
Approximation Algorithms for the k-Median

Problem

Roberto Solis-Oba

Department of Computer Science,
The University of Western Ontario,

London, Ontario, Canada
solis@csd.uwo.ca

Abstract. The k-median problem is a central problem in Operations
Research that has captured the attention of the Algorithms community
in recent years. Despite its importance, a non-trivial approximation al-
gorithm for the problem eluded researchers for a long time. Remarkably,
a succession of papers with ever improved performance ratios have been
written in the last couple of years. We review some of the approaches
that have been used to design approximation algorithms for this prob-
lem, and we also present some of the known results about the hardness
of approximating the optimum solution for the k-median problem.

1 Introduction

The problem of locating a set of facilities so that they can efficiently serve a group
of clients has been extensively studied because of its large number of applications
and interesting algorithmic aspects. Facility location problems find applications
in areas as diverse as Operations Research [18,29], network design [3,19,20], data
mining [9], clustering analysis [40], and web access [32,22,44], among others.
These problems have been studied for over four decades [29], and many different
approaches have been proposed for solving them [5,6,12,14,18,33,42].

Given sets of facilities F and clients D, the cost of servicing a client i by a
facility j, denoted as c(i, j), expresses the effort required to serve i from j. So,
the service cost might represent the distance from a client to a facility, or the
cost of shipping some commodity produced at a facility site to the client site.
The most studied facility location problems are the k-median problem and the
facility location problem.

In the k-median problem the goal is to select or open a set of at most k
facilities (called centers or medians) that serve the clients D at minimum total
cost. Given a set of centers S, a client i is always served by the center j ∈ S for
which the service cost c(i, j) is minimum. The facility location problem assigns
a cost f(j) for opening a facility j ∈ F . The problem is to choose a set of
facilities and assign clients to facilities so that the total service cost plus the
total cost of the facilities is minimized. Numerous variants of these problems
have been proposed in the literature, like the capacitated facility location [15],
the fault tolerant k-center [21,28], bounded facility location [31], capacitated

E. Bampis et al. (Eds.): Approximation and Online Algorithms, LNCS 3484, pp. 292–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for the k-Median Problem 293

facility location with client demands [15], k-capacitated facility location [23,5],
universal facility location [37], and multilevel facility location [10,49].

Let n denote the number of clients plus the number of facilities. The k-median
problem is NP-hard even if the sets of facilities and clients are points on the plane
and the service cost is the Euclidean distance from a client to the nearest center
[26,36,43]. Moreover, the problem cannot be approximated within any factor
α > 1 of the optimum unless P=NP, even if the cost matrix is symmetric [33].
For any given value α > 1 no polynomial time algorithm that chooses up to
o(log n)k centers can approximate the value of the optimum solution for the
k-median problem within a factor α of the optimum, unless P=NP [33].

Due to the difficulty of approximating the solution of the general k-median
problem, many constrained versions have been considered. The most studied
version of the problem is the metric k-median problem. In this version of the
problem we interpret the cost function c as measuring the distance between a
given client i and facility j. Furthermore, the cost function is extended so that
it not only gives the distance between a client and a facility, but it also gives the
distance between two clients or between two facilities. In the metric k-median
problem, the cost function is assumed to be symmetric, i.e. c(i, j) = c(j, i), and it
satisfies the triangle inequality, i.e., c(i, k) ≤ c(i, j)+c(j, k) for any i, j, k,∈ D∪F .
The metric facility location problem is defined analogously, and the best known
algorithm for it achieves a performance ratio of 1.52 [38].

Despite the fact that the k-median problem is a central problem in Operations
Research, a non-trivial approximation algorithm for it eluded researchers for
a long time. The problem restricted to trees, though, has been known to be
polynomially solvable for some time [25,47]. It has been fascinating to see how
in the span of a few years successively better algorithms have been designed for
the problem. The first approximation algorithm for the problem was designed
by Lin and Vitter [33] in 1992. They showed that a (1 + ε)-approximation to
the value of the optimum solution for the k-median problem can be computed in
polynomial time if it is allowed to select up to (1+ 1

ε)(ln n+1)k centers, for any
value ε > 0. This result is best possible, up to constant factors, unless P=NP.
For the metric k-median problem, Lin and Vitter also designed an algorithm
that finds a solution of value at most 2(1+ ε) times the optimum while selecting
at most (1 + 1

ε)k centers.
In 1998, Korupolu, Plaxton, and Rajaraman [30] designed a simple local

search algorithm that, for any value ε > 0, computes a (1+ ε)-approximation to
the value of the optimum solution for the metric k-median problem that selects
no more than (3 + 5/ε)k centers. This algorithm can be modified so that it uses
only (3 + ε)k centers, but by selecting fewer centers, the value of the solution
that it finds can be up to 1 + 5/ε times the optimum.

The first approximation algorithm for the metric k-median problem that pro-
duced a solution with at most k centers was derived in 1996 from the powerful
result of Bartal [7,8], that shows how to approximate any finite metric space by
a tree space. Combining this result with known algorithms for the k-median
problem on trees, Bartal gave a randomized O(log n log log n)-approximation

294 R. Solis-Oba

algorithm for the metric k-median problem. Shortly after, Charikar, Chekuri,
Goel, and Guha [11] showed how to de-randomize Bartal’s algorithm, and they
also slightly improved it obtaining an O(log k log log k)-approximation algorithm.

The next breakthrough came a few months later, in 1998, when Arora, Ragha-
van, and Rao [4] presented a polynomial time approximation scheme for the
metric k-median problem restricted to two-dimensional Euclidean spaces. This
means that the clients and facilities are points on the plane and the cost c(i, j)
is the Euclidean distance between i and j. A polynomial time approximation
scheme is a family of algorithms A such that for any value ε > 0 an algorithm
Aε ∈ A finds in polynomial time a solution of value at most (1 + ε) times the
optimum.

In 1999, Charikar and Guha, and independently, Tardos and Shmoys, designed
the first constant factor approximation algorithm for the metric k-median prob-
lem. They combined their results and presented a linear programming based
algorithm that finds a solution of value at most 62

3 times larger than the opti-
mum. The same year Jain and Vazirani [23] improved this result by designing a
primal-dual 6-approximation algorithm. Shortly after, Charikar and Guha [12]
refined Jain and Vazirani’s approach to obtain a 4-approximation algorithm for
the problem.

The latest improvement, to the date when this paper was written, came
in 2001, when Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [5]
proposed a very simple local search algorithm that finds a solution of value
(3 + 2

p + O(ε′)) times larger than the optimum, for any value 0 < ε′ = o(n−2)..
The parameter p ≥ 1 is an integer value that guides the local search procedure,
and the time complexity of the algorithm depends exponentially on it.

Another work that deserves mention is the algorithm of Mettu and Plaxton
[39] for a generalization of the k-median problem known as the online metric
median problem. In this problem the centers are selected one at a time and a
facility cannot be de-selected once it has been chosen. Furthermore, the number
of facilities to be selected, k, is not known in advance. The algorithm of Mettu
and Plaxton finds a solution of value at most a constant factor times the value
of an optimum for the k-median problem (also known as the offline k-median
problem), for any value of k.

In this paper we describe in some detail some of the aforementioned works. In
Section 2 we describe some results related to the hardness of approximating the
k-median problem. Then, in Section 3, we present two linear programming based
algorithms. The first one is the algorithm of Lin and Vitter [33] which approx-
imates the solution of the general k-median problem by using up to O(log n)k
centers. The second algorithm, and the rest of the algorithms that we present
here, is for the metric version of the problem. This algorithm by Charikar, Guha,
Tardos, and Shmoys [13] is the first algorithm which achieved constant perfor-
mance ratio (this means that the algorithm approximates the optimum solution
within a constant factor). In Section 4 we describe a very interesting primal dual
algorithm by Jain and Vazirani [23], which exploits the fact that a Lagrangian re-
laxation of the k-median problem yields a special instance of the uncapacitated

Approximation Algorithms for the k-Median Problem 295

facility location problem. Finally, in Section 5 we present a remarkable algo-
rithm by Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [5], which
uses local search heuristics to yield the best known performance ratio for the
problem.

2 Hardness of the k-Median Problem

Any instance of the k-median problem can be modeled with an undirected graph
G = (V, E), where each vertex corresponds to either a client or a facility, and
every edge (i, j) is labelled with the corresponding cost c(i, j). The number of
vertices in V is n and the number of edges in E is m. Using this representation,
we can give a simple proof that the k-median problem is NP-hard. Consider an
instance G = (V, E), k of the problem in which V = F = D, i.e. every vertex
is both a client and a facility. Such an instance has a solution of value n− k if
and only if G has a dominating set of size k. Since the dominating set problem
is NP-hard, the claim follows.

Interestingly, another simple reduction also shows that for any computable
function α(n) > 1, the optimum solution for the k-median problem cannot be
approximated within any factor α(n) of the optimum in polynomial time, unless
P=NP.

