
A Simpler Proof of Preemptive Total Flow Time

Approximation on Parallel Machines�

Stefano Leonardi

Dipartimento di Informatica e Sistemistica,
University of Rome “La Sapienza”

leon@dis.uniroma1.it

Abstract. We consider the classical problem of scheduling jobs in a
multiprocessor setting in order to minimize the flow time (total time in
the system). The performance of the algorithm, both in offline and on-
line settings, can be significantly improved if we allow preemption: i.e.,
interrupt a job and later continue its execution. Preemption is inher-
ent to make a scheduling algorithm efficient [7,8]. Minimizing the total
flow time on parallel machines with preemption is known to be NP-hard
on m ≥ 2 machines. Leonardi and Raz [8] showed that the well known
heuristic shortest remaining processing time (SRPT) performs within a
logarithmic factor of the optimal offline algorithm on parallel machines.
It is not known if better approximation factors can be reached and thus
SRPT, although it is an online algorithm, becomes the best known algo-
rithm in the off-line setting. In fact, in the on-line setting, Leonardi and
Raz showed that no algorithm can achieve a better bound.

In this work we present a nicer and simpler proof of the approximation
ratio of SRPT. The proof presented in this paper combines techniques
from the original paper of Leonardi and Raz [8] with those presented in
a later paper on approximating total flow time when job preemption but
not job migration is allowed [2] and on approximating total flow time
non-clairvoyantly [3], that is when the processing time of a job is only
known at time of completion.

1 Introduction

One of the most basic performance measures in multiprocessor scheduling prob-
lems is the overall time the jobs are spending in the system. This includes the
delay of waiting for service as well as the actual service time. This measure
captures the overall quality of service of the system. We consider the classical
problem of minimizing the total flow time in a multiprocessor setting with jobs
released over time. More formally, we consider a set of n jobs and m identical
parallel machines. Every job j has processing time pj and release time rj . The

� Partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT), IST-2001-32007 (APPOL2), and by the MURST Projects
“Algorithms for Large Data Sets: Science and Engineering” and “Resource Alloca-
tion in Computer Networks”.

E. Bampis et al. (Eds.): Approximation and Online Algorithms, LNCS 3484, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 S. Leonardi

flow time of a job is the time interval it spends in the system between release and
completion. The total flow time of the set of jobs is the sum of the individual
flow times of the n jobs.

The performance of the algorithm, both in offline and online settings, can
be significantly improved if we allow preemption: i.e., interrupt a job and later
continue its execution, perhaps migrating it to a different machine. As shown
below, preemption is inherent to make a scheduling algorithm efficient. In the
non-preemptive case it is impossible to achieve a ”reasonable” approximation.
Specifically, even for one machine one cannot achieve an approximation factor
of O(n

1
2−ε) unless NP = P [7]. For m > 1 identical parallel machines it is

impossible to achieve an approximation factor of O(n
1
3−ε) unless NP = P [8].

Thus, preemptions really seem to be essential.
Minimizing the flow time on one machine with preemption can be done op-

timally in polynomial time using the natural algorithm shortest remaining pro-
cessing time (SRPT) [4]. For more than one machine the preemptive problem
becomes NP -hard [5]. Only very recently, Leonardi and Raz [8] showed that
SRPT achieves logarithmic approximation for the multiprocessor case, showing
a tight bound of O(log(min{n/m, P})) on m > 1 machines with n jobs, where
P denotes the ratio between the processing time of the longest and the shortest
jobs. In the offline setting, it is not known if better approximation factors can be
reached in polynomial time. In fact, in the on-line setting SRPT is optimal, i.e.,
no algorithm can achieve a better bound up to a constant factor[8]. For the easier
problem of minimizing the total completion time a constant approximation and
even a PTAS can be obtained [6,1]

The analysis of SRPT we report in this paper is still based on the ideas from
the original work of Leonardi and Raz [8]. In a later paper Awerbuch, Azar,
Leonardi and Regev [2] presented an algorithm that achieves an O(log P) and
an O(log n) approximation factor for the problem of minimizing total flow time
with preemption when job migration is not allowed, i.e. preempted jobs must be
resumed later on the same machine they were run at the time of preemption. The
analysis of the algorithm proposed in [2] borrows several ideas from [8] however
classifyng jobs into classes allows to remove several difficulties from the analysis.
The proof of the O(log P) approximation for SRPT follows the lines of the proof
in [2].

