al.

8. T. JOHNSON, N. ROBERTSON, P. D. SEYMOUR, AND R. THOMAS, Directed tree-width,
Journal of Combinatorial Theory, Series B, 82 (2001), pp. 138–154.
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Abstract. We investigate the coded model of fault-tolerant computations intro-
duced by D. Spielman. In this model the input and the output of a computa-
tional circuit is treated as words in some error-correcting code. A circuit is said to
compute some function correctly if for an input which is a encoded argument of
the function, the output, been decoded, is the value of the function on the given
argument.

We consider two models of faults. In the first one we suppose that an ele-
mentary processor at each step can be corrupted with some small probability,
and faults of different processors are independent. For this model, we prove that
a parallel computation running on n elementary non-faulty processors in time
t = poly(n) can be simulated on O(n log n/ log log n) faulty processors in
time O(t log log n). Note that we get a sub-logarithmic blow up of the memory,
which cannot be achieved in the classic model of faulty boolean circuit, where
the input is not encoded.

In the second model, we assume that at each step some fixed fraction of ele-
mentary processors can be corrupted by an adversary, who is free to chose these
processors arbitrarily. We show that in this model any computation can be made
reliable with an exponential blow up of the memory.

Our method employs a sort of mixing mappings, which enjoy some proper-
ties of expanders. Based on mixing mappings, we implement an effective self-
correcting procedure for an array of faulty processors.

1 Introduction

The problem of reliable computations with faulty elements was investigated for several
types of computational models. In the most popular models, the computation is im-
plemented by a circuit of boolean gates; each gate can fail with a small probability. A
circuit is said fault-tolerant if it returns a correct result with high probability. For the first
time such a model of computation was proposed by J. von Neumann [1]. Later ideas by
von Neumann was developed by Dobrushin and Ortyukov [3]. Futher N. Pippenger in
[5] presented an effective transformation of every boolean circuit with non-faulty gates
into a fault-tolerant circuit.

The construction by Pippenger requires only logarithmic increasing of the number
of gates. In general, this result cannot be improved, and logarithmic redundancy is in-
evitable [4, 6, 7, 8]. But this lower bound is caused by the need to encode the input with
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c© Springer-Verlag Berlin Heidelberg 2006
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some error-correcting code and then to decode the answer. This obstacle can be elim-
inated if we allow to get the input and to return the result as an encoded word. Such a
model was used in the work of D. Spielman [10]. Let us define this model (with minor
modifications) in detail.

The Computational Model. The computational array consists of N elementary pro-
cessors s1, . . . , sN . At each moment, every processor contains one bit of information
(a processor is said to have an internal state 0 or 1). We fix two functions,

E : {0, 1}n → {0, 1}N and D : {0, 1}N → {0, 1}n,

which are normally the encoding and decoding functions of some error-correcting code.
We say that a circuit gets an input x ∈ {0, 1}n if the initial state of the memory
(s1, . . . , sN ) is equal to E(x).

Denote by s
(t)
1 , . . . , s

(t)
N the internal states of the processors at moment t. We call by

a circuit of depth T a list of instructions F (t)
i , t = 1, . . . , T which define how each of

the processors should update its internal state at each moment. More precisely, the state
of a processor si at moments t is defined by the rule

s
(t)
i = F

(t)
i (s(t−1)

j1
, s

(t−1)
j2

, . . . , s
(t−1)
jr

),

where F
(t)
i is a boolean function (the indexes j1, . . . , jr depend on i and t). The arity

r is supposed to be fixed in advance. We shall always suppose that r is a constant
independent of n.

We say that a circuit of depth T computes a function f : {0, 1}n → {0, 1}n if for all

x the equality D(s(T )
1 , . . . , s

(T )
N ) = f(x) holds provided that (s(0)

1 , . . . , s
(0)
N ) = E(x).

In other words, we use the encoding E to provide the circuit with an input, and then use
the decoding D to retrieve the result. We shall say also that such a circuit computes f
in T steps.

In the model of random faults we suppose that at each step every processor can
be randomly corrupted, i.e., with some small probability ε it can change its internal
state contrary to the rule above. Faults at different positions i and moments t (i.e., the
events that a processor si is corrupted at moment t) are supposed to by independent. For
this model, we say that some circuit correctly computes a function f with probability
(1− ε′), if

Prob[D(s̄(T )) = f(x)|s̄(0) = E(x)] = 1− ε′,

where s̄(0) = (s(0)
1 , . . . , s

(0)
N ) is an initial state of the computational array and s̄(T ) =

(s(T )
1 , . . . , s

(T )
N ) is the corresponding final state of the processors.

In another model, faults are caused by an malevolent adversary. This means that at
each moment t any εN processors can be corrupted. We say that a circuit computes
some function f if for every choice of the positions where processors are corrupted,
the final result is correct, i.e., for all x the equality D(s(T )

1 , . . . , s
(T )
N ) = f(x) holds

provided that (s(0)
1 , . . . , s

(0)
N ) = E(x).

Note that the defined model is trivial if the functions E and D may depend on f . Our
goal is to implement reliable computations of all functions given one pair of natural
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(E,D). In the sequel for each n we fix some En and Dn (one pair for the model with
random faults or another for the model with an adversary) and show that every function
f that can be computed on space n and in time poly(n) in the model without faults, can
be also computed with these encoding and decoding functions by a reliable circuit in a
faulty model.

The rest of the paper is organized as follows. In Section 2 we introduce the mix-
ing mappings, the main combinatorial tool of our proofs. In Section 3 we consider the
model of random faults and prove that every circuit of depth T with n processors can be
converted in a reliable circuit with O(n log(nT )/ log log(nT )) processors, which com-
putes the same function in time O(T log log(nT ). Comparative to [10], our bounds for
time and space are better (the construction by D. Spielman requires a poly-logarithmic
blow up and poly-logarithmic slow down); however, we get only a constant probability
of an error, whereas in [10] the probability of an error is exponentially small. Let us note
that for T = poly(n), the blow up in our construction is equal to O(log n/ log log n),
i.e., it is below the log n barrier, which is strict for the usual model of faulty boolean cir-
cuits (where the input of a circuit is not encoded). To the best of our knowledge, it is the
first construction of reliable circuits with sub-logarithmic blow up of the memory. Our
construction is effective, i.e., the fault-tolerant circuit can be constructed from the orig-
inal one by a polynomial algorithm. In Section 4 we deal with the model where faults
are chosen by an adversary. We prove that every circuit of depth T with n processors
can be converted in a reliable circuit with 2O(n) processors and depth O(nT ).

2 Mixing Functions

In this section we define mixing mappings and prove some of their properties.

Definition 1. We call a mapping F : {0, 1}m × {0, 1}τ → {0, 1}m a (m, τ, α,β)-
mixer if for all A, B ⊂ {0, 1}m such that |A| ≥ α2m the condition∥∥∥∥|{(x, u) : x ∈ A,F (x, u) ∈ B}| − 2τ |A| · |B|

2m

∥∥∥∥ ≤ β2τ |A|

holds.

This definition was inspired by the well-known Expander Mixing Lemma, see e.g, [11].
The Expander Mixing Lemma implies that an expander is a mixer with appropriate
parameters.

We need mixers with some additional structure. First of all, we consider L = {0, 1}m

as an m-dimensional linear space over Z/2Z (for u, v ∈ L the vector u + v is just the
bitwise sum of u and v modulo 2).

Definition 2. We call a mapping F : {0, 1}m × {0, 1}τ → {0, 1}m a linear
(m, τ, α,β)-mixer if (1) F is a (m, τ, α,β)-mixer, and (2) the mapping G : {0, 1}m ×
{0, 1}τ → {0, 1}m defined as G(x, u) = F (x, u) + x, is also a (m, τ, α,β)-mixer.

Standard probabilistic arguments imply that a linear mixer exists:

Lemma 1. For all α,β ∈ (0, 1) there exists a τ such that for all m there exists a linear
(m, τ, α,β)-mixer.
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The following properties of a mixer easily follows from the definition:

Claim 1. If 0 < δ′ < δ < 1/8 then for every (m, τ, δ′, δ)-mixer F , for every B ⊂
{0, 1}m of size at most 2m/8 there are less than δ2m elements x ∈ {0, 1}m such that
for at least 25% of u ∈ {0, 1}τ we have F (x, u) ∈ B.

Claim 2. Let 0 < δ′ < δ < 1/128 and F be an (m, τ, δ′, δ)-mixer. Then for every
B ⊂ {0, 1}m of size at most 2m/128 there are less than δ2m elements x ∈ {0, 1}m

such that for at least 1/64 of all u ∈ {0, 1}τ we have F (x, u) ∈ B.

We omit the proofs; both claims can be easily deduced from the definition.
As we mentioned above, any expander is a mixer with appropriate parameters; but an

expander may be not a linear mixer. Thus, if we need an effective construction of a lin-
ear mixer, we should develop new technique. Below we explain an explicit construction
of linear mixers required for our proofs.

Lemma 2. Let F1 be an (m1, τ1, α1,β1)-mixer and F2 be an (m2, τ2, α2,β2)-mixer.
Then the tensor product F = F1 ⊗ F2

F : {0, 1}m1+m2 × {0, 1}τ1+τ2 → {0, 1}m1+m2

is an (m1 + m2, τ1 + τ2, α,β)-mixer for α =
√

α2 and β = O(α1+β1+β2
α2

√
α2

+
√

α2)

This lemma is interesting for α1 ( β1 ( β2 ( α2. The bound in this lemma is quite
rough, but it is enough for our applications below. We omit the proof of the Lemma due
to the lack of space.

Remark that if F1 and F2 are linear mixers then F1 ⊗ F2 is also a linear mixer.

Lemma 3. For every α,β and a large enough τ there exists an algorithm which for an
input m constructs a linear (m, τ, α,β)-mixer in time poly(22m

) (the time bound is not
very nice, but it is better than exhaustive search!).

Proof. Denote N = 22m

. From Lemma 1 it follows that for all α′,β′ and a large
enough τ ′, for all n a linear (n, τ ′, α′,β′)-mixer exists. If 2n2n

= poly(N), we can
construct a linear (n, τ ′, α′,β′)-mixer in time poly(N) using a brute force search.
In particular, for any α′,β′, α′′,β′′ we can get in time poly(N) some linear mix-
ers with parameters (m/2, τ ′, α′,β′) and (m/2, τ ′′, α′′,β′′). Further, construct a ten-
sor product of these two mixers. From Lemma 2 it follows that we obtain a linear
(m, τ ′+τ ′′,

√
α′′,O(α′+β′+β′

α′′
√

α′′ +
√

α′′))-mixer. It remains to choose appropriate α′, α′′

and β′,β′′. �

3 Computations Resistant to Random Faults

In this section we show how to implement reliable computations with a circuit based
on faulty processors. We assume that each processor at each step of computation is
corrupted with small enough probability ε > 0, and that faults at different processors
and at different moments of time are independent.
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We use encoding based on the Hadamard code. Remind that the Hadamard code is a
mapping

Had : {0, 1}n → {0, 1}2n

where Had(a1, . . . , an) is the table of all values of the linear function of n variables

f(x1, . . . , xn) =
∑

1≤i≤n

aixi

(the coefficients ai and the variables xi ranges over the field Z/2Z). The code is linear,
so for all x, y ∈ {0, 1}n we have Had(x ⊕ y) = Had(x) ⊕Had(y). Here and in the
sequel we denote by x⊕ y the bitwise sum modulo 2.

Theorem 1. For every circuit S of depth t with n processors, for every εres > 0
there exists a fault tolerant circuit Ŝ of depth O(t log log(tn)), with O(n log(nt)/
log log(nt)) processors that computes the same function as S, for the input encoded
with some function E and the output decode with some D. The circuit Ŝ is reliable in
the following sense: if every processor at each step is corrupted with a small enough
probability ε (faults at different processors and different steps are independent) then the
result is correct with probability at least (1− εres).

The functions E,D depend on n and t but not on the function computed by the
circuit.

The transformation of a circuit to the reliable form is effective, i.e., there exists a
polynomial algorithm that constructs such a circuit Ŝ given S.

Remark 1. Remind that the computations in our model are defined by instructions of
the form s

(t)
i = F

(t)
i (s(t−1)

j1
, s

(t−1)
j2

, . . . , s
(t−1)
jr

), where the arity r is bounded. It is clear
that any computation can be implemented with instructions of arity 2. It is not hard to
convert a circuit S based on any r-ary elements into an equivalent circuit S′ based on
2-ary gates; we need only a constant blow-up of the memory and a constant slow down.
In the model of faulty computations, this transformation also changes the probability
to get an error at the output. If the original circuit S returns the correct result with
probability (1 − εres) provided that each processor at each step fails with probability
ε0, then the new circuit S′ returns the correct value with the same probability (1− εres)
provided that each processor at each step fails with some smaller probability ε1 (the
value ε1 depends on ε0 and r).

Thus, the arities of basic gates of S and Ŝ are not essential for our proof. For simplic-
ity, we shall assume that arity of gates for the original circuit S is at most 2; we shall
construct Ŝ an equivalent fault-tolerant circuit Ŝ with a large enough (but bounded)
arity r = O(1).

Proof. Denote by y(j) = (y(j)
1 , y

(j)
2 , . . . , y

(j)
n ) the state of the memory of S at the j-th

step of the computation, j = 0, . . . , t. We shall define an encoding E : {0, 1}n →
{0, 1}N and the corresponding decoding D : {0, 1}N → {0, 1}n, and a circuit Ŝ with

N processors so that for every j the internal state z(j) = (z(i)
1 , . . . , z

(i)
N ) of Ŝ with

high probability is close to E(y(i)). More precisely, with high probability for each j the
equality D(z(j))=y(j) holds. In particular, for the final result z(t) we get D(z(t))=y(t).
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Let us implement the plan presented above. We split the set of variables (x1, . . . , xn)
into blocks of size k = log(log n + log t) + C:

b1 = x1, . . . , xk,
b2 = xk+1, . . . , x2k,
. . . . . .

(the constant C will be chosen below). The total number of blocks bi is r = &n/k'.
A Restriction on Parallelism. Let us restrict the power of the parallelism in S. We
convert the circuit S in a circuit S′ such that at each step in every block bi only one
processor changes its internal state1. It is easy to construct from S a new circuit S′

that satisfy the conditions above; S′ needs O(n) processors and runs in time T =
O(t log log(nt)).

To prove the theorem, we show that S′ can be simulated by a fault-tolerant circuit Ŝ
with a blow up of the memory O(2k/k) in real time, i.e., without any slow down.

First of all, we specify encoding and decoding. Define encoding E : {0, 1}n →
{0, 1}N as follows:

E(x1, . . . , xn) = Had(b1) . . .Had(br).

Denote b̂i = Had(bi). Note that the length of each b̂i is 2k = 2C log(tn) and the length
of the codewords is N = r2k = O(n log(tn)/ log log(tn)).

Define manipulations with encoded data. Denote by z(j) = (z(j)
1 , z

(j)
2 , . . . , z

(j)
N ) the

state of memory of the circuit Ŝ at j-th stage of computation. We split z(j) into blocks
of length 2k and denote them b̂

(j)
1 , . . . , b̂

(j)
r .

Further we define the transition rule: how z(j+1) is computed from z(j). We define
it so that with high probability for all j each block b̂

(j)
i differs from Had(b(j)

i ) in a
fraction at most 1/8 of all bits.

In our model, at each step j = 1, . . . , T each value z1, . . . , zN is computed as a
function of the internal states ofO(1) processors at the previous step. Remind that some
of cells can be corrupted by random faults. Faults at different cells are independent and
each one occurs with probability ε. We say that a random perturbation is ε0-normal if
for every block b̂i at each stage of computation, there are at most ε0 · 2k faults.

Lemma 4. For all ε0 ∈ (ε, 1/8) and large enough constant C (which defines the length
of the blocks bi) a perturbation is ε0-normal with probability greater than (1− εres).

Proof of the Lemma. For each block b̂i at each step the average number of faults is
equal to ε2k. From the Chernoff bound it follows that for some c > 0

Prob[number of faults > ε02k] < e−c(ε−ε0)
22k

.

Sum up this probability for all i = 1, . . . , r and all steps j = 1, . . . , T . The sum is less
than εres if the constant C is large enough. �

1 Remind that we assume also that every time when a processor of S (and S′ as well) changes
its state, its new state is a boolean function of internal states of at most two processors from
the previous step.
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Let us fix some ε0 ∈ (ε, 1/8); in the sequel we construct Ŝ that always returns
a correct result for an ε0-normal perturbation. From Lemma 4 it follows that such a
circuit returns a correct result with probability at least (1− εres).

Fix some δ0 > 0 such that 8δ0 + ε0 < 1/8. Let Mix be a linear (k, τ, δ0/2, δ0)-
mixer. As we showed in Lemma 3, such a mixer can be found in time poly(n, t).

Now we are ready to define the computation rules for Ŝ. In the sequel we prove by
induction the following property: if at step j each b̂

(j)
i differs from the corresponding

Had(b(j)
i ) in at most 1/8 of bits, and the perturbation is ε0-normal, then each b̂

(j+1)
i

also differs from the corresponding Had(b(j+1)
i ) in at most 1/8 of bits.

We define the computation step in two stages. First, we define b̂′i, i = 1, . . . , r; each

bit of b̂′i is a function of O(1) bits from b̂
(j)
i . At the second stage we define b̂′′i , i =

1, . . . , r, each bit of a b̂′′i is a function of O(1) bits from (b̂′1, . . . , b̂
′
r). Then we set

b̂
(j+1)
i = b̂′′i , i = 1, . . . , r. We stress that this separation into two stages is used only

to make the explanation more clear and pictorial. In the circuit we do not need an
intermediate stage: the states of the processors at the (j + 1)-th step b̂

(j+1)
i are directly

defined as functions of b̂
(j)
i .

The First Stage of the Construction. Fix i and j, and let b̂
(j)
i = (u1, . . . , u2k). We

identify an integer q ∈ {1, . . . , 2k} and its k-digit binary representation (with leading
zeros). Thus, we can use q as the first argument of the mixer Mix. Further, for an
integer q ≤ 2k and η ∈ {0, 1}τ we can consider uMix(q,η)⊕q , where Mix(q, η) ⊕ q is
the bitwise sum of two k-bit words: Mix(q, η) and the binary representation of q.

Assume that b̂
(j)
i differs from E(b(j)

i ) in at most 2k/8 bits. For every q the bit u′
q is

computed as
u′

q = majority
η∈{0,1}τ

{(uMix(q,η)⊕q − uMix(q,η))}

Let us bound the number of bits in b̂′ = (u′
1, . . . , u

′
2k) that differ from the q-th bits of

Had(b(j)
i ). There may be two reasons why a u′

q differs from the corresponding bit of

Had(b(j)
i ):

1. in the sequence uMix(q,0)⊕q, . . . , uMix(q,τ)⊕q at least 25% of values differ from

the corresponding values of Had(b(j)
i );

2. in the sequence uMix(q,0), . . . , uMix(q,τ) at least 25% of values differ from the

corresponding values of Had(b(j)
i );

From Claim 1 it follows that there are at most 2δ02k positions q where at least one of
these two conditions hold. Thus, we proved the following bound:

Claim 3. There are at most 2δ02k positions q = 1, . . . , 2k, where u′
q differs from the

corresponding bit of Had(b(j)
i ).

The Second Stage of the Construction. Remind that we assume that at each step of
the computation in the original circuit S′ exactly one bit of every block is updated.
Let on the j-th step in a block b̂i0 the internal state of a processor c0 was updated:

x
(j+1)
c0 = Fj(x

(j)
c1 , x

(j)
c2 ), where Fj is some boolean function. Let the bits xc1 and xc2
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be from the blocks b̂i1 and b̂i2 respectively. The difference between Had(b(j)
i0

) and

Had(b(j+1)
i0

) is a function of xc0 , xc1 , xc2 . As the Hadamard code is linear, if

ξ = Fj(x(j)
c1

, x(j)
c2

)− x(j)
c0

,

then the difference
Had(b(j)

i0
)−Had(b(j+1)

i0
)

is equal to Had(0, . . . , 0, ξ, 0, . . . , 0).
Now we define u′′

q . For b̂′′i0 make the computations as follows. Let b̂′j0 =
(u′

1, . . . , u
′
2k), b̂′j1 = (v′1, . . . , v

′
2k) and b̂′j2 = (w′

1, . . . , w
′
2k). For each q = 1, . . . , 2k

we estimate the value xc0 as

x̃c0 = majority
η∈{0,1}τ

{(u′
Mix(q,η)⊕c0

− u′
Mix(q,η))},

and the values xc1 and xc2 as

x̃c1 = majority
η∈{0,1}τ

{(v′Mix(q,η)⊕c1
− v′Mix(q,η))},

x̃c2 = majority
η∈{0,1}τ

{(w′
Mix(q,η)⊕c2

− w′
Mix(q,η))},

respectively. Set ξ̃ = Fj(x̃c1 , x̃c2) − x̃c0 and add the q-th digit of the vector
Had(0, . . . , 0, ξ̃, 0, . . . , 0) to the bit u′

q (as usual, all operations are in the field
Z/2Z). Note that x̃c0 is estimated correctly unless at least 25% of the val-
ues vMix(q,0)+c0 , . . . , vMix(q,τ)+c0 are corrupted or at least 25% of the values
vMix(q,0), . . . , vMix(q,τ) are corrupted. From Claim 1, there are at most 2δ02k

positions q where one of these two conditions holds. The same is true for x̃c1 and x̃c2 .

Remark 2. Here we have used the fact that the Hadamard code is locally decodable:
the value xc0 can be calculated from two digits of the codeword ( u′

Mix(q,η)⊕c0
and

u′
Mix(q,η)), if only these digits are not corrupted.

Let us bound the number of positions q where u′′
q differs from the q-th bit of

Had(b(j+1)
1 ). All but 2δ02k positions u′

q are equal to the corresponding bits of the

(2k)-bit string Had(b(j)
1 ). All three values xc0 , xc1 , and xc2 are estimated correctly

for all but 6δ02k positions. Further, at most ε02k bits of one block can be corrupted
due to random faults. In total, the fraction of position where u′′

q is not equal to the

corresponding bit of Had(b(i+1)
0 ) is at most 8δ0 + ε0 < 1/8. �

We proved that any computation can be made reliable so that the result is correct with
some fixed probability (1− εres). We might want to get a circuit which fails with expo-
nentially small probability. To decrease the probability of a failure, we can increase the
size k of blocks bi used in the proof of Theorem 1. If we let k = C′ log log(tn) for some

C′ > 1, our construction results in a circuit which fails with probability e−Ω(logC′
(tn));

the blow up of the memory in this circuit isO(2k/k) = O(logO(1)(tn)). To implement
this construction, we need a linear mixer with parameters (log(logO(1)(tn)), τ, α,β).
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Such a mixer can be constructed in time poly(t, n); really, it is enough to get the tensor
product of O(1) linear mixers with parameters (1

2 log log(nt),O(1),O(1),O(1)).
To get a circuit that fails with probability e−Ω(n), we need a linear (log(tn), τ, α,β)-

mixer. Such a mixer exists, though we have no effective algorithm to construct it. But if
we omit the condition that Ŝ can be received from S effectively then we can apply the
same arguments as in Theorem 1 and get the following result:

Theorem 2. For every circuits S of depth t with n processors there exists a circuit Ŝ
of depth poly(t, n) with poly(t, n) processors that computes the same function for the
encoded input so that if every processor at each step is corrupted with a small enough
probability ε then the result is correct with probability at least (1 − e−Ω(n)).

In contrast to Theorem 1, our Theorem 2 is not a really new result. The same statement
can be proved using technique from [5]. Actually, a stronger statement was proved
by D. Spielman in [10]: he showed how to construct a circuit that fails with proba-
bility e−Ω(n) and has only poly-logarithmic excess of memory, while our method re-
quires polynomial blow-up of the circuit. We presented here Theorem 2 to compare our
method with previous works and to show the limits of our technique.

4 Computations Resistant to an Adversary

Now we consider the model where at each step an adversary chooses arbitrarily the
fraction ε of all processors and corrupts them. We show that any computation circuit
can be made resistant to such an adversary with an exponential blow up of the memory.

Theorem 3. For a small enough ε > 0, for every circuit S of depth t with n processors
there exists a circuit Ŝ of depthO(tn) with N = 2O(n) processors such that Ŝ computes
correctly the same function (for the encoded input) if at each step the fraction at most ε
of all processors are corrupted.

Encoding of the input and decoding of the output depend only on n, not on a partic-
ular function.

Proof. First of all, we convert the given circuit S into another circuit S′ (which com-
putes the same function) such that the following conditions hold:

– at each step of the computation only one processor of S′ can update its internal
state (the other keep the state of the previous step),

– when the internal state of a processor is updated, its new state is calculated as a
boolean function of internal states of one or two processors at the previous step.

The price for this transformation is an n time slow down and a constant blow up of the
memory.

Thus, we have a circuit S′, which hasO(n) processors and runs in time T = O(tn).
Further we construct a fault-tolerant (in the adversary model) circuit Ŝ that simulates S′

in real time. To simplify the notations, we shall assume that S′ has exactly n processors
(the constant blow up of the memory is not essential for our arguments in the sequel).
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Denote by y(j) = (y(j)
1 , . . . , y

(j)
n ) the state of the memory of S′ at the j-th step of

computation, j = 0, . . . , T . Define an encoding function

E : {0, 1}n → {0, 1}22n

as follows:
E(x) = Had(x), . . . , Had(x),

i.e., E is just the Hadamard code repeated 2n times. The decoding function D :
{0, 1}22n → {0, 1}n is defined as follows: to get D(x), we split x into 2n blocks
of length 2n; decode each block using the Hadamard decoding; then for each position
i = 1, . . . , n take the majority of the i-th bits in all 2n results.

We shall define the computation process so that at each step j the memory of Ŝ

contains a value z(j) = (z(j)
1 , . . . , z

(j)
N ) which differers from E(y(j)) in at most δN

positions for δ = (1/2)14. Note that this condition implies D(z(t)) = y(t).

Let us split the processors (z(j)
1 , . . . , z

(j)
N ) into 2n blocks of size 2n and denote these

blocks b
(j)
1 , . . . , b

(j)
2n .

We shall employ an (n, τ, δ0/2, δ0)-mixer Mix, where δ0 = (δ − ε)/7. Such a
mixer exists for large enough τ = τ(δ0). We don’t need it to be a linear mixer, so
we can employ an expander with small enough second eigenvalue. There are known
constructions of effective expanders with required parameters, e.g. [12].

We describe the transformation from z(j) to z(j+1) in four stages.
Stage 1. Fix i ∈ {1, . . . , 2n}. For each η ∈ {0, 1}τ take the block b

(j)
Mix(i,η) =

(u1(η), . . . , u2n(η)) and compute the vector

wi(η) = (ui⊕1(η) − u1(η), . . . , ui⊕2n(η) − u2n(η))

(here for i, s ∈ {1, . . . , 2n} we denote by i ⊕ s the bitwise sum of n-bits binary rep-
resentations of i and s with leading zeros). For each position r = 1, . . . , 2n get the
majority of the r-th bits in all wi(η), η ∈ {0, 1}τ . Denote by c

(j)
i the obtained result

(which is a vector in {0, 1}2n

).

Let us call a block b
(j)
i harmed if it differs from Had(y(j)) in more than

√
δ2n

positions. We assumed that z(j) differs from E(y(j)) in at most δN position. Hence,

there are at most
√

δ2n harmed locks b
(j)
i .

From Claim 2 it follows that for the fraction at least (1 − δ0) of all indexes i there

are at least (1 − 1/64) · 2τ non-harmed blocks b
(j)
Mix(i,η) (η ∈ {0, 1}τ ). Note that if for

some i at least the fraction (1 − 1/64) of blocks b
(j)
Mix(i,η) are not harmed, then all but

4 · (1/64 +
√

δ) · 2n < 2n/8 bits in the resulted block c
(j)
i are equal to y

(j)
i .

Stage 2. Fix i ∈ {1, . . . , 2n}. Let the block c
(j)
i consists of bits (v1, . . . , v2n). For

each r = 1, . . . , 2n calculate the majority

v′r = majority
η∈{0,1}τ

{vMix(r,η)},

Set d
(j)
i = (v′1, . . . , v

′
2n).
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From Claim 1 it follows that if a block c
(j)
i contains at least 7/8 · 2n bits equal to

y
(j)
i , then in the corresponding block d

(j)
i at least (1 − δ0)2n bits are equal to y

(j)
i . Of

course, we guarantee nothing for a block d
(j)
i if in the corresponding c

(j)
i more than 1/8

of all bits differ from y
(j)
i .

Stage 3. This stage is trivial: we just make a permutation of bits in (d(j)
1 , . . . , d

(j)
2n ).

For each l,m we get the l-th bit from c
(j)
m and put it to the m-th position in the l-th

block. Denote the result (f (j)
1 , . . . , f

(j)
2n ).

Stage 4. Assume that at the j-th step of the computation in the original circuit S′

the bit yi0 is modified: y
(j+1)
i0

= F (y(j+1)
i1

, y
(j+1)
i2

), where F is some boolean function
(we assumed that that the boolean function F has at most two arguments). Fix i ∈
{1, . . . , 2n} and denote f

(j)
i = (u1, . . . , u2n). For each q = 1, . . . , 2n calculate

ỹi0 = uq⊕i0 − uq

ỹi1 = uq⊕i1 − uq

ỹi2 = uq⊕i2 − uq

Then set ξq = F (ỹi1 , ỹi2) − ỹi0 , and calculate -q = Had(0, . . . , 0, ξq, 0, . . . , 0) (the
value ξq is placed at the i0-th position). Further, get the q-th position of-q and add it to

the value uq. Denote the resulted block b
(j+1)
i , and set z(j+1) = (b(j+1)

1 , . . . , b
(j+1)
2n ).

If f
(j)
i differs from Had(y(j)

i ) in γ2n positions (for some fraction γ ∈ (0, 1)) then

b
(j+1)
i differs from Had(y(j+1)) in at most 6γ2n positions. Hence, the whole vector

z(j+1) differs from E(y(j+1)) in at most (δ0 +6δ0+ε)2n positions. Note that 7δ0+ε =
δ, and we are done.

In our construction each bit z(j+1) depends on O(1) bit from z(j). Thus, we have
well defined the transition rule z(j) �→ z(j+1). �

5 Conclusion

We proved that any parallel computation fulfilled on memory n in time t can
be simulated by a reliable circuit with memory O(n log(nt)/ log log(nt)) in time
O(t log log(tn)). Such a reliable circuit returns a correct result with high probability,
even if the elementary processors are faulty elements (i.e., each logical gate at each step
faults with some small probability ε, and faults of different elements are independent).
Our construction employs encoding based on the Hadamard code. Actually similar ar-
guments can be applied for a code base on any other linear locally decodable code.
For example, we can use the Reed-Muller code instead of the Hadamard code; then es-
sentially the same construction provides a bit stronger bound: any computation which
was done on a non-faulty circuit with memory n in time t, can be simulated on faulty
elements with memoryO(n log(nt)/ logC log(nt)), where the constant C can be made
arbitrarily large. By this method, we cannot obtain much better bounds, because for any
linear locally decodable error correcting code the codeword length must be exponential
in the block length [13]. Thus, the main question, which remains open, is if reliable
polynomial computations can be fulfilled on memoryO(n).
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Our second result, which concerns computations resistant to an adversary who can
corrupt at each step some fraction of memory cells, seems quite weak. We presented
a construction with exponential blow-up of the memory. Again, the proved bound can-
not be essentially improved with our method, because it is based on a linear locally
decodable error correcting code. Remind that if we want just to store some informa-
tion (without computations), this can be done with a constant blow-up of the memory,
even if at each step an adversary corrupts some fraction of memory cells [2]. To our
knowledge, there are no results achieving a polynomial blow up of the memory for cir-
cuits computing an arbitrary function and tolerating a constant fraction of processors
being corrupted at every step. In [9] this problem was solved only for a special class of
boolean functions. Thus, the second important open question is if any computation can
be made resistant to an adversary, with linear or at least polynomial increasing of the
memory. Another interesting question is if a linear (m, τ, α,β)-mixer can be effectively
constructed in time poly(2m). If such a construction exists, the proof of Theorem 2 can
be made effective.
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with Inaccurate Sensors and Movements

(Extended Abstract)
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Abstract. The common theoretical model adopted in recent studies on
algorithms for systems of autonomous mobile robots assumes that the
positional input of the robots is obtained by perfectly accurate visual
sensors, that robot movements are accurate, and that internal calcula-
tions performed by the robots on (real) coordinates are perfectly accurate
as well. The current paper concentrates on the effect of weakening this
rather strong set of assumptions, and replacing it with the more realistic
assumption that the robot sensors, movement and internal calculations
may have slight inaccuracies. Specifically, the paper concentrates on the
ability of robot systems with inaccurate sensors, movements and calcu-
lations to carry out the task of convergence. The paper presents several
impossibility results, limiting the inaccuracy allowing convergence. The
main positive result is an algorithm for convergence under bounded mea-
surement, movement and calculation errors.

1 Introduction

Background. Distributed systems consisting of autonomous mobile robots
(a.k.a. robot swarms) are motivated by the idea that instead of using a sin-
gle, highly sophisticated and expensive robot, it may be advantageous in certain
situations to employ a group of small, simple and relatively cheap robots. This
approach is of interest for a number of reasons. Multiple robot systems may be
used to accomplish tasks that cannot be achieved by a single robot. Such systems
usually have decreased cost due to the simpler individual robot structure. These
systems can be used in a variety of environments where the acting (human or
artificial) agents may be at risk, such as military operations, exploratory space
missions, cleanups of toxic spills, fire fighting, search and rescue missions, and
other hazardous tasks. In such situations, a multiple robot system has a better
chance of successfully carrying out its mission (while possibly accepting the loss
or destruction of some of its robots) than a single irreplaceable robot. Such sys-
tems may also be useful for carrying out simple repetitive tasks that humans
may find extremely boring or tiresome.
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Subsequently, studies of autonomous mobile robot systems can be found in
different disciplines, from engineering to artificial intelligence. (A survey on the
area is presented in [4].)

A number of recent studies on autonomous mobile robot systems focus on al-
gorithms for distributed control and coordination from a distributed computing
point of view (cf. [10, 13, 12, 2]). The approach is to propose suitable computa-
tional models and analyze the minimal capabilities the robots must possess in
order to achieve their common goals. The basic model studied in the these papers
can be summarized as follows. The robots execute a given algorithm in order
to achieve a prespecified task. Each robot in the system is assumed to operate
individually in simple cycles consisting of three steps:

(1) “Look”: determine the current configuration by identifying the locations of
all visible robots and marking them on your private coordinate system,
(2) “Compute”: execute the given algorithm, resulting in a goal point pG, and
(3) “Move”: travel towards the point pG. The robot might stop before reaching
its goal point pG, but is guaranteed to traverse at least some minimal distance
unit (unless reaching the goal first).

Weak and Strong Model Assumptions. Due to the focus on cheap robot
design and the minimal capabilities allowing the robots to perform some tasks,
most papers in this area (cf. [10, 13, 9, 5]) assume the robots to be rather limited.
Specifically, the robots are assumed to be indistinguishable, so when looking at
the current configuration, a robot cannot tell the identity of the robots at each
of the points (apart from itself). Furthermore, the robots are assumed to have
no means of direct communication. This gives rise to challenging “distributed
coordination” problems since the only permissible communication is based on
“positional” or “geometric” information exchange, yielding an interesting variant
of the classical (direct-communication based) distributed model.

Moreover, the robots are also assumed to be oblivious (or memoryless),
namely, they cannot remember their previous states, their previous actions or
the previous positions of the other robots. Hence the algorithm employed by the
robots for the “compute” step cannot rely on information from previous cycles,
and its only input is the current configuration. While this is admittedly an over-
restrictive and unrealistic assumption, developing algorithms for the oblivious
model still makes sense in various settings, for two reasons. First, solutions that
rely on non-obliviousness do not necessarily work in a dynamic environment
where the robots are activated in different cycles, or robots might be added to
or removed from the system dynamically. Secondly, any algorithm that works
correctly for oblivious robots is inherently self-stabilizing, i.e., it withstands tran-
sient errors that alter the robots’ local states.

On the other hand, the robot model studied in the literature includes the
following overly strong assumptions:
– when a robot observes its surroundings, it obtains a perfect map of the

locations of the other robots relative to itself,
– when a robot performs internal calculations on (real) coordinates, the out-

come is exact (infinite precision) and suffers no numerical errors, and
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– when a robot decides to move to a point p, it progresses on the straight line
connecting its current location to p, stopping either precisely at p or at some
earlier point on the straight line segment leading to it.

All of these assumptions are unrealistic. In practice, the robot measurements
suffer from nonnegligible inaccuracies in both distance and angle estimations.
(The most common range sensors in mobile robots are sonar sensors. The accu-
racy in range estimation of the common models is about ±1% and the angular
separation is about 3◦; see, e.g., [11]. Other possible range detectors are based
on laser range detection, which is usually more accurate than the sonar, and on
stereoscopic vision, which is usually less accurate.) The same applies to the pre-
cision of robot movements. Due to various mechanical factors such as unstable
power supply, friction and force control, the exact distance a robot traverses in
a single cycle is hard to control, or even predict with high accuracy. This makes
most previous algorithms proposed in the literature inapplicable in most practi-
cal settings. Finally, the robots’ internal calculations cannot be assumed precise,
for a variety of well-understood reasons such as convergence rates of numerical
procedures, truncated numeric representations, rounding errors and more.

In this paper we address the issue of imperfections in robot measurements,
calculations and movements. Specifically, we replace the unrealistic assumptions
described above with more appropriate ones, allowing for measurement, calcu-
lation and movement inaccuracies, and show that efficient algorithmic solutions
can still be obtained in the resulting model.

We focus on the gathering and convergence problems, which have been exten-
sively studied in the common (fully accurate) model (cf. [13, 10, 5]). The gath-
ering problem is defined as follows. Starting from any initial configuration, the
robots should occupy a single point within a finite number of steps. The closely
related convergence problem requires the robots to converge to a single point,
rather than reach it (namely, for every ε > 0 there must be a time tε by which
all robots are within distance of at most ε of each other).

It is important to note that analyzing the effect of errors is not merely of the-
oretical value. In Section 3 we show that gathering cannot be guaranteed in en-
vironments with errors, and illustrate how certain existing geometric algorithms,
including ones designed for fault tolerance, fail to guarantee even convergence
in the presence of small errors. We also show (in Theorem 9) that the standard
center of gravity algorithm may also fail to converge when errors occur.

Related Work. A number of problems concerning coordination in autonomous
mobile robot systems have been considered so far in the literature. The gath-
ering problem was first discussed in [13] in the semi-synchronous model. It was
proven that it is impossible to gather two oblivious autonomous mobile robots
that have no common sense of orientation under the semi-synchronous model.
Also, an algorithm was presented in [13] for gathering N ≥ 3 robots in the
semi-synchronous model. In the asynchronous model, a gathering algorithm has
recently been described in [5]. Fault tolerant gathering algorithms (in the crash
and Byzantine fault models) were studied in [1]. The gathering problem was also
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studied in a system where the robots have limited visibility. The visibility con-
ditions are modeled by means of a visibility graph, representing the (symmetric)
visibility relation of the robots with respect to one another, i.e., an edge exists
between robots i and j if and only if i and j are visible to each other. (Note that
in this model visibility is a boolean predicate and does not involve imprecisions,
namely, if robot j is visible to robot i then its precise coordinates are measured
accurately.) It was shown that the problem is unsolvable in case the visibility
graph is not connected [9]. In [2] a convergence algorithm was provided for any
N , in limited visibility systems. The natural gravitational algorithm based on
going to the center of gravity, and its convergence properties, were studied in [6].

Other problems studied, e.g., in [12, 13, 7, 8, 10, 3], concern formation of var-
ious geometric patterns, flocking (or “following the leader”), distributed search
after (static or moving) targets, achieving even distribution, partitioning and
wake-up via the freeze-tag paradigm.

Our Results. In this paper we study the convergence problem in the common
semi-synchronous model where the robots’ only inputs are obtained by inac-
curate visual sensors, and their movements and internal calculations may be
inaccurate as well. In Section 3 we present several impossibility theorems, limit-
ing the inaccuracy allowing convergence, and prohibiting a general algorithm for
gathering in a finite number of steps. In Section 4 we present an algorithm for
convergence under bounded error, and prove its correctness, first in the fully syn-
chronous model, and then in the semi-synchronous model. Finally, we compare
the proposed algorithm with the ordinary center of gravity algorithm.

2 The Model

Each of the N robots i in the system is assumed to operate individually in simple
cycles. Every cycle consists of three steps, “look”, “compute” and “move”. The
result of the “look” step taken by i is a multiset of points P = {p1, . . . , pN}
(with pi = 0 in i’s local coordinate system) defining the current configuration
and used by the robot in calculating its next goal point pG. Note that the “look”
and “move” steps are carried out identically in every cycle, independently of
the algorithm used. The differences between different algorithms occur in the
“compute” step. Moreover, the procedure carried out in the “compute” step is
identical for all robots. If the robots are oblivious, then the algorithm cannot rely
on information from previous cycles, thus the procedure can be fully specified by
describing a single “compute” step, and its only input is the current configuration
P , giving the locations of the robots.

As mentioned earlier, our computational model for studying and analyzing
problems of coordinating and controlling a set of autonomous mobile robots
follows the well studied semi-synchronous (SSYNC) model. This model is par-
tially synchronous, in the sense that all robots operate according to the same
clock cycles, but not all robots are necessarily active in all cycles. Those robots
which are awake at a given cycle make take a measurement of the positions of
all other robots. Then they may make a computation and move instantaneously
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accordingly. The activation of the different robots can be thought of as managed
by a hypothetical scheduler, whose only fairness obligation is that each robot
must be activated and given a chance to operate infinitely often in any infi-
nite execution. On the way to establishing the result on the SSYNC model, we
prove it first in the fully synchronous (FSYNC) model. Finally, we also discuss
its performance in the fully asynchronous (ASYNC) model.

Our model assumes that the robot’s location estimation is imprecise, with
imprecision bounded by some accuracy parameter ε known at the robot’s design.
In general, this imprecision can affect both distance and angle estimations. In
particular, distance imprecision means that if the true location of an observed
point in i’s coordinate system is V and the measurement taken by i is v̄, then
this measurement will satisfy (1− ε)V < v < (1+ ε)V . (Throughout, for a vector
v̄, we denote by v its scalar length, v = |v̄|. Also, capital letters are used for
exact quantities, whereas lowercase ones denote the robots’ views).

The accuracy in angle measurements is θ0 (where it can always be assumed
that θ0 ≤ π). I.e., the angle θ between the actual distance vector V and the
measured distance vector v̄ satisfies θ ≤ θ0, or alternatively, cos θ = V v̄

V v ≥ cos θ0.
In what follows, we consider the model ERR in which both types of imprecision
are possible, and the model ERR− where only distance estimates are inaccurate.
This gives rise to six composite timing/error models, denoted 〈T , E〉, where T
is the timing model under consideration (FSYNC, SSYNC or ASYNC) and E
is the error model (ERR or ERR−).

While in reality each robot uses its own private coordinate system, for simplic-
ity of presentation it is convenient to assume the existence of a global coordinate
system (which is unknown to the robots) and use it for our notation. Through-
out, we denote by R̄j the location of robot j in the global coordinate system. In
addition, for every two robots i and j, denote by V

i

j = R̄j − R̄i the true location
of robot j from the position of robot i (i.e., the true vector from i to j), and by
v̄i

j the location of robot j as measured by i, translated to the global coordinate
system. Likewise, our algorithm and its analysis will be described in the global
coordinate system, although each of the robots will apply it in its own local
coordinate system. As the functions computed by the algorithm are all invariant
under translations, this representation does not violate the correctness of our
analysis.

If the robots may have inaccuracies in distance estimation but not in direc-
tions, then i will measure V

i

j as v̄i
j = (1 + εij)V

i

j , where −ε < εij < ε is the
local error factor in distance estimation at robot i. For robots with inaccuracy
in angle measurement as well, if the true distance is V i

j , then i will measure it

as vi
j = (1 + εij)V

i
j , where −ε < εij < ε and the angle θ between V

i

j and v̄i
j will

satisfy |θ| ≤ θ0. Values computed at time-slot t are denoted by a parameter [t].
Also, the actual error factor is time dependent and its value at time t is denoted
by εij [t]. The parameter t is omitted whenever clear from the context.

Inaccuracies in movement and calculations should also be taken into account.
For movement, we may assume that if a robot wants to move from its cur-
rent location R̄i to some goal point pG, then it will move on a vector at an
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angle of at most φ0 from the vector ripG and to any distance d in the interval
d ∈ [1− ε, 1 + ε] · |ripG|. Also, when it calculates a goal point pG = (x, y), it will
have a multiplicative error of up to ε. In the center of gravity algorithms pre-
sented below, the calculation error is bounded linearly in the calculated terms.
Hence it can be seen that relative movement and calculation errors can be re-
placed with errors in measurement causing the same effect, so these errors can be
treated using the same algorithm by recalibrating ε. (Note that absolute errors
in movement or calculation can not be treated, since even when the robots have
already almost converged, such errors may cause them to spread again.) There-
fore, throughout most of the ensuing technical development, we will assume only
measurement inaccuracies.

We use the following technical lemma. (Most proofs are deferred to full paper.)

Lemma 1. For two vectors ā and b̄ with a ≤ 1 ≤ b, let x = |ā − b̄| and y =
|ā− b̄/b|. Then (1) x2− y2 ≥ (b−1)2 +2(1−a)(b−1) ≥ (b−1)2, and (2) y ≤ x.

3 The Effect of Measurement Errors

To appreciate the importance of error analysis one must realize two facts. First,
computers are limited in their computational power, and therefore cannot per-
form perfect precision calculations. This may seem insignificant, since floating
point arithmetic can be made to very high accuracy with modern computers.
However, this may prove to be a practical problem. For instance, the point
that minimizes the sum of distances to the robots’ locations (also known as the
Weber point) may be used to achieve gathering. However, this point is not com-
putable, due to its infinite sensitivity to location errors. Second, the correctness
of algorithms that use geometric properties of the plane is usually proven using
theorems from Euclidean geometry. However, these theorems are, in many cases,
inappropriate when measurement or calculation errors occur.

Impossibility Results. We start with some impossibility results. The proofs
of these results are based on the ability of the adversary to partition the space of
possible initial configurations into countably many regions, each of uncountably
many configurations (say, on the basis of the initial distance between the robots),
such that within each region, the outcome of the algorithm (i.e., the movement
instructions to the robots) is the same. The following theorem holds even in
a rather strong setting where the timing model is fully synchronous, and the
robots have unlimited memory and are allowed to use randomness.

Theorem 1. Even in the strong setting outlined above, gathering is impossible
(1) for two robots on the line with inexact distance measurements,
(2) for any number of robots assuming inaccuracies in both the distance and
angle measurements.

It seems reasonable to conjecture that even convergence is impossible for robots
with large measurement errors. The exact limits are not completely clear. The
following theorem gives some rather weak limits on the possibility of convergence.
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In the theorem we assume that the robot has no sense of direction in a strong
way, i.e., at every cycle the adversary can choose each robot’s axes independent
of previous cycles.

Theorem 2. For a configuration of N = 3 robots having an error parameter
θ0 ≥ π/3 in angle measurement, there is no deterministic algorithm for con-
vergence even assuming exact distance estimation, fully synchronous model and
unlimited memory.

Problems with Existing Algorithms. To illustrate the second point raised in
the beginning of this section, consider the algorithm 3− Gather presented in [1].
This algorithm achieves gathering of three robots using several simple rules.
One of these rules states that if the robots form an obtuse triangle, then they
move towards the vertex with the obtuse angle. As shown above, no algorithm
can guarantee gathering when measurement errors occur. Furthermore, although
this algorithm is designed to robustness and achieves gathering even if one of
the robots fails, one can verify that it might fail to achieve even convergence in
the presence of angle measurement errors of at least 15◦.

Likewise, for a group of N > 3 robots the algorithm N− Gather is presented
in [1]. In this algorithm the smallest enclosing circle of the robot group is calcu-
lated, and in case there is a single robot inside this circle, it does not move. In
the presence of measurement inaccuracies, this rule can potentially cause dead-
lock, implying that the algorithm might fail to achieve even convergence in the
presence of angle and distance measurement errors of ε > 0.

4 The Convergence Algorithm

Algorithm Go to COG. A natural algorithm for autonomous robot convergence
is the gravitational algorithm, where each robot computes the average position
(center of gravity) of the group, v̄i

cog = 1
N

∑
j v̄

i
j , and moves towards it.

The properties of Algorithm Go to COG in a model with fully accurate mea-
surements have been studied in [6]. In particular, it is proven that a group of
N robots executing Algorithm Go to COG will converge in the ASYNC model
with no measurement errors. If measurements are not guaranteed to be accurate,
Algorithm Go to COG may not guarantee convergence. Nevertheless, convergence
is guaranteed in the fully synchronous model, i.e., we have the following.

Lemma 2. In the 〈FSYNC, ERR−〉 model with ε < 1
2 , a group of N robots

performing Algorithm Go to COG converges.

The convergence of Algorithm Go to COG in the SSYNC model is not clear at
the moment. However, as shown below, in the ASYNC model there are scenarios
where robots executing Algorithm Go to COG fail to converge. This leads us to
propose the following slightly more involved algorithm.

Algorithm RCG. Our algorithm, named RCG, is based on calculating the center of
gravity (CoG) of the group of robots, and also estimating the maximum possible



556 R. Cohen and D. Peleg

error in the CoG calculation. The robot makes no movement if it is within the
maximum possible error from the CoG. If it is outside the circle of error, it
moves towards the CoG, but only up to the bounds of the circle of error. We fix
a conservative error estimate parameter, ε0 > ε.

Following is a more detailed explanation of the algorithm. In step 1, the
measured center of gravity is estimated using the conducted measurements. In
step 2 the distance to the furthest robot is found. Notice that this distance may
not be accurate, and that this needs not be even the real furthest robot. The
result of step 2 is used in step 3 to give an estimate of the possible error in the
CoG calculation. In step 4 the robots decide to hold if it is within the circle of
error, or calculates its destination point, which is on the boundary of the error
circle centered at the calculated CoG. A formal description of the algorithm is
given next. Note that Algorithm Go to COG is identical to Algorithm RCG with
parameter ε0 = 0.

Code for robot i

1. Estimate the measured center of gravity, v̄i
cog = 1

N

∑
j v̄

i
j

2. Let di
max = maxj{vi

j} /* max distance measured to another robot

3. Let ρi =
ε0

1− ε0
· di

max /* estimate for max error in calculated CoG

4. If vi
cog > ρi then move to the point c̄i = (1 − ρi/vi

cog) · v̄i
cog.

Otherwise do not move.

Analysis of RCG in the Semi-synchronous Model. We first prove the conver-
gence of Algorithm RCG in the 〈FSYNC, ERR−〉 model. Denote the true center
of gravity of the robots in the global coordinate system by R̄cog = 1

N

∑
j R̄j , and

the vector from robot i to the center of gravity by V
i

cog = R̄cog−R̄i = 1
N

∑
j V

i

j ,

where V
i

j = R̄j − R̄i. Denote the distance from the true center of gravity of the
robots to the robot farthest from it by Dcog = maxi{V i

cog}. Also, denote the true
distance from i to the robot farthest from it by Di

max = maxj{V i
j }. We use the

following two properties.

Fact 3. For every i: (a) Di
max ≤ 2Dcog,

(b) (1− ε0)Di
max < (1 − ε)Di

max ≤ di
max ≤ (1 + ε)Di

max < (1 + ε0)Di
max.

For the synchronous model, we define the tth round to begin at time t and end at
time t + 1. The robots all perform their Look phase simultaneously. The robots’
moment of inertia at time t is defined as

I[t] =
1
N

∑
j

(
V

j

cog[t]
)2

=
1
N

∑
j

(
R̄j [t]− R̄cog[t]

)2
.

Defining Ix̄[t] ≡ 1
N

∑
j(R̄j [t]− x̄)2, we use the following fact.

Fact 4. Ix̄[t] attains its minimum on x̄ = R̄cog[t].
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For ease of presentation, we assume a slightly simpler model where the move
step of a robot is ensured to bring it to its goal point pG. A slightly more
involved analysis, deferred to the full paper, applies to the usual setting where
it is assumed that the robot might stop before reaching pG, but is guaranteed
to traverse at least some minimal distance unit (unless reaching the goal first).

Our main lemma is the following.

Lemma 3. For fixed ε0 < 0.2, in the 〈FSYNC, ERR−〉 model, Algorithm RCG
guarantees that at every round t:

1. at least one robot can move,
2. every robot i decreases its distance from the true center of gravity at time t,

i.e., |R̄i[t + 1]− R̄cog[t]| < |R̄i[t]− R̄cog[t]|,
3. the robots’ moment of inertia decreases, i.e., I[t + 1] < I[t].

Proof. Consider some time t. Denote by erri = 1
N

∑
j εijV

i

j the error compo-
nent in the center of gravity calculation by robot i. Then the center of gravity
computed by robot i can be expressed as

v̄i
cog =

1
N

∑
j

r̄ij =
1
N

∑
j

(R̄j + εijV
i

j) = V
i

cog + erri .