Theorem 1. For any computable function α(n) > 1, the optimum solution for
the k-median problem cannot be approximated within factor α(n) in polynomial
time, unless P=NP, even if the cost function is symmetric.

Proof. Consider an instance G = (V, E), k of the k-median problem in which
V = F = D. Build a complete graph G′ = (V, E′) with edge weights defined as
follows:

– c(i, i) = 0 for all i ∈ V ,
– c(i, j) = 1 if (i, j) ∈ E, and
– c(i, j) = α(n)(n− k) + 1, otherwise.

Assume that there is an α(n)-approximation algorithm A for the k-median prob-
lem. If G has a dominating set of size k, then the corresponding instance of the
k-median problem has a solution of value n−k. Note that in this case, algorithm
A would choose a set S of k centers with total service cost at most α(n)(n− k).
Since every edge (i, j) ∈ E′ \ E has cost α(n)(n − k) + 1, set S must be a
dominating set of size k for G.

Interestingly, the problem is also hard to approximate if we allow the selection
of more than k centers. Let S∗ be an optimum solution for the k-median problem
and let c(S∗) be the cost of this solution.

Theorem 2. If for any value ρ > 1 there is a ρ-approximation algorithm A for
the k-median problem that selects a set of at most o(log n)k centers, then P=NP.

296 R. Solis-Oba

Proof. Using the approximation preserving reduction described in the previous
theorem, it is possible to show that if algorithm A exists, then A is an o(log n)-
approximation algorithm for the minimum dominating set problem. Since Raz
and Safra [45] proved that unless P = NP, the dominating set problem does
not have an o(log n)-approximation algorithm, then the existence of algorithm
A would imply that P = NP.

Since by Theorem 1 an optimum solution for the k-median problem cannot
be approximated within any factor ρ > 1, we mainly focus our attention on
constrained versions of the problem. The most studied version of the problem is
the metric k-median problem, in which the cost function c is symmetric and it
obeys the triangle inequality. This version of the problem is still hard to solve,
even if we allow the election of more than k centers:

Theorem 3. If A is an approximation algorithm for the metric k-median prob-
lem that finds a set S of at most o(log n)k centers that serves the clients D with
total service cost c(S) ≤ c(S∗), then P=NP.

Proof. Given an unweighted graph G = (V, E) with minimum dominating set of
size k, build a complete graph G′ = (V, E′) with cost function c satisfying:

– c(i, j) = 1 if (i, j) ∈ E,
– c(i, j) = length of a shortest path from i to j in G, if (i, j) �∈ E.

Since G has a dominating set of size k, the corresponding instance of the k-
median problem has a solution of value n− k. In this case, algorithm A finds a
set S with at most f(n)k centers and service cost c(S) ≤ n−k, for some function
f(n) = o(log n). We observe that the set S′ of vertices not adjacent to S in G
has size |S′| ≤ f(n)k. To see this, assume that |S′| > f(n)k. Since the vertices
in S′ are at distance at least 2 from S, then the service cost of S would be

c(S) ≥ 2|S′|+ n− |S| − |S′|
≥ n + |S′| − |S|
≥ n + f(n)k − f(n)k
= n > n− k.

Hence, set S∪S′ is a dominating set for G of size at most 2f(n)k = o(log n)k and,
thus, A is an o(log n)-approximation algorithm for the minimum dominating set
problem, which by the aforementioned result of Raz and Safra [45], implies that
P=NP.

3 Linear Programming Based Algorithms

A powerful technique that has been successfully applied to design approximation
algorithms for a variety of NP-hard problems consists in formulating a problem
as an integer program, then, solving the linear program obtained by relaxing
the integrality constraints and, finally, rounding this fractional solution to get

Approximation Algorithms for the k-Median Problem 297

an integer feasible solution for the original problem. In this section we present
two approximation algorithms for the k-median problem that use this technique.
First, we present the algorithm of Lin and Vitter [33] which introduces an elegant
rounding technique known as filtering. This algorithm works for the general k-
median problem (with an arbitrary cost function). It finds, for any value ε > 0, a
solution of value at most (1+ε) times the optimum, but it selects up to (1+ 1

ε) ln n
centers. Then, in the next section we describe an algorithm by Charikar, Guha,
Tardos, and Shmoys [13], which refines the filtering technique for the metric
version of the problem. This was the first algorithm for the metric k-median
problem that achieved constant performance ratio using at most k centers.

3.1 Integer Program Formulation

To formulate the k-median problem as an integer program, we first need to define
some variables. For each facility j we define a variable yj which takes value 1 if
j is selected as a center, and it takes value 0 otherwise. For every client-facility
pair (i, j) we define a variable xij which takes value 1 if and only if client i
is serviced by center j. The k-median problem can be stated as the following
integer program.

Minimize
∑

j∈F

∑

i∈D

c(i, j)xij (1)

subject to∑

j∈F

xij ≥ 1 for all i ∈ D

∑

j∈F

yj ≤ k (2)

xij ≤ yj for all i ∈ D, j ∈ F

xij , yj ∈ {0, 1} for all i ∈ D, j ∈ F

The linear program relaxation of the above formulation relaxes the last set
of constraints allowing the variables yj and xij to take fractional non-negative
values. This linear program can be solved in polynomial time by using, for exam-
ple, interior point methods [48,27]. Let ŷ = (ŷ1, ŷ2 . . . , ŷ|F |), x̂ = (x̂11, x̂12, . . . ,
x̂|D||F |) be an optimum solution for the linear program. Before showing how to
use x̂, ŷ to find an approximate solution for the k-median problem, we note that
a solution for the linear program is completely characterized by the values of
the ŷ variables, since optimum fractional values for the x̂ variables can be deter-
mined from ŷ [2]. The idea is to (fractionally) assign each client i to its closest
facilities. The algorithm for computing x̂ from ŷ is as follows.

Algorithm AssignClients

1. For each client i consider those facilities i1, i2, . . . , i|F | with values ŷi�
> 0 in

non-decreasing order of service cost: c(i, i1) ≤ c(i, i2) ≤ · · · ≤ c(i, i|F |).
2. Find the first facility ip (in this ordering) for which

∑p
�=1 ŷi�

≥ 1.

298 R. Solis-Oba

3. Set the values of the variables x̂ij in this manner:
– x̂ii�

← ŷi�
for all � = 1, 2, . . . , p− 1, and

– x̂iip ← 1−∑p−1
�=1 ŷi�

.

3.2 Filtering

The algorithm that we describe in this section approximates the value of the
optimum solution for the k-median problem within a factor of (1 + ε), for any
value ε > 0. The precision parameter ε affects the number of centers that the
algorithm chooses, as we describe below.

The idea of filtering is to use the solution of the linear program to discard,
or filter out, some of the possible assignments of clients to centers. This filtering
has to be done in such a way that the problem is simplified by reducing the
possible number of assignments of clients to facilities, but it has to ensure that
at least one good assignment of clients to centers remains.

For each client i let Ĉi =
∑

j∈F c(i, j)x̂ij be the fractional cost of servicing i.
We filter out some possible assignments of i to facilities by allowing client i to
be served only by those facilities j such that c(i, j) ≤ (1 + ε)Ĉi. Let the neigh-
bourhood Vi of a client i be the set of facilities that satisfy the above condition,
i.e. Vi = {j | j ∈ F and c(i, j) ≤ (1 + ε)Ĉi}.

We show that the neighbourhood of every client is non-empty and, therefore,
there is a solution for the k-median problem in which every client is assigned to
some facility in its neighbourhood.

Lemma 1. For every client i, its neighbourhood Vi is non-empty and, further-
more, ∑

j∈Vi

ŷj ≥ ε

1 + ε
.

Proof. We can show that the neighbourhood Vi of a client i is not empty by
using a weighted average argument. If Vi is empty, then for every facility j ∈ F ,
the service cost cij is larger than (1 + ε)Ĉi. Thus, Ĉi =

∑
j∈F c(i, j)x̂ij > (1 +

ε)Ĉi

∑
j∈F x̂ij ≥ (1 + ε)Ĉi, by the first constraint of the integer program.

The second part of the lemma can also be proven by using a weighted average
argument. Assume that

∑
j∈Vi

ŷi ≤ ε/(1+ε). Then, by the third constraint of the
integer program,

∑
j∈Vi

x̂ij ≤ ε/(1 + ε) and
∑

i�∈Vi
x̂ij > 1/(1 + ε). Multiplying

both sides of the last inequality by Ĉi, we get: Ĉi < (1 + ε)Ĉi

∑
j �∈Vi

x̂ij <
∑

j �∈Vi
x̂ijcij < Ĉi.

The advantage of assigning each client to a center in its neighbourhood is
that, then, the cost of servicing a client is close to the cost of servicing the client
in an optimum solution for the problem.

Lemma 2. If every client i is served by a center j in its neighbourhood Vi, then
the cost of the solution is at most (1 + ε) times the cost c(S∗) of an optimum
solution for the k-median problem.