In a recent paper Becchetti and Leonardi [3] consider non-clairvoyant schedul-
ing algorithms to minimize the total flow time. In the non-clairvoyant scheduling
problem the existence of a job, but not its processing time, is known at time of
release. The processing time of the job is only known when the job is actually
completed. In [3], a randomized variation of the Multi-level-feedback algorithm,
widely used for processor scheduling in time sharing operating system such as
Unix and Windows NT, is proved to achieve a tight O(log n) competitive ratio
for a single machine system and an O(log n log n

m) competitive ratio for a par-
allel machine system. A remarkable simplification of the proof of the O(log n)
approximation factor for SRPT draws ideas from the techniques introduced in
[3] and from a technical Lemma presented in [2].

A Simpler Proof of Preemptive Total Flow Time Approximation 205

2 The Model

We are given a set J of n jobs and a set of m identical machines. Each job j
is assigned a pair (rj , pj) where rj is the release time of the job and pj is its
processing time. In the preemptive model a job that is running can be preempted
and continued later on any machine. The scheduling algorithm decides which of
the jobs should be executed at each time. Clearly a machine can process at most
one job at any given time and a job cannot be processed before its release time.
For a given schedule define Cj to be the completion time of job j in this schedule.
The flow time of job j for this schedule is Fj = Cj − rj . The total flow time is∑

j∈J Fj . The goal of the scheduling algorithm is to minimize the total flow time
for each given instance of the problem. In the off-line version of the problem all
the jobs are known in advance. In the on-line version of the problem each job
is introduced at its release time and the algorithm bases its decision only upon
the jobs that were already released.

Shortest Remaining Processing Time (SRPT) schedules at any time those jobs
with shortest remaining processing time for a maximum number of m. It follows
that a job preemption happens only when a newly released job has processing
time shorter than the remaining processing time of a job on execution. When
a job is completed, that job with shortest remaining processing time currently
not assigned to any machine, if any, is scheduled. This results in at most n
preemptions operated by SRPT along the execution of the algorithm.

For a given input instance J and a scheduling algorithm S, we denote by
FS(J) the total flow time of the schedule computed by S on input J . Denote
by FOPT (J) the minimum value of the total flow time on input istance J . A
schedule S is c-approximate if for every input instance J , FS(J) ≤ cFOPT (J).
In the following we will omit J when clear from the context.

3 Analysis of SRPT

We denote by A the scheduling algorithm SRPT and by OPT the optimal off-
line algorithm that minimizes the flow time for any given instance. Whenever we
talk about time t we mean the moment after the events of time t happened. A
job is called alive at time t for a given schedule if it has already been released but
has not been completed yet. Our algorithm classifies the jobs that are alive into
classes according to their remaining processing times. A job j whose remaining
processing time is in [2k, 2k+1) is in class k for −∞ < k < ∞. Notice that a job
changes its class during its execution. We denote the class of a job upon arrival
as the initial class of a job.

For a given scheduling algorithm S we define V S(t) to be the volume of
a schedule at a certain time t. This volume is the sum of all the remaining
processing times of jobs that are alive. In addition, we define δS(t) to be the
number of jobs that are alive. ∆V (t) is defined to be the volume difference
between our algorithm and the optimal algorithm, i.e., V A(t) − V OPT (t). We
also define by ∆δ(t) = δA(t)−δOPT (t) the alive jobs difference at time t between

206 S. Leonardi

A and OPT . For a generic function f (V , ∆V , δ or ∆δ) we use f≥h,≤k(t) to
denote the value of f at time t when restricted to jobs of classes between h and
k. Similarly, the notation f=k(t) will represent the value of function f at time t
when restricted to jobs of class precisely k.

