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Preface

In this book, we present some recent advances in the field of combinatorial
optimization focusing on the design of efficient approximation and on-line al-
gorithms. Combinatorial optimization and polynomial time approximation are
very closely related: given an NP-hard combinatorial optimization problem, i.e.,
a problem for which no polynomial time algorithm exists unless P = NP , one
important approach used by computer scientists is to consider polynomial time
algorithms that do not produce optimum solutions, but solutions that are prov-
ably close to the optimum. A natural partition of combinatorial optimization
problems into two classes is then of both practical and theoretical interest: the
problems that are fully approximable, i.e., those for which there is an approxima-
tion algorithm that can approach the optimum with any arbitrary precision in
terms of relative error and the problems that are partly approximable, i.e., those
for which it is possible to approach the optimum only until a fixed factor unless
P = NP . For some of these problems, especially those that are motivated by
practical applications, the input may not be completely known in advance, but
revealed during time. In this case, known as the on-line case, the goal is to design
algorithms that are able to produce solutions that are close to the best possible
solution that can be produced by any off-line algorithm, i.e., an algorithm that
knows the input in advance.

These issues have been treated in some recent texts 1, but in the last few years
a huge amount of new results have been produced in the area of approximation
and on-line algorithms. This book is devoted to the study of some classical prob-
lems of scheduling, of packing, and of graph theory, but also new optimization
problems arising in various applications such as networks, data mining or clas-
sification. One central idea in the book is to use a linear program relaxation of
the problem, randomization and rounding techniques.

The book is divided into 11 chapters. The chapters are self-contained and
may be read in any order.

In Chap. 1, the goal is the introduction of a theoretical framework for deal-
ing with data mining applications. Some of the most studied problems in this
area as well as algorithmic tools are presented. Chap. 2 presents a survey con-
cerning local search and approximation. Local search has been widely used in
the core of many heuristic algorithms and produces excellent practical results
for many combinatorial optimization problems. The objective here is to com-

1 V. Vazirani, Approximation Algorithms, Springer Verlag, Berlin, 2001; G. Ausiello et
al, Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability, Springer Verlag, 1999; D. S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, PWS Publishing Company, 1997; A. Borodin,
R. El-Yaniv, On-line Computation and Competitive Analysis, Cambridge University
Press, 1998, A. Fiat and G. J. Woeginger, editors, Online Algorithms: The State of
the Art, LNCS 1442. Springer-Verlag, Berlin, 1998.
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pare from a theoretical point of view the quality of local optimum solutions
with respect to a global optimum solution using the notion of the approxima-
tion factor and to review the most important results in this direction. Chap. 3
surveys the wavelength routing problem in the case where the underlying op-
tical network is a tree. The goal is to establish the requested communication
connections but using the smallest total number of wavelengths. In the case of
trees this problem is reduced to the problem of finding a set of transmitter-
receiver paths and assigning a wavelength to each path so that no two paths of
the same wavelength share the same fiber link. Approximation and on-line algo-
rithms, as well as hardness results and lower bound, are presented. In Chap. 4,
a call admission control problem is considered in which the objective is the max-
imization of the number of accepted communication requests. This problem is
formalized as an edge-disjoint-path problem in (non)-oriented graphs and the
most important (non)-approximability results, for arbitrary graphs, as well as
for some particular graph classes, are presented. Furthermore, combinatorial and
linear programming algorithms are reviewed for a generalization of the problem,
the unsplittable flow problem. Chap. 5 is focused on a special class of graphs,
the intersection graphs of disks. Approximation and on-line algorithms are pre-
sented for the maximum independent set and coloring problems in this class. In
Chap. 6, a general technique for solving min-max and max-min resource sharing
problems is presented and it is applied to two applications: scheduling unrelated
machines and strip packing. In Chap. 7, a simple analysis is proposed for the
on-line problem of scheduling preemptively a set of tasks in a multiprocessor
setting in order to minimize the flow time (total time of the tasks in the sys-
tem). In Chap. 8, approximation results are presented for a general classification
problem, the labeling problem which arises in several contexts and aims to clas-
sify related objects by assigning to each of them one label. In Chap. 9, a very
efficient tool for designing approximation algorithms for scheduling problems is
presented, the list scheduling in order of α-points, and it is illustrated for the
single machine problem where the objective function is the sum of weighted
completion times. Chap. 10 is devoted to the study of one classical optimization
problem, the k-median problem from the approximation point of view. The main
algorithmic approaches existing in the literature as well as the hardness results
are presented. Chap. 11 focuses on a powerful tool for the analysis of random-
ized approximation algorithms, the Lovász-Local-Lemma which is illustrated
in two applications: the job shop scheduling problem and resource-constrained
scheduling.

We take the opportunity to thank all the authors and the reviewers for their
important contribution to this book. We gratefully acknowledge the support
from the EU Thematic Network APPOL I+II (Approximation and Online Al-
gorithms). We also thank Ute Iaquinto and Parvaneh Karimi Massouleh from
the University of Kiel for their help.

September 2005 Evripidis Bampis, Klaus Jansen, and Claire Kenyon
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On Approximation Algorithms for Data
Mining Applications

Foto N. Afrati

National Technical University of Athens, Greece

Abstract. We aim to present current trends in the theoretical computer
science research on topics which have applications in data mining. We
briefly describe data mining tasks in various application contexts. We
give an overview of some of the questions and algorithmic issues that are
of concern when mining huge amounts of data that do not fit in main
memory.

1 Introduction

Data mining is about extracting useful information from massive data such as
finding frequently occurring patterns or finding similar regions or clustering the
data. The advent of the internet has added new applications and challenges to
this area. From the algorithmic point of view mining algorithms seek to compute
good approximate solutions to the problem at hand. As a consequence of the
huge size of the input, algorithms are usually restricted to making only a few
passes over the data, and they have limitations on the random access memory
they use and the time spent per data item.

The input in a data mining task can be viewed, in most cases, as a two di-
mensional m × n 0,1-matrix which often is sparse. This matrix may represent
several objects such as a collection of documents (each row is a document and
each column is a word and there is a 1 entry if the word appears in this doc-
ument), or a collection of retail records (each row is a transaction record and
each column represents an item, there is a 1 entry if the item was bought in
this transaction), or both rows and columns are sites on the web and there is a
1 entry if there is a link from the one site to the other. In the latter case, the
matrix is often viewed as a graph too. Sometimes the matrix can be viewed as a
sequence of vectors (its rows) or even a sequence of vectors with integer values
(not only 0,1).

The performance of a data mining algorithm is measured in terms of the
number of passes, the required work space in main memory and computation
time per data item. A constant number of passes is acceptable but one pass al-
gorithms are mostly sought for. The workspace available ideally is constant but
sublinear space algorithms are also considered. The quality of the output is usu-
ally measured using conventional approximation ratio measures [97], although
in some problems the notion of approximation and the manner of evaluating the
results remain to be further investigated.

E. Bampis et al. (Eds.): Approximation and Online Algorithms, LNCS 3484, pp. 1–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 F.N. Afrati

These performance constraints call for designing novel techniques and novel
computational paradigms. Since the amount of data far exceeds the amount
of workspace available to the algorithm, it is not possible for the algorithm
to “remember” large amounts of past data. A recent approach is to create a
summary of the past data to store in main memory, leaving also enough memory
for the processing of the future data. Using a random sample of the data is also
another popular technique.

Besides data mining, other applications can be also modeled as one pass
problems such as the interface between the storage manager and the application
layer of a database system or processing data that are brought to desktop from
networks, where each pass essentially is another expensive access to the network.
Several communities have contributed (with technical tools and methods as well
as by solving similar problems) to the evolving of the data mining field, including
statistics, machine learning and databases.

Many single pass algorithms have been developed recently and also techniques
and tools that facilitate them. We will review some of them here. In the first
part of this chapter (next two sections), we review formalisms and technical
tools used to find solutions to problems in this area. In the rest of the chapter
we briefly discuss recent research in association rules, clustering and web mining.
An association rule relates two columns of the entry matrix (e.g., if the i-th entry
of a row v is 1 then most probably the j-th entry of v is also 1). Clustering the
rows of the matrix according to various similarity criteria in a single pass is
a new challenge which traditional clustering algorithms did not have. In web
mining, one problem of interest in search engines is to rank the pages of the
web according to their importance on a topic. Citation importance is taken by
popular search engines according to which important pages are assumed to be
those that are linked by other important pages.

In more detail the rest of the chapter is organized as follows. The next section
contains formal techniques used for single pass algorithms and a formalism for the
data stream model. Section 3 contains an algorithm with performance guarantees
for finding approximately the Lp distance between two data streams. As an
example, Section 4 contains a list of what are considered the main data mining
tasks and another list with applications of these tasks. The last three sections
discuss recent algorithms developed for finding association rules, clustering a set
of data items and for searching the web for useful information. In these three
sections, techniques mentioned in the beginning of the chapter are used (such as
SVD, sampling) to solve the specific problems. Naturally some of the techniques
are common, such as, for example, spectral methods are used in both clustering
and web mining. As the area is rapidly evolving this chapter serves as a brief
introduction to the most popular technical tools and applications.

2 Formal Techniques and Tools

In this section we present some theoretical results and formalisms that are often
used in developing algorithms for data mining applications. In this context, the
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singular value decomposition (SVD) of a matrix (subsection 2.1) has inspired web
search techniques, and, as a dimensionality reduction technique, is used for find-
ing similarities among documents or clustering documents (known as the latent
semantic indexing technique for document analysis). Random projections (subsec-
tion 2.1) offer another means for dimensionality reduction explored in recent work.
Data streams (subsection 2.2) is proposed for modeling limited pass algorithms; in
this subsection some discussion is done on lower and upper bounds on the required
workspace. Sampling techniques (subsection 2.3) have also been used in statistics
and learning theory, under somewhat different perspective however. Storing a sam-
ple of the data that fits in main memory and running a “conventional” algorithm
on this sample is often used as the first stage of various data mining algorithms. We
present a computational model for probabilistic sampling algorithms that compute
approximate solutions. This model is based on the decision tree model [27] and re-
lates the query complexity to the size of the sample.

We start by providing some (mostly) textbook definitions for self contain-
ment purposes. In data mining we are interested in vectors and their relation-
ships under several distance measures. For two vectors, �v = (v1, . . . , vn), �u =
(u1, . . . , un), the dot product or inner product is defined to be a number which is
equal to the sum of the component-wise products �v · �u = v1u1 + . . .+ vnun and
the Lp distance (or Lp norm) is defined to be: ||�v−�u||p = (Σn

i=1|vi−ui|p)1/p. For
p =∞, L∞ distance is equal to maxn

i=1 |ui− vi|. The Lp distance is extended to
be defined between matrices : ||�V − �U ||p = (Σi(Σj |Vij−Uij |p))1/p. We sometimes
use || || to denote || ||2. The cosine distance is defined to be 1 − �v·�u

||�v|| ||�u|| . For
sparse matrices the cosine distance is a suitable similarity measure as the dot
product deals only with non-zero entries (which are the entries that contain the
information) and then it is normalized over the lengths of the vectors.

Some results are based on stable distributions [85]. A distribution D over the
reals is called p-stable if for any n real numbers a1, . . . , an and independent
identically distributed, with distribution D, variables X1, . . . , Xn, the random
variable ΣiaiXi has the same distribution as the variable (Σi|ai|p)1/pX , where
X is a random variable with the same distribution as the variables X1, . . . , Xn.
It is known that stable distributions exist for any p ∈ (0, 2]. A Cauchy distri-
bution defined by the density function 1

π(1+x2) , is 1-stable, a Gaussian (normal)

distribution defined by the density function 1√
2π
e−x2/2, is 2-stable.

A randomized algorithm [81] is an algorithm that flips coins, i.e., it uses ran-
dom bits, while no probabilistic assumption is made on the distribution of the
input. A randomized algorithm is called Las-Vegas if it gives the correct answer
on all inputs. Its running time or workspace could be a random variable depend-
ing on the random variable of the coin tosses. A randomized algorithm is called
Monte-Carlo with error probability ε if on every input it gives the right answer
with probability at least 1− ε.

2.1 Dimensionality Reduction

Given a set S of points in the multidimensional space, dimensionality reduction
techniques are used to map S to a set S′ of points in a space of much smaller di-
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mensionality while approximately preserving important properties of the points
in S. Usually we want to preserve distances. Dimensionality reduction techniques
can be useful in many problems where distance computations and comparisons
are needed. In high dimensions distance computations are very slow and more-
over it is known that, in this case, the distance between almost all pairs of points
is the same with high probability and almost all pair of points are orthogonal
(known as the Curse of Dimensionality).

Dimensionality reduction techniques that are popular recently include Ran-
dom Projections and Singular Value Decomposition (SVD). Other dimensional-
ity reduction techniques use linear transformations such as the Discrete Cosine
transform or Haar Wavelet coefficients or the Discrete Fourier Transform (DFT).
DFT is a heuristic which is based on the observation that, for many sequences,
most of the energy of the signal is concentrated in the first few components of
DFT. The L2 distance is preserved exactly under the DFT and its implementa-
tion is also practically efficient due to an O(nlogn) DFT algorithm.

Dimensionality reduction techniques are well explored in databases [51,43].

Random Projections. Random Projection techniques are based on the
Johnson-Lindenstrauss (JL) lemma [67] which states that any set of n points
can be embedded into the k-dimensional space with k = O(log n/ε2) so that the
distances are preserved within a factor of ε.

Lemma 1. (JL) Let �v1, . . . , �vm be a sequence of points in the d-dimensional
space over the reals and let ε, F ∈ (0, 1]. Then there exists a linear mapping f
from the points of the d-dimensional space into the points of the k-dimensional
space where k = O(log(1/F )/ε2) such that the number of vectors which ap-
proximately preserve their length is at least (1 − F )m. We say that a vector �vi

approximately preserves its length if:

||�vi||2 ≤ ||f(�vi)||2 ≤ (1 + ε)||�vi||2

The proof of the lemma, however, is non-constructive: it shows that a random
mapping induces small distortions with high probability. Several versions of the
proof exist in the literature. We sketch the proof from [65]. Since the mapping
is linear, we can assume without loss of generality that the �vi’s are unit vectors.
The linear mapping f is given by a k×d matrix �A and f(�vi) = �A�vi, i = 1, . . . ,m.
By choosing the matrix �A at random such that each of its coordinates is chosen
independently from N(0, 1), then each coordinate of f(�vi) is also distributed
according to N(0, 1) (this is a consequence of the spherical symmetry of the
normal distribution). Therefore, for any vector �v, for each j = 1, . . . , k/2, the
sum of squares of consecutive coordinates Yj = ||f(�v)2j−1||2 + ||f(�v)2j ||2 has
exponential distribution with exponent 1/2. The expectation of L = ||f(�v)||2 is
equal to ΣjE[Yj ] = k. It can be shown that the value of L lies within ε of its
mean with probability 1−F . Thus the expected number of vectors whose length
is approximately preserved is (1− F )m.

The JL lemma has been proven useful in improving substantially many ap-
proximation algorithms (e.g., [65,17]). Recently in [40], a deterministic algorithm
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is presented which finds such mapping in time almost linear in the number of
distances to preserve times the dimension d of the original space.

In recent work, random projections are used to compute summaries of past
data called sketches to solve problems such as approximating the Lp norm of a
data stream (see also section 3).

Singular Value Decomposition. Consider matrices with real numbers as
entries. We say that a matrix �M is orthogonal if �M �MTr = �I where �I is the
identity matrix (by �ATr we denote the transpose of matrix �A). An eigenvalue
of a n× n matrix �M is a number λ such that there is a vector �t which satisfies
�M�t = λ�t. Such a vector �t is called an eigenvector associated with λ. The set
of all eigenvectors associated with λ form a subspace and the dimension of this
subspace is called the multiplicity of λ. If �M is a symmetric matrix, then the
multiplicities of all eigenvalues sum up to n. Let us denote all the eigenvalues
of such a matrix �M by λ1( �M), λ2( �M), . . . λn( �M), where we have listed each
eigenvalue a number of times equal to its multiplicity. For symmetric matrix �M ,
we can choose for each λi( �M) an associated eigenvector �ti( �M) such that the set
of vectors {�ti( �M)} forms an orthonormal basis for the n-dimensional space over
the real numbers. Let �Q be the matrix with columns these vectors and let Λ be
the diagonal matrix with diagonal entries the list of eigenvalues. Then, it is easy
to prove that: �M = �QΛ�QTr. However the result extends to any matrix as the
following theorem states.

Theorem 1. (Singular Value Decomposition/SVD) Every m× n matrix �A can
be written as �A = �U �T �V Tr where �U and �V are orthogonal and �T is diagonal.

The diagonal entries of �T are called the singular values of �A. It is easy to
verify that the columns of �U and �V represent the eigenvectors of �A �ATr and
�ATr �A respectively and the diagonal entries of �T 2 represent their common set of
eigenvalues. The importance of the SVD in dimensionality reduction lies in the
following theorem which states that �U, �T , �V can be used to compute, for any
k, the matrix Ak of rank k which is “closest” to �A over all matrices of rank k.

Theorem 2. Let the SVD of �A be given by �A = �U �T �V Tr. Suppose τ1, . . . , τk are
the k largest singular values. Let �ui be the i-th column of �U and �vi be the i-th
column of �V and let τi be the i-th element in the diagonal of �T . Let r be the rank
of �A and let k < r. If

�Ak = Σk
i=1τi�ui�v

Tr
i

Then

min
rank(�B)=k

|| �A− �B||2 = || �A− �Ak||2 = τk+1

The SVD technique displays optimal dimensionality reduction (for linear pro-
jections) but it is hard to compute.
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2.2 The Data Stream Computation Model

The streaming model is developed to formalize a single (or few) pass(es) algo-
rithm over massive data that do not fit in main memory. In this model, the data
is observed once (or few times) and in the same order it is generated. For each
data item, we want to minimize the required workspace and the time to process
it.

In the interesting work of [61] where the stream model was formalized, a data
stream is defined as a sequence of data items v1, v2, . . . , vn which are assumed
to be read by an algorithm only once (or very few times) in increasing order of
the indices i. The number P of passes over the data stream and the workspace
W (in bits) required by the algorithm in the main memory are measured. The
performance of an algorithm is measured by the number of passes the algorithm
makes over the data and the required workspace, along with other measures such
as the computation time per input data item. This model does not necessarily
require a bound on the computation time.

Tools from communication complexity are used to show lower bounds on the
workspace of limited-pass algorithms [8],[61]. Communication complexity [79] is
defined as follows. In the (2-party) communication model there are two players A
and B. Player A is given a x from a finite set X and player B is given a y from a
finite set Y . They want to compute a function f(x, y). As player A does not know
y and player B does not know x, they need to communicate. They use a protocol
to exchange bits. The communication complexity of a function f is the minimum
over all communication protocols of the maximum over all x ∈ X, y ∈ Y of the
number of bits that need to be exchanged to compute f(x, y). The protocol can
be deterministic, Las-Vegas or Monte-Carlo. If one player is only transmitting
and one is only receiving then it is called one-way communication complexity. In
this case, only the receiver needs to be able to compute function f .

To see how communication complexity is related to deriving lower bounds on
the space, think of one way communication where player A has the information
of the past data and player B has the information of the future data. The
communication complexity can be used as a lower bound on the space available
to store a “summary” of the past data.

It is natural to ask whether under the stream model there are noticeable
differences regarding the workspace requirements (i) between one-pass and multi-
pass algorithms, (ii) between deterministic and randomized algorithms and (iii)
between exact and approximation algorithms. These questions were explored in
earlier work [82] in context similar to data streams and it was shown that: (i)
Some problems require a large space in one pass and a small space in two passes.
(ii) There can be an exponential gap in space bounds between Monte-Carlo and
Las-Vegas algorithms. (iii) For some problems, an algorithm for an approximate
solution, requires substantially less space than an exact solution algorithm.

In [8], space complexity for estimating the frequency moments of a sequence
of elements in one pass was studied and tight lower bounds were derived. The
problem studied in [82] is the space required for selecting the k-th largest out of
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n elements using at most P passes over the data. An upper bound of n1/P logn
and a lower bound of n1/P is shown, for large enough k. Recent work on space
lower bounds includes also [90].

The data stream model appears to be related to other work e.g., on competi-
tive analysis [69], or I/O efficient algorithms [98]. However, it is more restricted
in that it requires that a data item can never again be retrieved in main mem-
ory after its first pass (if it is a one-pass algorithm). A distributed stream model
is also proposed in [53] which combines features of both streaming models and
communication complexity models.

Streaming models have been extensively studied recently and methods have
been developed for comparing data streams under various Lp distances, or clus-
tering them. The stream model from the database perspective is investigated in
the Stanford stream data management Project [93] (see [11] for an overview and
algorithmic considerations).

2.3 Sampling

Randomly sampling a few data items of a large data input is often a technique
used to extract useful information about the data. A small sample of the data
may be sufficient to compute many statistical parameters of the data with rea-
sonable accuracy. Tail inequalities from probability theory and the central limit
theorem are useful here [81,47].

One of the basic problems in this context is to computes the size of the sample
required to determine certain statistical parameters. In many settings, the size
of the sample for estimating the number of distinct values in a data set is of
interest. The following proposition [86] gives a lower bound on the size of the
sample in such a case whenever we know the number of distinct values and each
has a frequency greater than ε.

Proposition 1. If a dataset D contains l ≥ k distinct values of frequency at
least ε, then a sample of size s ≥ 1

ε log k
δ contains at least k distinct values with

probability > 1− δ.

To prove, let a1, . . . , al be the l distinct values of frequencies p1, . . . , pl respec-
tively and, each frequency is at least ε. Then the probability our sample missed
k of these distinct values is at most Σk

i=1(1− pi)s ≤ k(1− ε)s ≤ δ by our choice
of s.

In a similar context, random sampling from a dataset whose size is unknown, is
of interest in many applications. The problem is to select a random sample of size
n from a dataset of size N when N is unknown. A one-pass reservoir algorithm
is developed in [99]. A reservoir algorithm maintains a sample (reservoir) of
data items in main memory and data items may be selected for the reservoir as
they are processed. The final random sample will be selected from the sample
maintained in the reservoir (hence the size of the sample in the reservoir is larger
than n). In [99] each data item is selected with probability M/n where n is the
number of data items read so far and M is the size of the reservoir.
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An algorithm that uses a sample of the input is formalized in [14] as a uniform
randomized decision tree. This formalism is used to derive lower bounds on
the required size of the sample. A randomized decision tree has two kinds of
internal nodes, query nodes and random coin toss nodes. Leaves are related to
output values. On an input x1, . . . , xn, the computation of the output is done by
following a path from the root to a leaf. On each internal node a decision is made
as to which of its children the computation path moves next. In a random coin
toss node this decision is based on a coin toss which picks one of the children
uniformly at random. A query node v has two labels, an input location (to be
queried), and a function which maps a sequence of query locations (the sequence
is thought of as the input values queried so far along the path from the root)
to one of the children of this node v. The child to which the path moves next is
specified by the value of this function. Each leaf is labeled by a function which
maps the sequence of query locations read along the path to an output value.
The output is the value given by the function on the leaf which is the end point
of the computation path. Note that any input x1, . . . , xn may be associated
with several possible paths leading from the root to a leaf, depending on the
random choices made in the random coin nodes. These random choices induce a
distribution over the paths corresponding to x1, . . . , xn.

A uniform randomized decision tree is defined as a randomized decision tree
with the difference that each query node is not labeled by an input variable.
The query in this case is done uniformly at random over the set of input values
that have not been queried so far along the path from the root. A uniform
decision tree can be thought as a sampling algorithm which samples the input
uniformally at random and uses only these sample values to decide the output.
Thus the number of query nodes along a path from the root to a leaf is related
to the size of the sample.

The expected query complexity of a decision tree T on input �x = x1, . . . , xn

denoted Se(T, �x), is the expected number of query nodes on paths corresponding
to �x. The worst case query complexity of a tree T on input �x, denoted Sw(T, �x),
is the maximum number of query nodes on paths corresponding to �x. Here
the expectation and the maximum are taken over the distribution of paths.
The expected and worst case query complexity of T Se(T ) and Sw(T ) are the
maximum of Se(T, �x) and Sw(T, �x), respectively, over all inputs �x in An.

Because of the relation between query complexity and the size of the required
sample, a relationship can also be obtained between query complexity and space
complexity as defined in the data stream model. Let ε ≥ 0 be an error parameter,
δ (0 < δ < 1) a confidence parameter, and f a function. A decision tree is said to
(ε, δ)-approximate f if for every input �x the probability of paths corresponding
to �x that output a values y within a factor of ε from the exact solution is at least
1− δ. The (ε, δ) expected query complexity of f is:

Se
ε,δ(f) = min{Se(T ) | T (ε, δ)− approximates f}

The worst case query complexity of a function f is defined similarly.
The (ε, δ) query complexity of a function f can be directly related to the space

complexity as defined on data streams. If a function has (ε, δ) query complexity
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Se
ε,δ(f), then the space required in main memory is at most Sw

ε,δ(f)O(log |A| +
logn), where A, n are parameters of the input vector �x. For input vector �x =
x1, . . . , xn, n is the number of data items and A is the number of elements from
which the values of each xi is drawn.

Based on this formalization, a lower bound is obtained on the number of
samples required to distinguish between two distributions [14]. It it also shown
that the k-th statistical moment can be approximated within an additive error
of ε by using a random sample of size O(1/ε2 log 1

δ ), and that this is a lower
bound on the size of the sample.

Work that also refer to lower bounds on query complexity for approximate
solutions include results on the approximation of the mean [28], [36,91], the
approximation on the frequency moment [31].

Lossy compression may be related to sampling. When we have files in com-
pressed form, we might want to compute functions of the uncompressed file
without having to decompress. Compressed files might even been thought of
as not been able to be precisely retrieved by decompression, namely the com-
pression (in order to gain larger compression factors) allowed for some loss of
information (lossy compression). Problems of this nature are related to sampling
algorithms in [46].

Statistical decision theory and statistical learning theory are fields where sam-
pling methods are used too. However they focus on different issues than data
mining does. Statistical decision theory [16] studies the process of making deci-
sions based on information gained by computing various parameters of a sample.
However the sample is assumed given and methods are developed that maximize
the utitily of it. Computing the required size of a sample for approximately
computing parameters of the input data is not one of its concerns. Statistical
learning theory [96,70] is concerned with learning an unknown function from
a class of target functions, i.e., approximating the function rather, whereas, in
data mining, the interest is in approximating some parameter of the function.

For an excellent overview on key research results and formal techniques on
data stream algorithms see the tutorial in [51] and references therein. Also an
excellent survey on low distortion embedding techniques for dimensionality re-
duction can be found in [63].

3 Approximating the Lp Distance. Sketches

We consider in this section the following problem which may be part of various
data mining tasks. The data stream model is assumed and we want to compute
an approximation to the Lp distance. Formally, we are given a stream S of data
items. Each data item is viewed as a pair (i, v), i = 1, . . . , n, with entries for
v an integer in the range {−M,M} where M is a positive integer (so we need
logM memory to store the value of each data item). Note that there may exist
several pairs (with possibly different values for v) for a specific i. We want to
compute a good approximation of the following quantity:

Lp(S) = (Σi=1,...,n|Σ(i,v)∈Sv|p)1/p
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The obvious solution to this problem, i.e., maintain a counter for each i is
too costly because of the size of the data. In the influential paper [8], a scheme
is proposed for approximating L2(S) within a factor of ε in workspace O(1/ε)
with arbitrarily large constant probability.

In [46], a solution for L1(S) is investigated for the special case where there
are at most two non zero entries for each i. In this case, the problem can be
equivalently viewed as having two streams Sa and Sb and asking for a good ap-
proximation of L1(Sa, Sb) = Σi|Σ(i,v)∈Sa

v−Σ(i,v)v∈Sb
v|. A single pass algorithm

is developed which, with probability 1− δ, computes an approximation to L1(S)
within a factor of ε using O(logM logn log(1/δ)/ε2) random access space and
O(log n log logn + logM log(1/δ)/ε2) computation time per item. The method
in [46] can be viewed as using sketches of vectors, which is a summary data
structure. In this case, a sketch C(Sa), C(Sb) is computed for each data stream
Sa, Sb respectively. Sketches are much smaller in size than Sa, Sb and such that
an easily computable function of the sketches gives a good approximation to
L1(Sa, Sb).

In [62], a unifying framework is proposed for approximating L1(S) and L2(S)
within a factor of ε (with probability 1− δ) using O(logM log(n/δ) log(1/δ)/ε2)
random access space and O(log(n/δ)) computation time per item. The technique
used combines the use of stable distributions [85] with Nisan pseudorandom gen-
erators [84]. The property of stable distributions which is used in this algorithm
is the following. The dot product of a vector �u with a sequence of n independent
identically distributed random variables having p-stable distribution is a good
estimator of the Lp norm of �u. In particular we can use several such products
to embed a d-dimensional space into some other space (of lower dimensional-
ity) such that to approximately preserve the Lp distances. Dot product can be
computed in small workspace.

We shall describe here in some detail the first stage of this algorithm for
approximating L1(S): For l = O(c/ε2 log 1/δ) (for some suitable constant c),
we initialize nl independent random variables Xj

i , i = 1, . . . , n, j = 1, . . . , l with
Cauchy distribution defined by the density function f(x) = 1

π
1

1+x2 (we know
this distribution is 1-stable). Then, the following three steps are executed:

1. Set Sj = 0, for j = 1, . . . , l.
2. For each new pair (i, v) do: Sj = Sj + vXj

i for all j = 1, . . . , l.
3. Return the median(|S0|, . . . , |Sl−1|).
To prove the correctness of this algorithm we argue as follows: We want to

compute L1(S) = C = Σi|ci| where ci = Σ(i,v)∈Sv. First, it follows from the
1-stability of the Cauchy distribution that, each Sj has the same distribution
as CX where X has Cauchy distribution. Random variable X has Cauchy dis-
tribution with density function f(x) = 1

π
1

1+x2 hence median(|X |) = 1 and
median(v|X |) = v for any v. It is known that for any distribution, if we take
l = O(c/ε2 log 1/δ) independent samples and compute the median M , then for
distribution function F (M) of M we have (for a suitable constant c) Pr[F (X) ∈
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[1/2 − ε, 1/2 + ε]] > 1 − δ. Thus, it can be proven that l = O(c/ε2 log 1/δ)
independent samples approximate L1(S) within a factor of ε with probability
> 1− δ.

This stage of the algorithm, though, assumes random numbers of exact pre-
cision. Thus, random generators are used to solve the problem of how to reduce
the number of required random bits.

The problem of approximating Lp distances in one pass algorithms has a
variety of applications including estimation of the size of self join [8,52] and
estimation of statistics of network flow data [46].

In the above frameworks a solution was facilitated by using summary de-
scriptions of the data which approximately preserved the Lp distances. The
summaries were based on computing with random variables. Techniques that
use such summaries to reduce the size of the input are known as sketching tech-
niques (they compute a sketch of each input vector). Computing sketches has
been used with success in many problems to get summaries of the data. It has
enabled compression of data and has been speeding up computation for various
data mining tasks [64,34,25,26,35]. (See also section 5 for a description of the
algorithm in [34].) Sketches based on random projections are often used to ap-
proximate Lp distances or other measure of similarities depending on them. In
such a case (see e.g., [35]) sketches are defined as: The i-th component of the
sketch �s(�x) of �x is the dot product of �x with a random vector �ri: �si(�x) = �x · �ri,
where each component of each random vector is drawn from a Cauchy distribu-
tion. Work that use sketching techniques include [38,49] where aggregate queries
and multi-queries over data streams are computed.

4 Data Mining Tasks and Applications

The main data mining tasks are considered to be those that have an almost well
defined algorithmic objective and assume that the given data are cleaned. In this
section, we mention some areas of research and applications that are considered
of interest in the data mining community [59]. We begin with a list of the most
common data mining tasks:

– Association rules: Find correlations among the columns of the input matrix
of the form: if there is a 1 entry in column 5 then most probably there is a
1 entry in column 7 too. These rules are probabilistic in nature.

– Sequential patterns: Find sequential patterns that occur often in a dataset.
– Time series similarity: Find criteria that check in a useful way whether two

sequences of data exhibit “similar features”.
– Sequence matching: Given a collection of sequences and a sequence query,

find the sequence which is closest to the query-sequence.
– Clustering: Partition a given set of points into groups, called clusters so

that “similar” points belong to the same cluster. A measure of similarity is
needed, often it is a distance in a metric space.

– Classification: Given a set of points and a set of labels, assign labels to point
so that similar objects are labeled by similar labels and a point is labeled
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by the most likely label. A measure of similarity of points and similarity
of labels is assumed and a likelihood of a point to be assigned a particular
label.

– Discovery of outliers: Discover points in the dataset which are isolated, i.e.,
they do not belong to any multi-populated cluster.

– Frequent episodes: An extension of sequential pattern finding, where more
complex patterns are considered.

These tasks as described in the list are usually decomposed in more primitive
modules that may be common in several tasks, e.g., comparing large pieces of the
input matrix to find similarity patterns is useful in clustering, and association
rules mining.

We also include a list of some of the most common applications of data mining:

– Marketing. Considered one of the most known successes of data mining. Mar-
ket basket analysis is motivated by the decision support problem and aims
at observing customer habits to decide on business policy regarding prices or
product offers. Basket data are collected by most large retail organizations
and used mostly for marketing purposes. In this context, it is of interest to
discover association rules such as ”if a person buys pencil then most prob-
ably buys paper too”. Such information can be used to increase sales on
pencils by placing them near paper or make a profit by offering good prices
on pencils and increase the price of paper.

– Astronomy. Clustering celestial objects by their radiation to distinguish
galaxies and other star formations.

– Biology. Correlate diabetes to the presence of certain genes. Find DNA
sequences representing genomes (sequential patterns). Work in time series
analysis has many practical applications here.

– Document analysis. Cluster documents by subject. Used, for example, in
collaborative filtering, namely tracking user behavior and making recom-
mendations to individuals based on similarity of their preferences to these
of other users.

– Financial Applications. Use time series similarity to find stocks with simi-
lar price movements or find products with similar selling patterns. Observe
similar patterns in customers’ financial history to decide if a bank loan is
awarded.

– Web mining. Search engines like Google rank web pages by their “impor-
tance” in order to decide the order on which to present search results on
a user query. Identifying communities on the web, i.e., groups that share a
common interest and have a large intersection of web pages that are most
often visited by the members of a group is another interesting line of re-
search. This may be useful for advertising or to identify the most up-to-date
information on a topic or to provide a measure of page rank which is not easy
to spam. One popular method is to study co-citation and linkage statistics:
web communities are characterized by dense directed bipartite subgraphs.

– Communications. Discover the geographic distribution of cell phone traffic
at different base stations or the evolution of traffic at Internet routers over
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time. Detecting similarity patterns over such data is important, e.g., which
geographic regions have similar cell phone usage distribution, or which IP
subnet traffic distributions over time intervals are similar.

– Detecting intrusions. Detecting intrusions the moment they happen is im-
portant to protecting a network from attack. Clustering is a technique used
to detecting intrusions.

– Detecting failures in network. Mining episodes helps to detect faults in elec-
tricity network before they occur or detect congestions in packet switched
networks.

The data available for mining interesting knowledge (e.g., census data, corpo-
rate data, biological data) is often in bad shape (have been gathered under
no particular considerations), e.g. it may contain duplicate or incomprehensible
information. Therefore a preprocessing stage is required to clean the data. More-
over after the results of a data mining task are obtained they may need a post
processing stage to interprete and visualize them.

5 Association Rules

Identifying association rules in market basket data is considered to be one of the
most well known successes of the data mining field. The problem of mining for
association rules and the related problem of finding frequent itemsets have been
studied extensively and many efficient heuristics are known. We will mention
some of them in this section.

Basket data is a collection of records (or baskets), each record typically con-
sisting of a transaction date and a collection of items (thought of as the items
bought in this transaction). Formally we consider a domain set I = {i1, . . . , im}
of elements called items and we are given a set D of transactions where each
transaction T is a subset of I. We say that a transaction T contains a set X
of items if X ⊆ T . Each transaction is usually viewed as a row in a n × k
0,1-matrix where 1 means that the item represented by this column is included
in this transaction and 0 that it is not included. The rows represent the baskets
and the columns represent the items in the domain. The columns are some-
times called attributes or literals. Thus an instance of market basket data is
represented by a 0,1-matrix.

The problem of mining association rules over basket data was introduced in
[4]. An association rule is an “implication” rule X ⇒ Y where X ⊂ I and Y ⊂ I
and X,Y are disjoint. The rule X ⇒ Y holds in the transaction set D with con-
fidence c if c% of the transactions in D that contain X also contain Y . The rule
X ⇒ Y has support s in the transaction set D if s% of the transactions in D
contain Y ∪X . The symbol ⇒ used in an association rule is not a logical impli-
cation, it only denotes that the confidence and the support are estimated above
the thresholds c% and s% respectively. In this context, the problem of mining
for association rules on a given transaction set asks to generate all association
rules with confidence and support thresholds greater than two given integers.
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Functional dependencies are association rules with confidence 100% and any
support and they are denoted as X → A. Consequently, having determined a
dependency X → A, any dependency of the form X ∪ Y → A can be ignored
as redundant. The general case of association rules however is probabilistic in
nature. Hence a rule X ⇒ A does not make rule X ∪Y ⇒ A redundant because
the latter may not have minimum support. Similarly, rules X ⇒ A and A⇒ Z
do not make rule X ⇒ Z redundant because the latter may not have minimum
confidence.

In the context of the association rule problem, mining for frequent itemsets
is one of the major algorithmic challenges. The frequent itemsets problem asks
to find all sets of items (itemsets) that have support above a given threshold.
This problem can be reduced to finding all the maximal frequent itemsets due to
the monotonicity property – i.e., any subset of a frequent itemset is a frequent
itemset too. A frequent itemset is maximal if any itemset which contains it is
not frequent.

5.1 Mining for Frequent Itemsets

The monotonicity property has inspired a large number of algorithms known as a-
priori algorithms which use the following a-priori trick: The algorithms begin the
search for frequent itemsets with searching for frequent items and then construct
candidate pairs of items only if both items in the pair are frequent. In the same
fashion, they construct frequent candidate triples of items only if all the three
pairs of items in the triple are found frequent in the previous step. Thus, to find
frequent itemsets, they proceed levelwise, finding first the frequent items (sets
of size 1), then the frequent pairs, the frequent triples, and so on.

An a-priori algorithm [4,6] needs to store the frequent itemsets found in each
level in main memory (it assumes that there is enough space) so that to create
the candidate sets for next level. It needs so many passes through the data as
the maximum size of a frequent itemset or two passes if we are only interested
in frequent pairs as is the case in some applications. Improvements have been
introduced in this original idea which address issues such as: if the main memory
is not enough to accommodate counters for all pairs of items, then e.g., hashing
is used to prune some infrequent pairs in the first pass.

In [21], the number of passes is reduced by taking a dynamic approach to
the apriori algorithm which is called Dynamic Itemset Counting. It reduces the
number of passes of apriori by starting counting 2-itemsets (and possibly 3-
itemsets) during the first pass. After having read (say) one third of the data, it
builds candidate 2-itemsets based on the frequent 1-itemsets count so far. Thus
running on the rest two thirds of the data, it checks also the counts of these
candidates and it stops checking the 2-itemsets counts during the second pass
after having read the first third of data. Similarly, it may start considering 3-
itemsets during the first pass after having read the first two thirds of the data and
stops considering them during the second run. If the data is fairly homogeneous,
this algorithm finds all frequent itemsets in around two passes.
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In [89], a hash table is used to determine on the first pass (while the frequent
items are being determined) that many pairs are not possibly frequent (assuming
that there is enough main memory). The hash table is constructed so that each of
its buckets stores the accumulative counts of more than one pairs. This algorithm
works well when infrequent pairs have small counts so that even when all the
counts of pairs in the same bucket are added, the result is still less than the
threshold. In [44], multiple hash tables are used in the first pass and a candidate
pair is required to be in a large bucket in every hash table. In the second pass
another hash table is used to hash pairs and in the third pass, only if a pair
belongs to a frequent bucket in pass two (and has passed the test of pass one
too) is taken as a candidate pair. The multiple hash tables improve the algorithm
when most of the buckets have counts a lot below the threshold (hence many
buckets are likely to be small).

These methods, however, cannot be used for finding all frequent itemsets in
one or two passes. Algorithms that find all frequent itemsets in one or two passes
usually rely on randomness of data and sampling. A simple approach is to take a
main-memory-sized sample of the data, run one of the main-memory algorithms,
find the frequent itemsets and either stop or run a pass through the data to verify.
Some frequent itemsets might be missed in this way. In [94] this simple approach
is taken. The algorithm on main memory is run on a much lower threshold so it is
unlikely that it will miss a frequent itemset. To verify, we add to the candidates
of the sample the negative border: an itemset S is in the negative border if S
is not identified as frequent in the sample, but every immediate subset of S is.
The candidate itemsets includes all itemsets in the negative border. Thus the
final pass through the data counts the frequency of the itemsets in the negative
border. If no itemset in the negative border is frequent, then the sample has
given all the frequent itemsets candidates. Otherwise, we may rerun the whole
procedure if we do not want to miss any frequent itemset.

A large collection of algorithms have been developed for mining itemsets in
various settings. Recent work in [71] provides a unifying approach for mining
constrained itemsets, i.e., under a more general class of constraints than the
minimuum support constraint. The approach is essentially a generalization of
the a priori principle.

Another consideration in this setting is that the collection of frequent item-
sets found may be large and hard to visualize. Work done in [2] shows how to
approximate the collection by a simpler bound without introducing many false
positives and false negatives.

5.2 Other Measures for Association Rules

However confidence and support are not the only measures of “interestingness”
of an association rule and do not always capture the intuition. Confidence is
measured as the conditional probability of X given Y and it ignores the compar-
ison to the (unconditional) probability of X . If the probability of X is high then
confidence might be measured above threshold although this would not imply
any correlation among X and Y . Other measures considered are the interest
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and the conviction [21]. Interest is defined as the probability of both X and Y
divided by the product of the probability of X times the probability of Y . It
is symmetric with respect to X and Y , and measures their correlation (or how
far they are from being statistically independent). However, it can not derive
an implication rule (which is non-symmetric). Conviction is defined as a mea-
sure closer to the intuition of an implication rule X ⇒ Y . Its motivation comes
from the observation that if X ⇒ Y is viewed as a logical implication, then it
can be equivalently written as ¬(X ∧ ¬Y ). Thus conviction measures how far
from statistical independence are the facts X and ¬Y and is defined as follows:
P (X)P (¬Y )

P (X,¬Y ) .
In [20] conditional probability is not used to measure interestingness of an as-

sociation rule and propose statistical correlation instead. In [92], causal rules in-
stead of mere associations are discussed aiming to capture the intuition whether
X ⇒ Y means that X causes Y or some other item causes them both to happen.
This direction of investigation is taken by noticing that yielding a small num-
ber (possibly arbitrarily decided) of the “most interesting” causal relationships
might be desirable in many data mining contexts, since exploratory analysis of
a dataset is what is usually the aim of a data mining task. In that perspective,
it is pointed out that ongoing research in Bayesian learning (where several tech-
niques are developed to extract causal relationships) seems promising for large
scale data mining.

5.3 Mining for Similarity Rules

As pointed out, various other kinds of rules may be of interest given a set of
basket data. A similarity rule X � Y denotes that the itemsets X and Y are
highly correlated, namely they are contained both in a large fraction of the
transactions that contain either X or Y . A similarity rule does not need to
satisfy a threshold on the support, low-support rules are also of interest in this
setting. Although for market basket analysis, the low support mining might not
be very interesting, when the matrix represents the web graph, then similar
web sites with low support might encompass similar subjects or mirror pages or
plagiarism (in this case, rows will be sentences and columns web pages).

As low support rules are also of interest, techniques with support pruning (like
finding all frequent itemsets) are not of use. However, in cases where the number
of columns is sufficiently small then we can store something per column in main
memory. A family of algorithms were developed in [34] to solve the problem in
those cases using a hashing techniques.

For each column C, a signature S(C) is defined which, intuitively, is a sum-
mary of the column. Signatures are such that a) they are small enough such that
a signature for each column can fit in main memory and, b) similar columns have
similar signatures. When the matrix is sparse, we cannot choose a small number
of rows at random and use each shortened column in this set of rows as the sig-
nature. Most likely almost all signatures will be all 0’s. The idea in this paper is:
For each pair of columns, ignore the rows that both columns have zero entries,
find the fraction of rows that these columns differ (over all non-both-zero-entry
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rows) and define this as the similarity measure. Interestingly, it can be proven
that this similarity measure is proposrtional to the probability that both rows
have the first occurrence of 1 in the same row. Thus the signature of each column
is defined as the index of the first row with a 1 entry. Based on this similarity
measure, two techniques that are developed in [34] are Min-Hashing (inspired by
an idea in [33] –see also [24]) and Locality-Sensitive Hashing (inspired by ideas
used in [56]–see also [65]).

In Min-Hashing, columns are hashed to the same bucket if they agree on
the index of the first row with a 1 entry. To reduce the probability of false
positives and false negatives, a set of p signatures are collected instead of one
signature. This is done by implicitly considering a set of p different random
permutations of the rows and for each permutation get a signature for each
column. For each column, we use as its new signature the sequence of the p
row indices (the row where the first 1 entry appears in this column). Actually
these p row indices can be derived using only one pass through the data by
hashing each row using p different hash functions (each hash function represents
a permutation). However, if the number of columns is very large and we cannot
afford work which is quadratic on the number of columns, then Locality-Sensitive
Hashing is proposed. Locality-Sensitive Hashing aims at reducing the number of
pairs of columns that are to be considered by finding quickly many non-similar
pairs of columns (and hence eliminating those pairs from further consideration).
Briefly, it works as follows: It views the signatures in each column as a column
of integers. It partitions the rows of this collection of rows into a number of
bands. For each band it hashes the columns into buckets. A pair of columns is
a candidate pair if they hash in the same bucket in any band. Tuning on the
number of bands allows for a more efficient implementation of this approach.