By the bounded error assumption and Fact 3(a),

erri =
1
N

∑
j

εij · V i
j ≤ εDi

max ≤ 2εDcog < 2ε0Dcog. (1)

By the two parts of Fact 3, the calculated value ρi is bounded by

ρi ≤ ε0(1 + ε0)
1− ε0

·Di
max ≤ ε0(1 + ε0)

1− ε0
· 2Dcog. (2)

Combining (1) and (2), we have for each i,

erri + ρi ≤ f(ε0) ·Dcog < Dcog , (3)

where f(ε0) = 4ε0/(1− ε0), and the last inequality follows from the assumption
that ε0 < 0.2.

For k = arg maxj{V j
cog}, the robot farthest from the center of gravity, we have

V k
cog = Dcog and v̄k

cog = V
k

cog + errk, hence by (3) and the triangle inequality,
ρk < V k

cog − errk ≤ vk
cog . This implies that at round t, robot k is allowed to

move in Step 4 of the algorithm, proving Part 1 of the Lemma.
To prove Part 2, consider a round t and a robot i which moved in round t.

Fix x̄ = R̄cog[t] and take ā = erri[t]/ρi[t] and b̄ = v̄i
cog[t]/ρi[t]. Note that by

(1) and Fact 3(b), erri[t] ≤ ε
1−ε · di

max[t] < ε0
1−ε0

· di
max[t] = ρi[t], hence

a ≤ 1. Also, at round t + 1, robot i moves if and only if vi
cog[t] > ρi[t], hence if

i moved then b = vi
cog[t]/ρi[t] > 1. Hence Lemma 1(1) can be applied. Noting
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that b̄/b = (R̄i[t+1]− R̄cog[t])/ρi[t], we get |R̄i[t+1]− x̄| < |R̄i[t]− x̄| , yielding
Part 2 of the Lemma. It remains to prove Part 3. Note that for a robot that did
not move, |R̄i[t + 1]− x̄| = |R̄i[t]− x̄|. Using this fact that and Part 2, we have
that Ix̄[t + 1] < Ix̄[t] = I[t] . Finally, by Fact 4, I[t + 1] ≤ Ix̄[t + 1], yielding
Part 3 of the Lemma.

Theorem 5. In every execution of Algorithm RCG in the 〈FSYNC, ERR−〉
model, the robots converge.

Proof. By Part 1 of Lemma 3, the robot k most distant from the center of
gravity can always move if Algorithm Go to COG is applied. By Part 2 of Lemma
3, in round t every robot decreases its distance from the old center of gravity,
x̄ = R̄cog[t]. Therefore, to bound from below the decrease in I, we are only
required to examine the behavior of the most distant robot. By Lemma 1(1)
with a = R̄k[t + 1] − R̄cog[t] and b = R̄k[t] − R̄cog[t], for ε0 < 0.2 we have
vk

cog > ρk and (R̄k[t] − R̄cog[t])2 − (R̄k[t + 1] − R̄cog[t])2 ≥ (vk
cog − ρk)2 . Since

v̄k
cog = V

k

cog + errk, and using the triangle inequality,

(R̄k[t]− R̄cog[t])2 − (R̄k[t + 1]− R̄cog[t])2 ≥
(
V k

cog − (ρk + errk)
)2

. (4)

Recall that since k is the most distant robot, V k
cog = Dcog. Denoting γ = 1−f(ε0),

we have by (3) that

V k
cog − (ρk + errk) ≥ γ ·Dcog . (5)

As mentioned above, if ε0 < 0.2, then γ > 0. We also use the fact that I[t] =
Ix̄[t] ≤ D2

cog. Together with Fact 4 and inequalities (4) and (5), we have that

I[t + 1] ≤ Ix̄[t + 1] =
1
N

⎛⎝(R̄k[t + 1]− R̄cog[t])2 +
∑
j �=k

(R̄j [t + 1]− R̄cog[t])2

⎞⎠
≤ 1

N
(R̄k[t + 1]− R̄cog[t])2 +

1
N

∑
j �=k

(R̄j [t]− R̄cog[t])2

≤ 1
N

(R̄k[t + 1]− R̄cog[t])2 −
1
N

(R̄k[t]− R̄cog[t])2 + I[t]

≤ I[t]− 1
N

(
V k

cog − (ρk + errk)
)2 ≤ I[t]− γ2

N
·D2

cog ≤ I[t]
(

1− γ2

N

)
and therefore the system converges, proving the theorem.

We now turn to the ERR model, allowing also inaccuracies in angle measure-
ments, and observe that Theorem 5 can be extended to hold true in this model
as well, with a suitable choice of ε0.

Theorem 6. Taking ε0 >
√

2(1− ε)(1− cos θ0) + ε2, in every execution of Al-
gorithm RCG in the 〈FSYNC, ERR〉 model, the robots converge.
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Turning to the semi-synchronous model, we observe that the results of Theorem 6
hold true also for the 〈SSYNC , ERR〉 model, yielding the following.

Theorem 7. In every execution of Algorithm RCG (with ε0 as in Theorem 6) in
the 〈SSYNC, ERR〉 model, the robots converge.

Finally, let us turn to robots with movement and calculation inaccuracies. In
case of robots with inaccurate movements, we assume it is always possible to
tune the algorithm such that the distance traveled is always less than or equal
to the distance aimed i.e., instead of moving by a vector v̄, move by a vec-
tor νv̄. Suppose now that D, the distance traveled by the robot is bounded by
(1− α)R ≤ D ≤ (1 + α)R, where R is the norm of the output of the algorithm,
and α is a constant denoting the accuracy of the robot’s movement. ν can be cho-
sen such that (1+α)ν ≤ 1. The result can be obtained following the same line of
proof. The details are deferred to the full paper. As for calculation inaccuracies,
since we assume a multiplicative inaccuracy, and by the linearity of the calcula-
tion, it can be treated as a measurement inaccuracy with the proper addition to ε.

Analysis of RCG in the Fully Asynchronous Model. So far, we have not
been able to establish the convergence of Algorithm RCG in the fully asynchronous
model. In this section we prove its convergence in the restricted one-dimensional
case and with no angle inaccuracies, i.e., in the 〈ASYNC, ERR−〉 model.

Denote by c̄i[t] the calculated destination of robot i at time t. If robot i has
not gone through a look yet, or has reached its previous destination then, by
definition, c̄i[t] = R̄i[t]. Notice that we set c̄i[t] to be the destination of the
robot’s motion after the look phase even if the robot has not yet completed its
computation, and is still unaware of this destination.

Theorem 8. In the 〈ASYNC, ERR−〉 model, N robots performing Algorithm
RCG converge on the line.

Conjecture 1. Algorithm RCG converges in the 〈ASYNC, ERR〉 model for suffi-
ciently small error in the angle and distance measurements.

Separating Go to COG from RCG in the ASYNC Model. This section estab-
lishes the advantage of Algorithm RCG over the basic Algorithm Go to COG. In the
fully synchronous case there is no justification for using the more involved Algo-
rithm RCG, since the simpler Algorithm Go to COG also guarantees convergence
as shown above in Lemma 2.

However, a gap between the two algorithms can be established in the fully
asynchronous model. Specifically, we now show that the ordinary center of grav-
ity algorithm Go to COG does not converge in the 〈ASYNC, ERR−〉 model, even
when the robots are positioned on a straight line. Contrasting this result with
Theorem 8 yields the claimed separation between the two algorithms.

Theorem 9. In the 〈ASYNC, ERR−〉 model, for every ε and N > 1/ε there
exists an activation schedule for which Algorithm Go to COG does not converge,
even when the robots are restricted to a line.
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Abstract. For decades, the algorithm providing the smallest proven
worst-case running time (with respect to the number of terminals) for
the Steiner tree problem has been the one by Dreyfus and Wagner. In this
paper, a new algorithm is developed, which improves the running time
from O(3kn+2kn2+n3) to (2+δ)k ·poly(n) for arbitrary but fixed δ > 0.
Like its predecessor, this algorithm follows the dynamic programming
paradigm. Whereas in effect the Dreyfus–Wagner recursion splits the
optimal Steiner tree in two parts of arbitrary sizes, our approach looks
for a set of nodes that separate the tree into parts containing only few
terminals. It is then possible to solve an instance of the Steiner tree
problem more efficiently by combining partial solutions.

1 Introduction

As of today, NP-hard problems cannot be solved in polynomial time. Neverthe-
less, we have to deal with many of them in everyday applications. Earlier work
has resulted in numerous ways to address this dilemma, among them approxi-
mation, randomized algorithms, parameterized complexity, heuristics and many
more. Recently, there has been renewed vigor in the field of exact algorithms,
and the exponential runtime bounds for many problems have been improved.
Some examples for such improvement have been achieved with new algorithms
for 3-Satisfiability [5], Independent Set [1, 8], Dominating Set [4], and
Max-Cut [6, 9, 10].

The Steiner tree problem on networks is to find a subgraph of minimum total
edge weight that connects all nodes in a given node subset. Since we assume
positive weights for all edges, this subgraph must be a tree. The respective deci-
sion problem, in which we ask for the existence of such a subgraph whose weight
does not exceed a given limit, is known to be NP-complete. The optimization
problem is APX-complete, even if the edge weights are restricted to {1, 2} [2]. On
the positive side, it is polynomial-time approximable within 1 + (ln 3)/2 ≈ 1.55,
or within 1.28 in the aforementioned restricted variation [7].

The best exact algorithm for the Steiner tree problem known today is due
to Dreyfus and Wagner [3]. Given a graph with n nodes and m edges, a set of
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Fig. 1. A geographic example for Steiner trees

k terminals, and the lengths of the edges, it computes a minimum Steiner tree
in time O(3kn + 2kn2 + n2 log n + nm) using dynamic programming. In this
paper, we present an algorithm achieving the same in time (2 + δ)k · poly(n) for
arbitrarily small but fixed δ > 0.

For an intuitive introduction to some important concepts we use, look at
the cities in Figure 1. The need for a high-speed road network linking these
cities arises, and some of the existing roads must be enlarged. When we assign a
prospective renovation cost to each existing road, the cheapest solutions to the
problem are exactly the optimal Steiner trees in this network for the terminal set
of cities. One approach consists of solving the problem independently in Belgium,
the Netherlands, and Germany. This method works in our example, because
there is an optimal Steiner tree for the entire network—drawn fat in Figure 1—
in which you cross borders only in Aachen. That is, if every globally optimal
solution contained the highway from Lige to Maastricht, regionally optimal trees
could not be combined to form such a solution.

Abstracting from geography, in Section 2 we will formally define regions to
be maximal subtrees of a Steiner tree where every leaf is a terminal and vice
versa. In our example, the Belgium towns (including Aachen) would form one
region. The nationally constrained parts of the tree in Figure 1 are connected
unions of regions, and as such will formally be called confederations. At the end
of Section 2, we will prove that the heart of our algorithm can construct optimal
Steiner trees for confederations by combining regional solutions. Note that this
entails optimal Steiner trees for the entire network.

As our method relies on exhaustive search, it is only fast when all regions
contain few terminals. Fortunately, there is a way to accomplish this. If, for
an illustrative example, we find the Belgium region too large, promoting the
central node in it to the rank of terminal will cut the region in three smaller
pieces. Section 3 will formalize the process of incorporating additional terminals,
which allows us to derive the aforementioned runtime bounds.
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2 Networks, Regions, and Confederations

We adhere to the notation commonly used for the Steiner tree problem. For a
graph G, let V [G] and E[G] denote the set of nodes and the set of edges in G,
respectively. The edge weights of an input graph G are assumed to be given by
a function � : E[G] → N, where N = {1, 2, 3, . . .}. Formally, an instance of the
Steiner tree problem consists of a network (G, �) and a terminal set Y ⊆ V [G].

We define the union operation on graphs G1, G2 as follows: G1 ∪ G2 :=
(V [G1]∪V [G2], E[G1]∪E[G2]). For any subgraph G′ of G from a network (G, �),
let �(G′) :=

∑
e∈E[G′] �(e).

In order to explain our algorithm, let us imagine that we know an optimal
Steiner tree T . We will examine some properties of T that enable us to find T—
or an equivalent tree—with relative efficiency. As outlined before, T consists of
regions (also called components or full Steiner trees in the literature), which we
will define now as maximal subtrees that do not contain terminals as inner nodes.

Definition 1. Let (G, �) be a network, Z ⊆ V [G] a set of terminals, and T be
an optimal Steiner tree for Z. A (T,Z)-region is an inclusion-maximal subtree
R of T in which every terminal is a leaf. The set of all (T,Z)-regions in T is
denoted by R(T,Z).

See Figure 2 for an illustration of this concept. Regions are the smallest building
blocks in our approach. From the tree structure of T , it is easy to see that
neighboring regions overlap in exactly one node, which has to be a terminal.
They can then be united to form confederations.

Definition 2. A connected union T ′ of (T,Z)-regions is called a (T,Z)-con-
federation. Accordingly, the corresponding terminal set Z ′ = Z ∩ V [T ′] is called
(T,Z)-confederate.

As already indicated in the introduction, (T,Z)-regions are optimal for their
terminal sets, provided T is optimal for Z. The following lemma formalizes a
generalization of this fact for confederations.

Lemma 1. Let (G, �) be a network and T be an optimal Steiner tree for Z ⊆
V [G]. Any (T,Z)-confederation T ′ constitutes an optimal Steiner tree for its
terminal set.

Fig. 2. A Steiner tree T with emphasized terminals Z and its (T, Z)-regions
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Proof. Assume that T ′ = R1∪· · ·∪Rs, where R(T,Z) = {R1, . . . , Rt}, and that
there is a Steiner tree S′ for Z ∩ V [T ′] that is cheaper than T ′. The graph S
obtained from T by replacing T ′ with S′ is connected: All the nodes shared by
T ′ and Rs+1 ∪ · · · ∪Rt are contained in Z ∩V [T ′]. Moreover, S′ connects all the
nodes from Z ∩ V [T ′].

Since S is a connected graph that contains all the nodes from Z, it is a Steiner
graph for Z which is cheaper than T , a contradiction. !"

The vital property stated in the above lemma lies at the heart of our method. It
ensures that we can build up an optimal Steiner tree T for Z—which is a (T,Z)-
confederation itself—region by region. That is, when we add a neighboring region
to a confederation, a larger confederation arises, and thus a larger optimal Steiner
tree.

While optimal Steiner trees for (T,Z)-confederate terminal sets can be con-
structed recursively, we do not have a means to find or detect (T,Z)-confederate
sets efficiently. This problem will be addressed by going through all subsets Z ′

of Z. We can then be sure to hit the confederate ones in particular. Notice, how-
ever, that we still do not know with regard to which optimal Steiner tree T the
respective Z ′ are (T,Z)-confederate. Therefore we must be certain that replac-
ing a (T,Z)-confederation by some other optimal Steiner tree for its terminal
set does not destroy the optimality of the whole Steiner tree.

In general, it is not true that combining two optimal Steiner trees for terminal
sets Z1 and Z2 with |Z1 ∩Z2| = 1 yields an optimal Steiner tree for Z1 ∪Z2, as
exemplified by the network in Figure 3. The following lemma shows, however,
that if this is the case for two edge-disjoint optimal Steiner trees for Z1 and Z2,
then it is the case for any two such trees.

Lemma 2. Let (G, �) be a network and Z1,Z2 ⊆ V [G] with |Z1 ∩ Z2| = 1. If
there are edge-disjoint optimal Steiner trees T1 for Z1 and T2 for Z2 such that
T1∪T2 is an optimal Steiner tree for Z1∪Z2, then the union T ′

1∪T ′
2 of any two

optimal Steiner trees T ′
1 for Z1 and T ′

2 for Z2 is also an optimal Steiner tree for
Z1 ∪ Z2.

Proof. If there are edge-disjoint optimal Steiner trees T1 for Z1 and T2 for Z2

such that T1 ∪ T2 is an optimal Steiner tree for Z1 ∪ Z2, then the respective

Z2

Z1

Z1

Z1,Z2

Z2

Z2

Z1

Z1

Z1,Z2

Z2

Z2

Z1

Z1

Z1,Z2

Z2

Fig. 3. Two optimal Steiner trees for Z1, Z2 that do not combine to form an optimal
Steiner tree for Z1 ∪Z2 (assuming unit-weight edges), compared to an optimal Steiner
tree for Z1 ∪ Z2
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optimal weights are �(T1), �(T2), and �(T1 ∪ T2) = �(T1) + �(T2). Let T ′
1 and

T ′
2 be arbitrary optimal Steiner trees for Z1 and Z2, respectively. Observe that

because Z1 and Z2 share a node, T ′
1∪T ′

2 is a Steiner graph for Z1∪Z2. Of course,
�(T ′

1) = �(T1) and �(T ′
2) = �(T2). This implies

�(T ′
1 ∪ T ′

2) ≤ �(T ′
1) + �(T ′

2) = �(T1) + �(T2) = �(T1 ∪ T2).

By optimality of the Steiner tree T1 ∪ T2, we know that T ′
1 ∪ T ′

2 is also optimal.
!"

We are now able to formulate a very important theorem regarding the correctness
of our algorithm for the Steiner tree problem.

As mentioned earlier, (T,Z)-confederations are very helpful for the construc-
tion of optimal Steiner trees, but probably hard to find and detect in general.
Our algorithm in Figure 4 will thus use the concept of (T,Z)-confederations only
implicitly inside a dynamic programming approach. It builds a table of Steiner
graphs for each Z ′ ⊆ Z in order of cardinality. For subsets of size up to q, the
Dreyfus–Wagner algorithm is employed. From then on, the cheapest bipartition
of Z ′ is chosen. However, we only look at partitions where the smaller part is
of size at most q. Lemma 1 shows that we get an optimal Steiner tree this way
when we set q to be the maximum number of terminals in a single (T,Z)-region
for some optimal Steiner tree T . Let us first formalize this concept.

Definition 3. Let (G, �) be a network and Z ⊆ V [G]. We say that Z is q-
granular iff there exists an optimal Steiner tree T for Z in G such that |V [R] ∩
Z| ≤ q for every R ∈ R(T,Z).

Theorem 1. Let (G, �) be a network and Z ⊆ V [G] a set of terminals. If Z is
q-granular, then the algorithm from Figure 4 computes an optimal Steiner tree
for Z.

Proof. Let us prove the following statement: If Z ′ is (T,Z)-confederate for an
optimal Steiner tree T , then S(Z ′) is an optimal Steiner tree for Z ′. This will
entail the claim, since Z is (T,Z)-confederate for any Steiner tree.

1 for all
2 Z′ ⊆ Z such that |Z′| ≤ q do
3 S(Z′) ← Dreyfus–Wagner((G, �),Z′)
4 od; for all Z′ ⊆ Z (ascending size) such that
5 |Z′| > q do
6 S(Z′) ← G;
7 for all Z′′ ⊆ Z′ and v ∈ Z′′ such that 2 ≤ |Z′′| ≤ q do
8 if �(S(Z′′)) + �(S(Z′ − Z′′ ∪ {v})) < �(S(Z′))
9 then S(Z′) ← S(Z′′) ∪ S(Z′ − Z′′ ∪ {v}) fi

10 od
11 od; return S(Z)

Fig. 4. Computing a Steiner tree for a q-granular set Z of terminals
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. . .

Fig. 5. The n × 2-grid as a network with emphasized terminals Z, edges of weight 1
(thin) and edges of weight 2 + 1/(n − 1) + 1/n2 (thick). All the thin edges form the
unique optimal Steiner tree T for Z, implying that Z is q-granular only for q ≥ n.
Observe that optimal Steiner trees for any Z1, Z2 with Z1 ∪Z2 = Z, |Z1 ∩Z2| = 1, and
|Z1|, |Z2| ≥ 2 do not combine to form an optimal Steiner tree for Z.

Let T ′ be the (T,Z)-confederation that corresponds to Z ′. We use induction
on the number of regions in T ′. Since Z is q-granular, the claim holds if T ′ is
a single region, by correctness of the Dreyfus–Wagner algorithm. For a (T,Z)-
confederation T ′ = R1 ∪ · · · ∪Rt with t ≥ 2, we can find a region—say R1—that
shares only a single node v with the other regions, such that R2 ∪ · · · ∪ Rt is
still a (T,Z)-confederation. By Lemma 1, R1 as well as R2 ∪ · · · ∪Rt constitute
optimal Steiner trees for their respective terminals. Because these trees are edge-
disjoint, Lemma 2 applies. Using the induction hypothesis, we thus get that
S′ := S(Z ∩ V [R1]) ∪ S(Z ∩ V [R2 ∪ · · · ∪ Rt]) is an optimal Steiner tree for Z ′.
Because Z is q-granular, at some time in line seven Z ′′ = Z∩V [R1] and Z ′−Z ′′∪
{v} = Z ∩V [R2 ∪ · · · ∪Rt]. Therefore, the algorithm will eventually consider S′.
Any graph S(Z ′) computed by the algorithm is a Steiner graph for Z ′. Thus, if
S(Z ′) = S′ at any time during the computation, S′ cannot be replaced because
it is optimal. With the same argument, S(Z ′) will be set to S′ at some point,
unless S(Z ′) already contains another optimal Steiner tree for Z ′. !"
The network shown in Figure 5 illustrates the importance of the concept of
q-granularity for this theorem: If no two optimal Steiner trees for Z1,Z2 with
Z1 ∪ Z2 = Z, |Z1 ∩ Z2| = 1, and |Z1|, |Z2| ≥ 2 combine to form an optimal
Steiner tree for Z, the algorithm from Figure 4 is bound to fail for q < n.

3 Extending a Terminal Set

In the previous section, we established an algorithm that finds an optimal Steiner
tree for any q-granular terminal set Z in a network (G, �). In general, however,
a terminal set Y can be |Y |-granular in the worst-case. Neither is this case
absurd—it just needs all terminals to be leafs in every optimal Steiner tree—
nor is it obvious how to predict the granularity of an instance. That seems to
render the algorithm completely useless (in these instances, the Dreyfus–Wagner
implementation would do all the work).

Fortunately, it is possible to reduce granularity by extending terminal sets.
The following lemma shows how we can achieve nearly arbitrary granularities
by incorporating only a limited number of additional terminals.

Lemma 3. Let T be an optimal Steiner tree for some Y ⊆V [T ], and q an inte-
ger with 2≤ q≤|Y |. There is a set Z⊆V [T ], Y ⊆Z, such that |Z| ≤ |Y |+ |Y |

q−1

and |V [R]∩Z| ≤ q for every (T,Z)-region, implying that Z is q-granular.



A Faster Algorithm for the Steiner Tree Problem 567

Proof. Consider the following algorithm:

1. Let Z := Y .
2. While T contains a (T,Z)-region R with 2 ≤ |V [R]∩Z| ≤ q that only shares

a single node v with the other (T,Z)-regions, remove R save v from T .
3. If T is only a single (T,Z)-region with |V [T ] ∩ Z| ≤ q, then output Z and

stop.
4. Choose a root r in T and let v := r.
5. While a subtree rooted in a child w of v contains more than q−1 nodes from

Z, let v := w.
6. Add v to Z and go to step (2).

See Figure 6 for an illustration of how the above algorithm constructs such a
set Z.

To prove the correctness, let us first show that each time a node v is added to
Z in step (6), at least q nodes from Z are removed in step (2) immediately. It is
easy to see that subtrees rooted at some node v can be turned into (T,Z)-regions
by adding v to Z, and that these regions will then be removed by step (2) (save v).
Moreover, as soon as |V [T ] ∩ Z| ≤ q, step (3) will terminate the algorithm.

Whenever the while-loop in step (5) terminates, each subtree rooted at a
child w of v contains at most q− 1 nodes from Z. Hence, by adding v to Z, each
of these subtrees becomes a (T,Z)-region containing at most q nodes from Z.
On the other hand, the union of all the subtrees rooted at v contains more than
q − 1 nodes from Z, because v would not have been chosen by the while-loop
in step (5) otherwise. Furthermore, v cannot be in Z yet—otherwise, step (2)
would have removed the regions originating from the subtrees rooted at v. Thus,
|Z| ≤ |Y |+ |Y |

q−1 follows.

←

←

Fig. 6. We apply the algorithm from Lemma 3 to a tree T with emphasized terminals Z,
using q = 3 and always choosing the upper node as a root. Executing step (2) leads to
the removal of four subtrees. Then, step (5) chooses another node for addition to Z.
In the next iterations of step (2), three more subtrees are deleted. Another iteration
removes yet another subtree. After that, step (5) chooses the root for addition to Z.
Finally, after applying steps (2) and (3), the algorithm terminates.
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It remains to show that |V [R] ∩ Z| ≤ q for every R ∈ R(T,Z). This is
obvious, because the algorithm only removes sufficiently small regions (save some
articulation nodes) from T repeatedly, until the tree is a single small region or
a single terminal.

Since q or more nodes from Z are removed whenever a node v is added to Z,
the size of Z decreases by at least q−1 in every such case. However, the algorithm
does not add any more nodes to Z as soon as |V [T ] ∩ Z| ≤ q. The size of Z is
thus bounded from above by |Y |+ &(|Y | − q)/(q − 1)' ≤ |Y |+ |Y |/(q − 1). !"

Observe that every optimal Steiner tree for Z is also an optimal Steiner tree
for Y : Because Z is a superset of Y and Z ⊆ V [T ], T is also an optimal Steiner
tree for Z. Any other optimal Steiner tree T ′ for Z has the same weight and
connects all the nodes from Y , too.

Of course, Lemma 3 only serves to show the existence of a small set of ex-
tension terminals, even though the proof is algorithmical in nature. Without
an optimal Steiner tree, we do not seem to have other means than exhaustive
search to find the right extension nodes. Let us now accumulate the threads and
analyze the running time for the new method:

Theorem 2. For every δ ∈ (0, 1] there is an algorithm that computes an optimal
Steiner tree for an arbitrary network (G, �) and terminal set Y ⊆ V [G] in at most
(2 + δ)|Y |poly(|V [G]|) steps.

Proof. Choose ε > 0 such that 12ε ln(1/3/ε) = δ and let q = &ε|Y |' + 1. If
|Y | < 1/ε, then the number of terminals is bounded by a constant, allowing
us to find an optimal Steiner tree in polynomial time employing the Dreyfus–
Wagner algorithm.

Otherwise, there is a q-granular Z ⊆ V [G], Y ⊆ Z, of size �|Y |+ |Y |/(q− 1)�
such that any optimal Steiner tree for Z also constitutes an optimal Steiner
tree for Y , due to Lemma 3. Moreover, by Lemma 1, we may employ the algo-
rithm from Figure 4 to obtain an optimal Steiner tree for Z, solving the entire
problem.

Unfortunately, we do not know Z. We can, however, just go through all
X ⊆ V [G] with |X | = �|Y |/(q − 1)� and run the algorithm for Z = Y ∪ X .
Since it always outputs Steiner graphs for Z and it finds an optimal Steiner tree
for Z at least once, the cheapest Steiner graph returned is indeed an optimal
Steiner tree for Z.

The runtime can be estimated as follows. It is easy to see that q ≤ |Z|/2,
since ε < 1/20 even for δ = 1. For n = |V [G]|, the running time of lines 1–3 of
the algorithm is

q∑
i=1

(
|Z|
i

)
3ipoly(n) ≤

(
|Z|
q

)
3qpoly(n),

because the running time of the Dreyfus–Wagner algorithm is 3ipoly(n) if there
are i terminals. The running time of lines 4–10 can be estimated by
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1

1/5 ρ

1

ρ
ρ (1−

ρ)
1−

ρ

1 + 2ρ ln
1
ρ

0

|Z|∑
i=q

(
|Z|
i

) q∑
j=2

(
i

j

)
poly(n) ≤ 2|Z|

(
|Z|
q

)
poly(n).

Now let ρ = q/|Z| and assume ρ < 3/20, which will
be proven correct later. By a well-known estimation
and some technical formula manipulations we get(

|Z|
ρ|Z|

)
≤
( 1
ρρ(1− ρ)1−ρ

)|Z|
≤
(
1 + 2ρ ln(1/ρ)

)|Z|
.

We also have that |Z| = |X | + |Y | ≤ |Y | + 1/ε, be-
cause |X | ≤ |Y |/(q − 1) ≤ |Y |/ε|Y |. Therefore, there
are no more than n1/ε = poly(n) possibilities to choose X . Taking this into
consideration, the overall time to compute an optimal Steiner tree becomes

2|Y |+1/ε
(
1 + 2ρ ln(1/ρ)

)|Y |+1/εpoly(n) ≤
(
2 + 12ε ln(1/3/ε)

)|Y |poly(n),

where the inequality holds because by |Y | ≥ 1/ε,

ρ =
q

|Z| =
&ε|Y |'+ 1

|Y |+
⌊
|Y |/(q − 1)

⌋
=

&ε|Y |'+ 1
|Y |+

⌊
|Y |/&ε|Y |'

⌋ ≤ ε|Y |+ 2
|Y | ≤ ε +

2
1/ε

= 3ε <
3
20

.

In total, we get an algorithm with running time (2 + δ)|Y |poly(n). !"

4 Remarks on Running Time

Of course, the constants in the above worst-case analysis become very large even
for moderate δ. On the other hand, we used many extremely rough estimations.
This is because we put the emphasis on the asymptotical behavior, as we aimed
to improve the running time from O(3k · n3) to ck · poly(n) for c as close to 2
as we like, concentrating on obtaining a simple analysis rather than the best
possible bounds.

The polynomial degree in the running time contains 1/ε as an additive term.
This can be improved to O(ε−2/3) by dividing the process into two stages
using different granularities. However, the analysis becomes quite involved at
this point. It remains an open question whether the problem can be solved in
2k · poly(n).

The fact that we need to go through many extension sets X seems to play
a dominant role in the running time of our algorithm for practical values of k.
For many instances, however, a much smaller set X might suffice. To make use
of this, the following property would be very useful: If the algorithm outputs a
non-optimal Steiner graph for all sets X of size q, then it finds a cheaper Steiner
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graph for some set X of size q + 1. Unfortunately, the grid in Figure 5 proves
to be a counter-example to this conjecture. Still, finding relaxed versions of this
property might be an interesting question for future research.

On a final note, the idea of joining more than two partial solutions to speed
up dynamic programming algorithms seems to lend itself to generalization. The
application of this principle might result in better runtime bounds for many
problems.

Acknowledgement. We thank the anonymous referees for many helpful com-
ments.
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Generating Randomized Roundings with Cardinality
Constraints and Derandomizations

Benjamin Doerr

Max–Planck–Institut für Informatik, Saarbrücken, Germany

Abstract. We provide a general method to generate randomized roundings that
satisfy cardinality constraints. Our approach is different from the one taken by
Srinivasan (FOCS 2001) and Gandhi et al. (FOCS 2002) for one global constraint
and the bipartite edge weight rounding problem.

Also for these special cases, our approach is the first that can be derandomized.
For the bipartite edge weight rounding problem, in addition, we gain an Õ(|V |)
factor run-time improvement for generating the randomized solution.

We also improve the current best result on the general problem of derandomiz-
ing randomized roundings. Here we obtain a simple O(mn log n) time algorithm
that works in the RAM model for arbitrary matrices with entries in Q≥0. This im-
proves over the O(mn2 log(mn)) time solution of Srivastav and Stangier.

1 Introduction and Results

Many combinatorial optimization problems can easily be formulated as integer linear
programs (ILPs). Unfortunately, solving ILPs is NP–hard, whereas solving linear pro-
grams (without integrality constraints) is easy, both in theory and practice. Therefore, a
natural and widely used technique is to solve the linear relaxation of the ILP and then
transform its solution into an integer one.

Typically, this requires rounding a vector x to an integer one y in such a way that
the rounding errors |(Ax)i − (Ay)i|, i ∈ [m] := {1, . . . ,m}, are small for some given
m× n matrix A.

1.1 Randomized Rounding

A very successful approach to such rounding problems is the one of randomized round-
ing introduced by Raghavan and Thompson [RT87, Rag88]. Here the integer vector
y is obtained from x by rounding each component j independently with probabil-
ities derived from the fractional part of xj . In particular, if x ∈ [0, 1]n, we have
Pr(yj = 1) = xj and Pr(yj = 0) = 1− xj independently for all j ∈ [n].

Since the components are rounded independently, the rounding error |(Ax)i−(Ay)i|
in constraint i is a sum of independent random variables. Thus it is highly concen-
trated around its mean, which by choice of the probabilities is zero. Large deviation
bounds like the Chernoff inequality allow to quantify such violations and thus yield
performance guarantees. The derandomization problem is to transform this random-
ized approach into deterministic rounding algorithms that keep the rounding errors
|(Ax)i − (Ay)i| below some threshold.

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 571–583, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.2 Hard Constraints

Whereas the independence in rounding the variables ensures that the rounding errors
|(Ax)i − (Ay)i| are small, it is very weak in guaranteeing that a constraint is satisfied
without error. We call a constraint hard constraint if we require our solution to satisfy it
without violation. In this paper, we are mainly concerned with cardinality constraints.
These are constraints on unweighted sums of variables. Let us give an example where
such hard constraints naturally occur.

The integer splittable flow problem is the following routing problem. Given an undi-
rected graph and several source–sink pairs (si, ti) together with integral demands di,
we are looking for integer flows fi from si to ti having flow value di such that the max-
imum edge congestion is minimized. Solving the non-integral relaxation and applying
path stripping (cf. [GKR+99]), we end up with this rounding problem: Round a solution
(xP )P of the linear system

Minimize W s. t.
∑
P�e

xP ≤ W, ∀e∑
P∈Pi

xP = di, ∀i

xP ≥ 0, ∀P

to an integer one such that the first set of constraints is violated not too much and the
second one is satisfied without any violation (hard constraints).

Further examples of rounding problems with hard constraints include other rout-
ing applications ([RT91, Sri01]), many flow problems ([RT87, RT91, GKR+99]), partial
and capacitated covering problems ([GKPS02, GHK+03]) and the assignment problem
with extra constraints ([AFK02]).

For the special case of the above problem where all di are one, Raghavan and
Thompson [RT87] presented an easy solution: For each i, they pick one P ∈ Pi with
probability xP and then set yP = 1 and yP ′ = 0 for all P ′ ∈ Pi \ {P}. For the gen-
eral case, however, this idea and all promising looking extensions fail. Guruswami et
al. [GKR+99] state on the integral splittable flow problem (ISF) in comparison to the
unsplittable flow problem that “standard roundings techniques are not as easily applied
to ISF”.

At FOCS 2001, Srinivasan [Sri01] presented a way to compute randomized round-
ings that respect the constraint that the sum of all variables remains unchanged (one
global cardinality constraint) and fulfill some negative correlation properties.

Gandhi, Khuller, Parthasarathy and Srinivasan [GKPS02] combined the determin-
istic “pipage rounding” algorithm of Ageev and Sviridenko [AS04] with Srinivasan’s
approach to obtain randomized roundings of edge weights in bipartite graphs that are
degree preserving. By this we mean that the sum of weights of all edges incident with
some vertex is not changed by the rounding. The roundings of Gandhi et al. also fulfill
negative correlation properties, but only on sets of edges incident with a common vertex.

Both Srinivasan [Sri01] and Gandhi et al. [GKPS02] do not consider the de-
randomization problem. A first derandomization of Srinivasan’s [Sri01] roundings
was given in [Doe05]. For the bipartite edge weight rounding problem, Ageev and
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Sviridenko [AS04] state that any randomized rounding algorithm “will be too sophisti-
cated to admit derandomization”.

1.3 Our Contribution

In this paper, we extend the work of [Doe05] in several directions.

Randomized Roundings with Constraints. We show that for all sets of cardinal-
ity constraints, the general problem of generating randomized roundings can be re-
duced to the one for {0, 1

2} vectors. This immediately yields a simpler way to gen-
erate the randomized roundings used in Srinivasan [Sri01], Gandhi et al. [GKPS02],
Sadakane, Takki-Chebihi and Tokuyama [STT01] and [Doe04]. For the rounding prob-
lem of [GKPS02], we even gain an Õ(|V |) factor in the run-time.

Derandomizations with Constraints. Since our approach is structurally simpler than
the earlier ones, we do obtain the corresponding derandomizations. In fact, we may
even use classical derandomizations like Raghavan’s. In consequence, derandomizing
randomized rounding approaches for the bipartite edge weight rounding problem is
much easier than what is conjectured in Ageev and Sviridenko [AS04]. Note that this
derandomization is more than a re-invention of the original algorithm of Ageev and
Sviridenko. It also keeps those rounding errors small for which the randomized ap-
proach allowed the use of Chernoff type large deviation bounds.

Counter-Examples. We also show that a number of natural properties of indepen-
dent randomized roundings may not hold in the presence of constraints. For exam-
ple, let f : [0, 1]n → R be non-decreasing, x, x′ ∈ [0, 1]n and y, y′ be independent
randomized roundings of x, x′ respectively. Then x ≤ x′ (component-wise) implies
E(f(y)) ≤ E(f(y′)). We show that already a single cardinality constraint may inflict
that no randomized roundings respecting this constraint have the above property.

General Randomized Rounding Derandomization. Our final result is not to be over-
looked due to its simple less than a page proof. Here we give an easy O(mn log n) time
derandomization for arbitrary constraint matrices A ∈ ([0, 1] ∩ Q)m×n that works in
the RAM model. This improves over the O(mn2 log(mn)) time (and 30 pages) land-
mark solution of Srivastav and Stangier [SS96]. Note that Raghavan’s derandomiza-
tion [Rag88] needs to compute the exponential function and in consequence in the RAM
model only works for binary matrices (as pointed out in Section 2.2 of his paper).

2 Randomized Rounding, Constraints and Correlation

For a number r write [r] = {n ∈ N |n ≤ r}, �r� = max{z ∈ Z | z ≤ r}, &r' =
min{z ∈ Z | z ≥ r} and {r} = r − �r�. We write z ≈ r if z ∈ {�r� , &r'}. We use
these notations for vectors as well (component-wise).

Let x ∈ R. A real-valued random variable y is called randomized rounding of x if
Pr(y = �x� + 1) = {x} and Pr(y = �x�) = 1 − {x}. Since only the fractional parts
of x and y are relevant, we usually have x ∈ [0, 1]. In this case, we have

Pr(y = 1) = x,

Pr(y = 0) = 1− x.
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For x ∈ Rn, we call y = (y1, . . . , yn) randomized rounding of x if yj is a randomized
rounding of xj for all j ∈ [n].

The algorithmic concept of randomized rounding can be formulated as follows: Fix
a number n ∈ N, the number of variables to be rounded. Let X ⊆ [0, 1]n. This is the set
of vectors for which we allow randomized rounding. Typically, this will be [0, 1]n or a
suitably rich subset thereof. A family (Prx)x∈X of probability distributions on {0, 1}n

is called randomized rounding, if for all x ∈ X , a sample y from Prx is a randomized
rounding of x.

As described in the introduction, we are interested in roundings that satisfy some
hard constraints. Though usually we will only regard cardinality constraints (requiring
the sum of some variable to be unchanged), it will be convenient to encode hard con-
straints in a matrix B. Our aim then is that a rounding y of x satisfies By = Bx. Of
course, if Bx is not integral, this can never be satisfied. We therefore relax the condition
to By ≈ Bx. In a randomized setting, we often obtain the slightly stronger condition
that By is a randomized rounding of Bx.

Besides satisfying hard constraints we still want to keep other rounding errors small
(as does independent randomized rounding). A useful concept here is the one of nega-
tive correlation, which implies Chernoff type large deviation inequalities.

We call a set {Xj | j ∈ S} of binary random variables negatively correlated if for all
S0 ⊆ S, b ∈ {0, 1}, we have Pr(∀j ∈ S0 : Xj = b) ≤

∏
j∈S0

Pr(yj = b). As shown
in [PS97], this implies the usual Chernoff-Hoeffding bounds on large deviations. The
following version is not strongest possible, but sufficient for most purposes.

Lemma 1. Let {Xj | j ∈ S} be a set of negatively correlated binary random variables
and aj ∈ [0, 1], j ∈ S. Put X =

∑
j∈S ajXj and μ = E(X). Then for all δ ∈ [0, 1],

Pr(X ≥ (1 + δ)μ) ≤ exp(− 1
3μδ2),

Pr(X ≤ (1 − δ)μ) ≤ exp(− 1
2μδ2).

It turns out that hard constraints and negative correlation cannot always be achieved
simultaneously. We therefore restrict ourselves to negative correlation on certain sets of
variables. Let S ⊆ 2[n] be closed under taking subsets, that is, S0 ⊆ S ∈ S implies
S0 ∈ S.

Definition 1. We call (Prx) randomized rounding with respect to B and S, if for all x
a sample y from Prx satisfies the following.

(A1) y is a randomized rounding of x.
(A2) By is a randomized rounding of Bx.
(A3) For all S ∈ S, ∀b ∈ {0, 1} : Pr(∀j ∈ S : yj = b) ≤

∏
j∈S Pr(yj = b).

In this language, we know the following. Clearly, independent randomized rounding
is a randomized rounding with respect to the empty matrix B and S = 2[n]. Srini-
vasan [Sri01] showed that for the 1 × n matrix B = (1 . . . 1), randomized roundings
with respect to B and S = 2[n] exist and can be generated in time O(n). Let G = (V, E)
be a bipartite graph and B = (bij) i∈V

j∈E
its vertex-edge-incidence matrix. For v ∈ V let

Ev = {e ∈ E | v ∈ e}. Gandhi et al. [GKPS02] showed that there are randomized
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roundings with respect to B and S = {E0 | ∃v ∈ V : E0 ⊆ Ev}. They can be gen-
erated in time O(mn). From [Doe03, Doe04], we have that if B is totally unimodular,
then randomized roundings with respect to B and S = ∅ exist. Recall that a matrix
is totally unimodular if each square submatrix has determinant −1, 0 or 1. If B is not
totally unimodular, then not even for X = {0, 1

2}n a randomized rounding (Prx)x∈X

with respect to B and S = ∅ exists.
Throughout the paper let A ∈ [0, 1]mA×n and x ∈ [0, 1]n. Let B be a totally uni-

modular mB × n matrix.

3 Binary Reductions

A central step of our method is a reduction to the problem of rounding {0, 1
2} vectors,

similar as in Beck and Spencer [BS84]. This reduced rounding problem turns out to
be structurally and computationally much simpler than the general one. We start by
describing the connection between the reduced and the general problem.

3.1 Randomized Roundings

Let S ⊆ 2[n] be closed under taking subsets. Let (Prx)x∈{0, 1
2}n be a family of prob-

ability distributions on {0, 1}n. We call the family (Prx) basic randomized rounding
with respect to B and S, if for all x ∈ {0, 1

2}n a sample y from Prx satisfies (A1) to
(A3) and

(A4) Prx(y) = Prx(2x− y).

The key result of this subsection is that any basic randomized rounding can be ex-
tended to a randomized rounding (Prx), where x ranges over all vectors in [0, 1]n hav-
ing finite binary length. The simple idea is to iterate basic randomized rounding digit
by digit:

Digit by digit rounding: Let x ∈ [0, 1]n having binary length � (that is, all xi can be
written as xi =

∑�
j=0 dj2−j with dj ∈ {0, 1}). There is nothing to show for � = 0, so

assume � ≥ 1. Write x = x′ + 2−�+1x′′ with x′′ ∈ {0, 1
2}n and x′ ∈ [0, 1]n having

binary length at most � − 1. Let y′′ be a sample from the basic randomized rounding
Prx′′ . Set x̃ := x′ + 2−�+1y′′. Note that x̃ has binary length at most �− 1. Repeat this
procedure until a binary vector is obtained. For each x having finite binary expansion,
this defines a probability distribution Prx on {0, 1}n.

Theorem 1. Let (Prx) be a basic randomized rounding with respect to B and S. Then
(Prx) with x ranging over all [0, 1] vectors having finite binary length is a randomized
rounding with respect to B and S.

Proof. We proceed by induction. If x ∈ {0, 1
2 , 1}n, we simply have Prx = Prx. Let

x therefore have binary length � > 1. Let x = x′ + 2−�+1x′′ with x′′ ∈ {0, 1
2}n and

x′ ∈ [0, 1]n having binary length at most � − 1. Let y′′ be a sample from Prx′′ . Set
x̃ := x′+2−�+1y′′. Let y be a sample from Prx̃. By construction, y has distribution Prx.
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(A1): Let j ∈ [n]. By induction,

Pr(yj = 1) =
∑

ε∈{0,1}
Pr(y′′

j = ε) Pr(yj = 1 | y′′
j = ε)

=
∑

ε∈{0,1}
Pr(y′′

j = ε)(x′
j + 2−�+1ε) = xj .

(A2): Let i ∈ [mB ]. If Bx′′ ∈ Z, then Bx = Bx̃ with probability one and By is a
randomized rounding of Bx for both y being a sample from Prx and Prx̃. If Bx′′ /∈ Z,
then Pr((Bx′′)i = (Bx′′)i + 1

2 ) = Pr((Bx′′)i = (Bx′′)i − 1
2 ) = 1

2 by (A2).
By induction, we have

Pr((By)i = �(Bx)i�+ 1)
= Pr

(
(Bx̃)i = (Bx)i + 2−�

)
Pr
(
(By)i = �(Bx)i�+ 1

∣∣ (Bx̃)i = (Bx)i + 2−�
)

+

Pr
(
(Bx̃)i = (Bx)i − 2−�

)
Pr
(
(By)i = �(Bx)i�+ 1

∣∣ (Bx̃)i = (Bx)i − 2−�
)

= 1
2 ({(Bx)i}+ 2−�) + 1

2 ({(Bx)i} − 2−�) = {(Bx)i}.

(A3): Let S ∈ S. Note that
∏

j∈S(x′
j + 2−�+1εj) +

∏
j∈S(x′

j + 2−�+1(2x′′
j − εj)) ≤

2
∏

j∈S xj holds for all roundings ε of x′′. Hence by induction and (A4),

Pr(∀j ∈ S : yj = 1)

=
∑

ε∈{0,1}n

Pr(y′′ = ε) Pr((∀j ∈ S : yj = 1) | y′′ = ε)

≤
∑

ε∈{0,1}n

Pr(y′′ = ε)
∏
j∈S

(x′
j + 2−�+1εj)

= 1
2

∑
ε∈{0,1}n

Pr(y′′ = ε)
(∏

j∈S

(x′
j + 2−�+1εj) +

∏
j∈S

(x′
j + 2−�+1(2x′′

j − εj))
)

≤ 1
2

∑
ε∈{0,1}n

Pr(y′′ = ε) · 2
∏
j∈S

xj =
∏
j∈S

xj .

A similar argument shows the claim for b = 0. !"

3.2 Derandomizations

In this subsection, we extend the binary expansion method to the derandomization prob-
lem. A randomized rounding derandomization (with constant c) is an algorithm that
computes for given A ∈ [0, 1]mA×n and x ∈ [0, 1]n a y ∈ {0, 1}n such that for all
i ∈ [mA],

|(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

It thus achieves (with minor loss) the existential bounds given by randomized rounding.
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The following derandomizations are known.
(i) If A ∈ {0, 1}mA×n and x ∈ {0, 1

2 , 1}n, then Spencer’s [Spe94] method of condi-
tional probabilities yields a straight-forward O(mAn)–time derandomization with con-

stant c =
√

1
2 . Note that the conditional probabilities in this special case are easy to

compute via binomial coefficients.
(ii) Raghavan’s derandomization [Rag88] via so-called pessimistic estimators is

more complicated, but allows a wider range of vectors. Still in time O(mAn), it
achieves the constant c = e − 1. In the RAM model, it works for all A ∈ {0, 1}mA×n

and x ∈ ([0, 1]∩Q)n. If one allows precise computations with real numbers in constant
time (in particular exponential functions), then this extends to arbitraryA ∈ [0, 1]mA×n.

(iii) Srivastav and Stangier [SS96] give a derandomization for all A ∈ ([0, 1] ∩
Q)mA×n in the RAM model, though at the price of an increased run-time of
O(mAn2 log(mAn)). Also, it is quite complicated from the view-point of implementa-
tion. The constant c is not explicitly stated in the paper, but by plugging in the inequality
of Angluin-Valiant given there, one achieves c =

√
3.

(iv) In the last section of this paper, we show how to use the binary expansion ideas
to obtain a relatively simple derandomization that works for all A ∈ ([0, 1] ∩ Q)mA×n

and x ∈ ([0, 1] ∩ Q)n in time O(mAn log n) in the RAM model. The constant in this
case is 4(e− 1)(1 + o(1)).

For � ∈ N and c ∈ R≥0 let f(�, c) = c
�∑

i=1

2−(i−1)/2
�∏

j=i+1

(1 + 2−(j−1)/2c)1/2.

Theorem 2 (Digit by digit derandomization). Let A be an algorithm which for some
matrix A and any x ∈ {0, 1

2 , 1}n computes a rounding y of x such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

Then for each x ∈ [0, 1]n having binary length �, a rounding y such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, c)
√

max{(Ax)i, ln(2mA)} ln(2mA)

can be computed by � times invokingA.

We omit the proof for reasons of space. Similar as in the proof of Theorem 1, we use
induction over the length of the binary expansion. Some care has to be taken to control
the size of (Ax̃)i for the intermediate roundings x̃.

We end this section with some rough estimates of the constants f(c, �).

Lemma 2. f(c) := lim�→∞ f(�, c) exists for all c and satisfies f(c) = cO(log c). We

have f(
√

1
2 ) ≤ 4, f(e− 1) ≤ 18, and f(

√
3) ≤ 19.

Let us remark that the increase in the constant in most cases in not as bad as f(c) =
cΘ(log c) suggests. If log mA = o((Ax)i), then a closer look at the proof of Theorem 2
yields |(Ax)i−(Ay)i| ≤ 2(

√
2+1)(1+o(1))c

√
(Ax)i ln(2mA). Hence asymptotically

we only lose a factor of less than 5 in the large deviation bound. In fact, already if
(Ax)i ≥ c2 ln(2mA), we obtain a bound of |(Ax)i − (Ay)i| ≤ 7c

√
(Ax)i ln(2mA).



578 B. Doerr

4 Randomized Roundings with Disjoint Constraints

We now use the binary expansion method developed in the previous section to generate
randomized roundings that satisfy disjoint cardinality constraints. Hence throughout
this section ;et B ∈ {0, 1}mB×n and ‖B‖1 := maxj

∑
i |bij | = 1. For the generation

of the roundings, this is a microscopic extension of Srinivasan’s [Sri01] result. The
reader’s focus should therefore be on the simplicity of our approach.

As should be clear by now, all we have to do is analyze the {0, 1
2} case. Let us

assume that B is stored in some O(n) space datastructure allowing amortized linear
time enumerations of the sets {j ∈ [n] | bij = 1} for all i ∈ [mB].

Lemma 3. There are basic randomized roundings (Prx,B) with respect to B and 2[n].
A sample from (Prx,B) can be generated in time O(n).

Proof. Let x ∈ {0, 1
2}n. For i ∈ [mB] let Ei := {j ∈ [n] |xj = 1

2 , bij = 1}. Choose
a set M of disjoint 2–subsets of [n] such that |Ei \

⋃
M| ≤ 1 and |M ∩ Ei| �= 1 hold

for all i ∈ [mB] and M ∈ M. In other words, M is a maximal collection of disjoint
2–sets of [n] that all intersect all Ei in a trivial way1.

For each {j1, j2} independently we flip a coin to decide whether (yj1 , yj2) = (1, 0)
or (yj1 , yj2) = (0, 1). For all j ∈ [n] \

⋃
M let yj be a randomized rounding of

xj independent from all other random choices. The above defines a basic randomized
rounding (Prx,B) with respect to B and 2[n]. !"

From Theorem 1 and 3, the following is immediate.

Theorem 3. There are randomized roundings (Prx,B) with respect to B and 2[n]. A
sample from (Prx,B) can be generated in time O(n�), where � is the binary length of x.

We now derandomize the construction above. Here the simpler, compared to previous
work more sequential construction proves to be advantageous. As before, we only have
to analyze the 0, 1

2 case.

Lemma 4. Let A be an mA × n matrix. Let x ∈ {0, 1
2}n. Then a binary vector y such

that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ 2c
√

max{(Ax)i, ln(4mA)} ln(4mA)

can be computed by applying a derandomization to a 2mA×n matrix with entries from
{aij | i ∈ [mA], j ∈ [m]}.

The proof is again omitted for reasons of space. The main idea is to note that the round-
ing errors inflicted by the matching rounding of Lemma 3 can be written as a weighted
sum of binary random variables representing the coin flips.

Combining Theorem 2 and Lemma 4 with the derandomizations cited in Section 3.2,
we obtain the following derandomized version of Srinivasan’s results.

1 As we will see, the particular choice of M is completely irrelevant. Assume therefore that we
have fixed some deterministic way to choose it (e.g., greedily in the natural order of [n]).



Generating Randomized Roundings with Cardinality Constraints 579

Theorem 4. Let A ∈ [0, 1]mA×n. Let x ∈ [0, 1]n. Then for all � ∈ N, a binary vector
y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, 2c)
√

max{(Ax)i, ln(4mA)} ln(4mA) + n2−�

This has a time complexity of � times the one of applying a derandomization to a 2mA×
n matrix with entries in {aij | i ∈ [m], j ∈ [n]}.

Some bounds on constants that are relevant in connection with the derandomizations
mentioned in Subsection 3.2 are f(2

√
1
2 ) ≤ 13, f(2e − 2) ≤ 90, and f(2

√
3) ≤ 92.