Let γS(t) be the number of non-idle machines at time t. We denote by T
the set of times in which γA(t) = m, that is, the set of times in which none of
the machines is idle. We indicate with S also the size

∫
t∈S dt of a set of times

S. Denote by Pmin the processing time of the shortest job and by Pmax the
processing time of the longest job and P = Pmax/Pmin. Denote by kmin =
�log Pmin� and kmax = �log Pmax� the classes of the shortest and longest jobs
upon their arrival, that is the maximum and the minimum initial class of a job.

We start by observing the simple fact that the flow time is the integral over
time of the number of jobs that are alive (for example, see [8]):

Fact 1. For any scheduler S,

FS =
∫

t

δS(t)dt.

The following is an obvious lower bound on the flow time of any schedule:

Lemma 1. FS ≥
∑

j pj.

Lemma 2. There are at most 2 + log P initial classes for a job.

Proof. The number of initial classes of a job is at most kmax−kmin+1 ≤ 2+logP .

The proof of the following lemma is straightforward since the total time spent
by the m machines processing jobs is excatly

∑
j pj .

Lemma 3.
∫

t γA(t)dt =
∑

j pj.

Now, assume that t ∈ T and let t̂ < t be the earliest time for which [t̂, t) ⊂ T .
We denote the last time in which a job of class more than k was processed by
tk. In case such jobs were not processed at all in the time interval [t̂, t) we set
tk = t̂. So, t̂ ≤ tkmax ≤ tkmax−1 ≤ ... ≤ tkmin ≤ t.

Lemma 4. For t ∈ T , ∆V≤k(t) ≤ ∆V≤k(tk).

Proof. Notice that in the time interval [tk, t), algorithm A is constantly process-
ing on all the machines jobs whose class is at most k. The off-line algorithm may
process jobs of higher classes. Moreover, that can cause jobs of class more than
k to actually lower their classes to k and below therefore adding even more to
V OPT
≤k (t). Finally, the release of jobs of class ≤ k in the interval [tk, t) is not af-

fecting ∆V≤k(t). Therefore, the difference in volume between the two algorithms
cannot increase between tk and t.

A Simpler Proof of Preemptive Total Flow Time Approximation 207

Lemma 5. For t ∈ T , ∆V≤k(tk) ≤ m2k+1.

Proof. First we claim that at any moment tk − ε, for any ε > 0 small enough,
the algorithm holds m1 < m jobs whose class is at most k, with total processing
time bounded by m12k+1. In case tk = t̂, at any moment just before tk there is
at least one idle machine. Otherwise, tk > t̂ and by definition we know that a job
of class more than k is processed just before tk. At time tk−ε, m2 ≤ m−m1 jobs
of class k + 1 may change their class to k. Moreover, at time tk jobs of class at
most k might arrive. However, these jobs increase both V OPT

≤k (tk) and V A
≤k(tk)

by the same amount, so jobs that arrive exactly at tk do not change ∆V≤k(tk)
and can be ignored. Altogether, we have ∆V≤k(tk) ≤ (m1 + m2)2k+1 ≤ m2k+1.

Lemma 6. For t ∈ T , ∆V≤k(t) ≤ m2k+1.

Proof. Combining Lemma 4 and 5, we obtain ∆V≤k(t) ≤ ∆V≤k(tk) ≤ m2k+1

The claim of the following lemma states a property that will be used in the
proof of both the O(log P) and the O(log n

m) approximation results.

Lemma 7. For t ∈ T , for kmin ≤ k1 ≤ k2 ≤ kmax, δA
≥k1,≤k2

(t) ≤ m(k2 − k1 +
2) + 2δOPT

≤k2
(t).