If the input matrix is not sparse, a random collection of rows serves as a
signature. Hamming LSH constructs a series of matrices, each with half as many
rows as the previous, by OR-ing together two consecutive rows of the previous
matrix.

These algorithms, although very efficient in practice, might still yield false
positives and false negatives, i.e., yield a similarity rule which is false or miss
some similarity rules. In [48], a family of algorithms is proposed which is called
Dynamic Miss-Counting (DMC) that avoid both false positives and false nega-
tives. Two passes over the data are made and the amount of main memory used
allows for data of moderate size. The key idea in DMC algorithms is confidence-
pruning. For each pair of columns the algorithm counts the number of rows with
entries in these columns that disagree and if the count exceeds a threshold they
discard this similarity rule.

5.4 Transversals

We point out here the connection between maximal frequent itemsets and
transversals [94,80] which are defined as follows: A hypergraph is a 0-1 matrix
with distinct rows. Each row can be viewed as an hyperedge and each column as
an element. A transversal (a.k.a. hitting set) is a set of elements such that each
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hyperedge contains at least one element from the set. A transversal is minimal
if no subset of it is a transversal.

Recall that a frequent itemset is a subset of the columns such that the number
of rows with 1 entries in all those columns is above some support threshold. A
maximal frequent itemset is a frequent itemset such that no superset is a frequent
itemset. Given a support value, an itemset belongs to the negative border iff it
is not a frequent itemset and all its subsets are frequent itemsets. The following
proposition states the relationship between transversals and maximal frequent
itemsets.

Proposition 2. Let HFr be the hypergraph of the complements of all maximal
frequent itemsets, and let HBd− be the hypergraph of all itemsets in the negative
border. Then the following holds:

1. The set of all minimal transversals of HFr is equal to the negative border.
2. The set of all minimal transversals of HBd− is equal to the set of all max-

imal itemsets.

It is not difficult to prove. A transversal T of HFr has the property: For each
maximal frequent itemset S, the transversal T contains at least one attribute
which is not included in this itemset S. Hence the transversal is not a maximal
frequent itemset. Hence a minimal transversal belongs to the negative border.

For an example, suppose we have four attributes {A,B,C,D} and let all
maximal frequent itemsets be {{A,B}, {A,C}, {D}}, then the hypergraph
of complements of those itemsets contains exactly the hyperedges
{{C,D}, {B,D}, {A,B,C}}. All minimal transversals of this hypergraph are
{{C,B}, {C,D}, {A,D}, {D,B}} which is equal to the negative border.

This result is useful because the negative border can be found easier in general
and then can be used to retrieve the maximal frequent itemsets.

Transversals have been studied for a long time and hence this connection
is useful. In [80] this result is extended in more general framework for which
finding maximal frequent itemsets is a subcase. A connection is shown among the
three problems of computing maximal frequent itemsets, computing hypergraph
transversals and learning monotone boolean functions. This approach as well as
the approach taken in [5] has its roots in the use of diagrams of models in model
theory (see e.g., [30]).

For an excellent detailed exposition of algorithms mentioned in this section
see [95].

6 Clustering

There are many different variants of the clustering problem and literature in this
field spans a large variety of application areas and formal contexts. Clustering
has many applications besides data mining including statistical data analysis,
compression, vector quantization. It has been formulated in various contexts such
as machine learning, pattern recognition, optimization and statistics. Several
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efficient heuristics have been invented. In this section, we will review some recent
algorithms for massive data and mention some considerations on the quality of
clustering.

Informally, the clustering problem is that of grouping together (clustering)
similar data items. One approach is to view clustering as a density estimation
problem. We assume that in addition to the observed variables for each data item,
there is a hidden, unobserved variable indicating the ”cluster membership”. The
data is assumed to be produced by a model with hidden cluster identifiers. A
mixture weight wi(x) is assumed for each data item x to belong to a cluster i. The
problem is estimating the parameters of each cluster Ci, i = 1, . . . , k, assuming
the number k of clusters is known. The clustering optimization problem is that
of finding parameters for each Ci which maximize the likelihood of the clustering
given the model.

In most cases, discovery of clusters is based on a distance measure D(�u,�v),
between vectors �u,�v (such as the Lp norm) and the three axioms for distance
measure hold, i.e., 1. D(�u, �u) = 0 (reflexivity), 2. D(�u,�v) = D(�v, �u) (symmetry)
and 3. D(�u,�v) ≤ D(�u, �z) + D(�z,�v) (triangle inequality). If the points to be
clustered are positioned in some n-dimensional space then Euclidean distance
may be used. In general other measures of distances are also useful such as the
cosine measure or the edit distance which measures the number of inserts and
deletes of characters needed to change one string of characters into another.

Most conventional clustering algorithms require space Ω(n2) and require ran-
dom access to the data. Hence recently several heuristics have been proposed for
scaling clustering algorithms. Algorithms for clustering usually fall in two large
categories k-median approach algorithms and hierarchical approach algorithms.

6.1 The k-Median Approach

A common formulation of clustering is the k-median problem: Find k centers
in a set of n points so as to minimize the sum of distances from data points to
their closest cluster centers. Or, equivalently, to minimize the average distance
from data points to their closest cluster centers. The assumptions taken by the
classical k-median approach are: 1) each cluster can be effectively modeled by a
spherical Gaussian distribution and 2) each data item is assigned to one cluster.

In [18], a single pass algorithm is presented for points in the Euclidean space
and is evaluated by experiments. The method used is based in identifying regions
of the data that are compressible (compression set), other regions that must be
maintained in memory (retained set) and a third kind of regions that can be
completely discarded (discard set). The discard set is set of points that are
certain to belong to a specific cluster. They are discarded after they are used
to compute the statistics of the cluster (such as the number of points, the sum
of coordinates, the sum of squares of coordinates). The compression set is set
of points that are close to each other so that it is certain that they will be
assigned to the same cluster. They are replaced by their statistics (same as for
the discard set). The rest of the points that do not belong in either of the two
other categories remain in the retained set. The algorithm begins by storing
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a sample of points (the first points to be read) in main memory and running
on them a main memory algorithm (such as k-means [66]). A set of clusters
is obtained which will be modified as more points are read into main memory
and processed. In each subsequent stage, a main-memory full set of points is
processed as follows. 1. Determine if a set of points is (a) sufficiently close to
some cluster ci and (b) unlikely for ci to “move” far from these points (during
subsequent stages) and another cluster come closer. A discard set is decided in
this way and its statistics used to update the statistics of the particular cluster.
2. Cluster the rest of the points in main memory and if a cluster is very tight,
then replace the corresponding set of points by its statistics; this is a compression
set. 3. Consider merging compression sets.

Similar summaries of data as in [18] and a data structure like an R-tree to
store clusters are used in [50] to develop a one pass algorithm for clustering
points in arbitrary metric spaces.

Algorithms with guaranteed performance bounds include a constant-factor
approximation algorithm developed in [57] for the k-median problem. It uses a
single pass on the data stream model and requires workspace θ(nε) for a factor
of 2O( 1

ε ). Other work includes [12] where the problem is studied on the sliding
windows model.

A related problem is the k-center problem (minimize the maximum radius
of a cluster) which is investigated in [32] where a single pass algorithm which
requires workspace O(k) is presented.

6.2 The Hierarchical Approach

A hierarchical clustering is a nested sequence of partitions of the data points.
It starts with placing each point in a separate cluster and merges clusters until
it obtains either a desirable number of clusters (usually the case) or a certain
quality of clustering.

The algorithm CURE [58] handles large datasets and assumes points in Eu-
clidean space. CURE employs a combination of random sampling and partition-
ing. In order to deal with odd-shaped clusters, this algorithm selects dispersed
points and moves them closer to the centroid of the corresponding cluster. A
random sample, drawn from the data set, is first partitioned and cluster sum-
maries are stored in memory in a tree data structure. For each successive data
point, the tree is traversed to find the closest cluster to it.

6.3 Similarity Measures

Similarity measures according to which to cluster objects is also an issue of
investigation. In [35], methods for determining similar regions in tabular data
(given in a matrix) are developed. The proposed measure of similarity is based
on the Lp norm for various values for p (non-integral too). It is noticed that
on synthetic data, when clustering uses as a distance measure either L1 or L2
norms, the quality of the clustering is poorer than when p is between 0.25 and
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0.8. The explanation for this is that, for large p, more emphasis is put on the
outlier values (outliers are points that are isolated, so they do not belong to any
cluster), whereas for small p the measure approaches the Hamming distance, i.e.,
it counts how many values are different. On real data, it is noticed that different
values for p bring out different features of the data. Therefore, it seems that
p can be used as a useful parameter of the clustering algorithm: set p higher
to show full details of the data set, reduce p to bring out unusual clusters in
the data. For the technical details to go through, sketching techniques similar
to [62] are used to approximate the distances between subtables and reduce
the computation. The proposed similarity measure is tested using the k-means
algorithm to cluster tabular data.

6.4 Clustering Documents by Latent Semantic Indexing (LSI)

The use of vector space models for information retrieval purposes has been used
as early as 1957. The application of SVD in information retrieval is proposed in
[37] through the latent semantic indexing technique and it is proven a powerful
approach for dimension reduction. The input matrix �X, is a document versus
terms matrix. It could be a 0,1-matrix or each entry could be the frequency
of the term in this document. Matrix �X is approximated according to SVD by
�Xk = �Uk

�Tk
�V Tr

k . The choice of k is an issue for investigation. Note that each
entry of the matrix �Xk does not correspond to a term any more, it corresponds
to a weighted sum of term measures. The matrix �Vk represents similarities among
documents, e.g., given a document that the user is interested in more documents
can be decided that are of interest to this user (even if they do not use exactly
the same terms). The matrix �Uk displays similarities between terms, e.g., given
a term, other related terms may be decided (such as the term “car” is related
to “automobile” and “vehicle”). The matrix �Xk may be used for term-document
associations, e.g., on a given term, extract documents that contain material
related to this term.

Spectral methods –i.e., the use of eigenvectors and singular vectors of
matrices–in document information retrieval and the application of SVD through
the latent semantic indexing technique are discussed in detail in [73], which is
an excellent survey on this direction of research.

6.5 Quality of Clustering

In a clustering algorithm the objective is to find a good clustering but a good
clustering is not formally defined. Intuitively the quality of a clustering is assessed
by how much similar points are grouped in the same cluster. In [68] the question
is posed: how good is the clustering which is produced by a clustering algorithm?
As already discussed the k-median clustering may produce a very bad clustering
in case the “hidden” clusters are far from spherical. E.g., imagine two clusters,
one that is a sphere and a second one is formed at a certain distance around
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the sphere forming a ring. Naturally the k-median approach will fail to produce
a good clustering in this example. A bicriteria measure is proposed therein for
assessing the quality of clusters. The dataset is represented as a graph with
weights on the edges that represent the degree of similarity between the two
vertices (high weight means high similarity). First a quantity which measures
the relative minimum cut of a cluster is defined. It is called expansion and is
defined as the weight of the minimum cut divided by the number of points in
the smaller subset among the two that the cut partitions the cluster-graph. It
seems however that it is more appropriate to give more importance to vertices
with many similar other vertices than to vertices with few similar other vertices.
Thus, the definition is extended to capture this observation and the conductance
is defined where subsets of vertices are weighted to reflect their importance.
Optimizing the conductance gives the right clustering in the sphere-ring example.
However if we assume the conductance as the measure of quality, then imagine a
situation where there are mostly clusters of very good quality and a few points
that create clusters of poor quality. In this case the algorithm might create many
smaller clusters of medium quality. A second criterion is considered in order to
overcome this problem. This criterion is defined as the fraction of the total weight
of edges that are not covered by any cluster.

This bicriterion optimization framework is used to measure the quality of
several spectral algorithms. These algorithms, though have proven very good in
practice, were hitherto lacking a formal analysis.

6.6 Other Algorithms

Popular clustering algorithms in the literature include k-means [66], CLARANS
[83], BIRCH [100], DBSCAN [41].

In [87], the drawbacks of random sampling in clustering algorithms (e.g., small
clusters might be missed) are avoided by density biased sampling. The goal is
to under-sample dense regions and over-sample sparse regions of the data. A
memory efficient single pass algorithm is proposed that approximates density
biased sampling. In [86], results from [57] are used to develop an algorithm that
achieves dramatically better clustering quality than BIRCH although it takes
longer to run. In [3], clusters are defined in euclidean space by DNF formulas
and performance issues are addressed for data mining applications.

An excellent detailed exposition of algorithms in [58], [18] and [50] can be
found in [95]. An excellent survey of the algorithms in [54,3,13,15] is given in
[45].

7 Mining the Web

The challenge in mining the web for useful information is the huge size and
unstructured organization of data. Search engines, one of the most popular web
mining applications, aim to search the web for a specific topic and give to the
user the most important web pages on this topic. A considerable amount of
research has been done on ranking web pages according to their importance.
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Page Rank, the algorithm used by the Google search engine [22] ranks pages
according to the page citation importance. This algorithm is based on the obser-
vation that usually important pages have many other important pages linking
to them. It is an iterative procedure which essentially computes the principal
eigenvector of a matrix. The matrix has one nonzero entry for each link from
page i to page j and this entry is equal to 1/n if page i has n successors (i.e.,
links to other pages). The intuition behind this algorithm is that page i shares its
importance among its successors. Several variants of this algorithm have been
developed to solve problems concerning spams and dead ends (pages with no
successors). Random jumps from a web page to another may be used to avoid
dead ends or a slight modification of the iterative procedure according to which
some of the importance is equally distributed among all pages in the beginning.

Hubs and Authorities, based on similar intuition, is an algorithm where web
pages are viewed also as sharing their importance among its successors only that
there are two different roles assigned to important web pages [72]. They follow
the observation that authorities might not link to one another directly but there
are hubs that link “collectively” to many authorities. Thus hubs and authorities
have this mutually depending relationship: good hubs link to many authorities
and good authorities are linked by many hubs. Hubs are web pages that do not
contain information themselves but they contain many links to pages with in-
formation e.g., a university course homepage. Authorities are pages that contain
information about a topic, e.g., a research project homepage. Again the algo-
rithm based on this idea is an iterative procedure which computes eigenvectors
of certain matrices. It begins with matrix A similar as the page rank algorithm
only that the entries are either 0 or 1 (if there is a link) and its output is two
vectors which measure the ”authority” and the ”hubbiness” of each page. These
vectors are the principal eigenvectors of the matrices AAT and ATA. Work in
[55,77] has shown that the concepts of hubs and authorities is a fundamental
structural feature of the web. The CLEVER system [29] builds on the algorith-
mic framework of hub and authorities.

Other work on measuring the importance of web pages include [1]. Other re-
search directions for mining useful information from the web include [23], where
the web is searched for frequent itemsets by a method using features of the al-
gorithm for dynamic itemset counting [21]. Instead of a single deterministic run,
the algorithm runs continuously exploring more and more sites. In [19], the ex-
traction of structured data is achieved from information offered by unstructured
data on the web. The example used is to search for books in the web starting
from a small sample of books from which a pattern is extracted. Based on the
extracted patterns more books are retrieved in a iterative manner. Based on the
same idea of pattern matching, the algorithm developed in [9] searches the web
for communities that share an interest on a topic. The pattern is formed by using
words from the anchor text.

More detailed descriptions of the Page Rank and the Hubs and Authorities
algorithms can be found in [95]. Also, an elegant formal exposition of spectral
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methods used for web mining and the connections between this work and earlier
work on sociology and citation analysis [39] can be found in [73].

8 Evaluating the Results of Data Mining

As we have seen, for many of the successful data mining algorithms there is no
formal analysis as to whether the solution they produce is a good approximation
to the problem at hand. Recently a considerable amount of research is focused
in developing criteria for such an evaluation.

A line of research is focused in building models for practical situations (like
the link structure of the web or a corpus of technical documents) against which
to evaluate algorithms. Naturally, the models, in order to be realistic, are shown
to display several of the relevant features that are measured in real situations
(e.g., the distribution of the number of outgoing links from a web page).

In [88], a model for documents is developed on which the LSI method is eval-
uated. In this model, each document is built out of a number of different topics
(hidden from the retrieval algorithm). A document on a given topic is generated
by repeating a number of times terms related to the topic according to a proba-
bility distribution over the terms. For any two different topics there is a technical
condition on the distributions that keeps the topics “well-separated”. The main
result is that on this model, the k-dimensional subspace produced by LSI defines
with high probability very good clusters as intended by the hidden parameters
of the model. In this paper, it is also proposed that if the dimensionality after
applying LSI is too large, then random projection can be used to reduce it and
improve the results. Other work with results suggesting methods for evaluating
spectral algorithms include [10].

Models for the web graph are also developed. The web can be viewed as a
graph with each page being a vertex and an edge exists if there is a link pointing
from one web page to another. Measurements on the web graph [76,77] have
shown that this graph has several characteristic features which play a major
role in the efficiency of several known algorithms for searching the web. In that
context, the web graph is a power-law graph, which means roughly that the
probability that a degree is larger than d is proportional to d−β for some β > 0.
Models for power-law graphs are developed in [42],[7], [78].

A technique for automatically evaluating strategies which find similar pages on
the web is presented in [60]. A framework for evaluating the results of data mining
operations according to the utility of the results in decision making is formalized
in [74] as an economically motivated optimization problem. This framework leads
to interesting optimization problems such as the segmentation problem which is
studied in [75]. Segmentation problems are related to clustering.

9 Conclusion

We surveyed some of the formal techniques and tools for solving problems on
the data stream model and on similar models where there are constraints on
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the amount of main memory used and a few number of passes through the
data are allowed because access is too costly. We also presented some of the
most popular algorithms that are proposed in the literature for data mining
applications. We provided reference for further reading, with some good surveys
and tutorials in the end of each section. As the field is a rapidly evolving area
of research with many diverging applications, the exposition here is meant to
serve as an introduction to approximation algorithms with storage constraints
and their applications.

Among topics that we did not mention are Privacy preserving data mining,
Time Series Analysis, Visualization of Data Mining results, Bio-informatics,
Semistructured data and XML.

Acknowledgements. Thanks to Chen Li and Ioannis Milis for reading and
providing comments in an earlier version of this chapter.
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Abstract. In this chapter we review the main results known on local
search algorithms with worst case guarantees. We consider classical com-
binatorial optimization problems: satisfiability problems, traveling sales-
man and quadratic assignment problems, set packing and set covering
problems, maximum independent set, maximum cut, several facility loca-
tion related problems and finally several scheduling problems. A replica
placement problem in a distributed file systems is also considered as an
example of the use of a local search algorithm in a distributed environ-
ment.

For each problem we have provided the neighborhoods used along
with approximation results. Proofs when too technical are omitted, but
often sketch of proofs are provided.

1 Introduction

The use of local search in combinatorial optimization reaches back to the late
1950s and early 1960s. It was first used for the traveling salesman problem and
since then it has been applied to a very broad range of problems [1]. While
the basic idea is very simple, it has been considerably used and extended in
more elaborate algorithms such as simulated annealing and taboo search. Local
search algorithms are also often hybridised with other resolution methods such
as genetic algorithms. Such methods are commonly referred under the term of
metaheuristics [19,93].

In this survey we are concerned with “pure” local search algorithms which
provide solutions with some guarantee of performance. While the previous meta-
heuristics may be very efficient in practice for obtaining near to optimal solutions
for a large class of combinatorial optimization problems, one lacks theoretical
results concerning the quality of solution obtained in the worst case. Indeed,
theoretical works during the last decade mainly addressed the problem of the
computational difficulty of finding local optima solutions [98,104], regardless
of the quality achieved. For example in 1997 Yannakakis [104] in his survey
mentioned that very little work analyzed performance of local search. However,
recently more and more results involving approximation results using local search
algorithms appeared, and therefore we feel that time has come to make a survey
of known results. We hope it will motivate further study in this area and give
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insight on the power and limitations of the local search approach for solving
combinatorial optimization problems.

In this chapter we consider only the standard approximation ratio [11,100].
For other approximation results using the differential approximation ratio, the
reader is referred to the book of Monnot, Paschos and Toulouse [83]. This chapter
is organized as follows. In Section 2 we introduce local search algorithms, and we
discuss convergence issues of these algorithms. In Section 2.3 we consider local
search algorithms with respect to polynomially solvable problems. Section 3 is
devoted to satisfiability problems. Several results about graph and hypergraph
coloring problems are also presented, since they are corollaries of the results ob-
tained for satisfiability problems. In Section 4 we consider the famous traveling
salesman problem. Section 5 is devoted to the quadratic assignment problem
which is a generalization of the traveling salesman problem. Several results for
other combinatorial optimization problems, such as the traveling salesman prob-
lem and the graph bipartitioning problem, since they are particular cases of the
quadratic assignment problem, are also presented. In Section 6 we consider set
packing and maximum independent set problems. In Section 7 we consider the
set covering problem. Section 8 is devoted to the maximum cut problem. In Sec-
tion 9 we consider several facility location related problems, and in Section 10
we consider several classical scheduling problems. The next sections consider less
known combinatorial optimization problems: Section 11 is devoted to the min-
imum label spanning tree problem, whereas Section 12 is devoted to a replica
placement problem in a distributed file systems. Finally in Section 13 we resume
the main approximation results obtained in a single table, and suggest some
investigations for further research.

2 Local Search Algorithms

2.1 Introduction

Let us consider an instance I of a combinatorial optimization problem. The
instance I is characterized by a set S of feasible solutions, and a cost function
C such that C(s) ∈ N. Assuming a minimization problem, the aim is to find
a global optimal solution, i.e. a solution s∗ ∈ S such that C(s∗) ≤ C(s) for all
s ∈ S. In the case of a maximization problem, one look for a solution s∗ ∈ S
such that C(s∗) ≥ C(s) for all s ∈ S.

To use a local search algorithm one needs a neighborhood. The neighborhood
N : S → 2S associates to each solution s ∈ S a set N (s) ⊆ S of neighboring
solutions. A neighboring solution of s is traditionally obtained by performing a
small transformation on s. The size |N | of the neighborhood N is the cardinality
of the set N (s) if this quantity does not depend of the solution s, which is very
often the case in practice.

The generic local search algorithm is depicted in algorithm 1. It is an iterative
improvement method in which at each step one tries to improve the current
solution by looking at its neighborhood. If at each step the current solution is



32 E. Angel

replaced by a best (resp. any better) solution in its neighborhood, one speak of
deepest (resp. first descent) local search.

Algorithm 1 Generic local search algorithm
Let s ∈ S be an initial solution
while there is a solution x ∈ N (s) that is strictly better than the current solution s
do

s ← x (i.e. we replace the current solution s by a strictly better solution in its
neighborhood N (s))

end while
return s

A local optimum solution sloc ∈ S is a solution which is better than all its
neighboring solutions, i.e. C(sloc) ≤ C(s) for all s ∈ N (sloc) for a minimization
problem, and C(sloc) ≥ C(s) for all s ∈ N (sloc) for a maximization problem.
The local search algorithm always ends at a local optimum solution. Notice that
a global optimum solution is always a local optimum, but the converse is in
general not true.

Despite their simplicity, we will see that local search algorithms can lead to
approximation algorithms for a large class of combinatorial optimization prob-
lems. A local search algorithm is said to be a ρ approximation algorithm if any
local optimum solution satisfies C(sloc)/C(s∗) ≤ ρ (resp. C(s∗)/C(sloc) ≤ ρ)
for a minimization (resp. maximization) problem, with s∗ a global optimal so-
lution. Therefore the approximation ratio ρ is always greater than 1. The closer
to 1 is ρ, the better is the approximation. Notice that some authors consider
the inverse ratio 1/ρ instead of ρ for maximization problems. In case ρ = 1 the
neighborhood is said to be exact.

2.2 Convergence Issue

To be a polynomial time algorithm the local search must find a local optimum
within a polynomial number of iterations, and each iteration must take a poly-
nomial time.

The second condition is always met if the neighborhood has a polynomial
size. However recently there has been some interest in exponential sized neigh-
borhoods which can be searched in polynomial time using different techniques
(dynamic programming for instance), see [2,51] for a survey. However, as far as
we know, despite interesting experimental results there is no approximation algo-
rithm based on such neighborhoods yet (excepted the paper of Boykov, Veksler
and Zabih [20] which is considered in chapter X of this book).

The first condition is sometimes easy to check. The standard argument is as
follows. If the cost function is integral, non negative, and it is allowed to take
only values bounded by a polynomial in the size of the instance, assuming we
have a minimization (resp. maximization) problem, then since at each iteration
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the cost value of the current solution must decrease (resp. increase) by at least
one unit, it means that a local optimum will be reached in a polynomial number
of iterations.

Ausiello and Protasi [12] defined a class of optimization problems called GLO
(Guaranteed Local Optima) using such assumptions. They also show that GLO
can be seen as the core of APX, the class of problems that are approximable in
polynomial time, in the sense that all problems in APX either belong to GLO
or may be reduced to a problem in GLO by means of approximable preserving
reductions.

However if the cost function can take exponential values, a local search algo-
rithm may reach a local optimum only after an exponential number of iterations.
Johnson, Papadimitriou and Yannakakis have defined in [66] the PLS (polyno-
mial local search) complexity class in order to study the intrinsic complexity
of finding a local optimum with respect to a given neighborhood (not by using
necessarily a local search algorithm). It has been shown that several problems
are PLS-complete [66,94,96,103].

However recently Orlin, Punnen and Schulz [85] have introduced the concept
of ε-local optimality and showed that for a large class of combinatorial optimiza-
tion problems, an ε-local optimum can be identified in time polynomial in the
problem size and 1/ε whenever the corresponding neighborhood can be searched
in polynomial time, for ε > 0. For a minimization problem, s is an ε-local op-
timum if C(s)−C(s′)

C(s′) ≤ ε, for all s′ ∈ N (s). An ε-local optimum has nearly the
properties of a local optimum, however one should point out that an ε-local
optimum is not necessarily close to a true local optimum solution.

2.3 Polynomially Solvable Problems

Before considering NP-hard problems in the sequel, one may wonder what the
behavior of local search is on polynomially solvable problems.

Following Yannakakis [104] one can say that for linear programming the sim-
plex algorithm can be view as a local search. Indeed, a vertex of the polytope
of feasible solutions is not an optimal solution if and only if it is adjacent to an-
other vertex of the polytope with better cost. Therefore the adjacency vertices
of the polytope defines an exact neighborhood. Algebraically it corresponds to
exchanging a variable of the basis for another variable outside the basis.

The weighted matching problem in a graph is a well known polynomially solv-
able problem. The fastest algorithm known is due to Gabow [44] with a running
time of O(|V | |E| + |V |2 log |V |). However this running time is sometimes too
large for real world instances. Recently Drake and Hougardy [36] have proposed
a local search algorithm in linear time for the weighted matching problem in
graph with a performance ratio of 3/2. For the maximum matching problem,
notice that a matching is not maximum if and only if it has an augmenting
path. Therefore, if we say that two matchings are neighbors if their symmetric
difference is a path, then we have an exact neighborhood for the maximum car-
dinality matching problem. The neighborhood used by Drake and Hougardy is
based on such augmenting structures.
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For the minimum spanning tree problem, a non optimal tree can be improved
by adding an edge to the tree and removing another edge in the (unique) cycle
formed. Thus the neighborhood in which 2 spanning trees are neighbor if one
can be obtained from the other by exchanging one edge for another is exact.
It can be shown that after at most a polynomial number of iterations the local
search algorithm converges [62].

More general results can be obtained using the framework of matroids. Recall
that a matroid M is a finite set E(M) together with a subset J (M) ⊆ E(M)
that satisfies the following properties:

1. ∅ ∈ J (M)
2. X ⊂ Y ∈ J (M) =⇒ X ∈ J (M)
3. X ∈ J (M), Y ∈ J (M), |Y | > |X | =⇒ ∃e ∈ Y \X such that X + e ∈ J (M)

The set J (M) is called the set of independent sets of M .
Given a weight function C we consider the problem of finding maximum-

weight independent sets Sk of cardinality k. This problem can be solved effi-
ciently in polynomial time using the weighted greedy algorithm (see for exam-
ple [77]). As an example consider a graph G(V,E), let E(M) = E and let J (M)
be the set of forests (set of edges containing no cycle) of G. Then M is called
the graphic matroid of G, and obtaining a maximum (or minimum) weighted
spanning tree of G can be obtained using a greedy algorithm known as Kruskal’s
algorithm.

Let Δ denotes the symmetric difference of sets, i.e. SΔS′ = (S \S′)∪ (S′ \S).
Let us consider the following local search algorithm: Choose any S ∈ J (M),
such that |S| = k. While there exists S′ ∈ J (M) with |S′| = k and |SΔS′| = 2
and C(S′) > C(S): Let S := S′. Interestingly it can be shown that if M is a
matroid, then this swapping algorithm finds a maximum-weight independent set
of cardinality k [77].

Rardin and Sudit [91,92] introduced a new paroid structure designed to pro-
vide a canonical format for formulating combinatorial optimization problems
together with a neighborhood structure. They introduced a generic local opti-
mization scheme over paroids which unifies some well known local search heuris-
tics such as the Lin-Kernighan heuristic for the traveling salesman problem.

3 Satisfiability Problems

Local search is widely used for solving a wide range of satisfaction problems. In
this section we review the main results known.

3.1 Definitions and Problems

Let us consider a set of n boolean variables xj , for 1 ≤ j ≤ n. We note truth =
false and false = truth. A literal is either a boolean variable xj or its negation
xj . In a constraint satisfaction problem, the input is given by a set of m boolean
clauses Ci, 1 ≤ i ≤ m. In the sequel, we shall assume that no clause contains both
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a literal and its negation. The objective is to find an assignment of truth values
to the boolean variables (a truth assignment) in order to satisfy the maximum
number of clauses.

According to the structure and restrictions over the constraints, we obtain
several problems. In the max k-sat satisfiability problem, each clause Ci is a
disjunction of exactly k literals (in the literature one sometimes assume up to k
literals per clause instead of exactly k). If each clause can contain an arbitrary
number of literals, this problem is denoted by max sat. In the max k-ccsp
conjunctive constraint satisfaction problem, each clause Ci is a conjunction of k
literals.

In the max csp constraint satisfaction problem we have a set of variables
V . The domain of each variable is K = {1, . . . , k}. A constraint between two
variables u and v, denoted by R(u, v), is a binary relation on K × K, which
defines the pair of values that can be assigned to u and v simultaneously. An
assignment is a function f : V → K. A constraint R(u, v) is said to be satisfied if
(f(u), f(v)) ∈ R(u, v). A constraint R(u, v) is said to be r-consistent (1 ≤ r ≤ k)
if and only if for every value i1 ∈ K there exists at least r consistent values
i2 ∈ K such that (i1, i2) ∈ R(u, v) An instance is said to be r-consistent if
all its constraints are r-consistent. In the max csp(k, r) constraint satisfaction
problem, all the instances have domain size k and are r-consistent. Notice that
max k-cut (see Section 8) is equivalent to max csp(k, k− 1) with all not-equal
constraints. An instance of a constraint satisfaction problem can be represented
by a constraint (multi) graph G = (V,E). There is an edge between u and v for
each constraint R(u, v). We denote by d(v) the degree of vertex v ∈ V , i.e. the
number of constraints involving this variable, and we denote by Δ the maximum
degree of graph G.

All these problems are NP-hard. The decision problem sat associated with
max sat, i.e. to determine if there exists a truth assignment such that all the
clauses are satisfied, was the first example of an NP-complete problem [45]. The
above problems can be generalized by assigning weights to clauses. For example
in the max w-sat problem each clause has a weight, and the objective is to
maximize the sum of the weights of the satisfied clauses.

3.2 Oblivious Local Search for max k-sat

Papadimitriou [86] showed that randomized local search could solve the decision
problem 2-sat in polynomial time. More precisely, consider the following algo-
rithm: “Start with any truth assignment. While there are unsatisfied clauses,
pick one and flip a random literal in it.”. Considering the Hamming distance of
the current assignment from an optimal solution satisfying all clauses, one can
observes that at each step this distance is at least as likely to be decreased as to
be increased, and is bounded up by n the number of variables. Therefore viewing
this process as a gambler’s ruin problem with a reflecting barrier at most n, one
can proves that this algorithm after O(n2) number of steps will find a satisfying
truth assignment, if one exists, with probability arbitrarily close to one.
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Dantsin et al. [34] proposed an exact deterministic local search algorithm for
max k-sat in exponential time (2 − 2

k+1 )n up to a polynomial factor. The key
idea is the use of covering codes to determine the set of initial solutions on
which local search is applied. Recently Hirsch [58] has proposed a randomized
(1 − ε)-approximation algorithm. In the following we consider only polynomial
time deterministic algorithms.

Let a solution s of a satisfiability problem be represented as a 0-1 vector
s = (s1, . . . , sn) with the meaning that si = 1 (resp. si = 0) if xi is given the value
true (resp. false). One can then define a neighborhood Nd in the following way:
s′ ∈ Nd(s) ⇐⇒ dH(s, s′) ≤ d, with d a constant and dH the Hamming distance
between s and s′, i.e. dH(s, s′) = |{l : sl �= s′l}|. Following Alimonti [3,4,5] we will
speak of d-bounded neighborhood for Nd. We use flip to mean 1-neighborhood.
In the flip (resp. d-bounded neighborhood) one is allowed to change the value of
only a single variable (resp. up to d variables) to obtain a neighboring solution.
The size of the d-bounded neighborhood is

(
n
d

)
, which is a polynomial in the size

of the instance since d is a fixed constant, leading to a polynomial time local
search algorithm.

Theorem 1 (Hansen and Jaumard, 1990 [55]). The local search algorithm
with the flip neighborhood is a polynomial time (k+1)/k-approximation algorithm
for max k-sat, and this ratio is tight.

Proof. Without loss of generality, we can assume that in the local optimum each
variable is assigned the value true. If it is not the case, by putting x′i = xi if
xi ← false, and x′i = xi if xi ← true in the local optimum, we obtain an
equivalent instance for which the assumption is verified.

Let δi the variation of the number of satisfied clauses when variable xi is
flipped. Since the assignment is a local optimum, flipping any variable de-
creases the number of satisfied clauses, i.e. δi ≤ 0, for 1 ≤ i ≤ n. Let covs

the subset of clauses that have exactly s literals matched by the current assign-
ment, and covs(l) the number of clauses in covs that contain literal l. We have
δi = −cov1(xi)+cov0(xi). Indeed, when xi is flipped from true to false one looses
the clauses that contain xi as the single matched literal, i.e. cov1(xi), and gains
the clauses that have no matched literal and that contain xi, i.e. cov0(xi). After
summing over all variables, we obtain

∑n
i=1 δi ≤ 0, thus

n∑
i=1

cov0(xi) ≤
n∑

i=1

cov1(xi). (1)

By using the following equalities:
∑n

i=1 cov1(xi) = |cov1| and
∑n

i=1 cov0(xi) =
k|cov0|, which can be easily verified, we obtain from (1) that k|cov0| ≤ |cov1| ≤
mloc. Let mloc be the number of satisfied clauses at a local optimum with the
flip neighborhood. Therefore m = mloc + |cov0| ≤ (1 + 1

k )mloc = k+1
k mloc.

Of course when flipping a variable the net increase in the number of satisfied
clauses is at least one, and therefore the total numbers of moves before reaching a
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local optimum is bounded up by m, the total number of clauses, and is therefore
polynomial. Moreover each iteration of the local search takes a polynomial time.

��

Battiti and Protasi give the following intuitive explanation [15]: “if there are
too many clauses in cov0, because each of them has k unmatched literals, there
will be at least one variable whose flipping will satisfy so many of these clauses
to lead to a net increase in the number of satisfied clauses.”

Can we improve the approximation ratio of Theorem 1 by using a larger
neighborhood than flip? Khanna, Motwani, Sudan and Vazirani [70,71] have
proved that the performance ratio for any oblivious local search algorithm with
a d-bounded neighborhood for max 2-sat is 3/2 for any d = o(n).

3.3 Non-oblivious Local Search for max k-sat

In non-oblivious local search, independently introduced in [3] and in [70], one
uses a different objective function than the original one to guide the search.
As we shall see, this technique allows to achieve better performance ratio for
some problems approximable by means of oblivious local search, and allows to
approximate problems not approximable with the oblivious local search.

For the max k-sat problems we consider, it means that rather considering
the number of satisfied clauses we use a different criterion in order to guide the
local search algorithm towards better local optima.

Recall that the d-neighborhood of a given truth assignment is defined as the
set of all assignments that can be obtained by changing the values of at most d
variables.

Theorem 2 (Khanna, Motwani, Sudan and Vazirani, 1994 [70,71]).
There exists a non-oblivious local search algorithm with the flip neighborhood,
which is a polynomial time 2k/(2k−1)-approximation algorithm for max k-sat.

Proof. We first give the proof for the max 2-sat problem. As in the proof of
Theorem 1 we assume that in the local optimum each variable is assigned the
value true.

The non-oblivious objective function fNOB is a weighted linear combination
of the number of clauses with one and two matched literals: fNOB = 3

2 |cov1|+
2|cov2| (notice that the oblivious objective function is simply fOB = |cov1| +
|cov2|).

Let δi (resp. (δ|cov1|)i and (δ|cov2|)i ) the variation of the objective func-
tion fNOB (resp. |cov1| and |cov2|) when variable xi is flipped. We have,
δi = 3

2 (δ|cov1|)i +2(δ|cov2|)i, with (δ|cov1|)i = −cov1(xi)+cov0(xi)+cov2(xi)−
cov1(xi) and (δ|cov2|)i = cov1(xi) − cov2(xi). For a local optimum relative to
function fNOB we have δi ≤ 0, for 1 ≤ i ≤ n. After summing over all variables,
we obtain

∑n
i=1 δi ≤ 0, thus

3
2
cov0(xi) +

1
2
cov1(xi) ≤

1
2
cov2(xi) +

3
2
cov1(xi). (2)
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Using the following easily derived equalities
∑n

i=1 cov1(xi) =
∑n

i=1 cov1(xi) =
|cov1|,

∑n
i=1 cov0(xi) = 2|cov0|, and

∑n
i=1 cov2(xi) = 2|cov2|, we obtain from (2)

3|cov0| ≤ |cov2| + |cov1|, meaning that the number of satisfied clauses is larger
than three times the number of unsatisfied ones. Since |cov0|+|cov1|+|cov2| = m
the total number of clauses, this implies that |cov0| ≤ m/4, that is mloc ≥ 3

4m.
In the general case we have k literals per clause, and

(δ|covj |)i = −covj(xi) + covj−1(xi) + covj+1(xi)− covj(xi),

for 1 ≤ j ≤ k − 1, and

(δ|covk|)i = covk−1(xi)− covk(xi), (δ|cov0|)i = cov1(xi)− cov0(xi).

The objective function is fNOB =
∑k

j=0 cj|covj |, with coefficients cj , 0 ≤
j ≤ k, to be determined latter. Then (δfNOB)i =

∑k
j=0 cj(δ|covj |)i ≤ 0 for any

local optimum. After some simple calculus one gets (δfNOB)i = Δ1cov0(xi) +∑k−1
j=1 (Δj+1covj(xi) − Δjcovj(xi)) − Δkcovk(xi), with Δj = cj − cj−1, 1 ≤

j ≤ k. By using
∑n

i=1 covj(xi) = j|covj |,
∑n

i=1 covj(xi) = (k − j)|covj | and∑n
i=1(δfNOB)i ≤ 0, one gets kΔk|covk| +

∑k−1
j=1 (jΔj − (k − j)Δj+1)|covj | ≥

kΔ1|cov0|. If we put Δj = 1
(k−j+1)( k

j−1)
∑k−j

l=0

(
k
l

)
the coefficient of each term on

the above left hand side inequality is unity, so one gets
∑k

j=1 |covj | = mloc ≥
(2k − 1)|cov0| = (2k − 1)(m−mloc), thus mloc ≥ (1− 1

2k )m. ��

It can be shown that theorem 2 cannot be improved by using a different
weighted linear combination of |cov1| and |cov2|.

As an example of the superiority of non-oblivious local search over the tradi-
tional local search, consider the following set of clauses (taken from [15]):
C1 = x1 ∨ x2 ∨ x3, C2 = x1 ∨ x2 ∨ x4, C3 = x1 ∨ x2 ∨ x5 and C4 = x3 ∨ x4 ∨ x5.
The assignment {xi ← true | 1 ≤ i ≤ 5}, in which all variables get the value
true, is a local optimum with respect to the oblivious objective function. It
satisfies the first three clauses C1, C2 and C3. However using the non-oblivious
objective function fNOB = 7

3 |cov1| + 3|cov2| + 10
3 |cov3|, it is no more a local

optimum since setting x1 ← false allows to increase fNOB from 7 to 9. Then
at the next iteration we can set x3 ← false to get the assignment {x2, x4, x5 ←
true, x1, x3 ← false} which satisfies all the clauses and is a global optimum.

Interestingly, Battiti and Protasi have reported that this approach also im-
proves the experimental results obtained on benchmark instances [14]. Once a
local optimum has been found using the non-oblivious local search, an oblivious
local search is started from that local optimum.

It is not possible to improve the ratio given in Theorem 2 since it has been
shown that max k-sat is not approximable within 2k/(2k − 1)− ε for any ε > 0
and k ≥ 3 [57].

3.4 Non-oblivious Local Search for max k-ccsp

Let Sj be the set of clauses where j literals are false in a truth assignment T .
The non oblivious objective function used within the local search is defined by
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fNOB =
∑k

j=0 Lj|Sj |, with Lj = (1 + kLj+1 − (k − j − 1)Lj+2)/(j + 1) for
0 ≤ j ≤ k − 1, and Lj = 0 for j ≥ k.

Alimonti [3] has proved that if T is a local optimum for the flip neighborhood
and for the objective function fNOB, then T satisfies at least m/2k clauses. Since
obviously m∗ ≤ m, we get that the non oblivious local search achieves a perfor-
mance ratio of 2k. However by considering the approximation with respect to the
value m∗ of the optimal solution, it is possible to obtain a better performance
ratio, as the following theorem shows.

Theorem 3 (Alimonti, 1995 [4]). The non-oblivious local search with the
flip neighborhood, and the objective function fNOB, is a polynomial time 2k− 1-
approximation algorithm for max k-ccsp.

Proof. (sketch) Let T be a local optimum with the flip neighborhood and for
the objective function fNOB. Recall that Sj is the set of clauses where j literals
are false in T . We denote by |q|j the cardinality of the literal q is in Sj , for
0 ≤ j ≤ k. Then it can be shown that since T is a local optimum,

ΔfNOB(q) =
k∑

j=1

(Lj+1 − Lj)|q|j −
k−1∑
j=0

(Lj − Lj+1)|q|j ≤ 0, (3)

for any literal q. After some lengthy calculus and several lemma about the values
Lj, Alimonti derives from the inequality 3 that T satisfies at least m∗/(2k − 1)
clauses. ��

Theorem 3 can be improved for the special case k = 2. Given a solution
s = (s1, . . . , sn), the extended d-bounded neighborhood Ned is defined in the
following way: s′ ∈ Ned(s) ⇐⇒ (dH(s, s′) ≤ d) ∨ s′ = (s1, s2, . . . , sn). In other
words either we flip the values of up to d variables, either we flip all of them. The
following theorem uses the non-oblivious objective function f ′

NOB = 4|S0|+ |S1|.

Theorem 4 (Alimonti, 1997 [5]). The non-oblivious local search algorithm
with the extended flip neighborhood, and the objective function f ′

NOB, is a poly-
nomial time 2.5-approximation algorithm for max 2-ccsp, and this bound is
tight.

Proof. (sketch) Let T be a local optimum for the extended flip neighborhood
and for the objective function f ′

NOB. Since T is a local optimum for the flip
neighborhood, no literal q exists such that Δf ′

NOB(T − q ∪ q) = −3|q|0 +3|q|1−
|q|1 + |q|2 > 0, therefore

3|q|0 + |q|1 ≥ 3|q|1 + |q|2. (4)

Since T is a local optimum for the extended flip neighborhood,

|S0| ≥ |S2|. (5)

Alimonti uses inequalities 4 and 5 to obtain that T satisfies at least m∗/2.5
clauses. An instance is given in [5] showing that this bound is tight. ��
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Since the max dicut problem (see Section 8) is a special case of max 2-ccsp
one obtains.

Corollary 1. The non-oblivious local search algorithm with the extended flip
neighborhood is a polynomial time 2.5-approximation algorithm for max dicut.

3.5 Oblivious Local Search for max csp(k, r)

We consider now the max csp(k, r) problem. In the flip neighborhood two as-
signments f and f ′ are neighbors if the number of variables whose values are
different in f and f ′ is exactly one.

Theorem 5 (Halldórsson, Lau, 1997[53]). The local search algorithm with
the flip neighborhood is a polynomial time (k/r)-approximation algorithm for
max csp(k, r). This bound is tight.