Approximation Algorithms for the k-Median Problem 299

Proof. If it is possible to find a solution x, y for the k-median problem in which
clients are assigned to centers in their neighborhoods, then, for every client i
there is one facility j for which xij = 1. Therefore, the cost of this solution is

∑

j∈F

∑

i∈D

c(i, j)xij ≤ (1 + ε)
∑

i∈D

Ĉi ≤ (1 + ε)
∑

j∈F

∑

i∈D

c(i, j)x̂ij ≤ (1 + ε)c(S∗).

According to this lemma, the problem is, then, how to select for each client i a
center j from its neighbourhood Vi so that the total number of centers selected is
small. This latter problem is an instance of the set covering problem in which the
ground set is D, the set of clients, and the family of subsets is {S1, S2, . . . , S|F |},
where Sj = {i | i ∈ D and c(i, j) ≤ (1 + ε)Ĉi}.

The greedy set cover algorithm [16,24,35], can be used to approximately solve
the set covering problem, and it finds a set S of centers of size at most s̄(ln n+1),
where s̄ is the value of a fractional set cover for the above set cover problem. The
value of s̄ can be easily obtained from the solution x̂, ŷ of the linear program
since by Lemma 1, for each client i,

∑
j∈Vi

ŷj > ε/(1 + ε). Therefore, setting
ȳj = (1 + 1

ε)ŷj for every facility j yields a fractional solution for the set cover
problem since, then, for each client i:

∑

i∈Sj

ȳj =
∑

j∈Vi

(
1 +

1
ε

)
ŷj > 1.

The value of this fractional set cover ȳ is

∑

j∈F

ȳj =
(

1 +
1
ε

) ∑

j∈F

ŷj ≤
(

1 +
1
ε

)
k.

The last inequality follows from the second constraint of the integer program.
The algorithm is as follows.

Algorithm Filtering

1. Solve the linear program relaxation of the k-median problem to get a frac-
tional solution ŷ, x̂.

2. For each client i, compute Ĉi =
∑

j∈F c(i, j)x̂ij .
3. Use the greedy set cover algorithm on the instance with ground set D, and

family of subsets {S1, S2, . . . , S|F |}, where each set Sj is formed by the clients
i such that c(i, j) ≤ (1 + ε)Ĉi.

4. Choose as centers those facilities selected by the greedy set cover algorithm
and assign each client i to one of its closest centers.

Theorem 4. For any value ε > 0, the above algorithm finds a solution of value
at most (1+ε) times the value of an optimum solution for the k-median problem,
and this solution has at most (1 + 1

ε)(ln n + 1)k centers.

Proof. The theorem follows from Lemma 2 and the above discussion on the
greedy set cover algorithm.

300 R. Solis-Oba

3.3 An Algorithm with Constant Performance Ratio

We describe now an algorithm for the metric k-median problem with constant
performance ratio. This algorithm was designed by Charikar, Guha, Tardos, and
Shmoys [13], and it uses a more sophisticated version of the filtering technique
than that described in the previous section. This algorithm works for the more
general version of the problem where each one of the clients i has a non-negative
demand di, and the objective is to minimize the total service cost weighted by
the demands: min

S⊆F
{
∑

i∈D

di ×min
j∈S
{c(i, j)} | |S| ≤ k}.

We describe here the version of the problem when the set of clients D and
the set of facilities F are the same. Or in other words, we consider that there is
a set N = D ∪ F of locations; each location i has some demand di and in each
location it is possible to build a center. The distance between locations i and j
is c(i, j).

The linear program relaxation of the integer program formulation of this
problem is as follows.

Minimize
∑

i,j∈N

dic(i, j)xij (3)

subject to∑

j∈N

xij ≥ 1 for all i ∈ N

∑

j∈N

yj ≤ k (4)

xij ≤ yj for all i, j ∈ N

0 ≤ xij , yj for all i, j ∈ N

The problem defined by this linear program is known as the fractional k-
median problem with demands. Given an optimum solution x̂, ŷ for this linear
program, the fractional service cost of a location i is Ĉi =

∑
j∈N c(i, j)x̂ij . Let

us assume that the locations are indexed non-decreasingly by fractional service
cost, so Ĉ1 ≤ Ĉ2 ≤ · · · ≤ Ĉ|N |. The algorithm is as follows.

Algorithm Consolidate

1. Find an optimum solution x̂, ŷ for linear program (3).
2. Re-assign demands as follows.

Set d′i ← di for each location i.
For each location i:

If there is a location j with fractional service cost Ĉj < Ĉi and such that
d′j > 0 and c(i, j) ≤ 4Ĉj , then move the demand of i to location j:

d′j ← d′j + d′i,
d′i ← 0.

Approximation Algorithms for the k-Median Problem 301

3. Let N ′
> = {i ∈ N | d′i > 0}, be the set of locations with positive demand.

We show below that |N ′
>| ≤ 2k. For each location i ∈ N , find the location

s(i) ∈ N ′
> closest to it. In case of ties, choose the location with minimum

index.
4. Set x′ ← x̂ and y′ ← ŷ.

For each location i with y′
i > 0 and d′i = 0:

– Set y′
s(i) ← min{1, y′

i + y′
s(i)}, and set y′

i ← 0.
– For each location j ∈ N , set x′

j s(i) ← x′
j s(i) + x′

ji, and set x′
ji ← 0.

5. Sort the locations i ∈ N ′
> in non-increasing order of value d′i c(i, s(i)).

Set ȳi ← 1 for the first 2k − |N ′
>| locations i ∈ N ′

>.
Set ȳi = 1

2 for the remaining 2(|N ′
>| − k) locations i ∈ N ′

>.
Set ȳi ← 0 for all locations i ∈ N \N ′

>.
For each location i ∈ N :

Set x̄ii ← ȳi, and x̄is(i) ← 1− ȳi.
6. Build a graph H = (VH , EH) having as vertices the locations i ∈ N ′

>.
For every vertex i with ȳi = 1

2 add an edge between s(i) and i. Note that
graph H is a forest.
Find a dominating set I for H containing all vertices i with ȳi = 1, and such
that |I| ≤ k.

7. Select I as the set of centers. Let each client i be served by the center j ∈ I
with minimum service cost c(i, j).

This algorithm first simplifies the problem by moving demands so that there
are at most |N ′

>| ≤ 2k locations with positive demands. These locations are
far away from each other, and this allows the possibility of finding a 1

2 -integral
solution for the problem (a solution in which every variable has value either 0,
1
2 , or 1). This solution can, then, be transformed into an integral solution by
rounding the variables with value 1

2 up to 1 or down to 0. Note that step 4 of the
algorithm is not needed, we include it only to simplify the analysis. We analyze
now the algorithm in more detail.

3.4 Analysis

First, we show that the re-assignment of demands does not increase the cost of
the solution.

Lemma 3. ∑

i,j∈N

d′i c(i, j)x̂ij ≤
∑

i,j∈N

di c(i, j)x̂ij .

Proof. Since
∑

i,j∈N di c(i, j)x̂ij =
∑

i∈N diĈi, and in step 2 demand is moved
from location i to location j only if Ĉj ≤ Ĉi, the claim follows.

Re-assigning centers as described in step 4 increases the value of the fractional
solution by at most a factor of 2.

Lemma 4. ∑

i,j∈N

d′i c(i, j)x′
ij ≤ 2

∑

i,j∈N

d′i c(i, j)x̂ij .

302 R. Solis-Oba

Proof. Note that x′, y′ is a feasible solution for linear program (3). Consider
some location i ∈ N ′

> that is (partially) served in solution x̂, ŷ by some location
j �∈ N ′

>. The (fractional) center at j is moved to location s(j) and, hence, the
service cost of i increases to c(i, s(j)) x̂ij ≤ (c(i, j) + c(j, s(j)))x̂ij ≤ 2 c(i, j) x̂ij ,
since by definition of s(j), c(j, s(j)) ≤ c(j, i) = c(i, j). Therefore, the total service
cost is increased by at most a factor of 2.

We show that the solution x′, y′ built in step 4 is such that at least one half
of a center is assigned to each location i ∈ N ′

>, i.e., y′
i ≥ 1

2 . By constraint (4) of
the linear program (3), this means that set N ′

> has at most 2k locations.

Lemma 5. For each location i ∈ N ′
>, y′

i ≥ 1
2 .

Proof. For any two locations i, j ∈ N ′
>, c(i, j) > 4max {Ĉi, Ĉj} because other-

wise the demands for i and j would have been merged in step 2 of the algorithm.
Hence, after re-assigning demands, for each location i ∈ N ′

> all (fractional) cen-
ters within distance 2 Ĉi of i are moved to i in step 4. Note that for any i ∈ N ′

>,
∑

j:c(i,j)>2Ĉi

x̂ij <
1
2

because, otherwise
∑

j:c(i,j)>2Ĉi

c(i, j)x̂ij > 2Ĉi

∑

j:c(i,j)>2Ĉi

x̂ij ≥ Ĉ1

which is a contradiction. Since
∑

j∈N x̂ij ≥ 1 and x̂ij ≤ ŷj for each i ∈ N , then

∑

j:c(i,j)≤2Ĉi

ŷj ≥
∑

j:c(i,j)≤2Ĉi

x̂ij ≥ 1
2
.