Proof. δA
≥k1,≤k2

(t) can be expressed as:

k2∑

i=k1

δA
=i(t) ≤

k2∑

i=k1

∆V=i(t) + V OPT
=i (t)

2i

=
k2∑

i=k1

∆V≤i(t) − ∆V≤i−1(t)
2i

+
k2∑

i=k1

V OPT
=i (t)

2i

≤ ∆V≤k2(t)
2k2

+
k2−1∑

i=k1

∆V≤i(t)
2i+1

− ∆V≤k1−1(t)
2k1

+ 2δOPT
≥k1,≤k2

(t)

≤ 2m +
k2−1∑

i=k1

m + δOPT
≤k1−1(t) + 2δOPT

≥k1,≤k2
(t)

≤ m(k2 − k1 + 2) + 2δOPT
≤k2

(t).

The first inequality follows since 2i is the minimum processing time of a job of
class i. The third inequality follows since the processing time of a job of class i is
less than 2i+1. The fourth inequality is derived by applying Lemma 6, observing
that ∆V≤k1−1(t) ≥ −V OPT

≤k1−1(t) and that 2k1 is the maximum processing time of
a job of class at most k1 − 1. The claim of the lemma then follows.

The following corollary of Lemma 7 is used in the proof of the O(log P)
approximation ratio of Theorem 2

208 S. Leonardi

Corollary 1. For t ∈ T , δA(t) ≤ m(4 + log P) + 2δOPT (t).

Proof. We write

δA(t) = δA
≤kmax,≥kmin

(t) + δA
<kmin

(t)

≤ m(kmax − kmin + 2) + 2δOPT (t) + m

≤ m(4 + log P) + 2δOPT (t).

The first inequality follows from the claim of Lemma 7 when k2 = kmax and
k1 = kmin, and from the fact that since a job of class less than kmin is never
preempted, there are at any time t at most m jobs of class less than kmin in the
SRPT schedule. The second inequality is obtained since kmax−kmin ≤ log P +1.

Theorem 2. FA ≤ (6+logP)·FOPT , that is, algorithm SRPT has a (6+log P)
approximation factor.

Proof.

FA =
∫

t

δA(t)dt

=
∫

t/∈T
δA(t)dt +

∫

t∈T
δA(t)dt

≤
∫

t/∈T
γA(t)dt +

∫

t∈T
((4 + log P)γA(t) + 2δOPT (t))dt

≤ (4 + log P)
∫

t

γA(t)dt + 2
∫

t∈T
δOPT (t)dt

≤ (4 + log P)
∑

j

pj + 2
∫

t

δOPT (t)dt

≤ (6 + log P)FOPT

The first equality derives from the definition of FA. The second is obtained by
looking at the time in which none of the machines is idle and the time in which
at least one machine is idle separately. The third inequality uses Corollary 1. The
fifth inequality uses Lemma 3, while the sixth inequality follows from Lemma 1.

We now turn to prove the O(log n
m) approximation ratio for SRPT . Let k be

the maximum integer such that for some time t ∈ T δA
≥k

(t) ≥ m. If not such

integer exists, fix k = kmin −1. Let Tj ⊆ T , j = kmin +1, .., k, be the set of time
instants when all machines are busy, at least one machine is busy with jobs of
class j and no machine is busy with jobs of class higher than j. Let Tk+1 ⊆ T
be the set of time instants when all machines are busy and at least one machine
is processing a job of class higher than k.