Proof. (sketch) Since f is a local optimum with respect to the flip neighborhood,
it can be shown that for all variables v ∈ V the number of constraints which are
adjacent to v, and that are satisfied by f is at least �rd(v)/k�. Then summing
up over all vertices, one obtains the result. ��

Halldórsson and Lau in [53] also develop a more advanced version of local
search. They are not able to improve the k/r ratio for max csp(k, r), but applied
to max k-cut they obtain a ratio of k

k−1
2Δ+k−1
2Δ+k . The algorithm works as follows.

First an initial assignment is found using a greedy algorithm. Then, several
iterations of a modified local search are performed, and finally the local search
with the flip neighborhood is performed. Given an assignment f the idea of the
modified local search is to consider vertices v such that the number of constraints
incident to v, in the constraint (multi) graph, that are not satisfied by f is above
a certain level, and to change the value of f(v).

3.6 Applications for Graph and Hypergraph Coloring Problems

We begin by some basic definitions. For more details the reader can consult the
book of Berge [16].

An undirected hypergraph (simply called hypergraph) H is a pair 〈V,H〉,
where V is the set of vertices, H is the set of hyperarcs, and for each X ∈ H ,
X ⊆ V . A coloring is a function that assigns to each vertex a color. A subset of
hyperarcs H ′ ⊆ H is said to be h-colorable, if there exists a coloring such that
each hyperarc X ′ ∈ H ′ contains at least one vertex for each one of the h colors.
This is the standard definition given in the book of Garey and Johnson [45]. Al-
imonti [4] also consider another more restrictive version of colorability. A subset
of hyperarcs H ′ ⊆ H is said to be 2-perfect-colorable, if there exists a coloring
such that each hyperarc X ′ ∈ H ′ contains, either the same number of vertices
(if |X ′| is even), or the same number of vertices but one (if |X ′| is odd), for each
one of the 2 colors. The hypergraph h-colorability (resp. 2-perfect-colorability)
problem is the problem of finding a h-colorable (resp. 2-perfect-colorable) subset
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H ′ ⊆ H of maximum cardinality |H ′|. The hypergraph 2-colorability problem is
also known as the set splitting problem [45].

A directed hypergraph H is a pair 〈V,H〉, where V is the set of vertices, H is
the set of directed hyperarcs, and for each 〈X, v〉 ∈ H , X ⊆ V and v ∈ V . The
directed hypergraph 2-colorability problem is the problem of finding a partition
of V in two sets S and S that maximize the cardinality of |H ′|, where H ′ ⊆ H
and for each hyperarc 〈X, v〉 ∈ H ′ one has X ⊆ S and v ∈ S. Notice that if H
is a graph, this problem becomes the max dicut problem (see Section 8).

By representing instances of hypergraph colorability problems as instances of
the conjunctive constraint satisfaction problem it is possible to get from Theo-
rem 3 approximation ratio results for hypergraph colorability problems. By this
way the following four theorems 6, 7, 8 and 9 are obtained.

Let H be a hypergraph, with |H | = m hyperarcs of size k.

Theorem 6 (Alimonti, 1995[4]). The hypergraph 2-colorability problem on H
can be solved within approximation ratio 2k−1/(2k−1 − 1).

Theorem 7 (Alimonti, 1995[4]). The hypergraph 2-perfect-colorability prob-
lem on H can be solved within approximation ratio

√
πk/2 if k is even, and

1
2

√
π(k + 1)/2 if k is odd.

We consider now that the size of each hyperarc is k = h. The hypergraph h-
colorability problem on H means that we look for a coloring for which no nodes
on a hyperarc have the same color.

Theorem 8 (Alimonti, 1995[4]). The hypergraph h-colorability problem on
H can be solved within approximation ratio ek

√
2 π k

(k+1
k )k.

Alimonti shows that directed hypergraph 2-colorability problem cannot be
approximated by means of oblivious local search, even if we restrict to the case
of directed graphs. For any approximation ratio r, whatever neighborhood size
b is allowed (the number b of vertices which can change their color to obtain
a neighboring solution) there are local optima solutions with respect to such
neighborhood that do not guarantee the ratio r. In contrast, by representing
this problem as a satisfiability problem we get from Theorem 3 the following
result.

Theorem 9 (Alimonti, 1995[4]). Let H = 〈V,H〉 be a directed hypergraph,
with |H | = m hyperarcs of size k. The directed hypergraph 2-colorability problem
on H can be solved within approximation ratio 2k − 1.

When k = 2 we have the max dicut problem (see Section 8), and Theorem 9
cannot compete with the ratio obtained by Goemans and Williamson [46].

4 The Traveling Salesman Problem

In this famous problem in combinatorial optimization, we are given a com-
plete graph over n vertices, with nonnegative edge costs. The traveling salesman
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problem, denoted by tsp, is to find a minimum cost cycle (tour T ) visiting every
vertex exactly once.
Approximation results:
It is an NP-hard problem and cannot be approximated (see e.g. [100]). However
if we assume that the edge costs satisfy the triangle inequality, i.e. we consider
the metric tsp, then the problem becomes approximable. The well known al-
gorithm of Christofides [32] achieves an approximation ratio of 3/2.
Neighborhoods:
The standard neighborhoods for tsp are the 2-opt and k-opt (k ≥ 3) neighbor-
hoods. Given a tour T , a tour T ′ belongs to the k-opt neighborhood of T if T ′

can be obtained from T by removing at most k′ ≤ k edges from T and adding
k′ new edges. An example of 2-opt move is depicted in Figure 1.

Fig. 1. An illustration of the 2-opt move

The well known Lin-Kernighan algorithm, which gives in practice very good
solutions, is based on such neighborhoods [80]. Very roughly, in this algorithm
the value of k is allowed to vary during the execution of the algorithm and when
an improvement is found the search continues for finding an even better move.
Local search complexity:
The traveling salesman problem is PLS-complete under the k-opt move for some
constant k [75]. It is also PLS-complete under the LK’ neighborhood [87] (a
variant of the Lin-Kernighan neighborhood, see [1]).
Lueker [81] constructed an instance for which there exists an exponentially long
sequence of improving 2-opt moves. Chandra, Karloff, Tovey [28] have extended
Lueker’s construction for all k > 2, giving explicit instances for which there exist
exponentially long improving sequences of k-opt moves. For all sufficiently large
k, Johnson, Papadimitriou and Yannakakis [66] and Krentel [75] have proved the
existence of instances and initial tours such that any local search using k-opt
and starting from this initial tours needs an exponential number of steps before
converging to a local optimal solution. Krentel claimed to have extended this
result to all k ≥ 8. This result also holds for the LK’ neighborhood [87]. However
it is not known whether this results hold for the 2-opt and 3-opt neighborhoods,
or if there always exist a way of choosing an improvement such that the local
search algorithm finds a local optimum solution after a polynomial number of
moves.
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Local search approximation results:
Chandra, Karloff, Tovey [28] have obtained several approximation and conver-
gence results concerning the performance of local search for various instances of
the traveling salesman problem. We cite here only a few of them. For random
tsp instances in the unit square they show that the expected number of itera-
tions before reaching a local optimum is polynomial, and the expected worst-case
approximation ratio is bounded by a constant. For metric tsp they show that
a local search using the 2-opt neighborhood achieves a performance ratio of at
most 4

√
n for all n. Moreover they show that using a larger neighborhood does

not fundamentally improve the ratio since a local search with the k-opt neigh-
borhood can have a performance ratio at least 1

4n
1/2k for infinitely many n.

Theorem 10 (Chandra, Karloff, Tovey, 1999[28]). A local search algo-
rithm with the 2-opt neighborhood achieves a 4

√
n approximation ratio for met-

ric tsp.

Proof. (sketch) We denote by wt(e) the weight of edge e. Let Copt denote the
cost of an optimal tour. and let T be any tour of cost C, which is locally optimal
with respect to the 2-opt neighborhood. Let Ek, for k ∈ {1, . . . , n} the set of big
edges of T : Ek = {e ∈ T | wt(e) > 2Copt/

√
k. Then the first part of the proof is

to show that |Ek| < k. Assuming this last result is true, then it means that the
weight of the k-th largest edge in T is at most 2Copt/

√
k, therefore

C =
n∑

k=1

wt(k − th largest edge)

≤ 2Copt

n∑
k=1

1√
k

≤ 2Copt

∫ n

x=0

1√
x
dx

= 4
√
nCopt.

The proof of |Ek| < k is by contradiction. Here we give only an idea of the proof.
Let V be the set of vertices of the instance. For any subset of vertices V ′ ⊆ V
we denote by Copt(V ′) the length of a shortest tour on V ′. We give an arbitrary
orientation of the tour T . Let t1, . . . , tr, with r = |Ek| ≥ k be the tails of each
arc from Ek in tour T . Then it can be shown that there exists at least

√
k tails

which are at a distance at least Copt/
√

k from each other. Consider the traveling
salesman instance restricted on this set V ′ of tails. Then the shortest tour on
this set has a length Copt(V ′) greater than

√
kCopt/

√
k = Copt contradicting the

fact that since the distances satisfy the triangular inequality then for any subset
V ′ ⊆ V one has Copt(V ′) ≤ Copt(V ). ��

We consider now the restricted version of the traveling salesman problem,
denoted by tsp(1,2), where each edge has a cost of 1 or 2. This problem remains
NP-hard and Papadimitriou and Yannakakis [88] proposed a polynomial time



44 E. Angel

7/6-approximation algorithm for this problem. Their algorithm uses a subtour
patching technique.

Theorem 11 (Khanna, Motwani, Sudan and Vazirani, 1994 [70,71]).
A local search algorithm with the 2-opt neighborhood achieves a 3/2 approxima-
tion ratio for tsp(1,2), and this bound is asymptotically tight.

Proof. Let C = vπ1 , vπ2 , . . . , vπnvπ1 be a local optimum solution with the 2-opt
neighborhood. Let O be any optimal solution. To each unit cost edge e in O we
associate a unit cost edge e′ in C as follows. Let e = (vπi , vπj ) with i < j. If
j = i + 1 then e′ = e. Otherwise e′ is a unit cost edge among e1 = (vπi , vπi+1)
and e2 = (vπj , vπj+1). Indeed, either e1 or e2 must be of unit cost. If it is not the
case, then the tour C′ obtained from C by removing edges e1 and e2 and adding
edges e and f = (vπi+1 , vπj+1) has a cost at least one less than C and therefore
C would not be a local optimal solution with the 2-opt neighborhood.

Let UO denotes the set of unit cost edges in O, and UC the set of unit cost edges
in C obtained from UO using the above mapping. Since an edge e′ = (vπi , vπi+1)
in UC can only be the image of unit cost edges incident on vπi in O and since O is
a tour, there are at most two edges in UO which map to e′. Thus |UC | ≥ |UO|/2
and we obtain cost(C)

cost(O) ≤
|UO|/2+2(n−|UO|/2)

|UO|+2(n−|UO|) ≤ 3
2 .

The above bound can be shown to be asymptotically tight [70]. ��

5 The Quadratic Assignment Problem

Given two n × n symmetric matrices F = (fij) and D = (dij), with a null
diagonal, the (symmetric) Quadratic Assignment Problem, denoted by qap, can
be stated as follows:

min
π∈Π

n∑
i=1

n∑
k=i+1

fikdπ(i)π(k),

where Π is the set of all permutations of {1, 2, . . . , n}. One of the major appli-
cations of the qap is in location theory where fij is the flow of materials from
facility i to facility j, and dij represents the distance from location i to location
j [73]. The objective is to find an assignment of all facilities to locations which
minimizes the total cost (see [89] for a survey of this problem).

This problem is a generalization of the traveling salesman problem and is
therefore NP-hard. Due to time constraints, branch and bound methods to solve
the qap exactly remain limited to instances of small size. On December 2000
Peter Hahn et al. [24] solved Kra30b, an instance with n = 30. The computation
time needed amounted to 182 days on a single cpu HP-3000 workstation. However
local search based algorithms are usually very good at providing approximate
solutions.
Neighborhoods:
We consider the 2-exchange neighborhood which is the standard one for the
qap. Given a permutation π = (π(1), . . . , π(i), . . . , π(j), . . . , π(n)), its neighbors
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are the n(n−1)
2 permutations of the form (π(1), . . . , π(j), . . . , π(i), . . . , π(n)) for

1 ≤ i < j ≤ n, obtained from π by performing a swap.
Local search complexity:
In [94], it has been proved that the Graph Bipartitioning Problem is PLS-
complete for the swap neighborhood, and since it is a particular case of the
symmetric qap with the 2-exchange neighborhood, it follows that the qap with
this neighborhood is PLS-complete.

If we denote by Cloc the cost of any solution which is a local minimum relative
to a certain neighborhood and CAV the average cost over all possible solutions,
it has been proved for the Traveling Salesman Problem that Cloc ≤ CAV with
the 2-exchange neighborhood [49], the 3-exchange and the 2-opt neighborhood
[33].

Let s(A) denote the sum of all terms of a given matrix A. Let x and y
two vectors of the same dimension. The maximum (respectively minimum)
scalar product of x and y is defined by: 〈x, y〉+ = maxπ∈Π〈x, πy〉 (respectively
〈x, y〉− = minπ∈Π〈x, πy〉). Let Fk andDk denote the sum over the k-th column of
F and D respectively, and let 〈F,D〉+ (respectively 〈F,D〉−) be an abbreviation
for 〈(F1, . . . , Fn), (D1, . . . , Dn)〉+ (respectively 〈(F1, . . . , Fn), (D1, . . . , Dn)〉−).

Theorem 12 (Angel, Zissimopoulos, 1998[7]). For the qap, let Cloc the
cost of any solution found by a deepest local search with the 2-exchange neigh-
borhood, then the following inequality holds: Cloc ≤ 〈F,D〉+

s(F )s(D) nCAV, where CAV

is the average cost of all possible permutations.

Proof. The demonstration’s technique is inspired from [49]. Let π = (π(1), . . . ,
π(n)) any permutation, and πij the permutation obtained from π by swap-
ping π(i) and π(j). Let C(π) the cost of the permutation π: C(π) =
1
2

∑n
i,j=1 fijdπ(i)π(j). We define δij = C(πij) − C(π). Then, after some calcu-

lus one easily obtains that the total difference cost relative to the 2-exchange
neighborhood is given by

n∑
i,j=1

δij = 2s(F · π(D)) − 4(n− 1)C(π), (6)

with the matrix π(D) defined by (π(D))ij = dπ(i)π(j).
In the same way, it can be shown that the average cost over all permutations

is given by

CAV =
s(F )s(D)
2n(n− 1)

. (7)

We note, by analogy with the space Laplacian operator, ∇2C(π) =
n
i,j=1 δij

n(n−1)
the average cost difference between the permutation π and its neighbors. Using
equality 6 one has ∇2C(π) = −4C(π)

n + 2s(F ·π(D))
n(n−1) .

The key idea is to bound ∇2C(π) and to use the fact that at each step there
always exists an exchange i, j such that δi,j ≤ ∇2C(π). By using equality 7
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we obtain ∇2C(π) = −4C(π)
n + α(π), where C(π) = C(π) − CAV and α(π) =

2s(F ·π(D))
n(n−1) − 2s(F )s(D)

n2(n−1) . Let α = maxπ α(π) = maxπ
2

n(n−1) (s(F ·π(D))− s(F )s(D)
n ).

Then, ∇2C is bounded above by −4
n (C(π) − CAV) + α.

So, since there always exists an exchange i, j such that δi,j ≤ ∇2C(π), the
deepest local search algorithm picks a movement at least as good as this one, and
the cost of the solution is at the next step less than C(π)− 4

n (C(π)−CAV) + α.
Iterating this process gives a limit cost l which verifies l = l − 4

n (l − CAV) + α.
It follows that l = αn

4 + CAV. By using equality 7 and some calculus it can be
shown that

l

CAV
= max

π

s(F · π(D))
s(F )s(D)

n ≤ 〈F,D〉+
s(F )s(D)

n ≤ 1
2
n . ��

It would be interesting to have an upper bound for Cloc where the size n of
the problem doesn’t occur. But notice that if we conserve the shape of the bound
of theorem 12, that is the term 〈F,D〉+

s(F )s(D) , the bound cannot be improved. Indeed,
recall that when restricted to the Symmetric Traveling Salesman Problem, this
bound becomes CAV, a result which is optimal (think at the special case when
all entries of the distance matrix are equal, then all the solutions have the same
cost equal to CAV).

Corollary 2. For the qap, the following inequality holds: Cloc ≤ n
2CAV. More-

over, there is a sequence of instances for which the ratio Cmax/
n
2CAV tends to

infinity, where Cmax is the maximum cost over all permutations.

Theorem 13 (Angel, Zissimopoulos, 1998[7]). If the matrices F and D are
positive integer ones, a deepest descent local search will reach a solution with a
cost less than n

2CAV in at most O(n log(s(F )s(D)/2)) iterations.

Proof. We have seen that at each step the cost C(π) of the current solution π
becomes less than C(π) − 4

n (C(π) − CAV) + α. If we note C̃(π) = C(π) − l (l
is the limit cost defined above) it is equivalent to say that a each step, C̃(π)
becomes less than (1− 4

n )C̃(π). Indeed, at each step C(π)− l becomes less than
C(π) − 4

n (C(π) − CAV) + α − (αn
4 + CAV) = (1 − 4

n )(C(π) − αn
4 − CAV). Since

F and D are integer matrices, the cost at each step must decrease at least one.
So, if we have L such that Cmax− l ≤ 2L the number of steps t until C̃(π) is less
than zero satisfies (1− 4

n )t < 2−L, that is t > −L

log2(1−
4
n )
∼ O(nL) when n→∞.

We have Cmax − l ≤ Cmax ≤ s(F )s(D)
2 , and the result follows. ��

Notice that, we do not claim that the entire local search will use at most this
polynomial number of iterations. Since the qap is PLS-complete, this would be
equivalent to say that P = NP ! Certainly, for some instances the search will go
on.

Theorem 12 can be applied to some particular cases of qap. The symmetric
traveling salesman problem with n cities can be seen as a particular case of qap
by considering D to be the distance matrix and F to be defined by fi,i+1 =
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fi+1,i = 1 with 1 ≤ i ≤ n − 1, fn,1 = f1,n = 1 and fij = 0 otherwise. Using
Theorem 12 we obtain for the 2-exchange neighborhood (any pair of cities can
be exchanged in this neighborhood), Cloc ≤ CAV, a result also previously found
by Grover [49].

Recall that given a graph with an even number n of vertices the graph biparti-
tioning problem consists of finding a partition of the vertices into two equal-sized
subsets A and B such that the number of edges having one extremity in A and
the other in B is minimized. For this problem D is the adjacency matrix of the
graph, and

F =
(

0 U
U 0

)
,

where U is the n
2 ×

n
2 matrix, with uij = 1, i, j = 1, . . . , n

2 . Using Theorem 12, we
obtain for the swap neighborhood (any vertex belonging to A can be swapped
with a vertex belonging to B in this neighborhood) C−

loc ≤ CAV, a result previ-
ously found by Grover [49].

Others applications concerning generalized maximum independent set and
maximum clique problems are considered in [7].

6 Set Packing and Independent Set

Given a collection of weighted sets, each containing at most k elements from a
finite base set, the weighted k-set packing problem, denoted by w-k-set pack-
ing, is to find a maximum weight subcollection of disjoint sets. In the unweighted
case, denoted by k-set packing, all sets have a weight of one, and the problem
is to find a maximum cardinality subcollection of disjoint sets. When k = 2
there is a polynomial reduction to the maximum weighted matching problem in
graphs and the problem is therefore polynomially solvable. However the problem
becomes NP-hard for any k ≥ 3, even in the unweighted case [45].

The simplest heuristic for w-k-set packing is the greedy one: start from the
empty subcollection, then add to the current subcollection a set of maximum
weight from the base set, then remove it and all sets that intersect it in the
base set, and repeat until the base set becomes empty. It is easy to see that this
greedy algorithm achieves a performance ratio of k and this bound is tight.

In local search at each iteration we attempt to replace some subsets of the
current solution by some collection of subsets of greater total weight that does
not intersect the remainder of the solution. In order to obtain polynomial time
algorithms there is a restriction on the number of sets added. For a fixed t, at
each iteration we check whether there are p ≤ t disjoint sets that are not in the
current solution that intersect at most p−1 sets that are in it. If this is the case,
we swap the sets to form a larger collection. A solution is said to be t-optimal if
such a swap does not exist.

For k-set packing Hurkens and Schrijver [63] showed that a local search
algorithm leads to an approximation ratio of k/2 + ε, where ε depends on t, i.e.
the size of the neighborhood used. Halldórsson [52] proposed a restricted form
of this local search with the same performance ratio but a decreased complexity.
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For w-k-set packing, Arkin and Hassin [8,9] showed that a local search
algorithm yields an approximation ratio k − 1 + ε, this bound being tight. In-
dependently Bafna, Narayanan and Ravi [13] obtained an approximation ratio
of k − 1 + 1

k . Chandra and Halldórsson [27] combining the greedy and local
search approach, starting from an initial solution found by the greedy algorithm
and then performing a deepest local search, obtained a performance ratio of
2(k+1)/3, and showed it was asymptotically tight. As we will see in Section 6.3,
Berman [17] using a non-oblivious local search obtained a (k + 1)/2 approxima-
tion ratio. Instead of considering the sum of weights of the sets in the solution
he considers the sum of squares of the weights of the sets.

The w-k-set packing problem is a special case of the weighted independent
set problem. Given an undirected graph G(V,E) the maximum independent set
problem, denoted by independent set, ask to find a set of nodes A ⊆ V of
maximum cardinality such that there is no edge in G between any couple of
nodes from A: ∀vi, vj ∈ A , [vi, vj ] �∈ E. In the weighted version, denoted by w-
independent set, there is a weight w(v) ∈ N associated to each vertex v ∈ V ,
and one seek for a maximum weighted w(A) =

∑
v∈A w(v) set of non adjacent

vertices A. Given an instance of the weighted k-set packing problem, we can
build an intersection graph where each vertex corresponds to a set, and there
is an edge between two vertices Si and Sj if and only if Si ∩ Sj �= ∅. Finding a
maximum weighted k-set packing reduces to the problem of finding a maximum
weighted independent set in the intersection graph. Notice now that since each
set is of cardinality at most k, the intersection graph is (k + 1)-claw free, i.e. it
has the property that no induced subgraph contains a k + 1-claw which is a set
of k + 1 independent vertices (i.e. mutually nonadjacent) that share a common
neighbor. However the class of (k + 1)-claw free graphs properly includes these
intersection graphs.

Some of the above mentioned results remains valid for the weighted and un-
weighted independent set problem on (k+1)-claw free graphs. This time in local
search at each iteration we attempt to replace a subset of vertices by another
subset of vertices of greater total weight that are not adjacent with the remainder
of the solution.

6.1 Oblivious Local Search for k-set packing

Theorem 14 (Hurkens, Schrijver, 1989[63]). Let m,n ∈ N, let V be a set
of size n, and let E1, . . . , Em be subsets of V . Furthermore, let k, t ∈ N with
k ≥ 3 such that the following holds:

(i) Each element of V is contained in at most k of the sets E1, . . . , Em.
(ii) For any p ≤ t, any p of the sets among E1, . . . , Em cover at least p elements

of V .

Then
m

n
≤
{

k(k−1)r−k
2(k−1)r−k if t = 2r − 1;
k(k−1)r−2
2(k−1)r−2 if t = 2r.

Moreover these bounds are tight.
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If we regard V and H = {E1, . . . , Em} as a hypergraph (V,H). It becomes
clear that under the hypothesis of (i) and (ii) there is some bound on the ratio
m/n. The proof involves a quite involved induction.

This result can be used to obtain an approximation ratio for local search
applied to k-set packing as follows. Let X1, . . .Xq be the collection of sets,
each containing at most k elements. Let V be the index set of the sets in some
t-optimal solution, and let O be the index set of the sets in some fixed optimal
solution. Let Ei be the index set of the sets in the t-optimal solution which
intersect Xi, for i ∈ O. Since each set Xi for i ∈ V has a size at most k, the
condition (i) of the theorem is satisfied. Moreover from the definition of a t-
optimal solution we get that the condition (ii) of the theorem is also satisfied.
We have |V | = n and |O| = m, therefore the right-hand side of the inequality of
Theorem 14 bounds the error ratio |O|/|V |.

6.2 Oblivious Local Search for w-independent set on d-Claw Free
Graphs

Recall that in an undirected graph, a d-claw C is an induced subgraph that
consists of a node ZC called the center of the claw and an independent set TC

of d nodes, called talons of the claw, each one connected to the center ZC . In
the following we consider only d-claw free graphs, i.e. graphs that possess no
d-claws. Recall that an approximation result for w-independent set on d-claw
free graphs, when d = k + 1, immediately leads to an approximation result for
w-k-set packing.

The simplest algorithm for w-independent set is certainly the greedy
algorithm. Let us consider an undirected graph G(V,E). For K,L ⊂ V let
N(K,L) = {u ∈ L : ∃v ∈ K such that [u, v] ∈ E or u = v}. N(K,L) is
the set of nodes in L which are adjacent to at least one node from K, union the
set of nodes both in K and L. The greedy algorithm 2 starts from an empty set
A, and while V \ N(A, V ) is non-empty, it choose a node of maximum weight
from it and add it to the set A. It can be shown that this algorithm achieves a
performance ratio d− 1.

The greedy algorithm can be considered as a deepest descent local search
algorithm by considering that the neighborhood of the solution A ⊂ V (the
current independent set) is defined by N (A) =

⋃
v∈V \N(A,V )A∪ {v}. A natural

question is whether this approximation ratio can be improved by enlarging the
size of the neighborhood. It is indeed the case.

Algorithm 2 Greedy for w-independent set

A ← ∅
while V \ N(A, V ) �= ∅ do

choose a node u ∈ V \ N(A, V ) of maximum weight w(u)
A ← A ∪ {u}

end while
return A
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Algorithm 3 SizeTwoImp for independent set (from Bafna, Narayanan and
Ravi [13])

A ← ∅
while there exists {u, v} that improves |A| do

A ← A \ N({u, v}, A) ∪ {u, v}
end while
return A

A node set C improves the independent set A if w((A\N(C,A))∪C) > w(A).
The set C is also called an improvement. The payoff factor of C is defined by
w(C)/w(N(C,A)). For α > 1 an α-good improvement is an improvement with
payoff factor at least α. A solution is α-locally optimal if it has no β-good
improvement, for any β > α.

The previous greedy algorithm considered only node sets of size one. The
algorithm 3 considers node sets of size two and has a better performance ra-
tio d/2 [13]. By increasing the size of allowed improvements, one can obtain
polynomial time algorithms for independent set with a performance ratio ap-
proaching (d− 1)/2 [63]. Chandra and Halldórsson have extended this approach
for w-independent set [26,27]. The algorithm 4 has an approximation ratio
2
3 (d+ 1) which is asymptotically tight.

In order to prove this result, Chandra and Halldórsson introduce the con-
cept of a projection of an optimal solution OPT to a given maximal solu-
tion I. The representative of each vertex b ∈ OPT is the vertex of maximum
weight in N(b, I). Then the projection of OPT to I is defined as proj(I) =∑

b∈OPT w(fI(b)). The projection has the following three properties. The first
one is proj(Gr) ≥ COPT , which means that the projection of the greedy so-
lution Gr is initially as large as the optimal solution value COPT of solution
OPT . The second one is: If I ′ is obtained from I by one or more α-good im-
provements, then k

α−1w(I ′) + proj(I ′) ≥ k
α−1w(I) + proj(I), meaning that the

more the value of the projection decreases and the more the value of the so-
lution I increases. The last one is: For an α-locally optimal solution I one has
(k + 1)w(I) ≥ 1

αCOPT + proj(I), meaning that the weight of a locally optimal
solution is large compared with the final projection. So either the value of the
projection decreases a lot during the execution of the local search algorithm and
by the second property the value of the solution I improves a lot, either the
value of the projection is important and by the last property it means that the
weight of a locally optimal solution is large with respect to the projection, and
by the first property we can conclude that it is large with respect to the optimal
solution.

The local search algorithm is not polynomial since the length of the improve-
ment sequence can be exponential in the length of the input instance. In order to
get a polynomial time algorithm Chandra and Halldórsson (see also [17]) show
how to modify algorithm 4. The idea is to start the greedy algorithm to obtain
an initial solution A, then the local search algorithm 4 is runned with a scaled
weight function w such that w(A) = l|V |, with l > 1 an integer. The initial solu-
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tion is not too far away from the optimal solution since the greedy algorithm has
an approximation ratio d− 1, and the scaling step ensures a polynomial number
of steps until reaching a local optimum solution using the usual argument that
at each step the weight w(A) must increase by at least one. The approximation
ratio, for this polynomial time algorithm, becomes l

l−1
2
3 d and the running time

is polynomial in ln.

Algorithm 4 BestImp for w-independent set (from Chandra and
Halldórsson [26,27])

A ← ∅
while there exists claw C such that TC improves w(A) do

if V \ N(A, V ) �= ∅ then
choose u ∈ V \ N(A, V ) with maximum w(u)
C ← {u}

else
choose claw C that maximizes w(TC )

w(N(TC ,A))
end if
A ← A \ N(TC , A) ∪ TC

end while
return A

6.3 Non-oblivious Local Search for w-independent set on d-Claw
Free Graphs

Berman has obtained a stronger performance ratio for w-independent set
using a non oblivious local search [17]. Let w2(A) =

∑
v∈A w(A)2.

Algorithm 5 SquareImp for w-independent set (from Berman [17])
A ← ∅
while there exists claw C such that TC improves w2(A) do

A ← A \ N(TC , A) ∪ TC

end while
return A

For any node u, let n(u) be a node v ∈ N(u,A) with the maximum value of
w(v). Let

charge(u, v) =
{
w(u)− w(N(u,A))/2 if v = n(u)
0 otherwise

Let C be a claw with center ZC = {v}. Then C is said to be a good claw if either
N(TC , A) = ∅ or (v ∈ A and

∑
u∈TC

charge(u, v) > w(v)/2). A nice claw is a
good claw that is minimal in size.
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Lemma 1 (Berman, 2000 [17]). The approximation ratio of SquareImp al-
gorithm is d/2, and this ratio is tight.

Proof. (sketch) It can be proved that if C is a nice claw, then TC improves w2(A)
(but not necessarily w(A)). Therefore, when SquareImp terminates we obtain
a solution A such that no good claw exists. Let A∗ be a maximum weighted
independent set. If we can distribute the weight w(A∗) among all the nodes of
A in such a way that no node v ∈ A receives more than dw(v)/2, then it shows
that w(A∗)/w(A) ≤ d/2. In a first step each u ∈ A∗ sends to each v ∈ N(u,A)
a weight equal to w(v)/2. Thus u sends a weight of w(N(u,A))/2. In the second
step, u sends its remaining weight w(u)−w(N(u,A))/2, that is charge(u, n(u)),
to n(u). On the receiving side, in the first step a node v ∈ A gets at most
(d−1)w(v)/2 from all its neighbors in A∗ (notice that there are at most d−1 of
them otherwise they would form talons of a d-claw). In the second step, v gets
at most w(v)/2 otherwise the nodes that send weights to v would form talons of
a good claw.

Figure 2 depicts an example showing that for 4-claw free graphs the approx-
imation ratio is at least 2. Algorithm SquareImp may start by picking, one by
one, elements of set Y . Such examples can be constructed for general d-claw free
graphs. ��

Z
Y

{a1}

{a2}

{a3}

{a1}

{a2}

{a3}

{a1, a2}

{a1, a3}

{a2, a3}

Fig. 2. The approximation ratio of SquareImp is at least d/2 on d-claw free graph.
Here d = 4 and the 9 vertices have a weight equal to one.

Theorem 15 (Berman, 2000 [17]). For every d there exists a non-oblivious
local search algorithm that given a d-claw free graph with n nodes and l > 1, finds
a solution to with approximation ratio l

l−1
d
2 in time that is polynomial in ln.

6.4 independent set on Bounded Degree Graphs

We assume that the degree of any vertex is bounded by a constant Δ. The neigh-
borhood of an independent set S is the set of all independent sets S′ which can
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be obtained from S by either, adding to S a single vertex not in S, or removing
a vertex from S and adding two vertices not in S. We call this neighborhood
3-flip.

Lemma 2 (Khanna, Motwani, Sudan and Vazirani, 1994[70,71]). The
local search algorithm with the 3-flip neighborhood has a performance ratio (Δ+
1)/2.

Proof. Let I be a local optimum solution found by the local search algorithm,
and let O be any optimal independent set. We let X = I ∩O.

Since we cannot add a vertex outside I to the set I to obtain a larger indepen-
dent set, it means that each vertex in V \I must have at least one incoming edge
to I. Since we cannot remove one vertex from I and add two vertices outside I
to get a larger independent set it means that at most |I \X | vertices in O \I can
have exactly one edge coming into I. Thus |O \X | − |I \X | = |O| − |I| vertices
in O \X must have at least two edges entering I.

I O

X

O/I=O/X

Fig. 3. An illustration of the proof of Lemma 2

Therefore the minimum number of edges between I andO\X is |I\X |+2(|O|−
|I|). On the other hand, the maximum number of edges between I and O \X is
bounded byΔ|I\X |. ThusΔ|I\X | ≥ |I\X |+2(|O|−|I|), using |I\X | = |I|−|X |
we get (Δ+ 1)|I| ≥ (Δ− 1)|X |+ 2|O| and so |I|

|O| ≥
Δ−1
Δ+1

|X|
|O| + 2

Δ+1 . ��

Halldorsson and Radhakrishnan [54] have shown that the local search algo-
rithm with the 3-flip neighborhood when run on k-clique free graphs yields an
independent set of size at least 2n/(Δ + k). They combine this local search
algorithm with a clique-removal scheme to achieve a performance ratio of
Δ/6(1 + o(1)).

Theorem 16 (Khanna, Motwani, Sudan and Vazirani, 1994[70,71]). An
approximation algorithm which simply outputs the larger of the two independent
sets computed by the local search algorithm and the classical greedy algorithm
has performance ratio (

√
8Δ2 + 4Δ+ 1− 2Δ+ 1)/2.

The performance ratio given in Theorem 16 is essentially Δ/2.414. This im-
proves upon the approximation ratio ofΔ/2 due to Hochbaum [59], whenΔ ≥ 10.
Berman and Fürer [18] gives an algorithm with performance ratio (Δ+ 3)/5 + ε
when Δ is even, and (Δ+ 3.25)/5 + ε when Δ is odd.
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7 The Set Cover Problem

In the set covering problem we are given a base set U , a collection C of subsets of
U whose union is U , and the objective is to find a minimal size sub-collection of
C whose union is still U . We will assume that each subset in C has size at most
k, with k a constant. In this case the problem is called k-set cover. Without
loss of generality, we can assume that the collection of subsets is closed under
subsets, i.e. for any subset all its subsets belong to C. In the following a set of
size k is called a k-set. For k = 2, this problem can be solved in polynomial time
by matching techniques. For k ≥ 3, the k-set cover problem is NP-hard [45]
and is MAX SNP-hard [70].

The greedy algorithm chooses a set that covers the maximum number of
uncovered elements and updates the remaining sets. One can shows that the
performance ratio of the greedy algorithm is Hk = ln k + θ(1) (with Hk =∑k

i=1 1/i the k-th Harmonic number).

7.1 Semi-local Search for k-set cover

Halldórsson [52] proposed a polynomial time local search algorithm with a per-
formance ratio of Hk − 11/42 for k-set cover, with k ≥ 3. Duh and Fürer [37]
obtained a better performance ratio, namely Hk − 1/2 for k-set cover, with
k ≥ 3. They have proposed a local search based algorithm, they call semi-local
search, for this problem. We consider first the 3-set cover problem. A semi-
local (s, t)-improvement step consists of the insertion of up to s 3-sets, and the
deletion of up to t 3-sets from a current solution. Moreover an arbitrary number
of 2-sets and 1-sets are optimally replaced. Indeed, once the 3-sets have been se-
lected for a partial cover, the task of selecting the 2-sets and 1-sets can be done
optimally in polynomial time by computing a maximum matching. The vertices
are the elements of U still to cover and the edges are the 2-sets. The 2-sets cor-
responding to the maximum matching edges and the 1-sets corresponding to the
vertices not covered by the maximum matching edges form a optimum covering.

This is an example of non-oblivious local search. The objective function used
in the local search is not the number of sets in the cover but also takes into
account the number of 1-sets. More precisely these two quantities (total number
of sets in the cover and number of 1-sets) are ordered in a lexicographic way.
We prefer smaller covers, and among covers of a given size we prefer those with
fewer 1-sets.

Theorem 17 (Duh, Fürer, 1997[37]). The semi-local (2, 1)-search algorithm
for 3-set cover produces a solution with performance ratio 4/3, and this bound
is tight.

Proof. (sketch) Duh and Fürer introduce the following bipartite multi-graph. It
has an A-vertex for every set in the local search solution A and it has a B-vertex
for every set present in a fixed optimal (best) solution B. The element of the
base set U are represented by the edges. If the set corresponding to a A-vertex
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intersects the set corresponding to a B-vertex in m elements, then there are m
edges between the two vertices. Let Aj (resp. Bj) be the set of A-vertices (resp.
B-vertices) of degree j. We note |Aj | = aj , |Bj | = bj for j = 1, 2, 3, |A| = a,
|B| = b and |U | = u.

Since we have assumed that the collection of subsets was closed under subsets,
we can assume without loss of generality that the sets of the cover in solution A
are disjoint. The same for solution B. Then it is possible to prove that

a1 + 2a2 + 3a3 = b1 + 2b2 + 3b3 = |U |, (8)

a1 ≤ b1, and (9)

a1 + a2 ≤ b1 + b2 + b3. (10)

Adding the equality 8 and inequalities 9,10 we get 3(a1 + a2 + a3) ≤ 3b1 +
3b2 + 4b3, hence

3a ≤ 4b− b1 − b2 ≤ 4b, (11)

and a ≤ 4
3b.

The example in Figure 4 shows that this bound is tight. ��

Fig. 4. Worst case for 3-set cover for semi-local (2, 1)-search algorithm

Notice that with the greedy algorithm we obtain H3 = 1+ 1
2 + 1

3 � 1.83 > 4/3.
We consider now the k-set cover problem. A semi-local (s, t)-improvement

step consists of the insertion of up to s 3-sets, 4-sets, . . ., k-sets and the deletion
of up to t such sets from a current solution. By using a similar proof as in
Theorem 17 it is possible to prove that the semi-local (2, 1)-search algorithm
for k-set cover problem achieves a performance ratio of (k + 1)/3, which is
not competitive with the performance ratio obtained by the greedy algorithm
when k gets larger. In order to improve this result Duh and Fürer propose an
algorithm which combines a greedy phase followed by a semi-local search. The
aim of the greedy phase is to select the l-sets with l ≥ 5, then the local search is
used to select the 4-sets and 3-sets to cover the remaining elements (recall that
the 2-sets and 1-sets are optimally chosen by using matching techniques when
all other subsets have been chosen).
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Theorem 18 (Duh, Fürer, 1997[37]). The semi-local (2, 1)-search algorithm
for k-set cover produces a solution with performance ratio H5−5/12 for k ≥ 4.

By using a more complex strategy it is possible to improve this result and
obtain a performance ratio H5 − 1/2 for k ≥ 4 [37].

7.2 Application for color saving

In the color saving problem one seeks to color a graph with the minimum number
of colors. The objective function to maximize is the total number of vertices n
minus the number of colors used.

Theorem 19 (Duh, Fürer, 1997[37]). The semi-local (2, 1)-search algorithm
has a performance ratio 6/5 for color saving on graphs with maximum inde-
pendent sets of size 3.

Proof. Under this assumption color saving is a special case of 3-set cover.
The base set U is the set of vertices of the given graph, and the collection C is
all independent sets of size at most 3.

We have u = b1 + 2b2 + 3b3 vertices and the number of colors used is b =
b1 + b2 + b3 for a best solution B and a = a1 + a2 + a3 for a solution A returned
by the local search algorithm. Therefore the value of the objective function is
u− a (resp. u− b) for solution A (resp. B).

By inequality 11, 3a ≤ 4b− b1 − b2, and so

3u− 4b+ b1 + b2 ≤ 3(u− a). (12)

With b = b1 + b2 + b3 and u = b1 + 2b2 + 3b3 we have

3b− 2b1 − b2 − u = 0. (13)

Multiplying inequality 12 by 2 and adding equality 13 we obtain 5u − 5b ≤
5u− 5b+ b2 ≤ 6(u− a). Therefore (u− b)/(u− a) ≤ 6

5 . ��

In the general case, i.e. when larger independent sets exist, Duh and Fürer [37]
obtain an algorithm with a performance ratio 360/289 � 1.2456.

Local search has also been applied to a general graph coloring problem but
with less success. Given an edge-weighted graph and an integer k, the generalized
graph coloring problem is the problem of partitioning the vertex set into k subsets
so as to minimize the total weight of the edges that are included in a single subset.
Vredeveld and Lenstra [101] show that the quality of local optima with respect
to a large class of neighborhoods may be arbitrarily bad and that some local
optima may be hard to find because of PLS-completeness.

8 The Maximum Cut Problem

Let G = (V,E) be an undirected graph without loops and multiple edges. For
any subsets X,Y ⊆ V we denote by [X,Y ] the set of edges of G having one
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vertex in X and the other vertex in Y . The maximum cut problem, denoted by
max cut, is to find a bipartition (A,B) of the vertices of G, i.e. A∪B = V and
A ∩ B = ∅, such that |[A,B]| = |{x, y} ∈ E : x ∈ A, y ∈ B}| is maximized. In
the directed case, the objective is to maximize the number of arcs whose heads
are in B and whose tails are in A. This problem is denoted max dicut.

In the sequel we consider the max cut problem. This problem is NP-complete
[68]. There exist very strong approximation results based on semi-definite pro-
gramming [46,47] obtained by Goemans and Williamson. Feige, Karpinski and
Langberg [42] show that a local search algorithm improves the performance
guarantee of the Goemans and Williamson’s algorithms [46,47].

Let Copt(G) be the optimal cost of max cut on graph G. Edwards [38,39]
has proved that Copt(G) ≥ 1

2 |E|+
1
8 (
√

8|E|+ 1−1), and that Copt(G) ≥ 1
2 |E|+

1
4 (|V | − 1) for every connected graph. In the sequel we will see that local search
is strong enough to attain the first bound, but not strong enough to obtain a
bound as good as the latter inequality.

Neighborhoods for max cut are defined by switching the location of the
vertices of a subset W ⊂ V in a given bipartition (A,B). It gives rise to a new
bipartition (A′, B′) = (AΔW,BΔW ), where Δ denotes the symmetric difference
of sets. Given a set of switchings S, we define the S-switch neighborhood of
bipartition (A,B) as the set of bipartitions (A′, B′) = (AΔW,BΔW ) for W ∈ S.
When S = V , i.e. we can switch a single vertex from one subset to the other,
we have the flip neighborhood. It is easy to see that a local search algorithm
with respect to the flip neighborhood achieves a performance ratio of 2 [100]. It
has been proved that max cut with the flip neighborhood is PLS-complete [94].
However this is no more true when one considers cubic graphs [90] (the problem
remains NP-hard).

In the sequel we shall note d(X,Y ) = |[X,Y ]|, and we simply write d(v, Y )
instead of d({v}, Y ) if v ∈ V . We have d(v, w) = 1 if {v, w} ∈ E and d(v, w) = 0
otherwise. Bylka, Idzik and Tuza [25] define the following quantities: For every
bipartition (A,B) of V , the weight of the vertex v with respect to the bipartition
(A,B) is μ(v,A,B) = d(v,B)−d(v,A) if v ∈ A and μ(v,A,B) = d(v,A)−d(v,B)
if v ∈ B. The measure of effectiveness of the bipartition (A,B) is μ(A,B) =∑

v∈V μ(v,A,B). It is easy to see that for every bipartition (A,B) of the graph
G = (V,E) one has

|[A,B]| = 1
2
|E|+ 1

4
μ(A,B). (14)

In the following we will write A ∪ w instead of A ∪ {w}, and so on.
If we restrict ourself to set W of size at most 2, then it is easy to derive that

μ(A′, B′) > μ(A,B) if and only if, either

W = {v} and μ(v,A,B) < 0, or (15)
W = {v, w} and μ(v,A,B) + μ(w,A,B) < 2d(v, w). (16)
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For any bipartition (A,B), Bylka, Idzik and Tuza define the following sets of
switchings:

S1(A,B) = {v ∈ V | μ(v,A,B) < 0},
S2(A,B) = {v ∈ V | μ(v,A,B) < 0 and |A− v| = |B − v|} ∪

{v, w ∈ V 2 | μ(v,A,B) + μ(w,A,B) < 2d(v, w)},
S3(A,B) = S1(A,B) ∪ {v ∈ B | μ(v,A,B) = 0} ∪

{{v, w} ∈ [A,B] | μ(v,A,B) + μ(w,A,B) < 2}.

Because of conditions 15 and 16 these sets of switchings define improving
moves. Each time a switch is performed the value μ(A,B) increases by at least 4
and therefore the number of iterations performed by each local search is O(|E|).
Moreover the size of the S1,S2 and S3-switch neighborhoods are respectively
O(|V |), O(|V |2) and O(|V |+ |E|), leading to polynomial time local search algo-
rithms.

Theorem 20 (Bylka, Idzik, Tuza, 1999[25]). For any graph G = (V,E) and
any (balanced for the S2-switch neighborhood) partition (A,B) which is a local
optimum for respectively the S1 S2 and S3-switch neighborhood, one has for the
size of the cut [A,B] respectively

|[A,B]| ≥ 1
2
|E|+ 1

4
s(G),

where s(G) is the number of vertices having odd degree,

|[A,B]| ≥ 1
2
|E| |V |+ ε

|V | − 1 + ε
,

with ε = 0 if |V | is even and ε = 1 if |V | is odd,

|[A,B]| ≥ 1
2
|E|+ 1

8
(
√

8|E|+ 1− 1).