Therefore, in step 4 of the algorithm the value assigned to each variable y′
i,

i ∈ N ′
>, is at least 1

2 .

It is easy to verify that the 1
2 -integral solution x̄, ȳ built in step 5 is feasible

for the linear program (3) with demands d′. As for its cost, we show that it is
not larger than the cost of solution x′, y′.

Lemma 6. ∑

i,j∈N

d′ic(i, j)x̄ij ≤
∑

i,j∈N

d′ic(i, j)x
′
ij .

Proof.
∑

i,j∈N

d′ic(i, j)x̄ij =
∑

i∈N ′
>

∑

j∈N ′
>

d′ic(i, j)x̄ij

=
∑

i∈N ′
>

d′ic(i, s(i))(1− ȳi)

≤
∑

i∈N ′
>

d′ic(i, s(i))(1− y′
i) (5)

Approximation Algorithms for the k-Median Problem 303

To show that the last inequality is true, let us define N ′
1 as the set of centers

i ∈ N ′
> for which ȳi = 1. Also, let d′�c(�, s(�)) = min

i∈N ′
1

{d′ic(i, s(i))}. Because of

the way in which set N ′
1 is chosen in step 5 of the algorithm, we know that

d′�c(�, s(�)) ≥ d′ic(i, s(i)) for all i �∈ N ′
1. Finally, recall that y′

i ≤ 1 for all i ∈ N .
Hence,

∑

i∈N ′
>

d′ic(i, s(i))(1− ȳi − (1− y′
i))

=
∑

i∈N ′
>

d′ic(i, s(i))(y
′
i − ȳi)

=
∑

i∈N ′
1

d′ic(i, s(i))(y
′
i − 1) +

∑

i�∈N ′
1

d′ic(i, s(i))(y
′
i −

1
2
)

≤
∑

i∈N ′
1

d′�c(�, s(�))(y
′
i − 1) +

∑

i�∈N ′
1

d′�c(�, s(�))(y
′
i −

1
2
)

=
∑

i∈N ′
1

d′�c(�, s(�))(y
′
i − ȳi) +

∑

i�∈N ′
1

d′�c(�, s(�))(y
′
i − ȳi)

= d′�c(�, s(�))
∑

i∈N ′
>

(y′
i − ȳi)

= 0

The last equation follows from the fact that
∑

i∈N ′
>

y′
i =

∑
i∈N ′

>
ȳi = k. To

complete the proof, we note that
∑

j∈N′
j �=i

x′
ij ≥ 1− x′

ii ≥ 1− y′
i.

Therefore,
∑

i∈N ′
>

d′ic(i, s(i))(1− y′
i) ≤

∑

i∈N ′
>

∑

j∈N ′
>

d′ic(i, s(i))x
′
ij ≤

∑

i∈N ′
>

∑

j∈N ′
>

d′ic(i, j)x
′
ij .

Combining this with inequality (5), the claim follows.

Now, we are ready to show that the algorithm has a constant performance
ratio.

Theorem 5. Algorithm Consolidate finds a solution of cost at most 8 times
the cost of an optimum solution for the metric k-median problem.

Proof. It is not hard to see that the graph H built in step 6 is a forest and,
hence, we can efficiently find the required dominating set I as follows. First, add
to I all those vertices i with ȳi = 1 and, then, remove such vertices from H . Any
isolated vertex in the resulting graph H is dominated by at least one vertex in
I and, thus, these vertices are also deleted from H . After these deletions, H is

304 R. Solis-Oba

a forest in which every tree contains at least 2 vertices, and the total number of
vertices in H is at most |N ′

>| − |I| = 2(|N ′
>| − k). A minimum dominating set

I ′ of H can be easily found and it includes at most half of the vertices in each
tree of H . Thus, |I ′| ≤ |N ′

>| − k. We set I ← I ∪ I ′ to get a dominating set for
the original graph H of size |I| ≤ 2k − |N ′

>|+ |N ′
>| − k = k as desired.

Consider this solution I. Each vertex i ∈ I with ȳi = 1 does not contribute
to the cost of the solution since x̄ii = ȳi = 1 and c(i, i) = 0. For those vertices i
with ȳi = 1

2 , either i ∈ I or s(i) ∈ I. Hence, the contribution of i to the cost of
the solution is at most d′i c(s(i), i) ≤ 2d′i c(s(i), i)x̄i s(i). Therefore, the cost c(I)
of solution I is at most 2 times the cost of the half integral solution x̄, ȳ. By
Lemmas 4 and 6, c(I) is at most 4 times the cost of the fractional solution x̂, ŷ
with demands d′.

To determine the effect of the re-allocation of demands performed in step 2
on the cost of the solution, consider a location j ∈ N which has its demand
moved to another location j′ ∈ N ′. For this location c(j′, j) ≤ 4Ĉj . Let j′ be
served by center i in solution I. If we move back the demand to j and let j
be served by center i, this would increase the cost of the solution by at most
dj c(j′, j) ≤ 4djĈj . Therefore, moving all demands back to the original locations
increases the cost of the solution by at most 4 times the cost of solution x̂, ŷ.

By the above arguments, the cost of solution I is at most 8 times the cost of
an optimum solution for the k-median problem.

By using a more complex rounding algorithm than the one described in step
6 of the algorithm, Charikar et al. [13] are able to show that the performance
ratio of the algorithm can be improved to 6 2

3 .

4 A Primal-Dual Algorithm

In this section we describe another linear programming based approximation
algorithm for the k-median problem. The approach that we present now differs
from the ones presented in the previous section in that it does not need to solve
a linear program, but rather it finds primal and dual solutions for the problem
using combinatorial methods. This results in a faster algorithm, and, as we show,
the performance ratio is better than the performance ratio of the algorithm of
Charikar et al. [13].

The primal-dual algorithm that we present here is due to Jain and Vazirani
[23]. This algorithm is based on an interesting relationship between the k-median
problem and the uncapacitated facility location problem. In order to understand
the algorithm we need first to describe a primal-dual approximation algorithm
for the uncapacitated facility location problem.

4.1 The Uncapacitated Facility Location Problem

The uncapacitated facility location problem differs from the k-median problem
in that facilities have assigned building costs f(j) and there is no bound on the
number of facilities that might be selected as centers. The goal is to minimize

Approximation Algorithms for the k-Median Problem 305

the total cost for servicing the clients plus the cost of the facilities selected. An
integer program defining the uncapacitated facility location problem is very sim-
ilar to integer program (1), with the differences stated above. A linear program
relaxation of this integer program is given below.

Minimize
∑

j∈F

∑

i∈D

c(i, j)xij +
∑

j∈F

f(j)yj (6)

subject to∑

j∈F

xij ≥ 1 for all i ∈ D

xij ≤ yj for all i ∈ D, j ∈ F

0 ≤ xij , yj for all i ∈ D, j ∈ F

The dual linear program corresponding to this linear program is the following
(for a comprehensive study of linear programming concept the reader is referred
to [17,41,46]).

Maximize
∑

i∈D

αi (7)

subject to
αi − βij ≤ c(i, j) for all i ∈ D, j ∈ F (8)
∑

i∈D

βij ≤ f(j) for all j ∈ F

αi, βij ≥ 0 for all i ∈ D, j ∈ F

There is a nice interpretation for the dual variables α, β. Let us think, as it
happens in the real world, that the clients must pay for the service cost and
for the cost of building the selected facilities. If client i is served by facility
j, then the amount αi paid by the client must be at least equal to c(i, j). If
αi > c(i, j), the rest of the money paid by the client, i.e., βij = αi− c(i, j), goes
towards paying for the cost of building facility j. By the complementary slackness
conditions, the second constraint of the dual linear program is tight (which means
that

∑
i∈D βij = f(j)) if facility j is selected. By the above argument, the total

amount
∑

i∈D βij contributed by the clients served by j, has to be exactly equal
to the building cost of facility j.

To solve the dual linear program, we must determine the price that each
client must pay. From the dual solution it is easy to determine which facilities
are selected. Each client is assigned to that facility with smallest service cost.

An instance of the uncapacitated facility location problem can be modeled
with a graph G = (D ∪ F, E) having as vertices the clients and facilities, and
edges connecting every facility to each client. The weight of an edge (i, j) is the
service cost c(i, j). In the above primal-dual context, an edge (i, j) is said to be
tight if αi ≥ c(i, j) (or in other words, if αi = c(i, j) + βij and βij ≥ 0), and a
facility j is said to be paid for if

∑
i∈D βij = f(j). A client i is marked if there

306 R. Solis-Oba

is a facility j which has been paid for, and edge (i, j) is tight. The algorithm for
approximately solving the uncapacitated facility location problem is as follows.