Finally, let Tkmin ⊆ T be the set of time intants when all machines are busy
with jobs of class less than or equal to kmin. Observe that {Tkmin , . . . , Tk+1}
defines a partition of T . We can write the total flow time of SRPT as:

A Simpler Proof of Preemptive Total Flow Time Approximation 209

FA =
∫

t/∈T
δA(t)dt +

∫

t∈T
δA(t)dt

=
∫

t/∈T
γA(t)dt +

k∑

j=kmin

∫

t∈Tj

δA(t)dt +
∫

t∈Tk+1

δA(t)dt

≤
∫

t/∈T
γA(t)dt +

k∑

j=kmin

∫

t∈Tj

(2m + δA
≥j,≤k

(t))dt +
∫

t∈Tk+1

2mdt

≤
∫

t/∈T
γA(t)dt +

k∑

j=kmin

∫

t∈Tj

(4m + m(k − j) + 2δOPT
≤k

(t))dt (1)

+2
∫

t∈Tk+1

mdt

≤
∫

t/∈T
γA(t)dt + 4

∫

t∈T
γA(t)dt +

k∑

j=kmin

m(k − j)Tj + 2
∫

t∈T
δOPT (t)dt

≤ 6FOPT +
k∑

j=kmin

m(k − j)Tj (2)

where the T| in the last two lines denotes the total amount of time that is spent
in calTj. The third inequality follows since at any time t ∈ Tj , j = kmin, .., k +1,
by definition of Tj , there are at most m alive jobs of class less than j and, by
definition of k, at most m alive jobs of class bigger than k in the SRPT schedule.
The fourth inequality derives by the application of Lemma 7. Finally, the fifth
and the sixth inequalities use Lemma 3 and Lemma 1.

We are left to bound the term F (n) =
∑k

j=kmin
m(k − j)Tj . We show this in

the following Lemma:

Lemma 8.

F (n) =
k∑

j=kmin

m(k − j)Tj = O(log
n

m
)FOPT .

Proof. We define T l
j for j ≤ kmin + 1 to be the set of time instants in {t ≥ 0},

thus also considering time instants with some machine idle, when machine l is
processing a job of class j. T �

‖�〉\
denotes the time in which machine l is processing

a job of class kmin or less. We first observe that:

F (n) =
k∑

j=kmin

m(k − j)Tj

210 S. Leonardi

≤
k∑

j=kmin

m∑

l=1

(k − j)T l
j , (3)

since every time t ∈ Tj is also part of m sets T l
i with i ≤ j.

Let nj , j = kmin,, k−1, be the number of jobs of initial class j in the input
instance. Let nk be the number of jobs of initial class bigger or equal than k
released in the input instance. For sake of simplicity, we will refer in the following
to jobs of initial class higher than k as jobs of initial class k.

Now, observe that a job of initial class j gives a contribution to equation
(3) bounded by 2

∑j−kmin

i=0 (k − j + i)2j−i since each job of initial class j has
been processed for at most 2i time units when in class i = kmin + 1, . . . , j. This
contribution is, by simple algebraic manipulation, at most equal to 2(k − j +
1)2j+1.

We then continue with the following inequalities:

F (n) ≤ 2
k∑

j=kmin

nj(k − j + 1)2j+1

= 4
k∑

j=kmin

nj(k − j)2j + 2
k∑

j=kmin

nj2j+1

≤ 4
k∑

j=kmin

nj2j(k − j) + 4
∑

j

pj , (4)

since a job of initial class j has processing time at least equal to 2j. We exchange
variable number j with i = k − j. Let Ii = nk−i2

k−i, i = 0, . . . , k − kmin. The

first term
k∑

j=kmin

nj2j(k − j) of equation (4) becomes:

k−kmin∑

i=0

iIi. (5)

We can derive an upper bound on F (n) by maximizing function (5) subject
to the two obvious constraints:

k−kmin∑

i=0

Ii ≤
∑

j

pj (6)

k−kmin∑

i=0

Ii

2k−i
≤ n. (7)

A Simpler Proof of Preemptive Total Flow Time Approximation 211

Constraint (7) implies

k−kmin∑

i=0

Ii ≤ n2k. (8)

To complete the proof we need the following simple mathematical lemma
proved in [2]:

Lemma 9. Given a sequence a1, a2, ... of non-negative numbers such that∑
i≥1 ai ≤ A and

∑
i≥1 2iai ≤ B then

∑
i≥1 iai ≤ log(4B/A)A.