Moreover these three bounds are sharp.

Proof. (sketch) Since (A,B) is a local optimum for the S1-switch neighborhood
one has ∀v ∈ V , μ(v,A,B) ≥ 0. If the degree of v is odd it implies that
μ(v,A,B) ≥ 1, and by equality 14 one gets |[A,B]| ≥ 1

2 |E|+
1
4s(G).

Since (A,B) is a local optimum for the S2-switch neighborhood one has
∀(v, w) ∈ A×B,

μ(v,A,B) + μ(w,A,B) ≥ 2d(v, w) =
{

2 if {v, w} ∈ E
0 if {v, w} /∈ E

Therefore summing this inequality over all (v, w) ∈ A×B we get

|B|
∑
v∈A

μ(v,A,B) + |A|
∑
w∈B

μ(w,A,B) ≥ 2|[A,B]|. (17)
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Since the bipartition (A,B) is balanced we can assume that |B| ≤ |A| ≤ |B|+1,
and |A| = 1

2 |V | +
1
2ε and |B| = 1

2 |V | −
1
2ε. Therefore, since (A,B) is a local

optimum for the S2-switch neighborhood one has μ(v,A,B) ≥ 0 for v ∈ A.
From the inequality 17 we get

2|[A,B]| ≤ 1
2
|V |μ(A,B) +

1
2
ε (
∑
w∈B

μ(w,A,B) −
∑
v∈A

μ(v,A,B))

≤ 1
2
|V |μ(A,B) +

1
2
ε μ(A,B) =

1
2

(|V |+ ε)μ(A,B).

By equality 14 we obtain 1
2 (|V | + ε)μ(A,B) ≥ |E| + 1

2 μ(A,B) and the result
follows.

The third result is more difficult to get, and we refer the reader to the pa-
per [25] for the details. ��

The following theorem shows that (oblivious) local search cannot attain the
second bound of Edwards.

Theorem 21 (Bylka, Idzik, Tuza, 1999[25]). For every natural number k
there exist a real εk, a constant ck, and an infinite family of connected graphs
Gn = (Vn, En) with vertex partition (An, Bn) such that |[An, Bn]| ≤ 1

2 |En| +
(1
4 − εk) (|Vn|−1)+ ck holds, and no switching of at most k vertices can increase

the number of edges in the bipartition.

9 Facility Location Related Problems

In this class of problems we have a set of facilities F and a set of clients C. We
are given a cost (or distance) cij which represents the cost of serving client j ∈ C
from facility i ∈ F . The objective is to determine a subset of facilities S ⊆ F to
open in order to serve all the clients at the minimum cost. In the metric version,
we assume that the costs cij are symmetric (F ∩C is not necessarily the empty
set) and satisfy the triangle inequality. We will consider the following well known
problems.

In the uncapacited k-median problem, denoted by ukm, we want to open at
most k facilities, i.e. |S| ≤ k. Let us assume that a client j ∈ C is served by a
facility σ(j) ∈ F . Then we want to minimize the total cost of serving all clients:
cost(S) = cost(S, σ) =

∑
j∈C cσ(j)j . Notice that when S is chosen, serving each

client by its nearest facility in S, i.e. σ(j) = argminl∈S clj , minimize this cost.
One sometimes assumes that each client j ∈ C has a demand dj . In that case
the cost is cost(S) =

∑
j∈C djcσ(j)j . In the capacited k-median problem there is

an upper bound on the demand that can be satisfied by any given facility. There
are two variants to consider: either the demand of a client must be met by a
single facility (unsplittable demands), or the demand of a client may be divided
across several facilities (splittable demands). The capacited k-median problem
with unsplittable demands is denoted by ckmu, whereas the capacited k-median
problem with splittable demands is denoted by ckms. For these problems, an
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(a, b)-approximation algorithm is a polynomial time algorithm that computes a
solution using at most bk facilities and with a cost at most a times the cost of
an optimal solution using at most k facilities.

In the k-center problem we want to open k facilities, such that the maximum
serving cost is minimized, i.e. we want to minimize maxj∈C cσ(j)j . Hassin, Levin
and Morad [56] show that a lexicographic variant of local search achieves some
performance ratio for this problem but on very specific cases (k = 2 or k = 3).

In the uncapacited facility location problem, denoted by ufl, we are given
costs fi ≥ 0 for opening the facility i ∈ F . The problem is to determine a subset
of open facilities S ∈ F in order to minimize the cost of opening facilities plus
the cost of serving all clients from these opened facilities: cost(S) =

∑
i∈S fi +∑

j∈C cσ(j)j . As in the ukm problem, when the subset S is chosen, serving each
client by its nearest facility in S minimizes the serving cost. As before capacited
versions can be considered. We denote by cflu the capacited facility location
problem with unsplittable demands, and by cfls the capacited facility location
problem with splittable demands. In these problems at most one facility can be
opened at a given location.

Guha, Meyerson and Munagala [50] consider a generalization of the classical
facility location problem, where solutions are required to be fault-tolerant. Every
client point j must be served by rj facilities instead of just one. The cost of
assignment for client j is the weighted linear combination of the assignment
costs to its rj closest open facilities. The objective is to minimize the sum of
the cost of opening the facilities and the assignment cost of each client j. Guha,
Meyerson and Munagala obtain a factor 4 approximation to this problem through
the application of various rounding techniques to the linear relaxation of an
integer program formulation. They further improve the approximation ratio to
3.16 using randomization and to 2.41 using greedy local-search type techniques.

For a capacited problem with splittable demands, when a subset S is chosen an
optimal assignment of clients to facilities can be computed in polynomial time
by solving a transportation problem. However, for a capacited problem with
unsplittable demands, when a subset S is chosen finding an optimal assignment
of clients to facilities is NP-hard. The results presented in [74] use a reduction
from the unsplittable case to the splittable case.

In another variant of the capacited facility location problem, denoted by cfl,
we associate a capacity ui with each facility i ∈ F , which measures the maximum
number of clients that the facility can serve. We can open multiple copies of a
facility i. Each copy incurs a cost fi and is able to serve at most ui clients. The
objective function is the same than before, cost(S) =

∑
i∈S fi +

∑
j∈C cσ(j)j .

When the subset S is chosen, minimizing the serving cost
∑

j∈C cσ(j)j can be
done efficiently by a mincost flow problem. In the k-cfl we furthermore bound
the number of facilities that than be opened at a certain location, namely we
can open at most k facilities at any location.

For ukm, Arya et al. [10] show that a local search algorithm with the swap
neighborhood has a performance ratio of 5 and this bound is tight. When p
facilities are allowed to be swapped simultaneously, that is we can drop at most
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p facilities and open the same number of new facilities, the performance ratio
becomes 3 + 2/p, and it is tight. Korupolu, Plaxton and Rajaraman [74] give
a local search procedure in which we can add, delete and swap facilities. The
algorithms returns a solution with k(1+ε) opened facilities having a service-cost
at most 3 + 5/ε times the optimum k-median solution.

For ufl, Arya et al. [10] show that a local search in which we can add, drop and
swap a facility, has a performance ratio of 3 and this bound is tight. Using scaling
techniques [30] the algorithm can be improved to obtain a ratio of 1+

√
2 � 2.414.

The best approximation ratio is achieved by the 1.728-approximation algorithm
due to Charikar and Guha [30] that uses a hybrid approach by combining an
LP-based approximation algorithm with a local improvement algorithm in which
multiple facilities may by dropped in a single local search step.

For ∞-cfl, Arya et al. [10] show that a local search in which we can add
multiple copies of a facility and drop zero or more facilities has a performance
ratio of 4. Jain and Vazirani [64] obtained the same ratio using a primal-dual
approach. Using scaling techniques [30] the algorithm of Arya et al. can be
improved to obtain a ratio of 2 +

√
3 � 3.732.

Kanungo et al. [67] consider the k-means clustering problem. We are given a
set of n data points in d-dimensional space R and an integer k, and the problem is
to determine a set of k points in R

n, called centers, to minimize the mean squared
distance from each data point to its nearest center. Although asymptotically
efficient approximation algorithms exist [82], these algorithms are not practical
due to the extremely high constant factors involved. Kanungo et al. present a
local improvement heuristic based on swapping centers in and out. They prove
that this yields a (9 + ε)-approximation algorithm, and that the approximation
factor is almost tight by giving an example for which the algorithm achieves an
approximation factor of (9− ε).

In the following we will present only a sketch of proof of a result obtained by
Arya et al.:

Theorem 22 (Arya, Meyerson, Pandit, Garg, Munagala, Khandekar,

2001[10]). For the uncapacited k-median problem ukm, a local search with the
swap neighborhood achieves a performance ratio of 5.

Proof. (sketch) In order to obtain a polynomial time local search algorithm, one
moves from a solution S to a neighboring solution S′ only if the decrease in cost
is large enough, i.e. cost(S′) ≤ (1− ε

p(|F |,|C|))cost(S), with ε > 0 and p(|F |, |C|)
is some polynomial in the number of facilities and clients. It can be shown that
by doing this, one gets a 5(1 + ε) approximation ratio instead of 5. To simplify
the exposition, we shall assume that the algorithm ends at a solution S such
that cost(S′) ≥ cost(S) for any neighboring solution S′.

Let S denote the output of the local search algorithm, and S∗ denote an
optimum solution. Since S is a local optimum with respect to the swap neigh-
borhood, one has cost(S − s+ o) ≥ cost(S), ∀s ∈ S, o ∈ S∗. By combining some
of these inequalities it is possible to get that cost(S) ≤ 5 cost(S∗). ��
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10 Scheduling Problems

We consider some classical and extensively studied scheduling problems. We
have a set of n jobs, J1, . . . , Jn, which has to be processed without preemption
on machines M1, . . . ,Mm. A machine can process at most one job at a time.
The processing time of job Jj if it is scheduled on machine Mi is denoted by pij .
One has to determine for each job the machine on which it is scheduled. The
load of a machine is the sum of the processing times of jobs scheduled on it.
The objective is to find a schedule of minimum makespan, i.e. a schedule which
minimizes the maximum load of machines.

In the identical parallel machines environment, denoted by P , any job Jj has
the same processing time pj on all machines, i.e. pij = pj ∀i ∈ {1, . . . ,m}. In
the uniform parallel machines environment, denoted by Q, each machine Mi

has a speed si, each job Jj has a processing requirement pj, and the processing
time of job Jj if it is scheduled on machine Mi is given by pij = pj/si. In the
unrelated parallel machines environment, denoted by R, pij depends both on
job Jj and machine Mi. In the classical notation of Graham et al. [48], when
the number of machines is part of the input, these problems are denoted by
respectively P ||Cmax, Q||Cmax and R||Cmax. When the number of machines is a
constant m, these problems are denoted by respectively Pm||Cmax, Qm||Cmax

and Rm||Cmax. All these problems are NP-hard, since even the simplest case,
P2||Cmax is NP-hard [45].

For P ||Cmax and Q||Cmax problems, Hochbaum and Shmoys [60,61] proposed
a polynomial-time approximation scheme, that is, for each ε > 0, there exists a
polynomial time (1+ε)-approximation algorithm. For R||Cmax, Lenstra, Shmoys
and Tardos [78] proposed a polynomial time 2-approximation algorithm. They
also proved that there does not exist a polynomial time (3/2− ε)-approximation
algorithm for ε > 0, unless P=NP.

Schuurman and Vredeveld [95] analyze the performance of local search algo-
rithms for theses problem. Despite their results is not competitive with the above
mentioned ones, they are nevertheless interesting since they constitute one of the
very few results concerning the worst case performance analysis of local search
algorithms for scheduling problems. They consider three neighborhoods, based
on jump, swap and push moves. In the jump (also called move) neighborhood, we
can move a job to a machine on which it is not scheduled. Let us define a critical
machine as a machine with maximum load. Then, a local optimum solution is
a solution such that no jump decreases the makespan or the number of critical
machines without increasing the makespan. In the swap neighborhood, we can
interchange the machine allocations of any two jobs which are not scheduled
on the same machine. If all jobs are scheduled on the same machine, then this
neighborhood becomes empty. Therefore, the swap neighborhood consists of all
possible jumps and all possible swaps.

The push neighborhood is the more complex one. It is based on the same idea
than the variable-depth search introduced by Kernighan and Lin for the graph
partitioning problem [69], and the traveling salesman problem [80]. A push is a
sequence of jumps. It is initiated by selecting a job Jk on a critical machine, i.e.
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with load Cmax, and a machine Mi to move it. If after this move the load of
machine Mi is at least as large as the original makespan Cmax then the smallest
job (among those which have a processing times smaller than the processing time
of Jk) from Mi are iteratively removed from it, until the load of machine Mi

becomes smaller than Cmax. If it is possible the job Jk is said to fit on machine
Mi. The removed jobs are gathered in a queue. Then the largest job of the queue
are removed, and pushed in the same way than the job Jk, and so on. If at any
time a job does not fit on any machine, then the push is unsuccessful. When
pushing all jobs on the critical machine is unsuccessful, we have a local optimum
solution with respect to the push neighborhood. It can be shown that a push
move can be done, using appropriate data structures and selecting, in O(n log n)
time. Notice that in the case of unrelated parallel machines a push is not defined,
since the largest job of the queue is not defined any more since its processing
time depends on the machine it is assigned.

Table 1 resumes the results obtained by Schuurman and Vredeveld [95]. The
performance guarantees for the jump neighborhood can be derived from the
proof of Cho and Sahni [31] for list schedules on uniform parallel machines.

Table 1. Performance guarantees ρ of local search (from [95])

jump swap push
P2||Cmax 4/3 4/3 8/7
P ||Cmax 2 − 2

m+1 2 − 2
m+1

4m
3m+1 ≤ ρ ≤ 2 − 2

m+1

Q2||Cmax
1+

√
5

2
1+

√
5

2
1+

√
17

4

Q||Cmax
1+

√
4m−3
2

1+
√

4m−3
2

3
2 − ε ≤ ρ ≤ 2 − 2

m+1
R2||Cmax

pmax
Copt

≤ ρ n − 1 ≤ ρ undefined
R||Cmax

pmax
Copt

≤ ρ pmax−1
Copt

≤ ρ undefined

Theorem 23 (Schuurman and Vredeveld, 2001[95]). A push optimal so-
lution for P2||Cmax has value at most 8/7 times the optimal solution value.

Proof. (sketch) Let Li (i = 1, 2) the load of machine Mi, and assume w.l.o.g.
that L1 ≥ L2. Then it can be shown that L1−L2 > L1/4. Let J1 be the smallest
job on M1. By push optimality p1 ≤ L1 − L2 > L1/4. Hence there are at most
three jobs on M1. By reasoning on the largest job that has to be removed when
pushing J1 onto M2, and by careful enumerations of different cases according the
number of jobs that are processed on machine M2, Schuurman and Vredeveld
derive the theorem. ��

Brucker, Hurink and Werner [21,22] show that for P2||Cmax and P ||Cmax a
local optimum with respect to the jump neighborhood can be found after O(n2)
iterations. This result can be improved for P2||Cmax. If deepest descent local
search is used, then a local optimum solution can be found after O(n) iterations.
Schuurman and Vredeveld obtain for Q2||Cmax the same result. For Q||Cmax a
local optimum solution can be found after O(n2m) iterations.
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However it is an open problem to determine the number of iterations needed
to find a local optimum solution with respect to the swap or push neighborhood.
Schuurman and Vredeveld [95] conjecture that a push local optimum solution
cannot be found in polynomial time via an iterative improvement procedure.

11 Minimum Label Spanning Tree Problem

In the minimum label spanning tree problem, denoted by min lst, we have an
undirected, connected graph G. The edges of G are colored (or labeled) with the
colors c1, c2, . . . , cq. The goal of the min lst problem is to find a spanning tree
of G that uses the minimum number of colors, or equivalently to find a smallest
cardinality subset C ⊆ {c1, c2, . . . , cq} of the colors, such that the subgraph
induced by the edges with colors belonging to C is connected and touches all
vertices of G.

This problem, introduced by Chang and Leu [29] in the context of commu-
nication network design, is NP-hard. Krumke and Wirth [76] proved that it is
not approximable better than a logarithmic factor, unless P=NP, and provided
a greedy algorithm with an approximation ratio of at most 2 lnn + 1. Wan,
Chen and Xu [102] obtained an approximation ratio of at most ln(n − 1) + 1.
Brüggemann, Monnot and Woeginger [23] have studied a special case, denoted
by min lstr, where every color can occur at most r times on the edges of graph
G. They show that for r = 2 this problem can be solved in polynomial time,
since it is equivalent to the graphic matroid parity problem. For any fixed r ≥ 3
they show that this problem is APX-complete, which implies that it does not
have a polynomial time approximation scheme unless P=NP. For r ≥ 3 they
introduce a local search algorithm.

Let C ⊆ {c1, c2, . . . , cq} be a color set. The color set C is said to be feasible
if the set of edges of G with colors belonging in C is connected and touches all
vertices of G. Let C1 and C2 be two color sets. The color set C2 is in the k-switch
neighborhood of the color set C1 if and only if we can get C2 by first removing
up to k colors from C1, and then adding up to k other colors to it. The local
search algorithm looks, at each iteration, if there exists a feasible color set C′ in
the k-swith neighborhood of the current solution C such that |C′| < |C|, i.e. C′

uses strictly less colors than C. A spanning tree is said to be a local optimum
for the k-switch neighborhood if its associated color set (the set of colors of its
edges) is a local optimum for the k-switch neighborhood.

Theorem 24 (Brüggemann, Monnot, Woeginger, 2003[23]). For any in-
teger r ≥ 2 and for any instance of min lstr, the objective value of any local
optimum with respect to the 2-switch neighborhood is at most a factor (r + 1)/2
above the optimal objective value, and this bound is tight.

Proof. (sketch) The proof is by contradiction. Let G = (V,E) be a counterexam-
ple with the smallest number of edges. Let T ∗ = (V,E∗) be an optimal spanning
tree for G, with color set C∗, and let T+ = (V,E+) be a locally optimal tree
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with respect to the 2-switch neighborhood, with color set C+. We have therefore
|C+| > r+1

2 |C∗|.
A color is said to be a singleton if it appears on exactly one edge of G.

Let l denote the number of singleton colors in C+, and let e1, e2, . . . , el be the
corresponding edges in T+. A central step in the proof is to show that |C∗| ≥ l.
The main idea is to consider the l + 1 subtrees T+

1 , . . . , T
+
l+1 that result from

removing the l edges e1, e2, . . . , el from T+. There does not exist some color ci,
such that the edges with color ci connect more than two of these subtrees to
each other, otherwise C+ would not be a local optimum with respect to the
2-switch neighborhood. Therefore every color connects at most two of these l+1
trees to each other. It implies that the global optimum must use at least l colors
for connecting the corresponding l + 1 vertex set T+

1 , . . . , T
+
l+1 to each other,

and therefore |C∗| ≥ l. It is easy to show that the inequality |C∗| ≥ (n − 1)/r
also holds, and these two inequalities, together with some others arguments, are
used to show that |C+| ≤ r+1

2 |C∗|, contradicting the initial assumption. One
can construct instances which show that this bound is tight (see [23]). ��

From Theorem 24 and using observations from the paper [23] we get the
following corollary.

Corollary 3. The local search algorithm with 2-switch neighborhood is a poly-
nomial time (r + 1)/2-approximation algorithm for min lstr.

Proof. The size of the k-switch neighborhood of a color set C is at most
O(|C|kqk), which is at most O(n3k) since |C| ≤ n− 1 and the number of colors
q is at most the number of edges of graph G, i.e. q ≤ n2. Moreover it takes
O(n2) time to determine if a color set in the neighborhood of C is feasible and
determine its objective value. Therefore, the exploration of the neighborhood
takes O(n3k+2) time. Moreover the number of steps to reach a local optimum
solution is at most n− 2, since the objective value is an integer between 1 and
n− 1. ��

Brüggemann, Monnot and Woeginger [23] show that there is almost no profit
(from the worst case point of view) in moving from the small 2-switch neigh-
borhood to a larger one such as k-switch with k ≥ 3. Indeed, for every k ≥ 3,
there exist instances for which some local optimum, with respect to the k-switch
neighborhood, is a factor of roughly r/2 away from the global optimum.

12 Replica Placement in a Distributed File Systems

In [35] Douceur and Wattenhofer consider a distributed file systems in which each
file is stored multiple times on different machines to maximize its availability.
A file is not available if all machines that store the replicas of the file are down
in the same time. The availability is expressed as the negative logarithm of
fractional downtime, and therefore the availability of a file is equal to the sum
of the availabilities of the machines that store the file’s replicas. The aim is to
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maximize the minimum availability of a file. Douceur and Wattenhofer propose
simple online algorithms based on local search. Their objective is to have a
simple and efficient distributed algorithm, independently of the NP-hardness or
polynomial solvability of the underlying problem.

The problem can be defined as follows. Let us consider N files, each of which
must be stored on R (a constant) different machines. Each machine has the
capacity to store only a single file. We have a set P of M = NR machines
availabilities. Let Pf denote the multiset of availabilities of the R machines
which store the R replicas of file f . Then the availability of a file f is

∑
a∈Pf

a.
The sets P1, . . .PN constitute a partition of P . The problem if to find a partition
in order to maximize the minimum availability of a file minf=1,...N

∑
a∈Pf

a.
The local search algorithm start from an arbitrary partition and make im-

provements until reaching a local optimal solution. The neighborhood consist in
swapping two replicas files, i.e. the machines in which two replicas (of different
files) are stored are exchanged.

Three variants are considered. In the MinMax neighborhood the only allowed
replica-location swaps are between the file with the minimum availability and
the file with the maximum availability. In the MinRand neighborhood the only
allowed swaps are between the file with the minimum availability and any other
file. In the RandRand neighborhood swaps are allowed between any pair of files.
Notice that the size of these neighborhoods grows exponentially with R, but in
practice only small values are used (typically R = 2 or 3).

The results obtained by Douceur and Wattenhofer are summarized in Table 2.
This table shows the worst performance ratio of local search, over all possible
availabilities of machines, when N →∞.

Table 2. The approximation ratio ρ obtained by local search

MinMax MinRand RandRand
R = 3 ρ = +∞ ρ = 3/2 ρ = 3/2
R = 2 ρ = +∞ ρ = 1 ρ = 1
any R ρ = +∞ ρ < 2 ρ ≤ 17/10

Notice that the MinMax neighborhood is included in the MinRand neigh-
borhood, which is in turn included in the RandRand neighborhood. We have
therefore ρMinMax ≥ ρMinRand ≥ ρRandRand.

To see that ρMinMax = +∞ consider the following partition P1 =
{0, 0, 0 . . . , 0}, P2 = {3, 0, 0 . . . , 0} and Pi = {1, 1, 0 . . . , 0} for i = 3, . . .N . The
availability of file 1 is 0+ . . .+0 = 0, the availability of file 2 is 3, and other files
have availabilities 2. We have therefore m = min{0, 3, 2} = 0. This partition is a
local optimum with the MinMax neighborhood, since the only allowed swaps are
between files 1 and 2. However by performing a swap between machines 1 and
3 we can get the optimum partition P∗

1 = {1, 0, 0 . . . , 0}, P∗
2 = {3, 0, 0 . . . , 0},

P∗
3 = {1, 0, 0 . . . , 0} and Pi = {1, 1, 0 . . . , 0} for i = 4, . . .N . We have m∗ = 1

and the result follows.
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13 Summary and Conclusion

Table 3 shows the main results obtained by local search. One can see the various
approximation ratios obtained by local search versus the best approximation
ratio currently known for each problem. For max cut and qap problems the
quantity given for local search denotes not an approximation ratio, but an abso-
lute performance guarantee. One can see that for several problems the best ratio
is obtained by using local search algorithms. Despite this table resumes a a vast
amount of research, it is by no means exhaustive (see for example [84] for recent
results concerning partial subgraphs problems which are not mentioned here,
and [72] for results concerning the problem of finding a cotree (complement of
a tree) incident upon the minimum number of vertices in a graph).

One fruitful area of research concerns the design of approximation algorithms
for multicriteria optimization problems [40]. Such results have been obtained for

Table 3. Summary of main approximation results obtained by local search
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facility location problems where (a, b)-approximation algorithms were defined.
Other definitions of approximation are possible. Recently Angel, Bampis and
Gourvès [6] have obtained approximation results for a bicriteria adapted local
search procedure applied on a restricted case of the bicriteria traveling sales-
man problem. They show that the Pareto curve can be approximated within a
ratio 3/2.

Often the neighborhoods are natural/simple but the analysis is highly specific
to the problem. An attempt for unifying proofs would be very valuable. For
example packing problems and set cover problems, which are in some sense
“dual problems” have from the point of view of local search quite different proof
techniques.

Non-oblivious local search should also deserves more consideration. In partic-
ular when combined with “non-oblivious neighborhoods”, as the extended flip
neighborhood for max 2-ccsp (see Theorem 4).

Finally, there are some gaps in the results. For example approximation results
are known for w-k-set packing, but to the knowledge of the author there are
no such results for w-k-set cover. Another example is max dicut for which no
result is known for the neighborhood in which up to 2 vertices can be swapped,
whereas there are results for the non directed case max cut.
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97. D.B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, pages 265–274, 1997.

98. C.A. Tovey. Local improvement on discrete structures. In E. Aarts and J.K.
Lenstra, editors, Local search in combinatorial optimization, pages 57–89. John
Wiley and Sons, 1997.

99. L. Trevisan. Positive linear programming, parallel approximation and PCPs. In
4th Annual European Symposium on Algorithms, ESA ’96, LNCS 1136, pages
62–75. Springer, 1996.

100. V. Vazirani. Approximation algorithms. Springer, 2001.
101. T. Vredeveld and J.K Lenstra. On local search for the generalized graph coloring

problem. Operations Research Letters, 31(1):28–34, 2003.
102. Y. Wan, G. Chen, and Y. Xu. A note on the minimum label spanning tree.

Information Processing Letters, 84:99–101, 2002.
103. M. Yannakakis. The analysis of local search problems and their heuristics. In

STACS, LNCS 415, pages 298–311. Springer, 1990.
104. M. Yannakakis. Computational complexity. In E. Aarts and J.K. Lenstra, editors,

Local search in combinatorial optimization, pages 19–55. John Wiley and Sons,
1997.



Approximation Algorithms for Path Coloring
in Trees�

Ioannis Caragiannis1, Christos Kaklamanis1, and Giuseppe Persiano2

1 Research Academic Computer Technology Institute and
Department of Computer Engineering and Informatics,

University of Patras, 26500 Rio, Greece
{caragian, kakl}@ceid.upatras.gr

2 Dipartimento di Informatica ed Applicazioni,
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Abstract. The study of the path coloring problem is motivated by the
allocation of optical bandwidth to communication requests in all-optical
networks that utilize Wavelength Division Multiplexing (WDM). WDM
technology establishes communication between pairs of network nodes
by establishing transmitter-receiver paths and assigning wavelengths to
each path so that no two paths going through the same fiber link use
the same wavelength. Optical bandwidth is the number of distinct wave-
lengths. Since state-of-the-art technology allows for a limited number of
wavelengths, the engineering problem to be solved is to establish com-
munication minimizing the total number of wavelengths used. This is
known as the wavelength routing problem. In the case where the under-
lying network is a tree, it is equivalent to the path coloring problem.

We survey recent advances on the path coloring problem in both
undirected and bidirected trees. We present hardness results and lower
bounds for the general problem covering also the special case of sets
of symmetric paths (corresponding to the important case of symmetric
communication). We give an overview of the main ideas of deterministic
greedy algorithms and point out their limitations. For bidirected trees,
we present recent results about the use of randomization for path col-
oring and outline approximation algorithms that find path colorings by
exploiting fractional path colorings. Also, we discuss upper and lower
bounds on the performance of on-line algorithms.

1 Introduction

1.1 Motivation

Optical fiber has been established as the standard transmission medium for
backbone communication networks, since it can provide the required data rate,
error rate and delay performance necessary for high speed networks of next
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generation [19,36]. Multiwavelength communication [19,36] is the most popular
communication technology used on optical networks. Roughly speaking, it allows
to send different streams of data on different wavelengths along an optical fiber.
Multiwavelength communication is implemented through Wavelength Division
Multiplexing (WDM).

In a WDM all-optical network, once the data stream has been transmitted
in the form of light, it continues without conversion to electronic form until it
reaches its destination. WDM takes all data streams travelling on an incoming
link and routes each of them to the right outgoing link, provided that each data
stream travels on the same wavelength on both links. For a packet transmission
to occur, a transmitter at the source must be tuned to the same wavelength as
the receiver at the destination for the duration of the packet transmission and
no data stream collision may occur at any fiber.

A WDM all-optical network can thus be modelled as a graph, where nodes of
the graph are the nodes of the network and edges are optical fibers connecting
nodes. Communication requests are ordered pairs of nodes to be thought of as
transmitter-receiver pairs. The problem of wavelength routing consists of finding,
for each transmitter-receiver pair, a path connecting the transmitter with the
receiver and assigning a wavelength to each path, so that no two paths going
through the same edge (fiber link) use the same wavelength. Intuitively, we may
think of the wavelengths as colors and the wavelength assignment to paths as col-
oring. So, the wavelength routing problem consists of two subproblems: a routing
problem (for selecting the path for each transmitter-receiver pair) and a wave-
length assignment or path coloring problem (for coloring the paths established
after solving the routing subproblem).

The objective is to minimize the optical bandwidth, that is the number of dif-
ferent wavelengths (colors) that are used. Optical bandwidth is a scarce resource.
State-of-the-art technology allows some hundreds of wavelengths per fiber in the
laboratory, even less in manufacturing, and there is no anticipation for dramatic
progress in the near future. An efficient allocation of the optical bandwidth (with
respect to the number of wavelengths used) is an important engineering problem
that can have a significant impact on the success of the technology.

Theoretical work on optical networks mainly focuses on the performance of
wavelength routing algorithms on regular networks using oblivious (predefined)
routing schemes for connecting each transmitter to the corresponding receiver.
We point out the pioneering work of Pankaj [33] who considered shuffle ex-
change, De Bruijn, and hypercubic networks. Aggarwal et al. [1] consider oblivi-
ous routing schemes and wavelength assignment algorithms in several networks.
Raghavan and Upfal in [35] consider mesh-like networks. Aumann and Rabani
[3] improve the bounds of Raghavan and Upfal for mesh networks and also give
tight results for hypercubic networks. Rabani in [34] gives almost optimal results
for the wavelength routing problem on meshes and mesh-like networks improving
earlier results implicit in [26].

These topologies reflect architectures of optical computers rather than wide-
area networks. For fundamental practical reasons, the telecommunication
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industry does not deploy massive regular architectures: backbone networks need
to reflect irregularity of geography, non-uniform clustering of users and traffic,
hierarchy of services, dynamic growth, etc. In this direction, Raghavan and Upfal
[35], Aumann and Rabani [3], and Bermond et al. [7], among other results, focus
on bounded-degree networks and give upper and lower bounds as functions of
the network expansion.

However, wide-area multiwavelength technology is expected to grow around
the evolution of current networking principles and existing fiber networks. These
are mainly SONET (Synchronous Optical Networking Technology) rings and
trees [31]. In this sense, even asymptotic results for expander graphs do not ad-
dress the above telecommunication scenario. In this direction, Kumar [27] studies
the wavelength routing problem in rings improving previous earlier results im-
plicit in [38,24].

Most of the works mentioned above model the optical network as an undi-
rected graph. Indeed, an optical fiber connecting two nodes can be used to carry
traffic in both directions. However, additional devices which are placed on fibers
like amplifiers work on only one direction and two “opposite directed” fibers are
used in practice to support bidirectional communication between pairs of nodes.
So, it is reasonable to model optical networks as bidirected graphs, i.e., graphs
whose nodes are connected through pairs of opposite directed edges.

In this work, we consider tree topologies and survey recent methods and al-
gorithms for efficiently coloring paths on undirected and bidirected trees. Notice
that, in a tree, the path connecting two nodes is well-defined; this means that
the wavelength routing in trees is equivalent to path coloring. We consider ar-
bitrary sets of paths. Surveys on the path coloring problem for sets of paths
which capture specific communication patterns like broadcasting, gossiping, and
permutation routing can be found in [5,25].

1.2 Problem Definition

We now formulate the path coloring problem in detail by giving the necessary
definitions. A path p on a tree T is a sequence p = (u1, · · · , ul) of nodes of
the tree such that (ui, ui+1) is an edge of the tree for i = 1, · · · , l − 1. We
say that a path touches a node if the node belongs to the sequence of nodes
forming the path. Nodes u1 and ul are called the origin and the destination
of the path, respectively. We also say that path p includes edges (ui, ui+1) for
i = 1, · · · , l− 1. The tree can be undirected or bidirected. Respectively, the path
can be undirected or directed; in the latter case, a path consists of directed edges
of the tree.

Given a set of undirected (resp. directed) paths P = {p1, · · · , pk} on a undi-
rected (resp. bidirected) tree, we define the load of an undirected (resp. directed)
edge e as the number of paths of P that include e. The load of the set of paths
P is defined as the maximum edge load over all edges of the tree. The decision
version of the path coloring problem can be formalized as follows.
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Path Coloring in Trees
Instance: An undirected (resp. bidirected) tree T , a set of undirected
(resp. directed) paths P on T and an integer B.
Question: Is there a coloring χ : P → {1, · · · , B} such that, for any two
paths p1 and p2 of P , if p1 and p2 share an undirected (resp. directed)
edge of T , then χ(p1) �= χ(p2)?

In the optimization version of the path coloring problem, we are given a tree T
and a set of paths P on T , and the goal is to compute the minimum integerB such
that the answer to the corresponding instance (T, P,B) of the decision problem
is YES, i.e., the goal is to compute the minimum number of colors sufficient
for coloring P and, usually, to provide the corresponding coloring. Obviously, if
B < L, the answer to the instance (T, P,B) of the decision problem is certainly
NO. Therefore, the load of a set of paths P is a lower bound on the minimum
number of colors sufficient for coloring P .

Path coloring is similar to graph coloring. Given an undirected graph G, the
graph coloring problem is to assign colors to the nodes of G so that any two
adjacent nodes are colored with different colors. Note that path coloring of a set
of paths P on a tree T is equivalent to graph coloring of the conflict graph of P ,
i.e., the graph which contains one node for each path in P and an edge between
two nodes if the corresponding paths share an edge of the tree. In the text below,
we also refer to the edge-coloring problem; here, we seek for assignment of colors
to the edges of an undirected graph so that any two edges incident to the same
node are assigned different colors.

1.3 Roadmap

The rest of this paper is structured as follows. In Section 2, we present hardness
results and lower bounds for both the undirected and the directed version of
the problem. We also address the special case of symmetric sets of paths (corre-
sponding to an important communication pattern in today’s optical networks)
in bidirected trees. In Section 3, we describe deterministic greedy algorithms for
path coloring in both undirected and bidirected trees and present the best known
results for them. Especially for path coloring in bidirected trees, in Section 4 we
discuss randomized greedy algorithms, while we present algorithms that exploit
fractional path colorings to compute approximate path colorings in Section 5. In
Section 6 we present algorithms and lower bounds for the on-line version of the
problem. We conclude, in Section 7, with a list of open problems.

2 Hardness Results and Lower Bounds

As we mentioned in the previous section, the load of a set of paths is a lower
bound on the number of necessary colors. We now present better lower bounds
for both directed and undirected sets of paths. It is easy to construct a set of
undirected paths on an undirected binary tree which requires at least 3L/2 colors
(see Figure 1a). The next result shows that the number of colors can be sensibly
higher than the load in the case of directed path coloring as well.
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Theorem 1 (Kumar and Schwabe [29]). For any integer l > 0, there exists
a set of directed paths of load L = 4l on a binary bidirected tree T that requires
at least 5L/4 colors.

For proving the theorem, a set of 5L/2 directed paths is constructed on a
binary bidirected tree with six nodes. The set of paths is such that no more than
two paths can be colored with the same color. This implies that at least 5L/4
colors are necessary. The construction is depicted in Figure 1b.

(a) (b)

Fig. 1. (a) A set of undirected paths of load L that requires 3L/2 colors. Each dashed
line represents L/2 parallel undirected paths. (b) A set of directed paths of load L that
requires 5L/4 colors. Each arrow represents L/2 = 2l parallel directed paths.

The next three theorems show that, in general, computing the optimal number
of colors is NP-hard. Erlebach and Jansen [14] and, independently, Kumar et al.
[28] have proved the following hardness results.

Theorem 2 (Erlebach and Jansen [14], Kumar et al. [28]). Given an
undirected star T and a set of paths P of load L = 3 on T , it is NP-complete to
decide whether P can be colored with 3 colors.

Theorem 3 (Erlebach and Jansen [14], Kumar et al. [28]). Given a bidi-
rected tree T of depth at least 2 and a set of paths P of load L = 3 on T , it is
NP-complete to decide whether P can be colored with 3 colors.

The proofs of the above theorems use reductions from the edge coloring prob-
lem in graphs of maximum degree 3 [21]. Actually, as it was first proved in [18],
the path coloring problem in undirected stars is equivalent to edge coloring of
multigraphs.

Note that the above statement holds in bidirected trees of arbitrary maximum
degree. The following result applies to binary bidirected trees and sets of directed
paths of arbitrary load. The proof uses a reduction from the circular arc coloring
problem [16].

Theorem 4 (Erlebach and Jansen [14], Kumar et al. [28]). Given a bidi-
rected binary tree T and a set of paths P of load L on T , it is NP-complete to
decide whether P can be colored with L colors.
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Thus, the corresponding optimization problems (minimizing the number of
colors) are NP -hard, in general. On the positive side, a few special cases of the
problem can be solved in polynomial time either by using dynamic programming
or by exhaustively searching many different solutions.

Theorem 5 (Erlebach and Jansen [14], Kumar et al. [28]). The path
coloring problem can be solved optimally in undirected trees of bounded degree.

Theorem 6 (Erlebach and Jansen [14]). Given a set of (undirected or di-
rected) paths P on a (undirected or bidirected) tree T with n nodes, such that at
most O

(
log n

log log n

)
paths touch any node of T , an optimal coloring of P can be

computed in polynomial time.

As a corollary, we obtain that optimally coloring sets of paths of load
O
(

log n
log log n

)
in bidirected trees of bounded degree can be done in polynomial

time.

2.1 Coloring Symmetric Sets of Paths

We now consider the special case of sets of symmetric paths in bidirected trees.
Two directed paths are called symmetric if the origin of the one is the destination
of the other and vice versa. A set of directed paths is called symmetric if it can
be partitioned into pairs of symmetric paths.

We can restrict the coloring of symmetric sets of paths to use the same color
to color the two paths in each pair of symmetric paths. Then, we can solve
the path coloring problem using any algorithm for the undirected version of the
problem. In this way, up to 3L/2 colors may be necessary (by the discussion at
the beginning of Section 2) and sufficient (by using an algorithm presented in
Section 3.1, see Theorem 9). The following two questions now arise.

– Can we improve this bound if we do not constrain symmetric paths to use
the same color?

– Is the path coloring problem easier than in the general case if we restrict the
input instances to sets of symmetric paths?

Although we give a positive answer for the first question in the case of binary
bidirected trees in Section 4, we are not aware of complete answers for these
questions. The following discussion shows some inherent similarities and differ-
ences between the general path coloring problem and the case where the input
instance is restricted to sets of symmetric paths.

For these sets of paths, Caragiannis et al. [10] have proved some interesting
statements (lower bounds). Both NP -completeness results (Theorems 3 and 4)
hold in the case of sets of symmetric paths [10]. The proofs again use slightly
modified reductions from the edge coloring and circular arc coloring problem.
Notice that the lower bound of Figure 1 applies to non-symmetric sets of paths.
A similar lower bound (but much more complicated than the one of Figure 1b)
holds for sets of symmetric paths as well.
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Theorem 7 (Caragiannis et al. [10]). For any δ > 0, there exists an integer
l > 0, a binary bidirected tree T and a set of symmetric paths P with load L = 4l
on T , such that no algorithm can color P using less than (5/4− δ)L colors.

Does Theorem 7 indicate that the symmetric version of the problem is as
“hard” as the general one? The following result gives evidence for a negative
answer. Notice that for sets of symmetric paths, there exists an algorithm which
may color paths in such a way that each pair of opposite directed edges sees at
most L colors. This can be done in a trivial way if we consider two symmetric
paths as an undirected one and use any algorithm for the undirected problem.
However, this is not the case for the non-symmetric problem.

Theorem 8 (Caragiannis et al. [10]). For any integer l > 0, there exists
a bidirected tree T and a set of directed paths with load L = 8l that cannot be
colored in such a way that any pair of opposite directed edges of T sees less than
9L/8 colors.

3 Greedy Algorithms

Most of the known path coloring algorithms [12,14,17,22,29,35] belong to a spe-
cial class of algorithms, the class of greedy algorithms. We devote this section to
their study. Given a tree T and a set of paths P , we call greedy a path coloring
algorithm that works as follows:

Starting from an arbitrary node (the root of the tree), the algorithm
computes a breadth-first (BFS) numbering of the nodes of the tree.
The algorithm proceeds in phases, one per each node u of the tree. The
nodes are considered following their BFS numbering. The phase associ-
ated with node u takes as input a proper coloring of all the paths that
touch nodes with BFS number strictly smaller than u’s; all other paths
have not been colored yet.
During the phase associated with node u, the partial proper coloring is
extended to a proper one that assigns colors to paths that touch node u
but have not been colored yet.
During each phase, the algorithm does not recolor paths that have been
colored in previous phases.

The various greedy algorithms differ among themselves with respect to the
strategies followed to extend the partial proper coloring during a phase. In the
following two sections, we describe the techniques used by greedy algorithms in
undirected and bidirected trees. Then, we describe the main technique used for
proving lower bounds for greedy path coloring algorithms in bidirected trees.

3.1 Greedy Path Coloring Algorithms in Undirected Trees

The algorithms in [14,35] reduce the coloring of a phase to an edge coloring
problem on a multigraph. In the following we describe this reduction.
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Consider a set of paths P of load L on an undirected tree T and the phase of
a greedy algorithm associated with a node u of T . The phase receives as input
the coloring of the paths of P in previous phases (i.e., in phases associated with
nodes of T with numbers smaller than u’s) and extends this coloring by coloring
the paths touching node u which are still uncolored by solving an edge-coloring
problem on a multigraph Gu. The multigraph Gu associated with node u is con-
structed as follows. We denote by v0 the parent of u and let v1, ..., vk be the children
of u. For each node vi of the nodes v0, v1, ..., vk, the graph Gu has two nodes xi

and yi. For each path originated from u and going to vi, we add an edge between
xi and yi in Gu. For each path between two neighbors vi and vj of u, we add an
edge between nodes xi and xj in Gu. It can be easily seen that the graph Gu has
maximum degree L. An example of the construction is depicted in Figure 2.
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Fig. 2. Undirected paths touching node u and the corresponding multigraph

Intuitively, edges of Gu incident to a node xi correspond to paths of P travers-
ing the edge of T between nodes u and vi. The edges of Gu incident to node x0
correspond to paths of P traversing the edge of T between node u and its parent
node v0; these paths have been colored in phases associated with nodes having
BFS numbers smaller than u’s. We call the edges of Gu incident to node x0 color-
forced edges. The phase associated with node u colors the edges of Gu under the
constraint that color-forced edges are assigned the colors assigned to the corre-
sponding paths in previous phases. It can be easily seen that these constraints do
not make the edge-coloring problem harder with respect to the number of colors
required since, in any proper coloring of the edges of Gu (without constraints on
the coloring of the edges incident to x0), different colors must be assigned to the
color-forced edges. These constraints just reduce the number of different proper
colorings. The produced coloring of the edges of Gu trivially yields a coloring of
the paths of P touching node u and nodes with BFS numbers smaller than u’s.
Also, note that the optimal number of colors required for coloring the edges of
Gu is a lower bound on the number of colors required for coloring P .
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For extending the coloring to all edges of Gu, colors used for coloring the edges
of multigraphs associated with nodes with numbers smaller than u’s which are
not used in the edges incident to node x0 of Gu can be used. New colors are
used only when the colors already used do not suffice to complete the edge-
coloring. So, the total number of colors used for coloring the paths of P is the
maximum over all phases of the number of colors used for coloring the edges of
the corresponding multigraph. Raghavan and Upfal [35] used an algorithm of
Shannon [37] which colors the edges of a multigraph with maximum degree L
using at most 3L/2 colors to obtain the following result.

Theorem 9 (Raghavan and Upfal [35]). There exists a polynomial-time al-
gorithm which colors any set of paths of load L on an undirected tree using at
most 3L/2 colors.

From the discussion on lower bounds in Section 2, we know that this bound is
tight. Erlebach and Jansen [14] observed that using an algorithm which colors the
edges of a multigraphG with at most f(χ(G)) colors, where f is a non-decreasing
function and χ(G) denotes the optimal number of colors for coloring the edges of
G, we obtain a greedy path coloring algorithm for undirected trees which colors
any set of paths P using f(χ(P )) colors, where χ(P ) denotes the optimal number
of colors sufficient for coloring P . This can be explained as follows. Let u be the
node for which the edge-coloring algorithm uses the maximum number of colors
for coloring the edges of the corresponding multigraph Gu. Clearly, χ(P ) ≥
χ(Gu), while the greedy algorithm uses at most f(χ(Gu)) ≥ f(χ(P )) colors
to color the paths of P . In [32], Nishizeki and Kashiwagi present an algorithm
for coloring the edges of a multigraph G with at most �1.1χ(G) + 0.8� colors.
Combined with the discussion above, this implies the following.