Algorithm PrimalDual

0. Initially all clients are un-marked. All values αi and βij are initialized to 0.
1. Repeat steps 2 and 3 as long as there are un-marked clients.
2. Simultaneously and uniformly (at the same rate) raise the values of, both,

the dual variables αi for all un-marked clients i and the variables βij for all
tight edges (i, j), until either:
– αi = c(i, j) for some edge (i, j), or
–

∑
i∈D βij = f(j) for some facility j.

In the first case we label edge (i, j) as tight. In the second case we label
facility j as paid for.

3. Every un-marked client i with a tight edge (i, j) connecting it to a paid for
facility j is marked.

4. Build the graph T = (D ∪ F, E′) containing those edges (i, j) for which
βij > 0.

5. Build the square T 2 of graph T by adding an edge between vertices u and v
if there is a path of length at most 2 between u and v in T .

6. Build the subgraph H of T 2 induced by those facilities that are paid for.
7. Find a maximal independent set I of H .
8. Select I as the set of centers and let each client i be served by a center

j ∈ I for which the service cost c(i, j) is minimum. If for a client i there are
2 or more centers with minimum service cost, choose any one of them for
servicing i.

In the solution I produced by this algorithm, we say that a client i is directly
connected to the facility j that serves it if βij > 0. Otherwise client i is said to
be indirectly connected.

4.2 Performance Ratio

We interpret the value of variable αi as the price that client i has to pay for,
both, building a facility and for being serviced by that facility. Let client i be
serviced by facility j. Let αf

i be the price that client i pays for building facility j

and let αs
i be the service cost paid by the client. Clearly, αi = αs

i + αf
i . If client

i is directly connected to j, then αi = c(i, j) + βij , and so we set αs
i ← c(i, j),

and αf
i ← βij . If i is indirectly connected, then we set αs

i ← αi and αf
i ← 0.

Lemma 7. ∑

j∈I

f(j) =
∑

i∈D

αf
i .

Proof. Every facility j ∈ I is paid for, i.e. f(j) =
∑

i∈D βij =
∑

i∈Dj
αf

i , where
Dj is the set of clients directly connected to j. Since sets Dj are disjoint, the
claim follows.

Approximation Algorithms for the k-Median Problem 307

Lemma 8. For every indirectly connected client i, c(i, j) ≤ 3αs
i , where j ∈ I is

the facility that serves i.

Proof. Since the loop in steps 1-3 terminates when all clients are marked, then, i
is marked in step 3 because these is a facility j′ for which αi ≥ c(i, j′). However,
j′ �∈ I since i is indirectly connected. As i is indirectly connected, facility j′

was not selected to be in the final solution I computed in step 7. Note that
since I is a maximal independent set of H , there has to be at least one facility
k ∈ I such that there is an edge from j′ to k in the graph H built in step 6 (see
Figure 1). Because clients are assigned to their nearest centers in step 8, then
c(i, k) ≥ c(i, j).

Observe that k and j′ are facilities and so there is no edge (k, j′) in the
graph G = (D ∪ F, E). Since edge (k, j′) belongs to H , there must be a client h
with edges (h, k) and (h, j′) such that βhk > 0 and βhj′ > 0. This implies that
αh > c(h, k) and αh > c(h, j′).

j

i

j’

h

k

Hedge in

Fig. 1. Service cost of client i. Centers k and j belong to I , but j′ �∈ I .

The algorithm does not rise the value of αh after facility j′ is paid for (and in
fact it might stop raising the value of αh when k or other neighbouring facility
of h is paid for). Since, as we assumed above, i is marked when αi takes value
c(i, i′), then αi is raised at least until the time when j′ is paid for. Therefore,
αi > αh. By the triangle inequality (see Figure 1), c(i, j) ≤ c(i, k) ≤ c(i, j′) +
c(h, j′) + c(h, k) ≤ αi + 2αh ≤ 3αi.

Using these two lemmas, we can compute the performance ratio of algorithm
PrimalDual.

Theorem 6. The performance ratio of algorithm PrimalDual is 3.

Proof. Let x, y and α, β be the primal and dual solutions produced by the algo-
rithm. Since for a client i directly connected to a facility j, αs

i = c(i, j), and by
Lemma 8, for each indirectly connected client i, c(i, j) ≤ 3αs

i , then
∑

j∈F

∑

i∈D

c(i, j)xij ≤ 3
∑

i∈D

αs
i .

308 R. Solis-Oba

From this inequality and Lemma 7, we get
∑

j∈F

∑

i∈D

c(i, j)xij + 3
∑

j∈F

f(j)yj ≤ 3
∑

i∈D

(αs
i + αf

i) = 3
∑

i∈D

αi. (9)

Since the value of an optimum solution for the k-median problem is at least∑
i∈D αi, the claim follows.

4.3 Running Time

Steps 1-3 are, perhaps, the most difficult steps of the algorithm to implement and
analyze, so we will give some details here as to how these steps can be efficiently
implemented. Note that since the values αi are raised uniformly, the order in
which the edges will become tight is consistent with a non-decreasing ordering
of the edges by cost. Hence, if we store the edges in a list L in non-decreasing
order of cost, we will know the order in which the events αi = c(i, j) of step 2
will take place. To keep track of the second class of events that take place in
step 2, namely

∑
i∈D βij = f(j) for some facility j, we need to maintain for each

facility j the following 3 variables:

– a variable bj giving the number of tight edges currently contributing to
facility j,

– a variable tj giving the time when the value of bj last changed, and
– a variable pj giving the total contribution made by clients to facility j up to

time tj .

To determine the event that will take place during the following iteration of
steps 2-3 we first compute

τ = min
{

c(i, j), min
j∈F

{
f(j)− pj

bj

}}
,

where (i, j) is the first edge in L, if any. If L is empty, we simply ignore the first
term c(i, j). We can efficiently compute τ by using a heap h.

a. If c(i, j) = τ , then edge (i, j) becomes tight in this iteration, so we discard
(i, j) from L.
– If j is not yet paid for, we update pj ← pj + (τ − tj)bj and, then,

increase the value of bj by 1 since in the next iterations the value of βij

will be increased. Finally, we set tj ← τ . These steps can be performed
in constant time and updating the value f(j)−pj

bj
associated with j in the

heap needs O(log nf) time, where nf is the number of facilities.
– If j is already paid for, then we mark i. Since from this point on the value

αi and the values βij′ for all tight edges (i, j′) will not increase any more,
then, we need to update the values of the variables for such facilities j′.
For each facility j′ such that (i, j′) is tight we set pj′ ← pj′ + bj′(τ −
tj′) and, then, we decrease bj′ by 1. Finally, we set tj′ ← τ . The total
amount of time needed to perform these steps is O(degree(i) log nf),
where degree(i) is the degree of client i in the graph G = (D ∪ F, E).

Approximation Algorithms for the k-Median Problem 309

b. On the other hand, if f(j)−pj

bj
= τ , then facility j will next get paid for, so

we remove this value f(j)−pj

bj
from the heap. Furthermore, all clients i with

tight edges to j will be marked, and so their αi and βij values will stop
increasing. For each one of these clients with tight edges (i, j′) we need to
update the values of pj′ , tj′ , and bj′ as described above. Let Sj be the set
of clients marked in this step. The total time needed to perform the above
steps is O(

∑
i∈Sj

degree(i) log nf).

Since every client is marked only once, then the total time needed to complete
steps 1-3 is O(

∑
i∈D degree(i) log nf) = O(m log nf), where m is the number of

edges in the graph G = (D ∪ F, E).

4.4 Algorithm for the k-Median Problem

By studying the integer program formulations for the k-median and uncapaci-
tated facility location problems, we note that the Lagrangian relaxation of con-
straint (2) in the integer program (1) for the k-median problem gives an instance
of the uncapacitated facility location problem in which all the facilities have the
same cost z, where z is the Lagrange multiplier:

Minimize
∑

j∈F

∑

i∈C

c(i, j)xij +
∑

j∈F

zyj (10)

subject to∑

j∈F

xij ≥ 1 for all i ∈ D

xij ≤ yj for all i ∈ D, j ∈ F

xij , yj ∈ {0, 1} for all i ∈ D, j ∈ F

The value of the Lagrange multiplier z controls the number of facilities se-
lected by the algorithm PrimalDual. As the value of z increases, the number of
facilities selected decreases. If it happens that for some value of z the algorithm
chooses exactly k facilities, then this would be a good solution for the k-median
problem:

Lemma 9. Suppose that for some value z algorithm PrimalDual selects ex-
actly k facilities. The cost of this solution is at most 3 times the cost of an
optimum solution for the k-median problem.