However, the remark following Lemma 2 also applies to the theorem above, i.e., for
(Ax)i large compared to ln(4mA), the increase in the constants become less significant.

5 Bipartite Edge Weight Rounding

In this section, we consider sets of cardinality constraints where each variable may
be contained in up to two constraints. Throughout this section, let B =

(
B1
B2

)
, where

the Bi are 0, 1 matrices such that ‖Bi‖1 = 1. We assume that B is represented by a
datastructure allowing constant time queries of type “given i, find j such that bij = 1”
and “given j, find i such that bij = 1”.

For such constraints, negative correlation on S = 2[n] is too much to ask for. We
restrict ourselves to SB = {S ⊆ [n] | ∃i ∈ [mB ] ∀j ∈ S : bij = 1}.

Problems of this type have been regarded in Gandhi et al. [GKPS02]. They used a
formulation as rounding problem for edge weights in bipartite graphs. We briefly fix the
connection.

Bipartite edge weight rounding problem: Given a bipartite graph G = (U ∪̇V, E)
and edge weights x ∈ [0, 1]E , find y ∈ {0, 1}E such that (B1) ye is a randomized
rounding of xe for all e ∈ E, (B2)

∑
e�v ye ≈

∑
e�v xe for all v ∈ U ∪ V and (B3) for

all v ∈ U ∪ V , S ⊆ {e ∈ E | v ∈ E} and b ∈ {0, 1}, we have Pr(∀i ∈ S : ye = b) ≤∏
e∈S Pr(ye = b).
The bipartite edge weight rounding problem is easily seem to be captured by our

setting: Define B1 = (bue) ∈ {0, 1}U×E through bue = 1 if and only if u ∈ e as well
as B2 = (bve) ∈ {0, 1}V×E through bve = 1 if and only if v ∈ e. Then By ≈ Bx
for some x ∈ [0, 1]E , y ∈ {0, 1}E is just the degree preservation condition (B2). Also,
negative correlation on SB is equivalent to (B3).

The bipartite edge weight rounding problem for edge weights 0 (‘no edge’, if you
like) and 1

2 is easily solved. Here the pipage rounding idea of [AS04] fixes each variable
to an integer value in amortized constant time. This saves an O(|V |) run-time factor
compared to the general case.

Lemma 5. There are basic randomized roundings with respect to B and S. They can
be sampled in time O(n).

The lemma above together with the general reduction of Theorem 1 yields the following
version of the bipartite edge weight rounding result of Gandhi et al. Note that the time
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complexity here is superior to the O(|E||V |) bound of Gandhi et al. [GKPS02] (unless
we are working with an overly high precision �).

Theorem 5. There are randomized roundings (Prx,B) with respect to B and 2[n]. A
sample from (Prx,B) can be generated in time O(n�), where � is the binary length of x.

Again, the randomized algorithm above can be derandomized.

Lemma 6. Let A ∈ [0, 1]mA×n. Assume that for each iA ∈ [mA] there is an iB ∈ [mB]
such that for all j ∈ [n], biBj = 1 whenever aiAj �= 0. Let x ∈ {0, 1

2}n. Then a binary
vector y such that By ≈ Bx and

|(Ax)i − (Ay)i| ≤ 2c
√

max{(Ax)i, ln(4mA)} ln(4mA)

for all i ∈ [mA] can be computed by applying a derandomization to a matrix of dimen-
sion at most 2mA × n with entries from {aij | i ∈ [mA], j ∈ [n]}.

Combining the Lemma 6 with Theorem 2, we obtain the following derandomization of
the result of Gandhi et al.

Theorem 6. Let A ∈ [0, 1]mA×n such that for each iA ∈ [mA] there is an iB ∈ [mB]
such that for all j ∈ [n], biBj = 1 whenever aiAj �= 0. Then for all � ∈ N, a binary
vector y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, 2c)
√

max{(Ax)i, ln(4mA)} ln(4mA) + n2−�.

The time complexity is � times the one of a derandomization for 2m× n matrices with
entries from {aij | i ∈ [mA], j ∈ [m]}.

6 Other Constraints

It is relatively easy to see that Theorems 3, 4, 5 and 6 can be extended to include hard
constraint matrices B ∈ {−1, 0, 1} as long as B is totally unimodular. An extension
to further values, however, is not possible. Also, Theorems 3 and 4 can be extended
to other sparsely intersecting constraints than the ones of Section 5. We now give two
examples involving substantially different hard constraints.

Sequence Rounding. In connection with an image processing application, Sadakane,
Takki-Chebihi and Tokuyama [STT01] compute roundings of sequences such that the
rounding errors in all intervals are less than one. This is in fact a classical problem, but
the new aspect in their work is that they need a randomized solution as this is less likely
to produce unwanted structures in the images. The approach taken in [STT01] is via
efficiently computing several roundings and then taking a random one.

A simpler way using the framework of this paper is to compute a randomized round-
ing y of x ∈ [0, 1]n with the additional constraints that for each interval I ⊆ [n],∑

i∈I yi is a randomized rounding of
∑

i∈I xi. To do so, we have to understand this
problem for 0, 1

2 sequences, which is trivial.

Matrix Rounding. Asano et al. [AKOT03] model the digital halftoning problem as
matrix rounding problem. For X ∈ [0, 1]m×n and Y ∈ {0, 1}m×n, they set
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d(X,Y ) :=
∑

i∈[m−1]
j∈[n−1]

∣∣∣ ∑
k,�∈{0,1}

(xi+k,j+� − yi+k,j+�)
∣∣∣.

They claim that the image represented by Y is a good halftoning of the image repre-
sented by X , if d(X,Y ) is small. The current best solution for computing good round-
ings with respect to this error measure uses dependent randomized roundings [Doe04].
Let Y be a randomized rounding of X with respect to the constraints2

yi,j + yi,j+1 ≈ xi,j + xi,j+1, i ∈ [m], j ∈ [n− 1],
yi,j + yi+1,j ≈ xi,j + xi+1,j , i ∈ [m− 1] odd, j ∈ [n],
yi,j + yi,j+1 + yi+1,j + yi+1,j+1 ≈ xi,j + xi,j+1 + xi+1,j + xi+1,j+1,

i ∈ [m− 1] odd, j ∈ [n− 1].

Then E(d(X,Y )) ≤ 0.55 holds for all X . The existence of such dependent roundings
easily follows from the totally unimodularity condition. However, actually computing
them in linear time involves tedious case distinctions.

With the reduction of Theorem 1, life is much easier since we only have to regard
X ∈ {0, 1

2}m×n. In this case, a constraint of the third type is either implied by con-
straints of the first two kinds, or it contains exactly two non-integral variables. All con-
straints thus yield a bipartite graph G = ([m] × [n], E) with {(i1, j1), (i2, j2)} ∈ E
telling us that exactly one of yi1,j1 and yi2,j2 has to become one, and these are all
constraints. This makes it easy to compute such a rounding: For each connected com-
ponent of G, flip a fair coin to decide which of the two classes of the bipartition shall
be rounded to one, and set the other variables to zero.

7 A Word of Warning

We have to note that dependencies like cardinality constraints inflict that some natu-
ral properties are unexpectedly not satisfied. Call a function f : {0, 1}n → R non-
decreasing if y ≤ z (component-wise) implies f(y) ≤ f(z).

(i) There are S ⊆ [n] such that the roundings of Section 4 and 5 make x �→ Prx(∀i ∈
S : yi = 1) not non-decreasing.

(ii) The compared to (A3) stronger property that for all disjoint S, T ⊆ [n], one
has Prx(y|S ≡ 1 | y|T ≡ 1) ≤ Prx(y|S ≡ 1) also does not hold for the roundings
of Section 4 and 5. This is the reason why in [GKPS02] this property could only be
proven for a single cardinality constraint and only by prescribing a particular order for
the individual roundings.

(iii) There are non-decreasing functions f such that any randomized rounding with
respect to a single cardinality constraint makes x �→ Ex(f) not non-decreasing.

All these phenomena, of course, are not possible for independent randomized
roundings.

Let us also mention the following. A distribution on {0, 1}n is negatively associated
(NA), if for all non-decreasing f, g : {0, 1}n → R≥0 we have E(fg) ≤ E(f)E(g).
The distributions of Section 4 and 5 are not (NA).

2 Here we use the notation y ≈ x to denote that y is a randomized rounding of x.
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8 General Derandomization

In this section, we improve and simplify the derandomization result of Stangier and
Srivastav [SS96]. Recall from Section 3.2 that Raghavan’s derandomization in the RAM
model only works for binary matrices. This problem was solved in [SS96], though at the
price of a significantly higher time complexity of O(mn2 log(mn)). Also, this approach
is hard to implement due to its technical demands. We overcome these difficulties by
reducing the general problem to Raghavan’s setting and obtain the following result.

Theorem 7. Let A ∈ ([0, 1]∩Q)m×n, x ∈ ([0, 1]∩Q)n and � ∈ N. Then a y ∈ {0, 1}n

such that

|(Ax)i − (Ay)i| ≤ 2(e− 1)
√

max
{
(Ax)i, ln(2�m)

}
ln(2�m) + 2−�n

holds for all i ∈ [m] can be computed in time O(mn�) in the RAM model.

Proof (Sketch). Use the binary expansion A =
∑�

k=1 2−kA(k) of A and apply Ragha-
van’s derandomization to the �m× n matrix obtained from stacking the A(i). !"

Note that if we choose � = &log2 n', the additive extra term is at most one. Note also,
that then the ln(2�m) term is just a factor away from the usual ln(2m): We may assume
m ≥ log n. Otherwise using linear algebra we may transform x into a vector x′ such that
Ax = Ax′ and at most m components of x′ are not 0 or 1. But if � = &log2 n' ≤ 2m,
then ln(2�m) ≤ 2 ln(2m).

Finally, note the following. By combining Lemma 4 with the elementary derandom-
ization for {0, 1

2 , 1} vectors in Section 3.2, we obtain a very elementary and simple to
implement algorithm for arbitrary vectors and binary matrices.
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Abstract. We consider the online scheduling problem for sorting buffers
on a line metric, motivated by an application to disc scheduling. Input
is an online sequence of requests. Each request is a block of data to be
written on a specified track of the disc. To write a block on a particular
track, the scheduler has to bring the disc head to that track. The cost
of moving the disc head from a track to another is the distance between
those tracks. A sorting buffer that can store at most k requests at a
time is available to the scheduler. This buffer can be used to rearrange
the input sequence. The objective is to minimize the total cost of head
movement while serving the requests. On a disc with n uniformly-spaced
tracks, we give a randomized online algorithm with a competitive ra-
tio of O(log2 n) in expectation against an oblivious adversary. We show
that any deterministic strategy which makes scheduling decisions based
only on the contents of the buffer has a competitive ratio of Ω(k) or
Ω(log n/ log log n).

1 Introduction

Disc scheduling is a fundamental problem in the design of storage systems. Stan-
dard text books on operating systems discuss various heuristics for scheduling
the movement of the disc head. It is to be noted that the difference in the per-
formance of different scheduling strategies can be seen only when a buffer which
can hold more than one request in order to rearrange the sequence is available
(See section 13.2 in [10]). In this paper, we consider the problem of efficiently
scheduling the head movement of a disc when a buffer of limited size is available
to rearrange an online sequence of requests. The access time in disc scheduling
has two components, namely seek time and rotational latency. Seek time is the
time required to move between tracks. The seek time can be reliably estimated
using a straight line metric. The rotational latency is the time required for the
required sector to move underneath the disc head. It is difficult to estimate rota-
tional latency reliably. So, we consider disc scheduling with only seek time and
model the disc as a number of tracks arranged on a straight line. The input is a
sequence of requests. Each request is a block of data and specifies the track on
which the data needs to be written. Available to the scheduler is a buffer which
can store at most k requests at a time. The buffer can be used to rearrange the
input sequence. To write a block of data onto a track, the disc head has to be
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c© Springer-Verlag Berlin Heidelberg 2006
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moved to that track. The cost of moving the head from track i to track j is
assumed to be |i− j|. The goal of the scheduler is to serve all the requests while
minimizing the overall cost of head movement. We call this problem the Sorting
Buffers problem (SBP) on a line metric to be consistent with the previous work.
Note that, when unlimited buffer size is available, the optimal schedule can be
found offline by simply sorting the requests.

The Disc Scheduling problem is well studied in the design of storage systems.
Shortest Seek First (SSF), Shortest Time First(STF), and CSCAN are some of
the popular heuristics. SSF strategy, at each step, schedules the request with the
shortest seek time among all the pending requests. STF strategy, at each step,
schedules the request with the minimum of seek time plus rotational latency
among all the pending requests. In the CSCAN schedule, the head starts from
one end of the disc and travels to the other end, servicing all the requests on a
track while passing it. After reaching the other end, it moves back to its starting
point and repeats. Note that the CSCAN may violate buffer constraint. However,
this problem has not been studied from the point of view of approximation
guarantees. Andrews et al. [1] studied a related disc scheduling problem in the
offline setting. They consider a model in which a convex reachability function
specifies the time taken for the head to move between two tracks. Given a set of
requests, they consider the problem of minimizing the time required to serve all
the requests. Unlike the SBP, their problem does not have buffer constraint. They
gave a 3

2 approximation for the disc scheduling problem with convex reachability
function in which there is no buffer constraint. They show that the problem can
be solved optimally in polynomial time if the reachability function is linear. They
leave the online problem with buffer constraint as an open problem.

1.1 Previous Work

The SBP can be defined on any metric space. The input is a sequence of requests
each of which corresponds to a point in the metric space. To serve a request after
its arrival, the server has to visit the corresponding point. The cost of moving
the server from a point to another is the distance between those points. The
sorting buffer of size k can be used to rearrange the sequence so as to minimize
the total movement of the server to serve all the requests. Let N denote the
total number of requests. It is easy to see that if k = N and there is one request
to each point, then this problem is essentially the Hamiltonian path problem
on the given metric. Thus the offline version of SBP on general metrics is NP-
hard. On a line metric, however, it is not known if the offline version is NP-hard
for a general k. To the best of our knowledge, no non-trivial lower or upper
bounds on the approximation (resp. competitive) ratio of either deterministic or
randomized offline (resp. online) algorithms are known for a line metric.

The SBP on a uniform metric (in which all pairwise distances are 1) has
been studied before. This problem is interesting only when multiple requests are
allowed for the points in the metric space. Räcke et al. [9] presented a determinis-
tic online algorithm, called Bounded Waste that has O(log2 k) competitive ratio.
They also showed that some natural strategies like FIFO, LRU etc. have Ω(

√
k)
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competitive ratio. Englert and Westermann [6] considered a generalization of the
uniform metric in which moving to a point p from any other point in the space
has a cost cp. They proposed an algorithm called Maximum Adjusted Penalty
(MAP) and showed that it gives an O(log k) approximation, thus improving the
competitive ratio of the SBP on uniform metric. Kohrt and Pruhs [8] also consid-
ered the uniform metric but with different optimization measure. Their objective
was to maximize the reduction in the cost from that of the schedule without a
buffer. They presented a 20-approximation algorithm for this variant and this
ratio was improved to 9 by Bar-Yehuda and Laserson [2]. It is not known if the
offline version of SBP on the uniform metric is NP-hard.

The offline version of the sorting buffers problem on any metric can be solved
optimally using dynamic programming in O(Nk+1) time where N is the number
of requests in the sequence. This follows from the observation that the algorithm
can pick k requests to hold in the buffer from first i requests in

(
i
k

)
ways when

the (i + 1)th request arrives. Suppose there is a constraint that a request has to
be served within D time steps of it being released, then, the dynamic program
can be modified to compute the optimal schedule in O(Dk+1) time.

The dial-a-ride problem with finite capacity considered by Charikar and
Raghavachari [5] is related to the SBP. In this problem, the input is a sequence
of requests each of which is a source-destination pair in a metric space on n
points. Each request needs an object to be transferred from its source to its
destination. The goal is to serve all the requests using a vehicle of capacity k so
that total length of the tour is minimized. The non-preemptive version requires
that once an object is picked, it can be dropped only at its destination while in
the preemptive version the objects can be dropped at intermediate locations and
picked up later. Charikar and Raghavachari [5] give approximation algorithms for
both preemptive and non-preemptive versions using Bartal’s metric embedding
result. Note, however, that the SBP enforces a sequencing constraint that is not
imposed by the dial-a-ride problem. In the SBP, if we are serving the ith request,
then it is necessary that at most k requests from first to (i − 1)th request be
outstanding. Whereas, in the dial-a-ride problem, the requests can be served in
any order as long as the schedule meets the capacity constraint. Therefore their
techniques are not applicable to the SBP. They give O(log n) approximation
for the preemptive case and O(

√
k log n) approximation for the non-preemptive

case. The capacitated vehicle routing problem considered by Charikar et al. [4]
is a variant in which all objects are identical and hence an object picked from
a source can be dropped at any of the destinations. They give the best known
approximation ratio of 5 for this problem and survey the previous results.

1.2 Our Results

In Section 3, we show that natural strategies like FIFO and Nearest-First have
a competitive ratio of Ω(k). We also show that any deterministic algorithm that
takes decisions just based on the unordered set of requests which are currently
in the buffer has a competitive ratio of Ω(k). The same proof implies a lower
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bound of Ω(log n/ log log n) for deterministic algorithms that take decisions just
based on the unordered set of requests currently in the buffer.

Next in Section 4, we provide the first non-trivial competitive ratio for the
online SBP on a line metric. For a line metric {1, . . . , n} with distance between i
and j being |i− j|, we present a randomized online algorithm with a competitive
ratio of O(log2 n) in expectation against an oblivious adversary. This algorithm
also yields a competitive ratio of O(α−1 log2 n) if we are allowed to use a buffer
of size αk for any 1 ≤ α ≤ log n.

Our algorithm is based on the probabilistic embedding of the line metric
into the so-called hierarchical well-separated trees (HSTs) first introduced by
Bartal [3]. He showed that any metric on n points can be probabilistically ap-
proximated within a factor of O(log n log log n) by metrics on HSTs. This factor
was later improved to O(log n) by Fakcharoenphol et al. [7]. It is easy to see
that the line metric {1, . . . , n} can be probabilistically approximated within a
factor of O(log n) by the metrics induced by binary trees of depth 1+ logn such
that the edges in level i have length n/2i. We provide a simple lower bound
on the cost of the optimum on a tree metric by counting how many times
it must cross a particular edge in the tree. Using this lower bound, we prove
that the expected cost of our algorithm is within the factor of O(log2 n) of the
optimum.

Our algorithm generalizes to “line-like” metrics. More precisely, consider a
metric such that for every subset of points in the metric space, cost of the mini-
mum spanning tree on that subset is within α times the diameter of that subset.
For such a metric on n points, our algorithm is O(α log n log D) competitive in
expectation, where D is the aspect ratio, i.e., the ratio of the maximum pairwise
distance to the minimum pairwise distance in the metric.

2 The Sorting Buffers Problem

Let (V, d) be a metric on n points. The input to the Sorting Buffers Problem
(SBP) consists of a sequence of N requests. The ith request is labeled with a
point pi ∈ V . There is a server, initially located at a point p0 ∈ V . To serve ith
request, the server has to visit pi after its arrival. There is a sorting buffer which
can hold up to k requests at a time. The first k requests arrive initially. The
(i + 1)th request arrives after we have served at least i + 1− k requests among
the first i requests for i ≥ k. Thus we can keep at most k requests pending at any
time. The output is such a legal schedule of serving the requests. More formally,
the output is given by a permutation π of 1, . . . , N where the ith request to be
served is denoted by π(i). Since we can keep at most k requests pending at a time,
a legal schedule must satisfy that the ith request to be served must be among
first i + k − 1 requests arrived, i.e., π(i) ≤ i + k − 1. The cost of the schedule is
the total distance that the server has to travel, i.e., Cπ =

∑N
i=1 d(pπ(i), pπ(i−1))

where π(0) = 0 corresponds to the starting point. The goal in SBP is to find a
legal schedule π that minimizes Cπ where the (i + 1)th request is revealed only
after serving at least i− k + 1 requests for i ≥ k.
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2.1 The Disc Model

Overlooking rotational latency, a disc is modeled as an arrangement of tracks
numbered 1, . . . , n. The time taken to move the head from track i to track j
is assumed to be |i − j|. The Disc Scheduling problem is the SBP on the line
metric space ({1, . . . , n}, d) where d(i, j) = |i− j|. It is not known if the offline
problem is NP-hard. We argue in Section 4.1 that the algorithm that serves the
requests in the order they arrive is an O(k)-approximation. To the best of our
knowledge, no algorithm with a better guarantee was known before.

3 Why Some Natural Strategies Fail

Many natural deterministic strategies suffer from one of the following drawbacks.

1. Some strategies block large part of the sorting buffer with requests that are
kept pending for a long time. Doing this, the effective buffer size drops well
below k, thereby yielding a bad competitive ratio. For example, consider the
Nearest-First (also called Shortest-Trip-First (STF)) strategy that always
serves the request nearest to the current head location. Suppose that the
initial head location is 0. Let the input sequence be 3, . . . , 3, 1, 0, 1, 0, . . .
where there are k−1 requests to 3. The STF strategy keeps the k−1 requests
to 3 pending and serves the 1s and 0s alternatively using an effective buffer of
size 1. The optimum schedule, on the other hand, gets rid of the requests to
3 by making a single trip to 3 and uses the full buffer to serve the remaining
sequence. It is easy to see that if the sequence of 1s and 0s is large enough,
the cost of STF is Ω(k) times that of the optimum.

2. Some other strategies, in an attempt to free the buffer slots, travel too far too
often. The optimum, however, saves the distant requests and serves about k
of them at once by making a single trip. Consider, for example, the First-In-
First-Out (FIFO) strategy that serves the requests in the order they arrive.
Suppose again that the initial head location is 0 and the input sequence is a
repetition of the following block of requests: n, 1, . . . , 1, 0, . . . , 0 where there
are k requests to 1 and k requests to 0 in each block. The FIFO strategy
makes a trip to n for each block while the optimum serves 1s and 0s for
k− 1 blocks and then serves the accumulated k− 1 requests to n by making
a single trip to n. Note that, in doing this, the effective buffer size for the
optimum reduces from k to 1. However, for the sequence of k 1s followed by
k 0s, having a buffer of size k is no better than having buffer of size 1. It is
now easy to see that if n = k, then FIFO is Ω(k) worse than the optimum.

Thus a good strategy must necessarily strike a balance between clearing the
requests soon to free the buffer and not traveling too far too often. Obvious
combinations of the two objectives, like making decisions based on the ratios of
the distance traveled to the number of requests served also fail on similar input
instances. We refer the reader to Räcke et al. [9] for more discussion.
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3.1 Memoryless Deterministic Algorithms

We call a deterministic algorithm memoryless if it makes its scheduling decisions
based purely on the set of pending requests in the buffer. Such an algorithm can
be completely specified by a function ρ such that for every possible (multi-)set
S of k requests in the buffer, the algorithm picks a request ρ(S) ∈ S to serve
next. The Nearest-First strategy is an example of a memoryless algorithm.

Theorem 1. Any memoryless algorithm is Ω(k)-competitive.

Proof. We consider k + 1 points S = {1, k, k2, . . . , kk} on a line. Consider any
deterministic memoryless algorithm A. Suppose the head is initially at 1. We
start with a request at each of the points k, . . . , kk. Whenever A moves the head
from location pi to location pj , we release a new request at pi. Thus, at all times,
the pending requests and the head location together span all the k + 1 points in
S. Construct a directed graph G on S as vertices as follows. Add an edge from
pi to pj if from the configuration with the head at pi (with pending requests at
all other points), A moves the head to pj . Observe that the out-degree of every
vertex is one and that G must have a cycle reachable from 1.

Suppose there is a cycle of length two between points pi, pj ∈ S that is
reachable from 1. In this case, we give an input sequence as follows. We first
follow the path from 1 to pi so that the head now resides at pi. We then give a
long sequence of the requests of the form pj , pi, pj , pi, . . .. A serves pjs and pis
alternatively, keeping the other k−1 requests pending in the buffer. The optimum
algorithm will instead clear the other k−1 requests first and use the full buffer to
save an Ω(k) factor in the cost. Note that this situation is “blocking-the-buffer”
(item 1) in the discussion on why some strategies fail.

Suppose, on the other hand, all the cycles reachable from 1 are of length
greater than two. Consider such a cycle C on p1, p2, . . . pc ∈ S where c > 2 and
p1 > p2, . . . , pc. Note that the edges (p1, p2) and (pc, p1) have lengths that are
Ω(k) times the total lengths of all the other edges in C. We now give an input
sequence as follows. We first make A bring the head at p1 and then repeat the
following block of requests several times: p2, p3, . . . , pc. For each such block, A
makes a trip of C while the optimum serves p2, . . . , pc repeatedly till it accumu-
lates k − 1 requests to p1 and then clears all of them in one trip to p1. Thus
overall it saves an Ω(k) factor in the cost over A. Note that this situation is
“too-far-too-often” (item 2) in the discussion on why some strategies fail.

Thus, any deterministic memoryless strategy has a competitive ratio of Ω(k).
Note that n = kk in the above example. Thus the lower bound we proved in

terms of n is Ω( log n
log log n ).

4 Algorithm for Sorting Buffers on a Line

4.1 A Lower Bound on OPT for a Tree Metric

Consider first an instance of SBP on a two-point metric {0, 1} with d(0, 1) = 1.
Let us assume that p0 = 0. There is a simple algorithm that behaves optimally
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on this metric space. It starts by serving all requests at 0 till it accumulates k
requests to 1. It then makes a transition to 1 and keeps serving requests to 1 till
k requests to 0 are accumulated. It then makes a transition to 0 and repeats.
It is easy to see that this algorithm is optimal. Consider the First-In-First-Out
algorithm that uses a buffer of size 1 and serves any request as soon as it arrives.
It is easy to see that this algorithm is O(k)-competitive since it makes O(k) trips
for every trip of the optimum algorithm.

We use OPT(k) to denote both the optimum algorithm with a buffer of size k
and its cost. The following lemma states the relationship between OPT(·) over
different buffer sizes for a two-point metric.

Lemma 1. For a two-point metric, for any 1 ≤ l ≤ k, we have OPT(k) ≥
OPT(&k/l')/2l.

Proof. Let p0 = 0. By the time OPT(&k/l') makes l trips to 1, we know that
OPT(k) must have accumulated at least k requests to 1. Therefore OPT(k) must
travel to 1 at least once. Note that the l (round) trips to 1 cost at most 2l for
OPT(&k/l'). We can repeat this argument for every trip of OPT(k) to conclude
the lemma.

Using the above observations, we now present a lower bound on the optimum
cost for the sorting buffers problem on a tree metric.1 Consider a tree T with
lengths de ≥ 0 assigned to the edges e ∈ T . Let p1, . . . , pN denote the input
sequence of points in the tree. Refer to Figure 1. Fix an edge e ∈ T . Let Le and

Re

p0 p1 p2p3
p4

p5

e

Le

Fig. 1. Lower bound contributed by edge e in the tree

Re be the two subtrees formed by removing e from T . We can shrink Le to form
a super-node 0 and shrink Re to form a super-node 1 to obtain an instance of
SBP on a two-point metric {0, 1} with d(0, 1) = de. Let LBe denote the cost of
the optimum on this instance. It is clear that any algorithm must spend at least
LBe for traveling on edge e. Thus

LB =
∑
e∈T

LBe (1)

is a lower bound on the cost OPT of the optimum on the original tree instance.
Again, the algorithm that serves the requests in the order they arrive in, is
O(k)-competitive.
1 Recall that a tree metric is a metric on the set of vertices in a tree where the distances

are defined by the path lengths between the pairs of points.
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Let LB(k) denote the above lower bound on OPT(k), the optimum with a
buffer of size k. The following lemma follows from Lemma 1.

Lemma 2. For any 1 ≤ l ≤ k, we have LB(k) ≥ LB(&k/l')/2l.

4.2 An Algorithm on a Binary Tree

Consider a rooted binary tree T on n = 2h leaves. The height of this tree is
h = log n. The edges are partitioned into levels 1 to h according to their distance
from the root; the edges incident to the root are in level 1 while the edges incident
to the leaves are in level h. Figure 2 shows such a tree with n = 8 leaves. Let
each edge in level i have cost n/2i. Consider a metric on the leaves of this tree

v

T1
T3 T4 T2

level 3

level 2

level 1

level 4

Fig. 2. Partition of the leaves in a phase of the algorithm

defined by the path lengths. In this section, we present a deterministic online
algorithm for SBP on this metric that has a competitive ratio of O(log2 n). Since
the First-In-First-Out algorithm has a competitive ratio of O(k), we assume that
k > h = log n. We also assume for simplicity that h divides k.

Algorithm. The algorithm goes in phases. Suppose that in the beginning of
a phase, the server is present at a leaf v as shown in Figure 2. We partition
the leaves other than v into h subsets as shown in the figure. Consider the path
Pv from v to the root. Let Ti be the tree hanging to the path Pv at level i for
1 ≤ i ≤ h. Let Vi be the set of leaves in Ti. We think of the sorting buffer of
size k as being divided into h sub-buffers of size k/h each. We associate the ith
sub-buffer with Vi, i.e., we accumulate all the pending requests in Vi in the ith
sub-buffer. The algorithm maintains the following invariant.

Invariant. Each of the h sub-buffers has at most k/h requests, i.e., there
are at most k/h pending requests in any Vi.

We input new requests till one of the sub-buffers overflows. Suppose that the jthe
sub-buffer overflows. The algorithm then clears all the pending requests in the
subtrees Tj, Tj+1, . . . , Th by performing an Eulerian tour of the trees Tj , . . . , Th.
At the end of the tour, the head is at an arbitrary leaf of Tj. The algorithm,
then, enters the next phase.

To prove the correctness of the algorithm we have to argue that at most k
requests are pending at any point in the algorithm.
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Lemma 3. The invariant is satisfied in the beginning of any phase.

Proof. Initially, the invariant is trivially satisfied. Suppose that it is satisfied
in the beginning a phase and that the jth sub-buffer overflows in that phase.
The division into trees and sub-buffers changes after the move. However since the
server resides in Tj, all the trees T1, . . . , Tj−1 and their corresponding sub-buffers
remain unchanged. Also since the algorithm clears all the pending requests in
the trees Tj , . . . , Th, the jth to hth sub-buffers after the move are all empty.
Thus the invariant is also satisfied in the beginning of the next phase.

Next we argue that the algorithm is O(log2 n) competitive.

Theorem 2. The total distance traveled by the server in the algorithm is
O(OPT · log2 n).

Proof. For an edge e ∈ T , let LBe(k) be the lower bound on OPT(k) contributed
by e as defined in Section 4.1. Let LB(k) =

∑
e LBe(k). Let LBe(k/h) and LB(k/h)

be the corresponding quantities assuming a buffer size of k/h. We know from
Lemma 2 that

OPT(k) ≥ LB(k) ≥ LB(k/h)/2h = LB(k/h)/2 logn.

To prove the lemma, next we argue that the total cost of the algorithm is
O(LB(k/h) · log n).

To this end, consider a phase t. Suppose jth sub-buffer overflows in this phase.
Let v be the leaf corresponding to the current position of the server and let u
be the vertex on the path from v to the root between the levels j and j − 1.
In this phase, the algorithm spends at most twice the cost of subtree below
u. Let e be the parent edge of tree Tj , i.e., the edge that connects Tj to u.
Note that the cost of e is n/2j while the total cost of the subtree below u is
2(log n − j) · n/2j = O(log n · n/2j). With a loss of factor O(log n), we charge
the cost of clearing the requests in Tj ∪ · · · ∪ Th to the cost paid in traversing e
in this phase. We say that the phase t transfers a charge of n/2j to e.

Now fix an edge e ∈ T . Let Ce denote the total charge transfered to e from all
the phases. We show that Ce ≤ LBe(k/h). Refer to Figure 1. Let Le and Re be
the two subtrees formed by removing e from T . Now Ce is the total cost paid by
our algorithm for traversing e in the phases which transfer a charge to e. Note
that in these phases, we traverse e to go from Le to Re or vice-versa only when
there are at least k/h pending requests on the other side. Thus Ce is a at most
LBe(k/h), the lower bound contributed by e assuming a buffer size of k/h. Thus,∑

e Ce ≤
∑

e LBe(k/h) = LB(k/h) and the proof is complete.

Lemma 4. For any 1 ≤ α ≤ log n, there is an O(α−1 log2 n) competitive algo-
rithm for SBP on the binary tree metric defined above if the algorithm is allowed
to use a buffer of size αk.

The algorithm is similar to the above one except that it assigns a sub-buffer of
size αk/h to each of the h subtrees. The proof that it has the claimed competitive
ratio is similar to that of Theorem 2 and is omitted.
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4.3 An Algorithm on a Line Metric

Our algorithm for a line metric is based on the probabilistic approximation of
the line metric by a binary tree metric considered in the previous section.

Definition 1 (Bartal [3]). A set of metric spaces S over a set of points V ,
α-probabilistically approximates a metric space M over V , if

– every metric space in S dominates M , i.e., for each N ∈ S and u, v ∈ V we
have N(u, v) ≥ M(u, v), and

– there exists a distribution over the metric spaces N ∈ S such that for every
pair u, v ∈ V , we have E[N(u, v)] ≤ αM(u, v).

Definition 2. A r-hierarchically well-separated tree (r-HST) is a edge-weighted
rooted tree with the following properties.

– The weights of edges between a node to any of its children are same.
– The edge weights along any path from root to a leaf decrease by at least a

factor of r.

Bartal [3] showed that any connected edge-weighted graph G can be α-prob-
abilistically approximated by a family r-HSTs where α = O(r log n log log n).
Fakcharoenphol, Rao and Talwar [7] later improved this factor to α = O(r log n).
We prove the following lemma for completeness.

Lemma 5. A line metric on uniformly-spaced n points can be O(log n) proba-
bilistically approximated by a family of binary 2-HSTs.

Proof. Assume for simplicity that n = 2h for some integer h. Let M be a metric
on {1, . . . , n} with M(i, j) = |i−j|. Consider a binary tree T on 2n leaves. Label
the leaves from left to right as l1, . . . , l2n. Partition the edges into levels as shown
in Figure 2, i.e., the edges incident to the root are in level 1 and those incident
to the leaves are in level 1 + log n. Assign a weight of n/2i to each edge in level
i. Now pick r uniformly at random from the set {0, 1, . . . , n− 1}. Let N be the
metric induced on the leaves lr+1, lr+2, . . . , lr+n and consider a bijection from
{1, . . . , n} to {lr+1, . . . , lr+n} that maps i to lr+i.

It is easy to see that under this mapping, the metric space N dominates M .
Now consider any pair i and i + 1. It is easy to see that E[N(lr+i, lr+i+1)] =
O(log n). By linearity of expectation, we have that for any pair 1 ≤ i, j ≤ n,
we have E[N(lr+i, lr+j)] = O(log n · |i− j|). Therefore this distribution over the
binary 2-HSTs forms O(log n)-approximation to the line metric as desired.

It is now easy to extend our algorithm on binary 2-HSTs to the line metric.
We first pick a binary 2-HST from the distribution that gives O(log n) proba-
bilistic approximation to the line metric. Then we run our deterministic online
O(log2 n)-competitive algorithm on this binary tree. It is easy to see that the
resulting algorithm is a randomized online algorithm that achieves a competitive
ratio of O(log3 n) in expectation against an oblivious adversary. It is necessary
that the adversary be oblivious to our random choice of the 2-HST metric. Again
for 1 ≤ α ≤ log n, we can improve the competitive ratio to O(α−1 log3 n) by
using a buffer of size αk.
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4.4 Improved Analysis

Previous analysis can be improved to show that the same algorithm is in fact
O(log2 n) competitive on the line metric. The main idea is to consider the actual
distance traveled on the line at the end of each phase instead of using the tree
approximation as a black box.

Note that in our algorithm, the disc head moves only at the end of a phase
when the buffer for one of the levels overflows. Suppose the buffer for level j
overflows at the end of a phase. So, the contribution by the parent edge of the
tree Tj to the lower bound of the tree instance is n/2j. In this move, we clear
all the requests belonging to the trees Tj, Tj+1, . . . , T1+log n. Our embedding
guarantees that the total distance traveled on the line metric, in order to clear
all these requests, is O(n/2j). By adding over all the phases, it is clear that
the total distance traveled by the algorithm is O(LB) where LB is the lower
bound on the tree instance with buffer size k/ logn. This, in turn, implies a
randomized O(log2 n) competitive ratio for our algorithm against an oblivious
adversary. Again, for 1 ≤ α ≤ log n, we can improve the competitive ratio to
O(α−1 log2 n) by using a buffer of size αk.

4.5 Extension to “Line-Like” Metrics

Our algorithm generalizes to other “line-like” metrics. Consider a metric space
such that for every subset of points, the cost of the minimum spanning tree on
that subset is at most α times the maximum pairwise distance in that subset.
For such a metric space on n points, we next argue that our algorithm yields
O(α log n log D) approximation, where D is the aspect ratio of the metric.

In the algorithm for such metric spaces, we first approximate the given metric
by 2-HSTs of height h = O(log D). Note that these HSTs need not be binary
trees. Our algorithm on such an HST assigns a buffer of size k/h to each subtree
as before. We incur a factor of logD from here. Recall that at the end of each
phase, we clear requests in subtrees Tj , . . . , Th for some j and charge it to the
lower bound contributed by the parent edge of Tj. The distance traveled in the
original metric is at most a constant times the cost of the minimum spanning
tree on the subset of points, say S, that are mapped into these subtrees. This
cost, by our assumption, is at most α·diam(S), where diam(S). Now, we observe
that the cost of the parent edge of Tj is in fact Ω(diam(S)). This follows from
the construction of the HSTs in Fakcharoenphol et al. [7]. Thus our cost in this
move is at most α times the contribution to the lower bound. As before, it can
be shown that we get an overall approximation guarantee of O(α log n log D).

5 Conclusions

For both uniform and line metrics, no hardness results are known for the offline
versions and no lower bounds known on competitive ratio of online algorithms.
Any results in this direction will be interesting. Unlike the uniform metric, it
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looks unlikely that a deterministic strategy will give a non-trivial approxima-
tion ratio for a line metric. An Ω(k) lower bound on the competitive ratio of
any deterministic online algorithm for a line metric would be interesting. On the
other hand, any polylog k approximation on a line metric will also be interesting.
Can we prove some non-trivial results for general HSTs, and hence for a general
metric?
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Abstract. We study route selection for packet switching in the compet-
itive throughput model. In contrast to previous papers which considered
competitive algorithms for packet scheduling, we consider the packet
routing problem (output port selection in a node). We model the node
routing problem as follows: a node has an arbitrary number of input ports
and an arbitrary number of output queues. At each time unit, an arbi-
trary number of new packets may arrive, each packet is associated with a
subset of the output ports (which correspond to the next edges on the al-
lowed paths for the packet). Each output queue transmits packets in some
arbitrary manner. Arrival and transmission are arbitrary and controlled
by an adversary. The node routing algorithm has to route each packet
to one of the allowed output ports, without exceeding the size of the
queues. The goal is to maximize the number of the transmitted packets.
In this paper, we show that all non-refusal algorithms are 2-competitive.
Our main result is an almost optimal e

e−1
≈ 1.58-competitive algorithm,

for a large enough queue size. For packets with arbitrary values (allowing
preemption) we present a 2-competitive algorithm for any queue size.

1 Introduction

Overview. A general network consists of nodes (routers) and communication
links through which packets of information flow. Generally, a node consists of
input ports, a switching module and an output buffer connected to each out-
put port. A packet is received at an input port and then forwarded through
the switching module to an appropriate output buffer. If the output buffer is
full, the switching module must drop some packets. Most of previous works for
competitive packet routing/switching considered the packet scheduling problem
in the buffers assuming the path of the packet through the network is fixed and
known. Moreover, to the best of our knowledge there are no results for the rout-
ing problem (i.e. path or output selection) in the competitive throughput model.
In this paper we consider the simplest packet routing problem which is choosing
a route in a node.

Traditionally, similar problems were analyzed while assuming either a specific
distribution of the arrival rates (see [15,21]), or some predefined structure of
the sequence of arriving packets such as in the Adversarial Queueing Theory
� Research supported in part by the German-Israeli Foundation and by the Israel
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(AQT), in which the adversary injects packets that obey some capacity con-
straints, so that packet dropping is not necessary. It is interesting to note that
the first papers on AQT assumed fixed paths [5,16,17,22] and only later papers
began considering the path selection problem [1,6,8,9,17]. Recently, throughput
problems for various types of switches, in special graphs and arbitrary graphs
were studied while avoiding any a-priori assumption on the input. As already
mentioned, all these papers considered the packet scheduling but not the packet
routing or output port selection. Here we consider the simplest routing (path
selection or output port selection) which is node routing. Packets arrive at the
input ports, while each packet is associated with a subset of the output ports.
The packet has to be routed into one of these output ports.

We model the problem of node routing as follows: a node has an arbitrary
number of input ports and an arbitrary number of output queues (denoted by
m). All the output queues are of size B. At each time unit, an arbitrary number
of new packets may arrive, each packet is associated with a subset of the output
ports (which corresponds to the next edges on the allowed paths for the packet).
Each output queue transmits packets in some arbitrary manner. Arrival and
transmission are arbitrary and controlled by an adversary. In contrast to the
models where the path is fixed, and hence each packet needs to be routed into
a unique output queue, in our model the output queue needs to be selected. In
particular the main decision problem is into which output queue to send the
packet (among the allowed destination output queues). If the buffers are full,
the packet must be rejected. The goal of the routing algorithm is to maximize
the number of the transmitted packets. We also consider the model of packets
with arbitrary values. In this model we allow preemption.

Our Results. We show that all non-refusal algorithms are 2-competitive for
any queue size, and are optimal for queues of size 1. Our main result is an opti-
mal deterministic e

e−1 ≈ 1.58-competitive algorithm for node routing, for a large
enough size of the queues. This is done by designing an optimal e

e−1 -competitive
fractional algorithm and transforming it into a discrete algorithm with a com-
petitive ratio of e

e−1 (1 + 2m+1
B ). We show that our algorithm is almost optimal

by providing a lower bound of e
e−1 −Θ( 1

m ). Actually the discretization is more
general. In fact, we present a generic technique for transforming any fractional
c-competitive algorithm for the node routing problem to a discrete c(1+ 2m+1

B )-
competitive algorithm. We also show an optimal e

e−1 − o(1)-competitive ran-
domized algorithm for any B. For the preemptive model with arbitrary values,
we present a 2-competitive algorithm for any m and B. This is done using the
zero-one principle presented in [13]. The algorithm is optimal for B = 1. We
also show a 3-competitive algorithm for another model called ”the multi queue
switch routing model” which is omitted due to space limitation.

Our Techniques. We start by constructing an online reduction from the frac-
tional node routing problem to the problem of finding a maximum fractional
matching in a bipartite graph (defined in [10]). Thus, using algorithm WL
from [10] which is e

e−1 -competitive, we obtain an e
e−1 -competitive fractional
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algorithm. Then we present a generic technique for transforming any fractional
algorithm for the node routing problem to a discrete algorithm. Specifically, we
present an algorithm with larger queues and no packet loss that maintains a
running simulation of the fractional algorithm. This is done using the vector
rounding algorithm of [3]. We then transform this algorithm to an algorithm
with queues of size B. For the model of packets with arbitrary values, we obtain
the upper bound by using the zero-one principle presented in [13]. Due to space
limitation most proofs are omitted.

Related Results for Packet Switching. There are many results for packet
switching that appear in [4,20,14,10,13,12]. For general graphs the main results
appear in [2,13,19,7].

2 Problem Definition and Notations

We model the problem as follows: a node has an arbitrary number of input
ports and m output queues {Q1, ..., Qm} each of size B. At each time unit, an
arbitrary number of new packets may arrive. Each packet p is associated with
a subset of the output queues Qp ⊆ {Q1, ..., Qm} (which corresponds to the
next edges on the allowed paths for the packet). All packets are of equal size
and value. W.l.o.g. we assume that all m queues are empty at the beginning.
Each time unit is divided into two phases: in the arrival phase a set of packets
arrive, each packet p is associated with a specific subset of the output queues
Qp. For each packet p, the main decision problem is into which output queue to
send it (among the allowed destination output queues Qp). Each packet might
be rejected at its arrival. If the queues Qp are full, the packet must be rejected.
Clearly, in this model there is no need for preemption since the preference of one
packet over the other is pointless. At the transmission phase, a subset of the
queues (could be also none or all the queues) is selected by the system, and a
packet is transmitted from each of the heads of these queues (only from the non
empty queues). Both arrival and transmission are controlled by an adversary, but
we assume no starvation for each of the output queues, i.e., eventually all queues
will transmit and become empty. The goal of the algorithm is to maximize the
number of the transmitted packets.

We use the term non-refusal algorithm for algorithms that accept every packet
which the queues have space for. Obviously, every algorithm can be transformed
into a non-refusal algorithm without worsening its competitiveness.

The model above is the synchronous model in which all the packets of a single
arrival phase arrive together (and all the transmissions in the transmission phase
are made together), so the algorithm has full knowledge about the arrival phase
before it has to make its routing decisions. We also consider the event driven
model where arrivals and transmissions occur in arbitrary times. We denote
by σ the sequence events. Each event in σ can be either an arrival event or a
transmission event. The algorithm must respond after every arrival event and
route the packet (or discard it). Note that the event driven model is stronger
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than the synchronous one. Nevertheless our upper bounds hold even for the
event driven model, and the lower bounds hold even for the synchronous model
(except for the arbitrary B lower bound).

We also consider the arbitrary-value model where each packet is associated
with a non-negative value. The goal is to maximize the sum of values of the
transmitted packets. In this model we allow preemption. A preempted packet is
a packet which is dropped after residing in a queue. Our results hold for both
FIFO and non FIFO queues (e.g. priority queues). Note that the throughput of
the optimal algorithm is the same for FIFO and non FIFO models.

Notations. We use the terms insert, accept and assign for packet insertion into
one of the queues. For packet rejection we use the terms drop and discard. We
use the event driven model throughout the paper, except for the lower bound
sections. We denote by event t the t-th event, which can be either an arrival or
a transmission event. We use the term arrival event j to denote the j-th arrival
event, i.e., the arrival of the j-th packet. Similarly we denote by transmission
event k the k-th transmission event. For event t, we use the term load of queue
Qi to refer to the number of packets residing in that queue, at that time. Given
an online routing algorithm A we denote by A(σ) the value of A given the
sequence σ, i.e., the total amount of transmitted packets after all the packets
of the sequence have arrived and all the queues have been emptied. We denote
the optimal (offline) algorithm by Opt. A deterministic online algorithm A is
c-competitive for all maximization problems described in this paper iff for every
packet sequence σ we have: Opt(σ) ≤ c ·A(σ).

3 Optimal Algorithm for Node Routing

First we discuss non-refusal algorithms. We note that every non-refusal algo-
rithm is 2-competitive, for every B ≥ 1 (this is optimal for B = 1, as shown in
section 4). The general non-refusal algorithm is defined as follows:

Non-refusal Algorithm. For each incoming packet p: insert p into any queue
Qi ∈ Qp which is not full. If such a queue does not exist, discard p.

It can be proved directly that every non-refusal algorithm is 2-competitive,
but it also follows from Remark 1 or Theorem 10.

Next we describe our optimal algorithm which is e
e−1 (1 + 2m+1

B )-competitive.
In subsection 3.1 we present algorithm FR for the fractional model, which is

e
e−1 -competitive. In subsection 3.2, we present a generic technique to transform
any c-competitive online fractional algorithm for our problem into a discrete
algorithm with a competitive ratio of c(1 + 2m+1

B ). We begin with the fractional
routing algorithm in the following subsection.

3.1 Algorithm for the Fractional Version of Node Routing

In this subsection we consider the fractional model, which is a relaxation of the
discrete model that was presented in section 2. In the fractional model we allow
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the online algorithm to accept fractional packets into the queues as well as to
transmit fractional packets. More formally, at arrival event t of packet p, the
algorithm may split the packet into fractions and insert them into the queues
Qp (only into queues with sufficient free space), and may also discard any of the
fractions. The value of each fraction is equal to its size. We note by kt

i the total
amount of fractions of p inserted into queue Qi, at arrival event t. The total
amount of fractions inserted into all the queues, must not exceed the unit value,
i.e.,

∑m
i=1 k

t
i ≤ 1. In addition, Qi /∈ Qp implies that kt

i = 0. At transmission
event from queue Qi, Qi transmits a volume of a unit from its head (if there are
enough fractions in queue Qi). If the total fractions in the queue are less then a
unit, they will all be transmitted. We assume that sequence σ consists of integral
packets. In this subsection we show a fractional algorithm for the problem with
a competitive ratio of e

e−1 ≈ 1.58, even against an optimal algorithm which is
allowed to split incoming packets. We begin by introducing the problem of an
online unweighted fractional matching in a bipartite graph. Then we introduce a
translation of our problem (the fractional model) into the problem of the online
unweighted fractional matching in a bipartite graph.

The online unweighted matching in a bipartite graph problem is defined as
follows (as appears in [10]): first, consider an online version of the maximum
bipartite matching on a graph G = (S,R,E), where S and R are the disjoint
vertex sets and E is the set of edges. We refer to sets S and R as the servers
and the requests, respectively. The objective is to match a request to a server.
At step t, a vertex rt ∈ R along with all of its incident edges, arrives online.
Algorithm A can either reject rt, or irreversibly match it to an unmatched vertex
si ∈ S adjacent to rt. The goal of the online algorithm is to maximize the size
of the matching.

The fractional version of the online unweighted matching is as follows: each re-
quest rt has a size xt which is the amount of work needed to service it. Algorithm
A can match a fraction of size kt

i ∈ [0, xt] to each vertex si ∈ S adjacent to rt. If
request t is matched partially to some server i with weight kt

i then
∑|S|

i=1 k
t
i ≤ xt.

But the load of each server i, which is
∑n

t=1 k
t
i where n is the length of σ, must

be at most 1. We use the terms match and assign interchangeably. The goal
of the online algorithm is to maximize the sum of matched fractions, i.e., to
maximize

∑
t,i k

t
i .

Our translation of the fractional routing problem into the problem of online
unweighted fractional matching in a bipartite graph, opposes, in some sense, the
translations in [10,11]. In our translation, the incoming packets are the requests
and they are matched to the queues which are the servers, while in [10,11] the
requests are the transmission events and they are matched to the packets, which
are the servers.

Given a sequence σ, we translate it into the bipartite graph Gσ = (R,S,E),
which is defined as follows:

– Let T denote the total number of packets. We define the set of requests as
R = {r1, ..., rT } all with unit sizes, i.e., xi = 1 for each 1 ≤ i ≤ T . Each
request corresponds to a packet.
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– For each queue Qi we define a set of servers Si, which represents the queue
over time. Specifically, each Si (1 ≤ i ≤ m) contains T + B servers: Si =
{s1

i , ..., s
T+B
i }. The Si’s are disjoint and the full set of servers is defined as

S =
⋃m

i=1 Si.
– Let yt

i denote the number of times queue Qi was selected for transmission
until arrival event t. We denote by St

i the B servers in Si that represent
queue Qi at arrival event t. We define St

i = {syt
i+1

i , ..., s
yt

i+B
i } ⊆ Si. Consider

packet p arriving at arrival event t, associated with the subset Qp. In the
bipartite graph problem, at step t a request rt arrives along with its incident
edges, which are the edges connecting it to all servers in St

i for each i such
that Qi ∈ Qp. More formally, rt arrives with the following incident edges:
{(s, rt)|s ∈ St

i , Qi ∈ Qp}.

Definition 1. A route RT for a sequence of arriving packets σ, for the frac-
tional node routing problem, is a set of triplets of the form (t, Qi, k

t
i) for each

1 ≤ i ≤ m and 1 ≤ t ≤ T . Each triplet expresses that at arrival event t, queue
Qi gets the fraction kt

i ≥ 0 of the packet p. The size of the route, denoted by
|RT |, is the total amount of fractions transmitted. Since all accepted fractions of
packets are transmitted, clearly |RT | =

∑
t,i k

t
i .

Definition 2. A route RT for a sequence σ is called legal if for every triplet
(t, Qi, k

t
i), queue Qi has free space of at least kt

i at arrival event t (the empty
space is a function of accepted fractions and transmissions which are in σ) and∑m

i=1 k
t
i ≤ 1, and Qi /∈ Qp implies that kt

i = 0.

The following lemmas connect bipartite fractional matching to our problem.

Lemma 1. Every legal fractional route RT for the sequence σ can be mapped,
in an online fashion, to a fractional matching M in Gσ such that |RT | = |M |.

Lemma 2. Every fractional matching M in Gσ can be translated, in an on-
line fashion in polynomial time, to a legal fractional route RT for σ such that
|RT |= |M |.

The following corollary result directly from Lemmas 1 and 2.

Corollary 1. For any sequence σ, the size of the optimal fractional route for σ
is equal to the size of a maximum fractional matching in Gσ.

Remark 1. Actually, Lemmas 1 and 2 hold also for integral node routing and
integral online matching. This implies that every non-refusal algorithm for node
routing is 2-competitive.

Remark 2. We note that by using the above reduction from the integral node
routing to the integral online matching, and applying the randomized algorithm
RANKING of Karp et al. [18], we obtain a randomized e

e−1 − o(1)-competitive
algorithm. Our main focus is on a deterministic algorithm.