Theorem 10 (Erlebach and Jansen [14]). There exists a polynomial-time
algorithm which colors any set of paths P on an undirected tree using at most
�1.1χ(P ) + 0.8� colors, where χ(P ) denotes the optimal number of colors suffi-
cient for coloring P .

Actually, Theorem 5 and Theorem 6 (for undirected trees) can be proved using
greedy path coloring algorithms. In both cases, an edge-coloring algorithm is used
in each phase to optimally color the edges of the corresponding multigraph in
polynomial time. In the case of Theorem 5, the multigraph associated with each
phase has a constant number of nodes; in this case, the edge-coloring problem
can be solved in time polynomial in L. In the case of Theorem 6, the multigraph
associated with each phase has at most O

(
log n

log log n

)
edges; it can be easily seen

that an optimal edge coloring can be computed in time polynomial in n.

3.2 Greedy Path Coloring Algorithms in Bidirected Trees

The algorithms in [15,29] for path coloring in bidirected trees reduce the coloring
of a phase to an edge-coloring problem on a bipartite multigraph. In the following
we describe this reduction.
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Consider a set of directed paths P of load L on a bidirected tree T and the
phase of a greedy algorithm associated with a node u of T . The phase receives as
input the coloring of the paths of P in previous phases (i.e., in phases associated
with nodes of T with numbers smaller than u’s) and extends this coloring by
coloring the paths touching node u which are still uncolored by solving an edge-
coloring problem on a bipartite multigraph Hu. The multigraph Hu associated
with node u is constructed as follows. Again, we denote by v0 the parent of u and
let v1, · · · , vk be the children of u. For each node vi, the bipartite multigraph has
four nodes wi, xi, yi, zi and the left and right partitions are {wi, xi|i = 0, · · ·k}
and {zi, yi|i = 0, · · ·k}, respectively. For each path of the tree directed out of
some node vi into some node vj , the bipartite multigraphHu has an edge between
wi and zj . For each path directed out of some node vi and terminating at u, we
have an edge between wi and yi. Finally, for each path directed out of u into
some node vi, we have an edge between zi and xi. It can be easily seen that the
graph Hu has maximum degree L. An example of this construction is depicted
in Figure 3.
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Fig. 3. Directed paths touching node u and the corresponding bipartite multigraph

Intuitively, edges ofHu incident to a node wi correspond to paths of P travers-
ing the directed edge of T from node vi to node u, while edges of Hu incident
to a node zi correspond to paths of P traversing the directed edge of T from
node u to node vi. Observe that no edges extend across opposite nodes wi and
zi as they would correspond to paths starting and ending on the same node. The
edges of Hu incident to nodes w0 and z0 correspond to paths of P traversing
the opposite directed edges between u and its parent node v0; these paths have
been colored in phases associated with nodes having BFS numbers smaller than
u’s. We call the edges of Hu incident to nodes w0 and z0 color-forced edges. The
phase associated with node u colors the edges of Hu under the constraint that
color-forced edges are assigned the colors assigned to the corresponding directed
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paths in previous phases. The produced coloring of the edges of Hu trivially
yields a coloring of the paths of P touching node u and nodes with BFS num-
bers smaller than u’s. Similarly to the case of path coloring in undirected trees,
the total number of colors used for coloring the paths of P can be made as small
as the maximum over all phases of the number of colors used for coloring the
edges of the corresponding bipartite multigraph.

Thus, the problem of coloring paths at each phase is reduced to the problem
of coloring the edges of a bipartite multigraph of maximum degree L, under
the constraint that some colors have already been assigned to the color-forced
edges. We call this problem an α-constrained bipartite edge coloring problem
on a bipartite graph with maximum degree L. The parameter α denotes that
color-forced edges have been colored with at most αL colors (1 ≤ α ≤ 2). Note
that unlike the case of edge-coloring multigraphs produced by undirected sets
of paths, the existence of constraints in the color-forced edges of the bipartite
multigraph Hu associated with node u indeed make the problem harder with
respect to the total number of colors required for coloring all the edges. Bipartite
multigraphs with maximum degree L can always be colored with L colors (if no
constraints on the color-forced edges exist). However, the bipartite multigraphs
at the phases of a greedy algorithm for coloring directed paths on bidirected trees
may require at least 5L/4 colors due to the lower bound presented in Section 2
(Theorem 1).

In the following, we first describe a simple solution to the 2-constrained bi-
partite edge coloring. In particular we show how to color the edges of a bipartite
multigraph Hu of maximum degree L in which the color-forced edges are con-
strained to be colored with at most 2L specific colors using at most 2L colors in
total. Then, we briefly describe the main ideas that lead to an improved solution
of the problem in [15].

We call single colors the colors that appear only in one color-forced edge and
double colors the colors that appear in two color-forced edges (one incident to
w0 and one incident to z0). We denote by S and D the number of single and
double colors, respectively. Clearly, 2D + S ≤ 2L.

We decompose the bipartite graph into L matchings (this can be done in
polynomial time since the graph is bipartite and has maximum degree L; see
[6]). At least S/2 of these matchings have at least one single color in one of the
two colored-forced edges. Thus, we can use this single color to color the uncolored
edges of the matching. The uncolored edges of the matchings that have no color-
forced edges colored with a single color are colored with extra colors (one extra
color per matching). In total, we use at most

D + S + L− S/2 = L+D + S/2 ≤ 2L

colors.
In each phase of the greedy algorithm when applied to a set of directed paths

of load L on a bidirected tree, an instance of 2-constrained bipartite edge coloring
on a bipartite multigraph of maximum degree L is solved. The number of colors
used in each phase never grows larger than 2L. In this way, we obtain a simple
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greedy path coloring algorithm that uses at most 2L colors for any set of directed
paths of load L on a bidirected tree.

Better solutions are obtained in [15,29]. Again consider the application of the
greedy algorithm on a set of directed paths of load L on a bidirected tree and let
u be a node with parent v0 and children v1, ..., vk. For i = 0, ..., k, we call the pair
of nodes wi, zi of the bipartite multigraph Hu a line. We say that the color c is
used in the line wi, zi if the color c is used in some edge incident either to node
wi or to node zi. Erlebach et al. [15] solve the problem proving the following
theorem (a slightly inferior result was obtained in [29]).

Theorem 11 (Erlebach et al. [15]). There exists a polynomial time algorithm
which, for any α ∈ [1, 4/3], colors an instance of the α-constrained bipartite edge
coloring problem on the bipartite multigraph Hu of maximum degree L using at
most

(
1 + α

2

)
L total colors so that the number of colors used per each line of

Hu is at most 4L/3.

Note that the edges of Hu incident to a line wi, zi correspond to directed
paths traversing the opposite directed edges of the tree between u and a child
vi of u. This means that, if we use the edge-coloring algorithm of [15] in the
phase associated with node u for solving an instance of the α-constrained bipar-
tite edge-coloring on the bipartite multigraph Hu of maximum degree L with
α ≤ 4/3, then, the edge-coloring problems that have to be solved in the phases
associated with the child nodes of u are instances of the α-constrained bipartite
edge coloring on bipartite multigraph of maximum degree L for α ≤ 4/3 as well.
In the first phase of the greedy algorithm (i.e., the one associated with the root
of the tree), there are no constraints on the edges of the corresponding bipartite
multigraph, so its edges can be properly colored with at most L colors. Then,
we can easily verify inductively that, at each of the next phases, the number of
colors used in the paths colored in previous phases is never more than 4L/3. So,
in all phases of the greedy algorithm, an instance of the α-constrained bipartite
edge coloring problem with α ≤ 4/3 has to be solved in a bipartite multigraph
of maximum degree L and the total number of colors used is never more than
5L/3. This is summarized in the following theorem.

Theorem 12 (Erlebach et al. [15]). There exists a polynomial time greedy
algorithm which colors any set of directed paths of load L on a bidirected tree
using at most 5L/3 colors.

The interested reader may refer to the papers [15,29] for detailed description of
the edge-coloring techniques. They either consider matchings in pairs and color
them in sophisticated ways using detailed potential and averaging arguments
for the analysis [29] or partition matchings into groups which can be colored
and accounted for independently [15]. Note that one might think of bipartite
edge coloring problems with different constraints. Tight bounds on the number
of colors for more generalized constrained bipartite edge coloring problems can
be found in [11].
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The algorithms in [12,22] use much simpler methods to obtain the same upper
bound in bidirected binary trees. The common characteristic of all the algorithms
discussed so far is that they are deterministic.

3.3 A Lower Bound Technique

In this section, we present a lower bound technique for greedy path coloring
algorithms in bidirected trees. We first briefly describe the technique; then we
give the best known statement for deterministic greedy algorithms.

The technique is based on an adversary argument. An adversary algorithm
ADV is exhibited that constructs a set of directed paths on a binary bidirected
tree for which it can be proved that there exists a lower bound on the number
of colors used by any greedy algorithm.

The adversary ADV constructs the set of directed paths P in an incremental
way visiting the nodes of the tree according to a BFS order. At each node u,
the ADV deals with the set of paths traversing one of the two parallel directed
edges between u and its parent p(u). For each downward path p (that is, for each
path including the directed edge (p(u), u)), ADV has two options:

1. do nothing; i.e., make p stop at u;
2. propagate p to the left child l(u) by appending edge (u, l(u)) to p.

Similarly, for each upward path p (that is, for each path including the directed
edge (u, p(u))), ADV has two options:

1. do nothing; i.e. make p start from u;
2. make p originate from the right child r(u) by pre-pending edge (r(u), u) to
p;

Moreover, the adversary algorithm ADV can introduce directed paths between
the two children of u (see Figure 4). Initially, these paths will consist of only two
edges (from a child to u and from u to the other child) and can be augmented
when the adversary reaches the children of u.

u u

Fig. 4. The construction for the lower bound for greedy path coloring algorithms in
bidirected trees
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At each step, since the adversary ADV may know how a greedy algorithm
performs the coloring, it can choose to augment paths in such a way that the
number of common colors used in downward paths from p(u) to l(u) and upward
paths from r(u) to p(u) is small. In this way, no matter what a greedy algorithm
can do, both the total number of colors and the number of colors seen by the
opposite directed edges between u and its children will increase.

By constructing such an adversary for deterministic greedy algorithms, Er-
lebach et al. [15] prove the following lower bound. The same lower bound tech-
nique can be used for greedy algorithms that use randomization (see Section 4).

Theorem 13 (Erlebach et al. [15]). Let A be a deterministic greedy path
coloring algorithm in bidirected trees. There exists an algorithm ADV which, on
input δ > 0 and integer L > 0, outputs a binary bidirected tree T and a set of
directed paths P of load L on T , such that A colors P with at least (5/3 − δ)L
colors.

Thus, the greedy algorithm presented in [15] (see also Theorem 12) is the best
possible within the class of deterministic greedy algorithms for path coloring in
bidirected trees. In Section 4 we demonstrate how randomization can be used to
beat the 5/3 barrier at least on binary bidirected trees.

4 Randomized Algorithms in Bidirected Trees

As we discussed in Section 3.1, the algorithm of Raghavan and Upfal [35] achieves
a tight upper bound on the number of colors sufficient for path coloring in
undirected trees while the use of efficient approximation algorithms for edge-
coloring of multigraphs leads to very good approximations for the problem. This
is not the case for the directed version of the problem. In this section, we discuss
how randomization can be used in order to improve the upper bounds for path
coloring in binary bidirected trees.

In an attempt to beat the 5/3 lower bound for deterministic greedy algo-
rithms for path coloring in bidirected trees, Auletta et al. [2] define the class
of randomized greedy path coloring algorithms. Randomized greedy algorithms
have the same structure as deterministic ones; that is, starting from a node,
they consider the nodes of the tree in a BFS manner. Their main difference is
that a randomized greedy algorithm A uses a palette of colors and at each phase
associated with a node, A picks a random proper coloring of the uncolored paths
using colors of the palette according to some probability distribution.

The results presented in the following were originally obtained in [2]. The
interested reader may see [2] for further details.

4.1 Lower Bounds

In this section, we present two lower bounds on the number of colors used by
randomized greedy algorithms to color sets of paths of load L on bidirected
trees. We first present a lower bound for large trees (i.e., trees of depth Ω(L)) in
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Theorem 14; then, in Theorem 15, we present a lower bound for trees of constant
depth.

The first lower bound states that no randomized greedy algorithm can achieve
a performance ratio better than 3/2 if the depth of the tree is large.

Theorem 14 (Auletta et al. [2]). Let A be a (possibly randomized) greedy
path coloring algorithm on binary bidirected trees. There exists a randomized
algorithm ADV which, on input ε > 0 and integer L > 0, outputs a binary
bidirected tree T of depth L + ε lnL + 2 and a set of directed paths P of load L
on T , such that the probability that A colors P with at least 3L/2 colors is at
least 1− exp(−Lε).

The following lower bound holds even for trees of constant depth.

Theorem 15 (Auletta et al. [2]). Let A be a (possibly randomized) greedy
path coloring algorithm on binary bidirected trees. There exists a randomized
algorithm ADV which, on input δ > 0 and integer L > 0, outputs a binary
bidirected tree T of constant depth and a set of directed paths P with load L on
T , such that the probability that A colors P with at least (1.293 − δ − o(1))L
colors is at least 1−O(L−2).

For the proofs, constructions based on the lower bound technique presented
in Section 3.3 are used.

Note that the adversary assumed in Theorems 14 and 15 has no knowledge of
the probability distribution according to which the randomized greedy algorithm
makes its random choices. Possibly, better lower bounds may be achieved by
considering more powerful adversaries.

4.2 Upper Bounds

In this section, we give the main ideas of a randomized path coloring algorithm
presented in [2]. The algorithm has a greedy structure but allows for limited
recoloring at the phases associated with each node.

At each phase, the path coloring algorithm maintains the following two in-
variants:

I. The total number of colors is no greater than 7L/5.
II. The number of colors seen by two opposite directed edges is exactly 6L/5.

At a phase associated with a node u, a coloring procedure is executed which
extends the coloring of paths that touch u and its parent node to the paths
that touch u and are still uncolored. The coloring procedure is randomized. It
selects the coloring of paths being uncolored according to a specific probability
distribution on random colorings in which the probability that two paths crossing
an edge between u and any child of u in opposite directions are assigned the same
color is 4

5L . In this way, the algorithm can complete the coloring at the phase
associated with node u using at most 7L/5 colors in total, keeping the number
of colors seen by the opposite directed edges between u and its children to 6L/5.
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At each phase associated with a node u, the algorithm is enhanced by a
recoloring procedure which recolors a small subset of paths in order to maintain
some specific properties on the (probability distribution of the) coloring of paths
touching u and its parent. This procedure is randomized as well.

The recoloring procedure at each phase of the algorithm works with very
high probability. The coloring procedure at each phase always works correctly
maintaining the two invariants. As a result, if the depth of the tree is not very
large (i.e., o(L1/3)), the algorithm executes the phases associated with all nodes,
with high probability.

After the execution of all phases, the set of paths being recolored by the
executions of the recoloring procedure are colored using the simple deterministic
greedy algorithm with at most o(L) extra colors due to the fact that as far as
the depth of the tree is not very large (i.e., o(L1/3)), the load of the set of paths
being recolored is at most o(L), with high probability.

In this way, the following result is proved. The interested reader may look at
[2] for a detailed description of the algorithm and formal proofs.

Theorem 16 (Auletta et al. [2]). Let 0 < δ < 1/3 be a constant. There exists
a randomized path coloring algorithm that colors any set of directed paths of load
L on a binary bidirected tree of depth at most Lδ/8 using at most 7L/5 + o(L)
colors, with probability at least 1− exp

(
−Ω(Lδ)

)
.

Going back to the discussion of Section 2.1 on symmetric sets of paths, Theo-
rem 16 immediately implies that, at least for symmetric sets of paths on binary
bidirected trees (with some additional restrictions on their depth), allowing sym-
metric paths to use different colors leads to better colorings (i.e., colorings with
less than 3L/2 colors). A better algorithm for symmetric sets of paths on binary
trees has been presented in [13]. It colors any symmetric set of paths of load L
on a binary bidirected tree with the same restrictions with those in Theorem 16
using at most 1.367L+o(L) colors, with high probability. This algorithm follows
the main ideas behind the randomized algorithm discussed above.

5 Fractional Path Coloring and Applications

So far, we have expressed the performance of the path coloring algorithms in
terms of the load of the set of paths to be colored. The approximation guaran-
tee is easily achieved since the load is a lower bound on the number of colors
necessary for coloring a set of paths.

In this section, among other results, we present approximation algorithms for
which we can express their performance in terms of both the load and the fractional
path chromatic number of the set of paths to be colored. In this way, we obtain a
better approximation guarantee at least for bidirected trees of bounded degree.

We first give some definitions. The graph coloring problem can be considered
as finding a minimum cost integral covering of the nodes of a graph by inde-
pendent sets of unit cost. Given a graph G = (V,E), this means solving the
following integer linear program:
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minimize
∑

I∈I x(I)
subject to

∑
I∈I:v∈I x(I) ≥ 1 ∀ v ∈ V

x(I) ∈ {0, 1} ∀ I ∈ I

where I denotes the set of the independent sets of G.
This formulation has a natural relaxation into the following linear program:

minimize
∑

I∈I x̄(I)
subject to

∑
I∈I:v∈I x̄(I) ≥ 1 ∀ v ∈ V

0 ≤ x̄(I) ≤ 1 ∀ I ∈ I

The corresponding combinatorial problem is called the fractional coloring
problem (see [20]), and the value of an optimal solution is called the fractional
chromatic number. Clearly, the fractional chromatic number of a graph is a lower
bound on its chromatic number. If x̄ is a function over the independent sets of the
graph G satisfying the constraints of the linear program, we call it a fractional
coloring of G.

We now extend some terms of graph coloring to path coloring. Given a set of
directed paths P on a bidirected tree T , we define an independent set of paths
as a set of pairwise edge-disjoint paths, i.e., a set of paths whose corresponding
nodes form an independent set of the conflict graph. If G is the conflict graph
of P on T , we will denote by wf (P ) the fractional chromatic number of G and
call it the fractional path chromatic number of P on T . Clearly, wf (P ) is a lower
bound on the optimal number of colors sufficient for coloring P . Also, a fractional
coloring of the conflict graph G is called a fractional path coloring of P .

In general, the fractional chromatic number is as hard to approximate as the
chromatic number. Indeed, the size of the above described linear program is
exponential (proportional to the number of independent sets of G). However, in
[8], it is shown how to compute an optimal fractional path coloring. In particular,
the following statement is proved.

Theorem 17 (Caragiannis et al. [8]). Fractional path coloring in bounded-
degree trees can be computed in polynomial time.

The main idea for the proof of Theorem 17 is to inductively construct a linear
program whose solution is actually the optimal solution to the fractional path
coloring problem. The linear program produced is proved to have polynomial
size (i.e., polynomial number of variables) as far as the degree of the tree is
bounded. In this way, fractional path coloring in trees is reduced to solving a
polynomial size linear program.

5.1 Fractional Path Coloring on Binary Bidirected Trees

In this section we give an upper bound on the fractional path chromatic number
of a set of directed paths on a binary bidirected tree. We express the result in
terms of the load. This result was first discussed in [8].

In Section 4 we discussed the randomized algorithm presented in [2], which
colors a set of directed paths of load L on a binary bidirected tree using at
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most 7L/5+o(L) colors. The algorithm works with high probability under some
additional constraints (i.e., the depth of the tree is not very large). The hidden
constants in the low order term are large and are due to the integrality constraints
of the problem and the random choices of the algorithm.

In the case of fractional coloring we can design a deterministic algorithm having
the same top-down structure as the path coloring algorithm in [2]. Given a set of di-
rected pathsP of loadL on a bidirected tree, this fractional path coloring algorithm
uses fractions of colors to color paths and at each step, it maintains the following
invariant: the common fractions of colors assigned to any two paths traversing an
edge of the tree in opposite directions is 4

5L . Following simpler analysis than in [2],
we can obtain that, given a set of directed pathsP on a binary bidirected treeT , the
algorithm computes a fractional path coloring of P with cost at most 7L/5. Com-
paring this result to the randomized algorithm presented in Section 4 and particu-
larly to Theorem 16, we observe that the low order term is now eliminated. This is
due to the fact that, when we compute a fractional coloring, we have no integrality
constraints and the algorithm is deterministic.

Theorem 18 (Caragiannis et al. [8]). For any set of directed paths of load L
on a binary bidirected tree, there exists a fractional path coloring of cost at most
7L/5. Moreover, such a fractional coloring can be computed in polynomial time.

A slightly better upper bound of 1.367L has been proved in [13] for the cost of
the fractional coloring of symmetric sets of paths of load L on binary bidirected
trees.

5.2 Applications to Path Coloring on Bounded-Degree Bidirected
Trees

In this section we briefly outline how to exploit the (optimal) solution for frac-
tional path coloring which can be obtained in polynomial time for bounded-
degree bidirected trees to design a randomized algorithm with approximation
ratio better than 5/3.

Given a solution x̄ of the fractional path coloring of the set of directed paths
P on a bidirected tree T , the idea is to perform a randomized rounding to x̄ and
obtain an integral solution x. After rounding, x is not a feasible solution to the
path coloring problem since some of the constraints of the form

∑
I∈I:p∈I x(I) ≥

1 may be violated. However, this is a feasible solution to the path coloring
problem on the set of paths P ′ ⊆ P , defined as the set of paths contained in
independent sets I such that x(I) = 1. This means that we have properly colored
some of the paths of P with wf (P ) colors.

Following the analysis in [8] (similar arguments are used in [27] for the analysis
of a path coloring algorithm in rings), we can show that if L = Ω(log n), where
n is the number of nodes in T , then after the rounding procedure the load of
paths in P\P ′, i.e., the load of the paths not colored, is at most L

e + o(L), with
high probability. Now, we can apply the algorithm of [15] to color the paths in
P\P ′ with 5L

3e + o(L) additional colors. In total, we use at most
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wf (P ) +
5L
3e

+ o(L)

colors. Since both the load L and the fractional path chromatic number of P
are lower bounds on the optimal number of colors sufficient for coloring P , we
obtain the following result.

Theorem 19 (Caragiannis et al. [8]). There exists a randomized path color-
ing algorithm, which, given a set of directed paths of load L = Ω(logn) on a bidi-
rected tree of bounded degree with n nodes, computes an 1.613+o(1)-approximate
path coloring for P , with high probability.

In a recent work [9], a generalization of the randomized rounding technique
used in [8,27] is proposed. It uses a parameter q ∈ (0, 1], and, given a set of
directed paths P of load L = Ω(log n) on a bidirected tree with n nodes and a
fractional coloring of P of cost wf (P ), it computes a coloring of some of the paths
in P with q ·wf (P )+o(L) colors so that the load of the subset of P consisting of
the paths being uncolored is at most e−q · wf (P ) + o(L), with high probability.
For sets of paths on bidirected trees of bounded degree, applying this randomized
rounding technique with parameter q = ln 5

3 and using the algorithm of [15] to
color the uncolored paths we obtain a 1.511 + o(1)-approximation algorithm.
The restriction on the load is not very important since sets of paths of load
O
(

log n
log log n

)
can be optimally colored in bidirected trees of bounded degree.

Furthermore, the technique can be applied with q = ln 7
5 to sets of paths on

binary bidirected trees with similar restrictions to those in Theorem 16 and,
combined with the algorithm of [2], it yields a 1.336 + o(1)-approximation path
coloring algorithm on binary bidirected trees.

6 On-Line Algorithms

In the on-line version of the path coloring problem in trees, the input instance
is a sequence of paths P = {p1, ..., p|P |} arriving over time. An on-line path
coloring algorithm must color the paths following the order of the sequence. For
each path, the algorithm has to assign it a color so that no two paths including
the same edge of the tree are assigned the same color. Once a path has been
colored, it cannot be recolored.

The performance of an on-line algorithm is measured by comparing it to
the performance (in our case, the number of colors) of the off-line algorithm,
i.e., the algorithm that knows the sequence of paths in advance. We say that
an on-line algorithm Aon for the path coloring problem is c-competitive (or has
competitive ratio c) if, for every instance I, Aon uses at most c·χoff colors, where
χoff is the number of colors used by the optimal off-line algorithm Aoff . This
definition applies to deterministic on-line algorithms. We say that a randomized
on-line algorithm Aon is c-competitive if, for every instance I, the expectation
of the number of colors used by Aon is at most c · χoff . Usually, we analyze
the performance of randomized on-line algorithms against oblivious adversaries,
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i.e., we assume that input instances do not depend on the random choices of the
algorithm (although they may depend on the probability distribution according
to which the random choices of the algorithm are made).

The results presented in the following apply to both undirected and bidirected
trees. A natural on-line algorithm is the First-Fit algorithm. Colors are denoted
by positive integers. When a new path p arrives, it is assigned the minimum
integer not assigned to paths sharing an edge with p.

The performance of the First-Fit algorithm has been studied in the context
of on-line coloring of d-inductive graphs [23]. A graph is called d-inductive if its
nodes can be numbered in such a way that each node has at most d adjacent
nodes with higher numbers. Irani in [23] shows that First-Fit uses at most O(d ·
logn) colors for coloring on-line a d-inductive graph with n nodes.

Bartal and Leonardi [4] observed that the conflict graph defined by the paths
in an instance of the path coloring problem on a tree is 2(C−1)-inductive, where
C is the clique number of the conflict graph. Using the result of Irani [23], the set
of paths can be colored on-line using at most O(C · log |P |) colors. Note that any
algorithm requires at least C colors to color an instance whose conflict graph has
a clique of size C even if it knows the paths in advance. Hence, the competitive
ratio of the First-Fit algorithm is O(log |P |). This is logarithmic in the number
of nodes of the tree only if |P | is polynomial in n.

Bartal and Leonardi [4] present the following algorithm which is a variation of
the First-Fit algorithm. The nodes of the tree are classified into O(log n) levels
so that for any two nodes of the same level i, the path connecting them contains
at least one node of level i − 1. When a path appears, it is first assigned the
lowest of the levels of the nodes it touches. The algorithm assigns the path the
minimum color not assigned to paths of the same level sharing an edge with p or
to any other path of different level. Bartal and Leonardi show that the number
of different colors used for on-line path coloring of a set of paths whose conflict
graph has clique size C is at most O(log n) · C.

Theorem 20 (Bartal and Leonardi [4]). There exists an O(log n)-competi-
tive deterministic on-line path coloring algorithm in (undirected or bidirected)
trees with n nodes.

The algorithm presented in [4] is almost optimal within the class of determin-
istic on-line path coloring algorithms. Indeed, Bartal and Leonardi [4] show the
following statement.

Theorem 21 (Bartal and Leonardi [4]). For any deterministic on-line path
coloring algorithm A in (undirected or bidirected) trees, there exists a (resp.
undirected or bidirected) tree T with n nodes and an input instance I on T
which can be colored with a constant number of colors, such that A colors I with
at least Ω(log n/ log logn) colors.

An interesting issue is whether the use of randomization is helpful. Although
no randomized algorithm with sublogarithmic competitive ratio is known,
Leonardi and Vitaletti [30] have proved the following lower bound for randomized
on-line path coloring algorithms.
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Theorem 22 (Leonardi and Vitaletti [30]). For any on-line path coloring
algorithm A in (undirected or bidirected) trees, there exists an oblivious adversary
that constructs a (resp. undirected or bidirected) tree T with n nodes and input
instances I on T which can be colored with a constant number of colors, such
that the expectation of the number of colors used by A to color any instance
I ∈ I is at least Ω(log logn).

7 Open Problems

Recent work on path coloring in trees has revealed many open problems; some
of them are listed below.

– Improving known bounds for the path coloring problem in undirected trees
is equivalent to improving known bounds for the edge-coloring problem on
multigraphs. Although this appears to be very difficult, it is an intriguing
question whether approximation schemes for the problem exist.

– For the path coloring problem in bidirected trees, an open problem is to
close the gap between 5L/4 and 5L/3 for the number of colors sufficient for
coloring sets of directed paths of load L on arbitrary bidirected trees (see
Theorems 1 and 12). Closing the gap between 5L/4 and 7L/5 + o(L) for
binary trees also deserves some attention.

– Furthermore, although for deterministic greedy path coloring algorithms we
know tight bounds on the number of colors, this is not true for randomized
greedy algorithms in bidirected trees. Exploring the power of randomized
greedy algorithms in more depth is interesting as well.

– Another intriguing open problem is to prove better bounds on the size of the
gap between the path coloring and the fractional path coloring in bidirected
trees by using different randomized rounding techniques. We believe that
this approach is the most promising one for designing better approximation
algorithms for the problem.

– Notice that the algorithms proposed are too far from optimality. Although an
“absolute” inapproximability result of 4/3 is implied by the NP-completeness
results in arbitrary trees, we are not aware of any asymptotic inapproxima-
bility results for the problem (i.e., inapproximability results for sets of paths
of heavy load). This indicates another direction for future research.

– Also, closing the gap on the competitive ratio between the best known on-
line path coloring algorithm in trees and the (randomized) lower bound is
another interesting open problem.
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Abstract. In the maximum edge-disjoint paths problem (MEDP) the
input consists of a graph and a set of requests (pairs of vertices), and the
goal is to connect as many requests as possible along edge-disjoint paths.
We give a survey of known results about the complexity and approxima-
bility of MEDP and sketch some of the main ideas that have been used
to obtain approximation algorithms for the problem. We consider also
the generalization of MEDP where the edges of the graph have capaci-
ties and each request has a profit and a demand, called the unsplittable
flow problem.

1 Introduction

Optimization problems concerning edge-disjoint paths in graphs have led to a
number of interesting approximation results in the last decade. One of the main
reasons for studying such problems is that they are encountered in modern com-
munication networks where establishing a connection requires reserving a certain
amount of bandwidth on all edges along some path from the sender to the re-
ceiver. If the network does not have sufficient bandwidth to satisfy all connection
requests, some requests must be rejected and it is meaningful to try to maximize
the number of accepted requests. The optimization problem that seems to lie at
the heart of this call admission control problem is the maximum edge-disjoint
paths problem (MEDP).

An instance of MEDP is given by a directed graph G = (V,E) and a set (or
multiset) containing k requests R = {(si, ti) | i = 1, . . . , k}, where each request
is a pair of vertices in V . The request (si, ti) asks for a directed path from si

to ti in G. We often use “request i” and “request (si, ti)” interchangeably. A
feasible solution is given by a subset A of R and an assignment of edge-disjoint
paths to all requests in that subset. More precisely, each (si, ti) ∈ A must be
assigned a directed path πi from si to ti in G such that no two paths πi and
πj (for i, j ∈ A and i �= j) have a directed edge of the graph in common. Such
a subset A is called realizable and a set of edge-disjoint paths assigned to the
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requests in A is called an edge-disjoint routing for A. The goal is to maximize
the cardinality of A, denoted by |A|. The requests in A are called the accepted
requests, those in R \ A the rejected requests.

MEDP can also be studied for undirected graphs. In this case, a request
(si, ti) asks for an undirected path connecting si and ti in the given undirected
graph, and two paths are edge-disjoint if they do not share an undirected edge.
In any case, MEDP can be stated in a compact way as follows.

Problem MEDP (Maximum Edge-Disjoint Paths)
Input: graph G = (V,E), requests R = {(si, ti) | i = 1, . . . , k}
Feasible solution: realizable subset A ⊆ R and edge-disjoint routing for A
Goal: maximize |A|

In general, the same vertex may appear several times as an endpoint of a
request in R, and we may even have several identical requests in R. On the
other hand, if a set R of requests has the property that every vertex of G is the
endpoint of at most one request in R, the set R is called a partial permutation.

As it turns out that MEDP is an NP-hard optimization problem in gen-
eral, one is interested in identifying special cases that can be solved optimally
in polynomial time and in deriving good approximation algorithms for the other
cases. An algorithm for MEDP is a ρ-approximation algorithm if it runs in poly-
nomial time and always outputs a feasible solution A satisfying |A| ≥ OPT/ρ,
where OPT denotes the cardinality of an optimal solution. For randomized algo-
rithms, the value |A| in this definition is replaced by its expectation, taken over
the random choices of the algorithm. The approximation ratio ρ can also be a
function of certain parameters of the given instance, for example, of the number
of vertices or edges of the given graph. We always let n = |V | and m = |E|.

Some of the algorithms that we will encounter work also for the on-line version
of the problem, where the requests are presented to the algorithm one by one
in arbitrary order and the algorithm must accept or reject each request without
knowledge of future requests. In this case, we will say that the algorithm is an
on-line algorithm.

In this chapter, we give a tutorial survey of known results concerning approx-
imation algorithms for MEDP. We treat results for arbitrary graphs as well as
results for specific graph classes. In Section 1.1, we define all the specific graph
classes that we deal with as well as some graph parameters. In Section 1.2, we
give a brief survey of known complexity results for MEDP, i.e., we explain which
special cases can be solved optimally in polynomial time and which variants are
known to be NP-hard or APX -hard.

Section 2 discusses approximation algorithms for MEDP in arbitrary graphs.
Sections 2.1 to 2.3 analyze various greedy-type algorithms, some of which achieve
approximation ratio O(

√
m). In Section 2.4, we give an inapproximability result

showing that no better approximation ratio (as a function of m) can be achieved
for arbitrary directed graphs. Section 2.5 deals with the linear programming
relaxation of MEDP and shows that although the integrality gap can be very
large in general, randomized rounding yields a constant-factor approximation
algorithm for a generalization of MEDP with large edge capacities.
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Results for specific graph classes are reviewed in Section 3. We discuss results
for trees, trees of rings, meshes, hypercubes, de Bruijn graphs, expanders, and
complete graphs. In Section 4 we briefly comment on the version of MEDP with
pre-determined paths. In Section 5 we consider a generalization of MEDP with
edge capacities, demand values, and profit values, called the unsplittable flow
problem. We present combinatorial algorithms for arbitrary directed graphs and
give a summary of results that have been achieved using linear programming
techniques. In Section 6, we mention further results that are related to MEDP
and the unsplittable flow problem.

1.1 Definition of Graph Classes and Graph Parameters

We give brief definitions of the graph classes that we consider later on. First,
consider undirected graphs. A graph is a complete graph or a clique if there is an
edge between every pair of vertices. A chain is a graph that consists of a single
path. A tree is a connected acyclic graph. A tree in which all vertices except one
have degree 1 is called a star. A spider or generalized star is a tree in which at
most one vertex can have degree larger than 2. A ring is a graph that consists
of a single cycle. A connected graph all of whose biconnected components are
rings is called a tree of rings.

The (two-dimensional) n1×n2 mesh is the graph with vertex set V = {(x, y) ∈
N

2 | 1 ≤ x ≤ n1, 1 ≤ y ≤ n2} and with vertex (x, y) being adjacent to the
vertices in {(x − 1, y), (x + 1, y), (x, y + 1), (x, y − 1)} ∩ V . While all internal
vertices have degree 4, the vertices on the boundary of the mesh have only two
or three neighbors.

The hypercube of dimension d is the graph with 2d vertices corresponding to
the 2d binary strings of length d, and with an edge between two vertices if and
only if the respective binary strings differ only in one position. There are several
constant-degree graphs that are called hypercubic networks : The d-dimensional
butterfly is a graph whose vertices are pairs (w, i), where i is an integer satisfying
0 ≤ i ≤ d and w is a binary string of length d. For a vertex (w, i), we call i its
layer. There is an edge between two vertices (w, i) and (u, j) if and only if
j = i+1 and either w = u or w and u differ precisely in the jth bit from the left.
The binary d-dimensional de Bruijn graph is a directed graph with 2d vertices
corresponding to the 2d binary strings of length d. It has a directed edge from
u to v if and only if the binary representation of v can be obtained from the
binary representation of u by a cyclic left-shift or by a cyclic left-shift followed
by flipping the rightmost bit. An undirected de Bruijn graph is obtained from a
directed de Bruijn graph by ignoring the directions of the edges and removing
self-loops.

A bidirected graph is a graph that is obtained from an undirected graph by
replacing each undirected edge with two directed edges of opposite directions. For
any of the graph classes defined above, we can thus also consider its bidirected
counterpart.

The maximum degree of a graph G is denoted by Δ(G). For a given graph
G = (V,E) and a set X ⊆ V , we denote by δ(X) the set of edges with one
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endpoint in X and the other endpoint in V \X . The expansion (or flux ) β(G)
of the graph G is defined as

β(G) = min
X⊂V,|X|≤ |V |

2

|δ(X)|
|X | .

A graph is called an expander if its expansion is bounded from below by some
constant.

If the graph G is clear from the context, we write Δ and β for Δ(G) and
β(G), respectively.

The treewidth of a graph with n nodes is a value between 1 and n − 1 that
measures (in some sense) how “tree-like” a graph is. For example, a graph has
treewidth 1 if and only if all its connected components are trees. We do not give
the definition of treewidth here and refer the reader to [7,8].

1.2 Polynomial-Time Solvable Cases and Hardness Results

Most of the early work on edge-disjoint paths problems has focused on the ver-
sion of the problem where the goal is to either route all given requests along
edge-disjoint paths or certify that such a routing does not exist. This decision
problem is one of the classical NP-complete problems [27]. For directed graphs,
Fortune, Hopcroft, and Wyllie [23] proved that the problem is NP-complete
even if only two terminal pairs are given. The results in the graph minor series
by Robertson and Seymour led to a polynomial algorithm for undirected graphs
and any constant number of terminal pairs [51]. If the number of terminal pairs
is arbitrary, the problem was shown NP-complete for meshes in [42] and in pla-
nar graphs of maximum degree 3 by Middendorf and Pfeiffer [46]. Substantial
effort has been devoted to the identification of polynomial-time solvable special
cases; we refer the reader to the surveys by Frank [24] and Vygen [57].

An intensive investigation of the maximization version MEDP started in the
1990s and is still continuing. Observe that there are classes of graphs for which it
canbe checked inpolynomial timewhether a setRof requests is realizable,but if the
answer is no, it is NP-hard to compute a maximum subset of realizable requests.
Bidirected trees and undirected or bidirected trees of rings are examples.

Nevertheless, MEDP can be solved optimally in polynomial time for some
classes of graphs. A first such class are chains. The routing for each request in
a chain is uniquely determined by its endpoints (the same is true for arbitrary
trees). Therefore, a set of requests in a chain can be represented as a set of
intervals on the real line, and it suffices to find a maximum number of pairwise
disjoint intervals. This problem has been studied in the context of interval graphs
and is known to be solvable in linear time [30]. Thus, MEDP can be solved
optimally in polynomial time for undirected or bidirected chains.

For undirected trees, a polynomial algorithm for MEDP has been found by
Garg, Vazirani and Yannakakis [28].

For bidirected trees of arbitrary degree, MEDP has been proved APX -
complete by Erlebach and Jansen [21], implying that there is a constant r > 1
such that no polynomial-time algorithm can achieve approximation ratio r unless
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P = NP . The proof is based on the proof by Garg, Vazirani, and Yannakakis [28]
showing that a generalization of MEDP with edge capacities is APX -complete
in undirected trees with edge capacities in {1, 2}. It can also be adapted to trees
of rings, showing that MEDP is APX -complete for undirected and bidirected
trees of rings [20].

Inbidirected stars, each request uses atmost two edges, and theMEDPproblem
can be reduced to the maximum bipartite matching problem. This approach can
be extended to give a polynomial-time algorithm for bidirected spiders as well, as
shown for a more general problem by Erlebach and Vukadinović [22]. In undirected
or bidirected rings,MEDP can alsobe solved optimally in polynomial time [58,49].

It is known that many hard problems can be solved efficiently on graphs of
bounded treewidth [7]. However, since trees of rings have treewidth 2, MEDP is
APX -hard even for graphs with treewidth 2. On the other hand, it is remarked
in [19] that MEDP can be solved optimally in polynomial time on graphs whose
treewidth and maximum degree are both bounded by a constant. Furthermore,
Zhou et al. [59] have shown that MEDP can be solved optimally in polynomial
time on graphs of bounded treewidth if the number of requests is O(log n) or if
certain conditions on the location of the request endpoints are fulfilled (includ-
ing the case when the union of the graph and the demand graph has bounded
treewidth, where the demand graph is the graph with an edge between the end-
points of each request).

It is interesting to note that for undirected graphs, no stronger inapproxima-
bility result than APX -hardness is known for MEDP. For directed graphs, we
will see a strong inapproximability result in Section 2.4.

2 Edge-Disjoint Paths in Arbitrary Graphs

2.1 The Greedy Algorithm

A very natural algorithm for MEDP is the greedy algorithm (see Fig. 1). It
processes the requests in arbitrary order. For each request, it checks whether the
request can be routed along a path that is edge-disjoint from all paths assigned

algorithm Greedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}):
A ← ∅;
for i = 1 to k do

if ∃ path from si to ti in G then
A ← A ∪ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 1. The greedy algorithm
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to previously accepted requests. If so, it accepts the request and routes it along
some shortest path that does not intersect previously accepted paths.

Unfortunately, this algorithm does not achieve a good approximation ratio
in general. For example, consider a chain of n vertices, numbered from 1 to n.
Assume that the first request processed by the algorithm is (1, n) and that there
are n−1 further requests of the form (i, i+1), for i = 1, 2, . . . , n−1. The greedy
algorithm accepts the first request but no other request, because the first request
blocks all n − 1 edges of the chain. The optimal solution, however, consists of
the other n − 1 requests. Thus, the optimal solution is better than the greedy
solution by a factor of n− 1.

On the other hand, we can show that the optimal solution can never be better
than the greedy solution by more than a factor of n−1. To see this, we employ the
following proof technique. Let A∗ be the set of requests in an arbitrary optimal
solution and let π∗

i be the path assigned to request (si, ti) ∈ A∗ by this solution.
Let A and πi be defined analogously for the greedy solution. We consider the
execution of the greedy algorithm and, whenever it accepts a request i, we remove
from A∗ the request i (provided i ∈ A∗) and all other requests in A∗ whose
optimal path π∗

j intersects the greedy path πi. Note that at any time of the
execution, the paths π∗

j of the requests that remain in A∗ are disjoint from the
paths of the requests that have already been accepted by the greedy algorithm.
When the greedy algorithm terminates, the set A∗ must be empty, by definition
of the greedy algorithm. Therefore, if we can show that for each request accepted
by the greedy algorithm, we have to remove at most ρ paths from the optimal
solution, this implies that |A∗| ≤ ρ · |A| and, consequently, the greedy algorithm
achieves approximation ratio at most ρ.

So how many requests do we have to remove from A∗ when the greedy algo-
rithm accepts a request i? In a graph with n vertices, every simple path (and
therefore also πi) consists of at most n− 1 edges. Consequently, it can intersect
at most n− 1 paths π∗

j of requests in A∗. Since it suffices to remove these up to
n− 1 paths as well as the request i itself, this shows that we have to remove at
most n paths from A∗. In fact, we can strengthen this to show that we have to
remove at most n−1 paths: If the path πi consists of fewer than n−1 edges, the
above argument can be used. If πi has length n− 1, it does in fact pass through
all vertices of the graph. We would have to remove n paths from A∗ only if π∗

i

was edge-disjoint from πi, but this cannot happen since πi passes through all
vertices and is a shortest path from si to ti (among all paths that do not in-
tersect previously accepted paths). Thus, the approximation ratio of the greedy
algorithm is bounded from above by n− 1 as well.

Theorem 1. The greedy algorithm has approximation ratio n − 1 for MEDP
in directed or undirected graphs with n vertices, and this bound is tight.

2.2 The Bounded-Length Greedy Algorithm

The greedy algorithm can perform badly because it may accept a request and
route it on a very long path while the optimal solution accepts many requests
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algorithm BoundedGreedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}, D):
A ← ∅;
for i = 1 to k do

if ∃ path of length at most D from si to ti in G then (*)
A ← A∪ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 2. The bounded-length greedy algorithm. It differs from the standard greedy al-
gorithm only by the modified condition in line (*).

whose paths intersect the long path instead. One idea to avoid this problem is
to restrict the length of the paths that the greedy algorithm is allowed to use.
The bounded-length greedy algorithm, suggested by Kleinberg [33] and shown in
Fig. 2, takes an additional parameter D and behaves like the greedy algorithm,
but accepts a request only if it can be routed on a path of length at most D.
Thus, each accepted request can intersect the paths of at most D other requests
in the optimal solution. On the other hand, the algorithm rejects all requests
whose endpoints are at distance larger than D. This means that the algorithm
will have approximation ratio ∞ on instances where all requests have endpoints
at distance larger than D. Therefore, we need to check for this case separately
and arrive at the following algorithm, which we call BoundedGreedy ′.

1. If for all requests (si, ti) the length of a shortest path from si to ti is at
least D + 1, return the solution consisting of a single request (si, ti) and an
arbitrary path from si to ti assigned to it.