Proof. Let x, y and α, β be the primal and dual solutions constructed by the
algorithm. Then, by equation (9),

∑

j∈F

∑

i∈D

c(i, j)xij ≤ 3

(
∑

i∈D

αi − kz

)
(11)

310 R. Solis-Oba

Observe that x, y is a feasible solution for the k-median problem and α, β, z is a
feasible solution for the dual linear program for the k-median problem:

Maximize
∑

i∈D

αi − zk (12)

subject to
αi − βij ≤ c(i, j) for all i ∈ D, j ∈ F
∑

i∈D

βij ≤ z for all j ∈ F

αi, βij ≥ 0 for all i ∈ D, j ∈ F

Therefore, by the weak duality theorem, x, y is a solution for the k-median
problem of cost

∑
j∈F

∑
i∈D c(i, j)xij at most 3 times the cost of an optimum

solution for the problem.

However, there might not be a value z for which algorithm PrimalDual
selects exactly k centers, or it might be the case that finding such a value might
take too long1. What we can do in that case, is to find two “close”values z1 and
z2 for the facility costs, such that for the first value the algorithm will choose
k1 < k and for the second one it will select k2 > k centers, respectively. We
combine these solutions to get a fractional solution with exactly k centers. The
details are as follows.

Algorithm ConvexCombination

1. Compute cmin = min{c(i, j) | i ∈ D, j ∈ F} and cmax = max{c(i, j) | i ∈
D, j ∈ F}.
Set nf ← |F |.

2. Use algorithm PrimalDual and binary search over the interval [0, ncmax]
to find two values, z1 and z2, such that z1 − z2 ≤ cmin/(4n2

f) for which
algorithm PrimalDual finds solutions
– xs, ys, αs, βswith k1 < k centers, and
– x�, y�, α�, β� with k2 > k centers, respectively.

Let A be the set of centers chosen in solution xs, ys, and let B be the set of
centers chosen in solution x�, y�.

3. Let a = k2−k
k2−k1

and b = k−k1
k2−k1

. Combine the two above solutions to get a
new solution (x̂, ŷ) = a(xs, ys)+ b(x�, y�) that (fractionally) opens exactly k
centers.

4. B′ ← ∅
For each facility j ∈ A do

Remove from B the facility j′ with minimum c(j, j′) value, and include
it into set B′.

1 Recently Archer et al. [1] designed a variant of Jain and Vazirani’s algorithm which
guarantees the existence of a value k for which exactly k centers are selected. Un-
fortunately, this algorithm requires the solution of the maximum independent set
problem, and so it is not guaranteed to run in polynomial time.

Approximation Algorithms for the k-Median Problem 311

5. Choose a set I of k centers from A ∪B as follows:
– Select all centers in A with probability a and select all centers in B′ with

probability b (note that b = 1− a).
– Randomly select k − k1 centers from B.

6. Select I as the set of centers and let each client i be served by the center
j ∈ I with minimum service cost c(i, j).

Lemma 10. The cost of the fractional solution x̂, ŷ computed in step 3 is at
most (3+ 1

nf
) times the cost of an optimum fractional solution for the k-median

problem.

Proof. Let α = aαs + bα�, and β = aβs + bβ�. Note that, α, β, z1 is a feasible
solution for the dual linear program (12) and, thus, its value is a lower bound
for the value of the optimum fractional solution for the k-median problem. Let
us compute the value of this dual solution. By equation (9),

3

(
∑

i∈D

α�
i − z2k2

)
≥

∑

j∈F

∑

i∈D

c(i, j)x�
ij ≥ cmin ≥ (3nf + 3)(z1 − z2)k2.

This last inequality follows since k2 ≤ nf , and z1−z2 ≤ cmin/(4n2
f). Furthermore,

we need to assume that nf ≥ 3. This is a reasonable assumption since if the
number of facilities is less than 3, then the k-median problem can be easily
solved by trying the at most O(n2) subsets of k facilities as possible solutions
for the problem. Hence,

3

(
∑

i∈D

α�
i − z1k2

)
= 3

(
∑

i∈D

α�
i − z2k2

)
− 3(z1 − z2)k2 ≥ 3nf (z1 − z2)k2.

So, (z1 − z2)k2 ≤ 1
nf

(∑
i∈D α�

i − z1k2

)
and, therefore,

3

��
i∈D

α�
i − z2k2

�
= 3

��
i∈D

α�
i − z1k2

�
+ (z1 − z2)k2 ≤

�
3 +

1

nf

���
i∈D

α�
i − z1k2

�
.

Combining the above inequalities, we get

∑

j∈F

∑

i∈D

c(i, j)x�
ij ≤

(
3 +

1
nf

) (
∑

i∈D

α�
i − z1k2

)
.

Also, by inequality (9),

∑

j∈F

∑

i∈D

c(i, j)xs
ij ≤ 3

(
∑

i∈D

αs
i − z1k1

)
.

312 R. Solis-Oba

From the last two inequalities, we finally get:

∑

j∈F

∑

i∈D

c(i, j)x̂ij ≤
(

3 +
1
nf

) (
a

∑

i∈D

αs
i + b

∑

i∈D

α�
i − z1k

)

=
(

3 +
1
nf

) (
∑

i∈D

αi − z1k

)
.

Let xI , yI be the solution for integer program (1) corresponding to the solution
I computed by algorithm ConvexCombination. The expected cost of this
solution is bounded in the following Lemma.

Lemma 11.

E[
∑

j∈F

∑

i∈D

c(i, j)xI
ij] ≤ (1 + max{a, b})

∑

j∈F

∑

i∈D

c(i, j)x̂ij ,

where x̂ is the fractional solution computed in step 3.

Proof. Consider a client i and the sets of facilities A, B, and B′ constructed by
the algorithm in steps 2 and 4. Let j1 ∈ A and j2 ∈ B be the centers that serve
i in solutions xs, ys and x�, y�, respectively. We consider two cases.

1. If j2 ∈ B′, then either j1 ∈ I or j2 ∈ I. Hence,

E[
∑

j∈F

c(i, j)xI
ij] = a c(i, j1) + b c(i, j2) =

∑

j∈F

c(i, j)x̂ij .

2. If j2 �∈ B′, then
– the probability that j2 ∈ I is b,
– the probability that j2 �∈ I and j1 ∈ I is a(1− b) = a2, and
– the probability that j1 �∈ I and j2 �∈ I is (1− a)(1− b) = ab.

Let j3 ∈ B′ be the facility that is paired to j1 in step 4 of the algorithm.
Then,

E[
∑

j∈F

c(i, j)xI
ij] ≤ b c(i, j2) + a2c(i, j1) + ab c(i, j3).

Since j3 is the center in B closest to j1, then c(j1, j3) ≤ c(j1, j2), and so
c(i, j3) ≤ c(i, j1) + c(j1, j3) ≤ c(i, j1) + c(j1, j2) ≤ 2c(i, j1) + c(i, j2). Using
this last inequality we get:

E[
∑

j∈F

c(i, j)xI
ij] ≤ (a2 + 2ab)c(i, j1) + (b + ab)c(i, j2)

= a(a + 2b)c(i, j1) + b(1 + a)c(i, j2)
= a(1 + b)c(i, j1) + b(1 + a)c(i, j2)
≤ (1 + max{a, b})(c(i, j1)a + c(i, j2)b)

= (1 + max{a, b})
∑

j∈F

c(i, j)x̂ij

Approximation Algorithms for the k-Median Problem 313

We are now ready to determine the performance ratio of the algorithm.

Theorem 7. There is a deterministic 6-approximation algorithm for the metric
k-median problem.

Proof. Since algorithm ConvexCombination can be easily de-randomized us-
ing the method of conditional expectations, we only need to show that the ex-
pected cost of the solution xI , yI is at most 6 times the cost of an optimum
solution for the k-median problem.

By the previous two lemmas, the cost of the solution xI , yI is at most (3 +
1

nf
)(1 + max{a, b}) times larger than the optimum. By using basic algebra we

can show that, a = k2−k
k2−k1

≤ nf−k
nf−(k−1) ≤ nf−1

nf
, and b = k−k1

k2−k1
≤ k−1

k . Then

1 + max{a, b} ≤ 1 + nf−1
nf

≤ 2 − 1
nf

. Therefore, the performance ratio of the

algorithm is
(
3 + 1

nf

)(
2− 1

nf

)
≤ 6.

Charikar and Guha [12] proposed a slight variation of the above algorithm,
and using a more complex analysis they were able to show that their algorithm
has a performance ratio of 4.

5 A Local Search Algorithm

Local search heuristics have not been widely used to design approximation al-
gorithms, mainly because of the difficulty of proving that a locally optimal so-
lution is within a certain factor of the globally optimal one. Hence, it is sur-
prising that a local search algorithm yields the best known performance ra-
tio for the metric k-median problem. In this section we describe the algorithm
of Arya et al. [5] which for any value ε > 0, achieves a performance ratio of
(3 + 2/p)/(1− εn2) ≤ 3 + 2/p + ε′ for ε′ = 10εn2, if ε ≤ 1 and n ≥ 2. This algo-
rithm repeatedly improves a solution by swapping p of the centers in the current
solution with p facilities not in the solution, where the value of the parameter p
is not larger than k.