We use algorithm WL for the unweighted fractional matching problem, presented
in [10], and its results.
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Algorithm WL. For each request rt adjacent to servers {s1, ..., sn}, match a
fraction of size kt

j for each adjacent sj , where kt
j = (h − lj)+ and h ≤ 1 is the

maximum number such that
∑n

j=1 k
t
j ≤ 1. By (f)+ we mean max{f, 0}.

Theorem 1. [10] Algorithm WL is e
e−1 -competitive and optimal for the bipar-

tite unweighted fractional matching problem.

Now we present algorithm FR for the fractional node routing problem:

Algorithm Fractional Routing (FR)

– Maintain a running simulation of WL in the online constructed graph Gσ.
– Routing: For arrival event t, translate the matching of rt to servers made

by WL, using Lemma 2, to legal routing triplets (t, Qi, k
t
i). Recall that each

triplet corresponds to assigning a kt
i fraction of p to queue Qi.

Note that FR is not a non-refusal algorithm (because in Gσ, the total load of
the servers in St

i might be bigger than the load of queue Qi at arrival event t).

Theorem 2. For every sequence σ, Opt(σ) ≤ e
e−1FR(σ) for the fractional node

routing.

3.2 The Discretization of the Fractional Algorithm

In this subsection we introduce a generic technique for the discretization of any
fractional algorithm for the node routing problem. In particular, we will use this
technique for the discretization of algorithm FR, which was presented in subsec-
tion 3.1. We present in subsection 3.2.1 a general technique for the discretization
of the routing decisions of any fractional algorithm A, for the unbounded queues
version of the problem. We will use this technique in subsection 3.2.2 for the
discretization of the routing of any fractional algorithm A, for our version of the
node routing problem (bounded queues).

3.2.1 The Unbounded Queues Node Routing Problem
Consider the node routing problem, but assume that the queues are unbounded.
Thus all packets are accepted into the queues. The algorithm must accept each
packet p into one of the queues Qp. In this case, we may consider the minimiza-
tion of the maximum queue size (notice that it is a cost problem). We define the
cost of the online algorithm A (denoted by cost(A)), given a finite sequence σ, as
the maximum length of a queue taken over all queues and times. The goal is to
minimize the maximum cost, i.e., minimize the maximum queue size over time.

We now turn to consider a relaxation of the model and allow an online al-
gorithm to split packets and assign fractions of packets to the queues, provided
that for every packet p, the total size of the accepted fractions of p into queues
Qp is exactly 1, i.e., the algorithm is not allowed to discard any fraction of the
packet. We denote by A the online fractional algorithm. We now introduce a
general technique for the discretization of the routing decisions of algorithm A,
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given a finite sequence of integral packets σ while adding an additive cost of at
most 2m to the cost of A.

Now, we define a discrete algorithm M which gets the fractional algorithm A
as a parameter and denote it by MA. At each packet arrival, in order to decide
which queue to serve, MA computes the load seen by A and uses this information
for making its decisions. Given arrival event t, let lAi and li be the simulated load
of A and the actual load of MA on queue Qi at that event, respectively.

For the decisions of MA we use a theorem for the vector rounding prob-
lem which applies to our problem. We address the vector rounding problem as
presented in [3]1. The m-dimensional vector rounding problem is this: the input
is a list of vectors (V1,V2, ...) arriving online, where each Vt = (v1

t , ..., v
m
t ) is a

vector of length m over the reals which suffices
∑m

i=1 vi
t ∈ Z+. The output is a

list of integer vectors (Z1,Z2, ...) where Zt = (z1
t , ..., z

m
t ) is a rounding of Vt that

preserves the sum, i.e., for all 1 ≤ i ≤ m we have that zi
t ∈ {�vi

t�, &vi
t'} and that∑m

i=1 z
i
t =
∑m

i=1 vi
t. The goal is to make the accumulated difference in each entry

as small as possible, i.e., for every t we want max1≤i≤m|
∑t

j=1 z
i
j −
∑t

j=1 vi
j | to

be as small as possible. The cost of the algorithm is the unfairness, which is the
maximum accumulated difference in each entry over all time units. The goal is
to minimize the unfairness.

The major special case we will be interested in is when vectors Vt satisfy
0 ≤ vi

t ≤ 1 and
∑m

i=1 vi
t = 1. Since the output vector Zt satisfies zi

t ∈ {�vi
t�, &vi

t'}
and

∑m
i=1 z

i
t =
∑m

i=1 vi
t = 1, we conclude that Zt will be all zeros except for one

entry zi′

t = 1 where i′ satisfies vi′

t > 0.
In [3], the authors show a way to build an algorithm (we call it V R) for the

online vector rounding problem.

Theorem 3. [3] For the vector rounding problem, algorithm VR’s unfairness is
at most m, i.e., for every t, max1≤i≤m|

∑t
j=1 z

i
j −
∑t

j=1 vi
j | ≤ m.

Now we present the discrete algorithm MA.

Algorithm MA. Maintain a running online simulation of algorithm A. For
each arrival event t of a packet p let kt

i denote the fractions inserted into the
queue Qi by A, i.e.,

∑
Qi∈Qp kt

i = 1, and Qi /∈ Qp implies that kt
i = 0. For each

arrival event t of a packet p do:

– Build an input vector Vt for the vector rounding problem Vt = (v1
t , ..., v

m
t )

where vi
t = kt

i .
– Get the output vector Zt = (z1

t , ..., z
m
t ) from the simulated algorithm V R

given the input vectors (V1, ...,Vt).
– Insert p into queue Qi which satisfies zi

t = 1.

Note that our algorithm is not affected by the transmissions. We also note
that the insertion of p is legal, because all the input vectors of VR are of the
form Vt = (v1

t , ..., v
m
t ) = (kt

1, ..., k
t
m) and satisfy 0 ≤ kt

i ≤ 1 and
∑m

i=1 k
t
i = 1,

1 The vector rounding problem is a generalization of the car pool problem.
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and as mentioned, this implies that Zt consists of zeros except for one entry
zi′

t = 1, where i′ satisfies kt
i′ > 0, this implies that Qi′ ∈ Qp.

Now we introduce our main theorem for this subsection.

Theorem 4. For every sequence σ, cost(MA) ≤ cost(A) + 2m. Alternatively,
for sequences in which A needs queues of size B, MA needs queues of size B+2m.

3.2.2 The Discretization of the Fractional Algorithm
In this subsection we return to the standard node routing model (with bounded
queues). We show a general technique to transform any c-competitive fractional
algorithm for the node routing problem into a discrete algorithm with a com-
petitive ratio of c(1 + 2m+1

B ). Specifically, we will apply this technique for the
discretization of algorithm FR, which was presented in subsection 3.1.

For our discretization process we rely on the results of the unbounded problem,
which were presented in subsection 3.2.1. We want to address the packets which
were accepted by FR as the input sequence σ for the cost problem studied in
subsection 3.2.1, in a way which we will present later. Recall that algorithm
FR might accept fractional packets due to insufficient queue space. Since in the
model of the unbounded problem we study the case where σ consists of integral
packets, we want FR to only accept packets integrally, i.e., for every packet
p, to accept kt

i such that
∑m

i=1 k
t
i = 1. Hence, we continue by considering the

following problem: assume we are given an online c-competitive algorithm A. We
want to produce a competitive algorithm Â which assigns only integral packets.
We provide algorithm Â which has queues of size B + 1 (algorithm A maintains
queues of size B); we will get rid of this assumption later on. Intuitively, Â
emulates the routing of A and accepts only integral packets.

Definition 3. We denote fractional algorithms that accept integral packets when-
ever there is sufficient space for a whole packet, and otherwise discard the whole
packet, as discrete non-refusal algorithms.

We now define the transformation of a given algorithm A with queues of size B
into algorithm Â with queues of size B + 1, which is a discrete non-refusal algo-
rithm. Let lti and l̂ti be the loads of queue Qi at event t in A and Â, respectively.

Algorithm Â

– Maintain a running simulation of A. Let kt
i be the fraction size which was in-

serted by algorithm A at arrival event t into queue Qi.
– If the queues in Qp do not have sufficient space (the total free space is less than

a unit), discard p.
– Otherwise, assign to queue Qi amount of min(B + 1− l̂i, k

t
i), i.e., assign kt

i if
there is enough space or just fill the queue. After assigning to all the queues in
Qp, if the total inserted volume is less than a unit, insert the rest of p arbitrarily
into any subset of the queues in Qp which has sufficient empty space.

Obviously, Â is a discrete non-refusal algorithm. Now we prove that A(σ) ≤
Â(σ) for every σ.
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Theorem 5. For a given algorithm A with queues of size B, algorithm Â with
queues of size B + 1 has at least the same throughput as A, given the same
sequence σ.

Now, we consider algorithm M presented in subsection 3.2.1. Recall that M
simulates some fractional algorithm which fully accepts every incoming packet
(since the queues are unbounded). We want to use algorithm M on algorithm Â

(denoted by M Â) which is a discrete non-refusal algorithm. Since Â has queues
of size B + 1, algorithm M Â will use queues of size B + 1 + 2m. Still, we cannot
use M on Â since Â rejects packets when there is no sufficient free space in
queues Qp. Therefore we extend algorithm M to work on algorithms that reject
whole packets. This is done by skipping the events in which packets are rejected.
We now present the following lemma:

Lemma 3. Algorithm M Â with queues of size B+1+2m has the same through-
put as algorithm Â with queues of size B + 1, given the same sequence σ.

We now return to our original model where queues are of size B. By Theorem 5
and Lemma 3, if M Â had queues of size B + 1 + 2m, then algorithm M Â would
have had at least the same throughput as A. Unfortunately, this is not the case,
so we continue by emulating an algorithm with large queues with an algorithm
with small queues.

We use the emulation presented in [10]: assume we are given an online com-
petitive discrete algorithm A with queues of size y and we want to produce a
competitive algorithm EA with queues of size y′ < y. We present algorithm EA,
and the corresponding theorem from [10].

Algorithm EA. Maintain a running simulation of algorithm A. Accept a packet
into queue Qi if A accepts it to queue Qi and the queue is not full.

Theorem 6. [10] If A and EA have queues of size y and y′ (y > y′) respectively,
then A(σ) ≤ y

y′ E
A(σ).

We prove the main result of this section with the next theorem.

Theorem 7. Given any c-competitive fractional algorithm A for the node rout-
ing problem, algorithm EMÂ

is a c(1+ 2m+1
B )-competitive discrete algorithm for

the node routing problem.

Corollary 2. Applying Theorem 7 on algorithm FR, produces algorithm EM F̂ R

which is e
e−1 (1 + 2m+1

B )-competitive. For B 5 m the competitive ratio of EM F̂ R

approaches e
e−1 ≈ 1.58.

4 Lower Bounds

In this section we show some lower bounds for the node routing problem. We
first show that an e

e−1 -competitive algorithm for node routing is optimal. This
lower bound holds even for randomized algorithms. Then we show a lower bound
of 2 for deterministic algorithms when B = 1, even for the synchronous model.
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Theorem 8. The competitive ratio of every algorithm for the node routing prob-
lem is at least e

e−1 −Θ( 1
m ), for every B.

Theorem 9. The competitive ratio of every algorithm for the node routing prob-
lem is at least 2, for B = 1 and any m ≥ 2.

5 Algorithm for Arbitrary-Value Node Routing

In this section we consider the arbitrary-value node routing problem. We intro-
duce algorithm greedy routing (GR) which is 2-competitive, for the problem.

Algorithm Greedy Routing (GR)
When packet p associated with the subset Qp arrives:

– If there exists queue Qi (Qi ∈ Qp) which is not full, insert p into Qi.
– Otherwise, we note by p′ a packet with the smallest value in Qp and by

queue Qi′ (Qi′ ∈ Qp) we note its queue.
• If value(p′) < value(p), preempt p′ and insert p into queue Qi′ .
• Otherwise, drop p.

We use the zero-one principle of [13] to show that GR is 2-competitive.

Theorem 10. Algorithm GR is 2-competitive for the arbitrary-value node
routing problem.

Corollary 3. For the unit-value model, algorithm GR includes all non-refusal
algorithms, hence every non-refusal algorithm is 2-competitive.
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Abstract. We present the first one-pass memoryless algorithm for metric Facil-
ity Location which maintains a set of facilities approximating the optimal facil-
ity configuration within a constant factor. The algorithm considers the demand
points one-by-one in arbitrary order, is randomized and very simple to state and
implement. It runs in linear time and keeps in memory only the facility locations
currently open. We prove that its competitive ratio is less than 14 in the special
case of uniform facility costs and less than 49 in the general case of non-uniform
facility costs.

1 Introduction

In many applications dealing with data streams, we have to maintain a set of represen-
tatives for a sequence of points in a metric space. This is performed by a streaming
algorithm which considers the points one-by-one in arbitrary order and maintains a set
of representatives of reasonable accuracy using a limited amount of computational re-
sources (see e.g. [13] for a survey on streaming computation).

This scenario can be naturally relaxed to a Facility Location problem. Given a
(multi)set of n demand points in a metric space, the Facility Location problem seeks for
a set of locations to open facilities minimizing the total cost of opening facilities and
assigning every demand point to its nearest facility. To model the streaming scenario
above, we let facilities play the role of representatives and require that the algorithm
be memoryless and operate in one pass. In addition, we consider the special case of
uniform facility costs, where the cost of opening a facility is the same for all points.

The algorithm is charged for the inaccuracy of its facilities (assignment cost) and
the cost of maintaining them in main memory (facility cost). The assignment cost
is the sum of distances of the points considered so far to their closest facility. As for
the facility cost, we assume that the algorithm buys its memory space. Thus keeping
a point in memory as a representative is equivalent to making the point a new facility.
We assume that buying memory is an irrevocable decision and charge the algorithm
for its worst-case memory consumption.

A one-pass algorithm considers the points one-by-one in arbitrary order. When a
point is considered, a memoryless algorithm can either discard its location or make it
a new facility. In the latter case, either the new facility replaces some existing one (i.e.
the existing facility is discarded and the new facility takes its place in main memory)
or the algorithm buys additional memory space and incurs the irrevocable cost of in-
creasing its facilities by one. Discarding a demand point is also an irrevocable decision

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 608–620, 2006.
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because the algorithm has no access to previously considered points unless it keeps
them in memory (as open facilities). For each discarded point, the algorithm incurs an
assignment cost equal to the distance to its closest facility. The assignment cost is not
irrevocable since it may increase or decrease every time the algorithm’s facility config-
uration changes. Thus a one-pass memoryless algorithm can be regarded as a streaming
algorithm using only O(|Fmax|) space, where |Fmax| denotes the maximum number of
facilities maintained by the algorithm.

Related Work and Motivation. There has been a significant amount of work on
streaming algorithms for k-Median1, a problem closely related to Facility Location.
Guha et al. [10] initiated the study of streaming algorithms for k-Median. Their al-
gorithms run in Õ(nk) time2 and O(nε) space and achieve an approximation ratio of
2O(1/ε) for k much smaller than nε. The best known streaming algorithm for k-Median
is the randomized algorithm of Charikar et al. [5], which runs in O(nk log2 n) time and
O(k log2 n) space and achieves a constant approximation ratio.

Indyk [11] considered k-Median, Facility Location, and other geometric problems
in the discrete d-dimensional space and the turnstile model, where the data stream con-
sists of both insertions and deletions of points. For k-Median, Indyk gave a randomized
O(1)-approximation algorithm using Õ(k) space and having Õ(k) update time per in-
sertion/deletion and Õ(nk) query time. Frahling and Sohler [8] recently improved the
approximation ratio to (1+ ε) by a randomized algorithm using Õ(k2/εO(d)) space and
having polylogarithmic update time and O(k5 log9 n+k2 log5 n exp(ε−d)) query time.

In Facility Location, we have a facility cost instead of the constraint on the num-
ber of facilities (medians). Hence it may be advantageous to open a large number of
facilities. In fact there are instances where every (near-)optimal solution needs to open
Ω(n) facilities and every O(1)-approximation algorithm needs to run for Ω(n2) time
(see e.g. the lower bound in [14, Section 4]). Thus we cannot hope for an algorithm,
even a randomized one, that maintains an O(1)-approximation to the optimal facility
configuration in o(n2) time or o(n) space.

To overcome this limitation, we may let the algorithm approximate only the optimal
cost (i.e. maintain only the cost of an approximate facility configuration and not the
configuration itself). In the discrete d-dimensional space and the turnstile model, Indyk
[11] gave a randomized algorithm that approximates the optimal cost within a factor of
O(d log2 n) in Õ(n) time and O(d2 log2 n) space. In the offline setting, where there is
random access to the input, Bădoiu et al. [3] proved that the optimal cost of Facility
Location with uniform facility costs can be approximated within a constant factor in
O(n log2 n) time. For non-uniform facility costs, they showed that there is no o(n2)-
time algorithm approximating the optimal cost within any factor.

Nevertheless in practical applications dealing with data streams, we usually need
an algorithm that maintains an approximate facility configuration and not just an esti-
mation of the optimal cost (see e.g. [9] for applications on clustering large data sets).
Then one naturally turns to streaming algorithms using a minimal amount of resources.

1 Given a (multi)set of n demand points in a metric space, the k-Median problem seeks for k
points (medians) that minimize the sum of distances from each demand to its nearest median.

2 The Õ-notation is the same as the O-notation except it hides polylogarithmic terms instead of
constants, e.g. Õ(nk) is O(nk poly(log n)).
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Arguably a one-pass memoryless algorithm is of this sort. It maintains an approximate
facility configuration using just the memory required to store its facilities.

The online algorithm of Meyerson [12] was the first one-pass memoryless algorithm
for Facility Location. In the online setting, the decisions (and the costs) of opening a fa-
cility at a particular location and assigning a demand to a particular facility are irrevoca-
ble. Meyerson’s algorithm is randomized and achieves a competitive ratio of O(log n).
If the demand points arrive in random order, the algorithm achieves an expected con-
stant competitive ratio. However, the latter version is not a one-pass memoryless al-
gorithm because computing a random permutation of the demand sequence requires
random access to it. Despite its logarithmic competitiveness, Meyerson’s algorithm
found significant applications because it is simple, memoryless, and one-pass. Also mo-
tivated by practical applications, Anagnostopoulos et al. [1] presented a Θ(2d log n)-
competitive deterministic online algorithm for the d-dimensional space, which can be
regarded as a memoryless algorithm.

On the other hand, no online algorithm for Facility Location can achieve a com-
petitive ratio better than Ω( log n

log log n ) even on the line [6]. To overcome the logarithmic
lower bound, we considered the incremental setting introduced in [4], where the algo-
rithm can also merge existing facilities and only the decision of clustering some de-
mands together is irrevocable. In [7], we presented an O(1)-competitive deterministic
incremental algorithm for Facility Location with uniform facility costs. That algorithm
runs in O(n2|Fmax|) time and makes non-trivial use of previous demands’ locations for
opening and merging facilities. Thus it is not a memoryless algorithm.

Contribution. In previous work, Anagnostopoulos et al. [1] and Meyerson [12] pre-
sented one-pass memoryless algorithms of logarithmic competitive ratio and we pre-
sented a one-pass (but not memoryless) algorithm of constant competitive ratio [7]. In
this work, we present the first one-pass memoryless algorithm that maintains a set of
facilities approximating the optimal facility configuration within a constant factor.

The algorithm is randomized and extremely simple to state and implement. It is
based on the notion of final distance, an upper bound on the distance of a demand to
the nearest facility at any future point in time. We use a modification of the randomized
rule of [12] for opening new facilities. More specifically, each new demand becomes a
new facility with probability proportional to the ratio of its final distance to the facility
cost. To avoid facility proliferation leading to logarithmic competitiveness, we develop
a memoryless version of the merge rule of [7]. In particular, a replacement ball around
each new facility is determined when the facility opens. Then the facility is replaced by
the first new facility in its replacement ball.

The algorithm keeps in memory only the locations and the replacement radii of the
facilities currently open. It runs in O(n|Fmax|) time and O(|Fmax|) space. The worst-
case running time is linear in the size of the input because representing the metric space
needs Θ(n2) bits. We prove that the algorithm’s competitive ratio is less than 14.

We should note that the algorithm maintains an O(1)-competitive facility configura-
tion but it does not maintain the assignment cost of the demands considered so far with
respect to it. A provably good facility configuration suffices in most practical applica-
tions (e.g. location problems, clustering problems). If an estimation of the assignment
cost is required, we can use the techniques of [5] and maintain a small set of weighted
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points whose assignment cost is within a constant factor of the algorithm’s cost. This
increases the algorithm’s time and space complexity by a factor of O(log2 n).

We do not know how to exclude the possibility of a one-pass memoryless algorithm
which maintains both a competitive facility configuration and its assignment cost. How-
ever, the lower bound of [6] implies that every one-pass algorithm which maintains
o(k log n) facilities incurs an initial assignment cost of ω(1) times the optimal cost,
where k denotes the number of optimal facility locations and the initial assignment cost
of a demand is the distance to its nearest facility just after the demand is considered.
In other words, the initial assignment cost is not an O(1)-approximation to the opti-
mal assignment cost unless the algorithm maintains Ω(k log n) facilities. Therefore, to
establish a constant competitive ratio, we consider the updated assignment cost every
time a new facility significantly closer to an optimal facility opens. Even though this
cost can be bounded in terms of the optimal cost, its value cannot be approximated
unless we maintain sufficient information about the demand locations. Hence a loga-
rithmic competitive ratio seems unavoidable for every one-pass memoryless algorithm
that maintains both a competitive facility configuration and its assignment cost.

We also present a generalized version of the algorithm dealing with non-uniform
facility costs and prove that its competitive ratio is less than 49. The algorithm runs in
O(n |M |) (i.e. linear) time and O(|M |) space, where |M | is the number of potential
facility locations. In case of non-uniform facility costs, every algorithm must be aware
of the potential facility locations and their opening costs. Nevertheless, we believe that
this result is interesting because it shows that even for the general case of non-uniform
facility costs, a near optimal facility configuration can be maintained by a one-pass
algorithm that does not keep any information about the demand sequence other than the
locations and the replacement radii of its facilities.

Problem Definition and Notation. We evaluate the performance of the algorithms
presented in this paper using competitive analysis (see e.g. [2]). An algorithm is c-
competitive if for all sequences of demand points, the cost incurred by the algorithm is
at most c times the cost incurred by an optimal offline algorithm on the same instance.

We consider a metric space M = (M,d), where M is the set of points and
d : M × M �→ IR+ is the distance function, which is non-negative, symmetric and
satisfies the triangle inequality. For a point u ∈ M and a subset of points M ′ ⊆ M ,
let d(M ′, u) ≡ minv∈M ′{d(v, u)} denote the distance between u and the closest point
in M ′. Let d(∅, u) ≡ ∞. Let Bu(r) ≡ {v : d(u, v) ≤ r} denote the ball of radius
r around u. We slightly abuse the notation by letting the same symbol denote both a
demand (facility) and the corresponding point of the metric space.

For each point w ∈ M , we are also given the cost fw of opening a facility at w. We
distinguish between the special case of uniform facility costs, where the cost of opening
a facility, denoted f , is the same for all points, and the general case of non-uniform
facility costs, where the cost of opening a facility at w ∈ M , denoted fw, depends on
w and there are no restrictions on the facility costs.

The demand sequence consists of points, which are not necessarily distinct. We only
consider unit demands and allow multiple demands to be located at the same point. We
use n to denote the total number of demands. Given a (multi)set D of demand points,
we seek for a facility configurationF ⊆ M that minimizes

∑
w∈F fw+

∑
u∈D d(F, u).



612 D. Fotakis

2 The Algorithm for Uniform Facility Costs

The algorithm FFL (Fig. 1) maintains its facility configuration, denoted F , and its
facility replacement configuration consisting of the replacement radius m(w) of each
facility w. The algorithm is based on the notion of final distance. For every point p and
facility w, the final distance of p to w, denoted g(w, p), is equal to d(w, p) + 2m(w).
The final distance of p to the facility configuration F , denoted g(F, p), is

g(F, p) = min
w∈F

{g(w, p)} = min
w∈F

{d(w, p) + 2m(w)} . (1)

If F is the current facility configuration, we refer to g(F, p) as the final distance of
p. For each demand u, we usually refer to g(F, u) as the final assignment cost of u.
Intuitively, the current algorithm’s configuration gives p the guarantee that there will
exist a facility within p’s final distance at any future point in time.

F ← ∅;
for each new demand u:

g(F, u) ← minz∈F {d(z, u) + 2m(z)};
with probability min{g(F, u)/(αf), 1} do

let w be the location of u;
updateConfiguration(F , w);

updateConfiguration(F , w)
m(w) ← min{g(F, u), αf}/6;
for each z ∈ F do

if d(z,w) ≤ m(z) then
F ← F \ {z};

F ← F ∪ {w};

Fig. 1. The algorithm Fast Facility Location (FFL) parameterized by α

When a new demand u arrives, it computes its final assignment cost g(F, u) with
respect to the current algorithm’s configuration. Then u opens a new facility w located
at the same point as u with probability min{g(F, u)/(αf), 1}, where α is a parameter
trading off the facility against the assignment cost. The replacement radius m(w) of the
new facility is set to min{g(F, u), αf}/6. For every existing facility z, if w is included
in z’s replacement ball Bz(m(z)), z is replaced by w (i.e. z is removed from F when
w opens). Intuitively, w replaces every existing facility whose removal from F ∪ {w}
does not increase the final distance of any points.

Let |Fmax| be the maximum number of facilities maintained by FFL. It is straight-
forward to implement FFL in O(n |Fmax|) time and O(|Fmax|) space. Then we prove
the following theorem.

Theorem 1. For α = 19
8 , the competitive ratio of FFL is less than 14.

Preliminaries. For an arbitrary fixed sequence of demands, we compare the algo-
rithm’s cost with the cost of a fixed optimal facility configuration, denoted F ∗. To avoid
confusing the algorithm’s facilities with the facilities in F ∗, we use the term optimal
center, or simply center, to refer to an optimal facility in F ∗ and the term facility to
refer to an algorithm’s facility in F .

In the optimal solution, each demand is assigned to the nearest center in F ∗.
For each demand u, we let cu denote the optimal center to which u is assigned, let
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d∗u ≡ d(cu, u) = d(F ∗, u) denote the optimal assignment cost of u, let Asg∗ =
∑

u d∗u
denote the optimal assignment cost, and let Fac∗ = |F ∗| f denote the optimal facility
cost. For the analysis, we use the clustering induced by F ∗ to map the demands and
the algorithm’s facilities to the optimal centers. In particular, a demand u (resp. facility
w) is mapped to cu (resp. cw), i.e. the optimal center nearest to u (resp. w). If a new
demand u opens a new facility w, cw is the same as cu.

Every time we want to explicitly refer to the algorithm’s configuration at the moment
when a demand arrives (resp. facility opens), we use the demand’s (resp. facility’s)
identifier as a subscript. E.g. for a demand u (resp. facility w), Fu (resp. Fw) denotes
the facility configuration just before u arrives (resp. w opens). Similarly, g(Fu, u) (resp.
g(Fu, cu)) denotes the final distance of u (resp. cu) when u arrives. If a new demand u
opens a new facility w, Fw is the same as Fu.

Let u1, . . . , un be the demand sequence considered by FFL. For every j ≥ 1,
let Fuj+1 denote FFL’s facility configuration after the demand uj is considered. At
that point, the facility cost of FFL is max1≤i≤j{|Fui+1 | f} and the assignment cost

is
∑j

i=1 d(Fuj+1 , ui). In the following, we prove that after the demand uj is consid-
ered, FFL’s expected cost is within a constant factor of the optimal facility cost and the
optimal assignment cost for the demands u1, . . . , uj .

2.1 A Sketch of the Analysis

In this section, we outline the proof of Theorem 1. For simplicity, we assume that the
optimal solution consists of a single optimal center, denoted c, throughout the sketch of
the proof. After explaining the role of the final distance in the analysis, we present the
main ideas required for bounding the expected facility and assignment costs of FFL.

Final Distance. We prove that the final distance of every point p is non-increasing
with time and that Bp(g(F, p)) will always contain a facility (cf. Proposition 1). Con-
sequently, the (actual) assignment cost of a demand never exceeds its final assignment
cost (with respect to the current or any of the past configurations). Thus we ignore facil-
ity replacements and use the demands’ final assignment cost to bound their assignment
cost throughout the execution of the algorithm.

Facility Cost. The facilities are divided into supported (by the optimal solution)
and unsupported ones. A facility opened by a demand u is unsupported if d∗u <
min{ 1

λ g(Fu, c), α
λ+1 f} and supported otherwise, where λ is a positive constant chosen

sufficiently large.
By definition, the optimal assignment cost of a demand u opening a supported facil-

ity is large enough to compensate for u’s expected contribution to the facility cost. More
specifically, the expected contribution of every demand u to the cost of supported facil-
ities is at most λ+1

α d∗u and the expected cost of supported facilities is at most λ+1
α Asg∗

(cf. Lemma 1).
The parameter λ is chosen so that every demand u opening an unsupported facility

w is sufficiently close to the optimal center c compared to the final distance of c.
Therefore, w’s replacement ball is sufficiently large to include every unsupported
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wm(w) = g/6

c g/10

Fig. 2. Bounding the number of unsupported facilities. Let λ = 10, and let g ≡ g(Fw, c) denote
the final distance of c just before an unsupported facility w opens. Since w is unsupported, d(w, c)
is small compared to g (i.e. d(w, c) < g/10). As a result, m(w) ≈ g/6 and g(w, c) = d(w, c)+
2m(w) < g/2. Hence, every unsupported facility opening after w lies in a ball of radius less
than g/20 around c (the small grey ball) which is included in the replacement ball of w.

facility opening after w (cf. Fig. 2). Hence w is replaced no later than the moment
when the first new unsupported facility opens (cf. Lemma 2). In general, the number of
unsupported facilities is bounded by the number of optimal centers and their cost never
exceeds Fac∗.

Putting the cost of supported and unsupported facilities together, we obtain that the
expected facility cost is at most Fac∗+ λ+1

α Asg∗. We should highlight that the analysis
treats every increase in the facility cost as an irrevocable decision.

Assignment Cost. We break down the analysis of the assignment cost into disjoint
phases according to the final distance of c (this is possible because c’s final distance
is non-increasing). For every integer j, let r(j) = f/2j . The j-th phase lasts as long
as the final distance of c is in [r(j), 2r(j)). After the beginning of phase j, there will
always exist a facility within a distance of 2r(j) from c. We distinguish between inner
and outer demands. A demand u arriving in phase j is inner if d∗u < r(j)/μ and outer
otherwise (cf. Fig. 3), where μ is a positive constant.

Outer demands

Phase j

2r(j)

c
Inner  demands

r(j)/4
w2m(w)

r(j)

Fig. 3. Inner and outer demands in phase j (for μ = 4). The optimal center c is in phase j as long
as c’s final distance is in [r(j), 2r(j)). A demand arriving in phase j is inner if it is included in
the grey ball around c and outer otherwise. Let w be a new facility opened by an inner demand.
Just before w opens, the final distance of w is less than 9r(j)/4. Thus, m(w) < 9r(j)/24 and
g(w, c) < r(j)/4 + 9r(j)/12 = r(j). As a result, phase j ends when w opens.
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The parameter μ is chosen sufficiently large so that inner demands arriving in the
current phase can be regarded as essentially located at the same point as c (cf. Fig. 3).
Using this intuition, we prove that (i) the current phase ends when an inner demand
opens a new facility (cf. Proposition 3), and (ii) every inner demand arriving in phase
j opens a new facility with probability at least μ−1

αμ 2−j (cf. Proposition 4). Therefore,

the expected number of inner demands arriving in phase j is at most αμ
μ−1 2j and the

expected number of inner demands arriving up to the end of phase j is at most αμ
μ−1 2j+1

(cf. the proof of Lemma 3).
Inner demands arriving up to the end of phase j are charged with their final assign-

ment cost with respect to any algorithm’s configuration in phase j. As long as c is in
phase j, the final assignment cost of every demand is at most f/2j−1 plus its optimal
assignment cost. Thus the expected final assignment cost (with respect to any config-
uration in phase j) of the inner demands arriving up to the end of phase j is at most
4αμ
μ−1 f plus their optimal assignment cost (cf. Lemma 3).

On the other hand, when an outer demand u arrives, its final assignment cost g(Fu, u)
is at most (2μ + 1) times its optimal assignment cost (cf. Lemma 4). By the properties
of the final distance, the (actual) assignment cost of u never exceeds (2μ+1)d∗u. Putting
the assignment cost of inner and outer demands together, we obtain that the algorithm’s
expected assignment cost is at most 4αμ

μ−1 Fac∗ + (2μ + 1)Asg∗.

2.2 Final Distance

Proposition 1. Let F be the current facility configuration and let F ′ be any future
facility configuration. For every point p, g(F ′, p) ≤ g(F, p) and d(F ′, p) ≤ g(F, p).

Proof. Let w be the facility in F of minimum final distance to p, i.e. g(w, p) = g(F, p).
The proposition is true as long as w is open. We prove that if w is replaced by a new
facility w′, then g(w′, p) ≤ g(w, p). We first show that 2m(w′) ≤ m(w):

2m(w′) ≤ 1
3 g(w,w′) = 1

3 [d(w,w′) + 2m(w)] ≤ m(w) (2)

The first inequality holds because m(w′) ≤ g(Fw′ , w′)/6, since w′ and the demand
opening it are located at the same point, and w ∈ Fw′ , since w is replaced by w′. The
last inequality follows from d(w,w′) ≤ m(w), because w is replaced by w′. Using (2)
and d(w,w′) ≤ m(w), we obtain that

g(w′, p) ≤ d(w, p) + d(w,w′) + m(w) ≤ d(w, p) + 2m(w) = g(F, p)

Consequently, the final distance of p does not increase when w is replaced by w′. In
addition, d(w′, p) ≤ g(w′, p) ≤ g(F, p) and Bp(g(F, p)) still contains a facility. !"

It is easy to establish the equivalent of the triangle inequality for the final distance.

Proposition 2. For every facility configuration F and points p1, p2,

g(F, p1) ≤ g(F, p2) + d(p1, p2).
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2.3 Facility Cost

Let u be a demand opening a new facility w. We recall that the facility w is unsup-
ported if d∗u < min{ 1

λ g(Fu, cu), α
λ+1 f} and supported otherwise. Since u and w are

located at the same point and are mapped to the same optimal center, d(w, cw) ≡
d∗u. Hence, it is equivalent to say that the facility w is unsupported if d(w, cw) <
min{ 1

λ g(Fw, cw), α
λ+1 f} and supported otherwise.

Lemma 1. The expected cost of supported facilities is at most λ+1
α Asg∗.

Proof. A new demand u opens a new facility with probability min{g(Fu, u)/(αf), 1}.
The new facility is supported only if d∗u ≥ min{ 1

λ g(Fu, cu), α
λ+1 f} . Consequently,

the expected contribution of u to the cost of supported facilities is at most λ+1
α d∗u. !"

Lemma 2. Let w be an unsupported facility, and let w′ be a new unsupported facility
mapped to cw (i.e. to the same center as w). Then d(w,w′) ≤ m(w) and w is replaced
no later than w′’s opening.

Proof. We first show that for every unsupported facility w, d(w, cw) < 6
λ−1 m(w).

By the definition of unsupported facilities, d(w, cw) < min{ 1
λ g(Fw, cw), α

λ+1 f}. If
m(w) = αf/6, then d(w, cw) < α

λ+1 f = 6
λ+1 m(w) < 6

λ−1 m(w).

If m(w) = g(Fu, u)/6 ≡ g(Fw, w)/6, then

m(w) ≥ 1
6 [g(Fw, cw)− d(w, cw)] > 1

6 [λd(w, cw)− d(w, cw)] = λ−1
6 d(w, cw)

Next we prove that d(w, cw) < 6
λ−1m(w) implies the lemma:

d(w,w′) ≤ d(w, cw) + d(w′, cw)
< d(w, cw) + 1

λ [d(w, cw) + 2m(w)] as d(w′, cw) < 1
λ g(w, cw)

< [λ+1
λ

6
λ−1 + 2

λ ]m(w) ≤ m(w) as d(w, cw) < 6
λ−1 m(w)

The second inequality holds because w′ is an unsupported facility mapped to cw and the
final distance of cw is non-increasing. The last inequality holds for every λ ≥ 9.5. !"

Hence, there always exists at most one unsupported facility mapped to each optimal
center. Therefore, the total expected facility cost never exceeds Fac∗ + λ+1

α Asg∗.

2.4 Assignment Cost

We break down the analysis of the assignment cost of the demands mapped to every
optimal center c into disjoint phases according to the final distance of c. For every
integer j ≥ −2, let r(j) = f/2j , and let r(−3) = ∞. The j-th phase, starts just after
the final distance of c becomes less than r(j − 1) and ends when the final distance of
c becomes less than r(j). We use the convention that phase −2 starts when the first
demand arrives. The optimal center c is in phase j while g(F, c) ∈ [r(j), r(j − 1)). For
every j ≥ −1, g(F, c) < 2r(j) after c enters phase j.

A demand u arrives in phase j if g(Fu, cu) ∈ [r(j), r(j − 1)), i.e. when u arrives,
the optimal center to which u is mapped is in phase j. A demand u arriving in phase j
is called inner if d∗u < r(j)/μ and outer otherwise. We use the convention that every
demand arriving in phase −2 is inner.
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Inner Demands. Inner demands are charged with their final assignment cost with re-
spect to any algorithm’s configuration in the current phase.

Proposition 3. Let u be an inner demand which arrives in phase j and opens a new
facility w. Then, g(w, cu) < r(j) and the j-th phase ends as soon as w opens.

Proof. If u arrives in phase j ≥ −1, g(Fu, cu) < 2r(j). Since u and w are located at
the same point, d(w, cu) ≡ d∗u < r(j)/μ. Therefore, for every μ ≥ 4,

g(w, cu) = d(w, cu) + 2m(w)
≤ d(w, cu) + 1

3 [g(Fu, cu) + d∗u] as m(w) ≤ g(Fu, u)/6
< [43

1
μ + 2

3 ] r(j) ≤ r(j) as d∗u < r(j)/μ and g(Fu, cu) < 2r(j)

If u arrives in phase −2, g(w, cu) ≤ (1 + α
3 )f because d(w, cu) ≡ d∗u ≤ f and

m(w) ≤ αf/6. Hence, g(w, cu) < 4f for every α < 9. In both cases, the final distance
of cu becomes less than r(j) and the j-th phase ends when w opens. !"

Proposition 4. Every inner demand arriving in phase j opens a new facility with prob-
ability at least min{μ−1

αμ 2−j, 1}.

Proof. If u is an inner demand arriving in phase j, g(Fu, cu) ≥ r(j) = f/2j and
d∗u < r(j)/μ. Then,

g(Fu, u)/(αf) ≥ (g(Fu, cu)− d∗u)/(αf) > μ−1
μ r(j)/(αf) = μ−1

αμ 2−j !"

Lemma 3. For every optimal center c, the expected final assignment cost of the inner
demands mapped to c and considered up to the end of the current phase is at most 4αμ

μ−1f
plus their optimal assignment cost.

Proof. By Propositions 3 and 4, every inner demand arriving in phase j opens a new
facility and concludes the current phase with probability at least min{μ−1

αμ 2−j , 1}. Let
us assume that μ ≥ 4 (as required by Proposition 3) and α ∈ [2, 3] (for simplicity).

If a demand mapped to c arrives in phase −2, it concludes phase −2 with certainty.
Hence, there is at most one (inner) demand arriving in phase−2. In addition, phase −2
has ended when the assignment cost of the first demand mapped to c is considered.

For every phase j ≥ −1, the probability that an inner demand opens a new facility
and concludes phase j is at least μ−1

αμ 2−j . Therefore, the expected number of inner

demands arriving in phase j is at most αμ
μ−1 2j .

Let j ≥ −1 be the current phase of c. By linearity of expectation, the expected
number of inner demands arriving up to the end of phase j is at most αμ

μ−1 2j+1. After
c enters phase j, the final assignment cost of a demand u mapped to c (with respect to
the current configuration F ) is

g(F, u) ≤ g(F, c) + d∗u < 2r(j) + d∗u = f/2j−1 + d∗u

Since the expected number of inner demands mapped to c and considered up to the
end of phase j is at most αμ

μ−1 2j+1, their expected final assignment cost never exceeds
4αμ
μ−1f plus their optimal assignment cost. !"
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Outer Demands. Outer demands are charged with their final assignment cost with
respect to the algorithm’s configuration at their arrival time. The following lemma is an
immediate consequence of the definition of outer demands.

Lemma 4. The final assignment cost of every outer demand u is at most (2μ + 1)d∗u.

Combining Lemmas 3 and 4 and Proposition 1, we obtain that the algorithm’s expected
assignment cost is at most 4αμ

μ−1 Fac∗ + (2μ + 1)Asg∗.

Concluding the Proof of Theorem 1. For every λ ≥ 9.5, μ ≥ 4, and α ∈ [2, 3], the
expected cost of FFL is at most

( 4αμ
μ−1 +1)Fac∗+(λ+1

α +2μ+1)Asg∗ ≤ max{ 4αμ
μ−1 +1, λ+1

α +2μ+1} (Fac∗+Asg∗)

Using α = 19
8 , λ = 10, and μ = 4, we obtain a competitive ratio of 13 2

3 . The competi-
tive ratio can be improved to 12 by a careful analysis.

3 The Algorithm for Non-uniform Facility Costs

Then, we present a generalized version of FFL dealing with non-uniform facility costs.
As before, the algorithm FNFL (Fig. 4) maintains its facility configuration F and the
replacement radius m(w) of each facility w.

Every new demand u computes its final assignment cost g(F, u) with respect to
the current algorithm’s configuration. In case of non-uniform facility costs, opening a
facility at the same point as u may be too expensive or even infeasible. Hence u finds the
facility w in Bu( 1

λ−1 g(F, u)) that minimizes fw + d(w, u), where the parameter λ is
chosen so that w is located sufficiently close to u. Then u opens a new facility at w with
probability min{g(F, u)/(αfw), 1}. The replacement radius m(w) of the new facility
is set to min{g(F, w), 3fw + λ−3

2 d(w, u)}/6. Every existing facility z that includes w
in its replacement ball Bz(m(z)) is replaced by w.

Let |M | be the number of potential facility locations. FNFL can be implemented in
O(n |M |) time and O(|M |) space. Then we sketch the proof of the following theorem.

Theorem 2. For λ = 20 and α = 38
7 , the competitive ratio of FNFL is less than 49.

F ← ∅;
for each new demand u:

g(F,u) ← minz∈F{d(z, u) + 2m(z)};
let w be the facility in Bu( 1

λ−1
g(F, u))

that minimizes fw + d(w, u);
with probability min{g(F, u)/(αfw), 1}

do updateConfiguration(F , w);

updateConfiguration(F , w)
g(F,w) ← minz∈F{d(z, w) + 2m(z)};
m(w) ← 1

6
min{g(F, w), 3fw + λ−3

2
d(w, u)};

for each z ∈ F do
if d(z,w) ≤ m(z) then

F ← F \ {z};
F ← F ∪ {w};

Fig. 4. The algorithm Fast Non-Uniform Facility Location (FNFL) parameterized by α and λ
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Preliminaries. We use the same notation as in the analysis of FFL. As for the facility
costs, fp denotes the cost of opening a new facility at point p. The optimal facility cost
is Fac∗ =

∑
c∈F ∗ fc. For every demand u, fcu denotes the facility cost of the optimal

center to which u is mapped.
The outline of the proof is similar to that in Section 2.1. We first observe that Propo-

sitions 1 and 2 also hold for FNFL. A basic property of FNFL is that for every demand
u with d∗u < g(Fu, cu)/λ (i.e. u is sufficiently close to cu), cu ∈ Bu( 1

λ−1 g(Fu, u)).
Therefore, for every facility w opened by a demand u with d∗u < g(Fu, cu)/λ, the
opening cost of w is no greater than fcu + d∗u.

Facility Cost. Supported and unsupported facilities are now defined in a different
way. Let u be a demand opening a new facility w. The facility w is unsupported if
d∗u < g(Fu, cu)/λ and m(w) ≥ λ−3

12 d(w, cw), and supported otherwise. If w is an un-
supported facility, fw ≤ fcu + d∗u because cu ∈ Bu( 1

λ−1 g(Fu, u)). As in Section 2.3,

we prove that the expected facility cost of FNFL is at most Fac∗ + λ+1
α Asg∗.

Assignment Cost. For every optimal center c, we break down the analysis of the as-
signment cost of the demands mapped c into disjoint phases according to the final dis-
tance of c. The definition of phases takes the facility cost of c into account. For every
integer j ≥ −3 , let rc(j) = fc/2j , and let rc(−4) = ∞. For every j ≥ −3, the optimal
center c is in phase j as long as g(F, c) ∈ [rc(j), rc(j − 1)). A demand u arriving in
phase j is inner if d∗u < rcu(j)/λ and outer otherwise.

The assignment cost of every outer demand u never exceeds (2λ + 1)d∗u. Inner de-
mands are charged with their final assignment cost with respect to the current configu-
ration. Similarly to the proof of Lemma 3, we show that the expected final assignment
cost of inner demands mapped to c and considered up to the end of phase j is no greater
than 4α(λ+8)

λ−1 fc plus their optimal assignment cost. Consequently, the expected assign-

ment cost of FNFL is at most 4α(λ+8)
λ−1 Fac∗ + (2λ + 1)Asg∗.

Concluding the Proof of Theorem 2. The expected cost of FNFL is at most

(4α(λ+8)
λ−1 + 1)Fac∗ + (1 + 1

α )(2λ + 1)Asg∗

for every λ ∈ [20, 34] and α ∈ [197 , 38
7 ]. For λ = 20 and α = 38

7 , the competitive ratio
of FNFL is less than 48.6.

Acknowledgements. The author thanks an anonymous referee whose detailed com-
ments greatly assisted in improving the final presentation.
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Georges-Köhler-Allee 79, 79110 Freiburg, Germany

salbers@informatik.uni-freiburg.de
2 Department of Communications and Computer Engineering,

Graduate School of Informatics, Kyoto University, Japan
fujiwara@lab2.kuis.kyoto-u.ac.jp

Abstract. We study scheduling problems in battery-operated comput-
ing devices, aiming at schedules with low total energy consumption.
While most of the previous work has focused on finding feasible schedules
in deadline-based settings, in this paper we are interested in schedules
that guarantee good response times. More specifically, our goal is to
schedule a sequence of jobs on a variable speed processor so as to min-
imize the total cost consisting of the power consumption and the total
flow time of all the jobs. We first show that when the amount of work,
for any job, may take an arbitrary value, then no online algorithm can
achieve a constant competitive ratio. Therefore, most of the paper is
concerned with unit-size jobs. We devise a deterministic constant com-
petitive online algorithm and show that the offline problem can be solved
in polynomial time.

1 Introduction

Embedded systems and portable devices play an ever-increasing role in every
day life. Prominent examples are mobile phones, palmtops and laptop computers
that are used by a significant fraction of the population today. Many of these
devices are battery-operated so that effective power management strategies are
essential to guarantee a good performance and availability of the systems. The
microprocessors built into these devices can typically perform tasks at different
speeds – the higher the speed, the higher the power consumption is. As a result,
there has recently been considerable research interest in dynamic speed scaling
strategies; we refer the reader to [1, 2, 3, 7, 10, 13] for a selection of the papers
that have been published in algorithms conferences.

Most of the previous work considers a scenario where a sequence of jobs,
each specified by a release time, a deadline and an amount of work that must
be performed to complete the task, has to be scheduled on a single processor.
The processor may run at variable speed. At speed s, the power consumption is
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P (s) = sα per time unit, where α > 1 is a constant. The goal is to find a feasible
schedule such that the total power consumption over the entire time horizon is
as small as possible. While this basic framework gives insight into effective power
conservation, it ignores the important aspect that users typically expect good
response times for their jobs. Furthermore, in many computational systems, jobs
are not labeled with deadlines. For example, operating systems such as Window
and Unix installed on laptops do not employ deadline-based scheduling.

Therefore, in this paper, we study algorithms that minimize energy usage
and at the same time guarantee good response times. In the scientific literature,
response time is modeled as flow time. The flow time of a job is the length of
the time interval between the release time and the completion time of the job.
Unfortunately, energy minimization and flow time minimization are orthogonal
objectives. To save energy, the processor should run at low speed, which yields
high flow times. On the other hand, to ensure small flow times, the processor
should run at high speed, which results in a high energy consumption. In or-
der to overcome this conflict, Pruhs et al. [10] recently studied the problem of
minimizing the average flow time of a sequence of jobs when a fixed amount
of energy is available. They presented a polynomial time offline algorithm for
unit-size jobs. However, it is not clear how to handle the online scenario where
jobs arrival times are unknown.

Instead, in this paper, we propose a different approach to integrate energy
and flow time minimization: We seek schedules that minimize the total cost con-
sisting of the power consumption and the flow times of jobs. More specifically,
a sequence of jobs, each specified by an amount of work, arrives over time and
must be scheduled on one processor. Preemption of jobs is not allowed. The goal
is to dynamically set the speed of the processor so as to minimize the sum of
(a) the total power consumption and (b) the total flow times of all the jobs. Such
combined objective functions have been studied for many other bicriteria opti-
mization problems with orthogonal objectives. The papers [5, 8], e.g., consider a
TCP acknowledgement problem, minimizing the sum of acknowledgement costs
and acknowledgement delays incurred for data packets. In [6] the authors study
network design and minimize the total hardware and QoS costs. More generally,
in the classical facility location problem, one minimizes the sum of the facility
installation and total client service costs, see [4, 9] for surveys.

For our energy/flow-time minimization problem, we are interested in both
online and offline algorithms. Following [11], an online algorithm A is said to be
c-competitive if there exists a constant a such that, for all job sequences σ, the
total cost A(σ) satisfies A(σ) ≤ c ·OPT(σ) + a, where OPT(σ) is the cost of an
optimal offline algorithm.

Previous work: In their seminal paper, Yao et al. [13] introduced the basic
problem of scheduling a sequence of jobs, each having a release time, a deadline
and a certain workload, so as to minimize the energy usage. Here, preemption of
jobs is allowed. Yao et al. showed that the offline problem can be solved optimally
in polynomial time and presented two online algorithms called Average Rate and
Optimal Available. They analyzed Average Rate, for α ≥ 2, and proved an upper
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bound of 2ααα and a lower bound of αα on the competitiveness. Bansal et al. [2]
studied Optimal Available and showed that its competitive ratio is exactly αα.
Furthermore, they developed a new algorithm that achieves a competitiveness
of 2(α/(α − 1))αeα and proved that any randomized online algorithm has a
performance ratio of at least Ω((4/3)α).

Irani et al. [7] studied an extended scenario where the processor can be put into
a low-power sleep state when idle. They gave an offline algorithm that achieves
a 3-approximation and developed a general strategy that transforms an online
algorithm for the setting without sleep state into an online algorithm for the
setting with sleep state. They obtain constant competitive online algorithms, but
the constants are large. For the famous cube root rule P (s) = s3, the competitive
ratio is 540. The factor can be reduced to 84, see [2]. Settings with several
sleep states were considered in [1]. Speed scaling to minimize the maximum
temperature of a processor was addressed in [2, 3].

As mentioned above, Pruhs et al. [10] study the problem of minimizing the
average flow time of jobs given a fixed amount of energy. For unit-size jobs,
they devise a polynomial time algorithm that simultaneously computes, for each
possible energy level, the schedule with smallest average flow time.

Our contribution: We investigate the problem of scheduling a sequence of n
jobs on a variable speed processor so as to minimize the total cost consisting of
the power consumption and the flow times of jobs. We first show that when the
amount of work, for any job, may take an arbitrary value, then any determin-
istic online algorithm has a competitive ratio of at least Ω(n1−1/α). This result
implies that speed scaling does not help to overcome bad scheduling decisions:
It is well-known that in standard scheduling, no online algorithm for flow time
minimization can be better than Ω(n)-competitive. Our lower bound, allowing
speed scaling, is almost as high.

Because of the Ω(n1−1/α) lower bound, most of our paper is concerned with
unit-size jobs. We develop a deterministic phase-based online algorithm that
achieves a constant competitive ratio. The algorithm is simple and requires
scheduling decisions to be made only every once in a while, which is advan-
tageous in low-power devices. Initially, the algorithm computes a schedule for
the first batch of jobs released at time 0. While these jobs are being processed,
the algorithm collects the new jobs that arrive in the meantime. Once the first
batch of jobs is finished, the algorithm computes a schedule for the second batch.
This process repeats until no more jobs arrive. Within each batch the processing
speeds are easy to determine. When there are i unfinished jobs in the batch,
the speed is set to α

√
i/c, where c is a constant that depends on the value

of α. We prove that the competitive ratio of our algorithm is upper bounded
by 8.3e(1 + Φ)α, where Φ = (1 +

√
5)/2 ≈ 1.618 is the Golden Ratio. We re-

mark that a phase-based scheduling algorithm was also used in makespan min-
imization on parallel machines [12]. However, for our problem, the scheduling
strategy within the phases and the analysis techniques employed are completely
different.
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Furthermore, in this paper we develop a polynomial time algorithm for com-
puting an optimal offline schedule. We would like to point out that we could use
the algorithm by Pruhs et al. [10], but this would yield a rather complicated al-
gorithm for our problem. Instead, we design a simple, direct algorithm based on
dynamic programming. Our approach can also be used to address the problem
of Pruhs et al., i.e. we are able to determine a schedule with minimum flow time
given a fixed amount of enery. This can be seen as an additional advantage of
our new objective function.