2. Otherwise, run BoundedGreedy(G,R, D).

To analyze this algorithm, let us first consider the case that the condition of step 1
applies and that the algorithm accepts a single request. Since all paths assigned to
a request must use at leastD+1 of them edges of the graph, even the optimal solu-
tion can contain at mostm/(D+1) paths. Thus, the ratio is at mostm/(D+1) in
this case. Now assume that the algorithm BoundedGreedy is actually called. Each
request accepted by BoundedGreedy (and thus also by BoundedGreedy ′) blocks at
most D other requests that could have been accepted instead. All requests in the
optimal solution that are routed along a path of length at most D in the optimal
solution must either be accepted by the algorithm or intersect a path accepted by
the algorithm. Thus, we can apply the proof technique of the previous section to
show that the optimal solution contains at most (D + 1)|A| requests with paths
of length at most D, where A is the set of requests accepted by BoundedGreedy ′.
On the other hand, by the same argument as above, the number of paths in the
optimal solution that are routed along paths of length at least D + 1 is at most
m/(D+1). Thus, the optimal solution contains at mostm/(D+1)+(D+1)|A| ≤
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(m/(D+1)+D+1)|A| paths. This proves that BoundedGreedy ′ achieves approx-
imation ratio at mostD+1+m/(D+1). We can chooseD = �

√
m �−1 to obtain

a 2�
√
m �-approximation algorithm for MEDP.

To construct a bad instance for BoundedGreedy ′, take a ring with m edges
and vertices, the vertices being numbered clockwise from 1 to m. Choose m such
that

√
m is integral. Consider the set of requests containing the first request

(1,
√
m), the short requests (j, j+1) for j = 1, . . . ,

√
m−1, and the long requests

(i
√
m, (i+1)

√
m) for i = 1, . . . ,

√
m− 1. The algorithm accepts the first request

(1,
√
m) and routes it along the clockwise path. All other requests cannot be

routed along a path of length at most D =
√
m−1 now, so the algorithm rejects

all other requests. On the other hand, the optimal solution accepts all short
requests and all long requests, thus giving a solution with 2

√
m− 2 requests.

Theorem 2 (Kleinberg, 1996). Algorithm BoundedGreedy ′ with parameter
D = �

√
m �− 1 has approximation ratio O(

√
m) for MEDP in directed or undi-

rected graphs with m edges.

We will see later that BoundedGreedy achieves a much better approximation
ratio in expanders and other specific classes of graphs. Furthermore, it is inter-
esting to note that BoundedGreedy ′ can be adapted to the on-line setting by
flipping a coin in the beginning and running BoundedGreedy with probability 1

2
and the standard greedy algorithm otherwise.

Routing Number and Flow Number. Kolman and Scheideler [40] analyze
the approximation ratio achievable by the bounded-length greedy algorithm for
undirected graphs in terms of the routing number of the given graph. Consider
an undirected graph G = (V,E) with n nodes. For a set P of paths in G, the
congestion of an edge e ∈ E is the number of paths containing e. The congestion
of P is the maximum congestion among all edges. Denote by Sn the set of all
permutations from V to V . For any permutation π ∈ Sn and any L that is at
least the diameter of G, let C(G,L, π) be the minimum congestion among all
path sets that realize π (i.e., contain a path from v to π(v) for all v ∈ V ) and
that consist of paths with length at most L. Then the L-bounded routing number
R(G,L) of G is defined by

R(G,L) = max
π∈Sn

max{C(G,L, π), L} .

Intuitively, if a graph has L-bounded routing number R, then for any permu-
tation of the vertices, there exists a set of paths with length at most L and
congestion at most R that realizes the permutation.

The (unbounded) routing number R(G) is defined as R(G) = minL R(G,L).
For any graph G, R(G) lies between Θ(β(G)−1) and O(Δβ(G)−1 logn), where
Δ is the maximum degree of G and β(G) is the expansion as defined in Sec-
tion 1.1. There is a constant-factor approximation algorithm for computing the
routing-number of a given graph [52]. The routing number is Θ(n) for the chain,
Θ(
√
n) for the

√
n ×

√
n-mesh, and Θ(log n) for the butterfly, the hypercube,

and constant-degree expanders.
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algorithm ShortestFirstGreedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}):
A ← ∅;
while R contains a request that can be routed in G do

(si, ti) ← a request in R such that the shortest path from si to ti in G
has minimum length among all requests in R;

A ← A ∪ {(si, ti)};
R ← R \ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

od;
return A and {πi | (si, ti) ∈ A};

Fig. 3. The shortest-path-first greedy algorithm

For undirected graphs with maximum degree Δ and routing number R, Kol-
man and Scheideler show that the bounded-length greedy algorithm with length
parameter D = 2R achieves approximation ratio at most (Δ + 4)R + 1 =
O(ΔR) = O(Δ2β(G)−1 logn). For graphs with bounded degree, this gives ap-
proximation ratio O(R) = O(β(G)−1 logn). If the exact value of R is not known,
the bounded-length greedy algorithm can be run for all values D = 2p for
p = 0, 1, . . . , logn, and the best solution can be taken as the output of the
algorithm. Thus, approximation ratio O(ΔR) is achieved also in this case.

In addition, Kolman and Scheideler present a randomized approximation al-
gorithm with ratio O(Δ

√
LR) for MEDP in undirected graphs with maximum

degree Δ and L-bounded routing number R [40]. The algorithm works in the on-
line setting. Note that the bound O(Δ

√
LR) can be substantially better than the

bound O(ΔR(G)). The idea behind the algorithm is that in many graphs, some
edges are “bottleneck” edges and some are not. A single path passing through
many bottleneck edges could cause the rejection of many subsequent requests.
The algorithm thus puts a stricter bound on the number of bottleneck edges
of a path than on the number of non-bottleneck edges. The tricky part of the
algorithm is the initial phase in which the bottleneck edges are determined.

In subsequent work, Kolman and Scheideler [41] consider the flow number
F (G) of the given graph G instead of the routing number. They show that the
bounded-length greedy algorithm with length parameter D = 4F (G) achieves
approximation ratio O(F (G)) = O(Δβ(G)−1 logn) for MEDP in undirected
graphs with maximum degree Δ and expansion β(G).

It is interesting to note that F (G) is 1 for complete graphs, Θ(log n) for
hypercubes and expanders, Θ(

√
n) for the

√
n × √n-mesh, and Θ(n) for the

chain. As the flow number is defined in the more general context of graphs with
edge capacities, we give its definition only in Section 5.1 where we use it in the
context of the unsplittable flow problem.

The main idea underlying the use of the flow number is that the bounded-
length greedy algorithm has a good approximation ratio if there exists an optimal
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solution that consists of short paths only. The key ingredient of the analysis
is then a shortening lemma, which implies that any set of disjoint paths in a
graph with flow number F can be converted into a set of fractional flows such
that the load on every edge is at most 2 and all flow paths have length at most
4F . The shortening lemma is applied to the paths in the optimal solution of
the given instance of MEDP, and then the size of the solution produced by the
bounded-length greedy algorithm is related to the fractional flows with short
flow paths.

Kolman and Scheideler [41] use this analysis to obtain approximation ratio
16F + 1 for the unsplittable flow problem (that includes MEDP as a special
case), and it is not difficult to verify that the ratio for MEDP can even be
bounded by 8F + 1 [13].

2.3 The Shortest-Path-First Greedy Algorithm

Another modification of the greedy algorithm is the shortest-path-first greedy
algorithm, shown in Fig. 3. It was suggested by Kolliopoulos and Stein [37].
Instead of processing the given requests sequentially in an arbitrary order, the
algorithm ShortestFirstGreedy considers all remaining requests and accepts a
request whose shortest path has length � only if no other remaining request can
be routed along a path of length smaller than �. As a consequence, the algorithm
accepts requests in order of non-decreasing lengths of their shortest paths. It is
easy to see that the worst-case approximation ratio of ShortestFirstGreedy is at
least as good as that of BoundedGreedy.

Algorithm ShortestFirstGreedy achieves approximation ratio �
√
m �. To prove

this, consider an arbitrary optimal solution A∗ with paths π∗
i . Again, consider

an execution of the algorithm and when the algorithm accepts a request i and
routes it along a path πi, remove from A∗ the request i (if i ∈ A∗) as well as
all requests j whose path π∗

j intersects πi. By the order in which the algorithm
accepts the requests, all requests j ∈ A∗ have length at least |πi| when the
algorithm accepts request i. If |πi| ≤ �

√
m � − 1, we have to remove at most

�
√
m � paths from A∗, as before. If |πi| ≥ �

√
m �, there can be at most

√
m paths

left in A∗, because they all have length at least �√m �. So we have to remove at
most

√
m paths in this case as well. This shows that the approximation ratio of

ShortestFirstGreedy is at most �
√
m �.

Theorem 3 (Kolliopoulos and Stein, 1998). The shortest-path-first greedy
algorithm has approximation ratio at most �

√
m � for MEDP in directed or

undirected graphs with m edges.

We remark that m can be replaced by m∗ in the analysis above, where m∗ is
the number of edges that are actually used by paths in the optimal solution.

By refining the analysis above, we can bound the approximation ratio of
ShortestFirstGreedy in terms of the average path length d∗ = m∗/|A∗| of an
optimal solution A∗ whose paths use m∗ edges in total. Let A′ = A∗ \ A, i.e.,
A′ denotes the requests that are in the optimal solution, but not in the solution
computed by the algorithm. When the algorithm accepts request i and routes it
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along path πi, we remove from A′ the requests whose paths π∗
j intersect πi. Let

ki denote the number of requests that are removed from A′ because of path πi.
Each of these ki requests has a path of length at least |πi|, and |πi| must be at
least ki. Therefore, these ki requests use at least k2

i of the m∗ edges used in the
optimal solution, and we get ∑

i∈A
k2

i ≤ m∗.

Since
∑

i∈A k2
i ≥

( ∑
i∈A ki

)2
/|A| by the Cauchy-Schwarz inequality, we get( ∑

i∈A ki

)2
/|A| ≤ m∗. Using

∑
i∈A ki = |A′|, we obtain |A| ≥ |A′|2/m∗.

If |A| ≥ |A∗|/2, the algorithm has ratio at most 2. If |A| < |A∗|/2, we have
|A′| = |A∗ \ A| > |A∗|/2 and obtain

|A| ≥ |A′|2
m∗ >

|A∗|2
4m∗ =

|A|∗
4 m∗
|A∗|

=
|A|∗
4d∗

.

Thus, the approximation ratio is always bounded by 4d∗.

Theorem 4 (Kolliopoulos and Stein, 1998). The shortest-path-first greedy
algorithm achieves approximation ratio O(d∗) for MEDP on instances for which
some optimal solution has average path length d∗.

We remark that approximation ratio O(d∗) can also be achieved by running
BoundedGreedy with parameter D = 1, 2, 4, 8, . . . , n and outputting the best of
the solutions obtained in this way. This follows because at least half the paths of
the optimal solution have length at most 2d∗, and BoundedGreedy will produce
a solution with the required quality for the value of D that lies in the interval
[2d∗, 4d∗) (see the full version of [40]).

Chekuri and Khanna [15] showed that the bound of O(
√
m) on the approx-

imation ratio of the shortest-path-first greedy algorithm is not tight for dense
graphs. They proved upper bounds of O(n2/3) and O(n4/5) for undirected and
directed graphs, respectively. Their improved result is obtained by tightening
the analysis concerning long paths in the optimal solution. In the arguments
above, we used the fact that the optimal solution can contain at most m/� paths
of length at least �. Roughly speaking, Chekuri and Khanna show that in a
graph where the distance between the end vertices of each request is at least �,
at most O(n2/�2) (in the undirected case) and O(n4/�4) (in the directed case)
requests can be connected along edge-disjoint paths. This leads to the better
bound in dense graphs. They also show that the approximation ratio of the
shortest-path-first greedy algorithm is Ω(n2/3) in directed acyclic graphs and in
undirected graphs. The upper bound on the approximation ratio of the shortest-
path-first greedy algorithm for directed graphs was subsequently improved to
O((n log n)2/3) by Varadarajan and Venkataraman [56]. They obtain this result
by showing that in a directed graph where the distance between the end vertices
of each request is at least �, at most O((n2/�2) · (logn/�)2) of the requests can
be connected along edge-disjoint paths.
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Theorem 5 (Chekuri and Khanna, 2003; Varadarajan and Venkatara-
man, 2004). The approximation ratio of the shortest-path-first greedy algo-
rithm for MEDP is O(min{

√
m,n2/3}) in undirected graphs and O(min{

√
m,

(n logn)2/3}) in directed graphs.

For directed acyclic graphs, Chekuri and Khanna [15] present a combinatorial
algorithm that achieves approximation ratioO(

√
n·logn). The algorithm is based

on the observation that, if the optimal solution contains many long paths, there
must be a vertex that is contained in a significant fraction of these long paths.

2.4 Inapproximability for Directed Graphs

The bounded greedy algorithm and the shortest-path-first greedy algorithm
achieve approximation ratio O(

√
m) for directed or undirected graphs with m

edges. For directed graphs, an essentially matching inapproximability result has
been obtained by Guruswami et al. [31].

Theorem 6 (Guruswami et al., 1999). For MEDP in directed graphs with
m edges, there cannot be an m

1
2−ε-approximation algorithm for any ε > 0 unless

P = NP.

Proof. The proof is based on the hardness of the problem 2DirPath, i.e., de-
ciding for a directed graph H = (V,E) and four distinct vertices u1, w1, u2, w2
whetherH contains paths from u1 to w1 and from u2 to w2 that are edge-disjoint.
This problem has been proved NP-complete by Fortune, Hopcroft and Wyllie in
[23]. Consider some fixed ε > 0. Given an instance I of the problem 2DirPath,
one can efficiently construct an instance of MEDP with k requests in a directed
graph G with m edges such that the optimal solution contains all k requests
if I is a yes-instance and only one request if I is a no-instance. Therefore, an
approximation algorithm for MEDP with ratio smaller than k would allow to
decide I in polynomial time, implying that P = NP .

The construction of G is illustrated in Fig. 4. G is the lower right triangle
of a k × k mesh, with all edges pointing upward or to the right. Every internal
vertex v of the mesh is replaced by a copy of H . The head of the incoming
horizontal edge of v is attached to u1, the tail of the outgoing horizontal edge
to w1. Similarly, the vertical edges incident to v are attached to u2 and w2.
Intuitively, this copy of H allows two paths arriving at v from below and from
the left to cross (i.e., to leave this copy of H on the top and on the right side,
respectively) if and only if I is a yes-instance.

The k requests in G are defined as follows: The vertices at the bottom of
the mesh (from left to right) are the sources s1, s2, . . . , sk, and the vertices
on the right side of the mesh (from bottom to top) are the destinations t1, t2,
. . . , tk. If I is a yes-instance, all k requests can be accepted and routed along
the canonical path that goes upward until the destination row is reached and
then to the right until the destination is hit. If I is a no-instance, there cannot
be edge-disjoint paths for any two requests i and j, i �= j, because such paths
would have to cross at some copy of H . Therefore, the optimal solution to the
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Fig. 4. Construction used in the inapproximability proof

constructed instance of MEDP contains either k requests or only one request,
depending on whether I is a yes-instance. If we choose k = m

1/ε
H , where mH is

the number of edges of H , the graph G has m = Θ(k2mH) = Θ(k2+ε) edges,
hence k = Θ(m1/(2+ε)). Since the construction can be applied for every fixed
ε > 0, the theorem follows. ��

Note, however, that for the graphs constructed in the proof of Theorem 6, we
have m = O(n). Therefore, the lower bound does not necessarily apply to dense
graphs. In fact, we have seen in Theorem 5 that the shortest-path-first greedy al-
gorithm indeed achieves approximation ratio strictly better thanO(

√
m) in dense

graphs. In terms of n, the proof of Theorem 6 gives only n
1
2−ε-inapproximability

of MEDP in directed graphs.
Another inapproximability result for MEDP in directed graphs has been

obtained by Ma and Wang [45]. They prove that MEDP cannot be approxi-
mated within ratio 2log1−ε n in directed graphs with n vertices unless NP ⊆
DTIME(2polylogn).

It remains an interesting open problem to determine whether the approxima-
tion ratio for MEDP in undirected graphs can be improved substantially. The
proof of Theorem 6 cannot be adapted to the undirected case because the variant
of 2DirPath for undirected graphs can be solved in polynomial time. In fact,
for every constant k there is a polynomial-time algorithm that decides for an
undirected graph and k requests whether all k requests can be connected along
edge-disjoint paths by the results of Robertson and Seymour [51]. At present,
we cannot even exclude the existence of an O(1)-approximation algorithm for
MEDP in undirected graphs.
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2.5 Linear Programming and Randomized Rounding

Linear programming [53] is a very powerful tool in combinatorial optimization. In
this section we discuss the natural LP relaxation of MEDP. Intuitively, solutions
to the LP relaxation correspond to fractional solutions, i.e., solutions that may
accept only fractions of certain requests and that may split the accepted fraction
of a request among several paths arbitrarily.

In the following, we allow a more general edge capacity constraint than the
strict requirement of having edge-disjoint paths: we assume that each edge e has
a certain integral capacity u(e) and that a routing is feasible if at most u(e)
paths go through every edge e. We call this problem generalized MEDP.

An LP Relaxation of MEDP. Let a graph G = (V,E) with edge capacities
u : E → N and a set of requests R = {(si, ti) | i = 1, . . . , k} be given. Denote by
Pi the set of all paths from si to ti in G. Note that there might be exponentially
many paths in Pi; we will discuss later how to deal with this.

It is natural to introduce a variable xi for each request i, 1 ≤ i ≤ k, that
is constrained by 0 ≤ xi ≤ 1 and represents the fraction of request i that is
accepted. Furthermore, a variable yi,π is introduced for each path π ∈ Pi; this
variable corresponds to the fraction of request i that is routed along path π.

Thus, maximizing the sum of the accepted fractions of the given requests can
be formulated as the following linear program:

f∗ = max
k∑

i=1

xi (1)

s.t.
∑

i,π:e∈π∈Pi

yi,π ≤ u(e), for all e ∈ E (2)

∑
π∈Pi

yi,π = xi, for 1 ≤ i ≤ k (3)

0 ≤ xi ≤ 1, for 1 ≤ i ≤ k (4)
0 ≤ yi,π ≤ 1, for 1 ≤ i ≤ k and π ∈ Pi (5)

The objective function (1) expresses that the goal is to maximize the sum of the
accepted fractions of the requests. Constraint (2) ensures that the edge capacities
are not exceeded. Constraint (3) requires that the fractions of request i that are
routed along different paths from si to ti add up to xi, the total accepted fraction
of request i. Constraints (4) and (5) ensure that all variables are between zero
and one.

The above LP may be of exponential size, but is easy to understand. In
order to obtain an LP of polynomial size, one uses variables fi,e for 1 ≤ i ≤
k and e ∈ E that represent the fraction of request i that is routed through
edge e. The number of such variables is bounded by k|E|. Furthermore, the edge
capacity constraints (2) are replaced by

∑k
i=1 fi,e ≤ u(e) for all e ∈ E, and

flow conservation constraints are added for each request i and each vertex v ∈
V \{si, ti} (expressing that the amount of request i reaching v through incoming
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Fig. 5. The brick-wall graph

edges is equal to the amount leaving v through outgoing edges). Constraint (3)
is replaced by a constraint ensuring that the amount of request i leaving si is
equal to xi. The variables yi,π are not needed in this modified LP. The modified
LP has polynomial size and can be solved optimally in polynomial time. We refer
to the resulting values of the variables fi,e and xi as f∗

i,e and x∗i , respectively.
These quantities can be viewed as representing a flow of value x∗i from si to
ti, for 1 ≤ i ≤ k. Using standard flow decomposition methods (also called path
stripping) [50], the flow of request i can be efficiently transformed into O(|E|)
separate flows along paths from si to ti, and these flows represent a fractional
solution to the original (exponential-size) LP with the same objective value.
Thus, we can assume from now on that we can compute an optimal fractional
solution to the original LP in polynomial time and that this solution has only a
polynomial number of variables y∗i,π that are non-zero.

A solution to the LP in which the variables xi and yi,π are all integral, i.e.,
either equal to 0 or equal to 1, corresponds to a feasible solution of the origi-
nal instance of generalized MEDP. However, adding such integrality constraints
makes the linear programming problem NP-hard. Therefore, a meaningful ap-
proach is to solve the LP to obtain an optimal fractional solution and then try to
convert the fractional solution into an integral solution without losing too much
in the objective function. This conversion is usually called rounding.

The Integrality Gap. Unfortunately, the gap between the fractional optimum
and the integral optimum can be arbitrarily large for the LP formulation of MEDP
[28]. A simple example todemonstrate this is shown inFig. 5.This type ofmesh-like
graph with internal vertices of degree 3 is often called a brick-wall graph. Assume
that the graph is undirected, all edges have capacity 1, and there are 6 requests,
where both endpoints of request i are labeled by i in the figure. Since any two paths
for different requests must cross somewhere and thus share an edge, the integral
optimum accepts only one of the six paths. The fractional solution, however, can
route 1/2 of each request without violating any capacity constraint, thus giving an
objective value of 3. This example can be generalized to give instances where the
integral optimum is 1, but the fractional optimum is Θ(

√
m) for brick-wall graphs
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withm edges, wherem is arbitrarily large. The construction can also be adapted to
directed graphs in a straightforward way. Note, however, that the brick-wall graph
is sparse and thus the lower boundon the integralitygap in termsofn isonlyΩ(

√
n).

Chekuri and Khanna [15] prove that an upper bound ofO(
√
n · logn) on the inte-

grality gap holds for directed, acyclic graphs.
In any case, the discussion above shows that we cannot hope to find a rounding

approach that always gives an integral solution with objective value close to the
fractional optimum.

Randomized Rounding in the High-Capacity Case. Fortunately, the sit-
uation is much better if the edge capacities are required to be large. In this
case, the randomized rounding approach due to Raghavan and Thompson [50]
gives a constant-factor approximation ratio. Our presentation follows the work
by Kleinberg [33, pp. 39–41]. The basic idea is to interpret the values of the vari-
ables in the fractional solution as probabilities. For the variables xi, this means
that xi is set to 1 with probability x∗i . More precisely, we will have to scale down
the values x∗i by some factor μ before the rounding can be done.

Assume that all edge capacities are at least ε logm for some constant ε. Let
μ < 1 be a positive constant whose choice will be explained later. For each
request i, 1 ≤ i ≤ k, make an independent random choice and route request i
along path π ∈ Pi with probability μy∗i,π, for all non-zero y∗i,π, and reject request
i with probability 1−

∑
π∈Pi

μy∗i,π = 1− μx∗i .
We need to show that with constant probability, the resulting integral solution

does not violate any edge capacity and that its objective value is at least a
constant fraction of the fractional optimum. The number of paths going through
an edge in the integral solution is the number of fractional paths through that
edge that were rounded up. Thus, the random variable representing the number
of paths going through the edge in the integral solution can be viewed as the sum
of independent Bernoulli trials; since the number of trials is large in the case of
large edge capacities, Chernoff-Hoeffding bounds [47] can be used to show that
the probability that some edge capacity is violated is at most 1/m if μ is chosen
as μ = e−14−1/ε. Furthermore, by the Markov inequality, the probability that
the objective value resulting from the rounding is at least μ/2 times the fractional
optimum is at least μ/(2− μ). Therefore, the probability that no edge capacity
is violated and the objective value is at least μ/2 times the fractional optimum
is a constant. Thus, repeating the randomized rounding Θ(p) times provides a
constant-factor approximation algorithm for the high-capacity case of MEDP
with probability 1− 2−p.

Theorem 7 (Raghavan and Thompson, 1987; Kleinberg, 1996). For all
instances of generalized MEDP where the edge capacities are at least ε logm
for a suitable constant ε, there is a randomized polynomial-time algorithm that
achieves a constant-factor approximation with high probability.

Note that the constant-factor approximation ratio of this theorem holds also
if the solution of the algorithm is compared with the fractional optimum of the
LP relaxation of the problem.
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Kolman and Scheideler [41] prove that a constant-factor approximation algo-
rithm for generalized MEDP (in fact, even for the unsplittable flow problem) in
graphs with flow number F exists if the edge capacities are at least ε logF for
a suitable constant ε. Their result is obtained by a rather sophisticated use of
randomized rounding. Note that for graphs with polylogarithmic flow number
(hypercubes, expanders, etc.), this shows that constant approximation ratio can
already be obtained if the edge capacities are Ω(log logn). This latter result had
previously been obtained by Srinivasan [55] (see also Baveja and Srinivasan [5]).

Further results about the approximation ratio achieved by LP-based algo-
rithms will be discussed in Section 5.5 in the context of the unsplittable flow
problem.

3 Edge-Disjoint Paths in Specific Graph Classes

Since the approximation ratios that have been achieved for arbitrary graphs
are quite large, it is interesting to investigate whether MEDP admits better
approximation ratios for restricted classes of graphs. There are two basic tech-
niques that sometimes allow to obtain a better approximation ratio on specific
graph classes:

– For some graph classes, the approximation ratio of the standard greedy al-
gorithm of Section 2.1 can be improved by sorting the given requests in some
order depending on the structure of the given graph.

– For some graph classes, one can prove that there exists a solution using
paths of length at most D that is at least as large as 1/α times the optimum
solution. The bounded-length greedy algorithm of Section 2.2 with parame-
ter D and the shortest-path-first greedy algorithm of Section 2.3 both give
approximation ratio at most αD in this case (cf. Kolman [38]).

We will see examples of both techniques in the following.

3.1 Trees and Trees of Rings

Recall that MEDP can be solved optimally in polynomial time for undirected
trees, but is APX -hard for bidirected trees and undirected or bidirected trees
of rings. A simple approximation algorithm for MEDP in bidirected trees is
the following: Root the given tree at an arbitrary node. For each node v of the
tree, let d(v) denote its distance from the root. For each request (si, ti), let �i
be the node on the path from si to ti that is closest to the root. The node �i
is also called the lowest common ancestor of si and ti. Now process the given
requests in order of non-increasing values d(�i) and apply the greedy algorithm
(i.e., accept each path if it does not intersect any previously accepted path).

In order to analyze the algorithm, we fix an arbitrary optimal solution A∗.
When the algorithm accepts a request (si, ti), we remove from A∗ all paths
that intersect (si, ti). By definition of the algorithm, all paths j ∈ A∗ have
d(�j) ≤ d(�i). Therefore, if such a path j ∈ A∗ intersects the path πi from si to
ti, it must contain one of the (at most) two edges on πi that are incident to �i.
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Fig. 6. A tree of rings

This means that there can be at most two paths in A∗ that intersect πi. Thus,
the algorithm achieves approximation ratio 2.

An improved approximation algorithm with ratio 5
3 + ε, where ε > 0 is an

arbitrary fixed constant, was presented by Erlebach and Jansen [21]. This algo-
rithm is based on the simple 2-approximation just described, but it considers
all paths with the same lowest common ancestor simultaneously and computes
a maximum number s of such paths that can be added to the current solution.
This can be done using a maximum bipartite matching algorithm. If s ≥ 3, all
these s paths are accepted. Since it suffices to remove from A∗ at most s paths
with the same lowest common ancestor and at most two other paths whose lowest
common ancestor is closer to the root, at most 5

3s paths have to be removed from
A∗. If s = 1 or s = 2, the algorithm cannot always make the decision regarding
acceptance or rejection right away. In some cases, it creates a configuration of
unresolved paths , i.e., paths which are neither accepted nor rejected and whose
status will be decided at a later node. Such configurations of unresolved paths
complicate the processing at later nodes, but a careful case analysis shows that
approximation ratio 5

3 + ε can be achieved for any ε > 0. The running-time is
polynomial in the size of the input for fixed ε > 0.

Theorem 8 (Erlebach and Jansen, 2001). For every fixed ε > 0, there is a
(5
3 + ε)-approximation algorithm for MEDP in bidirected trees.

An example of a tree of rings is shown in Fig. 6. In undirected or bidirected
trees of rings, it is possible to reduce the problem to that for trees while losing at
most a factor of 3 in the approximation ratio. The idea is just to remove one link
from every ring of the tree of rings arbitrarily. This turns the tree of rings into a
tree, and at least one third of the requests in the optimal solution for the tree of
rings can still be routed in the tree. Thus, in the undirected case one can apply
the optimal algorithm for undirected trees, leading to approximation ratio 3 for
MEDP in undirected trees of rings. For bidirected trees of rings, approximation
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ratio 5+ ε is obtained by using the (5
3 + ε)-approximation algorithm for MEDP

in bidirected trees of Theorem 8.

Theorem 9 (Erlebach, 2001). There exists a 3-approximation algorithm for
MEDP in undirected trees of rings and a (5 + ε)-approximation algorithm for
MEDP in bidirected trees of rings, for every fixed ε > 0.

3.2 Meshes and Densely Embedded Graphs

Kleinberg and Tardos [36] found a randomizedO(1)-approximation algorithm for
MEDP in two-dimensional meshes. Furthermore, they generalized the algorithm
to obtain approximation ratio O(1) also for the class of densely embedded, nearly-
Eulerian graphs ; we refer to [36] for details. In the following, we give an outline
of their algorithm for meshes.

Fix some constant γ. The given requests are partitioned into long requests and
short requests. A request (si, ti) is short if the distance between its endpoints is
at most 16γ logn, and long otherwise. By considering short requests and long
requests separately, computing an approximate solution for each of the two sets,
and outputting the better of the two, an algorithm loses at most a factor of 2 in
the approximation ratio. This is because at least half the requests in an optimal
solution are either all short or all long.

The basic idea for dealing with the long requests is to embed a simulated
network with high capacity into the mesh and to use an O(1)-approximation
algorithm for high-capacity networks based on linear programming and ran-
domized rounding (cf. Section 2.5) in this simulated network. One difficulty is
translating the accepted paths in the simulated network into edge-disjoint paths
in the original mesh.

The short requests are again partitioned into medium requests and small re-
quests. The medium requests will be handled by applying the algorithm for long
requests in separate submeshes of the original mesh. The small requests are short
enough to be handled by brute-force enumeration.

Long Requests and the Simulated Network. For dealing with long re-
quests, the mesh is partitioned into subsquares of size γ logn × γ logn. The
subsquare whose middle vertex is v is denoted by Cv. For a subsquare Cv, the
up to eight other subsquares that are adjacent to it are called its neighbors. A
maximal subset of the subsquares is chosen randomly such that no two chosen
subsquares have a common neighbor. The random choice ensures that every sub-
square becomes a chosen subsquare with constant probability and for any pair
of subsquares whose middle vertices are at distance at least 11γ logn, there is
a constant probability that both subsquares are chosen. The algorithm discards
all requests that do not have both endpoints in chosen subsquares. This costs
only a constant factor in the approximation ratio.

A chosen subsquare Cv together with all its neighbors becomes an enclosure
Dv. Subsquares that do not belong to an enclosure at this point are included in
any of their adjacent enclosures arbitrarily. Thus, the vertices of the mesh are
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Fig. 7. The given mesh (left); its partitioning into γ log n×γ log n subsquares, with cho-
sen subsquares drawn in bold and additional lines showing the border of the enclosures
(middle); and the core of the resulting simulated network (right)

partitioned into enclosures. Two enclosures Dv and Dw are adjacent if there is
an edge with one endpoint in Dv and the other endpoint in Dw. In this way, an
enclosure can be adjacent to no more than 20 other enclosures. See Fig. 7 for an
example.

Now the simulated network is built. First, take a vertex zv for each chosen
subsquare Cv, and connect two vertices zv and zw if their enclosures are adjacent.
This defines the core N of the simulated network, and all edges in this core will
be assigned capacity ρ logn for a constant ρ < γ. The right-hand side of Fig. 7
depicts the core of the simulated network in the example. To obtain the final
simulated network N ′, add a copy of each chosen subsquare Cv and make all
vertices at the boundary of Cv adjacent to zv. The edges inside Cv and the edges
from the boundary of Cv to zv are assigned capacity 1.

The long requests with endpoints in chosen subsquares can be viewed as
requests in N ′. Formulating the problem in N ′ as a linear program and solving
this linear program, we obtain an optimal fractional solution F ∗ for the problem.
The objective value of this fractional solution is within a constant factor of
the optimal integral solution for the long requests in the mesh. By applying
the randomized rounding approach of Raghavan and Thompson, we obtain an
integral solution F (a set of accepted requests and one path for each accepted
request) that, with high probability, does not violate any edge capacity in N
and whose cardinality is a constant fraction of the fractional optimum. However,
the paths in F may violate edge capacities in Cv.

The paths of the integral solution F in N ′ must be translated back into paths
in the mesh. For each pair of adjacent enclosures Dv and Dw, choose a set τv,w

of ρ logn edges connecting Dv and Dw arbitrarily. Furthermore, choose a set σv

of ρ logn vertices equally spaced at the boundary of each Cv. The part of the
mesh around a chosen subsquare Cv will be used to establish a crossbar structure
allowing arbitrary interconnection of vertices in σv and endpoints of edges in all
sets τv,w along edge-disjoint paths. The up to ρ logn paths going from zv to
zw in N ′ will be routed through edges of τv,w, and up to ρ logn paths with an
endpoint s in Cv are to be routed from s to some vertex in σv.

To establish the crossbar structure, the 1
2γ logn rings induced by vertices at

distance γ logn to 3
2γ logn from the middle vertex v of a chosen subsquare Cv

are used. This is illustrated in Fig. 8. Each vertex in σv and each endpoint in
Dv of an edge in some τv,w is assigned a different such ring; since Dv is adjacent
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Cv

Dv

Dx

Dy

Fig. 8. The 1
2γ log n rings outside Cv realize a crossbar structure in Dv. Two paths

using the crossbar structure are shown: one path arrives from Dx and is routed to a
vertex on the boundary of Cv, the other arrives from Dx and is routed to Dy .

to at most 20 other enclosures, this is possible if ρ is chosen smaller than γ/42.
The outermost ρ logn rings are assigned to vertices in σv. It is easy to see that
we can assign each vertex in σv and each endpoint in Dv of an edge in some τv,w

a path from that vertex to its ring, such that all these paths are edge-disjoint
and do not use an edge of any of the rings.

Consider a path πF assigned to request (si, ti) in F . Let si and ti be contained
in Cv and Cw , respectively. To route (si, ti) in the mesh, a path is obtained as
follows:

– Find a path from si to some vertex ri,v in σv and a path from ti to some
vertex ri,w in σw . These paths form the first segment and last segment of
the constructed path from si to ti in the mesh.

– If zu is the first vertex after zv in πF , choose a free edge ei in τv,u, and let
its endpoint in Dv be ui. Follow the path from ri,v to its ring in Dv until it
intersects the ring of ui, then follow that ring and the path from that ring
to ui. Then take the edge ei.

– Consider an intermediate vertex zu with successor zx on πF . If the con-
structed path enters Du through an edge e1, pick a free edge e2 in τu,x.
Assume without loss of generality that the ring of e1 in Du is inside the ring
for e2. Follow the path from e1 to its ring until the ring of e2 is hit, then
follow the ring of e2 and the path to e2.

– At the last N -vertex zw of πF (i.e., the last vertex of πF that is in the core
N of the simulated network N ′), if the partial path enters Dw through edge
e1, follow the path from e1 to its ring in Dw until it intersects the ring of
ri,w, then follow that ring and its path to ri,w .

Except for the first and last segment of the paths, it is clear that we find edge-
disjoint paths in the mesh for each path in F .
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It remains to deal with the first and last segments. Consider some subsquare
Cv. The solution F can have more paths with an endpoint in Cv than can be
routed along edge-disjoint paths to distinct vertices in σv. Kleinberg and Tardos
model the escape problem of routing path endpoints in Cv to vertices in σv as a
flow problem and observe that an edge-disjoint routing exists provided the cut
condition is satisfied for all rectangular cuts. For the case that the cut condition
is violated by the requests accepted in the solution F , they show that one can
discard requests from F so that the remaining requests are a constant fraction of
the requests in F and all cut conditions are satisfied. For the remaining requests,
a network flow algorithm can be used to solve the escape problem and to obtain
the first and last segments of the paths as required. In total, this gives an O(1)-
approximation algorithm for the long requests.

Short Requests. Recall that the endpoints of short requests are at distance
smaller than 16γ logn. Set r = 32γ logn. First, the algorithm randomly chooses
a maximal set M of vertices in the mesh with the property that the L∞ distance
between any two vertices in M is more than 4r. For u ∈ M , let Xu be the set
of all vertices with L∞ distance at most r from u, and let Yu be the set of all
vertices with L∞ distance at most 2r from u. Note that Yu and Yu′ are disjoint
for u, u′ ∈ M , u �= u′. If M is chosen by an appropriate randomized algorithm,
it can be shown that for any short request (si, ti), there is a constant probability
that both si and ti are contained in Xu for some u ∈M . Thus, the algorithm can
restrict its attention to short requests with both endpoints in the same set Xu

for some u ∈ M and discard all other short requests. Furthermore, the optimal
solution for the short requests with endpoints in Xu using paths in the submesh
induced by Yu can be shown to route at least one quarter of the requests in an
optimal solution for these requests using paths in the whole mesh. Thus, the
algorithm can deal with the requests in each Xu separately and use only the
submesh induced by Yu to route the requests with both endpoints in Xu.

Now consider the short requests with both endpoints in Xu. By considering
these requests as requests in the submesh induced by Yu, we can recursively
partition them into long requests and short requests with respect to the submesh.
Call the resulting long requests medium requests and the resulting short requests
small requests. The medium requests are handled by the algorithm for long
requests of the previous section, now applied to the submesh induced by Yu.
The small requests have endpoints whose distance is O(log log n). By selecting
subsets X ′

v and Y ′
v inside Yu in the same way as Xu and Yu were selected in

the original mesh, the routing of small requests is reduced to solving MEDP in
submeshes with side length O(log logn). These submeshes are so small that an
optimal solution can be computed by a brute-force enumeration in polynomial
time.

Thus, we get approximation algorithms with constant ratio for the long re-
quests, medium requests, and small requests. By running all three algorithms
and outputting the largest of the three solutions, we get a constant-factor ap-
proximation algorithm for MEDP in meshes. Since some of the steps hold only
with constant probability, parts of the algorithm must be repeated a certain
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number of times in order to guarantee that the constant-factor approximation
is achieved with high probability.

Theorem 10 (Kleinberg and Tardos, 1995). For MEDP in undirected
meshes there is a randomized polynomial-time approximation algorithm that
achieves a constant-factor approximation with high probability.

Prior to this result, an O(log n log log n)-approximation algorithm (that was
an on-line algorithm) for meshes had been obtained by Awerbuch et al. [3] and
O(log n)-approximation algorithms by Aumann and Rabani [1] and Kleinberg
and Tardos [35]. Kleinberg and Tardos [36] presented also an on-line algorithm
with approximation ratio O(log n) for MEDP in meshes.

3.3 Hypercubes and de Bruijn Graphs

MEDP admits an O(log n)-approximation algorithm in undirected or bidirected
hypercubes. For bidirected hypercubes, Gu and Tamaki [29] have shown that
any partial permutation can be realized with two sets of edge-disjoint paths.
Taking the larger of the two sets gives a 2-approximation algorithm for MEDP
on partial permutation instances. For general instances, we can first compute
a largest subset of the given requests that is a partial permutation instance
and then use the 2-approximation algorithm by Gu and Tamaki. By reducing
a general instance to a partial permutation instance, we lose at most a factor
of O(log n) in the approximation ratio, because the vertices of the hypercube
have degree d = logn. For undirected hypercubes, it was shown by Aumann
and Rabani in [1] that any partial permutation can be realized by a constant
number of sets of edge-disjoint paths. Hence, the same reasoning can be applied
to undirected hypercubes as well. Since hypercubes have flow number O(log n),
it follows from the work of Kolman and Scheideler [41] that BoundedGreedy
achieves ratio O(log n) for MEDP in hypercubes. Hence, this approximation
ratio can even be achieved in the on-line setting.

An embedding of the butterfly into the de Bruijn graph and a decomposition
of the de Bruijn graph were presented by Kolman [38]. From these he derived,
for every constant ε > 0, an O(log2+ε n)-approximation algorithm for MEDP in
undirected de Bruijn graphs. As de Bruijn graphs have routing number O(log n)
and constant maximum degree, it follows from the subsequent results by Kolman
and Scheideler [40] on the routing number that BoundedGreedy is an O(log n)-
approximation algorithm for MEDP in de Bruijn graphs.

3.4 Expander Graphs

Kleinberg and Rubinfeld [34] considered MEDP in bounded-degree expander
graphs. They fix a natural number Δ ≥ 3 and a real number α > 0 arbitrarily,
and then they assume that the maximum degree of the given graph G is at most
Δ and that the expansion β(G) is at least α.
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Theorem 11 (Kleinberg and Rubinfeld, 1996). For every constant Δ, the
bounded-length greedy algorithm with parameter D = cΔ logn for a suitable con-
stant c is an O(log n log logn)-approximation algorithm for MEDP in undirected
expander graphs with maximum degree at most Δ.

To analyze the algorithm, they first show that there exists a feasible routing
for a subset R′ of R that is a partial permutation. Furthermore, |R′| is at least a
constant fraction (more precisely, a 1/(Δ+1)-fraction) of the optimal solution for
R. This follows, because each vertex is the endpoint of at most Δ requests that
are accepted in the optimal solution for R, and so the requests in the optimal
solution, viewed as edges between their endpoints, can be partitioned into Δ+1
matchings by Vizing’s edge coloring theorem. The largest matching gives the
desired partial permutation R′.

Next, they show that there is a set of requests R′′ ⊆ R′ containing at least
half of the paths in R′ such that the requests in R′′ can be routed along paths of
length at most c logn and at most c′ log logn paths are routed through the same
edge. This result builds on previous work on routing of partial permutations in
expanders by Broder, Frieze, and Upfal [12].

To analyze the bounded-length greedy algorithm, the same technique as in
Section 2.2 can be used: Whenever the algorithm accepts a request and routes
it along a path π, we remove that request and all other requests with paths that
intersect π from R′′. We see that at most |π| · c′ log log n+ 1 = O(log n log logn)
requests have to be removed from R′′ in this way, thus proving the claimed
approximation ratio.

Since expanders have routing number O(log n), it follows from the work of
Kolman and Scheideler [40] that BoundedGreedy with parameter D = O(log n)
achieves approximation ratio O(log n) for expanders, thus improving the result
by Kleinberg and Rubinfeld.

Chakrabarti et al. [14] consider so-calledΔ-regular strong expanders and show
that approximation ratio O(

√
logn) can be achieved for sufficiently large con-

stant Δ.

3.5 Complete Graphs

For undirected or bidirected complete graphs, Erlebach and Vukadinović [22]
have shown that there is a solution that uses only paths of length at most two and
whose size is at least a constant fraction of the optimal solution. Therefore, the
bounded-length greedy algorithm with D = 2 and the shortest-path-first greedy
algorithm both achieve constant approximation ratio for MEDP in complete
graphs. Using the results on the flow number due to Kolman and Scheideler
[41], Carmi et al. [13] have shown that the approximation ratio achieved by the
shortest-path-first greedy algorithm and the bounded-length greedy algorithm
(with D = 4) is at most 9 and cannot be better than 3 for undirected complete
graphs (which have flow number 1).

Chekuri and Khanna [15] prove that the shortest-path-first greedy algorithm
has approximation ratio O(n/δ) for MEDP in undirected graphs with minimum
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degree δ. This also implies a constant-factor approximation algorithm for MEDP
in complete graphs.

MEDP is NP-hard in undirected and bidirected complete graphs [22], but
no inapproximability result is known.

4 MEDP with Pre-determined Paths

In our definition of the MEDP problem, each request specifies only the end-
points si and ti, and if the request is accepted, the path connecting si and ti is
determined by the algorithm. Alternatively, one can assume that every request
with endpoints si and ti already specifies a pre-determined path πi connecting
si and ti. The path πi might be determined by a separate routing algorithm or
by the customer who submits the request. If request i is accepted, it must be
routed along πi. We denote this variant of MEDP by PreMEDP.

An instance I of PreMEDP with a set of k paths in a graph G can be viewed
as a maximum independent set problem in the conflict graph of I, i.e., in the
graph with one vertex for each of the k paths and with an edge between two
vertices if the corresponding paths intersect.

Of course, the problems MEDP and PreMEDP are equivalent for trees.
For undirected or bidirected rings, PreMEDP is polynomial, since the conflict
graph is a circular-arc graph (or a disjoint union of two circular-arc graphs, in
the bidirected case) in this case and the maximum independent set problem
is polynomial for circular-arc graphs [30]. For undirected or bidirected trees of
rings, PreMEDP was shownAPX -complete in [20]. For the approximation ratio
achieved by a greedy algorithm based on depth-first search, upper bounds of 4
and 8 were given there for the undirected and bidirected case, respectively. For
arbitrary graphs, it is easy to see that the natural adaptations of the bounded-
length greedy algorithm and the shortest-path-first greedy algorithm achieve
approximation ratio O(

√
m) for PreMEDP.

To get an inapproximability result for PreMEDP in arbitrary graphs, note
that any graph H with n vertices can be encoded as the conflict graph of n
paths in a series-parallel graph with m = O(n2) edges, such as the one shown

layer 3layer 2layer 1

ts

Fig. 9. A series-parallel graph
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in Fig. 9: All n paths go from s to t. There are O(n) layers between s and t,
and each layer consists of O(n) parallel chains of length two. The edge set of H
can be split into � = O(n) matchings M1, M2, . . . , M using an edge coloring
algorithm. In each layer i, the paths corresponding to the endpoints of the jth
edge in Mi both use the jth chain of that layer. The paths corresponding to
nodes that are not matched in Mi use one of the other chains of that layer (no
two of them use the same chain). Thus, two of the constructed paths intersect
if and only there is an edge between the corresponding vertices in H .

The maximum independent set problem in graphs with n vertices cannot be ap-
proximated within n1−ε for any ε > 0 unless NP = co-RP , as shown by H̊astad
[32]. Therefore, PreMEDP cannot be approximated within m

1
2−ε for any ε > 0

under the same assumption. Unlike in the case of MEDP, this inapproximabil-
ity result for PreMEDP applies also to undirected graphs and to graphs with
bounded treewidth (since series-parallel graphs have treewidth at most two).