Given a set S of at most k centers we define the cost of S, denoted as c(S), as
the total service costs of the clients, i.e. c(S) =

∑
d∈D c(d, S), where c(d, S) =

min{c(d, f) | f ∈ S} is the smallest cost of servicing d by one of the centers in
S. Let ε be a constant value and 0 < ε < 1. The algorithm of Arya et al. is the
following.

Algorithm LocalSearch (p, ε)

1. S� ← an arbitrary set of k centers
2. while there are sets T ⊆ F \ S� and T ′ ⊆ S� such that |T | = |T ′| ≤ p

and c((S� \ T ′) ∪ T) ≤ (1− ε)c(S�), do
S� ← (S� \ T ′) ∪ T

3. return S�.

Let S∗ be an optimum solution for the k-median problem. If p and ε are con-
stant values, a straightforward implementation of the algorithm checks in every

314 R. Solis-Oba

iteration of the while loop all subsets of F \S� and S� of size at most p. Since there
are O(np) subsets of F \S� (and of S�) of size at most p, and since the condition
c((S�\T ′)∪T) ≤ (1−ε)c(S�) can be easily tested in O(n) time, then each iteration
of the while loop can be implemented to run in O(n2p+1) time. In every iteration
of the while loop the value of the solution decreases by at least a factor of 1− ε,
and so the maximum number of iterations is log 1

1−ε

c(S0)
c(S∗) , where S0 is the initial

solution. Hence, the algorithm runs in time O(n2p+1 log(c(S0)/c(S∗))/ log(1
1−ε)).

Theorem 8. Algorithm LocalSearch has a performance ratio of (3 + 2/p)/
(1− ε).

In order to ensure that the above algorithm has polynomial running time, we
must guarantee that each iteration of the while loop decreases the value of the
current solution by at least a factor of 1 − ε. Therefore, the algorithm is not
guaranteed to find a locally optimal solution. To prove Theorem 8 we first need
to show some properties of the solution S� computed by the algorithm. For any
sets T ⊆ S� and T ′ ⊆ F \ S� such that |T | = |T ′| ≤ p,

c((S� \ T) ∪ T ′) > (1− ε)c(S�). (13)

Given a feasible solution S for the k-median problem, we denote the set of clients
serviced by some subset of centers A ⊆ S as NS(A). Given a center s ∈ S, the
set of clients served by s is denoted as NS(s).

Given a set of centers A ⊆ S�, we say that A captures a center o belonging to
the optimum solution S∗, if A serves at least half of the clients served by o, or
in other words, if |NS�(A) ∩NS∗(o)| ≥ |NS∗(o)|/2. We define capture(A) as the
set of centers o ∈ S∗ captured by A. For any two sets X, Y ⊆ S�, the following
properties hold.

Lemma 12. If X and Y are disjoint, then capture(X) and capture(Y) are dis-
joint. Furthermore, if X ⊆ Y then capture(X) ⊆ capture(Y).

Proof. To prove the first property we show that every center o ∈ S∗ can be
captured by at most one of the sets X, Y . If a center o ∈ S∗ is captured by, say,
X then more than half of the clients served by o in the optimum solution are
served by centers in X . Therefore, the centers in Y cannot capture o.

The second property is easy to show since every center o ∈ S∗ captured by X
has more than half of its clients served also by Y in S�.

We call a center s ∈ S� bad if it captures at least one center in S∗, and good
otherwise.

Lemma 13. The solutions S� and S∗ can be partitioned into sets A1, A2, . . . , Ar

and B1, B2, . . . , Br, respectively, where r− 1 is the number of bad centers in S�.
This partition is such that for all i = 1, . . . , r− 1, |Ai| = |Bi|, Bi =capture(Ai),
and Ai has one bad center. Furthermore, |Ar| = |Br| and Ar has only good
centers.

Approximation Algorithms for the k-Median Problem 315

)

j

iA

S*
ρo’=

π

π

s = i

S
ρ

/l jπ

j()

S
ρ

/l

jπ

j()

s’=

A(NS/l

)o’N (
S*

)(

Fig. 2. Service cost of client j after reassigning clients to centers

Proof. We prove the lemma by induction on the number of bad centers. The
basis is trivial because if the number of bad centers is 0 then we simply set
A1 = S� and B1 = S∗. For the induction step, let us assume that the partitions
exist when the number of bad centers in S� is b, b ≥ 0, and prove that such a
partition exists when the number of bad centers is b + 1. Choose a bad center
s ∈ S�, and set A1 = {s}. Note that capture(A1) ≥ 1. If |capture(A1)| > |A1|,
then repeatedly add good centers to A1 until the size of A1 is equal to the size
of capture(A1). We can always do this since every bad center in S� captures at
least one center in S∗ and, hence, if |capture(A1)| > |A1| there must be at least
one good center in S� \A1.

Set B1 ←capture(A1). To complete the proof, we note that by the induc-
tion hypothesis it is possible to partition S� \ A1 and S∗\capture(A1) into sets
A2, . . . , Ak+2 and B2, . . . , Bk+2 as described in the statement of the lemma. By
Lemma 12, the sets Bi are disjoint, so the sets Ai and Bi are partitions of S�

and S∗, respectively. Finally, since |S�| = |S∗|, then |Ar| = |Br|.
For each client j let ρS�(j) be the center that serves j in solution S� and let

ρS∗(j) be the center that serves j in S∗. Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let {A1, A2, . . . , Ar}, {B1, B2, . . . , Br} be partitions
of S� and S∗ as described above. To compute the performance ratio of the

316 R. Solis-Oba

algorithm, let us consider the following sets of swaps involving all the centers in
the optimum solution S∗.

i. For each set Ai such that |Ai| = |Bi| ≤ p, swap the centers in Ai with those
in Bi. By inequality (13) we know that

c((S� \Ai) ∪Bi) > (1− ε)c(S�).

We can bound the value of the left hand side of this inequality by reassigning
the clients served by S� to centers in (S� \ Ai) ∪ Bi as follows. All clients
in NS∗(Bi) are assigned to the centers in Bi. For all other clients that are
served by Ai we proceed as follows. Consider all clients j served by Ai that
are served in S∗ by some center o′ = ρS∗(i) �∈ Bi. Since o′ �∈ Bi, then Ai does
not capture o′ and, hence, |NS�(Ai) ∩NS∗(o′)| < 1

2 |NS∗(o′)|. Thus, for each
one of these clients j we can associate a unique client πj ∈ NS∗(o′)\NS�(Ai)
(see Figure 2). Let πj be served in S� by some center s′ = ρS�(πj) �∈ Ai.
Then, by the triangle inequality, reassigning client j to center s′ incurs a cost
at most c(ρS�(πj), j) ≤ c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j). Hence,

(1− ε)c(S�) < c((S� \Ai) ∪Bi)

≤
∑

j∈NS∗ (Bi)

c(ρS∗(j), j) +

∑

j∈N
S� (Ai)

j �∈NS∗ (Bi)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j)) +

∑

j∈D
j �∈NS∗ (Bi)∪N

S�(Ai)

c(ρS�(j), j)

≤
∑

j∈D

c(ρS�(j), j) +
∑

j∈NS∗(Bi)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

∑

j∈N
S� (Ai)

(c(ρS�(πj), πj) +

c(ρS∗(j), πj) + c(ρS∗(j), j)− c(ρS�(j), j)) (14)

ii. For each set Ai such that |Ai| = |Bi| = q > p, we first select a set of q − 1
good centers from Ai. Then, we swap every center o ∈ Bi with each one of
the q− 1 selected good centers s from Ai. Proceeding similarly as above, we
can show that

(1− ε)c(S�) < c((S� \ {s}) ∪ {o})
≤

∑

j∈D

c(ρS�(j), j) +
∑

j∈NS∗ (o)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

∑

j∈N
S� (s)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j))

Approximation Algorithms for the k-Median Problem 317

By adding all inequalities for a center o ∈ Bi, and then dividing the sum by
q − 1 we get

(1 − ε)c(S�) <
∑

j∈D

c(ρS�(j), j) +
∑

j∈NS∗(o)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

1
q − 1

∑

j∈N
S� (Ai)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j)) (15)

Next, we add the inequalities (15) for the q centers o ∈ Bi:

q(1− ε)c(S�) < q
∑

j∈D

c(ρS�(j), j) +
∑

j∈NS∗(Bi)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

q

q − 1

∑

j∈N
S� (Ai)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j) − c(ρS�(j), j)) (16)

Add the inequalities (14) and (16) for all sets Ai, Bi. Let r1 be the number of
pairs Ai, Bi for which |Ai| = |Bi| ≤ p. Since

⋃
Ai

NS�(Ai) =
⋃

Bi
NS∗(Bi) = D,

then by adding the inequalities we get

(r1 + q(r − r1))(1− ε)c(S�) < (r1 + q(r − r1))
∑

j∈D

c(ρS�(j), j) +

∑

j∈D

(c(ρS∗(j), j) − c(ρS�(j), j)) +

q

q − 1

∑

j∈D

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j)) (17)

Because of the way in which the mapping π has been defined, it is not hard to
see that

∑

j∈D

(c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j)− c(ρS�(j), j)) ≤ 2c(S∗).