2 Preliminaries

Consider a sequence of jobs σ = σ1, . . . , σn which are to be scheduled on one
processor. Job σi is released at time ri and requires pi CPU cycles. We assume
r1 = 0 and ri ≤ ri+1, for i = 1, . . . , n − 1. A schedule S specifies, for each
job σi, a time interval Ii and a speed si such that σi is processed at speed si

continuously, without interruption, throughout Ii. Let P (s) = sα be the power
consumption per time unit of the CPU depending on s. The constant α > 1
is a real number. As P (s) is convex, we may assume w.l.o.g. that each σi is
processed at a constant speed si. A schedule S is feasible if, for any i, interval
Ii starts no earlier than ri, and the processing requirements are met, i.e. pi =
si|Ii|. Here |Ii| denotes the length of Ii. Furthermore, in a feasible schedule
S the intervals Ii must be non-overlapping. The energy consumption of S is
E(S) =

∑n
i=1 P (si)|Ii|. For any i, let ci be the completion time of job i, i.e. ci

is equal to the end of Ii. The flow time of job i is fi = ci − ri and the flow time
of S is given by F (S) =

∑n
i=1 fi. We seek schedules S that minimize the sum

g(S) = E(S) + F (S).

3 Arbitrary Size Jobs

We show that if the jobs’ processing requirements may take arbitrary values,
then no online algorithm can achieve a bounded competitive ratio. The proof of
the following theorem is omitted due to space constraints.

Theorem 1. The competitive ratio of any deterministic online algorithm is
Ω(n1−1/α) if the processing requirements p1, . . . , pn may take arbitrary values.

4 An Online Algorithm for Unit-Size Jobs

In this section we study the case that the processing requirements of all jobs are
the same, i.e. pi = 1, for all jobs. We develop a deterministic online algorithm
that achieves a constant competitive ratio, for all α. The algorithm is called
Phasebal and aims at balancing the incurred power consumption with the gen-
erated flow time. If α is small, then the ratio is roughly 1 : α − 1. If α is large,
then the ratio is 1 : 1. As the name suggests, the algorithm operates in phases.
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Let n1 be the number of jobs that are released initially at time t = 0. In the first
phase Phasebal processes these jobs in an optimal or nearly optimal way, ignor-
ing jobs that may arrive in the meantime. More precisely, the speed sequence for
the n1 jobs is α

√
n1/c,

α
√

(n1 − 1)/c, . . . , α
√

1/c, i.e. the j-th of these n1 jobs is
executed at speed α

√
(n1 − j + 1)/c for j = 1, . . . , n1. Here c is a constant that

depends on α. Let n2 be the number of jobs that arrive in phase 1. Phasebal
processes these jobs in a second phase. In general, in phase i Phasebal schedules
the ni jobs that arrived in phase i−1 using the speed sequence α

√
(ni − j + 1)/c,

for j = 1, . . . , ni. Again, jobs that arrive during the phase are ignored until the
end of the phase. A formal description of the algorithm is as follows.

Algorithm Phasebal: If α < (19 +
√

161)/10, then set c := α − 1; otherwise
set c := 1. Let n1 be the number of jobs arriving at time t = 0 and set i = 1.
While ni > 0, execute the following two steps: (1) For j = 1, . . . , ni, process the
j-th job using a speed of α

√
(ni − j + 1)/c. We refer to this entire time interval

as phase i. (2) Let ni+1 be the number of jobs that arrive in phase i and set
i := i + 1.

Theorem 2. Phasebal has a competitiveness of at most (1+Φ)(1+Φ
α

(2α−1) )(α−1)

αα

(α−1)α−1 min{ 5α−2
2α−1 , 4

2α−1 + 4
α−1}, where Φ = (1 +

√
5)/2 ≈ 1.618.

Before proving Theorem 2, we briefly discuss the competitiveness. We first ob-
serve that αα

(α−1)α−1 ≤ eα. Moreover, α(5α−2)
2α−1 is increasing in α, while 4α

2α−1 + 4α
α−1

is decreasing in α. Standard algebraic manipulations show that the latter two
expressions are equal for α0 = (19 +

√
161)/10. Thus, the competitive ratio is

upper bounded by (1 + Φ)αeα0(5α0−2)
2α0−1 < (1 + Φ)αe · 8.22.

In the remainder of this section we will analyze Phasebal . The global analysis
consists of two cases. We will first address c = 1 and then c = α−1. In each case
we first upper bound the total cost incurred by Phasebal and then lower bound
the cost of an optimal schedule. In the case c = 1 we will consider a pseudo-
optimal algorithm that operates with similar speeds as Phasebal . We will prove
that the cost of such a pseudo-optimal algorithm is at most a factor of 2 away
from the true optimum. In any case we will show that an optimal or pseudo-
optimal algorithm finishes jobs no later than Phasebal . This property will be
crucial to determine the time intervals in which optimal schedules process jobs
and to lower bound the corresponding speeds. These speed bounds will then
allow us to estimate the optimal cost and to finally compare it to the online
cost.

Let t0 = 0 and ti be the time when phase i ends, i.e. the ni jobs released
during phase i− 1 (released initially, if i = 1) are processed in the time interval
[ti−1, ti), which constitutes phase i. Given a job sequence σ, let SPB be the
schedule of Phasebal and let SOPT be an optimal schedule.

Case 1: c = 1 We start by analyzing the cost and time horizon of SPB .
Suppose that there are k phases, i.e. no new jobs arrive in phase k. In phase i
the algorithm needs 1/ α

√
ni − j + 1 time units to complete the j-th job. Thus

the power consumption in the phase is
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ni∑
j=1

( α
√

ni − j + 1)α/ α
√

ni − j + 1 =
ni∑

j=1

(ni − j + 1)1−1/α

≤ α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i .

The length of phase i is

T (ni) =
ni∑

j=1

1/ α
√

ni − j + 1 ≤ α
α−1n

1−1/α
i . (1)

As for the flow time, the ni jobs scheduled in the phase incur a flow time of

ni∑
j=1

(ni − j + 1)/ α
√

ni − j + 1 ≤ α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i ,

while the ni+1 jobs released during the phase incur a flow time of at most ni+1

times the length of the phase. We obtain

g(SPB) ≤
k∑

i=1

( 2α
2α−1 (n2−1/α

i − 1) + 2n1−1/α
i ) +

k−1∑
i=1

ni+1
α

α−1n
1−1/α
i .

The second sum is bounded by
∑k−1

i=1
α

α−1 max{ni, ni+1}2−1/α≤
∑k

i=1
2α

α−1n
2−1/α
i

and we conclude

g(SPB) ≤ 2
k∑

i=1

( α
2α−1 (n2−1/α

i − 1) + n
1−1/α
i + α

α−1n
2−1/α
i ). (2)

We next lower bound the cost of an optimal schedule. As mentioned before,
it will be convenient to consider a pseudo-optimal schedule SPOPT . This is the
best schedule that satisfies the constraint that, at any time, if there are � active
jobs, then the processor speed is at least α

√
�. We call a job active if it has arrived

but is not yet finished. In the next lemma we show that the objective function
value g(SPOPT ) is not far from the true optimum g(SOPT ).

Lemma 1. For any job sequence, g(SPOPT ) ≤ 2g(SOPT ).

Proof. Consider the optimal schedule g(SOPT ). We may assume w.l.o.g. that in
this schedule the speed only changes when a jobs gets finished of new jobs arrive.
We partition the time horizon of SOPT into a sequence of intervals I1, . . . , Im

such that, for any such interval, the number of active jobs does not change.
Let E(Ii) and F (Ii) be the energy consumption and flow time, respectively,
generated in Ii, i = 1, . . . ,m. We have E(Ii) = sα

i δi and F (Ii) = �iδi, where si is
the speed, �i is the number of active jobs in Ii and δi is the length of Ii. Clearly
g(SOPT ) =

∑m
i=1(E(Ii) + F (Ii)).

Now we change SOPT as follows. In any interval Ii with si < α
√
�i we increase

the speed to α
√
�i, incurring an energy consumption of �iδi, which is equal to
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F (Ii) in original schedule SOPT . In this modification step, the flow time of jobs
can only decrease. Because of the increased speed, the processor may run out of
jobs in some intervals. Then the processor is simply idle. We obtain a schedule
whose cost is bounded by

∑m
i=1(E(Ii) + 2F (Ii)) ≤ 2g(SOPT ) and that satisfies

the constraint that the processor speed it at least α
√
� in intervals with � active

job. Hence g(SPOPT ) ≤ 2g(SOPT ). !"

The next lemma shows that in SPOPT jobs finish no later than in SPB .

Lemma 2. For c = 1, in SPOPT the n1 jobs released at time t0 are finished by
time t1 and the ni jobs released during phase i − 1 are finished by time ti, for
i = 2, . . . , k.

Proof. We show the lemma inductively. As for the n1 jobs released at time
t0, the schedule SPOPT processes the j-th of these jobs at a speed of at least
α
√

n1 − j + 1 because there are at least n − j + 1 active jobs. Thus the n1 jobs
are completed no later than

∑n1
j=1 1/ α

√
n1 − j + 1, which is equal to the length

of the first phase, see (1).
Now suppose that jobs released by time ti−1 are finished by time ti and

consider the ni+1 jobs released in phase i. At time ti there are at most these
ni+1 jobs unfinished. Let ni+1 be the actual number of active jobs at that time.
Again, the j-th of these jobs is processed at a speed of at least (ni+1−j+1)1/α so
that the execution of these ni+1 jobs ends no later than

∑ni+1
j=1 (ni+1− j+1)−1/α

and this sum is not larger than the length of phase i + 1, see (1). !"

Lemma 3. If a schedule has to process � jobs during a time period of length
T ≤ � α

√
α− 1, then its total cost is at least FLAT (�, T ) ≥ (�/T )αT + T .

The proof is omitted.

Lemma 4. For α ≥ 2, there holds g(SPOPT )≥ C1−α(1+Φ)−1(1+Φα/(2α−1))1−α∑k
i=1 n

2−1/α
i +

∑k
i=1 T (ni), where C = α/(α− 1) and Φ = (1 +

√
5)/2.

Proof. By Lemma 2, for i ≥ 2, the ni jobs arriving in phase i − 1 are finished
by time ti in SPOPT . Thus SPOPT processes these jobs in a window of length at
most T (ni−1)+T (ni). Let T ′(ni) = min{T (ni−1)+T (ni), ni

α
√

α− 1}. Applying
Lemma 3, we obtain that the ni jobs incur a cost of at least

nα
i

(T ′(ni))α−1
+ T ′(ni) ≥

nα
i

(T (ni−1) + T (ni))α−1
+ T ′(ni)

≥ nα
i

(T (ni−1) + T (ni))α−1
+ T (ni).

The last inequality holds because T (ni) ≤ ni ≤ ni
α
√

α− 1, for α ≥ 2 and hence
T ′(ni) ≥ T (ni). Similarly, for the n1 jobs released at time t = 0, the cost it at
least nα

1 /(T (n1))α−1 + T (n1). Summing up, the total cost of SPOPT is at least

nα
1

(T (n1))α−1
+

k∑
i=2

nα
i

(T (ni−1) + T (ni))α−1
+

k∑
i=1

T (ni).
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In the following we show that the first two terms in the above expression are
at least C1−α(1 + Φ)−1(1 + Φα/(2α−1))1−α

∑k
i=1 n2−1/α, which establishes the

lemma to be proven. Since T (ni) ≤ Cn
1−1/α
i , it suffices to show

(1 + Φ)(1 + Φα/(2α−1))α−1

⎛⎜⎝ nα
1(

n
1−1/α
1

)α−1 +
k∑

i=2

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

⎞⎟⎠
≥

k∑
i=1

n
2−1/α
i . (3)

To this end we partition the sequence of job numbers n1, . . . , nk into subse-
quences such that, within each subsequence, ni ≥ Φα/(2α−1)ni+1. More formally,
the first subsequence starts with index b1 = 1 and ends with the smallest index
e1 satisfying ne1 < Φα/(2α−1)ne1+1. Suppose that l − 1 subsequences have been
constructed. Then the l-st sequence starts at index bl = el−1 + 1 and ends with
the smallest index el ≥ bl such that nel

< Φα/(2α−1)nel+1. The last subsequence
ends with index k.

We will prove (3) by considering the individual subsequences. Since within a
subsequence ni+1 ≤ niΦ

−α/(2α−1), we have n
2−1/α
i+1 ≤ n

2−1/α
i /Φ. Therefore, for

any subsequence l, using the limit of the geometric series

el∑
i=bl

n
2−1/α
i ≤ n

2−1/α
bl

/(1− 1/Φ) = (1 + Φ)n2−1/α
bl

, (4)

which upper bounds terms on the right hand side of (3). As for the left hand
side of (3), we have for the first subsequence,

(1 + Φ)(1 + Φα/(2α−1))α−1

⎛⎜⎝ nα
1(

n
1−1/α
1

)α−1 +
e1∑
i=2

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

⎞⎟⎠
≥ (1 + Φ)n2−1/α

1 .

For any other subsequence l, we have

(1 + Φ)(1 + Φα/(2α−1))α−1
el∑

i=bl

nα
i(

n
1−1/α
i−1 + n

1−1/α
i

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1
nα

bl(
n

1−1/α
bl−1 + n

1−1/α
bl

)α−1

≥ (1 + Φ)(1 + Φα/(2α−1))α−1
nα

bl(
(Φ(α−1)/(2α−1) + 1)n1−1/α

bl

)α−1

≥ (1 + Φ)n2−1/α
bl

.
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The second to last inequality holds because nbl−1 and nbl
belong to different

subsequences and hence nbl−1 < Φα/(2α−1)nbl
. The above inequalities together

with (4) imply (3). !"

Lemma 5. For α ≥ 2 and c = 1, the competitive ratio of Phasebal is at most
(1 + Φ)(1 + Φα/(2α−1))(α−1) αα

(α−1)α−1 ( 4
2α−1 + 4

α−1 ).

Proof. Using (2) as well as Lemmas 1 and 4 we obtain that the competitive ratio
of Phasebal is bounded by

(1 + Φ)(1 + Φα/(2α−1))(α−1)
4
∑k

i=1((
α

2α−1 + α
α−1 )n2−1/α

i + n1−1/α)∑k
i=1((

α
α−1 )1−αn

2−1/α
i + T (ni))

.

Considering the terms of order n2−1/α, we obtain the performance ratio we are
aiming at. It remains to show that n

1−1/α
i /T (ni) does not violate this ratio. Note

that T (ni) ≥ 1. Thus, if n
1−1/α
i ≤ 2 we have

n
1−1/α
i /T (ni) ≤ 2 ≤ 4( α

α−1 )α−1( α
2α−1 + α

α−1 ). (5)

If n
1−1/α
i > 2, then we use the fact that T (ni) =

∑ni

j=1 1/ α
√

ni − j + 1 ≥
α

α−1 ((ni + 1)1−1/α − 1) ≥ 1
2

α
α−1n

1−1/α
i and we can argue as in (5), since (α −

1)/α < 1. !"

Case 2: c = α− 1 The global structure of the analysis is the same as in the
case c = 1 but some of the calculations become more involved. Moreover, with
respect to the optimum cost, we will consider the true optimum rather than the
cost of a pseudo-optimal algorithm.

We start again by analyzing the cost and time of Phasebal . As before we as-
sume that there are k phases. In phase i, Phasebal uses 1/ α

√
(ni − j + 1)/(α− 1)

time units to process the j-th job. This yields a power consumption of

ni∑
j=1

(
ni − j + 1

α− 1

)1−1/α

≤ CE(n2−1/α
i − 1) + (α− 1)1/α−1n

1−1/α
i

with CE = (α−1)
1
α−1 α

2α−1 . The phase length is T (ni) =
∑ni

j=1 1/
(

ni−j+1
α−1

)1/α

.

Here we have

CT ((ni + 1)1−1/α − 1) < T (ni) < CT (n1−1/α
i − 1/α) (6)

with CT = α(α−1)
1
α−1. In phase i the ni jobs processed during the phase incur

a flow time of
ni∑

j=1

(ni − j + 1)/
(

ni − j + 1
α− 1

)1/α

= (α− 1)1/α
ni∑

j=1

(ni − j + 1)1−1/α

≤ CF (n2−1/α
i − 1) + (α − 1)1/αn

1−1/α
i
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with CF = (α− 1)
1
α

α
2α−1 , while the ni+1 jobs arriving in the phase incur a cost

of at most ni+1T (ni). We obtain

g(SPB) ≤ (CE+CF )
k∑

i=1

(n2−1/α
i −1)+2CT

k∑
i=1

n
2−1/α
i +α(α−1)1/α−1

k∑
i=1

n
1−1/α
i .

(7)
We next lower bound the cost of an optimal schedule. Again we call a job

active if it has arrived but is still unfinished. The proofs of the next three lemmas
are omitted.

Lemma 6. There exists an optimal schedule SOPT having the property that,
at any time, if there are � active jobs, then the processor speed is at least
α
√
�/(α− 1).

Lemma 7. For c = α− 1, in SOPT the n1 jobs released at time t0 are finished
by time t1 and the ni jobs released during phase i− 1 are finished by time ti, for
i = 2, . . . , k.

Lemma 8. There holds g(SOPT ) ≥ C1−α
T (1 + Φ)−1(1 + Φα/(2α−1))(1−α)∑k

i=1 n
2−1/α
i +

∑k
i=1 T (ni), where Φ = (1 +

√
5)/2..

Lemma 9. For c = α − 1, the competitive ratio of Phasebal is at most
(1 + Φ)(1 + Φα/(2α−1))(α−1) αα

(α−1)α−1
5α−2
2α−1 .

Proof. Using (6), (7) and Lemma 8, we can determine the ratio of the online
cost to the optimal offline cost as in Lemma 5. The desired competitive ratio
can then be derived using algebraic manipulations. The calculations are more
involved than in the proof of Lemma 5. Details are given in the full version of
the paper. !"

Theorem 2 now follows from Lemmas 5 and 9, observing that α0 = (19 +√
161)/10 ≥ 2 and that, for α > α0, we have 4

2α−1 + 4
α−1 < 5α−2

2α−1 .

5 An Optimal Offline Algorithm for Unit-Size Jobs

We present a polynomial time algorithm for computing an optimal schedule,
given a sequence of unit-size jobs that is known offline. Our algorithm is based
on dynamic programming and constructs an optimal schedule for a given job
sequence σ by computing optimal schedules for subsequences of σ. A schedule
for σ can be viewed as a sequence of subschedules S1, S2, . . . , Sm, where any Sj

processes a subsequence of jobs j1, . . . , jk starting at time rj1 such that ci > ri+1

for i = j1, . . . , jk − 1 and cjk
≤ rjk+1. In words, jobs j1 to jk are scheduled

continuously without interruption such that the completion time of any job i is
after the release time of job i+1 and the last job jk is finished no later than the
release time of job jk + 1. As we will prove in the next two lemmas, the optimal
speeds in such subschedules Sj can be determined easily. For convenience, the
lemmas are stated for a general number n of jobs that have to be scheduled in
an interval [t, t′). The proofs are omitted.
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Lemma 10. Consider n jobs that have to be scheduled in time interval [t, t′)
such that r1 = t and rn < t′. Suppose that in an optimal schedule ci > ri+1, for
i = 1, . . . , n− 1. If t′ − t ≥

∑n
i=1

α
√

(α− 1)/(n− i + 1), then the i-th job in the
sequence is executed at speed si = α

√
(n− i + 1)/(α− 1).

Lemma 11. Consider n jobs that have to be scheduled in time interval [t, t′)
such that r1 = t and rn < t′. Suppose that in an optimal schedule ci > ri+1,
for i = 1, . . . , n− 1. If t′ − t <

∑n
i=1

α
√

(α− 1)/(n− i + 1), then the i-th job in
the sequence is executed at speed si = α

√
(n− i + 1 + c)/(α− 1), where c is the

unique value such that
∑n

i=1
α
√

(α− 1)/(n− i + 1 + c) = t′ − t.

Of course, an optimal schedule for a given σ need not satisfy the condition that
ci > ri+1, for i = 1, . . . , n − 1. In fact, this is the case if the speeds specified
in Lemmas 10 and 11 do not give a feasible schedule, i.e. there exists an i such
that ci =

∑i
j=1 tj ≤ ri+1, with ti = 1/si and si as specified in the lemmas.

Obviously, this infeasibility is easy to check in linear time.
We are now ready to describe our optimal offline algorithm, a pseudo-code

of which is presented in Figure 1. Given a jobs sequence consisting of n jobs,
the algorithm constructs optimal schedules for subproblems of increasing size.
Let P [i, i + l] be the subproblem consisting of jobs i to i + l assuming that
the processing may start at time ri and must be finished by time ri+l+1, where
1 ≤ i ≤ n and 0 ≤ l ≤ n − i. We define rn+1 = ∞. Let C[i, i + l] be the cost
of an optimal schedule for P [i, i + l]. We are eventually interested in C[1, n]. In
an initialization phase, the algorithm starts by computing optimal schedules for
P [i, i] of length l = 0, see lines 1 to 3 of the pseudo-code. If ri+1− ri ≥ α

√
α− 1,

then Lemma 10 implies that the optimal speed for job i is equal to α
√

1/(α− 1).
If ri+1 − ri < α

√
α− 1, then by Lemma 11 the optimal speed is 1/(ri+1 − ri).

Note that this value can be infinity if ri+1 = ri. The calculation of C[i, i] in
line 3 will ensure that in this case an optimal schedule will not complete job i
by ri+1.

Algorithm Dynamic Programming
1. for i := 1 to n do

2. if ri+1 − ri ≥ α
√

α − 1 then S[i] := α
√

1/(α − 1) else S[i] := 1/(ri+1 − ri);
3. C[i, i] := (S[i])α−1 + 1/S[i];
4. for l := 1 to n − 1 do
5. for i := 1 to n − l do
6. C[i, i + l] := mini≤j<i+l{C[i, j] + C[j + 1, i + l]};
7. Compute an optimal schedule for P [i, i + l] according to Lemmas 10 and 11

assuming cj > rj+1 for j = i, . . . , i + l − 1 and let si, . . . , si+l be the
computed speeds;

8. if schedule is feasible then C :=
∑i+l

j=i sα−1
j +

∑i+l
j=i(i + l − j + 1)/sj

else C := ∞;
9. if C < C[i, i + l] then C[i, i + l] := C and S[j] := sj for j = i, . . . , i + l;

Fig. 1. The dynamic programming algorithm
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After the initialization phase the algorithm considers subproblems P [i, i + l]
for increasing l. An optimal solution to P [i, i + l] has the property that either
(a) there exists an index j with j < i+ l such that cj ≤ rj+1 or (b) cj > rj+1 for
j = i, . . . , i + l− 1. In case (a) an optimal schedule for P [i, i + l] is composed of
optimal schedules for P [i, j] and P [j + 1, i + l], which is reflected in line 6 of the
pseudo-code. In case (b) we can compute optimal processing speeds according to
Lemmas 10 and 11, checking if the speeds give indeed a feasible schedule. This
is done in lines 7 and 8 of the algorithm. In a final step the algorithm checks if
case (a) or (b) holds. The algorithm has a running time of O(n3 log ρ), where ρ is
the inverse of the desired precision. Note that in Lemma 11, c can be computed
only approximately using binary search.

We briefly mention that we can use our dynamic programming approach to
compute a schedule that minimizes the total flow time of jobs, given a fixed
amount A of energy. Here we simply consider the minimization of a weighted
objective function gβ(S) = βE(S) + (1− β)F (S), where 0 < β < 1. By suitably
choosing β, we obtain an optimal schedule SOPT for gβ with E(SOPT ) = A.
This schedule minimizes the flow time. Details can be found in the full version
of the paper.
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Abstract. Recursive Markov Decision Processes (RMDPs) and Recur-
sive Simple Stochastic Games (RSSGs) are natural models for recur-
sive systems involving both probabilistic and non-probabilistic actions.
As shown recently [10], fundamental problems about such models, e.g.,
termination, are undecidable in general, but decidable for the impor-
tant class of 1-exit RMDPs and RSSGs. These capture controlled and
game versions of multi-type Branching Processes, an important and well-
studied class of stochastic processes. In this paper we provide efficient
algorithms for the qualitative termination problem for these models: does
the process terminate almost surely when the players use their optimal
strategies? Polynomial time algorithms are given for both maximizing
and minimizing 1-exit RMDPs (the two cases are not symmetric). For 1-
exit RSSGs the problem is in NP∩coNP, and furthermore, it is at least as
hard as other well-known NP∩coNP problems on games, e.g., Condon’s
quantitative termination problem for finite SSGs ([3]). For the class of
linearly-recursive 1-exit RSSGs, we show that the problem can be solved
in polynomial time.

1 Introduction

In recent work [10], we introduced and studied Recursive Markov Decision
Processes (RMDPs) and Recursive Simple Stochastic Games (RSSGs), which
provide natural models for recursive systems (e.g., programs with procedures)
involving both probabilistic and non-probabilistic actions. They define infinite-
state MDPs and SSGs that extend Recursive Markov Chains (RMCs) ([8, 9])
with non-probabilistic actions that are controlled by a controller and/or the en-
vironment (the “players”). Informally, a recursive model (RMC, RMDP, RSSG)
consists of a (finite) collection of finite state component models (resp. MC, MDP,
SSG) that can call each other in a potentially recursive manner.

In this paper we focus on the important class of 1-exit RMDPs and 1-exit
RSSGs, which we will denote by 1-RMDP and 1-RSSG. These are RMDPs and
RSSGs where every component contains exactly 1 exit node. Without players, 1-
RMCs correspond tightly to both Stochastic Context-Free Grammars (SCFGs)
and Multi-Type Branching Processes (MT-BPs). Branching processes are an im-
portant class of stochastic processes, dating back to the early work of Galton and

B. Durand and W. Thomas (Eds.): STACS 2006, LNCS 3884, pp. 634–645, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Watson in the 19th century, and continuing in the 20th century in the work of
Kolmogorov, Sevastianov, Harris and others for MT-BPs and beyond (see, e.g.,
[14]). MT-BPs model the growth of a population of objects of distinct types.
In each generation each object of a given type gives rise, according to a prob-
ability distribution, to a multi-set of objects of distinct types. These stochastic
processes have been used in a variety of applications, including in population
genetics ([16]), nuclear chain reactions, ([7]), and RNA modeling in computa-
tional biology (based on SCFGs) ([22]). SCFGs are also fundamental models in
statistical natural language processing (see, e.g., [19]). 1-RMDPs correspond to a
controlled version of MT-BPs (and SCFGs): the reproduction of some types can
be controlled, while the dynamics of other types is probabilistic as in ordinary
MT-BPs; or the controller may be able to influence the reproduction of some
types by choosing among a set of probability distributions (e.g., the branching
Markov decision chains of [21]). The goal of the controller is either to maximize
the probability of extinction or to minimize it (maximize survival probability).
This model would also be suitable for analysis of population dynamics under
worst-case (or best-case) assumptions for some types and probabilistic assump-
tions for others. Such controlled MT-BPs can be readily translated to 1-RMDPs,
where the types of the MT-BP correspond to the components of the RMDP, ex-
tinction in the MT-BP corresponds to termination in the RMDP, and our results
can be used for the design of strategies to achieve or prevent extinction.

Among our results in [10], we showed that for maximizing (minimizing) 1-
RMDPs, the Qualitative Termination Problem (Qual-TP), is in NP (coNP, re-
spectively), and that the same problem for 1-RSSGs is in ΣP

2 ∩ΠP
2 . Qual-TP is

the problem of deciding whether player 1 (the maximizer) has a strategy to force
termination with probability 1, regardless of the strategy employed by player 2
(the minimizer). (In a maximizing 1-RMDP, the only player present is the max-
imizer, and in a minimizing 1-RMDP the only player present is the minimizer.)

In this paper we improve significantly on the above results. We show that
Qual-TP, both for maximizing 1-RMDPs and for minimizing 1-RMDPs, can in
fact be decided in polynomial time. It follows easily from this and strong determi-
nacy results from [10], that for 1-RSSGs Qual-TP is in NP∩coNP. We show that
one can not easily improve on this upper bound, by providing a polynomial time
reduction from the Quantitative Termination Problem (Quan-TP) for finite SSGs
([3]) to the Qual-TP problem for 1-RSSGs. Condon [3] showed that for finite
SSGs the Quan-TP problem, specifically the problem of deciding whether player
1 has a strategy to force termination with probability ≥ 1/2, is in NP∩coNP.
Whether the problem can be solved in P is a well-known open problem, that in-
cludes as special cases several other longstanding problems (e.g., “parity games”
and “mean-payoff” games). We note (as is already known) that for finite SSGs,
Qual-TP itself is in polynomial time. We in fact show a more general result,
namely, that Qual-TP is in polynomial time for the class of 1-RSSGs that are
linearly-recursive.

Thus, we provide a new class of infinite-state SSGs whose qualitative decision
problem is at least as hard as the quantitative decision problem for finite SSGs,
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and quite possibly harder, but which we can still decide in NP∩coNP. We already
showed in [10, 8] that the even harder Quan-TP problem for 1-RSSGs can be
decided in PSPACE, and that improving that upper bound even to NP, even
for 1-RMCs, would resolve a long standing open problem in the complexity of
numerical computation, namely the square-root sum problem ([12]).

Most proofs are omitted due to space.

Related Work. Both MDPs and Stochastic Games have a vast literature (see
[20, 11]). As mentioned, we introduced RMDPs and RSSGs and studied both
quantitative and qualitative termination problems in [10]. We showed that for
multi-exit models these problems are undecidable, and that (qualitative) model
checking is undecidable even in the 1-exit case. Our earlier work [8, 9] developed
the theory and algorithms for RMCs and [6, 2] studied the related model of
probabilistic Pushdown Systems (pPDSs).

Our algorithms here were partly inspired by recent unpublished work by
Denardo and Rothblum [4, 5] on Multi-Matrix Multiplicative Systems. They
study families of square nonnegative matrices, which arise from choosing each
matrix row independently from a choice of rows, and they give LP characteriza-
tions of when the spectral radius of all matrices in the family will be ≥ 1 or > 1.
None of our results follow from theirs, but we use techniques similar to theirs,
along with other techniques, to obtain our upper bounds.

2 Definitions and Background

A Recursive Simple Stochastic Game (RSSG), A, is a tuple A = (A1, . . . ,Ak),
where each component Ai = (Ni, Bi,Yi, Eni, Exi, pli, δi) consists of:

– A set Ni of nodes , with a distinguished subset Eni of entry nodes and a
(disjoint) subset Exi of exit nodes.

– A set Bi of boxes , and a mapping Yi : Bi �→ {1, . . . , k} that assigns to every
box (the index of) a component. To each box b ∈ Bi, we associate a set of call
ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb =
{(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈BiCallb, Returni = ∪b∈BiReturnb,
and let Qi = Ni ∪ Calli ∪ Returni be the set of all nodes, call ports and
return ports; we refer to these as the vertices of component Ai.

– A mapping pli : Qi �→ {0, 1, 2} that assigns to every vertex a player (Player
0 represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

– A transition relation δi ⊆ (Qi × (R ∪ {⊥}) × Qi), where for each tuple
(u, x, v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Returni, the destination v ∈
(Ni \ Eni) ∪ Calli, and x is either (i) a real number pu,v ∈ (0, 1] (the tran-
sition probability) if pli(u) = 0, or (ii) x = ⊥ if pli(u) = 1 or 2. For
computational purposes we assume that the given probabilities pu,v are ra-
tional. Furthermore they must satisfy the consistency property: for every
u ∈ pl−1

i (0),
∑

{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or exit
node, neither of which have outgoing transitions, in which case by default∑

v′ pu,v′ = 0.
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We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the union
over all components. Thus, e.g., N = ∪k

i=1Ni is the set of all nodes of A, δ =
∪k

i=1δi the set of all transitions, etc.
An RSSG A defines a global denumerable Simple Stochastic Game (SSG)

MA = (V = V0 ∪ V1 ∪ V2,Δ, pl) as follows. The global states V ⊆ B∗ × Q of
MA are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence
of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗ ×Q and
transitions Δ are defined inductively as follows:

1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ Δ.
3. if 〈β, (b, en)〉∈V & (b, en)∈Callb, then 〈βb, en〉∈V & (〈β, (b, en)〉, 1, 〈βb, en〉)∈Δ.
4. if 〈βb, ex〉∈V &(b, ex)∈Returnb, then 〈β, (b, ex)〉∈V &(〈βb, ex〉, 1, 〈β, (b, ex)〉)∈Δ.

The mapping pl : V �→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is
in Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪ Ex. The set of vertices V
is partitioned into V0, V1, and V2, where Vi = pl−1(i). We consider MA with
various initial states of the form 〈ε, u〉, denoting this by Mu

A. Some states of MA

are terminating states and have no outgoing transitions. These are states 〈ε, ex〉,
where ex is an exit node.

An RSSG where V2 = ∅ (V1 = ∅) is called a maximizing (minimizing, respec-
tively) Recursive Markov Decision Process (RMDP); an RSSG where V1∪V2 = ∅
is called a Recursive Markov Chain (RMC) ([8, 9]); an RSSG where V0 ∪ V2 = ∅
is called a Recursive Graph or Recursive State Machine(RSM) ([1]). Define
1-RSSGs to be those RSSGs where every component has 1 exit, and likewise define
1-RMDPs and 1-RMCs. W.l.o.g., we can assume every component has 1 entry, be-
cause multi-entry RSSGs can be transformed to equivalent 1-entry RSSGs with
polynomial blowup (similar to RSM transformations [1]). This is not so for ex-
its, e.g., qualitative termination is undecidable for multi-exit RMDPs, whereas it
is decidable for 1-RSSGs (see [10]). This entire paper is focused on 1-RSSGs and
1-RMDPs. Accordingly, some of our notation is simpler than that used for general
RSSGs in [10]. We shall call a 1-RSSG (1-RMDP, etc.) linear if there in no path
of transitions in any component from any return port to a call port.

Our basic goal is to answer qualitative termination questions for 1-RSSGs:
“Does player 1 have a strategy to force the game to terminate at exit ex (i.e.,
reach 〈ε, ex〉), starting at 〈ε, u〉, with probability 1, regardless of how player 2
plays?”. A strategy σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi �→ V ,
where, given the history ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player
i’s turn to play a move), σ(ws) = s′ determines the next move of player i,
where (s,⊥, s′) ∈ Δ. (We could also allow randomized strategies.) Let Ψi denote
the set of all strategies for player i. A pair of strategies σ ∈ Ψ1 and τ ∈ Ψ2

induce in a straightforward way a Markov chain Mσ,τ
A = (V ∗,Δ′), whose set

of states is the set V ∗ of histories. Given an initial vertex u, suppose ex is the
unique exit node of u’s component. Let q∗,σ,τ

u be the probability that, in Mσ,τ
A ,

starting at initial state 〈ε, u〉 we will eventually terminate, by reaching some
w〈ε, ex〉, for w ∈ V ∗. From general determinacy results (e.g., [18]) it follows
that supσ∈Ψ1

infτ∈Ψ2 q∗,σ,τ
u = infτ∈Ψ2 supσ∈Ψ1

q∗,σ,τ
u . This is the value of the game
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starting at u, which we denote by q∗u. We are interested in the following problem:
Qual-TP: Given A, a 1-RSSG (or 1-RMDP), and given a vertex u in A, is q∗u = 1?

For a strategy σ ∈ Ψ1, let q∗,σ
u = infτ∈Ψ2 q∗,σ,τ

u , and for τ ∈ Ψ2, let q∗,·,τ
u =

supσ∈Ψ1
q∗,σ,τ
u . We showed in [10] that 1-RSSGs satisfy a strong form of memo-

ryless determinacy, namely, call a strategy Stackless & Memoryless (S&M) if it
depends neither on the history of the game nor on the current call stack, i.e.,
only depends on the current vertex. We call a game S&M-determined if both
players have S&M optimal strategies.

Theorem 1. ([10]) Every 1-RSSG termination game is S&M-determined.
(Moreover, there is an S&M strategy σ∗ ∈ Ψ1 that maximizes the value of q∗,σ

u

for all u, and likewise a τ∗ ∈ Ψ2 that minimizes the value of q∗,·,τ
u for all u.)

For multi-exit RMDPs and RSSGs things are very different. We showed that even
memoryless determinacy fails badly (there may not exist any optimal strategy
at all, only ε-optimal ones)), and furthermore Qual-TP is undecidable (see [10]).

Note that there are finitely many S&M strategies for player i: each picks one
edge out of each vertex belonging to player i. For 1-RMCs, where there are only
probabilistic vertices, we showed in [8] that Qual-TP can be decided in polyno-
mial time, using a spectral radius characterization for certain moment matrices
associated with 1-RMCs. It followed, by guessing strategies, that Qual-TP for
both maximizing and minimizing 1-RMDPs is in NP, and that Qual-TP for 1-
RSSGs is in ΣP

2 ∩ΠP
2 . We obtain far stronger upper bounds in this paper. We

will also use the following fact from [10].

Proposition 1. ([10]) We can decide in P-time if the value of a 1-RSSG termi-
nation game (and optimal termination probability in a maximizing or minimizing
1-RMDP) is exactly 0.

In ([10]) we defined a monotone system SA of nonlinear min-max equations for
1-RSSGs A, and showed that its Least Fixed Point solution yields the desired
probabilities q∗u . These systems generalize both the linear Bellman’s equations
for MDPs, as well as the nonlinear system of polynomial equation for RMCs
studied in [8]. Here we recall these systems of equations (with a slightly simpler
notation). Let us use a variable xu for each unknown q∗u, and let x be the vector
of all xu, u ∈ Q. The system SA has one equation of the form xu = P (x) for
each vertex u. Suppose that u is in component Ai with (unique) exit ex. There
are 5 cases based on the “Type” of u.

1. u ∈ Type1: u = ex. In this case: xu = 1.
2. u∈Typerand: pl(u)=0 & u∈(Ni\{ex})∪Returni: xu=

∑
{v|(u,pu,v ,v)∈δ} pu,vxv.

(If u has no outgoing transitions, this equation is by definition xu = 0.)
3. u ∈ Typecall: u = (b, en) is a call port: x(b,en) = xen · x(b,ex′), where ex′ ∈

ExY (b) is the unique exit of AY (b).
4. u∈Typemax: pl(u) = 1 & u∈(Ni \{ex})∪Returni: xu = max{v|(u,⊥,v)∈δ} xv.

(If u has no outgoing transitions, we define max(∅) = 0.)
5. u∈Typemin: pl(u) = 2 and u∈(Ni\{ex})∪Returni: xu = min{v|(u,⊥,v)∈δ} xv.

(If u has no outgoing transitions, we define min(∅) = 0.)
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In vector notation, we denote the system SA by x = P (x).
Given 1-RSSG A, we can easily construct SA in linear time. For vectors x,y ∈

Rn, define x ≤ y to mean xj ≤ yj for every coordinate j. Let q∗ ∈ Rn denote
the n-vector of q∗u’s.

Theorem 2. ([10]) Let x = P (x) be the system SA associated with 1-RSSG A.
Then q∗ = P (q∗), and for all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ ≤ q′ (in other
words, q∗ is the Least Fixed Point, of P : Rn

≥0 �→ Rn
≥0).

3 Qualitative Termination for 1-RMDPs in P-Time

We show that, for both maximizing 1-RMDPs and minimizing 1-RMDPs, qual-
itative termination can be decided in polynomial time. Please note: the two
cases are not symmetric. We provide distinct algorithms for each of them. An
important result for us is this:

Theorem 3. ([8]) Qual-TP for 1-RMCs is decidable in polynomial time.

We briefly indicate the key elements of that upper bound (please see [8] for more
details). Our algorithm employed a spectral radius characterization of moment
matrices associated with 1-RMCs. Given the system of polynomial equations
x = P (x) for a 1-RMC (no min and max types), its moment matrix B is the
square Jacobian matrix of P (x), whose (i, j)’th entry is the partial derivative
∂Pi(x)/∂xj , evaluated at the all 1 vector (i.e., xu ← 1 for u ∈ Q). We showed in
[8] that if the system x = P (x) is decomposed into strongly connected compo-
nents (SCCs) in a natural way, and we associate a moment matrix BC to each
SCC, C, then q∗u = 1 for every u where xu is in C, iff either u is of Type1, or [C
has successor SCCs and q∗v = 1 for all nodes v in any successor SCC of C, and
ρ(BC) ≤ 1, where ρ(M) is the spectral radius of a square matrix M ].

Theorem 4. Given a maximizing 1-RMDP, A, and a vertex u of A, we can
decide in polynomial time whether q∗u = 1. In other words, for maximizing
1-RMDPs, Qual-TP is in P.

Proof. Given a maximizing 1-RMDP, A, we shall determine for all vertices u,
whether q∗u = 1, q∗u = 0, or 0 < q∗u < 1. The system of equations x = P (x)
for A defines a labeled dependency graph, GA = (Q,→), as follows: the nodes
Q of GA are the vertices of A, and there is an edge u → v iff xv appears on
the right hand side of the equation xu = Pu(x). Each node u is labeled by its
Type. If u ∈ Typerand, i.e., u is a probabilistic vertex, and xv appears in the
weighted sum Pu(x) as a term pu,vxv, then the edge from u to v is labeled by
the probability pu,v. Otherwise, the edge is unlabeled.

We wish to partition the nodes of the dependency graph into three classes:
Z0 = {u | q∗u = 0}, Z1 = {u | q∗u = 1}, and Z$ = {u | 0 < q∗u < 1}. In our
algorithm we will use a fourth partition, Z?, to denote those nodes for which
we have not yet determined to which partition they belong. We first compute
Z0. By proposition 1, this can be done easily in P-time even for 1-RSSGs. Once
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we have computed Z0, the remaining nodes belong either to Z1 or Z$. Clearly,
Type1 nodes belong to Z1.
Initialize: Z1 ← Type1; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we do one “preprocessing” step to categorize some remaining “easy” nodes
into Z1 and Z$, as follows:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemax has some successor in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemax has all successors in (Z0 ∪ Z$)

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
until (there is no change to Z?)

The preprocessing step will not, in general, empty Z?, and we need to cate-
gorize the remaining nodes in Z?. We will construct a set of linear inequalities
(an LP without an objective function) which has a solution iff there are any
remaining node in Z? which belongs in Z1, and if so, the solution we obtain
to the LP will let us find and remove from Z? some more nodes that belong
in Z1.

Note that, if we can do this, then we can solve our problem, because all we
need to do is iterate: we repeatedly do a preprocessing step, followed by the LP
step to remove nodes from Z?, until no more nodes can be removed, at which
point we are done: the remaining nodes in Z? all belong to Z$.

For the LP step, restrict attention to the vertices remaining in Z?. These
vertices induce a subgraph of GA, call it G′

A. Call a remaining probabilistic
node u in Z? leaky if it does not have full probability on its outgoing transitions
inside G′

A. Note that this happens if and only if some of u’s outedges in GA

lead to nodes in Z1 (otherwise, if u had an outedge to a node in Z0 or Z$, it
would already have been removed from Z? during preprocessing). Let L denote
the set of remaining leaky nodes in Z?. We add an extra terminal node t to
G′

A, and for every u ∈ L we add a probabilistic edge u
pu,t→ t, where pu,t =

1−
∑

v∈Z?
pu,v.

W.l.o.g., assume that both entries of components and return nodes are prob-
abilistic nodes (this can easily be assured by minor adjustments to the input
1-RSSG). The LP has a variable yi for every node i ∈ Z? that is not Typemax,
and has a variables yi,j for every Typemax node i ∈ Z? and successor j ∈ Z? of
i. In addition there are flow variables fi,j,k for each node i ∈ Z?, and every edge
j → k in G′

A. The constraints are as follows.

1. For every j ∈ Typerand ∪ Typecall that is not a component entry or a re-
turn:

yj ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j
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2. For every j ∈ Typemax:∑
k

yj,k ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j

3. For every node i that is the entry of a component, say Ar:

yi ≥
∑

j=(b,en)∈Typecall ∧ Y (b)=r

yj

4. For every node i that is a return node, say of box b: yi ≥ yj, where j is the
call node of b.

5.
∑

i yi +
∑

i,j yi,j = 1.
6. y ≥ 0.

Regard the dependency graph as a network flow graph with capacity on each
edge i → j coming out of a max node equal to yi,j and capacity of edges i → j
coming out of the other vertices equal to yi. We set up one flow problem for each
i ∈ Z?, with source i, sink t and flow variables fijk.

7. For every vertex i, we have flow conservation constraints on the variables
fi,j,k, i.e.,

∑
k fi,j,k =

∑
k fi,k,j , for all nodes j ∈ Z?, j �= i, t.

8. Nonnegativity constraints: fi,j,k ≥ 0 for all i, j, k.
9. Capacity constraints: fi,j,k ≤ yj,k for every j ∈ Typemax with successor k,

and for every node i; and fi,j,k ≤ yj for every j ∈ Typerand ∪ Typecall and
successor k in G′

A and every node i.
10. Source constraints:

∑
k fi,i,k = yi/22m, for every i ∈ Typerand ∪ Typecall,

and
∑

k fi,i,k =
∑

j yi,j/22m, for i ∈ Typemax, where m is defined as follows.
Suppose our LP in constraints (1.-6.) has r variables and constraints, and
that its rational entries have numerator and denominator with at most l
bits. If there is a solution to (1.-6.), then (see, e.g., [13]), there is a rational
solution whose numerators and denominators require at most m = poly(r, l)
bits to encode, where poly(r, l) is a polynomial in r and l. Note r ∈ O(|G′

A|),
l is bounded by the number of bits required for the transition probabilities
pu,v in A, hence m is polynomial in the input size.

The purpose of constraints (7-10) is to ensure that every vertex with a nonzero
y variable can reach a leaky vertex in the subgraph of G′

A induced by the support
of the y solution vector.

Lemma 1. There exists a vertex u ∈ Z? such that q∗u = 1 if and only if the LP
constraints in (1.–10.) are feasible. Moreover, from a solution to the LP we can
find a (partial) strategy for the maximizing player that forces termination from
some such u with probability = 1.

So to summarize, we set up and solve the LP. If there is no solution, then for
all remaining vertices u ∈ Z?, q∗u < 1, and thus u ∈ Z$. If there is a solution,
use the above partial (randomized) strategy for some of the max nodes, leaving
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the strategy for other nodes unspecified. This allows us to set to 1 some vertices
(vertices in the bottom SCC’s of the resulting 1-RMC), and thus to move them
to Z1. We can then iterate the preprocessing step and then the LP step until we
reach a fixed point, at which point we have categorized all vertices u into one of
Z0, Z1 or Z$. �

Theorem 5. Given a minimizing 1-RMDP, A, and a vertex u of A, we can
decide in polynomial time whether q∗u = 1. In other words, for minimizing 1-
RMDPs, Qual-TP is in P.

Proof. As in the previous theorem, we want to classify the vertices into Z0,Z$,Z1,
this time under optimal play of the minimizing player. We again consider the de-
pendency graph GA of A. We will again use Z? to denote those vertices that have
not yet been classified.

Initialize: Z1 ← Type1; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we again do a “preprocessing” step, which is “dual” to that of the

preprocessing we did for maximizing 1-RMDPs, and categorizes some remaining
“easy” nodes into Z1 and Z$:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemin has some successor in Z$

then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemin has all successors in (Z1)

then Z? ← Z? \ {u};Z1 ← Z1 ∪ {u};
until (there is no change to Z?)

Note that, after the preprocessing step, for every edge u → v in GA from
u ∈ Z? to v �∈ Z?, it must be the case that v ∈ Z1 (otherwise, u would have
already been moved to Z$ or Z0). After preprocessing, we formulate a (different)
LP, which has a solution iff there are more nodes currently in Z? which belong
in Z$. Restrict attention to nodes in Z?, and consider the subgraph G′

A of GA

induced by the nodes in Z?. The LP has a variable yi for every remaining vertex
i ∈ Z? such that i �∈ Typemin, and has a variable yij for every (remaining) node
i ∈ Typemin, and successor j of i in G′

A. We shall need the following lemma:

Lemma 2. Consider a square nonnegative matrices B with at most n rows and
having rational entries with at most l bits each. If ρ(B) > 1 then ρ(B) ≥ 1+1/2m

where m = poly(n, l) and poly(n, l) is some polynomial in n and l.

Let d = (1 + 1/2m). The constraints of our LP are as follows. For the LP we
restrict attention to only those nodes j, i in Z?.

1. For every j ∈ Typerand that is not a component entry or a return, as well
as for every j ∈ Typecall:
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dyj ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j

2. For every j ∈ Typemin:

d
∑

k

yj,k ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j

3. For every node i that is the entry of a component, say Ar:

dyi ≤
∑

j=(b,en)∈Typecall ∧ Y (b)=r

yj

4. For every node i that is a return node, say of box b: dyi ≤ yj , where j is the
entry node of b.

5.
∑

i yi +
∑

i,j yi,j = 1.
6. y ≥ 0.

Lemma 3. There exists a vertex u ∈ Z? such that q∗u < 1 if and only if the
LP in (1. – 6.) is feasible. Moreover, from a solution to the LP we can find a
(partial) strategy that forces termination from some such u with probability < 1.

To summarize, we find Z0, then do preprocessing to determines the “easy” Z1

and Z$ nodes. Then, we set up and solve the LP, finding some more Z$ vertices,
removing them, and iterating again with a preprocessing and LP step, until we
exhaust Z? or there is no solution to the LP; in the latter case the remaining
vertices all belong to Z1. As for a strategy that achieves these assignments, in
each iteration when we solve the LP we fix the strategy for certain of the min
nodes in a way that ensures that some new vertices will be added to Z$ and
leave the other min nodes undetermined. Moreover, in preprocessing, if Typemin

nodes get assigned Z$ based on an outedge, we fix the strategy at that node
accordingly. !"

4 Qualitative Termination for 1-RSSGs in NP∩coNP

The following is a simple corollary of Theorems 1, 4, and 5.

Corollary 1. Given a 1-RSSG, A, and given a vertex u of A, we can decide in
both NP and coNP whether q∗u = 1. In other words, the qualitative termination
problem for 1-RSSGs is in NP∩coNP.

As the following theorem shows, it will not be easy to improve this upper bound.
Note that finite SSGs, defined by Condon [3], are a special case of 1-RSSGs (we
can simply identify the terminal node “1” of the SSG with the unique exit of a
single component with no boxes). Define the quantitative termination problem
for finite SSGs to be the problem of deciding, given a finite SSG G, and a vertex
u of G, whether q∗u ≥ 1/2. Condon [3] showed that this problem is in NP ∩ coNP,
and it has been a major open problem whether this upper bound can be improved
to P-time.
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Theorem 6. There is a P-time reduction from the quantitative termination
problem for finite SSGs to the qualitative termination problem for 1-RSSGs.

It is not at all clear whether there is a reduction from qualitative termination for
1-RSSGs to quantitative termination for finite SSGs. Thus, Qual-TP for 1-RSSGs
appears to constitute a new harder game problem in NP∩coNP.

5 Qualitative Termination for Linear 1-RSSGs in P-Time

We now show that for linear 1-RSSGs, there is a P-time algorithm for deciding
Qual-TP. This generalizes of course the case of flat games.

Theorem 7. Given a linear 1-RSSG, and a vertex u, there is a polynomial time
algorithm to decide whether q∗u = 1.

Proof. Given a linear 1-RSSG, A, consider its dependency graph GA. The nodes
of partitioned partitioned into 5 types: Typemax, Typemin, Typerand, Typecall,
and Type1. Let Q be the set of all vertices of GA. Our algorithm is depicted in
Figure 1. We claim that a call to Prune(Q) returns precisely those vertices in
Z1 = {u | q∗u = 1}. The proof is omitted due to space. !"

Prune(Q)
W ← Q;
repeat

W ← W\PruneMin(W );
W ← PruneMax(W );

until (there is no change in W );
return W ;

PruneMin(W)
S ← W \ Type1;
repeat

if there is a node u in S ∩ (Typerand ∪ Typemax) that has a
successor in W \ S, then S ← S \ {u};

if there is a node u in S ∩ (Typemin ∪ Typecall) that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

PruneMax(W)
S ← W ;
repeat

if there is a node u in S ∩ (Typerand ∪ Typemin ∪ Typecall) that has a
successor in Q \ S, then S ← S \ {u};

if there is a node u in S ∩ Typemax that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

Fig. 1. P-time qualitative termination algorithm for linear 1-RSSGs
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The algorithm applies more generally to piecewise linear 1-RSSGs, where every
vertex v ∈ Typecall has at most one successor in the dependency graph GA that
is in the same SCC as v.
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Abstract. We relate the expressive power of Datalog and constraint sat-
isfaction with infinite templates. The relationship is twofold: On the one
hand, we prove that every non-empty problem that is closed under disjoint
unions and has Datalog width one can be formulated as a constraint sat-
isfaction problem (CSP) with a countable template that is ω-categorical.
Structures with this property are of central interest in classical model the-
ory. On the other hand, we identify classes of CSPs that can be solved
in polynomial time with a Datalog program. For that, we generalise the
notion of the canonical Datalog program of a CSP, which was previously
defined only for CSPs with finite templates by Feder and Vardi. We show
that if the template Γ is ω-categorical, then CSP(Γ ) can be solved by an
(l, k)-Datalog program if and only if the problem is solved by the canon-
ical (l, k)-Datalog program for Γ . Finally, we prove algebraic characteri-
sations for those ω-categorical templates whose CSP has Datalog width
(1, k), and for those whose CSP has strict Datalog width l.