We remark that any graph with n vertices can also be encoded as the conflict
graph of n paths in a mesh with O(n2) vertices, thus yielding the same inapprox-
imability result. This construction was given by Nomikos in a reduction from the
vertex coloring problem to path coloring with pre-determined paths [48].

For PreMEDP, one can also take the number of rejected paths as the objec-
tive value and turn the problem into a minimization problem, as suggested by
Blum, Kalai and Kleinberg [6]. Viewed in the conflict graph, the goal is now to
compute a minimum vertex cover. Since the minimum vertex cover problem can
be approximated within a factor of 2 on arbitrary graphs, this shows that Pre-
MEDP admits a 2-approximation for arbitrary graphs if the goal is to minimize
the number of rejected paths.

5 The Unsplittable Flow Problem

The unsplittable flow problem (UFP) generalizes MEDP in several aspects. With
respect to the given graph G = (V,E), the difference is that every edge e now
has a positive capacity u(e). With respect to the set of requests R, the difference
is that in addition to specifying its endpoints si and ti, each request i also has a
positive demand di and a positive profit ri. Unless stated otherwise, we assume
that the edge capacities, demands, and profits can be arbitrary positive rational
numbers. Again, a solution is given by selecting a subset of the given requests and
assigning a path from si to ti to each accepted request i. A solution is feasible
if the edge capacity constraints are satisfied, i.e., if the sum of the demands of
all accepted requests that are routed through an edge e is at most u(e). The
objective value of a solution is the sum of the profits of the accepted requests.

For a given instance of UFP, we let umin and umax denote the smallest and
largest edge capacity, respectively. Similarly, dmin and dmax represent the small-
est and largest demand of any request, and rmin and rmax are defined analogously.
For a set S of requests, we define r(S) =

∑
i∈S ri and d(S) =

∑
i∈S di.

In addition to studying UFP in its full generality, many researchers have
considered combinations of the following restrictions.
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– The largest demand is at most the smallest edge capacity, i.e., dmax ≤ umin.
Since many results are known under this assumption, we call UFP with this
restriction classical UFP. To distinguish the general UFP problem from
classical UFP, it is also called extended UFP.

– We have dmax ≤ umin/K for some K > 1. This variant is called bounded
UFP.

– All edge capacities are the same. This variant is called uniform-capacity
UFP (UCUFP).

– All demands are the same.
– All profits are the same.
– The profit of a request is proportional to its demand.

In particular, MEDP is the special case of UFP in which u(e) = 1 for all e ∈ E
and di = ri = 1 for all requests i. Therefore, all inapproximability results for
MEDP apply also to UFP.

Even though UFP appears to be significantly more general than MEDP, an
approximation ratio of O(

√
m) can be achieved for classical UFP as well.

5.1 UFP Approximations in Terms of Routing Number and Flow
Number

Kolman and Scheideler [40] consider UCUFP in undirected graphs under the
assumption that the profit of a request is equal to its demand. They suggest to
use the bounded-length greedy algorithm with length parameter D = 2R, where
R is the routing number of the given graph (cf. Section 2.2). If the algorithm
processes the requests in order of non-increasing demands, they show that ap-
proximation ratio O(ΔR) = O(Δ2β(G)−1 logn) is achieved. They also present
a randomized algorithm with approximation ratio O(Δ

√
LR) if the graph has

L-bounded routing number R.
In subsequent work, Kolman and Scheideler [41] obtain improved results by

considering the flow number instead of the routing number. Let G = (V,E) be
an undirected graph with arbitrary positive edge capacities. For v ∈ V , let u(v)
be the sum of the capacities of the edges incident to v. Let Γ =

∑
v∈V u(v).

Consider a concurrent multicommodity flow problem I with a demand of dv,w =
u(v)u(w)/Γ between every pair (v, w) of vertices in V . A feasible solution assigns
to each pair (v, w) a (splittable) flow of at most dv,w units from v to w such that
the total flow through each edge is at most the capacity of the edge. The flow
value of a feasible solution is the maximum value f , 0 ≤ f ≤ 1, such that
at least f · dv,w units of flow are routed for each pair (v, w). Finally, the flow
number F (G) is defined as the minimum, over all feasible solutions S to I, of
max{C(S), D(S)}, where D(S) is the longest flow path used in S and C(S) is
the inverse of the flow value of S [41].

Kolman and Scheideler show that the flow number F (G) of a graph can be
computed in polynomial time and, using a result by Leighton and Rao [43],
that F (G) = Ω(β(G)−1) and F (G) = O(Δ′β(G)−1 logn) always hold, where
Δ′ = maxv∈V u(v) and β(G) is the expansion of G.
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Then they prove that the bounded-length greedy algorithm with length pa-
rameter D = 4F (G) achieves approximation ratio 16F (G) + 1 = O(F (G)) =
O(Δ′β(G)−1 logn) for the classical UFP in undirected graphs if the profit of a
request is equal to its demand and if the algorithm processes the requests in order
of non-increasing demand values. In terms of Δ instead of Δ′, this gives approx-
imation ratio O(Δumax

umin
β(G)−1 logn). For bounded UFP with dmax ≤ umin/K

for some integer K, they present a modified algorithm with approximation ra-
tio O(K · (F (G)1/K − 1)). If K ≥ logF (G), this gives approximation ratio
O(logF (G)).

They also use an LP-based algorithm with randomized rounding to show that
approximation ratio O(1) can be achieved for classical UFP if umin/dmax ≥
γ logF (G) for a sufficiently large constant γ.

5.2 A Combinatorial Algorithm for Classical UFP

In the following, we present the combinatorial O(
√
m)-approximation algorithm

for classical UFP due to Azar and Regev [4]. First, the set of requests R is split
into two subsets R1 and R2 such that R1 contains all requests with di ≤ umin/2
and R2 all remaining requests. The algorithm computes a solution for each of
the two sets separately and outputs the better of the two solutions. This costs
at most a factor of 2 in the approximation ratio.

Consider one of the two sets Rq, q = 1, 2. The algorithm sorts the requests in
order of non-increasing ratio ri/di and processes them in this order. In this way,
more “valuable” requests are processed first. For a request i and a path π from
si to ti, define

F (i, π) =
ri∑

e∈π
di

u(e)

.

Thus, F (i, π) measures the profit gained relative to the added network load. The
main idea of the algorithm is to fix a threshold α and to accept a request i only
if there is a path π from si to ti that has sufficient free capacity to accommodate
the request and that satisfies

F (i, π) > α. (6)

The best choice for α is not known a priori. Therefore, the algorithm tries all
powers of two in a certain range as possible values for α, computes a solution
for each of these values, and outputs the best of them. A meaningful range for
α is from αmin = rmin/n to αmax = rmax/(dmin/umax), because (6) is satisfied
for all paths in case α ≤ αmin and for no path if α > αmax. Thus, the algorithm
tries out α = 2j for �log αmin� ≤ j ≤ �log αmax�.

More precisely, the algorithm by Azar and Regev calls the subroutine Thresh-
oldGreedy of Fig. 10 with each combination of parameters S and α = 2j satisfying
S = R1 or S = R2 and �log αmin� ≤ j ≤ �log αmax�. The best of the solutions
obtained in this way is output.

To see that the algorithm has a polynomial running-time, note that the sub-
routine ThresholdGreedy is called
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algorithm ThresholdGreedy(G = (V, E),S , α):
A ← ∅;
sort the requests in S in order of non-increasing ri/di;
for all requests i in S in this order do

if ∃ path πi from si to ti in G such that
F (i, πi) > α and every edge e ∈ π has at least di available capacity then

A ← A ∪ {(si, ti)};
reduce the available capacity on all edges of πi by di;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 10. A threshold-based variant of the greedy algorithm

O

(
log

αmax

αmin

)
= O

(
log
(
n
rmaxumax

rmindmin

))
times, so the number of calls is bounded by a polynomial in the size of the input.
(Numbers in the input are encoded using a logarithmic number of bits.) Each
call of ThresholdGreedy can be executed in polynomial time since the existence
of a path πi with enough available capacity and with F (i, πi) > α can be checked
using a shortest path algorithm, for the execution of which the weight of an edge
e is taken to be 1/u(e).

Theorem 12 (Azar and Regev, 2001). There is an O(
√
m)-approximation

algorithm for classical UFP in arbitrary directed or undirected graphs.

Proof. Let Q be the set of requests in an optimal solution, and let π∗
i be the

path assigned to request i ∈ Q by the optimal solution. Take q = 1 or q = 2
such that Q∩Rq contains at least half of the total profit of Q. Let Q′ = Q∩Rq .
Note that r(Q′) ≥ r(Q)/2.

Let α′ = 2j′ be the largest value for α that is considered by the algorithm
and that satisfies r({i ∈ Q′ | F (i, π∗

i ) > α′}) ≥ r(Q′)/2. It is clear that such an
α′ exists. We will show that ThresholdGreedy(G,Rq ,α

′) produces a solution A
with r(Q′)/r(A) = O(

√
m). Let πi be the path assigned to request i in this set

A by the algorithm.
Let Q′

high = {i ∈ Q′ | F (i, π∗
i ) > α′} and Q′

low = {i ∈ Q′ | F (i, π∗
i ) ≤ 2α′}

Note that Q′
high and Q′

low are not necessarily disjoint and each of them has total
profit at least r(Q′)/2. We obtain

r(Q′
low) =

∑
i∈Q′

low

F (i, π∗
i )
∑
e∈π∗

i

di

u(e)
≤ 2α′

∑
i∈Q′

low

∑
e∈π∗

i

di

u(e)
≤ 2α′m,

since the solution Q′ respects the edge capacities. Thus, we have r(Q′) ≤ 4mα′

and r(Q) ≤ 2r(Q′) ≤ 8mα′.
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Call an edge e heavy if the total demand routed through the edge in the
solution A is at least u(e)/4. Then define Eheavy to be the set of all heavy edges.
We distinguish two cases.
Case 1. Eheavy contains at least

√
m edges. Then we get

r(A) =
∑
i∈A

F (i, πi)
∑
e∈πi

di

u(e)
≥ α′

∑
i∈A

∑
e∈πi

di

u(e)

≥ α′|Eheavy|/4 ≥ α′√m/4.

Thus we get r(Q) ≤ 8mα′ ≤ 32
√
m · r(A).

Case 2. Eheavy contains less than
√
m edges. In this case, we compare r(A) with

r(Q′
high). Let Q′′ = Q′

high \ A. Since every request i in Q′′ is not accepted by
the algorithm even though F (i, π∗

i ) > α′, this means that if the algorithm had
routed request i along π∗

i , this would have exceeded the capacity of at least one
of the edges on π∗

i , say, of the edge ei.
We claim that ei is a heavy edge. If q = 1, all requests in Rq have demand

at most umin/2, thus the edge ei can overflow only if it already carries a total
demand of more than u(ei)/2 and, consequently, is a heavy edge. If q = 2, all
demands are between umin/2 and umin. If u(ei) ≤ 2umin, at least one request
must already be routed through ei and thus use at least umin/2 ≥ u(ei)/4 of the
capacity of the edge. If u(ei) > 2umin, a total demand of more than u(ei)−dmax ≥
u(ei)− umin ≥ u(ei)/2 must already be using the edge ei. Again, we find that ei

is a heavy edge.
Let Q′′(p) be the set of requests in Q′′ that are among the first p requests

that are processed by the algorithm, and let E(p) = {ei | i ∈ Q′′(p)}. Note
that E(p) ⊆ Eheavy and, therefore, |E(p)| ≤ √m. Let A(p) be the requests that
are accepted by the algorithm among the first p requests that it processes. Now
the idea is to show that the total demand of A(p) is at least Ω(1/

√
m) times

the total demand of Q′′(p). Since the requests are processed in order of non-
increasing ratio rj/dj , we will then be able to conclude that r(A) is Ω(1/

√
m)

times r(Q′′).
Since each request in Q′′(p) is routed through an edge of E(p) in the optimal

solution, we have d(Q′′(p)) ≤
∑

e∈E(p) u(e). Let f be an edge in E(p) with largest
capacity. As f is heavy, we have d(A(p)) ≥ u(f)/4. So we get

d(Q′′(p)) <
√
m · u(f) ≤ 4

√
m · d(A(p)).

This implies that r(Q′′) < 4
√
m·r(A), since the requests are processed in order of

non-increasing ratio ri/di and the following claim can be verified by elementary
calculations: Let d1, d2, . . . , d be a positive sequence and b1, b2, . . . , b a non-
increasing positive sequence, and letX,Y ⊆ {1, . . . , �} andX(p) = X∩{1, . . . , p}
and Y (p) = Y ∩ {1, . . . , p}. If for every 1 ≤ p ≤ � we have

∑
j∈X(p) dj >

γ
∑

j∈Y (p) dj , then ∑
j∈X

djbj > γ
∑
j∈Y

djbj .
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By taking bj = rj/dj , X(p) = A(p), Y (p) = Q′′(p), and γ = 1/(4
√
m), the above

implication follows. From r(Q′′) < 4
√
m · r(A) and r(Q′

high) ≤ r(Q′′) + r(A),
we get r(Q′

high) ≤ (4
√
m + 1)r(A) and thus r(Q) ≤ 2r(Q′) ≤ 4r(Q′

high) ≤
(16
√
m+ 4)r(A).

In both cases, we have shown that r(Q) = O(
√
m) ·r(A). Thus, the algorithm

achieves approximation ratio O(
√
m). ��

The running-time of the algorithm leading to Theorem 12 is polynomial in
the size of the input, but it depends on the numbers that are part of the in-
put, because ThresholdGreedy is called O(log

(
n rmaxumax

rmindmin

)
) times. Azar and

Regev show that it is possible to modify the algorithm so that its running-time
is strongly polynomial, i.e., bounded by a polynomial function of n, m, and k
independent of the edge capacities, profit values, and demand values. To achieve
this, first note that the capacity of an edge e with u(e) > kdmax can be reduced
to kdmax without affecting the feasible solutions. Next, requests with profit below
rmax/k can be discarded, while losing at most a factor of 2 in the approximation
ratio. Then, the set Rtiny of requests with demand at most umin/k are treated
separately: the algorithm computes one solution consisting of all requests in
Rtiny and one solution computed as before for the requests in R \ Rtiny. By
outputting the better of the two solutions, again at most a factor of 2 is lost in
the approximation ratio. In R\Rtiny, all requests have demand at least umin/k.
Thus, the ratio rmaxumax/(rmindmin) is now bounded from above by O(k3), so
the running-time of the algorithm is strongly polynomial.

Finally, we note here that Chekuri and Khanna [15] have extended their
results for MEDP (cf. Section 2.3) to UCUFP: They gave algorithms with
approximation ratio O(min{

√
m,n2/3}) for UCUFP in undirected graphs and

O(min{√m,n4/5}) for UCUFP in directed graphs, under the assumption that
the profit of each request is equal to 1. Their analysis works also if the profit of
each request is equal to its demand.

5.3 Combinatorial Algorithms for Extended and Bounded UFP

Azar and Regev [4] present additional results for extended UFP and bounded
UFP. For extended UFP, they obtain a combinatorial, strongly polynomial
O(
√
m · log(2+ dmax

umin
))-approximation algorithm. The basic idea of the algorithm

is to partition the given requests into 2 + max{log dmax
umin

, 0} classes depending on
their demands and to run the algorithm of the previous section on each of the
classes separately. In the end, the best of the computed solutions is output.

For bounded UFP, i.e., for the case of dmax ≤ umin/K for some K ≥ 2, Azar
and Regev present a strongly polynomial O(K ·D 1

K )-approximation algorithm,
where D is the maximum possible length of a path assigned to a request.

For the extended UFP, Kolman and Scheideler [41] propose a variant of
the bounded-length greedy algorithm that achieves approximation ratio O(

√
m)

under the assumption that the profit of each request is equal to its demand. Kol-
man [39] generalizes the results due to Chekuri and Khanna [15] for UCUFP and
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shows that approximation ratio O(min{√m,n2/3}) and O(min{√m,n4/5}) can
be achieved for extended UFP in undirected and directed graphs, respectively,
provided that the profit of each request is equal to its demand.

5.4 Inapproximability Results for UFP

In Section 2.4, we have seen that there cannot be an approximation algorithm
for MEDP in directed graphs that achieves approximation ratio O(m

1
2−ε) for

any ε > 0, unless P = NP . Since UFP is a generalization of MEDP, this
inapproximability result applies to UFP as well. For the extended UFP, Azar
and Regev present a stronger inapproximability result in [4]. They show that
unless P = NP , no approximation algorithm for the extended UFP can achieve
approximation ratio O(m1−ε) for any ε > 0. (In terms of n, the result shows
that no algorithm can have approximation ratio O(n1−ε).) For instances of the
extended UFP with dmax/umin ≥ 2 and any ε > 0, they prove that no ap-

proximation algorithm can have ratio better than Ω(m
1
2−ε
√
�log dmax

umin
�) unless

P = NP . The proofs of these inapproximability results are again based on
the NP-completeness of problem 2DirPath and, hence, apply only to directed
graphs.

5.5 LP-Based Algorithms for UFP

Prior to the work by Azar and Regev [4], a number of researchers had inves-
tigated the possibility of obtaining approximation algorithms for UFP from a
linear programming relaxation. In Section 2.5, we have discussed the natural lin-
ear programming relaxation of MEDP. It is not difficult to see that the linear
programming formulation of MEDP can be adapted to UFP in a straightfor-
ward way. In this context, the requests are often called commodities and the LP
formulation is called a fractional multicommodity flow problem.

In case of extended UFP, it is important to ensure that a request (si, ti) is
routed only along paths π on which all edges have capacity at least di. This can
easily be enforced in the LP formulation.

Throughout this section, we let OPT ∗ denote the objective value of the op-
timal solution to the LP-formulation and let OPT denote the integral optimum
value. It is clear that OPT ≤ OPT ∗.

Srinivasan [55] presents approximation algorithms for UCUFP that are based
on rounding the fractional solution of the LP relaxation. Without loss of gen-
erality, one can assume that u(e) = 1 for all e ∈ E. Under the assumption
that the profit of each request is equal to its demand value, Srinivasan obtains
a polynomial-time algorithm that outputs a feasible solution with total profit
Ω(max{(OPT ∗)2/m,OPT ∗/

√
m}). The boundΩ((OPT ∗)2/m) holds also in the

case of arbitrary profit values in the interval [0, 1].
Furthermore, Srinivasan considers fractional solutions to the LP with objec-

tive value at least OPT ∗/2 such that each path that carries a positive fraction
of a request (i.e., the paths π for which some variable yi,π is non-zero) consists
of at most � edges. He shows that in this case an O(�)-approximation is possible
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for UCUFP with arbitrary profits. Using results from [34], � = O(Δ2β−2 log3 n)
can always be achieved for UCUFP. Thus, for graphs in which Δ is bounded
by a constant and β−1 is polylogarithmic, there is an approximation algorithm
for UCUFP with polylogarithmic (in n) approximation ratio. This gives poly-
logarithmic approximation ratio for the butterfly and related hypercubic net-
works, which have Δ = O(1) and β = Θ(1/ logn). Srinivasan also shows that
approximation ratio O(�1/ε−1) can be achieved for UCUFP in the case where
dmax ≤ 1 − ε for some constant ε ≥ 1

2 . This implies that for graphs like the
butterfly, approximation ratio O(1) can be achieved for UCUFP provided that
dmax = O(1/ log logn).

Kolliopoulos and Stein [37] obtain results concerning column-restricted pack-
ing integer programs and use them to derive LP-based algorithms for MEDP
and classical UFP. For MEDP with arbitrary profit values, their algorithm com-
putes a solution with total profit Ω(OPT ∗/

√
m) provided that the number k of

requests is O(m). For classical UFP with profit values in the interval [0, 1], their
solutions have total profit Ω(OPT ∗/(

√
m logm)), Ω((OPT ∗)2/(m log3m)) and

Ω(OPT ∗/�), where � is defined as above.
Baveja and Srinivasan generalize the results of [55] to classical UFP in [5].

They show that it is possible to compute in polynomial time a solution with total
profit at least Ω(min{OPT ∗, (OPT ∗)2/m}) and Ω(OPT ∗/

√
m). The approxi-

mation algorithms with ratio O(�) and O(�1/ε−1) of [55] are also generalized to
classical UFP and bounded UFP, respectively.

Guruswami et al. [31] consider LP-based algorithms that apply the randomized
rounding technique [50] in a more direct way. They assume that all edge capacities
and demand values are integral and that dmax is bounded by a polynomial in m.
Their algorithms achieve approximation ratio O(

√
m log

3
2 m) for extended UFP

andO(
√
m logm log logm) for classicalUFP. They also show that if umin/dmax ≥

c logm for a suitably large constant c, then UFP can be approximated within a
constant factor by standard randomized rounding (cf. Section 2.5).

Chakrabarti et al. [14] give LP-based algorithms to obtain approximation
ratio O(Δβ(G)−1 log2 n) for UFP in undirected graphs and O(Δβ(G)−1 logn)
for UCUFP in undirected graphs. They also show that the approximation ratios
improve to O((Δβ(G)−1 log2 n)1/K) for UFP and O((Δβ(G)−1 log n)1/K) for
UCUFP in the bounded case with dmax ≤ umin/K. Chakrabarti et al. [14]
and Chekuri et al. [16] use LP-based algorithms also to obtain constant-factor
approximation algorithms for classical UFP in chains, rings, and trees.

6 Further Results for Related Problems

In this survey we have focused on approximation algorithms for MEDP and
UFP. Numerous results for closely related problems can be found in the litera-
ture. In this section we briefly mention some of them.

First, maximum path coloring (MAXPC) is the variant of MEDP where
the input specifies an additional parameter W ≥ 1 and the goal is to accept
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and route a subset of the requests such that the resulting paths can be parti-
tioned into at most W sets of edge-disjoint paths. This problem is motivated by
all-optical networks with wavelength-division multiplexing, because a network
with W wavelengths can establish connections for W sets of edge-disjoint paths
simultaneously. By a general reduction [17,2], a ρ-approximation algorithm for
MEDP can be converted into an approximation algorithm with ratio at most
1/(1− e−1/ρ) ≤ ρ+ 1 for MAXPC. In some cases, better approximation ratios
for MAXPC have been obtained using more direct approaches, for example by
Nomikos et al. for MAXPC in undirected and bidirected rings [49].

Another problem related to MEDP is path coloring, where all given requests
must be routed and assigned colors such that requests receive different colors if
they share an edge. The goal is to minimize the number of colors used. Results
for path coloring are surveyed in a different chapter of this book.

A variant of MEDP, called the bounded-length edge-disjoint paths problem,
specifies a bound L on the lengths of the paths that the algorithm may assign
to the requests. An O(

√
m)-approximation for this problem is presented in [31].

That paper deals also with the integral-splittable flow problem, i.e., with the
variant of UFP where the requests need not be routed along single paths, but
can be split integrally among several paths (i.e., each demand is an integer and
can be split among several paths in an integral way).

Instead of considering the maximization version of the edge-disjoint paths
problem, one can also consider the question of how many terminal pairs in a
graph can always be connected along edge-disjoint paths, no matter how the
terminal pairs are chosen. For r-regular expander graphs, all sets of up to κ =
Ω(n/ logn) pairs of vertices can be connected along edge-disjoint paths (provided
no vertex appears as an endpoint of more than a constant number of requests),
both in the undirected case [25] and in the directed case [9]. Since random graphs
have good expansion properties with high probability, similar results could also
be proved for random graphs of sufficiently high degree [11] and for random
regular graphs [26].

While we have seen that UFP cannot be approximated within O(m
1
2−ε) un-

less P = NP , it has been shown that the single-source version of the problem
admits constant-factor approximation algorithms [18,54]. In the single-source
version, the vertex si of all requests (si, ti) is the same.

Finally, we emphasize that we have mainly considered approximation algo-
rithms for MEDP and UFP that have full knowledge about the input, i.e., that
are off-line algorithms. In applications such as call admission control, it is mean-
ingful to consider the on-line version of the problem, where the requests arrive
over time and the algorithm must accept or reject each request without knowl-
edge of future requests. The greedy algorithm and the bounded-length greedy
algorithm that we discussed as approximation algorithms can in fact be applied
as on-line algorithms, since they can process the requests in an arbitrary order.
For surveys of known results on on-line MEDP and UFP, we refer the reader
to Leonardi [44] and Borodin and El-Yaniv [10, Chapter 13]. More recent results
can be found in Azar and Regev [4] and Kolman and Scheideler [41].
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1 ETH Zürich, Computer Engineering and Networks Lab,
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Abstract. This chapter surveys on-line and approximation algorithms
for the maximum independent set and coloring problems on intersection
graphs of disks. It includes a more detailed treatment of recent upper and
lower bounds on the competitive ratio of on-line algorithms for coloring
such graphs.

1 Introduction

The class of intersection graphs of disks in the Euclidean plane, called disk
graphs, was studied for many years for its theoretical aspects as well as for its
applications. As an example of a classical result we mention the theorem of
Koebe who proved in 1936 that every planar graph can be represented as a coin
graph, i.e. a disk graph where disks are not allowed to overlap [24] (see also the
more accessible discussion of Koebe’s result by Sachs [32]).

In contrast to the case of planar graphs, no efficient methods are known for the
recognition of disk graphs. Breu and Kirkpatrick have shown that the recognition
problem is NP-hard for unit disk graphs (intersection graphs of disks with equal
diameter) [6] and for disk graphs with bounded diameter ratio (intersection
graphs of disks where the ratio of the largest diameter to the smallest diameter
is bounded by an arbitrary constant) [5]. Hliněný and Kratochv́ıl proved NP-
hardness for the recognition problem of arbitrary disk graphs [17].
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The hardness of the recognition problem implies that a disk representation
cannot be derived from the graph in polynomial time unless P = NP . Therefore,
an important factor in the design of algorithms for disk graphs is whether the
disk graph is given only as a set of edges and vertices, or whether the centers and
radii of the disks (called the disk representation of the graph) form the input
to the algorithm. Some problems can be solved efficiently no matter whether
the disk representation is given or not. The problem of computing a maximum
clique in a unit disk graph is an example: Raghavan and Spinrad presented an
efficient algorithm that does not require the disk representation [31].

The maximum independent set problem on disk graphs (computing a largest
subset of the given disks such that the disks in the subset are pairwise disjoint)
has applications in map labeling. Under the assumption that labels occupy a cir-
cular area, the maximum number of non-intersecting labels that can be placed
on a map (out of a given set of desired labels) is equal to the size of the maxi-
mum independent set in the corresponding disk graph. For applications in map
labeling, it is clearly interesting to extend the problem to rectangular labels (rep-
resenting text), sliding labels, etc. For a bibliography on map labeling problems
we refer to the on-line web catalogue maintained by Wolff and Strijk [34].

One of the most practical applications of disk graphs is in the channel assign-
ment problem, where the aim is to assign frequencies to a collection of trans-
mitters while avoiding interference. Hale pointed out in 1980 that the channel
assignment problem can be modeled as a graph theoretical problem, if we as-
sume that all transmitters have circular range and transmitters with intersecting
ranges are to use different frequencies [15]. Clearly, the underlying graph is a disk
graph, and the problem is equivalent to the graph coloring problem. Observe also
that in this case we may assume that the disk representation can be derived from
the placement of transmitters and their ranges.

We focus our study on approximation and on-line algorithms for the maximum
independent set problem and the coloring problem for intersection graphs of
disks. In Section 2, we survey results for the maximum independent set problem,
while in Section 3, we treat the coloring problem. We consider general disk
graphs as well as two subclasses: unit disk graphs and disk graphs with bounded
diameter ratio. We provide known upper and lower bounds on the approximation
and competitive ratios, and we also discuss the impact if the disk representation
is given as part of the input. In Section 3.3, we give a more detailed account of
recent results from [9] concerning on-line coloring of disk graphs and disk graphs
with bounded diameter ratio.

1.1 Preliminaries

A disk in the Euclidean plane is specified by its center and its diameter. We
denote the center of a disk D by cD. Given a set of disks, the intersection
graph of the disks is the graph with one vertex for each disk and with an edge
between two vertices if the corresponding disks have a non-empty intersection.
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Throughout this paper we consider only closed disks. Therefore, tangent disks
are considered as intersecting. A graph G is called a disk graph if there exists a
set of disks such that G is their intersection graph. Such a set of disks is called
a disk representation, disk model, or geometric representation of G. A graph is
called a unit disk graph if it is the intersection graph of a set of disks with the
same diameter (w.l.o.g., we assume that the diameter is 1 in this case). The
diameter ratio of a set of disks is the ratio of the maximum diameter of a disk
to the smallest diameter. Intersection graphs of disks whose diameter ratio is
bounded by σ are called σ-bounded disk graphs.

For a given graphG = (V,E), the set of neighbors of a vertex v ∈ V is denoted
by N(v) = {u ∈ V : {v, u} ∈ E}. A subset I ⊆ V is an independent set if the
vertices in I are mutually non-adjacent. A subset C ⊆ V is a clique if the ver-
tices in C are pairwise adjacent. The maximum independent set problem and the
maximum clique problem are the problems of computing a largest independent
set and a largest clique, respectively. A coloring of G is an assignment of colors
to vertices such that adjacent vertices receive different colors. The (minimum)
coloring problem is the problem of computing a coloring using as few distinct
colors as possible. These problems are notoriously hard to approximate on gen-
eral graphs, but are often easier to approximate (or even to solve optimally) on
restricted classes of graphs.

For an optimization problem, an approximation algorithm computes a feasible
solution in time polynomial in the size of the input. It has approximation ratio
ρ if for every input, the value of the computed solution is at most ρ times the
optimum (for a minimization problem) or at least 1/ρ times the optimum (for
a maximization problem). A polynomial-time approximation scheme (PTAS) is
an algorithm that, given an instance of the problem and a parameter ε > 0,
computes a feasible solution that is at most a factor of 1 + ε away from the
optimum and whose running-time is polynomial in the size of the instance for
every fixed ε > 0.

An on-line algorithm receives the vertices of the graph (or the disks) one by
one together with the incident edges connecting the current vertex to previously
presented vertices. It must decide the solution for the current vertex (member-
ship in the independent set or the color assigned to the vertex) immediately
without knowledge of future vertices and edges. An on-line algorithm achieves
competitive ratio ρ if it always produces a solution that is at most a factor of ρ
away from the optimum. Such an algorithm is called ρ-competitive.

2 The Maximum Independent Set Problem

The maximum independent set problem has been proved NP-complete for unit
disk graphs even if the disk representation is given [33,8]. Of course, this im-
plies that the problem is NP-complete for σ-bounded disk graphs and general
disk graphs as well, and also in the case when the representation is not given.
Therefore, one is interested in approximation algorithms for the problem.
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Fig. 1. Exploring the neighborhood of a unit disk

2.1 Independent Sets in Unit Disk Graphs

A first natural algorithm to consider is the greedy algorithm. It starts with an
empty set I = ∅ and then processes the disks in arbitrary order. If the current
disk is disjoint from all disks in I, it is added to I. When all disks have been
processed, the set I is output. It is easy to see that the greedy algorithm does
not require the disk representation and that it is an on-line algorithm.

Theorem 1 (Hochbaum [18], Marathe et al. [27]). The greedy algorithm
is a 5-competitive on-line algorithm for the maximum independent set problem
in unit disk graphs. It does not require the disk representation.

Proof. Consider some optimal solution I∗. Whenever the greedy algorithm ac-
cepts a disk Di, remove from I∗ all disks that intersect Di (including Di itself).
It is clear that I∗ is empty at the end of the greedy algorithm. Furthermore, we
claim that each disk accepted by the greedy algorithm removes at most 5 disks
from I∗, thus establishing that the competitive ratio is at most 5. Assume that
the greedy algorithm accepts a disk Di. If Di is also contained in I∗, it suffices
to remove one disk from I∗. If Di is not contained in I∗, then all disks in I∗

that intersect Di have to be removed. There can be five such disks, as shown in
Fig. 1 b). There cannot be six such disks, however: for any two disks D′ and D′′

that intersect Di and that do not intersect each other, the angle between cDicD′

and cDicD′′ must be larger than π/3, as illustrated in Fig. 1 a), and if there
were six pairwise non-overlapping disks intersecting Di, the sum of the angles
between them would be larger than 2π, a contradiction. ��

Furthermore, no on-line algorithm can have competitive ratio better than 5
on unit disk graphs even if the disk representation is given: Assume that the
input consists of the six disks in Fig. 1 b) and that the disk in the middle is
presented first. Any on-line algorithm must accept the first disk (otherwise, it
will have unbounded ratio on an instance consisting of this disk only) and will
hence reject the other five disks, while the optimal independent set consists of
these five disks.
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As shown by Marathe et al. [27], the approximation ratio of the greedy algo-
rithm can be improved from 5 to 3 in the off-line case by processing the given
disks in order of non-decreasing y-coordinates of their centers. The argument
in the proof of Theorem 1 can be adapted to show that among the disks that
intersect the current disk Di and that are processed later, there can be at most
three pairwise disjoint disks, see again Fig. 1 a). Thus, at most three disks have
to be removed from I∗ for each disk accepted by the greedy algorithm.

This 3-approximation algorithm can be adapted to the case where the disk
representation is not given as follows. A vertex whose neighborhood N(v) does
not contain an independent set of size larger than three can be found in poly-
nomial time (e.g., in time O(|V |5) by enumerating all 4-element subsets of N(v)
for each v ∈ V ). Such a vertex exists because the disk with lowest y-coordinate
satisfies the property. Once such a vertex is determined, it is added to the inde-
pendent set, and the vertex and all its neighbors are removed from the graph.
This is repeated until the graph is empty.

Theorem 2 (Marathe et al. [27]). There is a 3-approximation algorithm for
the maximum independent set problem in unit disk graphs that does not require
the disk representation.

Using the method of local improvements, Halldórsson [16] showed that for
every ε > 0 there is an algorithm achieving approximation ratio 5

2 + ε. This
result was derived in a more general setting, for so called (k + 1)-claw free
graphs, i.e. graphs that do not contain K1,k+1 as an induced subgraph. Unit
disk graphs are 6-claw free as was already exhibited in the proof of Theorem 1.
Halldórsson gave a (k

2 + ε)-approximation algorithm for (k +1)-claw free graphs
for any k ≥ 4. The algorithm is based on local improvements using an analogue
of augmenting paths of bounded length. The length of this path depends on the
required precision ε, and therefore the exponent of the running-time grows if ε
gets smaller.

Theorem 3 (Halldórsson [16]). For every ε > 0, there is an approximation
algorithm with ratio k

2 + ε for the maximum independent set problem in (k + 1)-
claw free graphs, and therefore a (5

2 + ε)-approximation algorithm for unit disk
graphs (not requiring the disk representation).

For the case that the disk representation is given, a polynomial-time approx-
imation scheme can be obtained using the shifting technique invented by Baker
[3] and Hochbaum and Maass [19]. Such an approximation scheme was presented
by Hunt III et al. [20] and by Matsui [28].

We sketch the basic ideas. Let a set D of disks be given. Denote by I∗ some
optimal independent set. Without loss of generality assume that the given disks
have diameter 1 and that no center has an integral coordinate. Consider a grid
consisting of horizontal and vertical lines at all integer coordinates. Fix some
integer k > 0. For each pair of integers (i, j) such that 0 ≤ i, j ≤ k− 1, consider
the subset Di,j of disks obtained by removing all disks that intersect a vertical
line at x = i+ kp for some p ∈ Z or some horizontal line at y = j + kp for some
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Fig. 2. Illustration of the shifting strategy for k = 3 and the choice i = 0 and j = 2.
The given disks are shown on the left-hand side. If all disks intersecting a vertical line
at x = 3p for p ∈ Z or a horizontal line at y = 2 + 3p for p ∈ Z (drawn in bold) are
removed, the disks shown on the right-hand side remain and constitute D0,2.

p ∈ Z. See Fig. 2 for an example. If the vertical lines at x = i+kp, p ∈ Z, and the
horizontal lines at y = j + kp, p ∈ Z, are removed from the plane, disjoint open
squares with side length k and area k2 remain. Each disk in Di,j is completely
contained in one such square. Therefore, a maximum independent set of Di,j is
the union of maximum independents sets of disks in all squares. A maximum
independent set among the disks in one square can contain at most O(k2) disks,
and can hence be computed in time |D|O(k2) by enumeration of all subsets of size
O(k2). Thus, a maximum independent set of Di,j can be computed in polynomial
time for fixed k. The algorithm computes a maximum independent set of Di,j

for all k2 pairs (i, j) and outputs the largest among these sets as the solution.
The approach is called shifting because trying all possible values of i and j can
be viewed as shifting the grid through the plane.

The cardinality of the solution output by the algorithm is at least (1− 2
k )|I∗|.

To see this, note that each disk intersects only one horizontal line at an integer
coordinate and one vertical line, respectively. Hence, there exists a value of i
such that at most |I∗|/k disks in I∗ intersect vertical lines x = i + kp (p ∈ Z).
Similarly, there is a value of j such that at most |I∗|/k disks in I∗ intersect
horizontal lines y = j+ kp (p ∈ Z). Thus, the set Di,j for these values of i and j
still contains an independent set of size at least (1− 2

k )|I∗|. Since the algorithm
computes a maximum independent set in each Di,j , the largest such set must
have cardinality at least (1− 2

k )|I∗|.
For a given ε > 0, we can thus choose k = �2/ε� to obtain a solution of size

at least (1 − ε)|I∗|. The running-time is |D|O(k2). It is shown in [20,28] that
the running-time can be reduced to |D|O(k) by removing only those disks that
intersect a horizontal grid line at y = j + kp for some p ∈ Z and then using
dynamic programming to compute an optimal independent set in each strip of
width k between two of these horizontal grid lines.
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Theorem 4 (Hunt III et al. [20], Matsui [28]). There is a polynomial-time
approximation scheme for the maximum independent set problem in unit disk
graphs provided that the disk representation is given as part of the input.

Recently, by exploring the size of the maximum independent set in diameter-
bounded disk graphs, a PTAS was derived also for the case when the disk rep-
resentation is not known.

Theorem 5 (Nieberg et al. [29]). The maximum independent set problem in
unit disk graphs admits a polynomial-time approximation scheme even if the disk
representation is not provided as part of the input.

We now briefly explain the main idea of this approximation scheme. For a
given graph G let Iv,i stand for some maximum independent set in the subgraph
of G induced by vertices at distance at most i from the vertex v of G.

It can be shown by geometric arguments that for an arbitrary unit disk graph
G = (V,E) and any fixed ε > 0, there exists a constant k with the following
property: For any vertex v ∈ V there exists a distance kv ≤ k such that |Iv,kv | ≤
(1 + ε)|Iv,kv−1|.

Therefore, for a vertex v one can identify a distance kv with this property by
computing Iv,i for i = 1, 2, . . . , kv. As kv is bounded by a constant, the sizes of
the computed maximum independent sets are bounded by a constant as well.
During this process, we can detect when i is equal to kv, and at this moment
we add Iv,kv−1 to the final independent set and remove from G all vertices at
distance at most kv from v. We repeat the above routine until all vertices of
G have been removed and finally get the required (1 + ε)-approximation of the
maximum independent set of G.

2.2 Independent Sets in General Disk Graphs

In general disk graphs, the greedy algorithm can have approximation ratio n−1
for instances with n disks: An instance could consist of one disk D (presented
first) and n−1 smaller disks intersecting D, but not intersecting each other. The
greedy algorithm would accept only the first disk, but the optimal solution would
consist of the n− 1 other disks. This instance also shows that no deterministic
on-line algorithm can achieve competitive ratio better than n − 1, even if the
disk representation is given.

Theorem 6. The greedy algorithm is a (n − 1)-competitive algorithm for the
maximum independent set problem in disk graphs. It works even if the disk rep-
resentation is not given. No deterministic on-line algorithm can have competitive
ratio smaller than n− 1, even if the disk representation is given.

In the off-line case, the idea of the 3-approximation algorithm for unit disk
graphs of Theorem 2 can be adapted to give a 5-approximation algorithm for
general disk graphs, as shown by Marathe et al. [27]. If the disk representation
is given, it suffices to sort the disks in order of non-decreasing diameters and
apply the greedy algorithm to this order. For each disk Di, the set of disks that



142 T. Erlebach and J. Fiala

are processed later and that intersect Di contains at most five pairwise disjoint
disks. This follows by the same argument as in the proof of Theorem 2, because
all disks that are processed later are at least as big as Di. Thus, the greedy
algorithm achieves approximation ratio 5 for disk graphs if it processes the disks
in order of non-decreasing diameters. Again, the algorithm can be adapted to
the case where the disk representation is not available: It suffices to identify a
vertex whose neighborhood N(v) does not contain an independent set of size at
least 6. Such a vertex must exist, and it can be found in polynomial time.

Theorem 7 (Marathe et al. [27]). There is a 5-approximation algorithm for
the maximum independent set problem in disk graphs that does not require the
disk representation.

For the case that the disk representation is part of the input, a polynomial-
time approximation scheme for the maximum independent set problem in disk
graphs has been devised by Erlebach, Jansen and Seidel [10]. It is also based
on the shifting technique, but the given disks are first partitioned into layers
according to their diameters, and the shifting strategy is applied on all layers
simultaneously, using grids of different granularity on different layers. For each
choice of the shifting parameters i and j, 0 ≤ i, j ≤ k−1, the optimal independent
set in Di,j is then computed using dynamic programming, beginning at the layer
that contains the smallest disks. Independently, Chan [7] presented a polynomial-
time approximation scheme based on similar ideas and using shifted quadtrees.

Theorem 8 (Erlebach, Jansen and Seidel [10], Chan [7]). There is a
polynomial-time approximation scheme for the maximum independent set prob-
lem in disk graphs provided that the disk representation is given as part of the
input.

It remains an open problem whether there is a polynomial-time approximation
scheme for the maximum independent set problem in disk graphs also in the case
where the representation is not given as part of the input. As far as we know,
no inapproximability result for this case has appeared in the literature.

2.3 Independent Sets in Bounded Disk Graphs

Now consider σ-bounded disk graphs. Assume that the minimum diameter of
a disk is equal to 1 and, consequently, the maximum diameter is at most σ. In
the off-line case, we can just apply the algorithms for general disk graphs and
get a 5-approximation algorithm for the case without given representation and
a polynomial-time approximation scheme for the case with given representation.

We note here that for small values of σ the method of local improvements
exhibited by Halldórsson [16] provides a better approximation ratio, since σ-
bounded graphs are 10-claw free as far as σ < 1

sin(π/10) − 1 ≈ 2.236. Moreover,
the methods of Nieberg et al. [29] can be adapted to obtain a PTAS when the
disk representation is not given. The only difference from the case of unit disk
graphs is that the constant k now depends also on the diameter ratio σ.
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In the on-line case, the competitive ratio of the greedy algorithm can be
bounded by O(min{σ2, n}) for σ-bounded disk graphs. To see this, again let I∗

denote some optimal independent set. When the algorithm accepts a disk D, we
remove all neighbors of D (i.e., all disks intersecting D) from I∗. We claim that
the neighborhood ofD can contain at most O(σ2) disjoint disks. To see this, note
that all neighbors of D must have their center within distance σ from the center
of D. Thus, all neighbors of D are contained in a circle with radius 1.5σ around
the center of D. This circle has area 2.25σ2π. Each disk has diameter at least
1 and thus occupies an area of at least π/4. This shows that the neighborhood
of D can contain at most 9σ2 disjoint disks. So, for each disk accepted by the
greedy algorithm, we have to remove at most 9σ2 disks from I∗. Thus, we get
an upper bound of O(σ2) for the competitive ratio of the greedy algorithm. An
upper bound of n− 1 is trivial.

To show that no deterministic on-line algorithm can do better than the greedy
algorithm in the worst case, consider an instance consisting of one disk with
diameter σ followed by Θ(σ2) disks of diameter 1 that intersect σ and that are
disjoint from each other. On this instance, the solution of the greedy algorithm
is a factor of Θ(min{n, σ2}) smaller than the optimal solution.

Theorem 9. The greedy algorithm achieves competitive ratio O(min{n, σ2}) for
σ-bounded disk graphs with n disks. It does not require the disk representation.
Every deterministic algorithm has competitive ratio Ω(min{n, σ2}) even if the
disk representation is given.

3 The Coloring Problem

The problem of deciding whether a unit disk graph with given representation
can be colored with three colors has been shown NP-complete by Clark, Col-
bourn and Johnson [8] using a reduction from 3-colorability of planar graphs
with maximum degree 3. This implies that there cannot be an approximation
algorithm for the coloring problem on unit disk graphs with approximation ratio
smaller than 4/3.

As for the maximum independent set problem, the NP-completeness for unit
disk graphs with given representation implies NP-completeness of deciding 3-
colorability of disk graphs or σ-bounded disk graphs, and also for the variants
without given representation.

It was proved by Gräf et al. in [13] that deciding k-colorability remains NP-
complete for unit disk graphs for any fixed number k ≥ 3.

3.1 Coloring Unit Disk Graphs

First-fit is one of the most well-known heuristics for on-line graph coloring. It
processes the vertices of the given graph in some order and assigns each vertex
the smallest available color, i.e., the smallest color that has not yet been assigned
to an adjacent vertex. We assume that colors are represented by positive integers.
If at most k vertices adjacent to v have been colored prior to v, the color assigned
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to v by First-fit is contained in {1, 2, . . . , k+1}, because at most k of these colors
can already have been assigned to neighbors of v.