By using this last inequality in (17), we get

(r1 + q(r − r1))(1− ε)c(S�) < (r1 + q(r − r1))c(S�) +

(c(S∗)− c(S�)) +
q

q − 1
(2c(S∗))

≤
(

3 +
2
p

)
c(S∗) + (r1 + q(r − r1)− 1)c(S�)

318 R. Solis-Oba

The last inequality follows from q/(q− 1) ≤ (p+1)/p. Since r1 + q(r− r1) < n2,
then

(1 − εn2)c(S�) < (1− ε(r1 + q(r − r1)))c(S�) <

(
3 +

2
p

)
c(S∗).

Thus, c(S�) ≤ (3 + 2
p)/(1 − εn2)c(S∗).
�

Acknowledgements

I kindly thank the anonymous referees for their very accurate and insightful
comments.

References

1. A. Archer, R. Rajagopalan, and D. Shmoys, Lagrangian relaxation for the k-median
problem: new insights and continuity properties, Proceedings of the 11th Annual
European Symposium on Algorithms, 2003, LNCS 2832, pp. 31–42.

2. S. Ahn, A. Cooper, G. Cornuejols, and A. Frieze, Probabilistic analysis of a re-
laxation for the k-median problem, Mathematics of Operations Research, 13, 1988,
pp. 1–31.

3. M. Andrews and L. Zhang, The access network design problem, Proceedings of
the 39th Annual IEEE Symposium on Foundations of Computer Science, 1998,
pp.40–59.

4. S. Arora, P. Raghavan, and S. Rao, Approximation schemes for Euclidean k-
medians and related problems, Proceedings of the 30th Annual ACM Symposium
on Theory of Computing, 1998, pp. 106–113.

5. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit,
Local search heuristics for k-median and facility location problems, Proceedings of
the ACM Symposium on Theory of Computing, 2001, pp. 21–29.

6. M.L. Balinski, On finding integer solutions to linear programs, Proceedings of the
IBM Scientific Computing Symposium on Combinatorial Problems, 1966, pp. 225-
248.

7. Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic ap-
plications, Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science. 1996, pp. 184–193.

8. Y. Bartal, On approximating arbitrary metrics by tree metrics, Proceedings of the
30th Annual ACM Symposium on Theory of Computing, 1998, pp. 161–168.

9. P.S. Bradley, U.M. Fayad, and O.L. Mangasarian, Mathematical programming for
data mining: formulations and challenges, Microsoft Technical Report, 1998.

10. A.F. Bumb and W. Kern, A simple dual ascent algorithm for the multilevel facility
location problem, Proceedings of RANDOM-APPROX, 2001, pp. 55-62.

11. M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: deterministic
approximation algorithms for group Steiner trees and k-median, Proceedings of the
30th Annual ACM Symposium on Theory of Computing, 1998, pp. 114–123.

12. M. Charikar and S. Guha, Improved combinatorial algorithms for the facility loca-
tion and k-median problems, Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, 1999, pp. 378–388.

Approximation Algorithms for the k-Median Problem 319

13. M. Charikar, S. Guha, E. Tardos, and D.B. Shmoys, A constant-factor approxima-
tion algorithm for the k-median problem, Proceedings of the Thirty-First Sympo-
sium on Theory of Computing, 1999, pp. 1–10.

14. J. Cheriyan and R. Ravi, Approximation algorithms for network problems, Lecture
Notes, University of Waterloo, 1998.

15. F. Chudak and D. Williamson, Improved approximation algorithms for capacitated
facility location problems, Proceedings of the 7th Conference on Integer Program-
ming and Combinatorial Optimization, 1999.

16. V. Chvátal, A greedy heuristic for the set covering problem, Mathematics of Op-
erations Research, 4, 1979, pp. 233–235.

17. V. Chvátal, Linear Programming, W.H. Freeman and Company, 1983.

18. G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey, The uncapacitated facility lo-
cation problem, in P. Mirchandani and R. Francis, eds. Discrete Location Theory,
John Wiley and Sons, New York, 1990.

19. S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and network
design problems, Proceedings of the 14th Annual IEEE Symposium on Foundations
of Computer Science, 2000.

20. S. Guha, A. Meyerson, and K. Munagala, Improved combinatorial algorithms for
single sink edge installation problems, Technical Report STAN-CS-TN00-96, Stan-
ford University, 2000.

21. S. Guha, A. Meyerson, and K. Munagala, Improved algorithms for fault tolerant fa-
cility location, Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
2001, pp. 636–641.

22. S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, On the placement of
internet instrumentations, Proceedings of IEEE INFOCOM, 2000, pp. 26–30.

23. K. Jain and V.V. Vazirani, Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation,
Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
1999. Also, Journal of the ACM, 48, 2001, pp. 274–296.

24. D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of
Computer and System Sciences, 9, 1974, pp. 256–278.

25. O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems,
Part II: p-medians, SIAM Journal on Applied Mathematics, 1979, pp. 539–560.

26. O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems.
II: The p-medians, SIAM Journal on Applied Mathematics, 1979, pp. 539–560.

27. L. Khachiyan, A polynomial algorithm for linear programming, Doklady Akad.
Nauk USSR, 244 (5), 1979, pp. 1093–1096.

28. S. Khuller, R. Pless, and Y.J. Sussman, Fault tolerant k-center problems, Theoret-
ical Computer Science, 242, 2000, pp. 237–245.

29. A.A. Kuehn and M.J. Hamburger, A heuristic program for locating warehouses,
Management Science, 9, 1963, pp. 643–666.

30. M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search
heuristic for facility location problems, Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998, pp. 1-10. Also in Journal of Algorithms
37, 2000, pp. 146-188.

31. P. Krysta and R. Solis-Oba, Approximation algorithms for bounded facility loca-
tion, Journal of Combinatorial Optimization, 5, 2001, pp. 2–16.

32. B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, On the optimal placement of
web proxies in the internet, Proceedings of IEEE INFOCOM 1999, pp. 1282–1290.

320 R. Solis-Oba

33. J. Lin and J.S. Vitter, ε-Approximations with minimum packing constraint viola-
tion, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
1992, pp. 771–782.

34. J. Lin and J.S. Vitter, Approximation algorithms for geometric median problems,
Information Processing Letters, 44, 1992, pp. 245–249.

35. L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathe-
matics, 13, 1975, pp. 383–390.

36. N. Megiddo and K.J. Supowit, On the complexity of some common geometric
location problems, SIAM Journal on Computing, 13, 1984, pp. 182–196.

37. M. Mahdian and M. Pál, Universal facility location, Proceedings of the 11th Annual
European Symposium on Algorithms, 2003, LNCS 2832, pp. 409–421.

38. M. Mahdian, Y. Ye, and J. Zhang, Improved approximation algorithms for met-
ric facility location problems, Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization, 2001, LNCS 2462, pp.
229–242.

39. R. R. Mettu and C. G. Plaxton, The online median problem, SIAM Journal on
Computing, 32, 2003, pp. 816-832.

40. J.M. Mulvey and H.L. Crowder, Cluster Analysis: an application of Lagrangian
relaxation, Management Science, 25, 1979, pp. 329–340.

41. K. Murty, Linear Programming, John Wiley & Sons, 1983.
42. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John

Wiley and Sons, New York, 1990.
43. C.H. Papadimitriou, Worst case and probabilistic analysis of a geometric location

problem, SIAM Journal on Computing, 10 (3), 1981, pp. 542–557.
44. L. Qiu, V.N. Padmanabhan, and G. Voelker, On the placement of web server

replicas, Proceedings of IEEE INFOCOM, 2001.
45. R.Raz and S. Safra, A sub-constant error-probability low-degree test, and sub-

constant error-probability PCP characterization of NP, Proceedings of the 29th
Annual ACM Symposium on Theory of Computing,1997, pp. 475–484.

46. A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1986.
47. A. Tamir, An O(pn2) algorithm for the p-median and related problems on tree

graphs, Operations Research Letters, 19, 1996, pp. 59–94.
48. Y. Ye, An O(n3L) potential reduction algorithm for linear programming, Mathe-

matical Programming, 50, 1991, 239–258.
49. J. Zhang, Approximating the two-level facility location problem via a quasi-greedy

approach, Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2004, 801-810.

	Introduction
	Hardness of the k-Median Problem
	Linear Programming Based Algorithms
	Integer Program Formulation
	Filtering
	An Algorithm with Constant Performance Ratio
	Analysis

	A Primal-Dual Algorithm
	The Uncapacitated Facility Location Problem
	Performance Ratio
	Running Time
	Algorithm for the k-Median Problem

	A Local Search Algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