Topic: Logic in Computer Science, Computational Complexity.

1 Introduction

In a constraint satisfaction problem we are given a set of variables and a set
of constraints on these variables, and want to find an assignment of values to
the variables such that all the constraints are satisfied. The computational com-
plexity of the constraint satisfaction problem depends on the constraint language
that is used in the instances of the problem. Constraint satisfaction problems can
be modeled as homomorphism as shown below; here we refer to [18]. For detailed
formal definitions of relational structures and homomorphisms, see Section 2. Let
Γ be a (finite or infinite) structure with a relational signature τ . Then the con-
straint satisfaction problem (CSP) for Γ is the following computational problem.

CSP(Γ )
INSTANCE: A finite τ -structure S.
QUESTION: Is there a homomorphism from S to Γ ?

The structure Γ is called the template of the constraint satisfaction problem
CSP(Γ ). For example, if the template is the dense linear order of the rational
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numbers (Q, <), then it is easy to see that CSP(Γ ) is the well-known problem
of digraph-acyclicity.

A class C is said to be closed under inverse homomorphisms (sometimes also
anti-monotone) if B ∈ C implies that A ∈ C, whenever there is a homomor-
phism from A to B [19]. Clearly, the set of all positive instances of a constraint
satisfaction problem is closed under inverse homomorphisms. Conversely, if the
set of positive instances of a computational problem is closed under inverse ho-
momorphisms and disjoint unions, then it can be formulated as a constraint
satisfaction problem with a countably infinite template. This is an easy obser-
vation due to Feder and Vardi, which shows in particular that every constraint
satisfaction problem can be formulated with an at most countable structure.
For finite templates Γ , the complexity of CSP(Γ ) attracted a lot of attention in
recent years [14, 3,20,18, 30,24,23,13,15,7,25]; this list covers only a very small
fraction of relevant publications, and we refer to a recent survey paper for a more
complete account [26]. Feder and Vardi [18] conjectured that every constraint
satisfaction problem is either in P or NP-complete. This so-called dichotomy
conjecture is still open.

Datalog. Datalog is the language of logic programs without function symbols, see
e.g. [25,17]. Datalog is an important algorithmic tool to study the complexity of
constraint satisfaction problems; for constraint satisfaction with finite templates,
this was for instance investigated by Feder and Vardi [18]. Let τ be a relational
signature; the relation symbols in τ will also be called the input relation symbols.
A Datalog program consists of a finite set of Horn clauses C1, . . . , Ck (they are
also called the rules of the Datalog program) containing atomic formulas with
relation symbols from the signature τ , together with atomic formulas with some
new relation symbols. These new relation symbols are called IDBs (short for
intensional database). Each clause is a set of literals where at most one of these
literals is positive. The positive literals do not contain an input relation. The
semantics of a Datalog program can be specified using fixed point operators, as
e.g. in [17,25]. We show an example.

tc(x, y) ← edge(x, y)
tc(x, y) ← tc(x, u), tc(u, y)

false ← tc(x, x)

Here, the binary relation edge is the only input relation, tcis a binary relation
computed by the program, and false is a 0-ary relation computed by the program.
The Datalog program computes with the help of the relation tcthe transitive
closure of the edges in the input relation, and derives false if and only if the input
(which can be seen as a digraph defined on the variables) contains a directed
cycle. In general, we say that a problem is solved by a Datalog program, if the
distinguished 0-ary predicate false is derived on an instance of the problem if
and only if the instance has no solution.

We say that a Datalog program Φ has width (l, k), 0 ≤ l ≤ k, if it has at most
l variables in rule heads and at most k variables per rule (we also say that Φ is
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an (l, k)-Datalog program). A problem is of width (l, k), if it can be solved by an
(l, k)-Datalog program. The problem of acyclicity has for instance width (2, 3),
as demonstrated above. A problem has width l if it is of width (l, k) for some
k ≥ l, and it is of bounded width, if it has width l for some l ≥ 0. It is easy to see
that all bounded width problems are tractable, since the rules can derive only a
polynomial number of facts. It is an open question whether there is an algorithm
that decides for a given finite template T whether CSP(T ) can be solved by a
Datalog program of width (l, k). Similarly, we do not know how to decide width
l, or bounded width, with the notable exception of width one [18] (see also [15]).

Results. We prove that every non-empty problem that is closed under disjoint
unions and has Datalog width one can be formulated as a constraint satisfaction
problem with an ω-categorical template Γ (Φ). A structure is called ω-categorical,
if its first-order theory has only one countable model, up to isomorphism. For ω-
categorical templates we can apply the so-called algebraic approach to constraint
satisfaction [24, 7, 26]. This approach was originally developed for constraint
satisfaction with finite templates, but several fundamental theorems also hold
for ω-categorical templates [6,4].

Next, we investigate which constraint satisfaction problems can be solved with
a Datalog program in polynomial time. An important tool to characterize the
expressive power of Datalog for constraint satisfaction is the notion of canonical
Datalog programs. This concept was introduced by Feder and Vardi for finite
templates; we present a generalization to ω-categorical templates. We prove that
a constraint satisfaction problem with an ω-categorical template can be solved
by an (l, k)-Datalog program if and only if the canonical (l, k)-Datalog program
for Γ solves the problem.

Next, we prove a characterization of constraint satisfaction problems with ω-
categorical templates Γ having width (1, k), generalizing a result from [15]. A
special case of width 1 problems are problems that can be decided by establishing
arc-consistency (sometimes also called hyperarc-consistency), which is a well-
known and intensively studied technique in artificial intelligence. We show that
if a constraint satisfaction problem with an ω-categorical template can be decided
by establishing arc-consistency, then it can also be formulated as a constraint
satisfaction problem with a finite template.

Finally, we characterize strict width l, a notion that was again introduced
for finite templates and for l ≥ 2 in [18]; for a formal definition see Section 6.
Jeavons et al. [23] say that in this case establishing strong k-consistency ensures
global consistency. For finite templates, strict width l can be characterized by
an algebraic closure condition [18, 23]. In Section 6 we generalize this result to
ω-categorical templates.

Applications and Related Work. The results presented here in particular ap-
ply to computational problems that arise in the literature on binary relation
algebras [28, 16]. Well-known examples of such binary relation algebras are the
point algebra, the containment algebra, Allen’s interval algebra, and the left linear
point algebra. It is well-known [2, 16] that these relation algebras have concrete
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representations that are ω-categorical structures with a binary relational signa-
ture. The constraint satisfaction problems for these structures received a lot of
attention [12,21,28], and one of the most studied algorithms in this area is the
path-consistency algorithm. Translated into this setting, our results imply an
algebraic characterization of those relation algebras with an ω-categorical rep-
resentation where the path-consistency algorithm establishes global consistency
(this corresponds to strict width two).

2 Definitions

A relational signature τ is a (here always at most countable) set of relation
symbols Ri, each associated with an arity ki. A (relational) structure Γ over
relational signature τ (also called τ -structure) is a set DΓ (the domain) together
with a relation Ri ⊆ Dki

Γ for each relation symbol of arity ki. If necessary,
we write RΓ to indicate that we are talking about the relation R belonging
to the structure Γ . For simplicity, we denote both a relation symbol and its
corresponding relation with the same symbol. For a τ -structure Γ and R ∈ τ it
will also be convenient to say that R(u1, . . . , uk) holds in Γ iff (u1, . . . , uk) ∈ R.
We sometimes use the shortened notation x for a vector x1, . . . , xn of any length.

Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′ is a function f
fromDΓ toDΓ ′ such that for each n-ary relation symbol in τ and each n-tuple a, if
a ∈ RΓ , then (f(a1), . . . , f(an)) ∈ RΓ ′

. In this casewe say that themap f preserves
the relation R. Two structures Γ1 and Γ2 are called homomorphically equivalent,
if there is a homomorphism from Γ1 to Γ2 and a homomorphism from Γ2 to Γ1. A
strong homomorphism f satisfies the stronger condition that for eachn-ary relation
symbol in τ and each n-tuple a, a ∈ RΓ if and only if (f(a1), . . . , f(an)) ∈ RΓ ′

.
An embedding of a Γ in Γ ′ is an injective strong homomorphism, an isomorphism
is a surjective embedding. Isomorphisms from Γ to Γ are called automorphisms.

The disjoint union of two τ -structures Γ and Γ ′ is a τ -structure that is de-
fined on the disjoint union of the domains of Γ and Γ ′. A relation holds on
vertices of the disjoint union if and only if it either holds in Γ or in Γ ′. A τ -
structure is called connected iff it is not the disjoint union of two τ -structures
with a non-empty domain.

We can use first-order formulas over the signature τ to define relations over
a given τ -structure Γ : for a formula ϕ with k free variables the corresponding
relation R is the set of all k-tuples satisfying the formula ϕ in Γ . If we add
relations to a given τ -structure Γ , then the resulting structure Γ ′ with a larger
signature τ ′ ⊃ τ is called a τ ′-expansion of Γ , and Γ is called a τ-reduct of Γ ′.
This should not be confused with the notions of extension and restriction. Recall
from [22]: If Γ and Γ ′ are structures of the same signature, with DΓ ⊆ DΓ ′ , and
the inclusion map is an embedding, then we say that Γ ′ is an extension of Γ ,
and that Γ a restriction of Γ ′.

A first-order formula ϕ is said to be primitive positive (we say ϕ is a p.p.-
formula, for short) iff it is of the form ∃x(ϕ1(x) ∧ · · · ∧ ϕk(x)) where ϕ1, . . . , ϕk

are atomic formulas (which might be equality relations of the form x = y).
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3 Countably Categorical Templates

The concept of ω-categoricity is of central interest in model theory [22, 8]. A
countable structure Γ is called ω-categorical, if all countable models of the first-
order theory of Γ are isomorphic to Γ . The following is a well-known and deep
connection that shows that ω-categoricity of Γ is a property of the automorphism
group of Γ , without reference to concepts from logic (see [22]). An orbit of n-
subsets in Γ is a largest set O of subsets of Γ of cardinality n such that for all
S1, S2 ∈ O there is an automorphism a of Γ such that a(S1) = S2.

Theorem 1 (Engeler, Ryll-Nardzewski, Svenonius; see e.g. [22]). The
following properties of a countable structure Γ are equivalent:

1. the structure Γ is ω-categorical;
2. for each n ≥ 1, there are finitely many orbits of n-subsets in Γ ;
3. for each n ≥ 1, there are finitely many inequivalent first-order formulas with

n free variables over Γ .

Examples. An example of an ω-categorical directed graph is the set of rational
numbers with the dense linear order (Q, <). The (tractable) constraint satisfac-
tion problem for this structure is digraph acyclicity. Clearly, there is only one
orbit of subsets of cardinality n, and by Theorem 1 the structure is ω-categorical.

Another important example it the universal triangle free graph �. This struc-
ture is the up to isomorphism unique countable K3-free graph with the following
extension property: whenever S is a subset and T is a disjoint independent subset
of the vertices in �, then � contains a vertex v /∈ S∪T that is linked to no vertex
in S and to all vertices in T . Since the extension property can be formulated by
an (infinite) set of first-order sentences, it follows that � is ω-categorical [22].
The structure � is called the universal triangle free graph, because every other
countable triangle free graph embeds into �. Hence, CSP(�) is clearly tractable.
However, this simple problem can not be formulated as a constraint satisfaction
problem with a finite template [18, 30].

4 Constraint Satisfaction for Datalog

In this section we show that every class of structures with Datalog width one
can be formulated as a constraint satisfaction problem with an ω-categorical
template. A Datalog program of width one accepts a class of structures that can
be described by a sentence of a fragment of existential second order logic called
monotone monadic SNP without inequalities (MMSNP). We show that every
problem in MMSNP can be formulated as the constraint satisfaction problem
for an ω-categorical template.

An SNP sentence is an existential second-order sentence with a universal
first-order part. The first order part might contain the existentially quantified
relation symbols and additional relation symbols from a given signature τ (the
input relations). We shall assume that SNP formulas are written in negation
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normal form, i.e., the first-order part is written in conjunctive normal form, and
each disjunction is written as a negated conjunction of positive and negative
literals. The class SNP consists of all problems on τ -structures that can be
described by an SNP sentence.

The class MMSNP, defined by Feder and Vardi, is the class of problems that
can be described by an SNP sentence with the additional requirements that the
existentially quantified relations are monadic, that every input relation symbol
occurs negatively in the SNP sentence, and that it does not contain inequalities.
Every problem in MMSNP is under randomized Turing reductions equivalent
to a constraint satisfaction problem with a finite template [18]; a deterministic
reduction was recently announced by Kun [27]. It is easy to see that MMSNP
contains all constraint satisfaction problems with finite templates. Thus, MM-
SNP has a dichotomy if and only if CSP has a dichotomy.

It is easy to see that (1, k)-Datalog is contained in MMSNP: We introduce
an existentially quantified unary predicate for each of the unary IDBs in the
Datalog program. It is then straightforward to translate the rules of the Datalog
program into first-order formulas with at most k first-order variables. We now
want to prove that every problem in MMSNP can be formulated as a constraint
satisfaction problem with a countably categorical template. In full generality,
this cannot be true for two reasons. Firstly, there are MMSNP sentences that are
false in all structures, whereas the instance without any constraints is contained
in every constraint satisfaction problem with a non-empty template. Secondly,
whereas constraint satisfaction problems are always closed under disjoint union,
this is not necessarily the case for problems in MMSNP (a simple example of
a MMSNP problem not closed under disjoint union is the one defined by the
formula ∀x, y ¬(P (x) ∧Q(x))). Hence we shall assume that we are dealing with
a non-empty problem in MMSNP that is closed under disjoint union.

To prove the claim under this assumptions, we need a recent model-theoretic
result of Cherlin, Shelah and Shi [10]. Let N be a finite set of finite structures
with a relational signature τ . In this paper, a τ -structure Δ is called N-free if
there is no homomorphism from any structure in N to Δ. A structure Γ in a class
of countable structures C is called universal for C, if it contains all structures in
C as an induced substructure.

Theorem 2 (of [10]). Let N be a finite set of finite connected τ-structures.
Then there is an ω-categorical universal structure Δ that is universal for the
class of all countable N-free structures.

Cherlin, Shelah and Shi proved this statement for (undirected) graphs, but the
proof does not rely on this assumption on the signature, and works for arbitrary
relational signatures. The statement in its general form also follows from a result
in [11]. We use this ω-categorical structure to prove the following.

Theorem 3. Every non-empty problem in MMSNP that is closed under disjoint
unions can be formulated as CSP(Γ ) with an ω-categorical template Γ .

Proof. Let Φ be a MMSNP sentence with input signature τ whose set M of
finite models is closed under disjoint unions. We have to find an ω-categorical
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τ -structure Γ , such that M equals CSP(Γ ). Recall the assumption that Φ is writ-
ten in negation normal form. Let P1, . . . , Pk be the existential monadic predicates
in Φ. By monotonicity, all such literals with input relations are positive. For each
existential monadic relation Pi we introduce a relation symbol P ′

i , and replace
negative literals of the form ¬Pi(x) in Φ by P ′

i (x). We shall denote the formula
obtained after this transformation by Φ′. Let τ ′ be the signature containing the
input relations from τ , the existential monadic relations Pi, and the symbols P ′

i

for the negative occurrences of the existential relations. We define N to be the
set of τ ′-structures containing for each clause ¬(L1 ∧ · · · ∧Lm) in Φ′ the canon-
ical database [9] of (L1 ∧ · · · ∧ Lm). We shall use the fact that a τ ′-structure S
satisfies a clause ¬(L1 ∧ · · · ∧ Lm) if and only if the the canonical database of
(L1 ∧ · · · ∧ Lm) is not homomorphic to S.

We can assume without loss of generality that Φ is minimal in the sense that if
we remove a literal from some of the clauses the formula obtained is inequivalent.
We shall show that then all structures in N are connected. Let us suppose that
this is not the case. Then there is a clause C in Φ that corresponds to a non
connected structure in N. The clause C can be written as ¬(E ∧ F ) where the
set X of variables in E and the set Y of variables in F do not intersect. Consider
the formulas ΦE and ΦF obtained from Φ by replacing C by ¬E and C by ¬F ,
respectively. By minimality of Φ there is a structure ME that satisfies Φ but
not ΦE , and similarly there exists a structure MF that satisfies Φ but not ΦF .
By assumption, the disjoint union M of ME and MF satisfies Φ. Then there
exists a τ ′′-expansion M ′′ of M where τ ′′ = τ ∪ {P1, . . . , Pk} that satisfies the
first-order part of Φ. Consider the substructures M ′′

E and M ′′
F of M ′′ induced

by the vertices of ME and MF . We have that M ′′
E does not satisfy the first-

order part of ΦE (otherwise ME would satisfy ΦE). Consequently, there is an
assignment sE of the universal variables that falsifies some clause. This clause
must necessarily be ¬E (since otherwise M ′′ would not satisfy the first-order
part of Φ). By similar reasoning we can infer that there is an assignment sF
of the universal variables of Φ to elements of MF that falsifies ¬F . Finally, fix
any assignment s that coincides with sE over X and with sF over Y (such an
assignment exists because X and Y are disjoint). Clearly, s falsifies C and M
does not satisfy Φ, a contradiction. Hence, we shall assume that every structure
in N is connected.

Then Theorem 2 asserts the existence of a N-free ω-categorical τ ′-structure
Δ that is universal for all N-free structures. We use Δ to define the template
Γ for the constraint satisfaction problem. To do this, restrict the domain of Δ
to those points that have the property that either Pi or P ′

i holds (but not both
Pi and P ′

i ) for all existential monadic predicates Pi. The resulting structure Δ′

is non-empty, since the problem defined by Φ is non-empty. Then we take the
reduct of Δ′ that only contains the input relations from τ . It is well-known [22]
that reducts and first-order restrictions of ω-categorical structures are again ω-
categorical. Hence the resulting τ -structure Γ is ω-categorical.

We claim that an τ -structure S satisfies Φ if and only if S ∈ CSP(Γ ). Let S
be an structure that has a homomorphism h to Γ . Let S′ be the τ ′-expansion
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of S such that for each i = 1, . . . , k the relation Pi(x) holds in S′ if and only
if Pi(h(x)) holds in Δ′, and P ′

i (x) holds in S′ if and only if P ′
i (h(x)) holds in

Δ′. Clearly, h defines a homomorphism from S′ to Δ′ and also from S to Δ.
In consequence, none of the structures from N maps to S′ (otherwise it would
also map to Δ). Hence, the τ ′′-reduction of S′ satisfies all the clauses of the
first-order part of Φ and hence S satisfies Φ.

Conversely, let S be a structure satisfying Φ. Consequently, there exists a
τ ′-expansion S′ of S that satisfies the first-order part of Φ′ and where for every
element x exactly one of Pi(x) or P ′

i (x) holds. Clearly, no structure in N is ho-
momorphic to the expanded structure, and by universality of Γ the τ ′-structure
S′ is an induced substructure of Δ. Since for every point of S′ exactly one of
Pi an P ′

i holds, S′ is also an induced substructure of Δ′. Consequently, S is
homomorphic to its τ -reduct Γ . This completes the proof. !"

In particular, we proved the following.

Theorem 4. Every non-empty problem in (1, k)-Datalog that is closed under
disjoint unions can be formulated as a constraint satisfaction problem with an
ω-categorical template.

For a typical example of a constraint satisfaction problem in MMSNP, which
cannot be described with a finite template [30], and which is not in (l, k)-Datalog
for all 1 ≤ l ≤ k, consider the following computational problem. Given is a finite
graph S, and we want to test whether we can partition the vertices of S in two
parts such that each part is triangle-free. The ω-categorical template that is used
in the proof of Theorem 3 consists of two copies C1 and C2 of �, where we add an
undirected edge from all vertices in C1 to all vertices in C2. The corresponding
constraint satisfaction problem is NP-hard [4, 1].

5 Canonical Datalog Programs

In this section we define the canonical Datalog program of a constraint satisfac-
tion problem with an ω-categorical template, and prove that such a problem can
be solved by an (l, k)-Datalog program if and only if the canonical (l, k)-Datalog
program solves the problem.

For finite templates T with a relational signature τ the canonical Datalog
program of for CSP(T ) was defined in [18]. This motivates the following defi-
nition of canonical Datalog programs for constraint satisfaction problems with
ω-categorical templates Γ . The canonical (l, k)-Datalog program contains an IDB
for every at most l-ary primitive positive definable relation. The empty 0-ary re-
lation serves as false. We introduce a rule R ← R1, . . . , Rj into the canonical
Datalog program if R is an IDB, the corresponding implication is valid in Γ ,
and contains at most k variables. If Γ is ω-categorical, Theorem 1 asserts that
there are finitely many inequivalent such implications, and hence the canonical
(l, k)-Datalog program is finite. Theorem 1 also implies that on a given instance
the Datalog program can only derive a finite number of facts. This number is



654 M. Bodirsky and V. Dalmau

polynomial in the size of the instance, and thus the Datalog program can be
evaluated in polynomial time. Observe that all stages during the evaluation of a
canonical Datalog program on a given instance give rise to another instance S′ of
CSP(Γ ′), where Γ ′ is the expansion of Γ by all at most l-ary primitive positive
definable relations, and where S′ contains all the tuples from these relations that
are inferred so far [17].

Due to space limitations, the proof of the following theorem is omitted in this
extended abstract.

Theorem 5. A constraint satisfaction problem CSP(Γ ) with an ω-categorical
template Γ can be solved with an (l, k)-Datalog program if and only if the canon-
ical (l, k)-Datalog program solves CSP(Γ ).

6 Datalog for Constraint Satisfaction

We characterize the ω-categorical templates whose constraint satisfaction prob-
lems have bounded width. These characterizations generalism algebraic charac-
terizations of Datalog width that are known for constraint satisfaction with finite
templates. However, not all results remain valid for infinite templates: It is well-
known [18] that the constraint satisfaction of a finite template has Datalog width
one if and only if the so-called arc-consistency procedure solves the problem. This
is no longer true for infinite templates. We characterize both width one and the
expressive power of the arc-consistency procedure for infinite ω-categorical tem-
plates, and present an example that shows that the two concepts are different.
We also present an algebraic characterization of strict width l. Note that width
one and strict width k are the only concepts of bounded Datalog width that are
known to be decidable for finite templates.

First, we prove a crucial property of ω-categorical structures needed sev-
eral times later. The proof contains a typical proof technique for ω-categorical
structures.

Lemma 1. Let Γ be a finite or infinite ω-categorical structure with relational
signature τ , and let Δ be a countable relational structure with the same signature
τ . If there is no homomorphism from Δ to Γ , then there is a finite substructure
of Δ that does not homomorphically map to Γ .

Proof. Suppose every finite substructure of Δ homomorphically maps to Γ . We
show the contraposition of the lemma, and prove the existence of a homomor-
phism from Δ to Γ . Let a1, a2, . . . be an enumeration of Δ. We construct a
directed acyclic graph with finite out-degree, where each node lies on some level
n ≥ 0. The nodes on level n are equivalence classes of homomorphisms from the
substructure of Δ induced by a1, . . . , an to Γ . Two such homomorphisms f and
g are equivalent, if there is an automorphism α of Γ such that fα = g. Two
equivalence classes of homomorphisms on level n and n+1 are adjacent, if there
are representatives of the classes such that one is a restriction of the other. The-
orem 1 asserts that there are only finitely many orbits of subsets of cardinality
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k in the automorphism group of the ω-categorical structure Γ , for all k ≥ 0
(clearly, this also holds if Γ is finite). Hence, the constructed directed graph has
a finite out-degree. By assumption, there is a homomorphism from the structure
induced by a1, a2, . . . , an to Γ for all n ≥ 0, and hence the directed graph has
vertices on all levels. König’s Lemma asserts the existence of an infinite path in
the tree, which defines a homomorphism from Δ to Γ . !"

6.1 Width Zero

An example of a template whose constraint satisfaction problem has width 0 is
the universal triangle-free graph �. Since there is a primitive positive sentence
that states the existence of a triangle in a graph, and since every graph without
a triangle is homomorphic to �, there is a (finite) Datalog program of width 0
that solves CSP(�). In general, it is easy to see that a constraint satisfaction
problem has width 0 if and only if there is a finite set of obstructions for CSP(Γ ),
i.e., a finite set N of finite τ -structures such that every finite τ -structure A is
homomorphic to Γ if and only if no substructure in N is homomorphic to A. For
finite templates, this is closely related to results in [14, 31, 3].

6.2 Width One

Let Γ be an ω-categorical structure with relational signature τ , and Φ be the
canonical (1, k)-Datalog program for Γ . By Theorem 4, the class of τ -structures
accepted by Φ is itself a constraint satisfaction problem with an ω-categorical
template. We denote this template by Γ (1, k). The proof follows easily from
Theorem 5, Theorem 4, and Lemma 1, and can be found in the long version of
this paper.

Theorem 6. Let Γ be ω-categorical. A constraint satisfaction problem CSP(Γ )
can be solved by an (1, k)-Datalog program if and only if there is a homomorphism
from Γ (1, k) to Γ .

The arc-consistency procedure (AC) is an algorithm for constraint satisfaction
problems that is intensively studied in Artificial Intelligence. It can be described
as the subset of the canonical Datalog program of width one that consists of
all rules with bodies containing at most one non-IDB. An instance that is sta-
ble under inferences of this Datalog program is called arc-consistent. For finite
templates T it is known that the arc-consistency procedure solves CSP(T ) if
and only if CSP(T ) has width one [18]. For infinite structures, this is no longer
true: consider for instance CSP(�), which has width 0, but cannot be solved by
the arc-consistency procedure. The reason is that � has only one orbit, and we
thus have to consider at least three relations in the input to infer that the input
contains triangle.

Theorem 7. Let Γ be an ω-categorical relational structure. If CSP(Γ ) is solved
by the arc-consistency algorithm, then Γ is homomorphically equivalent to a
finite structure.
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Proof. Since Γ is ω-categorical, the automorphism group of Γ has a finite num-
ber of orbits (i.e., orbits of 1-subsets) O1, . . . , On. We define the orbit struc-
ture of Γ , which is a finite relational τ -structure whose vertices S1, . . . , S2n−1

are the nonempty subsets of {O1, . . . , On}, and where a k-ary relation R from
τ holds on Si1 , . . . , Sik

if for every vertex vj in an orbit from Sij there are
vertices v1, . . . , vj−1, vj+1, . . . , vk from Si1 , . . . , Sij−1 , Sij+1 , . . . , Sik

, respectively,
such that R holds on v1, . . . , vk in Γ . Every unary relation that can be inferred
by the arc-consistency procedure corresponds to a list of orbits of Γ , because Γ
is ω-categorical. Since every rule application of the procedure involves a single
input relation, the definition of the orbit structure implies that the Datalog pro-
gram cannot infer any new relations on the orbit structure, and therefore the
orbit structure is arc-consistent. Since the arc-consistency procedure solves the
constraint satisfaction problem for Γ , the orbit structure is homomorphic to Γ .

Next we show that there is also a homomorphism from Γ to the orbit struc-
ture. Every finite substructure S of Γ is a satisfiable instance of CSP(Γ ), and
hence the arc-consistency procedure does not derive false on it. Consider the
arc-consistent instance computed by the arc-consistency procedure on S. For
each variable v we have computed a set of unary predicates, that corresponds
to a non-empty subset of orbits, and that tells us to which element of the orbit
structure we can map v. By definition of the orbit structure, this mapping is
a homomorphism, because if there is a constraint that is not supported in the
orbit structure, then the arc-consistency algorithm would have removed at least
one of the orbits in the orbit list for the involved variable. We have thus shown
that all finite substructures S of Γ homomorphically map to the orbit structure.
Since Γ is countable and the orbit structure is finite, we conclude with Lemma 1
that there is a homomorphism from Γ to the orbit structure. !"

6.3 Strict Width l

In this section we present an algebraic characterization of strict bounded width
for constraint satisfaction problems with an ω-categorical template Γ . An in-
stance S of a constraint satisfaction problem that is computed by the canonical
(l, k)-Datalog program is called globally consistent, if every homomorphism from
an induced substructure of S to Γ can be extended to homomorphism from S to
Γ . If for some k ≥ l all instances of CSP(Γ ) that are computed by the canonical
(l, k)-program are globally consistent, we say that Γ has strict width l.

The algebraic approach to constraint satisfaction rests on the notion of poly-
morphisms. Let Γ be a relational structure with signature τ . A polymorphism is
a homomorphism from Γ l to Γ , for some l, where Γ l is a relational τ -structure
defined as follows. The vertices of Γ l are l-tuples over elements from VΓ , and k
such l-tuples (vi

1, . . . , v
i
l ), 1 ≤ i ≤ l, are joined by a k-ary relation R from τ iff

(v1
j , . . . , v

k
j ) is in RΓ , for all 1 ≤ j ≤ l.

We say that an operation f is a weak near-unanimity operation (short, wnu-
operation), if it satisfies the identities f(x, . . . , x, y, x, . . . , x) = f(x, . . . , x), i.e.,
in the case that the arguments have the same value x except at one argument
position, the function has the value f(x, . . . , x). In other words, the value y of the
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exceptional argument does not influence the value of the function f . For every
subset A of Γ , we say that an operation is idempotent on A if f(a, . . . , a) = a
for all a ∈ A. If a wnu-operation f is idempotent on the entire domain, then f
is called a near-unanimity operation (short, nu-operation).

Feder and Vardi [18] proved that a finite template Γ has a l + 1-ary near-
unanimity operation (they call it the l + 1-mapping property) if and only if
CSP(Γ ) has strict width l. Another proof of this theorem was given in [23]. It
is stated there that the proof extends to arbitrary infinite templates, if we want
to characterize bounded strict width on instances of the constraint satisfaction
problem that might be infinite. However, we would like to describe the complexity
of constraint satisfaction problems with finite instances.

In fact, there are structures that do not have a nu-operation, but have A-
idempotent wnu-operations for all finite subsets A of Γ . One example for such a
structure is the universal triangle-free graph �. A theorem by Larose and Tardif
shows that every finite or infinite graph with a nu-operation is bipartite [29].
Since the universal triangle-free graph contains all cycles of length larger than
three, it therefore cannot have a nu-operation. However the universal triangle-
free graph has strict width 2. Indeed, for any instance S accepted by the canonical
(2, 3)-Datalog program, every partial mapping from S to � satisfying all the
facts derived by the program (and in particular not containing any triangle) can
be extended to a complete homomorphisms – this follows from the extension
properties of the template.

The following theorem characterizes strict width l, l ≥ 2, for constraint sat-
isfaction with ω-categorical templates. The proof is based on the same ideas as
the proofs in [18] and [23]. However, we need some model theoretic adjustments
to make these ideas work on ω-categorical templates. Due to space limitations,
we omit the proof in this extended abstract. The equivalence of (1) and (2) is
also shown in [5].

Theorem 8. Let Γ be an ω-categorical structure with relational signature τ of
bounded maximal arity. Then the following are equivalent, for l ≥ 2:

1. For every finite subset A of Γ there is a l + 1-ary wnu-operation that is
idempotent on A.

2. Every primitive positive formula is in Γ equivalent to a conjunction of at
most l-ary primitive positive formulas.

3. CSP(Γ ) has strict width l.

Acknowledgements. We are grateful to anonymous referees.
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Abstract. We revisit monotone planar circuits MPCVP, with special
attention to circuits with cylindrical embeddings. MPCVP is known to
be in NC3 in general, and in LogDCFL for the special case of upward
stratified circuits. We characterize cylindricality, which is stronger than
planarity but strictly generalizes upward planarity, and make the char-
acterization partially constructive. We use this construction, and four
key reduction lemmas, to obtain several improvements. We show that
monotone circuits with embeddings that are stratified cylindrical, cylin-
drical, planar one-input-face and focused can be evaluated in LogDCFL,
AC1(LogDCFL), LogCFL and AC1(LogDCFL) respectively. We note that
the NC3 algorithm for general MPCVP is in AC1(LogCFL) = SAC2. Fi-
nally, we show that monotone circuits with toroidal embeddings can,
given such an embedding, be evaluated in NC.

1 Introduction

The Circuit Value Problem CVP is a well-studied problem in complexity theory.
When each gate is labelled AND, OR or NOT, CVP is complete for the com-
plexity class P. It remains complete if the circuits are monotone (no NOT gates);
it also remains complete if the underlying graph has a planar embedding. But if
the circuit is monotone and planar (MPCVP), then evaluating it is in NC.

In [8,9], planar CVP and monotone CVP are shown to be P-complete, and
a special case of MPCVP, upward stratified (see Section 2 for definitions) is
shown to be in NC2. Subsequently, the upper bound for this special case was
improved to LogCFL[7], and the result was extended in [13] by showing that a
less restrictive special case, namely layered upward planar monotone circuits, is
also in NC, in fact in NC3. Independently and in parallel, the work of [6] an Yang
[23] showed that MPCVP in its full generality is in NC4 and in NC3 respectively.
More recently, [4] showed that for monotone upward stratified circuits — the
special case from [9,7] — there is in fact an upper bound of LogDCFL. Here,
LogDCFL and LogCFL are the classes of languages logspace-many-one-reducible
to deterministic and arbitrary context-free languages respectively. Recall that
L ⊆ NL ⊆ LogCFL, L ⊆ LogDCFL ⊆ LogCFL, and LogCFL = SAC1 ⊆ AC1 ⊆ NC2.
See any standard text on circuit complexity (e.g. [21]) for more details.

Using the insights developed in recent works [4,11,10,2] to exploit restricted
topology in circuits, we review the previous work on MPCVP, and improve the
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known upper bounds for different cases of the problem. Our main improvements
are in the case of circuits with cylindrical embeddings, which have been studied
in the context of small-width circuits in [11,10]. We also extend the NC upper
bound on MPCVP to toroidal (genus one) monotone circuits.

Our upper bounds use the class PDLP: problems logspace many-one reducible
to finding the length of a longest path in a planar DAG. Since finding longest
paths in DAGs reduces to finding shortest paths1, L ⊆ PDLP ⊆ L(PDLP) ⊆ NL.

Our contributions are as follows: (1) We characterize cylindrical graphs as
spanning subgraphs of single-source single-sink planar DAGs (Theorem 1). This
generalizes Theorem 2 of [10], which is the analogous result for layered cylin-
drical graphs. Layering, in general, could be harder than logspace; nonetheless
we obtain a partial logspace-constructive version, even when the given DAG is
not layered. (2) We present four reductions among some of the topological re-
strictions, as shown in the diagram below. The normal arrows go from stronger
to weaker constraints, the dotted arrows indicate logspace reductions, and the
dashed arrows indicate the reductions in L(PDLP) (3) Using the reduction lem-
mas, we improve some upper bounds; see table below.

upward strat. 

��

layered upward planar

��

 upward planar

��
cylindrical strat.

��



��

layered cylindrical

��


cylindrical��    

��
one-input-face

���
�
�

 focused  planar

toroidal��

Monotone Embedding Our upper bound Previous
Circuit type bound
Cylindrical stratified given LogDCFL (Thm. 2) NC2 [23]
One input face not needed L(PDLP⊕ LogDCFL) (Thm. 3) NC2 [23]
Cylindrical given AC1(LogDCFL) (Thm, 4) –
Planar not needed AC1(LogCFL) = SAC2(Thm. 5) NC3 [23]
Toroidal given AC1(LogCFL) = SAC2(Thm. 6) P

2 Basic Definitions

2.1 Circuits

We consider circuits (directed acyclic graphs or DAGs) with gates labeled AND,
OR, NO-OP, 0, 1 having fan-in 2,2,1,0,0, respectively. (Fan-in 0 nodes are called
source nodes.) We assume w.l.o.g. that source nodes have fan-out 1 and that no
gate has fan-out greater than 2. We do not assume that there is a single sink.

1 It is conceivable that the class PDLP is strictly contained in NL. Hence whenever we
need longest paths in planar DAGs, we state our upper bounds in terms of PDLP.
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A circuit with variables is a circuit in which some fan-in zero gates are labeled
by variables. By generalized circuits we mean circuits which also have constant
gates with non-zero fan-in and possible fan-out more than 1; the output of such
a gate is independent of its inputs, but the input wires could play a role in deter-
mining the planar embeddings. Generalized circuits, with or without variables,
arise in the recursive steps of the algorithms from [6,23].

A circuit is said to be layered if there is a partition V = V0 ∪ V1 ∪ . . . ∪ Vh

such that all edges go from some Vi to Vi+1. The layered circuit is said to be
stratified if all source nodes are in layer V0. (Thus, stratified implies layered.)

2.2 Topological Embeddings and Drawings

A graph is said to be planar if it can be drawn on a plane in such a way that
the representations of no two edges cross, except at shared endpoints. By the
results of [16,3,17], deciding if a given graph is planar is in L.

A planar embedding is bimodal if at every vertex v, all outgoing (incoming)
edges appear consecutively around v. It is easy to see ([18], [10] Lemma 5, [23]
Lemmas 3.1 and 3.2) that in a planar DAG with a single source and a single
sink, every embedding is bimodal.

A planar embedding of a DAG is said to be a one-input-face embedding if all
source nodes lie on the same face. Testing if a planar DAG is one-input-face, and
if so, uncovering such an embedding, is easy: add a new source node with edges
to all the old sources, and test for planarity.

A drawing of a digraph on the plane is upward if the drawing of every edge
is monotonically increasing in the vertical direction. Every DAG has an upward
embedding, which can be recovered by a topological sort. (Also, only DAGs have
upward embeddings, since a cycle cannot be embedded in an upward way.) A
digraph is upward planar if it has an embedding that is upward and planar.
Though all DAGs are upward, not all planar DAGs are upward planar.

A digraph is cylindrical if it can be embedded on a cylinder surface, in a way
such that all edges are monotonically increasing in the direction of the axis of the
cylinder. (Clearly such a digraph must also be acyclic, a DAG.) Note that the
surface of the cylinder can be embedded on a plane in a straightforward way. A
cylindrical embedding will give rise to a planar embedding where all edges flow
in an inward direction towards a central face. Hence every cylindrical embedding
is also bimodal, even if it is not single-source single-sink. Cylindricality strictly
generalizes upward planarity, but cannot capture all planar DAGs. (See the full
version for illustrative figures.) A layered cylindrical embedding is a cylindrical
embedding where layers correspond to disjoint circles of the cylinder.

A DAG is said to be upward stratified (cylindrical stratified) if it is layered,
stratified, and has an upward planar (cylindrical respectively) embedding. It
follows that an upward/cylindrical stratified circuit has a one-input-face embed-
ding. (A layered upward planar DAG need not be stratified.) In [6], the term
restricted stratified is used to denote circuits which are cylindrical stratified as de-
fined above (without the restricted, the authors of [6] mean generalized circuits).
On the other hand, in [4], stratified refers to upward stratified as described here.
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A planar embedding of a DAG G is focused if there is a subset S of source
nodes, all of which are embedded on a single face, and every node of G not
reachable from S is itself a source node. This is a topological analogue of a
skewness condition on circuits.

2.3 Representing Embeddings

A planar embedding of a planar graph can be constructed in L [16,3,17]. The
algorithm constructs a planar combinatorial embedding, specifying the cyclic
(clockwise, say) ordering of edges around each vertex in some plane embedding.
Checking whether a given combinatorial embedding corresponds to an embed-
ding on the plane can be done in logspace.

We briefly discuss how faces are specified in any planar embedding. Recall
that embeddings ignore directions on edges. In fact, for each (undirected) edge
(u, v), the embedding will specify where arc (u, v) figures in the circular list
around u, and where arc (v, u) figures in the circular list around v. The arcs
(u, v) and (v, u) are expected to be superimposed in the corresponding geometric
embedding. We use the term edges to refer to directed edges of the original graph,
while we use the term arcs to refer to the directed arcs in the combinatorial
embedding. For every arc e = (u, v), there are faces L(e) and R(e) to the left
and right, respectively, of the edge. If G is a connected graph when directions on
edges are ignored, then for every face f , the set of edges with f ∈ {L(e), R(e)}
form a connected graph. This set can be traversed systematically as follows.
Start with an arc e = (u, v) such that, say, f = R(e). Let e′ = (v, w) be the
arc preceding (v, u) in the cyclic ordering around v. Then f = R(e′). Keep
advancing in this way until the starting arc is encountered again; in the process,
the entire boundary of f will be traversed. We assume that f is “named” by
the lexicographically smallest arc a = (u, v) such that f = R(a). See [15,22] for
more about representing embeddings.

For layered cylindrical or layered upward planar embeddings, we assume that
the embedding is given in the following form: (a) the cyclic ordering of edges
around each vertex (the planar combinatorial embedding) corresponding to the
geometric embedding, and (b) the circular or left-to-right ordering of vertices at
each layer. It is straightforward to see that given such information, we can verify
in logspace that it indeed corresponds to some layered cylindrical or layered
upward planar geometric embedding.

For cylindrical embeddings of non-layered graphs, we need to specify some
more information. Imagine circles drawn on the surface of the cylinder, through
each vertex. The ordering of the circles along the axis of the cylinder imposes a
partial order on the vertices (total, if no two vertices lie on the same circle); con-
sider any total order extending this. This ordering corresponds to non-decreasing
distance of vertices from the left end of the cylinder. For each vertex u, we can
talk of its left face and its right face: the left face is the face between u’s leftmost
incoming edge (last incoming edge in clockwise ordering) and leftmost outgoing
edge (first outgoing edge in clockwise ordering), while the right face is the face
between its rightmost incoming and outgoing edges. If u is a source, then the left
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and the right face are the same, and it is the face containing the (initial segment
of) the ray drawn out of u against the cylinder axis. Similarly, if u is a sink, it
is the face containing the (initial segment of) the ray drawn out of u along the
cylinder axis. Given the clockwise ordering of edges around each vertex, the left
and right faces can be determined for each u that is not a source or sink. For a
source / sink u, if we explicitly specify the leftmost outgoing / incoming edge,
then this face can be determined. We call this edge L(u).

With this background, we now assume that the following information about the
cylindrical embedding is available: (a) the cyclic ordering of edges around each ver-
tex (the planar combinatorial embedding), (b) a total orderv1, v2, . . . , vn of thever-
tices, extending the partial order induced by the cylindrical embedding, and (c) for
each source / sink u, the edgeL(u). In particular, the edgesL(v1) andL(vn) specify
the faces fl and fr corresponding to the left and right ends of the cylinder.

It is not clear that cylindricality can be verified, given (a), (b), (c) above.
However, this information is sufficient for the results of this paper.

3 Graphs on Cylinders

Upward planar graphs have been characterized independently in [12] and [5]: A
DAG is upward planar if and only if it is a subgraph of a planar st-digraph, that
is, a planar DAG with a single source s, a single sink t, and an edge from s to t.
Extending this proof, [10] characterizes layered cylindricality: a layered digraph
is layered cylindrical if and only if it is a subgraph of a layered planar DAG with
a unique source and a unique sink. While the result is implicit in the work of
[19], the major contribution in the proof of [10] is to make the transformation
uniform. In a similar vein, we characterize cylindricality (without the layered
property); while the topological ideas are already there in the proofs of [19,10],
we prove it in a different way to obtain suitable uniformity bounds. We then use
these to evaluate cylindrical circuits.

One direction of our characterization crucially uses a layered embedding al-
gorithm independently due to [23] and [6]. The algorithm of [23] is stated for
single-sink digraphs where there is a one-input-face planar embedding (an em-
bedding in which all sources appear on the same face), while that of [6] is stated
for focused circuits. We will use the version from [23] and we observe that this
includes, as a special case, single-source single-sink planar DAGs (SSPDs). ([23]
uses the notation layered one-input-face for cylindrical stratified (all source nodes
at the first layer)). An important property of such embeddings is that all ver-
tices are bimodal; thus left and right faces of a vertex are defined. The algorithm
appears in [23] Section 3 and in [6] Section 4, and is described below.
Input: A one-input-face single-sink planar directed acyclic graph H .
Output: A layered cylindrical embedding of a graph H ′, obtained from H by

subdividing edges into directed paths.
Let t be the sink of H .

1. ∀v ∈ H , find d(v), the longest distance to t. Set d = max d(v). The input
nodes are in V0. A non-input node u is in layer l(u) = d− d(u).
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2. For e = (u, v), let ke = l(v)− l(u)− 1. If ke > 0, then create dummy nodes
n1, n2 . . . nk and add edges (u, n1),(n1, n2) . . . (nk, v). (i.e. subdivide e into
a directed path of length l(v)− l(u).) The node ni will be in layer l(u) + i.

3. For each node u (including dummy nodes), the left (or right) neighbour of
u is the node on the boundary of the left (or right, respectively) face of u
with the same layer number as u.

Steps 1-2 of the algorithm provide the layering, step 3 provides the cylindrical
embedding. For correctness, see Section 3 of [23] or [6]. We observe the following:

Proposition 1. The layered embedding algorithm above runs in L(PDLP).

Now we establish our characterization by the following two lemmas. The first
follows directly from the proposition above; the second lemma is proved here.

Lemma 1. If G is a spanning subgraph of an SSPD H, then G has a cylindrical
embedding which, given G and H, can be constructed in L(PDLP).

Lemma 2. If a planar DAG G has a cylindrical embedding, then it is a spanning
subgraph of a cylindrical SSPD H.

Proof. Consider the layout of the graph on the cylinder surface, with vertices
in order v1, v2, . . . , vn. If any vertex vi other than vn is a sink, we need to add
an edge from it to some vj with j ≥ i without destroying cylindricality. Such
a vj can always be found as follows: imagine a particle moving out of vi along
the direction of the cylinder axis. It aims to avoid intersecting any edge. So if it
meets an edge, it moves parallel to and infinitesimally close to the edge. Since all
edges are cylindrical, its movement is still monotonic with respect to the axis.
As soon as it reaches (infinitesimally close to) a vertex, we declare that vertex to
be vj . If it never meets an edge or a vertex, then it will exit at the right end of
the cylinder. In this case we declare vn to be vj . The movement ensures that the
edge (vi, vj) can be added preserving cylindricality. A similar procedure applied
after this will make all sources other than v1 have incoming edges. !"

Theorem 1. Let G be any planar DAG. The following are equivalent.
(1) G has a cylindrical embedding.
(2) G is a spanning subgraph of a cylindrical SSPD H.
(3) G is a spanning subgraph of a SSPD H.

It follows that testing for cylindricality is in NP. However, it may not be NP-
hard, though it generalizes upward planarity, testing for which is NP-complete.

One direction of the theorem above is already constructive using Lemma 1. We
make the proof of Lemma 2 constructive via a more complicated construction.
This construction works only for one stage (multiple sinks to single sink or
multiple sources to single source), and yields only a planar (not cylindrical)
embedding of H . The advantage is that it is implementable in logspace.
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Lemma 3. Let G be a connected (in the undirected sense) cylindrical DAG with
S sources and T sinks. Given a cylindrical embedding G, we can construct, in L,
a planar single-source DAG Hs with T sinks and a planar single-sink DAG Ht

with S sources such that G is a spanning subgraph of both.

Proof. We describe how to construct Hs; the construction of Ht is symmetric.
Since G is connected, for every face f , the edges incident on f form a connected
graph. For each face f , let i be the smallest index such that vi is on the boundary
of the face. Then there is some edge e = (vi, vj) such that f = R(e). Start
traversing the boundary of f , starting with such an edge e = (vi, vj). For each
vk encountered on the boundary with in-degree 0, add edge (vi, vk).

Clearly this preserves acyclicity, since all new edges are from a lower indexed
to larger indexed vertex. This also preserves planarity. The new edges are in-
serted, in the order encountered, into the cyclic ordering around vi immediately
after the arc (vi, vj). A new edge (vi, vk) is inserted into the cyclic ordering
around vk immediately after the arc (vl, vk) which led to the discovery of vk on
this face boundary. Thus we obtain the new planar combinatorial embedding.

Since G is connected, every source has a path to v1. Hence every source lies
on the boundary of at least one face with a lower indexed vertex, and hence
acquires an incoming edge. Thus at the end, only v1 is a source. !"

4 Circuits on Cylinders

We now show that for circuit evaluation, any technique applicable to layered
upward planar circuits also applies to cylindrical circuits, with a uniformity
requirement in L(PDLP) ⊆ NL. The result is obtained in two stages: first we
show how to deal with layered cylindrical circuits, and then we show how to
layer arbitrary cylindrical circuits. We also show that one-input-face circuits
reduce to upward stratified circuits, with a similar uniformity requirement.

Lemma 4. Given a monotone circuit C with a layered cylindrical embedding
E, we can in logspace obtain an equivalent monotone circuit C′ with a layered
upward planar embedding E’. Further, if E is stratified, so is E’.

Proof Sketch. Intuitively, what we want to do is as follows. Consider a geomet-
ric embedding of C on the plane, with layers corresponding to concentric circles
and edges travelling inwards. By rotating a ray shooting out of the root, we can
find an angular position where it does not contain the embedding of any node.
By deforming edge representations if necessary, we can ensure that each edge
intersects the ray (at this angular position) in at most one point. Now simply
“cut” the circuit C along the ray. This gives rise to dangling in-edges and out-
edges and a circuit D which is layered upward planar. Patch multiple copies of D
side-by-side, feeding zeroes to the dangling edges of the extremal copies, and let
the root of the middle copy be the new root. (Or, evaluate the OR of the roots
of all copies.) The full proof describes how to perform all this in logspace. !"

In the above proof, the layering being given appears crucial. We observe below
that without layering, the same conversion can be performed in L(PDLP).
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Lemma 5. Evaluating a monotone circuit C with a cylindrical embedding E
reduces in L(PDLP) to evaluating a monotone layered cylindrical circuit C′ with
embedding E’. Further, if E is one-input-face, then E’ is stratified.

Proof. We proceed in four steps.

1. We remove from C all nodes with no directed path to the output gate of C.
This gives an equivalent circuit G with a single sink, and with an inherited
cylindrical embedding.

2. From the given cylindrical embedding of G, we construct the SSPD H with
the same vertices as G and containing all the edges of G.

3. Using the algorithm from Section 3, we obtain a layered cylindrical embed-
ding of an SSPD H ′, obtained by subdividing edges of H into directed paths.

4. We get a layered cylindrical embedding of a digraph G′ from that of H ′ by
throwing away all directed paths corresponding to edges in H \G. Labelling
all the new subdivision vertices with type NO-OP makes G′ a circuit.

Since C is a planar DAG, Step (1) can be performed in L(PDLP). Step (2) uses
Lemma 3, and can be performed in logspace. Step (3) uses Lemma 1, and runs
in L(PDLP). It is easy to see that Step (4) can be performed in logspace. !"

Note that the layered embedding algorithm needs a single-sink one-input-face
embedding. In the above proof, the one-input-face condition is achieved in step
2 by exploiting cylindricality. However, if the given circuit already has a one-
input-face embedding, then cylindricality is not needed. Thus we have:

Lemma 6. Evaluating a monotone circuit C with a one-input-face embedding
E reduces in L(PDLP) to evaluating a monotone stratified cylindrical circuit C′

with embedding E’.

5 Improved Upper Bounds for MPCVP

In this section we revisit some of the MPCVP algorithms in the literature. We ob-
serve that some of these algorithms have tighter bounds than claimed. Wherever
possible, we apply reduction lemmas of Section 4 to expand the class of circuits
for which the algorithm applies, and also try to weaken the input requirements.

Goldschlager [9] considered upward stratified circuits. He showed that in
this special case, if the corresponding embedding is given with the input, then
MPCVP is in NC2. This upper bound was improved to LogCFL by Dymond and
Cook [7] by giving a polynomial time AuxPDA algorithm.

Using a bottom up approach, Barrington et.al.[4] showed that monotone up-
ward stratified circuits, presented along with such an embedding, can be eval-
uated in LogDCFL. The DAuxPDA algorithm repeatedly transforms the input
by (a) detecting when a 0- or 1- interval at the input layer fails to propagate
high enough, and (b) replacing the interval by all 1s or all 0s. The transfor-
mation thus preserves the value of the output gate. The stack is used to keep
track of the frontier upto which simplifying transformations have been made.
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Polynomial running time is ensured, amongst other things, by the placement of
a virtual blocking interval of 0s on either extreme at each level. The algorithm
requires the upward stratified embedding to be supplied as input. Though not
stated explicitly, it also works for circuits with multiple sinks2.

Since virtual blocking intervals cannot be placed at extremes of each layer for
a cylindrical embedding, we do not see how to extend this algorithm to work for
stratified cylindrical circuits. However, we can still obtain this upper bound by
using Lemma 4 in conjunction with this algorithm:

Theorem 2. Given a monotone planar circuit C with a stratified cylindrical
embedding, determining whether C evaluates to 1 is in LogDCFL.

What if the embedding needed for Theorem 2 is not explicitly given? Note that
stratified cylindrical embeddings are one-input-face, though the converse may
not hold. But one-input-face embeddings need not be given; they can be con-
structed in logspace. With such an embedding, we can apply Lemma 6 and
Theorem 2 to get a slightly weaker upper bound for a more general class:

Theorem 3. A monotone planar circuit C which has a one-input-face embed-
ding can be evaluated in L(PDLP⊕ LogDCFL) ⊆ L(NL⊕ LogDCFL) ⊆ LogCFL.