Proof. Define a second sequence, bi =
∑

j≥i aj for i ≥ 1. Then it is known that
A ≥ b1 ≥ b2 ≥ Also, it is known that

∑
i≥1 2iai =

∑
i≥1 2i(bi − bi+1) =

1
2

∑
i≥1 2ibi + b1. This implies that

∑
i≥1 2ibi ≤ 2B.

The sum we are trying to upper bound is
∑

i≥1 bi. This can be viewed as an
optimization problem where we try to maximize

∑
i≥1 bi subject to

∑
i≥1 2ibi ≤

2B and bi ≤ A for i ≥ 1. This corresponds to the maximization of a continuous
function in a compact domain and any feasible point where bi < A, bi+1 > 0
is dominated by the point we get by replacing bi, bi+1 with bi + 2ε, bi+1 − ε.
Therefore, it is upper bounded by assigning bi = A for 1 ≤ i ≤ k and bi = 0
for i > k where k is large enough such that

∑
i≥1 2ibi ≥ 2B. A choice of k =

	log(2B/A)
 is adequate and the sum is upper bounded by kA from which the
result follows.

We apply Lemma 9 to our problem with variables ai = Ii, i = 0, . . . , k−kmin,
A =

∑
j pj by constraint (6), B = n2k by constraint (8), to obtain:

k−kmin∑

i=0

iIi ≤ log(
4n2k

∑
j pj

)
∑

j

pj

≤ O(log
n

m
)FOPT , (9)

where the last inequality follows since, by the definition of k, at some time t

there are at least m jobs of class bigger or equal than k, for which
∑

j pj ≥ m2k.
Combining equations (4) and (9) and from

∑
j pj ≤ FOPT , we obtain the

desired bound.

Finally, Lemma 8 together with equation (2) leads to our result:

Theorem 3. Algorithm SRPT has an O(log n
m) approximation factor.

4 Conclusions

In this paper we present a simpler proof of the approximation of SRPT for
preemptive minimization of the total flow time on parallel identical machines.
The proof relies on the original ideas of [8] and on new tools of analysis introduced
in later works [2,3]. A major open problem is to devise a constant approximation
algorithm or even an approximation scheme for the problem.

212 S. Leonardi

References

1. F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein and M. Sviridenko. Approximation Schemes for
Minimizing Average Weighted Completion Time with Release Dates. Proceedings
of the 40th Annual Symposium on Foundations of Computer Science (FOCS 1999),
pp. 32-44, 1999.

2. B. Awerbuch, Y. Azar, S. Leonardi and O. Regev. Minimizing the flow time without
migration. Proc. of the 31st annual ACM Symposim on Theory of Computing, pp.
198-205, 1999.

3. L. Becchetti and S. Leonardi. Non-Clairvoyant scheduling to minimize the average
flow time on single and parallel machines. Proc. of the 33rd annual ACM Symposim
on Theory of Computing, pp. 94-103, 2001.

4. K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.
5. J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flow time with release

time constraint. Theoretical Computer Science, 75(3):347–355, 1990.
6. L. Hall, Andreas S. Schulz, D. Shmoys and J. Wein. Scheduling to minimize average

completion time: off-line and on-line approximation algorithms. In Mathematics of
Operations Research 22, pp. 513-544, 1997.

7. H. Kellerer, T. Tautenhahn and G.J. Woeginger. Approximability and nonapprox-
imability results for minimizing total flow time on a single machine. SIAM Journal
on Computing, Vol. 28, Number 4, pp. 1155-1166, 1999.

8. S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
pages 110–119, El Paso, Texas, 1997. To appear in Journal of Computer and System
Sciences – special issue for STOC ’97.

	Introduction
	The Model
	Analysis of SRPT
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