Layered one-input-face circuits were considered by Yang [23] as a step towards
placing general MPCVP in NC. Note that these are precisely cylindrical stratified
circuits. In Section 2 of [23], an upper bound of NC2 is obtained for evaluating
such circuits. Rather than use a tool like Lemma 4 followed by the bound of
[9], Yang devised a somewhat different algorithm, since a modification of it was
used in a later section. The essence of his algorithm was the same as in [7]:
evaluating the given circuit C is equivalent to evaluating a circuit C′ which
tries to determine, for each interval or segment of gates at each level, whether
this interval evaluates to all 1s. It can be seen that C′ has polynomial algebraic
degree, and hence is in NC2 by [14]. However, it is now known that circuits of
degree polynomial in circuit size can be evaluated in LogCFL [20]. Thus we have

Proposition 2. The algorithm of Section 2, [23], for evaluating instances of
MPCVP presented with stratified cylindrical embeddings, is in LogCFL.

This bound was independently obtained by Delcher and Kosaraju [6], who ob-
served that the algorithm of [7] works also for the cylindrical stratified case.
This is because even for such embeddings, the proving sub-circuit for validity of
intervals has a tree structure which is polynomial-sized.

In [13], the requirement that the circuit be stratified was dropped for the first
time. The input is required to be a monotone layered upward planar circuit,
with the witnessing embedding supplied. Now intervals of contiguous 1s at an
intermediate layer can be split by an input node; hence the previous algorithms
are inapplicable. The idea in [13] is to repeatedly split the circuit horizontally
at a layer such that both pieces are between 1/4 and 3/4 of the entire circuit
2 Intervals of 1s may merge though separated not just by a 0 interval but by 0- & 1-

intervals; the discussion leading to Proposition 8 of [4] still holds.
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in size. Evaluate each piece recursively, replacing cut off wires by variables. The
details appear in [13] and in [6].

Due to monotonicity, if a gate evaluates to 1 (0) even when all variables are
set to 0 (1, respectively), then the gate evaluates to 1 (0, resp.) for all settings
of the variables. So by evaluating such a circuit on two settings — all variables
1, and all variables 0 — the gates can be partitioned into three sets: evaluating
to 1, or 0, or depending on the input variables. Once the recursive evaluation is
done, the bottom piece is entirely evaluated and the top piece has some variable
gates. But now the values of all its variable inputs are known from the bottom
piece, so this piece can be fully evaluated.

Clearly, the recursion depth is logarithmic, and the base case of recursion is
a monotone upward stratified circuit with variables. In [13], an upper bound of
NC3 is obtained by using the fact that the NC2 bound of [9] applies to the base
case, despite the presence of variables, to obtain the three-part partition.

Note that at internal stages of the recursion, the circuits could contain con-
stant gates with non-zero fan-in (e.g. an OR gate could get as inputs one 1 and
one variable from the preceding level of recursion). So, to apply Goldschlager’s
algorithm to the base case, the constant gates with non-zero fan-in are explicitly
removed. That is, to patch up the two pieces, only the sub-circuit induced by
gates which depend on variables is considered. Also, since the strategy evaluates
every gate in the circuit, it is is insensitive to multiple sinks.

Kosaraju’s upper bound can be tightened by noting that a log-recursion-depth
algorithm, using the algorithm of [4] rather than [9] for the base case, yields an
implementation in AC1(LogDCFL). Further, the class of circuits for which this
bound applies can be expanded:

Theorem 4. An instance of MPCVP, presented with a cylindrical embedding,
can be solved in AC1(LogDCFL).

Proof. Let C be the given circuit with a cylindrical embedding. Using Lemma 5,
we obtain in L(PDLP) ⊆ AC1 an equivalent circuit C′ with a layered cylin-
drical embedding E . Applying Lemma 4 gives, in L, an equivalent layered up-
ward planar circuit C′′, which, by the preceding discussion, can be evaluated in
AC1(LogDCFL). Note that for subcircuits evaluated at recursive steps, embed-
dings are inherited from E . !"

Circuits with focused embeddings are considered in [6], since they arise in re-
cursive stages of their final algorithm for general MPCVP. Such a circuit C can
be converted to an equivalent upward stratified one C′ (constructing such an
embedding) by simplifying the neighbours of the inputs not on the special face
and then using Lemma 6 followed by Lemma 4. One consequence is that some
internal nodes may be constant nodes; e.g. an OR gate with a skew 1 input from
outside f simplifies to a constant gate, but still has another input wire feeding
into it. We could cut off such wires, but only after obtaining the stratified cylin-
drical embedding using Lemma 6. Now we can use Theorem 4. Since C′ can be
obtained from C in L(PDLP) ⊆ AC1, and since C′′ can be obtained from C in
logspace, C can be evaluated AC1(LogDCFL).
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The final algorithms of both [23] and [6] make no assumptions about the em-
bedding; given an instance of MPCVP with any planar embedding, they show
that evaluation is in NC. They repeatedly evaluate carefully chosen smaller cir-
cuits with special embeddings (cylindrical stratified or focused), which for the
smaller circuits can always be obtained in NC, from the given planar embedding.

Yang’s analysis proceeds by showing that O(log n) iterations of the follow-
ing suffice: For each face f containing some inputs, consider the subcircuit Cf

reachable (in a directed sense) from f . Cf can be converted to get a circuit
with variables and a focused embedding. Evaluate this circuit as far as possible
using a generalization of the scheme leading to Theorem 3. Then perform some
obvious Proposition 2. Then perform some obvious simplifications, and reiter-
ate. The generalization does not permit the use of [4] or Theorem 2. However,
the strategy is the same as originally used by Yang for one-input-face embed-
dings; namely, there is an equivalent polynomial degree circuit doing this partial
evaluation. Hence, by [20], it can be performed in LogCFL. Hence, a careful anal-
ysis of Yang’s algorithm allows us to conclude that MPCVP is in AC1(LogCFL).
However, it can be seen that this class is the same as SAC2. Thus we have:

Theorem 5. Evaluating a given monotone planar circuit C is in SAC2.

6 Monotone Toroidal (Genus-One) Circuits

A digraph is toroidal if it can be embedded on a torus. We look at circuits whose
underlying DAG is toroidal. We assume that the toroidal embedding is given as
a combinatorial embedding; that it is toroidal can be verified in logspace.

Any closed curve separates the plane into disconnected regions, but a closed
curve can disconnect the surface of a torus or leave it connected. In the latter
case, it is called a surface non-separating curve. Using the following result from
[1], we establish a reduction lemma which, along with Theorem 5, immediately
gives the main result of this section.

Lemma 7 ([1]). Given a non-planar graph G with an embedding on the torus,
a surface non-separating cycle in G can be found in log space.

Lemma 8. A monotone circuit C with a toroidal embedding can be converted
in log space to an equivalent monotone circuit C′ with a planar embedding.

Proof Sketch. The lemma is proved by essentially using the idea from [1].
Intuitively what we do is as follows. Consider a given toroidal embedding. Using
Lemma 7, find a cycle (in the undirected sense) such that “cutting” the circuit
along the cycle makes the remaining graph planar. Now paste together several
copies as in the cylindrical case such that at least one copy evaluates to the same
function as the original circuit. The pasting is done preserving planarity. !"

Theorem 6. A monotone circuit, given with an embedding on a torus, can be
evaluated in SAC2.
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Abstract. We study the complexity of arithmetic in finite fields of char-
acteristic two, F2n . We concentrate on the following two problems:

– Iterated Multiplication: Given α1, . . . , αt ∈ F2n , compute α1 · · ·αt.
– Exponentiation: Given α ∈ F2n and a t-bit integer k, compute αk.

We first consider the explicit realization F2n = F2[x]/(x2·3l

+ x3l

+ 1),
where n = 2·3l. We exhibit Dlogtime-uniform poly(n, t)-size TC0 circuits
computing exponentiation. To the best of our knowledge, prior to this
work it was not even known how to compute exponentiation in logarith-
mic space, i.e. space O(log(n + t)), over any finite field of size 2Ω(n). We
also exhibit, for every ε > 0, Dlogtime-uniform poly(n, 2tε

)-size AC0[⊕]
circuits computing iterated multiplication and exponentiation, which we
prove is optimal.

Second, we consider arbitrary realizations of F2n as F2[x]/(f(x)), for
an irreducible f(x) ∈ F2[x] that is given as part of the input. We ex-
hibit, for every ε > 0, Dlogtime-uniform poly(n, 2tε

)-size AC0[⊕] circuits
computing iterated multiplication, which is again tight. We also exhibit
Dlogtime-uniform poly(n, 2t)-size AC0[⊕] circuits for exponentiation.

Our results over F2[x]/(x2·3l

+ x3l

+ 1) have several consequences:
We prove that Dlogtime-uniform TC0 equals the class AE of functions

computable by certain arithmetic expressions. This answers a question
raised by Frandsen, Valence and Barrington (Mathematical Systems
Theory ’94). We also show how certain optimal constructions of k-wise in-
dependent and ε-biased generators are explicitly computable in Dlogtime-
uniform AC0[⊕] and TC0. This addresses a question raised by Gutfreund
and Viola (RANDOM ’04).

1 Introduction

Finite fields have a wide variety of applications in computer science, ranging
from Coding Theory to Cryptography to Complexity Theory. In this work we
study the complexity of arithmetic operations in finite fields.
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When considering the complexity of finite field arithmetic, there are two dis-
tinct problems one must consider. The first is the problem of actually construct-
ing the desired finite field, F; for example, one must find a prime p in order to
realize the field Fp as Z/pZ. The second is the problem of performing arithmetic
operations, such as addition, multiplication and exponentiation in the field F. In
this work, we focus on this second problem, and restrict our attention to fields
F where a realization of the field can be found very easily, or where a realization
of F is given as part of the input.

Specifically, we will focus on finite fields of characteristic two; that is, finite
fields F2n having 2n elements. In particular, the question we address is: To
what extent can basic field operations (e.g., multiplication, exponentiation) in
F2n be computed by constant-depth circuits? In our work, we consider three
natural classes of unbounded fan-in constant-depth circuits: circuits over the
bases {∧,∨} (i.e., AC0), {∧,∨,Parity} (i.e., AC0[⊕]), and {∧,∨,Majority} (i.e.,
TC0). Moreover, we will focus on uniform constant-depth circuits, although we
defer the discussion of uniformity until the paragraph “Uniformity” later in this
section. Recall that, for polynomial-size circuits, AC0 � AC0[⊕] � TC0 ⊆ log-
depth circuits ⊆ logarithmic space, where the last two inclusion holds under
logarithmic-space uniformity and the separations follow from works by Furst
et al. [FSS] and Razborov [Raz], respectively (and hold even for non-uniform
circuits). See, e.g., [H̊as, Vol] for background on constant-depth circuits.

Field Operations. Recall that the finite field F2n of characteristic two is generally
realized as F2[x]/(f(x)) where f(x) ∈ F2[x] is an irreducible polynomial of degree
n. Thus, field elements are polynomials of degree at most n−1 over F2, addition
of two field elements is addition in F2[x] and multiplication of field elements is
carried out modulo the irreducible polynomial f(x). Throughout, we identify a
field element α = an−1x

n−1 + · · ·+ a1x + a0 ∈ F2n with the n-dimensional bit-
vector (a0, a1, . . . , an−1) ∈ {0, 1}n, and we assume that all field elements that
are given as inputs or returned as outputs of some computation are of this form.

In such a realization of F2n , addition of two field elements is just component-
wise XOR and therefore trivial, even for AC0 circuits. It is also easy to establish
the complexity of Iterated Addition, i.e. given α1, α2, . . . , αt ∈ F2n , computing
α1 +α2 + · · ·+αt ∈ F2n . This is easily seen to be computable by AC0[⊕] circuits
of size poly(n, t). On the other hand, since parity is a special case of Iterated
Addition, the latter requires AC0 circuits of size poly(n, 2tε

) (see, e.g., [H̊as]).
Thus, we concentrate on the following multiplicative field operations:

– Iterated Multiplication: Given α1, α2, . . . , αt ∈ F2n , compute α1 · α2 · · ·αt.
– Exponentiation: Given α ∈ F2n , and a t-bit integer k, compute αk.

The goal is to compute these functions as efficiently as possible for given param-
eters n, t. We note that these functions can be computed in time poly(n, t) (using
the repeated squaring algorithm for exponentiation). In this work we ask what
the smallest constant-depth circuits are for computing these functions. Note
that computing Iterated Multiplication immediately implies being able to com-
pute the product of two given field elements. While solving this latter problem
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is already non-trivial (for Dlogtime-, or even logspace-uniform constant-depth
circuits), we will not address it separately.

Our Results. We present two different types of results. The first concerns field
operations in a specific realization of F2n , which we denote F̃2n . The second type
concerns field operations in an arbitrary realization of F2n as F2[x]/(f(x)), where
we assume that the irreducible polynomial f(x) is given as part of the input.
We describe both of these kinds of results in more detail below. Then we discuss
some applications of our results.

Results in the specific representation F̃2n : In this setting, we assume that
n is of the form n = 2 · 3l, for some integer l ≥ 0, and we employ the explicit
realization of F2n given by F2[x]/(f(x)) where f(x) is the irreducible polynomial
x2·3l

+ x3l

+ 1 ∈ F2[x]. Our results are summarized in the top half of Table 1.
We show that exponentiation can be computed by uniform TC0 circuits of

size poly(n, t) (i.e. what is achievable by standard unbounded-depth circuits).
To the best of our knowledge, prior to this work it was not even known how to
compute exponentiation in logarithmic space, i.e. space O(log(n + t)), over any
finite field of size 2Ω(n). As a corollary, we improve upon a theorem of Agrawal
et al. [AAI+] concerning exponentiation in uniform AC0. In the case of iterated
multiplication of t field elements, results of Hesse et al. [HAB] imply that this
problem can be solved by uniform TC0 circuits of size poly(n, t).

We also show that, for every ε > 0, iterated multiplication and exponentiation
can be computed by uniform AC0[⊕] circuits of size poly(n, 2tε

). Moreover, we
show that this is tight: neither iterated multiplication nor exponentiation can be
computed by (nonuniform) AC0[⊕] circuits of size poly(n, 2to(1)

).
Results in arbitrary representation F2[x]/(f(x)): In this setting we assume

that the irreducible polynomial f(x) is arbitrary, but is given to the circuit as
part of the input. Our results are summarized in the bottom half of Table 1.

We show (with a more complicated proof than in the specific representation
case) that iterated multiplication can be computed by uniform AC0[⊕] circuits
of size poly(n, 2tε

), and this is again tight. We show that exponentiation can be
computed by uniform AC0[⊕] circuits of size poly(n, 2t), but we do not know
how to match the size poly(n, 2tε

) achieved in the specific representation case.
More dramatically, we do not know if there exist poly(n, 2o(t))-size TC0 circuits
for exponentiation. On the other hand, we also observe that there are AC0[⊕]
circuits of size ntε

for exponentiation; this bound is, in general, incomparable to
our previous bound of poly(n, 2t).

While we cannot establish a lower bound for exponentiation, we show that
testing whether a given F2[x] polynomial of degree n is irreducible can be
AC0[⊕]-reduced to computing exponentiation in a given representation of F2n ,
for exponents with t = n bits. Specifically, a modification of Rabin’s irreducibil-
ity test [Rab, MS] gives a TC0 reduction; we show a finer analysis that gives a
AC0[⊕] reduction. Thus, the task of improving exponentiation modulo a given
(irreducible) polynomial is closely related to obtaining upper bounds on the com-
plexity of testing irreducibility of a given F2[x] polynomial. Some lower bounds
for the latter problem are given in the recent work of Allender et al. [ABD+].
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Table 1. Complexity of Operations in F2n

Problem AC0 AC0[⊕] TC0

Operations in F̃2n ≡ F2[x]/(x2·3l

+ x3l

+ 1)

Iterated Multiplication: poly(2nε

, 2tε

) poly(n, 2tε

) poly(n, t)

α1, . . . , αt ∈ F̃2n →
∏

i αi Cor. to [HAB] [Thm. 3] [HAB]

Exponentiation: poly(2nε

, 2tε

) poly(n, 2tε

) poly(n, t)

α ∈ F̃2n , t-bit k ∈ Z → αk [Cor. 1] [Thm. 3] [Thm. 2]

Operations in F2n ≡ F2[x]/(f(x)) for given f(x) of degree n

Iterated Multiplication: poly(2nε

, 2tε

) poly(n, 2tε

) poly(n, t)

α1, . . . , αt ∈ F2n →
∏

i αi Cor. to [HAB] [Thm. 5] [HAB]

Exponentiation: poly(2nε

, 22εt

) poly(n, 2t) poly(n, 2t)

α ∈ F2n , t-bit k ∈ Z → αk Cor. to [HAB] [Thm. 5] [HAB]

In the above, ε > 0 is arbitrary, but the circuits have depth O(1/ε).

However, it is still open whether irreducibility of a given degree-n polynomial in
F2[x] can be decided by AC0[⊕] circuits of size poly(n).

Applications. Our results in F̃2n have several applications, discussed below.
AE = Dlogtime-uniform TC0: Frandsen, Valence and Barrington [FVB] study

the relationship between uniform TC0 and the class AE of functions computable
by certain arithmetic expressions (defined in Section 2.3). Remarkably, they show
that Dlogtime-uniform TC0 is contained in AE. Conversely, they show that AE
is contained in P -uniform TC0, but they leave open whether the inclusion holds
under Dlogtime uniformity. We show that AE is in fact contained in Dlogtime-
uniform TC0, thus proving that AE = Dlogtime-uniform TC0. (See paragraph
“Uniformity” for a discussion of Dlogtime-uniformity.)

Pseudorandom Generators : We implement certain “pseudorandom” genera-
tors in Dlogtime-uniform constant-depth circuits. Specifically, we show how an
optimal construction of k-wise independent generators can be implemented in
uniform AC0[⊕], and how an optimal construction of ε-biased generators can
be implemented in uniform TC0. These constructions are explicit, i.e. the cir-
cuits are given the seed and an index i, and compute the i-th output bit of the
generator. These results address a problem posed by Gutfreund and Viola [GV].

Overview of Techniques. Our results for the specific representation of F2n as
F̃2n := F2[x]/(x2·3l

+ x3l

+ 1) exploit the special structure of the irreducible
polynomial x2·3l

+ x3l

+ 1 ∈ F2[x]. The crucial observation (Fact 9) is that the
order of x modulo x2·3l

+ x3l

+ 1 is small and is easily computed, namely it
is 3l+1. Thus, we are able to compute large powers of the element x ∈ F̃2n by
considering the exponent k modulo the order of x. To better illustrate this idea we
now sketch a proof of the fact that exponentiation over F̃2n can be computed by
uniform TC0 circuits of size poly(n, t). Let α ∈ F̃2n and an exponent 0 ≤ k < 2t
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be given. We think of α as a polynomial α(x) ∈ F2[x]. Writing k in binary as
k = kt−1kt−2 · · · k0 =

∑
i<t ki2i where ki ∈ {0, 1}, we have:

α(x)k = α(x)
∑
i<t

ki2
i

=
∏
i<t

α(x)ki2
i

=
∏
i<t

α
(
x2i
)ki

where the last equality follows from the fact that we are working in characteristic
2. Using the fact that the iterated product of t field elements is computable by
uniform TC0 circuits of size poly(n, t) (which follows from results in [HAB]), all
that is left to do is to show how to compute α(x2i

)ki . Since ki ∈ {0, 1}, the only
hard step of this is computing x2i

which can be done using the fact, discussed
above, that the order of x is 3l+1. Specifically, first we reduce 2i mod 3l+1 using
results about the complexity of integer arithmetic by Hesse et. al. [HAB]. After
the exponent is reduced, computing the corresponding power of x is easy.

To prove that AE = Dlogtime-uniform TC0 we also show that F̃2n has an
easily computable dual basis (as a vector-space over F2).

The other techniques we use are based on existing algorithms in the literature,
e.g. [Kun, Sie, Rei, Ebe]. Our main contribution is noticing that for some settings
of parameters they can be implemented in AC0[⊕] and moreover that they give
tight results for AC0[⊕]. We now describe these techniques in more detail.

In the case of arbitrary realizations of F2n as F2[x]/(f(x)), the main technical
challenge is reducing polynomials modulo f(x). Previous work has addressed this
problem and shown how (over arbitrary fields) this can be solved by uniform log-
depth circuits (of fan-in 2) [Rei, Ebe], and even by uniform TC0 circuits [HAB].
The usual approach is to give a parallel implementation of the Kung-Sievking
algorithm [Kun, Sie] to reduce polynomial division to the problem of computing
small powers of polynomials. However, this reduction requires summations of
poly(n) polynomials, which is why previous results only give implementations in
log-depth or by TC0 circuits. We take the same approach; however, we observe
that in our setting we may compute large summations using parity gates. This
allows us to implement polynomial division over F2[x] in AC0[⊕].

Both in our results for F̃2n and for arbitrary realizations of F2n , we make use
of the Discrete Fourier Transform (DFT). This allows us to reduce the problem
of multiplication or exponentiation of polynomials to the problem of multiplying
or exponentiating field elements in fields of size poly(n) (and these problems are
feasible for AC0 circuits). Eberly [Ebe] and Reif [Rei] have also employed the
DFT in their works on performing polynomial arithmetic in log-depth circuits.
However, as with polynomial division in F2[x], the fact that we are working with
polynomials over F2 allows us to compute the DFT and inverse DFT in uniform
AC0[⊕] (and not just in log-depth or TC0).

Other Related Work. Works by Reif [Rei] and Eberly [Ebe] show how basic field
arithmetic can be computed by log-depth circuits. Fich and Tompa [FT] show
that modular exponentiation of polynomials over a finite field of polynomial size
can be computed in NC2, i.e. by polynomial-size circuits of depth O(log2 n). The
results of Hesse, Allender and Barrington [HAB] imply that some field arithmetic
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can be accomplished by uniform TC0. Indeed, the main result of [HAB] states
that integer division can be computed by (uniform) TC0 circuits, and hence
addition and multiplication in the field Fp 6 Z/pZ can be accomplished (in
TC0) by adding or multiplying elements as integers and then reducing modulo p.
Other results from [HAB] imply that uniform TC0 circuits can compute iterated
multiplication in (arbitrary realizations of) F2n . Some results on the complexity
of arithmetic in finite fields of unbounded characteristic are given in [SF].

Uniformity. In the previous discussion we refer to uniform circuits for the various
problems we consider. When working with restricted circuit classes, such as AC0,
AC0[⊕] and TC0, one must be careful not to allow the machine constructing
the circuits to be more powerful than the circuits themselves. Indeed, one of
the significant technical contributions of [HAB] is showing that integer division
is in uniform TC0 under a very strong notion of uniformity, namely Dlogtime-
uniformity [BIS]. A circuit is Dlogtime-uniform if, given indices of two gates
in the circuit, one can determine the types of the gates and whether they are
connected in linear time in the length of the indices (which is logarithmic in
the size of the circuit). Dlogtime-uniformity has become the generally-accepted
convention for uniformity in constant-depth circuits. One reason for this is that
Dlogtime-uniform constant-depth circuits have several elegant characterizations
(see, e.g., [BIS]); in fact, our results will prove yet another such characterization,
namely Dlogtime-uniform TC0 = AE. Unless otherwise specified, in this work
“uniform” always means “Dlogtime-uniform”.

If one is willing to relax the uniformity condition to polynomial-time, then
some of our results over F̃2n can be proved more easily. For instance, the expo-
nentiation result requires computing x2i ∈ F̃2n for a given i. Instead of actually
computing x2i

in the circuit, these values could be computed in polynomial time
and then hardwired into the circuit. In contrast, in the case of our results in
arbitrary realizations of F2n , we do not know how to improve any of our results,
even if we allow non-uniformity. On the other hand, if one allows non-uniformity
that depends on the irreducible polynomial f(x), then one can simplify some
proofs, and improve the exponentiation result to match the parameters that we
achieve in F̃2n (by hardwiring the values x2i

into the circuit, as above).

Open Problems. We now mention two open problems, both of which are also
open for nonuniform circuits: Given an irreducible polynomial f(x) of degree
n and α ∈ F2[x]/(f(x)), is it possible to compute α2i

for any i = ω(log n) in
TC0? It turns out that this is what limits our results about exponentiation in
F2[x]/(f(x)). Given α ∈ F̃2n , can α−1 be computed in AC0[⊕]?

Organization. This paper is organized as follows. In Section 2 we formally state
our results. In Section 3 we sketch the proofs of our results for performing field
operations in F̃2n in AC0[⊕]. We omit the rest of the proofs due to space limita-
tions. The full version of this paper is available on the Electronic Colloquium on
Computational Complexity (TR05-087, http://eccc.uni-trier.de/eccc/).
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2 Our Results

In this section we formally state our results. In Section 2.1 we discuss our results
in the specific case where n is of the form n = 2 · 3l, and F2n is realized as
F2[x]/(x2·3l

+x3l

+1), i.e. using the explicit irreducible polynomial x2·3l

+x3l

+1 ∈
F2[x]. In Section 2.2 we discuss our results in realizations of F2n as F2[x]/(f(x))
for an arbitrary irreducible polynomial f(x) ∈ F2[x] that is given as part of the
input. Then we discuss applications of our results. In Section 2.3 we prove that
uniform TC0 = AE. In Section 2.4 we exhibit k-wise independent and ε-biased
generators explicitly computable in uniform AC0[⊕] and TC0.

2.1 Field Arithmetic in F̃2n

Below we summarize our main results over the field F̃2n , defined below.

Fact 1 ([vL], Theorem 1.1.28). The polynomial x2·3l

+ x3l

+ 1 ∈ F2[x] is
irreducible for all integers l ≥ 0.

Definition 1. For n of the form n = 2 · 3l, we define F̃2n to be the specific
realization of F2n given by F̃2n := F2[x]/(x2·3l

+ x3l

+ 1).

The next theorem states our results about field arithmetic over F̃2n in uni-
form TC0. The first item follows from results of Hesse, Allender and Barrington
[HAB]; nonetheless, we state it for the sake of comparison with our other results.

Theorem 2. Let n = 2 · 3l. There exist uniform TC0 circuits of size poly(n, t)
that perform the following:

1. [HAB] Given α1, α2, . . . , αt ∈ F̃2n , compute α1 · α2 · · ·αt ∈ F̃2n.
2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n .

In particular, uniform TC0 circuits of polynomial size are capable of performing
iterated multiplication and exponentiation in F̃2n that match the parameters
that can be achieved by unbounded-depth circuits.

We now state our results about field arithmetic over F̃2n in uniform AC0[⊕].

Theorem 3. Let n = 2 · 3l. Then, for every constant ε > 0, there exist uniform
AC0[⊕] circuits of size poly(n, 2tε

) that perform the following:
1. Given α1, α2, . . . , αt ∈ F̃2n , compute α1 · α2 · · ·αt ∈ F̃2n .
2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n .

While these parameters are worse than for TC0 circuits, they are tight:

Theorem 4. For every constant d there is an ε > 0 such that, for sufficiently
large t and n = 2 ·3l, the following cannot be computed by (nonuniform) AC0[⊕]
circuits of depth d and size 22εn · 2tε

:
1. Given α1, α2, . . . , αt ∈ F̃2n , compute α1 · α2 · · ·αt ∈ F̃2n .
2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n .

In fact, Item (1) in the above negative result holds not only for F̃2n , but for any
sufficiently large field, and Item (2) holds for fields of a variety of different sizes.
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It is known that every function in NL can be computed by uniform AC0

circuits of size 2nε

and depth O(1/ε) (see, e.g., Lemma 21 in [AHM+]). Since
NL contains uniform TC0, we obtain the following corollary to Theorem 2.

Corollary 1. Let n = 2 ·3l. Then, for every constant ε > 0, there exist uniform
AC0 circuits of size poly(2nε

, 2tε

) that perform the following:
1. Given α1, α2, . . . , αt ∈ F̃2n , compute α1 · α2 · · ·αt ∈ F̃2n .
2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n .

This improves on a theorem of Agrawal et al. [AAI+] who show that field expo-
nentiation is computable by uniform AC0 circuits of size poly(2n, 2t). Corollary 1
is also tight for many settings of parameters (see Theorem 4).

2.2 Field Arithmetic in Arbitrary Realizations of F2n

As noted above, one of the advantages of working with the field F̃2n is that we
achieve tight results for TC0, AC0[⊕] and AC0. However, the use of F̃2n requires
that n = 2 · 3l, and thus does not allow for the construction of F2n for all n;
moreover some applications may require field computations in a specific field
F2[x]/(f(x)) for some given irreducible polynomial f(x) other than x2·3l

+x3l

+1.
Thus we are led to study the complexity of arithmetic in the ring F2[x]/(f(x))
where the polynomial f(x) ∈ F2[x] is given as part of the input. If, in addition,
we have the promise that f(x) is irreducible, then this corresponds to arithmetic
in the field F2n 6 F2[x]/(f(x)).

Theorem 5.
1. For every constant ε > 0, there exist uniform AC0[⊕] circuits of size

poly(n, 2tε

) that perform the following: Given f(x) ∈ F2[x] of degree n and
α1, α2, . . . , αt ∈ F2[x]/(f(x)), compute α1 · α2 · · ·αt ∈ F2[x]/(f(x)).

2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that perform the fol-
lowing: Given f(x) ∈ F2[x] of degree n, α ∈ F2[x]/(f(x)) and a t-bit integer
k, compute αk ∈ F2[x]/(f(x)).

Since Item 1 of Theorem 4 actually holds for any realization of F2n , and not just
for F̃2n , Item 1 of Theorem 5 is tight.

Unlike Item 2 in Theorem 3, Exponentiation now requires size poly(n, 2t), in-
stead of poly(n, 2tε

). We do not know how to improve this to size poly(n, 2o(t)),
even for TC0 circuits. However, we observe that Exponentiation is also com-
putable by (uniform) AC0[⊕] circuits of size ntε

. (This can be shown using
techniques similar to those mentioned at the end of this section.)

On the other hand, we show that testing irreducibility of a F2[x] polynomial
is AC0[⊕] reducible to exponentiating modulo a given irreducible polynomial.

Theorem 6. The problem of determining whether a given polynomial f(x) ∈
F2[x] of degree n is irreducible, is poly(n)-size AC0[⊕]-reducible to the following
problem: Given an irreducible polynomial f(x) ∈ F2[x] of degree n, compute the
conjugates x, x2, x22

, . . . , x2n−1
(mod f(x)).
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Alternatively, Theorem 6 can be interpreted as a positive result. Indeed, since
computing x2i

(mod f(x)) can be shown to be in⊕L, it implies that irreducibility
testing is also in ⊕L. In turn, this implies that irreducibility testing has AC0[⊕]
circuits of size 2nε

, simply because all of ⊕L does. This latter claim follows from
the same techniques that give that every function in NL can be computed by uni-
form AC0 circuits of size 2nε

and depth O(1/ε) (see, e.g., Lemma 21 in [AHM+]).

2.3 AE = Dlogtime Uniform TC0

Frandsen, Valence and Barrington [FVB] study the relationship between uniform
TC0 and the class AE of functions computable by certain arithmetic expressions
(defined below). Remarkably, they show that Dlogtime-uniform TC0 is contained
in AE. Conversely, they show that AE is contained in P -uniform TC0, but they
leave open whether the inclusion holds for Dlogtime uniformity. We show that
AE is in fact contained in Dlogtime-uniform TC0, thus proving that AE =
Dlogtime-uniform TC0. (All these inclusions between classes hold in a certain
technical sense that is made clear below.)

We now briefly review the definition of AE and then state our results.

Definition 2 ([FVB]). Let I be an infinite set of formal indices. The set of
formal arithmetic expressions is defined as follows. The basic expressions are x
(we think of this as the field element x), and Input (we think of this as the input
field element). If e, e′ are expressions (possibly containing the index i ∈ I as a
free variable), then we may form new composite expressions

∑u
i=1 e,

∏u
i=1 e, e +

e′, e ·e′, e2i

, where i ∈ I and u is either an index, i.e. u ∈ I, or is any polynomial
in n (we think of n as the input length).

An arithmetic expression is well-formed if all indices are bound and they are
bound in a semantically sound way (we omit details). We associate to every well-
formed arithmetic expression e a family of functions fe

n : F̃2n → F̃2n , for every
n of the form n = 2 · 3l (note that all computations are performed over the field
F̃2n). The class AE consists of those families of functions fn : F̃2n → F̃2n that
are described by arithmetic expressions (for every n of the form n = 2 · 3l).

For example, the trace function, tr(Input) :=
∑n−1

i=0 Input2
i

, is in AE.

Theorem 7. AE = Dlogtime−uniform TC0 in the following sense:
Let f : {0, 1}n → {0, 1}n be in Dlogtime-uniform TC0. Then there is f ′ :

F̃2n → F̃2n in AE such that for every n of the form 2 · 3l, and for every x of
length n, f(x) = f ′(x).

Conversely, let f : F̃2n → F̃2n be in AE. Then there is f ′ : {0, 1}n → {0, 1}n

in Dlogtime-uniform TC0 such that for every n of the form 2 · 3l, and for every
x of length n, f(x) = f ′(x).

Our definition of arithmetic expressions is slightly different from the definition
in [FVB]. In the full version of this paper we compare the two definitions and
argue that our definition only makes our results stronger.
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2.4 k-Wise and ε-Biased Generators

We use our results on computing field operations to give constant-depth imple-
mentations of certain “pseudorandom” generators, namely k-wise independent
and ε-biased generators. Informally, a generator G : {0, 1}s → {0, 1}m is k-wise
independent if every fixed k output bits are distributed uniformly and inde-
pendently (over random choice of the input x ∈ {0, 1}s), while it is ε-biased
if every fixed subset of the output bits has the property that the parity of
the bits in the subset is 1 with probability p ∈ [1/2 − ε, 1/2 + ε] (over ran-
dom choice of the the input). We refer the reader to the book by Goldreich
[Gol], or to the full version of this paper, for background and discussion of these
generators.

We say that a generator G : {0, 1}s → {0, 1}m is explicitly computable in
uniform TC0 (resp., AC0[⊕]) if there is a uniform TC0 (resp., AC0[⊕]) circuit
of size poly(s, log m) that, given x ∈ {0, 1}s and i ≤ m, computes the i-th output
bit of G(x). Using our previous results we obtain the following theorem. In both
cases, the seed length s is optimal up to constant factors (see, e.g., [Gol]).

Theorem 8.
1. For every k and m there is a k-wise independent generator G : {0, 1}s →
{0, 1}m, with s = O(k log m) that is explicitly computable by uniform AC0[⊕]
circuits of size poly(s, log m) = poly(s).

2. For every ε and m, there is an ε-biased generator G : {0, 1}s → {0, 1}m with
s = O(log m+log(1/ε)) that is explicitly computable by uniform TC0 circuits
of size poly(s, log m) = poly(s).

Remark 1. A previous and different construction of k-wise independent gener-
ators in [GV] matches (up to constant factors) Item 1 in Theorem 8 for the
special case k = O(1). The construction in Item 1 in Theorem 8 improves on the
construction in [GV] for k = ω(1). Also, in [GV] they exhibit a construction of
ε-biased generators computable by uniform AC0[⊕] circuits (while the construc-
tion in Item 2 in Theorem 8 uses TC0 circuits). However, the construction in
[GV] has worse dependence on ε.

3 Arithmetic in F̃2n

In this section we sketch the proof of our positive results on arithmetic in F̃2n =
F2[x]/(x2·3l

+ x3l

+ 1) in AC0[⊕], i.e. Theorem 3. One useful property of F̃2n is
that the order of x ∈ F̃2n is small, specifically it is 3l+1 = O(n). (A priori, it
could have been as large as 2n − 1.)

Fact 9. The order of x ∈ F̃2n is 3l+1.

.Proof. Observe that x3l+1 ≡ 1 (mod x2·3l

+ x3l

+ 1). Thus the order of x must
divide 3l+1. Noting that x3l �≡ 1 (mod x2·3l

+ x3l

+ 1), the result follows. !"
A crucial way in which Fact 9 is useful is that it allows us to compute high
powers, αk, of field elements α ∈ F̃2n , in the special case when k is a power of 2.
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Lemma 1. Let n be of the form n = 2 · 3l. For every constant ε > 0, there exist
uniform AC0[⊕] circuits of size poly(n, 2tε

) that, on input α ∈ F̃2n and i ≤ t

(in unary), computes α2i ∈ F̃2n .

Proof sketch. We use a result by Hesse et al. that, for every constant ε > 0,
integer multiplication and division of m-bit numbers can be computed by uniform
AC0 circuits of size 2mε

([HAB], Theorem 5.1).
Since α2n

= α for all α ∈ F̃2n , we first reduce i modulo n. From this point on
we assume that i ≤ n. Let α(x) ∈ F2[x] be the polynomial representing α. Thus,
it suffices to compute α(x)2

i ≡ α(x2i

) modulo x2·3l

+ x3l

+ 1. In particular,
it suffices to compute xh·2i

in F̃2n for every h, i ≤ n, since then we can then
compute α(x2i

) by simply summing the appropriate terms.
We compute xh·2i ∈ F̃2n as follows. First, recall that the order of x modulo

x2·3l

+ x3l

+ 1 is 3l+1 by Fact 9. Thus we compute k ≡ h · 2i mod 3l+1, and
then we are left with the task of computing xk modulo x2·3l

+ x3l

+ 1. Clearly,
if k < 2 · 3l, then the result is simply xk; on the other hand, if 2 · 3l ≤ k < 3 · 3l,
then xk ≡ xk−3l

+ xk−2·3l

. !"
In the full version of this paper we prove the above lemma for circuits of size
poly(n, t), as opposed to poly(n, 2tε

). The weaker version stated here suffices for
the results presented below. We now outline how the above lemma is used to
prove our positive results on arithmetic in F̃2n in AC0[⊕].

Proof idea for Theorem 3. (1) The idea is to reduce the problem to computing
iterated multiplication over a smaller field F′ of size poly(n, t) via the Discrete
Fourier Transform (DFT). We first show how to compute the DFT in AC0[⊕].
Then we show how to compute iterated multiplication over F′ in AC0 by ex-
ploiting the fact that the field F′ is small. Finally, we recover the product by
applying the inverse DFT, which can also be computed in AC0[⊕].

(2) As outlined in the “Overview of Techniques” paragraph of the introduction,
we can reduce this problem to computing the product of t field elements. Specif-
ically, this reduction needs to compute α2i

for i ≤ t, which can be computed in
uniform AC0[⊕] by Lemma 1. For the iterated product we use the previous item.

!"
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Weighted Asynchronous Cellular Automata
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Abstract. We study weighted distributed systems whose behavior is described
as a formal power series over a free partially commutative or trace monoid. We
characterize the behavior of such systems both, in the deterministic and in the
non-deterministic case. As a consequence, we obtain a particularly simple class
of sequential weighted automata that have already the full expressive power.

1 Introduction

Mazurkiewicz [7] used free partially commutative or trace monoids to relate the inter-
leaving and the partial-order semantics of a distributed system (see [4] for surveys on
the many results on trace monoids). Two of the fundamental results in this field have
been found by Ochmański [8] and Zielonka [12]. Ochmański’s theorem states the coin-
cidence of recognizable and c-rational sets in trace monoids; hence it is a generalization
of Kleene’s theorem [6].

Another generalization of Kleene’s theorem is due to Schützenberger [10] who con-
siders weighted automata where transitions carry weights in some semiring like (N,+, ·)
or (N,max,+). The behavior of a weighted automaton is a function from the free monoid
Σ∗ into the semiring, i.e., a formal power series. Schützenberger’s theorem states that a
formal power series is the behavior of some weighted automaton iff it is rational.

Droste & Gastin [5] found a common formulation of the two distinct generalizations
of Kleene’s theorem by Schützenberger and Ochmański. Technically, they consider for-
mal power series over the trace monoid M, i.e., functions from M into the semiring. If
the semiring is commutative, then, indeed, a formal power series over M is recognizable
iff it is mc-rational. From this, strengthenings of Ochmański’s, of Kleene’s as well as
of Schützenberger’s theorem for commutative semirings follow.

Ochmański’s automata as well as Droste & Gastin’s weighted automata can be
thought of as sequential automata that do not distinguish between interleavings of the
same partial-order execution (i.e., are trace closed). If, e.g., the actions a and b use dis-
joint resources, then the total weight of executing the words ab and ba should be the
same. This is in particular the case in the automaton below over the semiring (N,+, ·)
(both words get the value 12).

But the two a-transitions in this automaton have different weights. Hence it seems
impossible to consider it as the global state space of a distributed system where a and b
are executed by independent subprocesses. This phenomenon seems to be unavoidable
in the proofs from [5].
� This work was begun when the author visited Centre de Mathématiques et Informatique, Mar-

seille. He thanks Rémi Morin and all his hosts for their hospitality and the fruitful discussions
during his stay.
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q1

q2

q3

q4

a/3 a/2

b/6

b/4
While Ochmański’s and Droste & Gastin’s automata rep-

resent the interleaving behavior of a system, asynchronous
cellular automata are a distributed model whose semantics is
more naturally described in a partial-order setting (see e.g.
[11] where this view is exhibited explicitely). The interleav-
ing behavior of such an asynchronous cellular automaton is
trace closed since it is defined to be the set of interleavings of
its partial-order behavior. Zielonka proved that recognizabil-

ity and trace-closure are not only necessary, but also sufficient for a language to be the
interleaving behavior of some (deterministic) distributed finite-state system.

It is the aim of this paper to extend Zielonka’s theorem to weighted distributed sys-
tems. Theorem 4.1 states that a formal power series over the trace monoid M is rec-
ognizable iff it is the behavior of some weighted asynchronous cellular automaton. As
a consequence, we show that any recognizable formal power series can be realized by
an automaton as in [5] not exhibiting the above contra-intuitive phenomenon. The ex-
pressive power of deterministic and nondeterministic weighted sequential automata are
distinct. We can therefore not expect that every weighted asynchronous cellular au-
tomata can be transformed into an equivalent deterministic one. Theorem 5.3 describes
the formal power series that can be realized by deterministic weighted asynchronous
cellular automata.

2 Distributed Alphabets and Asynchronous Cellular Automata

Let T be a nonempty and finite set of action types and D ⊆ T × T a symmetric and
reflexive dependence relation; its complement in T2 is denoted I . For � ∈ T, let D(�) =
{m ∈ T | (m, �) ∈ D}. We fix the pair (T, D) throughout this paper. A dependence
alphabet is a tuple Σ = (Σ�)�∈T of nonempty and mutually disjoint alphabets. Abusing
notation, we denote the set

⋃
�∈T

Σ� by Σ as well. For a ∈ Σ, let tp(a) ∈ T denote the
unique type � ∈ T with a ∈ Σ�. Furthermore, for a, b ∈ Σ, we write (a, b) ∈ D and
(a, b) ∈ I as shorthand for (tp(a), tp(b)) ∈ D and (tp(a), tp(b)) ∈ I , resp.

Let Σ = (Σ�)�∈T be a dependence alphabet. Then ∼ denotes the least congruence
relation on the free monoid Σ∗ with ab ∼ ba for all a, b ∈ Σ with (a, b) /∈ D. The
quotientΣ∗/∼ is the trace monoid generated by Σ. Its elements are equivalence classes
[u] of words. These equivalence classes can be represented naturally as follows: A trace
over Σ is a finite labeled poset t = (V,≤, λ) with λ : V → Σ such that the following
hold for all x, y ∈ V :

– if (λ(x), λ(y)) ∈ D, then x ≤ y or y ≤ x
– if x < y and there is no node in between, then (λ(x), λ(y)) ∈ D.

The set of traces over Σ is denoted by M(Σ). For a trace t = (V,≤, λ) and a node
x ∈ V , let tp(x) = tp(λ(x)).

Let t = (V,≤, λ) be a trace. A linear extension of t is a structure (V,1, λ) such that
1 is a linear order on V extending ≤. Such a linear extension can naturally be consid-
ered as a word over Σ, hence we define Lin(t) ⊆ Σ∗ as the set of linear extensions of
the trace t. Now a basic result in trace theory asserts that Lin maps M(Σ) bijectively
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onto the trace monoid generated by Σ. In the following, we will identify an equivalence
class [w] with the trace Lin−1([w]), i.e., consider the set M(Σ) as underlying set of the
trace monoid. This allows to define a set of traces L ⊆ M(Σ) to be recognizable if
there exists a homomorphism f : M(Σ) → S into some finite monoid S such that
L = f−1f(L).

Now fix some linear order � on the set Σ. It induces, in the natural way, the lexi-
cographic order on Σ∗ that we denote by � as well. Since any equivalence class [w] is
finite, it contains a �-minimal word lnf([w]), called the lexicographic normal form of
[w]. Let LNF = {lnf(t) | t ∈ M(Σ)} denote the set of lexicographic normal forms.
The language LNF ⊆ Σ∗ is known to be recognizable.

Let t = (V,≤, λ) be a trace and y ∈ V . Then ⇓y = {x ∈ V | x < y} is a subset
of V . The restriction of t to ⇓y is a trace (⇓y,≤∩(⇓y)2, λ�⇓y). Now let � ∈ T. Then the
set of nodes x ∈ V with tp(x) = � is linearly ordered by ≤, hence (if not empty) this
set contains a largest element that we denote by δ�(t). Occasionally, we will identify
the node δ�(t) with the set ⇓δ�(t) or the trace (⇓δ�(t),≤, λ). This allows to define,
for A ⊆ T, the set δA(t) =

⋃
�∈A δ�(t) which again gives rise to a trace, namely the

restriction of t to this set.

Definition 2.1. Let Σ be a dependence alphabet. An asynchronous cellular automaton
or ACA is a tuple

A = ((Qm)m∈T, (Tm)m∈T, I,F )

where

– Qm is a finite set of local states for any m ∈ T,
– T� ⊆

∏
m∈D(�) Qm ×Σ� ×Q� is a local transition relation for any � ∈ T,

– I,F ⊆
∏

�∈T
Q� are sets of global initial and final states, resp.

The ACAA is deterministic if I is a singleton and ((pm)m∈D(�), a, qi
�) ∈ T� for i = 1, 2

implies q1
� = q2

� .

In the terminology of [13], these ACAs are special “finite asynchronous automata”.
Zielonka reserves the name “finite asynchronous cellular automaton” to those ACAs
that satisfy |Σ�| = 1 for all � ∈ T.

Let t = (V,≤, λ) be a trace over Σ. A function r : V →
⋃

�∈T
Q� is a run

provided r(x) ∈ Qtp(x) for x ∈ V . Let ι ∈
∏

�∈T
Q� be a global state. For x ∈

V and m ∈ T let r−m(ι, x) = r(∂m(⇓x)) if ∂m(⇓x) is defined, and r−m(ι, x) =
ιm otherwise. Similarly, define finalm(ι, r, t) = r(∂m(t)) if ∂m(t) is defined, and
finalm(ι, r, t) = ιm otherwise. The pair (ι, r) is an accepting run provided ι ∈ I ,
((r−m(ι, x))m∈D(�), λ(x), r(x)) ∈ T� for any x ∈ V with tp(x) = �, and final(ι, r, t) ∈
F . Let the language L(A) ⊆ M(Σ) of the ACA A comprise all traces t that allow a
successful run (ι, r) of A on t.

Zielonka [12] showed that a set of traces is recognizable iff it is the language of
some (deterministic) ACA where tp(a) = a for a ∈ Σ. His results from 1987 have
been extended in [13], Prop. 7.6.2 and Thm. 7.6.11 from that paper yield the following:

Theorem 2.2 ([13]). Let L ⊆ M(Σ) be a trace language. Then L is recognizable iff
there exists an ACA A with L(A) = L iff there exists a deterministic ACA A with
L(A) = L.
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3 Weighted Automata over Traces

In this section, we define weighted sequential and distributed automata that associate
costs with any trace. Their behavior is described by functions mapping traces to ele-
ments of a semiring.

3.1 Semirings

A semiring is an algebraic structure (K,+, ·, 0, 1) with two binary operations such that
(K,+, 0) is a commutative monoid, (K, ·, 1) a monoid, multiplication distributes over
addition, and x·0 = 0·x = 0 for any x ∈ K . It is commutative if (K, ·) is a commutative
monoid. Examples of commutative semirings are rings, Boolean algebras like the two-
elements Boolean algebra {tt, ff} with conjunction and disjunction, but also structures
like (N ∪ {∞},min,+,∞, 0) or ([0, 1],max,min, 0, 1). For a semiring K and n ∈ N,
let Kn×n denote the set of n × n-matrices over K . For these matrices, we can define
addition + and multiplication · as usual using the semiring operations + and ·. The
resulting structure (Kn×n,+, ·, 0, E) (where 0 is the 0-matrix and E the unit matrix) is
again a semiring (that need not be commutative even if K is commutative). Throughout
this paper, we fix a commutative semiring K .

3.2 Presentations

We start with a sequential model of weighted automata, so called presentations. Let
[n] = {1, 2, . . . , n}.

Definition 3.1. Let M be some monoid. A triple (in,μ, out) consisting of two functions
in, out : [n] → K and a homomorphism μ : M → (Kn×n, ·, E) is an n-dimensional
presentation. It represents the formal power series or fps S : M → K defined by

(S, t) =
∑

ι,fin∈[n]

in(ι) · μ(t)ι,fin · out(fin) = in · μ(t) · out

for t ∈ M (where we consider in as a row and out as a column vector). A function
S : M → K is recognizable if there exists a presentation representing S.

Example 3.2. Let Σ1 = {a} and Σ2 = {b} with T = {1, 2} and (1, 2) /∈ D. Then

μ(a) =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ and μ(b) =

⎛⎜⎜⎝
0 0 2 0
0 0 0 2
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
define a monoid homomorphism M(Σ) → (N,+, ·)4×4 since (μ(a) · μ(b))14 = 2 =
(μ(b) · μ(a))14 and (μ(a) · μ(b))ij = 0 = (μ(b) · μ(a))ij for all other pairs (i, j).
Furthermore, define

in(i) =

{
3 if i = 1
0 otherwise

and out(i) =

{
2 if i = 4
0 otherwise

Then (in,μ, out) is a presentation of the function S : M(Σ) → N with (S, [ab]) = 12
and (S, t) = 0 for t �= [ab].
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q1

3

q2

q3

q4

a/1 a/1

b/2

b/2
2

Presentations can be interpreted as automata whose transi-
tions are provided with costs (hence the notion “recognizable
function”); see the automaton on the right. Note that in that
automaton, both a-transitions carry the same weight (and the
same holds for the b-transitions); thus the two a-transitions
can be thought of as being “the same”. This mirrors the idea that the two paths (labeled
ab and ba) represent a concurrent execution of the trace [ab] = [ba].

We give another presentation of the same function (it is depicted in the introduction):

μ′(a) =

⎛⎜⎜⎝
0 3 0 0
0 0 0 0
0 0 0 2
0 0 0 0

⎞⎟⎟⎠ and μ′(b) =

⎛⎜⎜⎝
0 0 6 0
0 0 0 4
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
in′(i) =

{
1 if i = 1
0 otherwise

and out(i) =

{
1 if i = 4
0 otherwise

Note that the initial weights in this second presentation are from {0, 1} and that
there are unique states ι and fin with in′(ι) = 1 and out′(fin) = 1. Droste & Gastin
[5–Prop. 9] show that any presentation of a mono-alphabetic function M(Σ) → K can
be transformed into an equivalent one satisfying these properties (and we followed their
proof when constructing the second presentation from the first one).

Note finally that the two a-transitions in the second presentation have different weights
which violates the intuition discussed above that they should be “the same” in a dis-
tributed system.

Definition 3.3. A homomorphism μ : M(Σ) → (Kn×n, ·, E) is I-consistent if, for any
a, b ∈ Σ with (a, b) ∈ I and any p, q, r ∈ [n], we have

1. If μ(a)p,q �= 0 �= μ(b)q,r, then there exists q′ ∈ [n] with μ(a)p,q = μ(a)q′,r and
μ(b)q,r = μ(b)p,q′ .

2. If μ(a)p,q �= 0 �= μ(b)p,r, then there exists s ∈ [n] such that μ(b)q,s �= 0.

A presentation (in,μ, out) is I-consistent if μ is I-consistent.

The first of these requirements avoids the contra-intuitive situation discussed in the
example above. It is a weighted version of the I-diamond property known from trace
theory. Similarly, the second one is a weighted version of the F -diamond property: it
requires that execution of an action a cannot toggle the status of an independent action b
from “enabled” into “disabled” (the other direction is already taken care of by the first
requirement).

3.3 Weighted Distributed Automata

Next we define a distributed model of weighted automata on traces, so called weighted
asynchronous cellular automata.

Definition 3.4. Let Σ be a dependence alphabet. A weighted asynchronous cellular
automaton or wACA for short is a tuple A = ((Qm)m∈T, (c�)�∈T, in, out) where
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– Qm is a finite set of local states for any m ∈ T,
– c� :

∏
m∈D(�) Qm ×Σ� ×Q� → K is a local weight function for any � ∈ T,

– in, out :
∏

m∈T
Qm → K are functions describing the cost for entering and leav-

ing the system.

The weighted ACA A is deterministic if

– there is at most one state ι ∈
∏

m∈T
Qm with in(ι) �= 0, and

– for any � ∈ T, a ∈ Σ�, pm ∈ Qm for m ∈ D(�), and q�, r� ∈ Q� with
c�((pm)m∈D(�), a, q�) �= 0 �= c�((pm)m∈D(�), a, r�), we have q� = r�.

If the dependence alphabet (Σ�)�∈T consists of singletons, only, then these wACAs can
be seen as a weighted version of Zielonka’s “finite asynchronous cellular automata”.
For technical convenience, we chose this more liberal notion, but since our results hold
for all dependence alphabets, they hold in particular for “finite asynchrounous cellular
automata with weights”.

Let t = (V,≤, λ) be a trace over Σ. Runs r : V →
⋃

�∈T
Q� and states r−m(ι, x)

and finalm(ι, r, t) are defined as before for ACAs. Then the running cost of the run r
starting in ι is given by

rcost(ι, r, t) =
∏
x∈V

ctp(x)((r−m(ι, x))m∈D(tp(x)), λ(x), r(x))

and the cost of the run r starting in ι is

cost(ι, r, t) = in(ι) · rcost(ι, r, t) · out(final(ι, r, t))

The function ||A|| : M(Σ) → K is the behavior of A; for any trace t = (V,≤, λ), it is
given by

(||A||, t) =
∑

{cost(ι, r, t) | ι ∈
∏
m∈T

Qm, r : V →
⋃

m∈T

Qm run}

Let K = ({tt, ff},∨,∧) be the Boolean semiring and ((Q�)�∈T, (T�)�∈T, I,F ) be
an ACA A. Define c�, in, and out to be the characteristic functions of T�, I , and F ,
resp. This defines a wACA A′ = ((Q�)�∈T, (c�)�∈T, in, out). It is routine to show for
any trace t ∈ M(Σ), that t ∈ L(A) iff (||A′||, t) = tt. Since the inverse conversion of
wACAs over the Boolean semiring into ACAs is equally well possible, the concept of
a weighted ACA generalizes that of an ACA.

4 Presentations and wACAs

This section is devoted to the fact that a function M(Σ) → K is recognizable iff it is
the behavior of some wACA. We start showing that wACAs can be transformed into
equivalent I-consistent presentations (Proposition 4.3 and Lemma 4.2). Later, we will
transform arbitrary presentations into equivalent wACAs (Prop. 4.8). In summary, we
will obtain the following theorem whose proof can be found at the end of this section.
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Theorem 4.1. Let S : M(Σ) → K be some function. Then the following are equivalent

(1) S is the behavior of some wACA
(2) S is recognizable
(3) S has an I-consistent presentation

Thus, as a byproduct, we obtain that any presentation can be transformed into an equiv-
alent I-consistent one.

4.1 wACA-Recognizable Series Are Recognizable

In this section, we show how to transform wACAs into I-consistent presentations.
Let A = ((Q�)�∈T, (c�)�∈T, in, out) be a wACA and let Q =

∏
m∈T

Qm be the set
of global states of A. We define the mapping μ : Σ → KQ×Q by

μ(a)p,q =

{
ctp(a)((p�)�∈D(tp(a)), a, qtp(a)) if pm = qm for all m �= tp(a)
0 otherwise

where p = (pm)m∈T and q = (qm)m∈T are global states from Q.
We consider the elements of KQ×Q (i.e., the functions from Q2 into K) as Q×Q-

matrices. For these matrices, multiplication is defined in the standard way:

(M ·N)p,r =
∑
q∈Q

Mp,q ·Nq,r

Lemma 4.2. The mapping μ extends uniquely to a monoid homomorphism μ from
M(Σ) into (KQ×Q, ·, E). This homomorphism is I-consistent.

Let n = |Q|. Then in and out can be considered as functions from [n] to K . Further-
more, μ can be thought of as a homomorphism from M(Σ) into (Kn×n, ·, E). Hence
the triple (in,μ, out) is a presentation over M(Σ) called the canonical presentation
associated with A. We will show that it presents the behavior of A.

Proposition 4.3. Let (in,μ, out) be the canonical presentation associated with the
weighted asynchronous-cellular automaton A. Then the function ||A|| is presented by
(in,μ, out).

Proof. The crucial point is that, for any trace t and any p, q ∈ Q, we have μ(t)p,q =∑
rcost(p, r, t) where the sum is taken over all runs r on t with final(p, r) = q. !"

4.2 Recognizable Series Are wACA-Recognizable

The proof of the implication (2)⇒(1) from Theorem 4.1, uses some preliminary results.
To formulate them, let Γ = (Γm)m∈T be some dependence alphabet.

Lemma 4.4. For any homomorphism c : M(Γ ) → (K, ·, E), there exists a determinis-
tic wACA Ac with (||Ac||, t) = c(t) for t ∈ M(Γ ).
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Proof. Let Qm = {1} for m ∈ T and define in(ι) = out(ι) = 1 for the only global
state ι. Furthermore, c�((pm)m∈D(�), a, qm) = c(a) for any a ∈ Σ�, pm ∈ Qm, and
q� ∈ Q�. Checking cost(ι, r, t) = c(t) for the only global state ι and the only run r on
the trace t is routine. !"

Corollary 4.6 below claims that the restriction of the behavior of some wACA to a
recognizable trace language can again be described by a wACA. For handling these
restrictions, we use the more general Hadamard-product: For S, T : M(Γ ) → K , the
Hadamard-product S 2 T : M(Γ ) → K is defined by (S 2 T, t) = (S, t) · (T, t) for
t ∈ M(Γ ).

Lemma 4.5. Let A1 andA2 be wACAs. Then the Hadamard product ||A1|| 2 ||A2|| is
the behavior of some wACA A. If A1 and A2 are deterministic, then A can be chosen
deterministic.

Proof. The wACA A is the “direct product” of the wACAs A1 and A2. The point is
that any local state from A consists of a pair of local states from A1 and A2, any run r
of A is a pair (r1, r2) of runs of A1 and A2. !"

For a function S : M(Σ) → K and a language L ⊆ M(Σ), let T = S�L denote the
function defined by (T, t) = (S, t) for t ∈ L and (T, t) = 0 otherwise.

Corollary 4.6. Let L ⊆ M(Γ ) be a recognizable trace language and let A be some
wACA. Then there exists a wACA A′ with ||A′|| = ||A||�L. If A is deterministic, then
A′ can be chosen deterministic.

Proof. By Theorem 2.2, there exists a deterministic ACA AL with L(A) = L. Then
the characteristic function of L is the behavior of some deterministic wACA A1. Since
||A||�L = ||A|| 2 ||A1||, the result follows from Lemma 4.5. !"

Informally, Proposition 4.7 states that the inverse image of the projection of the be-
haviour of some wACA can again be realized by some wACA.

A mapping π : Γ → Σ is type-preserving if tp(a) = tp(π(a)) for any a ∈ Σ. Note
that any type-preserving mapping π extends uniquely to a homomorphism π : M(Γ ) →
M(Σ).

Proposition 4.7. Let A = ((Qm)m∈T, (cm)m∈T, in, out) be a wACA over Γ with be-
havior ||A|| = S : M(Γ ) → K and π : Γ → Σ be some type-preserving mapping.
Then there exists a wACA A′ over Σ with behavior (T, t) =

∑
u∈π−1(t)(S, u).

Proof. We construct the wACA A′ as follows

– Q′
m = Qm × Γm for m ∈ T

– Let � ∈ T, a ∈ Σ�, (q�, b) ∈ Q′
� and, for m ∈ D(�), let (pm, bm) ∈ Q′

m. Then set

c′�((pm, bm)m∈D(�), a, (q�, b)) =

{
c�((pm)m∈D(�), b, q�) if π(b) = a

0 otherwise
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– for m ∈ T let b0
m ∈ Γm be fixed. Then

in′((qm, bm)m∈T) =

{
in((qm)m∈T) if bm = b0

m for all m ∈ T
0 otherwise

– out′((qm, bm)m∈T) = out((qm)m∈T)

Now let t = (V,≤, λ) ∈ M(Σ) be a trace over Σ. Consider the following two sets

– R′ = {(q′, r′) | q′ ∈ Q′, r′ run of A′ on t with cost(q′, r′, t) �= 0}
– R = {(q, r, u) | q′ ∈ Q′, u ∈ π−1(t), r′ run of A on u with cost(q, r, u) �= 0}

Then (||A′||, t) =
∑

(q′,r′)∈R′ cost(q′, r′, t) and (T, t) =
∑

(q,r,u)∈R cost(q, r, u). Let
u = (V,≤, γ) with π(u) = t, q = (qm)m∈T, and r a run of A on u. For m ∈ T,
let q′m = (qm, b0

m). Further, for x ∈ V , define r′(x) = (r(x), γ(x)). It can be shown
that (q′, r′) ∈ R′ and costA′(q′, r′, t) = costA(q, r, u). Furthermore, this construction
yields a bijection from R onto R′. !"

Now we come to the most crucial statement in this section, namely that any recognizable
fps is the behavior of some wACA.

Proposition 4.8. Let (in,μ, out) be a presentation of the fps S : M(Σ) → K with
(S, [ε]) = 0. Then there exists a wACA A with S = ||A||.

Proof. Let T : Σ∗ → K be defined by (T,w) = (S, [w]) if w ∈ LNF and (T,w) = 0
otherwise. Note that (T, ε) = 0. Hence there exist n′ ∈ N, ι, fin ∈ [n′], in′, out′ :
[n] → K and a homomorphism μ′ : Σ∗ → (Kn′×n′

, ·, E) such that, for any w ∈ Σ∗,
we have (T,w) = μ′(w)ι,fin by [9–p. 32] and [5–Prop. 29].

For � ∈ T set Γ� = [n′]×Σ� × [n′] and let the language L ⊆ Γ over Γ = (Γ�)�∈T

comprise of those words (ik, ak, jk)0≤k≤N over Γ satisfying

1. i0 = ι, jk = ik+1 for 1 ≤ k < N and jN = fin
2. a0a1 . . . aN ∈ LNF.

Since LNF ⊆ Σ∗ is recognizable, the languages L and therefore [L] = {[w] | w ∈
L} ⊆ M(Γ ) are recognizable as well [4].

Now consider the homomorphisms c : M(Γ ) → (K, ·, E) and π : M(Γ ) → M(Σ)
given by c(i, a, j) = μ(a)ij and π(i, a, j) = a for (i, a, j) ∈ Γ (these homorphisms
exist since (K, ·, E) is commutative and since π is type-preserving, resp.).

By Lemma 4.4, the homomorphism c is the behavior of some wACA. Hence, by
Corollary 4.6, the formal power series c�[L] is also the behavior of some wACA. Now
Proposition 4.7 implies the same for the fps π−1(c�[L]). Showing S = π−1(c�[L])
completes the proof. !"

Proof of Theorem 4.1. The implication (1)⇒(3) is Prop. 4.3, (3)⇒(2) is trivial. So let
(in,μ, out) be some presentation representing the fps S : M(Σ) → K . Then K = {[ε]}
and L = M(Σ) \ {[ε]} are recognizable. Hence the functions S � K and S � L are
recognizable and therefore the behavior of some wACAs A1 and A2 by Prop. 4.8.
Considering the “disjoint union” of these two wACAs, we obtain a wACA A whose
behaviour equals S. !"
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5 Deterministic wACAs and Presentations

Recall that any recognizable trace language can be accepted by a deterministic ACA.
Furthermore, any presentation can be thought of as an automaton with weighted tran-
sitions. There are presentations of functions Σ∗ → K that do not admit a presentation
whose underlying automaton is deterministic. We can therefore not expect that every
presentable function M(Σ) → K is the behavior of some deterministic wACA. It is the
aim of this section to identify a class of presentations that correspond to deterministic
wACAs.

Definition 5.1. Let (in,μ, out) be an n-dimensional I-consistent presentation over
M(Σ). We call this presentation deterministic if it meets the following two requirements.

(1) There is a unique state ι ∈ [n] with in(ι) �= 0.
(2) Any row of μ(a) contains at most one non-zero entry (i.e., μ(a)i,j �= 0 �= μ(a)i,k

implies j = k for any a ∈ Σ and i, j, k ∈ [n]).

A first attempt to transform a deterministic presentation into an equivalent determinstic
wACA would be to change the proof of Prop. 4.8 accordingly. But this turns out to be
problematic since Prop. 4.7 does not necessarily preserve determinism (all the other
steps in the proof go through verbatim). Our alternative proof strategy follows the ideas
from [1] where a deterministic asynchronous cellular automaton is constructed from an
asynchronous mapping.

From now on, let (in,μ, out) be a deterministic n-dimensional presentation over
M(Σ). Furthermore, let ι ∈ [n] be the unique state with in(ι) �= 0.

Then (in,μ, out) defines a partial mapping . : [n] × Σ∗ → [n] by p.ε = p for
p ∈ [n], p.a = q iff μ(a)p,q �= 0 for a ∈ Σ and p, q ∈ [n], and p.aw = (p.a).w
for [n] ∈ Q, a ∈ Σ and w ∈ Σ∗ provided the right hand side is defined. Since μ is
I-consistent, equivalent words lead to the same state (if at all). Thus, we can define
the partial mapping . : [n] × M(Σ, I) → [n] by q.[u] = q.u where u is some word
over Σ.

Let Part([n], [n]) denote the monoid of partial functions from [n] into itself with
composition as operation. Then η : M(Σ) → Part([n], [n]) defined by η(t)(i) = i.t is
a monoid homomorphism. By [3–Cor. 8.3.18] there exists a mapping ϕ : M(Σ) → S
into some finite set S such that

– ϕ(s) = ϕ(t) implies η(s) = η(t) for any two traces s and t,
– for any s ∈ M(Σ) and a ∈ Σ, the value ϕ(∂D(tp(a))(s)a) is determined by

ϕD(tp(a))(s) and by a ∈ Σ and
– for any s ∈ M(Σ) and any A, B ⊆ T, the value ϕ(∂A∪B(s)) is determined by

ϕ(∂A(s)), ϕ(∂B(s)), A, and B.

A mapping satisfying the second and third stipulation above is called asynchronous.
From this asynchronous mapping, we will now define a deterministic weighted asyn-
chronous cellular automaton A following the ideas from [1] (see [2] for an
exposition).

For m ∈ T, let Qm = S. For q = (qm)m∈T ∈
∏

m∈T
Qm set inA(q) = in(ι) if

qm = ϕ([ε]) for all m ∈ T. Otherwise, set inA(q) = 0. To define mapping outA, let
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q = (qm)m∈T. If there is a trace t with qm = ϕ∂m(t) for all m ∈ T such that ι.t is
defined, then outA(q) = out(ι.t). Otherwise, outA(q) = 0. Since ϕ is asynchronous,
the mapping outA is welldefined.

Now let a ∈ Σ�, pm ∈ Qm for m ∈ D(�), and q� ∈ Q�. Suppose there exists a trace
t ∈ M(Σ) be a trace satisfying

– pm = ϕ∂m(t) for all m ∈ D(�),
– q� = ϕ∂�(ta), and
– such that ι.ta is defined.

Then set c�(((pm)m∈D(�), a, q�)) = μ(a)ι.t,ι.ta. If no such trace t exists, then the value
c�(((pm)m∈D(�), a, q�)) is set to 0. Again, this is welldefined since ϕ is asynchronous.
Hence we defined a deterministic wACA A = ((Q�)�∈T, (c�)�∈T, inA, outA).

We now want to show that the behavior of the deterministic wACA A equals the
function represented by the deterministic presentation (in,μ, out). Let (inA,μA, outA)
be the canonical presentation associated with the wACA A. In the following, let p0 =
(p0

�)�∈T be a global state of the wACAAwith p0
� = ϕ([ε]) for all � ∈ T. Let furthermore

a1, a2, . . . , an ∈ Σ be letters and write ti for the word a1a2 . . . ai. By induction on i,
one first shows the following:

Claim. If p1, p2, . . . , pn ∈
∏

�∈T
Q� such that

∏
1≤i≤n μA(ai)pi−1,pi �= 0, then

(1) pi
� = ϕ∂�(ti) for � ∈ T,

(2) ι.ti is defined, and
(3) μA(ai)pi−1,pi = μ(ai)ι.ti−1,ι.ti for 1 ≤ i ≤ n.

Proposition 5.2. Let (in,μ, out) be a deterministic k-dimensional presentation and let
A be the deterministic wACA constructed above. Then (||A||, t) =

∑
p,q∈[k] in(p) ·

μ(t)p,q · out(q) for any trace t ∈ M(Σ).

Proof. Let ι be the only element of Q = [k] with in(ι) �= 0 and let t = [a1a2 . . .an] ∈
M(Σ) be some trace. Furthermore, let (inA,μA, outA) be the presentation associated
with the deterministic wACA A.

First assume (||A||, t) �= 0, i.e.,
∑

p,q∈
∏

Qm
(inA(p) ·μA(t)p,q ·outA(q)) �= 0. Then

there are global states pi of A with inA(p0) ·
∏

1≤i≤n μA(ai)pi−1,pi · outA(pn) �= 0.
Hence, using the claim, one can verify

(||A||, t) = inA(p0) ·
∏

1≤i≤n

μA(ai)pi−1,pi · outA(pn)

= in(ι) ·
∏

1≤i≤n

μ(ai)ι.ti−1,ι.ti · out(ι.tn).

Since (in,μ, out) is deterministic, this equals in · μ(t) · out. Thus, we showed the
equality from the proposition for all traces t with (||A||, t) �= 0.

If in · μ(t) · out �= 0, we can argue similarly. !"

The following theorem summarizes the results of this section
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Theorem 5.3. Let S : M(Σ) → K be a function. Then the following are equivalent

– S is the behavior of some deterministic wACA
– S has a deterministic presentation

Recall that any deterministic presentation is I-consistent by the very definition. Hence
this theorem is an analogue of the equivalence of (1) and (3) in Theorem 4.1. Recall
that the second presentation in Example 3.2 satisfies (1) and (2) from Definition 5.1 but
is not I-consistent. As any presentation, there exists an equivalent I-consistent one. But
this transformation via nondeterministic wACAs can in general destroy property (2).
Thus, it is an open question as to whether I-consistency is necessary for Prop. 5.2 to
hold.
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Abstract. We show that if a minimal-time solution exists for a funda-
mental distributed computation primitive, synchronizing a general
directed network of finite-state processors, then there must exist an ex-
traordinarily fast O(ED log2 D (log2 n)2) algorithm in the RAM model of
computation for exactly determining the diameter of a general directed
graph. The proof is constructive.

This result interconnects two very distinct areas of computer science:
distributed protocols on networks of intercommunicating finite-state ma-
chines and standard algorithms on the usual RAM model of computation.

1 Introduction

The Firing Squad Synchronization Problem (or FSSP, for short) is a famous
problem originally posed almost half a century ago. A prisoner is about to be
executed by firing squad. The firing squad is made up of soldiers who have formed
up in a straight line with muskets aimed at the prisoner. The general stands on
the left side of the line, ready to give the order, but he knows that he can only
communicate with the soldier to his right. In fact, each soldier can only communi-
cate with the soldier to his immediate left and/or right, but nobody else. Soldiers
have limited memory and can only pass along simple instructions. Is it possible to
come up with a protocol, independent of the size of the line, for getting all of the
soldiers to fire at the prisoner simultaneously if their only means of communica-
tion are small, whispered instructions only to adjacent soldiers? (The possibility
of counting the number of soldiers in the line can be discounted because no sol-
dier can remember such a potentially large amount of information; each soldier
can only remember messages that are independent of the size of the line.)

The problem itself is interesting as a mathematical puzzle. More impor-
tantly, there are also applications to the synchronization of small, fast processors
in large networks. In the literature on the subject (e.g. [26, 18]), the problem
has been referred to as “macrosynchronization given microsynchronization” and
“realizing global synchronization using only local information exchange.” The
synchronization of multiple small but fast processors in general networks is a
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fundamental problem of parallel processing and a computing primitive of dis-
tributed computation.

The FSSP has a rich history that spans decades. J. Mazoyer provides an
overview of the problem (up to 1986, at least) in addition to some of its history
in [20]. The problem was originally introduced by J. Myhill in 1957, though the
first published reference is [23] from 1962. J. McCarthy and M. Minsky [22] first
solved the problem. Since then, many variations of FSSP have been proposed
and studied (e.g. [21, 28, 19, 24, 12, 3, 2] to name just a few). Despite this long
history of study and extensive compilation of results, one fundamental problem
for FSSP has remained open. It concerns existence of optimal-time solutions of
variations of FSSP.

For one variation of FSSP that has a solution and a problem instance (a
network) X of the variation, the minimum firing time of X is the minimum
of the firing times of solutions A for the instance X , where A ranges over all
solutions of the variation. A minimal-time solution of the variation is a solution
whose firing time for X is the minimum firing time of X for any problem instance
X of the variation. Variations of FSSP are classified to the following three types:

Type A: The variation has a minimal-time solution.
Type B: The variation has a solution but has no minimal-time solution.
Type C: The variation has no solution.

We know many examples of variations of Type A. The original FSSP is one
of them. The minimum firing time of a linear array of n soldiers is 2n− 2 and
minimal-time solutions were found by Goto [11] and Waksman [29]. Other ex-
amples are linear arrays with arbitrary position of the general, bilateral rings,
one-way rings, rectangles, and squares (the position of the general may be ei-
ther one of the corners or may be at any position). We also know examples
of variations of Type C. One is the variation for directed networks such that
an out-port may have arbitrary fan-out ([17]) and another is the variation for
undirected networks with unbounded number of generals ([14, 13]). However, at
present we know no example of variations of Type B. Neither do we know that
variations of Type B do not exist. Therefore, the problem to decide whether vari-
ations of Type B exist or not is a very important open problem. Here we restrict
ourselves to variations of FSSP that are obtained from the original FSSP by
generalization only with respect to network topologies. Without this restriction,
we know of some variations of Type B: [21] (generalization with respect to the
communication delay time) and [27] (generalization with respect to the number
and the role of generals).

In the followings, we list eight variations for which solutions are known but
minimal-time solutions are not known.

2PATH: The variations for paths in the two-dimensional grid space. A path
may bend but may not touch itself. The general is at one of the end points.

g-2PATH: The same as 2PATH but the general may be at any position (g is
for “generalized”).

2REG: The variation for finite connected regions in the two-dimensional grid
space. The general may be at any position. Regions may have holes.
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3PATH, g-3PATH, 3REG: The variations analogous to 2PATH, g-2PATH,
2REG respectively for the three-dimensional grid space.

UN: The variation for general undirected networks. Networks must be con-
nected.

DN: The variation for general directed networks. Networks must be strongly
connected.

We know a solution with firing time 3r−1 for UN ([25]) (r denotes the radius
of the network) and solutions for DN with an exponential firing time ([16]), with
a firing time O(n2) ([7]), and with a firing time O(Dn) ([26], D denotes the
diameter of the network). However, these solutions are not minimal-time. The
variation DN is especially important because it is the “most general” FSSP.

We have made the conjecture that all of these eight variations have no
minimal-time solutions, and hence are of Type B. The attempt to prove this
conjecture was initiated by one of the authors. In [18], the second author in-
troduced a problem which he called 2PEP (the two-dimensional path extension
problem). The problem is to decide, for each given path in the two-dimensional
grid space, whether we can extend the path from the specified end point so
that the length of the path is doubled. At present we know no polynomial time
algorithm for 2PEP, but at the same time we are unable to prove that it is NP-
complete. It was proved in [18] that if 2PATH has a minimal-time solution then
2PEP has an O(n2) time algorithm. This result readily applies also to g-2PATH
and 2REG. Hence, finding a minimal-time solution of 2PATH, g-2PATH, 2REG
is at least as hard as finding an O(n2) time algorithm for 2PEP. Next, in [10]
and [9], we could prove a stronger result for the other three variations: if P �= NP
then 3PATH, g-3PATH, 3REG have no minimal-time solutions. Hence, finding a
minimal-time solution of 3PATH, g-3PATH, 3REG is at least as hard as finding
a polynomial time algorithm for SAT. UN and DN remain to be studied.

In the present paper, we show that finding a minimal-time solution of DN
is at least as hard as finding an “incredibly” fast algorithm in the RAM model
of computation for the problem to determine the diameter of a general directed
graph. We formalize this with the following theorem.

Theorem 1. If there exists a minimal-time solution for the general directed
network topology, then there exists a deterministic algorithm in the RAM model
of computation that can exactly determine the diameter of a general unweighted
directed graph in time O(ED log2 D (log2 n)2) where E is the number of edges,
D is the diameter of the graph, and n = |V | is the number of vertices.

To give some idea on how the algorithm mentioned in Theorem 1 compares
with other algorithms, in Table 1 we show the running time O(En +n2 log n) of
Dijkstra’s algorithm and the running time O(ED log D(log n)2) of our algorithm
for some special cases of E, D. Our algorithm is slower only for the case D = Θ(n)
(narrow and long graphs).

The literature for algorithms that determine the diameter of a graph is vast
and varied. There are numerous references for finding the diameter of directed
graphs, most of which reduce to the problems of matrix multiplication (that
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Table 1. Comparison of the running times of Dijkstra’s algorithm and the algorithm
of Theorem 1

O(En + n2 log n) O(ED log D(log n)2)
E = Θ(n2),D = Θ(n) O(n3) O(n3(log n)3)

E = Θ(n2),D = Θ(
√

n) O(n3) O(n2√n(log n)3)
E = Θ(n2),D = Θ(1) O(n3) O(n2(log n)2)

E = Θ(n
√

n),D = Θ(n) O(n2
√

n) O(n2
√

n(log n)3)
E = Θ(n

√
n),D = Θ(

√
n) O(n2

√
n) O(n2(log n)3)

E = Θ(n
√

n),D = Θ(1) O(n2√n) O(n
√

n(log n)2)
E = Θ(n),D = Θ(n) O(n2 log n) O(n2(log n)3)

E = Θ(n),D = Θ(
√

n) O(n2 log n) O(n
√

n(log n)3)
E = Θ(n),D = Θ(1) O(n2 log n) O(n(log n)2)

ignores addition as an elementary operation when determining the complex-
ity, which our model does not) or solving the All Pairs Shortest Path (APSP)
problem; the problem of finding approximate diameters (e.g. [1]) has also been
examined. To date, the best methods for determining the diameter of an arbi-
trary directed network that do not involve “fast matrix multiplication” [4] rely
on solving the All Pairs Shortest Path problem [5]. Applying Dijkstra’s algorithm
for each vertex in the network leads to a running time of O(En+n2 log n). This
algorithm was improved by Karger et al. [15] in 1993 to O(nE∗ +n2 log n) where
E∗ represents the total number of edges that participate in the shortest length
paths. Fredman [8] in 1976 introduced a method in the algebraic computation
tree model by which the min-plus matrix multiplication necessary to compute
the APSP could be determined using only O(n2.5) additions and comparisons,
but the best known implementation by Zwick [31] in the RAM model runs in
time slightly o(n3). We have presented only a very superficial sampling of the
results in this area1, but Zwick [30] presents a fairly complete survey on the
APSP problem and most of its reasonable variations.

To the authors’ knowledge, this is the first result that directly relates solu-
tions for distributed networks of finite-state automata to algorithms that run in
the “usual” RAM model of computation. To this point, there is no established
connection between the diameter of a graph and the minimum firing time of
a network of finite-state machines. The time bound of O(ED log2 D (log2 n)2)
mentioned above in Theorem 1 beats every known result in the relevant sections
of Zwick’s survey by large factors, especially for somewhat sparse graphs with
small diameter. One can therefore look at our results in one of two ways. One
can view Theorem 1 as evidence that a minimal-time solution for the FSSP on
general directed networks does not exist, given the size of the asymptotic gap
between the conclusions of the theorem and the current state of research of the
diameter problem after decades of searching for better algorithms. One can also
view Theorem 1 as motivation for searching for a minimal-time solution, for if

1 Indeed, there were at least six results leading up to Zwick’s recent o(n3) algorithm
just for implementing Fredman’s original 1976 idea.
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such a solution were found, it would be a major leap forward in the search for
better “shortest-path” algorithms.

The rest of the paper will be organized as follows. In Section 2, we introduce
the automata model we will use for the remainder of the paper. Section 3 contains
the proof of Theorem 1 including proof sketches of the relevant lemmas. Finally,
in Section 4, we present conclusions and open problems.

2 The Model

As mentioned previously, we wish to model the operation of a large network
of processors whose computations are all governed synchronously by the same
global clock. The model is intended to mathematically abstract a physical switch-
ing network or a very large-scale parallel processing machine. The processors are
designed to be small, fast, and unable to access large memory caches. Each
processor is identical and assumed to have a fixed constant number of ports
which can both send and receive a constant amount of data per clock cycle.
(“Constant” quantities must be independent of the size and structure of the
network.)

More formally, the problem is to construct a deterministic finite-state au-
tomaton with a transition function that satisfies certain conditions. We assume
that each processor in the network is identical and initially in a special “qui-
escent” state, in which, at each time-step, the processor sends a “blank” char-
acter through all of its ports. A processor remains in the quiescent state until
a non-blank character is received by one of its in-ports. We consider connected
networks of such identical synchronous finite-state automata with vertex de-
gree uniformly bounded by a constant. These automata are meant to model
very small, fast processors. The network itself may have a specific topology
(see below) but potentially unbounded size. The network is formed by connect-
ing ports of a given processor to those of other processors with wires. Not all
ports of a given processor need necessarily be connected to other processors.
The network has a global clock, the pulses between which each processor per-
forms its computations. Processors synchronously, within a single global clock
pulse, perform the following actions in order: read in the inputs from each of
their ports, process their individual state changes, and prepare and broadcast
their outputs. As mentioned, our network structure is specifically designed to
model the practical situation of many small and fast processors performing a
synchronous distributed computation. The goal of the protocol is to cause every
process in the network to enter the same special “firing” state for the first time
simultaneously.

A solution A for a given network topology (e.g. the bidirectional line, as above)
is defined to be the instantiation of an automaton with a transition function that
satisfies the firing conditions outlined above for any network size. (So, by this
definition, a solution for the bidirectional line must function for a bidirectional
line of any size.) Assuming a solution A is specified, the firing time of A on a
given network will refer to the number of clock cycles it takes for this network
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of processors programmed with the solution A to complete the protocol and
simultaneously fire. The minimum firing time of a given network (of a specified
topology) will refer to the minimum over all solutions A of the firing time of the
network of processors programmed with solution A. A minimal -time solution
Amin for a given network topology will be a solution such that the firing time
for a network of any given size (with the given topology) programmed with
the algorithm Amin will equal the minimum firing time of the network. Note
that even though the network can be of arbitrary size, the size of the algorithm
Amin must be fixed. The topology we consider in this paper is the most general
possible, an arbitrary directed network of bounded degree2.

3 The Results

To prove Theorem 1, we will first prove two lemmas.

Definition 1. Given a graph G, define I(v) to be the set of edges with terminal
vertex v. For e ∈ I(v′), define de(v, v′) to be the length of the shortest path from
v to v′ such that the final edge in the path is e. Then for two vertices v, v′ ∈ G,
define d∗(v, v′) to be maxe′∈I(v′) de′ (v, v′).

Lemma 1. Let G = (V, E) be a general directed network with degree at most
δ. Then the minimum firing time for the general directed network topology with
degree bound δ running on G is maxv∈V {d∗(root, v) + maxv′∈V d(v, v′)}.

Proof. We need to prove two things. First, we show that any solution must take
at least this long on any given network. To get a contradiction, fix a solution
A that runs in time strictly less than this on some network N , and let v and
v′ be two vertices that achieve the above maximum. So the running time of A
on N is d∗(root, v) + d(v, v′) − 1. Let e = (vprev, v) ∈ I(v) be the edge that
satisfies the maximum in the definition of d∗. Replace the edge e with a string
of edges and vertices as follows: vprev → v should transform into vprev → v1 →
v2 → . . . → vn → v for some large number n. We claim that the computational
transcripts of all nodes common to both networks are exactly the same through
time d∗(root, v)−1. Note that up until this time in both networks, the edge e has
been transmitting only the quiescent value to v. Thus up until time d∗(root, v)−1,
all common nodes in both networks will have exactly the same computational
transcripts. So because there are no other modifications, for each i, at time
d∗(root, v)+i, the nodes at a distance i from v in network N ′ might have different
states from their counterparts in network N . However, this implies that v′ must
fire at the same time in both networks. If we choose n large enough, because the
argument is independent of the value of n, this is clearly impossible.

Next, we must show that, given a fixed network N , there exists a solution that
fires in time at most maxv,v′∈V {d∗(root, v)+ d(v, v′)}. Consider a solution A for

2 The topology must be of bounded degree so that the automata can distinguish
between their various in and outports.
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FSSP that runs on general arbitrary strongly-connected digraphs. We modify
this solution to get another solution A′ that runs in minimal-time by running
a second protocol in parallel to the original A. Release tokens that check (in
a breath-first manner) whether the network follows the structure of N . Note
that if we allow the tokens to keep track of the network structure that they
have “seen” thus far, it is possible for each non-quiescent vertex to have pre-
knowledge of when the next token should come in and what it should have thus
far seen. If a token reaches or does not reach (in the case that a token in ex-
pected to arrive and does not) a vertex that is not consistent with the structure
of N , then the vertex immediately sends out “USE A” breadth-first tokens. We
claim that such tokens, if released from a vertex, have the time to reach every
vertex in N before or at time maxv∈V {d∗(root, v) + maxv′∈V d(v, v′)}. Assume
that there exists a vertex or edge that is inconsistent with the structure of N . It
will take time at most d∗(root, v) for the breadth first tokens to first be released
by the offending vertex v. Once released it takes time maxv′∈V {d(v, v′)} for the
tokens to reach every vertex in the network. Thus, either all network nodes re-
ceive “USE A” tokens or they do not before or at time maxv∈V {d∗(root, v) +
maxv′∈V d(v, v′)}. If the vertices receive a “USE A” token, they use the proto-
col from the original algorithm A and if not, they simply fire at time maxv∈V

{d∗(root, v) + maxv′∈V d(v, v′)}. �

Lemma 2. The two statements (a) “There exists a constant δ such that there
exists a minimal-time solution for general directed networks with degree bounded
by δ.” and (b) “For any constant δ, there exists a minimal-time solution for
general directed networks with degree bounded by δ.” are equivalent.

Proof Sketch. (b) implies (a) is obvious. We therefore concentrate on showing
(a) implies (b). Fix the constant δ in statement (a). We claim that for networks
with degree smaller than δ, the same solution will work because the minimum
firing time of G is independent of δ by Lemma 1. For networks with degree δ′

strictly greater than δ, we can form a new solution from the old solution as
follows: For every node N , split N into as many nodes of degree δ as necessary.
In other words, form an inward binary search tree towards the node and an
outgoing binary search tree away from the node with both binary search trees
degree-bounded by δ. We can now connect the wires corresponding to the links
in the original network. See Figure 1. In the figure, we assume that we know the
transition function of the A automata. The transition function of the automaton
A′, the conglomeration of all of the A’s, can be determined as follows.

The state of A′ is defined uniquely by the states of the A’s and the inputs and
outputs of each A within the conglomeration. Given a vector of input values to
the automata A′, the output vector after a single time step will consist of the
computational transcripts of every A automata within A′ if we allowed 2 logδ δ′

“internal” time steps to elapse. Note that we are allowed to perform this simula-
tion because both δ and δ′ are constants of the network. The A′ automata fires
if and only if its internal A automata fire during some “internal” time step.

It is then possible to show that the firing time arising from this construction
is in fact minimal via Lemma 1. The basic idea behind this calculation is to



On the Complexity of the “Most General” FSSP 703

A

A

A

A

A

A

A

A

A

A

A

A

A

A'

Fig. 1. This figure illustrates the transformation from multiple copies of a known au-
tomata solution A to the conglomeration A′

note that each edge is elongated by a factor of 2 logδ δ′ (logδ δ′ inwards and
logδ δ′ outwards) which causes the minimum firing time to gain a similar factor.
However, the internal simulation of 2 logδ δ′ time steps down to a single time
step by A′ compresses the running time by exactly the same factor. The actual
calculations are somewhat tedious and are therefore omitted. �

The remainder of this section will be devoted to proving Theorem 1.

If there exists a minimal-time solution for the general directed network
topology, then there exists a deterministic algorithm in the RAM model
of computation that can exactly determine the diameter of a general un-
weighted directed graph in time O(ED log2 D (log2 n)2) where E is the
number of edges, D is the diameter of the graph, and n = |V | is the
number of vertices.

Proof (rest of Section 3). We will assume that we are given an arbitrary directed
graph G = (V, E) and are operating in the RAM model of computation. Tarjan’s
strongly connected components algorithm can be used to determine in time
O(V + E) time whether the graph has infinite diameter or not. We will assume
that the diameter is found to be finite. (In other words, Tarjan’s algorithm
returns a single strongly connected component.) We now proceed with a series
of transformations of the graph G. Note that via Lemma 2, as long as we can
show the resulting transformation is degree-bounded by some constant, it doesn’t
matter what the constant is.

3.1 Transforming G to G′

The first transformation takes the inputs of v, for each v ∈ V , and extends
them to be of length 3

2 log2 n that cascade inwards so as to form a incoming
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binary tree towards v. Note that log2 n is sufficient for this operation; the reason
for extending the natural length will become clear below. We perform a similar
operation on the outgoing edges. We then connect the wires corresponding to
the edges in G. The result is similar to the illustration in Figure 1 except for the
fact that the final outgoing and incoming edges are extended by an additional
1
2 log2 n. Note that we have reduced the degree of the graph to at most 2. Call
this transformed graph G′ = (V ′, E′). We will later refer to the vertices of G
inside of G′. This will refer to the set of vertices at the roots of the incoming
(and hence outgoing as well) binary trees.

3.2 Transforming G′ to G′′(k)

We now create a graph G′′(k) from G′. First, create n bidirectional paths of
length k, for some number k ≥ 3 log2 n to be determined later. For ease of com-
munication, we will henceforward refer to these bidirectional paths as connectors.
Connect one end of each of these connectors to a vertex in G. (Note that each
vertex in G is both the end of a connector and a vertex in G′ as well.) Create
a root node and have the root cascade outputs outwards, each branch of length
log2 n. Have these link up with the other end of the connectors. In a similar way,
have edges cascade inwards towards the root, each of length log2 n, from each
path linking up with the same vertices. Note that the two binary trees going
into and out from the root do not touch except at their leaf vertices (at the
ends of the connectors) and at the root. Finally, delete all nodes of incoming
and outgoing binary trees that are not used for going from a node in G or the
root to another node in G or the root. Then we obtain a strongly-connected
directed graph, and this is G′′(k). Note also that G′′(k) has bounded degree. See
Figure 2 for an illustration of this process.

G’

root

n connectors:
length k

Fig. 2. This figure illustrates the transformation from G′ to G′′(k)
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3.3 Calculations

Consider the quantity f(v) = d∗(root, v) + maxv′∈V ′′(k) d(v, v′) for each vertex
in v ∈ V ′′(k). The firing time of the network is maxv∈V ′′(k) f(v) by Lemma 1.
Our overall goal will be to determine this value.

First, we split the vertices in V ′′(k) into four major subdivisions and consider
f(v) for v in each subdivision. (A brief spoiler: It will turn out that the maximum
value of f(v) will occur in the fourth subdivision we consider. We need to calcu-
late the function values for each of the other subdivisions in order to be sure.)

1. All vertices in the lower two binary trees, the final set of edges linking
up with the root. It is clear that d∗(root, v) = d(root, v) for vertices in this
subdivision (with the exception of the root itself). Within this subdivision, con-
sider vertices v that are oriented by their edges away from the root such that
d(root, v) = i ≤ log2 n. Note that the vertex v′ ∈ V ′′(k) that maximizes d(v, v′)
will be somewhere in G′. The “cheapest” way to get there will be to head back to
the root because the expense of jumping from one vertex to another in the graph
G′ is 3 log2 n and this is more than the jump back to the root and to another
path. Thus, d(v, v′) = (log2 n−i)+2 log2 n+k+(3 log2 n−1) = 6 log2 n+k−i−1
and f(v) = i + d(v, v′) = 6 log2 n + k − 1.

Now consider vertices v in the same subdivision that are oriented towards
the root such that d(root, v) = log2 n + i. By the same arguments, the same
bound applies and thus f(v) = 6 log2 n + k − 1 as well. Finally, note that
f(root) = 6 log2 n + k − 1 as well. (These values will turn out to be smaller
than other potential values of f(v) for other subdivisions; hence we will be able
to assume that v is not located in either binary tree and these calculations will
not contribute to the final determination of the firing time.)

2. The set of vertices in the connectors. (Note that this set has nonempty
intersection with V .) Via the following lemma, we will show that only vertices in
V need to be examined to find the maximal f value. These vertices will therefore
be separated into their own subdivision below.

Lemma 3. Within the connector subdivision, the function f is nondecreasing
with increasing distance from the root.

Proof. Consider any vertex v within a connector that is not the furthest possible
from the root. Let vnext be the vertex one unit further from the root. Consider
f(v). Let v′ be a vertex satisfying the maximum in the definition of f . Then
d(vnext, v

′) ≥ d(v, v′)− 1. Because d∗(root, vnext) ≥ d∗(root, v) + 1, we have

f(vnext) = d∗(root, vnext) + max
v′′∈V ′′(k)

d(vnext, v
′′)

≥ d∗(root, v) + 1 + d(vnext, v
′) ≥ d∗(root, v) + 1 + d(v, v′)− 1 = f(v)

�

By the above lemma, we can assume without loss of generality that when locating
the maximum within the connector subdivision, v is the vertex on the connector
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furthest from the root. However, this reduces us to only searching vertices V in
the original graph G ⊂ G′. This will be the next subdivision we consider.

3. The vertices in the original graph G, namely V . We claim that ∀v ∈ V, ∃v′ ∈
V ′ − V such that f(v′) ≥ f(v). In fact, note that the vertex v′ on the terminal
of any input from v will satisfy this claim. We omit the details due to space
constraints.

4. V ′ − V . Let v be a vertex that maximizes f(v) within the set V ′ − V (i.e.
f(v) = maxv′∈V ′−V f(v′)). We will assume throughout this section without loss
of generality that d(G, v) = i for some i ≥ 1. Then d∗(root, v) = log2 n + k + i.
Let v′ satisfy the maximum in the definition of f . Our goal is to determine the
various values that f(v) might take depending on where v′ winds up being. First,
however, we need a preliminary lemma. For the remainder of the paper, let the
quantity dr(v, v′) (resp. dn(v, v′)) be the length of the shortest path from v to
v′ that does (resp. does not) pass through the root.

Lemma 4. Assume v ∈ V ′ − V . Then the vertex v′ that maximizes d(v, v′)
cannot be in either of the bottom binary trees assuming k ≥ 3 log2 n and D ≥ 2.

Proof. If k ≥ 3 log2 n, then there exists a vertex v′ in the connector located
2 log2 n above the bottom of the connector. Note that

dr(v, v′) = 3 log2 n− i + k + 2 log2 n + 2 log2 n = 7 log2 n + k − i

and

dn(v, v′) = 3 log2 n− i + 3D log2 n + (k − 2 log2 n) ≥ 7 log2 n + k − i

Thus d(v, v′) = 7 log2 n + k − i whereas the furthest vertex from v located
within either binary tree is a distance 3 log2 n − i + k + log2 n + log2 n − 1 =
5 log2 n + k − i− 1. �

If v ∈ V ′ − V , there are several cases to consider for the location of v′ and the
behavior of the shortest path from v to v′. By the above lemma (Lemma 4), we
only need to consider v′ that lie within G′ or the connectors.

• Assume that v ∈ V ′ − V , v′ ∈ V ′, and the shortest path from v to v′ passes
through the root. Then f(v) = log2 n + k + i + (3 log2 n− i) + k + log2 n +
log2 n + k + j where d(G, v′) = j < 3 log2 n. Maximizing over the possible
values of v′ yields a total value of 9 log2 n + 3k − 1.

• Assume that v ∈ V ′−V , v′ ∈ V ′, and the shortest path from v to v′ does not
pass through the root. Then the path from v to v′ must remain entirely inside
G′. f(v) = log2 n+k+i+(3 log2 n−i)+3D log2 n+j where d(G, v′) = j. Once
again maximizing over the values of v′, we get f(v) = (7+3D) log2 n+k−1
in this case.

Remark : It is worth noting at this point that by examination of the calculations
above, ∃v ∈ V ′ − V, ∃v′ ∈ V ′ such that
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f(v) = min{d∗(root, v) + dn(v, v′), d∗(root, v) + dr(v, v′)} =

min{(7 + 3D) log2 n + k − 1, 9 log2 n + 3k − 1}
In fact, we can pinpoint two vertices that fit the bill: Assume that two vertices a
and b in G are the initial and terminal vertices of a path that equals the diameter
of G. In G′′(k), consider the equivalent vertices. If we let v be anywhere on an
incoming binary tree to a (not a itself) and we let v′ be a furthest vertex from b
on its outgoing binary tree, then the pair v and v′ will satisfy the equalities above.

• Assume that v ∈ V ′ − V , v′ �∈ V ′, and the shortest path from v to v′

passes through the root. Note that v′ is therefore in a connector. In this
case, f(v) = log2 n+ k +3 log2 n+ k + log2 n+ d(root, v′). We also have that
d(root, v′) = log2 n + k − d(v′, G). So finally we get f(v) = 6 log2 n + 3k −
d(v′, G) in this case.

• Assume that v ∈ V ′ − V , v′ �∈ V ′, and the shortest path from v to v′ does
not pass through the root. Again, v′ is in a connector. In this case, f(v) =
log2 n + k + 3 log2 n + 3D log2 n + d(G, v′) = (4 + 3D) log2 n + k + d(G, v′).

Note that each of these values is larger than the values calculated in any of the
other subdivisions. Thus, we can conclude that the function f(v) is maximized
just when v ∈ V ′ − V . For the remainder of the paper, we will concentrating
exclusively on this case.

Lemma 5. Assume that v ∈ V ′ − V , and v′ �∈ V ′. A vertex v′ that maximizes
d(v, v′) will be such that

|dn(v, v′)− dr(v, v′)| ≤ 1

Proof. By Lemma 4, v′ is within a connector. Consider any v′ within a connector
such that |dn(v, v′) − dr(v, v′)| ≥ 2. Assume without loss of generality that
dn(v, v′) > dr(v, v′). (The other case is symmetric.) Then dn(v, v′) ≥ dr(v, v′)+2.
Consider the vertex v′′ that is one “higher” than v′ (i.e. the vertex that is one
unit closer to G′). Then we have that dr(v, v′′) = dr(v, v′) + 1 and

dn(v, v′′) = dn(v, v′)− 1 ≥ dr(v, v′) + 1 ⇒ d(v, v′′) = dr(v, v′) + 1

Because dn(v, v′) > dr(v, v′), we have that d(v, v′) = dr(v, v′) < d(v, v′′). �

Lemma 6. Fox some v ∈ V ′ − V and some value of k. Assume that v′ ∈ V ′ is
the vertex that maximizes the value of d(v, v′). If the shortest path from v to v′

does not pass through the root, then if the value of k is increased, for a fixed v,
as long as v′ ∈ V ′, the shortest path from v to v′ will not pass through the root.

Proof. Figure 2. Assume dn(v, v′) < dr(v, v′). Increasing k can only increase the
value of dr(v, v′) but does not affect the value of dn(v, v′). �

Lemma 7. Assume that v ∈ V ′−V and v′ �∈ V ′ for some value of k and that v′

is the vertex that maximizes the value of d(v, v′) (and is therefore in a connector
by Lemma 4). Then with increasing values of k, v′ will remain in the connector
subdivision.
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Proof. Note that if v′ �∈ V ′ then the distance from v to v′ is greater than from
v to any vertex in V ′. Increasing the value of k only increases the distances of
vertices outside of V ′. �

Lemma 8. Assume that v is the vertex that maximizes the function f(v). (Then,
by the above discussion, v ∈ V ′ − V .) Let v′ be the vertex that maximizes the
value of d(v, v′). If k > 4D log2 n and D ≥ 2, then v′ �∈ V ′.

Proof. Figure 2. If v ∈ V ′ − V , then an obvious upper bound on the distance
from v to any other vertex in V ′ is (3D + 2) log2 n. �

3.4 The Algorithm

We now outline the algorithm we use to determine D. First, we determine
whether D = 1 by checking whether every vertex is connected to every other
vertex. This takes time O(V + E). Now, starting from k = 3 log2 n, we simulate
the minimal-time solution on the network G′′(k) and note the firing time. Note
that once we examine the firing times assuming the four possible locations of
the vertex v, we conclude that the maximum value of f(v) is achieved when v
is in V ′ − V . Thus, for the remainder of this section, we will implicitly assume
this. The firing time must satisfy one of the four values calculated above for this
situation.

If the firing time is 9 log2 n + 3k − 1, then double the value of k and note
the firing time again. (In the unlikely case that this value happens to be equal
to one of the other possible three values, another doubling of k will suffice to
distinguish.) By Lemmas 6 and 7, eventually we will either have v′ ∈ V ′ and a
running time of (7 + 3D) log2 n + k − 1 or v′ �∈ V ′. Note that if v′ ∈ V ′ at this
point, then we must have (by the Remark in Section 3.3)

(7 + 3D) log2 n + k − 1 ≤ 9 log2 n + 3k − 1 ⇒ k ≥ 3D − 2
2

log2 n

If we quadruple the value of k, we are therefore guaranteed that k > 4D log2 n.
Thus, quadruple the value of k and again note the firing time. At this point, we
must have v′ �∈ V ′ by Lemma 8.

By Lemma 5, we know that v′ satisfies the inequality |dn(v, v′)−dr(v, v′)| ≤ 1.
Therefore either prediction (a) 6 log2 n+3k−d(v′, G) or (b) (4+3D) log2 n+k+
d(G, v′) for the running time is at most off by 1. Note that because v′ �∈ V ′, v′

must be in a connector and therefore d(G, v′) = d(v′, G). Because we know the
value of the running time, we can estimate the value of d(G, v′) to within 1 using
(a). Using (b) and this value, we can then estimate the value of (4 + 3D) log2 n
to within 2. The range for (4 + 3D) log2 n is therefore 5 at most. If log2 n > 1,
then at most a single value of D will satisfy the inequalities.

3.5 Time Analysis

To analyze the running time of the algorithm, we note that for a given value of
k, to simulate the minimal-solution on the network V ′′(k) in the RAM model of
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computation requires time proportional to the product of the number edges and
the firing time. The firing time for any given value of k is clearly O(D log2 n)
because k = O(D log2 n). The number of edges in the graph has been increased
from E to O(E log2 n). Thus the total simulation time is O(ED log2 D (log2 n)2).

�

4 Conclusions and Open Problems

In this paper, we have given a constructive proof that if a minimal-time solu-
tion exists for a fundamental distributed computation primitive, synchronizing
a general directed network of finite-state processors, then there must exist an
extraordinarily fast O(ED log2 D (log2 n)2) algorithm in the RAM model of com-
putation for exactly determining the diameter of a general directed graph. This
result opens up a number of very promising areas of research, the most obvious
of which seem to be the following.

• Is this the best possible correspondence? If a minimal-time solution for the
FSSP on the general directed network topology does happen to exist, is
O(ED log2 D (log2 n)2) the best we can possibly do? Note that practically
no effort was made to improve the simulation of the FSSP solution.

• Are results possible in the other direction? To date, there have been no
results (to the author’s knowledge, at least) that relate fast algorithms in
standard models of computation such as the RAM model or the Turing
Machine model to protocols for intercommunicating finite-state automata.
Such a result would be extremely interesting.

• The approximation angle looks like a very promising area of research. If
there exists an “almost” minimal-time solution, does it say anything about
the algorithm for the diameter problem?

• What other problems can be related to the FSSP on various other topologies?
It seems as if other natural topologies might (probably, should) have similar
“natural” correspondences like this one.
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Béal, Marie-Pierre 127
Belal, Ahmed 92
Berwanger, Dietmar 524
Bialynicka-Birula, Iwona 80
Bodirsky, Manuel 646
Buhrman, Harry 455

Chaiutin, Yoel 596
Chakaravarthy, Venkatesan T. 230
Chakrabarti, Amit 196
Chatterjee, Krishnendu 325, 512
Christodoulou, George 349
Cohen, Reuven 549

Dalmau, Vı́ctor 646
Damian, Mirela 264
Dawar, Anuj 524
Dı́az, Josep 361
Do Ba, Khanh 196
Doerr, Benjamin 571
Dumrauf, Dominic 218
Dutta, Chinmoy 372

Elbassioni, Khaled 254
Elmasry, Amr 92
Engelfriet, Joost 477
Etessami, Kousha 634

Fagerberg, Rolf 68
Fine, Shai 242
Finkel, Olivier 301
Flajolet, Philippe 1
Flatland, Robin 264
Fortnow, Lance 137, 469
Fotakis, Dimitris 608

Fu, Bin 277
Fujiwara, Hiroshi 621

Gairing, Martin 218
Glaßer, Christian 444
Goldstein, Darin 696
Golovin, Daniel 206
Goyal, Vineet 206
Grossi, Roberto 80

Healy, Alexander 672
Hemaspaandra, Edith 500
Henzinger, Thomas A. 325, 512
Hitchcock, John M. 408
Hoogeboom, Hendrik Jan 477
Hunter, Paul 524

Itkis, Gene 23

Khandekar, Rohit 584
Kjos-Hanssen, Bjørn 149
Klivans, Adam R. 469
Kobayashi, Kojiro 696
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