Let us apply the First-fit coloring algorithm to unit disk graphs. Marathe et
al. [27] proved an upper bound of 6 on the approximation ratio of this algorithm.
We give an improved analysis leading to a bound of 5. Consider some disk D at
the time it is assigned its color. Let d(D) denote the number of intersecting disks
that have been colored before. The color assigned to D is at most d(D) + 1. On
the other hand, the closed neighborhood of D (the set of all disks intersecting
D, including D itself) does not contain an independent set of size larger than 5.
Thus, at most 5 of the disks in the closed neighborhood of D can be assigned the
same color in any coloring. Therefore, even the optimal coloring must use at least
(d(D)+1)/5 colors. This shows that First-fit is a 5-approximation algorithm for
coloring unit disk graphs. Furthermore, First-fit is an on-line algorithm that does
not need the disk representation.

Theorem 10. First-fit is an on-line algorithm with competitive ratio at most 5
for unit disk graphs. It does not require the disk representation.

A lower bound of 2 on the competitive ratio of any on-line coloring algorithm
for unit disk graphs was presented by Fiala et al. in [11]. We reproduce here the
counterexample showing that no on-line algorithm can be (2−ε)-competitive for
any ε > 0. Consider the graph and its representation depicted in Fig. 3 and order
the disks as indicated by the numbers. Assume that there is an algorithm with
competitive ratio 2− ε. The vertices 1–6 form an independent set and must be
colored with the same color by the algorithm, because otherwise its competitive
ratio would be at least 2 on these 6 vertices. On vertices 7–12 the algorithm may
use two new colors (but no more, if its competitive ratio is to be smaller than 2).
Then, however, it will need three extra colors for the central triple, thus using
6 colors in total. Since the optimal coloring uses only 3 colors, this contradicts
the assumption that the algorithm is (2− ε)-competitive.
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Fig. 3. A difficult instance for on-line unit disk coloring

Theorem 11 (Fiala et al. [11]). No deterministic algorithm can achieve com-
petitive ratio smaller than 2 for on-line coloring of unit disk graphs, even if the
disk representation is part of the input.
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In the off-line case, 3-approximation algorithms for coloring unit disk graphs
were presented by Peeters [30], Gräf et al. [13] and Marathe et al. [27]. If the
disk representation is given, apply the First-fit algorithm to the disks in the
order of non-increasing y-coordinates of their centers. Consider a disk D at the
time it is assigned its color. The d(D) previously colored disks that intersect D
have a y-coordinate that is not smaller than the y-coordinate of D. As in the
discussion leading to Theorem 2 (see also Fig. 1), the set of disks containing D
and its previously colored neighbors does not have an independent set of size
larger than 3. Therefore, even in an optimal coloring (d(D) + 1)/3 colors are
required just for these disks. Since the color assigned to D is at most d(D) + 1,
approximation ratio 3 is achieved.

To adapt the algorithm to the case without given representation, we can
simply order the vertices in the recursively defined smallest-degree-last order
and apply the First-fit algorithm. This means that we select some vertex v of
minimum degree, remove v from the graph, color the resulting graph recursively,
then insert v back into the graph and assign it the smallest available color. At
the time v is removed (and thus also at the time it is inserted back again), the
degree d(v) of v is at most the degree d(u) of the vertex u corresponding to a
disk with the smallest y-coordinate. Thus, v is assigned color at most d(v) + 1,
while the optimal coloring needs at least (d(u)+1)/3 ≥ (d(v)+1)/3 colors. This
shows that approximation ratio 3 is achieved.

Theorem 12 (Peeters [30], Gräf et al. [13], Marathe et al. [27]). There
is a 3-approximation algorithm for coloring unit disk graphs that does not require
the disk representation.

One can even show that the algorithm uses at most 3ω(G)− 2 colors, where
ω(G) is the size of a maximum clique in the given unit disk graph. We sketch the
idea for proving this in the case of given disk representation. When the algorithm
colors a disk D, all previously colored neighbors have a y-coordinate not smaller
than D. Thus, the previously colored neighbors can be covered by at most three
cliques (see Fig. 1 a)): The disks with centers in the same region delimited by
an angle of π/3 must form a clique (together with D). Thus, d(D) is at most
3ω(G)− 3, so the algorithm uses at most 3ω(G)− 2 colors. In the case that the
representation is not given, the smallest-degree-last First-fit algorithm uses at
most 3ω(G)− 2 colors on unit disk graphs as well.

3.2 Off-Line Coloring of Disk Graphs

The approach for unit disk graphs was generalized to disk graphs by Marathe et
al. [27]. They proved that the achieved approximation ratio for coloring disk
graphs is at most 6, but their analysis can be sharpened to show that the
smallest-degree-last First-fit algorithm is in fact a 5-approximation algorithm
(cf. Gräf [12] and Malesińska [26]). To see this, note that the closed neighbor-
hood of a disk with smallest diameter cannot contain an independent set of size 6
and hence such a disk has degree at most 5(χ(G)−1), where χ(G) is the optimal
number of colors (i.e., the chromatic number). Consequently, if a disk with the
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Fig. 4. The larger disks intersecting Di can be partitioned into six cliques

smallest degree is colored last, this disk has at most 5(χ(G)− 1) previously col-
ored neighbors and is assigned color at most 5χ(G)−4. Since the graph obtained
after removing the disk of smallest degree is again a disk graph, the argument
can be applied recursively. Thus, approximation ratio 5 is achieved. If the disk
representation is given, we can alternatively sort the disks by non-increasing
diameter and apply First-fit in this order to achieve the same bound.

Theorem 13 (Gräf [12]). The smallest-degree-last First-fit algorithm achieves
approximation ratio at most 5 for disk graphs. It does not need the disk repre-
sentation.

Furthermore, it can be shown that every disk graph G can be colored with at
most 6ω(G)−6 colors (Gräf [12] and Malesińska [26]). Consider the smallest disk
Di and the disks that intersect it. See Fig. 4. The plane around Di can be parti-
tioned into six regions delimited by an angle of π/3. Since all neighboring disks
are at least as big as Di, simple geometric arguments show that the neighboring
disks whose centers are in the same region must form a clique. Furthermore, the
regions can be chosen such that the center of at least one neighboring disk lies
on the border between two regions, so that this neighboring disk belongs to the
cliques of both regions. Therefore, the neighborhood of Di can contain at most
6(ω(G)− 1)− 1 disks. Consequently, the algorithm that colors the smallest disk
last needs at most 6ω(G)− 6 colors.

So far the only lower bound on the approximability of disk graph coloring is
the one derived from the NP -completeness of deciding 3-colorability. It would
be interesting to derive a larger lower bound that uses specific properties of disk
graphs.

For σ-bounded disk graphs, no better approximation algorithms than for gen-
eral disk graphs have been presented in the literature, although we expect that
the upper bound on the approximation ratio achieved by the smallest-degree-last
First-fit algorithmdrops from 5 to 4 ondisk graphswhose diameter ratio is bounded
by a value σ that is smaller than some threshold (but still greater than 1).

On-line coloring of disk graphs and σ-bounded disk graphs is treated in detail
in the next subsection.
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3.3 On-Line Coloring of Disk Graphs

As a motivation for our further study of on-line coloring of disk graphs we shall
mention the result of Gyárfás and Lehel from 1988 showing that there exists a
tree T on n vertices such that for every on-line coloring algorithm there exists
a specific ordering of the vertices of T , such that the algorithm is forced to use
Ω(log n) distinct colors [14]. Every tree is planar, so this result together with the
theorem of Koebe immediately shows that this lower bound is valid also for disk
graphs without given representation. In the following we will see that even the
knowledge of the disk representation does not admit a better performance of a
coloring algorithm. We give a proof that for every on-line disk coloring algorithm
there exists a sequence of n disks such that the algorithm is forced to use at
least Ω(log n) distinct colors, while an optimal coloring uses only two colors. We
also review a result of Irani [21] and explain how it can be used to prove that a
competitive ratio of O(log n) is achieved by the First-fit coloring algorithm. This
shows that the First-fit algorithm is optimal for on-line coloring of disk graphs up
to a constant factor. Then, we consider σ-bounded disk graphs. For the case with
given representation, we consider a different algorithm that achieves an improved
competitive ratio of O(min{logn, log σ}). For the case without representation,
we get an upper bound of O(min{logn, σ2}) on the competitive ratio of the
First-fit algorithm.

A lower bound for on-line coloring of disks. Let A be an arbitrary on-
line disk coloring algorithm. We prove that for any k there exists a sequence of
disks D1, D2, ..., Dn = D(A, k) (where n = n(A, k) depends on A and k, and is
bounded from above by 2k) such that:

– The intersection graph of D(A, k) is isomorphic to a tree.
– The algorithm A is forced to use at least k distinct colors.

Let us start with some auxiliary notions: For a nonempty sequence of disks
D we denote by D� the same sequence without the last element. We say that
disks of some sequence are in general position if every pair of disks in the set
differs in the maximum y-coordinate (i.e., the maximum y-coordinate of any
point contained in the disk).

Now assume that the intersection graph of an arbitrary sequence of disks
D1, ..., Dt in general position is a forest F . In each connected component of F
we define the active disk to be the one with the highest maximum y-coordinate.
The active zone of an active disk Di is delimited by the interval spanned by the
maximum y-coordinate of Di and by the maximum y-coordinate of any other
disk in the same connected component (if no other disk intersects Di we use the
mimimum y-coordinate of Di).

The active zone of a sequence D = {D1, ..., Dt} is defined as the intersection
of the active zones of all active disks in D. The width of an active zone is equal
to the length of the corresponding interval, or is equal to 0 if the zone is empty.
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Our construction of D1, ..., Dn = D(A, k) satisfies the following invariant:

Invariant 1. For each on-line coloring algorithm A, each k ≥ 2, and any axis-
aligned square B of side length �, there exists a sequence D(A, k) of at most 2k

disks such that

1. for every D ∈ D(A, k), we have D ⊂ B, but no D ∈ D(A, k) intersects the
boundary of B,

2. the disks in D(A, k) are in general position,
3. the intersection graph of D(A, k) is a tree,
4. the active zones of D(A, k) and D(A, k)� have width at least c−4k

� for some
constant c,

5. on the active disks of D(A, k)� the algorithm A uses at least k − 1 distinct
colors, and

6. the last disk in D(A, k) intersects the active zones of all active disks of
D(A, k)� and is the active disk of D(A, k).

Observe that without loss of generality it is sufficient to prove the statement
only for one fixed square B (e.g. for the unit square): Any algorithm B working
on disks of some other square B′ can be transformed into an algorithm A which
colors a given disk D ⊂ B by the same color as B colors f(D), where f is a
linear transformation of B to B′. Then the validity of the invariant for A on B
implies that the invariant holds also for B on B′.

We present a construction of D(A, k) satisfying the invariant by induction.
Our statement is clearly true for k = 2, when we select D(A, 2) as two inter-

secting disks, e.g. placed at centers (2
5 ,

2
5 ), (3

5 ,
3
5 ) and of diameter 2

5 .
Now assume that the hypothesis is valid for k and we want to prove the

statement for k + 1 and some bounding square B.
By the induction hypothesis there exists a set D1 = D(A, k) such that A uses

at least k − 1 distinct colors on the active disks of D1� and all disks of D1 are
inside the unit square.

The active zone of D1� is of width at least c−4k

. Now consider an axis-aligned
square B′ of side length c−4k

placed in the active zone of D1� such that it shares
its left side with the right side of the bounding square of D1.

Denote by B the algorithm that behaves exactly as A after it colors D1�. Now
by the hypothesis on B and B′, there exists a sequence D(B, k) such that B uses
at least k−1 distinct colors on active disks of D(B, k)�, and as above this implies
the existence of a set D2 satisfying the invariant for A and k. Moreover all disks
of D2 are inside the active zone of D1�, but are disjoint from D1.

Now we distinguish the following two cases (see Fig. 5):

(1) The sets of k − 1 colors used on active disks of D1� and D2� are the same.
Then the last disk of D2 uses the new k-th color and we place a new disk
Dn that intersects the active disks of D1�∪D2 but no other disk. We obtain
D(A, k + 1) as the concatenation of D1�, D2, and Dn.

(2) Active disks of D1� and D2� have different colors. This means that there
appear at least k different colors, and we place a new disk Dn that intersects
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Fig. 5. Illustration of lower bound construction

only the active disks of D1�∪D2�. We obtain D(A, k+1) as the concatenation
of D1�, D2�, and Dn.

Observe that all disks are in general position and the intersection graph is a
tree. The only problem that might arise in the construction is that the diameter
of the last disk Dn in D(A, k + 1) can be very large in order to ensure that this
disk intersects the tiny active zones of all active disks in D(A, k + 1)�, but no
other disks.

However, by the construction, the active zone of D(A, k + 1)� has width at
least c−2·4k

. It suffices to find Dn among those disks which intersect the active
disks in a strip of width at least c−2·4k

and length at most 1 + c−4k

.
In this case, the diameter of the last disk Dn as well as the side length � of the

bounding square B are in O(c2·4
k

), so the width of the active zone of D(A, k+1)�
is at least c−4k+1

� for a suitable constant c.

Theorem 14 (Erlebach and Fiala [9]). For every on-line disk coloring algo-
rithm A there exists a sequence of n disks D such that A uses Ω(logn) distinct
colors on D while D can be colored optimally with two colors.

Furthermore, by analyzing the diameter of the smallest disk used in the con-
struction of D(A, k), we can see that the diameter-ratio σ of D(A, k) is bounded
from above by O(c4

k

). Since A uses at least k colors on this instance, the com-
petitive ratio of A must be Ω(log log σ).

Theorem 15 (Erlebach and Fiala [9]). No deterministic on-line disk color-
ing algorithm can have competitive ratio o(log log σ) on σ-bounded disk graphs.

Upper bound for the First-fit algorithm. In order to analyze the com-
petitive ratio of First-fit for on-line coloring of disks, we make use of a result
due to Irani [21]. A graph G is called d-inductive if the vertices of G can be
ordered in such a way that each vertex has at most d edges to higher-numbered
vertices. Irani proved that if G is a d-inductive graph on n nodes, then First-fit
uses O(d log n) colors to color G. In order to apply this result to disk graphs, we
will show that these graphs are O(ω(G))-inductive, where ω(G) denotes the size
of a maximum clique in a graph G. First, we reformulate Irani’s result in terms
of the competitive ratio of First-fit on O(ω(G))-inductive graphs.
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Theorem 16 (Irani [21]). Let d be a constant and let G be a class of graphs
such that every G ∈ G is dω(G)-inductive. Then the First-fit coloring algorithm
is O(d log n)-competitive on graphs from G, where n is the number of vertices of
the given graph.

Proof. We first introduce some terminology used later in the proof. Let G be a
graph from the class G. Let v1, v2, . . . , vn be the order in which the vertices of G
are colored. We write ω instead of ω(G). View each edge of G as being directed
from the endpoint with smaller number to the endpoint with higher number
in some vertex ordering that witnesses that G is dω-inductive. The fact that a
directed edge goes from u to v is written as u ! v. Then outdeg(u) = |{v : u !
v}|. Note that outdeg(u) ≤ dω since G is dω-inductive. For a vertex vj we define
its set of successors as Sj = {vi : vj ! vi, i > j}. Observe that |Sj | ≤ dω.

Assign to every vertex vj ∈ V (G) the value Cj = 1 and perform the following
discharging procedure:

Discharging procedure
for j := 1 to n do
begin
Wj := Cj ;
if Sj �= ∅ then
for all vi ∈ Sj do Ci := Ci + Cj

|Sj |
Cj := 0;

end.

In every round of the outer for loop we get that

1 ≤Wj = Cj ≤
n∑

j=1

Cj ≤ n.

We now bound Wj in terms of the maximum assigned color. Assume that a
vertex vj gets color c by the First-fit algorithm.

We prove by induction on c that Wj

|Sj| ≥
1

dω

(
1 + 1

dω

)c−1 whenever Sj �= ∅, and

Wj ≥
(
1 + 1

dω

)c−1−dω otherwise.
The statement is true for c = 1. For c > 1, there must be c−1 vertices vi with

i < j that are adjacent to vj and that have been assigned different colors. At most
dω−|Sj| of these c−1 vertices can come after vj in the inductive order, so there
must be at least c− 1− (dω− |Sj |) predecessors of vj : Pj = {vi : vi ! vj , j > i}
that have been assigned different colors. Then, by the induction hypothesis:

Wj

|Sj |
≥ 1
|Sj |

[
1 +

∑
vi∈Pj

Wi

|Si|

]
≥ 1
|Sj |

[
1 +

1
dω

c−1−dω+|Sj|∑
i=1

(
1 +

1
dω

)i−1
]
≥

≥ 1
|Sj |

(
1 +

1
dω

)c−1−dω+|Sj|
.
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The last term is minimized in the case |Sj | = dω and the claim follows. The
case Sj = ∅ is discussed similarly.

We get that n ≥ 1
dω (1 + 1

dω )c−1−dω and therefore c = O(dω logn). ��

Now we give bounds on the inductiveness of disk graphs in terms of ω(G).

Lemma 1. Every disk graph G is 6ω(G)-inductive.

Proof. Let D be a set of disks that is a disk representation of G. Order the
disks in D according to non-decreasing diameters. Consider some disk Di. By
the arguments of the discussion after Theorem 13, the higher-numbered disks
that intersect Di can be partitioned into six groups such that the disks in each
group form a clique. ��

From Theorem 16 and Lemma 1 we get the following result.

Theorem 17 (Erlebach and Fiala [9]). First-fit uses O(ω(G) log n) colors to
color a disk graph G with n nodes and is thus an O(log n)-competitive on-line
algorithm. It does not require the geometric representation.

Coloring disks with bounded diameter ratio. We now focus our attention
on the case that the ratio of the diameter of the largest disk and the smallest
one is bounded by some value σ and that the disk representation is given as
part of the input. (In fact, it would suffice that the diameters of the disks are
given as part of the input.) We will see that there exists an on-line coloring
algorithm with competitive ratio O(min{logn, log σ}) in this case. The algorithm
is a composition of two methods: The first method A is the First-fit technique
for disk graphs with arbitrary diameter. It provides the bound O(log n). The
second method B is the First-fit method applied separately on O(log σ) layers of
disks, where the diameters of the disks on each layer are within a factor of two
so that First-fit has constant competitive ratio on each layer.

More precisely, algorithm B assigns each disk Di with diameter di to layer
�log2(di)� and applies First-Fit to each layer separately, using a different set of
colors for each layer. The diameters of disks in the same layer differ at most by
a factor of two, i.e., each layer is a 2-bounded disk graph.

Now it is not difficult to show that any disk Di in a 2-bounded disk graph G
can have at most 28ω(G) − 6 neighbors in G: This can be proved by dividing
the plane around the center of Di into 28 regions such that any two disks with
centers in the same region must intersect; the detailed argument can be found
in [9]. Therefore, the First-fit coloring algorithm uses at most 28ω(G)− 5 colors
on G, and hence is 28-competitive for 2-bounded disk graphs.

Thus, Algorithm B achieves constant competitive ratio on each layer and, as
the number of different layers is O(log σ), is an O(log σ)-competitive coloring
algorithm for σ-bounded disk graphs.

Now, it is possible to combine algorithms A and B as follows: We use two
separate sets of colors for the algorithms A and B. When a new disk Di is
presented we run A on Di together with those disks colored by A. Similarly, we
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execute B. Then we compare the results of these two algorithms and color Di

with the algorithm that has used fewer colors up to now (including disk Di).
The total number of colors used on the entire set D is the sum of the number
of colors used by both methods. Note that at any time of the execution of the
combined algorithm, the number of colors used by A and the number of colors
used by B differ by at most one.

Assume that logn < log σ. The number of colors used by algorithm A is at
mostO(log n) times the optimal number. The number of colors used by algorithm
B is at most one more than that of A. So the total number of colors used by the
combined algorithm is O(log n) times the optimal number of colors. A symmetric
argument holds in the case that log σ ≤ logn. This yields the following theorem.

Theorem 18 (Erlebach and Fiala [9]). If the disk representation is given as
part of the input, there is an O(min{logn, log σ})-competitive coloring algorithm
for disk graphs whose diameter ratio is bounded by σ.

Concerning on-line coloring of σ-bounded disk graphs in the case without
given disk representation, First-fit is easily seen to be O(σ2)-competitive. This
follows because the neighborhood of a disk can be covered by O(σ2) cliques.
The idea of the analysis is the same as the one outlined above for the case
σ = 2. Combining this with the upper bound of O(log n), we get that First-fit
is O(min{logn, σ2})-competitive on σ-bounded disk graphs.

4 Conclusion

We have given a survey of known upper and lower bounds on the approximation
ratio and competitive ratio achievable for the maximum independent set and
minimum coloring problems on disk graphs. The bounds are summarized in
Table 1.

For on-line coloring of disk graphs, we have shown that the First-fit method,
which does not need the disk representation as part of the input, provides an
O(log n)-competitive disk coloring algorithm and that no algorithm can have
competitive ratio o(log n), even if it uses the geometric representation. Further-
more, we showed that the geometric representation can help to get a better ratio
of O(min{logn, log σ}) on instances with diameter-ratio bounded by σ.

For this particular problem the gap between the lower bound Ω(log log σ) and
the upper bound O(log σ) on the competitive ratio should be narrowed. Further-
more, we believe that the use of methods like randomization might improve the
competitive ratio for the on-line problems studied here, and we expect further
results in this direction.

The most widely used lower bound on the chromatic number of a disk graph
(i.e., the lower bound on the optimal solution) is expressed via the clique number
of the graph. We hope that by use of more sophisticated arguments it could be
proven that standard coloring algorithms behave even better. As a particular
open problem we would ask what is the supremum of the ratio of chromatic and
clique number of a unit disk graph. The only known bounds are 1.5 ≤ χ(G)

ω(G) < 3.
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Table 1. Summary of known results for disk graphs with n vertices. UDG stands for
unit disk graphs, DGσ for σ-bounded disk graphs, and DG for general disk graphs.
PTAS stands for polynomial-time approximation scheme, NPC for NP-complete.

Problem Graph Disk Approximation ratio Competitive ratio
class rep. lower upper lower upper
UDG + NPC PTAS 5

Maximum DGσ + NPC PTAS Θ(min{n, σ2})
indepen- DG + NPC PTAS n − 1
dent set UDG − NPC PTAS 5

DGσ − NPC PTAS Θ(min{n, σ2})
DG − NPC 5 n − 1

UDG + 4/3 3 2 5
DGσ + 4/3 5 Ω(log log σ) O(min{log n, log σ})

Minimum DG + 4/3 5 Ω(log n) O(log n)
coloring UDG − 4/3 3 2 5

DGσ − 4/3 5 Ω(log log σ) O(min{log n, σ2})
DG − 4/3 5 Ω(log n) O(log n)

The lower bound is derived from the coloring of the cycle C5, and the upper
bound is achieved by the algorithms due to Peeters [30], Gräf et al. [13] and
Marathe et al. [27].

It should be mentioned that approximation algorithms for other NP -hard
optimization problems besides maximum independent set and minimum color-
ing have also been studied for unit disk graphs and disk graphs. These problems
include the weighted version of the maximum independent set problem, the min-
imum (weight) vertex cover problem, and the minimum dominating set problem
(and variants thereof) [27,20,26,28,10]. Many of these results can be adapted to
intersection graphs of arbitrary regular polygons, also in higher dimensions. One
of the interesting open problems is to determine whether a polynomial-time ap-
proximation scheme exists for the minimum dominating set problem in general
disk graphs with given representation. Another open problem is to settle the
complexity of the maximum clique problem for general disk graphs (the prob-
lem is polynomial for unit disk graphs [8,31]). In this context it is interesting
to note that the maximum clique problem in intersection graphs of ellipses has
been proved NP-complete by Ambühl and Wagner [1].

Furthermore, a polynomial-time approximation scheme for the weighted frac-
tional coloring problem on disk graphs was obtained by Jansen and Porkolab
[22,23]. Previously, a 2-approximation algorithm for fractional coloring of unit
disk graphs had been presented by Matsui [28].

Observe that several of the presented results for disk graphs hold analogously
for intersection graphs of squares and for intersection graphs of axis-aligned
squares. (The latter can be considered as disks in L1 or L∞ metrics.) On the
other hand, we would like to point out that many questions are still open for
ellipse and rectangle intersection graphs, a generalization of disk and square
intersection graphs. The recognition problem for rectangle intersection graphs
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has been proved NP -complete by Kratochv́ıl [25]. For the maximum independent
set problem in rectangle intersection graphs with n vertices, Berman et al. [4]
presented a family of approximation algorithms achieving ratio 1 + ε logn for
any ε > 0. It is an open problem whether a constant approximation ratio can
be obtained (even the existence of a PTAS cannot be excluded by the current
state of knowledge). For coloring a rectangle intersection graph G with clique
number ω(G), it is known that O(ω(G)2) colors suffice [2], but no example with
a non-linear lower bound in terms of the clique number has been obtained. For
some special cases, it is known that O(ω(G)) colors suffice [26]. It would be an
interesting problem for future research to further investigate off-line and on-line
coloring of ellipse and rectangle intersection graphs.
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1 Introduction

In this paper we present a general technique to solve min-max and max-min re-
source sharing problems and show how to use it for two applications: scheduling
jobs on unrelated machines, and strip packing. First we consider the following
general type of min-max resource sharing problems. Given a non-empty convex
set B ⊂ IRN and a set of M non-negative convex functions fi(x), the goal is to
find a vector x ∈ B that minimizes the value max{f1(x), . . . , fM (x)}. In the max-
min resource sharing problem, the functions fi(x) are non-negative and concave
and the goal is to find a point x ∈ B that maximizes min{f1(x), . . . , fM (x)}. In
both cases we assume to have a fast subroutine to solve a simpler optimization
problem (called the corresponding block problem): to minimize or to maximize a
non-negative convex or concave cost function over B, respectively. The subrou-
tine is called the block solver. The feasibility variants to find a vector x ∈ B such
that f(x) ≤ e or f(x) ≥ e, where e is the vector of all ones and the functions
fi are non-negative and linear, are called the fractional packing and covering
problem, respectively.

Several different optimization problems can be described as min-max and
max-min resource sharing problems [21,30]. Typical examples for min-max re-
source sharing and fractional packing problems are: scheduling jobs on unrelated
machines, job shop scheduling, network embeddings, Held-Karp bound for TSP,
multicommodity flows. In these applications, we have linear programming for-
mulations with packing constraints (e.g. to place jobs on machines with an upper
bound given by the schedule length). Applications for max-min resource sharing
and fractional covering problems are: bin packing, strip packing, fractional graph
colorings, scheduling parallel tasks and resource constrained scheduling. In these
applications, the used linear programming relaxations contain mainly covering
constraints (e.g. to cover the processing times of jobs).

We focus on computing approximate solutions for min-max and max-min re-
source sharing problems and on two applications. For a given relative tolerance
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ε > 0, a point x ∈ B is an ε-approximate solution for the min-max resource
sharing problem if fi(x) ≤ (1 + ε)λ∗P where λ∗P is the optimum objective value
(i.e. λ∗P = min{λ|fi(x) ≤ λ, x ∈ B, i = 1, . . . ,M}). A point x ∈ B is an
ε-approximate solution for the max-min resource sharing problem if fi(x) ≥
(1 − ε)λ∗C where λ∗C = max{λ|fi(x) ≥ λ, x ∈ B, i = 1, . . . ,M}). The running
times of the algorithms that we describe (proposed by Grigoriadis et al. [15,16])
depend polynomial on 1/ε and the number of constraints M . The algorithms
are based on a Lagrangian or price-directive decomposition method and com-
pute a sequence of vectors x ∈ B to approximate the optimum solution. One
Lagrangian decomposition step consists of three substeps:

(1) using the current x ∈ B, the algorithm computes a price vector p(f(x)) =
(p1(f(x)), . . . , pM (f(x))),

(2) it computes a solution x̂ ∈ B of the block problem with price vector p(f(x)),
(3) the algorithm moves from x to (1−τ)x+τx̂ with an appropriate step length

τ ∈ (0, 1].

We call each such Lagrangian decomposition iteration a coordination step. The
total running time of the algorithm can be bounded mainly by the number of
iterations and the running time of the block solver. Interestingly, the number of
iterations or coordination steps is independent on the number of variables N .

Plotkin et al. [30] considered the linear feasibility variants of both problems:
either to find a point x ∈ B such that f(x) ≥ (1−ε)e or to find a point x ∈ B such
that f(x) ≤ (1 + ε)e where e is the vector of all ones. The problems are solved
in [30] by Lagrangian decomposition using exponential potential functions. Up
to poly-logarithmic factors, the number of iterations (calls to the corresponding
block solver) in these algorithms is proportional to M , 1/ε2 and ρ, where ρ =
max1≤i≤M maxx∈B fi(x) is the width of B relative to f(x). The problems are
further decomposed in [30] in order to reduce this linear dependence on ρ downto
log ρ. However, this introduces additional constraints on the block problems,
which in general become NP-hard or harder to approximate.

In this paper we describe the framework based on logarithmic potential func-
tions [15,16] for both variants: the min-max and max-min resource sharing prob-
lem in the general form (i.e. with convex and concave functions). The potential
functions are used in the algorithms to compute the price vector p(f(x)). In Sec-
tion 2, we give a width-independent Lagrangian decomposition iteration bound
for the min-max resource sharing problem. It is based on an algorithm for the
special case with starting solution λP (f(x0)) = max{fm(x0)|m = 1, . . . ,M} ≤ 1.
In the general case, the functions are modified by scaling and the algorithm is
based on a ternary search procedure. The number of iterations (calls to the block
solver) for the min-max resource sharing problem is O(M(ε−2 ln ε−1 + lnM)).
Garg and Könemann [14] proposed an algorithm (using an exponential potential
reduction) for the fractional packing problem that needs O(Mε−2 lnM) itera-
tions. Recently, Jansen and Zhang [22] have proposed an improved algorithm
for the min-max resource sharing problem with O(M(ε−2 + lnM)) coordination
steps. In Section 3, we describe a width-independent Lagrangian iteration bound
for the max-min resource sharing problem again using a logarithmic potential
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function. The number of iterations (calls to the block solver) for the max-min
resource sharing problem is O(M(ε−2 + lnM)).

Afterwards we describe two applications in detail. In Section 4 we discuss a
classical scheduling problem: scheduling jobs on unrelated machines. Given n
jobs with execution times pij (that depend on the machines and jobs) and m
machines, the goal is to find a schedule for the jobs that minimizes the schedule
length (i.e. the maximum completion time). We describe a 2 - approximation
algorithm proposed by Lenstra, Shmoys and Tardos [28]. The algorithm is based
on a linear programming approach and rounding of fractional variables. The
main bottleneck in this algorithm is to solve a linear program with packing
constraints. Using the min-max resource sharing framework we show how to
improve the running time of this step to get a faster (2 + ε) approximation
algorithm.

In Section 5 we discuss another problem as an application of the max-min re-
source sharing approach. The problem is that of packing rectangles into a strip
(called strip packing). The goal is to find a packing of the rectangles in the strip
with minimum height. This problem is related to that of scheduling parallel
multiprocessor tasks. We describe an asymptotic fully polynomial time approx-
imation scheme for strip packing (for the case with bounded heights hi ≤ 1 of
the rectangles) proposed by Kenyon and Remila [25]. Here the bottleneck in the
computation is the solution of a huge linear program (a fractional strip packing
problem) with exponential number of variables. The linear programming relax-
ation used contains covering constraints. We show how to solve the fractional
strip packing problem using the max-min resource sharing framework to get a
faster asymptotic fully polynomial time approximation scheme.

In Section 6 and 7 we give the details for the analysis of the algorithms by
Grigoriadis and Khachiyan [15,16] described in Sections 2 and 3. For further
reading on min-max and max-min resource sharing problems we refer the reader
to [4,14,15,16,30,36] and for more information on scheduling problems we refer
the reader to [5,6,17].

2 Min-Max Resource Sharing

In this section we discuss an algorithm for the min-max resource sharing problem
proposed by Grigoriadis and Khachiyan [15]. We consider the following optimiza-
tion problem (P):

Min λ
s.t. fi(x1, . . . , xN ) ≤ λ, i = 1, . . . ,M,

(x1, . . . , xN ) ∈ B,

where B ⊂ IRN is a nonempty convex compact set and fi : B → IR+ are non-
negative continuous convex functions on B for i = 1, . . . ,M .

Let f(x) = (f1(x), . . . , fM (x))T for x = (x1, . . . , xN )T ∈ B, and let

λ∗P = min{λ | f(x) ≤ λe, x ∈ B}
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where e = (1, . . . , 1)T . We are interested to compute an ε - approximate solution
for (P) for a given relative tolerance ε ∈ (0, 1):

(Pε) compute x ∈ B such that f(x) ≤ (1 + ε)λ∗Pe.

From the von Neumann’s saddlepoint theorem we have the following duality
relation:

λ∗P = min
x∈B

max
p∈P

pT f(x) = max
p∈P

min
x∈B

pT f(x),

where P = {p ∈ IRM |
∑M

i=1 pi = 1, pi ≥ 0}. Let Λ(p) = min{pTf(x)|x ∈ B} be
the corresponding block problem associated with P . Then λ∗P = max{Λ(p)|p ∈
P}. Based on the fact that λ∗P is the optimum value of the Lagrangian dual, we
define the approximate dual problem as:

(Dε) compute p ∈ P such that Λ(p) ≥ (1 − ε)λ∗P .

We use here the standard logarithmic potential function

Φt(θ, f(x)) = θ − t

M

M∑
m=1

ln(θ − fm(x)),

where θ ∈ IR+, f(x) = (f1(x), . . . , fM (x))T is the value of the function f for
x ∈ B and t > 0 is a tolerance (that depends on ε).

Let λP (f(x)) = max{f1(x), . . . , fM (x)}. The potential function described
above is used to calculate the price vector p(f(x)) for the block problem; p(f(x))
gives the direction in which we optimize in the next iteration.

For a fixed f(x) ∈ IRM
+ and x ∈ B, the function Φt(θ, f(x)) has the bar-

rier property: limθ→λP(f(x))+ Φt(θ, f(x)) = ∞ and limθ→∞ Φt(θ, f(x)) = ∞.
Since Φt(θ, f(x)) is convex in θ, Φt(θ, f(x)) has an unique minimum θ(f(x)) in
(λP (f(x)),∞). The minimum θ(f(x)) can be determined by solving the equation

t

M

M∑
m=1

1
θ − fm(x)

= 1. (1)

In this case g(θ) = t
M

∑M
m=1

1
θ−fm(x) is a strictly decreasing function of θ in

(λP (f(x)),∞). Let φt(f(x)) = Φt(θ(f(x)), f(x)) be the reduced potential value.
The dual vector (or price vector) p(f(x)) for a fixed vector f(x) is defined by

pm(f(x)) =
t

M

1
θ(f(x)) − fm(x)

m = 1, . . . ,M. (2)

In the following we describe an algorithm AL to compute a solution for (Pε)
and (Dε) in the case that we know a starting solution x0 ∈ B with λP(f(x0)) ≤ 1.
For an accuracy t ∈ (0, 1), the algorithm is based on an approximate block solver
(ABS) that solves the block problem approximately:
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ABS(p, t) compute x̂ = x(p) ∈ B such that pT f(x̂) ≤ (1 + t)Λ(p)

where p ∈ P .
The algorithm AL works for σ ∈ (0, 1/3) as follows:

Algorithm AL(f, x0, σ)
(1) set x := x0, t := 3σ/7, and finished := false,
(2) repeat

(2.1) compute f(x), θ(f(x)) and p(f(x));
(2.2) set x̂ := ABS(p(f(x)), t

3 );
(2.3) if p(f(x))T f(x̂) ≥ θ(f(x)) − 2t then set finished := true;
(2.4) if not(finished) then set x := (1− τ)x + τx̂, where τ = 1

M
4t2

25+10t
until finished = true;

(3) return(x, p(f(x))).

In the algorithm we have chosen as step length τ = 1
M

4t2

25+10t ∈ (0, 1]. The step
length is one of the critical parameters of the algorithm. It is chosen such that if
the stopping criteria is not fulfilled then the reduced potential value φt(f(x′)) for
the next solution x′ is smaller than the reduced potential value φt(f(x)). One can
prove the following inequality: φt(f(x)) − φt(f(x′)) ≥ t3/(13M). Since there is
also an upper bound for the difference φt(f(x0))− φt(f(x)), we can show that the
number of iterations is finite. In Section 6 we prove that algorithmAL halts after

O(M(σ−3(λP (f(x0))− λ∗P) + σ−2 lnσ−1))

iterations for any initial x0 ∈ B with λP(f(x0)) ≤ 1 and any σ ∈ (0, 1/3].
Furthermore if the stopping criteria is fulfilled (i.e. p(f(x))T f(x̂) ≥ θ(f(x)) −
2t), then λP (f(x)) < λ∗P + σ and Λ(p(f(x))) > λ∗P − σ. This implies that x
and p(f(x)) is an approximate solution of (P) and (D) with additive error σ,
respectively.

Algorithm AL can be used now also for the general case (without restrictions
on the objective value λP(f(x0))). The algorithm uses a ternary search procedure
TS and calls AL as a subroutine several times. TS maintains an interval [λ, λ]
of length δ = λ−λ and two further parameters λ1 = λ+ δ/3 and λ2 = λ+ 2δ/3
that split the interval into three subintervals. Furthermore, let v = 1/(2λ + λ)
and σ = vδ/3.

Given an initial vector x0 ∈ B and accuracy ε > 0, algorithm TS works as
follows:

Algorithm TS(x0, ε)
(1) set λ = 0, x = x0, and λ = λP (f(x0)),
(2) repeat

(2.1) set δ = λ − λ; λ1 = λ + δ/3; λ2 = λ1 + δ/3; v = 1/(2λ + λ); and
σ = vδ/3;

(2.2) call algorithm AL(vf, x, vδ/3) to get a point y ∈ B such that
λP (vf(y)) ≤ vλ∗P + σ;
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(2.3) if λP (f(y)) ≤ λ2 then replace x by y and λ by λ2 else replace λ by
λ1;

until δ ≤ 3ελ;
(3) return(x).

For a given function f and minimum value λ∗P = λ∗P(f), algorithm AL with
function f̄ = vf gives a point y ∈ B such that λP (f̄(y)) ≤ λ∗P (f̄) + σ. Now,
λ∗P(f̄) = vλ∗P(f) and λP(f̄(y)) = vλP (f(y)). Therefore, such a y ∈ B satisfies
λP(f(y)) ≤ λ∗P (f) + σ/v = λ∗P (f) + δ/3. Next notice that the calls to AL

are feasible. To show this, observe that σ = vδ/3 ≤ 1/3 and vλP (f(x0)) =
1

2λ+λ
λP(f(x0)) ≤ 1. The next step is to show that TS generates a sequence of

intervals [λ, λ] where each interval contains λ∗P . To do this consider step (2.3)
of the algorithm. If λP(f(y)) ≤ λ2, then λ∗P ≤ λP (f(y)) and the replacement is
feasible. If λP(f(y)) > λ2 then λ∗P ≥ λP(f(y)) − δ/3 > λ2 − δ/3 = λ1. In both
cases after the replacement λ ≤ λ∗P ≤ λP (f(x)) ≤ λ. Notice that we replace x
by y only in the case λP(f(y)) ≤ λ2. Furthermore, the length of the interval is
decreased by the multiplicative factor 2/3 in each iteration.

Grigoriadis and Khachiyan [15] proved that the ternary search halts in

O(M(ε−2 ln ε−1 + ln(λP (f(x0))/λ∗P )))

iterations with an x ∈ B such that λP(f(x)) ≤ (1 + ε)λ∗P . An initial solution
x0 can be computed by one block optimization step ABS(e′, 1) where e′ =
(1/M, . . . , 1/M)T . This solution x0 satisfies the inequality λP(f(x0)) ≤ 2Mλ∗P .
Inserting this into the formula above shows that the algorithm TS halts in
O(M(ε−2 ln ε−1 + lnM)) iterations. Finally, since θ(f(x)) can not be in general
computed exactly, we need a numerical overhead ofO(M ln ln(Mε−1)) arithmetic
operations per iteration to approximate the minima θ(f(x)). For details we refer
the reader to Section 6.

3 Max-Min Resource Sharing

In this section we present an algorithm for the max-min resource sharing problem
proposed by Grigoriadis et al. [16]. Consider the following optimization problem
(C):

Max λ
s.t. fi(x1, . . . , xN ) ≥ λ, i = 1, . . . ,M,

(x1, . . . , xN ) ∈ B,
where B ⊂ IRN is a nonempty convex compact set and fi : B → IR+, i =
1, . . . ,M are non-negative continuous concave functions on B. Let f(x) = (f1(x),
. . . , fM (x))T for x = (x1, . . . , xN )T ∈ B, and let

λ∗C = max{λ | f(x) ≥ λe, x ∈ B}

where e = (1, . . . , 1)T . We are interested in computing an ε - approximate solu-
tion for (C); i.e. for any error tolerance ε ∈ (0, 1) we want to solve the problem

(Cε) compute x ∈ B such that f(x) ≥ (1− ε)λ∗Ce.
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In order to solve this max-min resource sharing problem we study the block
problem

Λ(p) = max { pT f(x) | x ∈ B }

for p ∈ P = {p ∈ IRM :
∑M

i=1 pi = 1, pi ≥ 0}. The block problem here is
the maximization of a concave function over the convex set B. Suppose that we
have an approximate block solver (ABS) that solves the block problem in the
following way:

ABS(p, t) compute x̂ = x̂(p) ∈ B such that pT f(x̂) ≥ (1 − t)Λ(p).

The block solver ABS(p, t) for t > 0 can be interpreted as a family of approx-
imation algorithms for the block problem with ratio 1/(1 − t). By duality we
have

λ∗C = max
x∈B

min
p∈P

pT f(x) = min
p∈P

max
x∈B

pT f(x).

This implies that λ∗C = min{Λ(p) | p ∈ P}. Based on this equality, one can
naturally define the problem of finding an ε-approximate dual solution:

(Dε) compute p ∈ P such that Λ(p) ≤ (1 + ε)λ∗C .

In this section we describe an approximation algorithm for the max-min re-
source sharing problem that computes a solution with objective value at least
(1 − ε)λ∗C , provided that there is an approximate block solver ABS(p, t) for
t = Θ(ε) and any p ∈ P . The algorithm that we describe in detail below solves
(Cε), (Dε) in O(M(lnM + ε−2)) iterations, where each iteration requires a call
to ABS(p,Θ(ε)) and a coordination overhead of O(M ln ln(M/ε)) operations for
numerical computations. The algorithm uses the logarithmic potential function

Φt(θ, f(x)) = ln θ +
t

M

M∑
m=1

ln(fm(x) − θ),

where θ ∈ IR, f(x) = (f1(x), . . . , fM (x))T is the function value for an x ∈ B, and
t > 0 is a tolerance (that depends on ε). For θ ∈ (0, λC(f(x))) where λC(f(x)) =
min{f1(x), . . . , fM (x)}, the function Φt is well defined. The maximizer θ(f(x))
of function Φt(θ, f(x)) is given by the first order optimality condition

tθ

M

M∑
m=1

1
fm(x)− θ = 1. (3)

This equality has a unique root since g(θ) = tθ
M

∑M
m=1

1
fm(x)−θ is a strictly

increasing function of θ. The price vector p = p(f(x)) for a fixed f(x) is defined
by

pm(f(x)) =
t

M

θ(f(x))
fm(x)− θ(f(x))

m = 1, . . . ,M. (4)
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We can show that p(f(x)) = (p1(f(x)), . . . , pM (f(x))) ∈ P and λC(f(x)) ap-
proximates θ(f(x)) (see Section 7). The vector p(f(x)) is used in the approxi-
mate block solver ABS(p(f(x)), t) as the next direction for the optimization. If
fm(x) >> θ(f(x)), then pm(f(x)) ≈ 0. On the other hand, if fm(x) is close to
θ(f(x)), then the price component pm(f(x)) is close to 1.

Let φt(f(x)) = Φt(θ(f(x)), f(x)) be the reduced potential value.
Now we define a parameter v = v(x, x̂) by

v(x, x̂) =
pT f(x̂)− pT f(x)
pT f(x̂) + pT f(x)

, (5)

where p = p(f(x)) ∈ P and x̂ ∈ B is an approximate block solution produced by
ABS(p(f(x)), t). Notice that v(x, x̂) ≤ 1. In Section 7 we show that if v(x, x̂) ≤ t
for t = ε/6 (the stopping criteria), then x solves the primal problem (Cε) and
the price vector p(f(x)), as defined in (4), solves (Dε).

The main algorithm works as follows:

Algorithm Improve(f,B, ε, x)
(1) set t := ε/6; v := t+ 1;
(2) while v > t do end

(2.1) compute θ(f(x)) and p = p(f(x)) ∈ P as defined in (3) and (4);
(2.2) set x̂ := ABS(p(f(x)), t);
(2.3) compute v(x, x̂);
(2.4) if v(x, x̂) > t then set x = (1−τ)x+τx̂, where τ = tθ(f(x))v(x,x̂)

2M(pT f(x̂)+pT f(x))
end;

(3) return(x, p(f(x)))

The algorithm Improve is a direct implementation of the Lagrangian de-
composition scheme. The algorithm starts with an initial vector x = x0 =
1
M

∑M
m=1 x̂

(m) where x̂(m) is the solution of ABS(em, 1/2) and em is the unit
vector with all zero coordinates except its m.th component which is 1. Then, the
algorithm moves from x to (1−τ)x+τx̂ where x̂ is the solution ofABS(p(f(x)), t)
until the stopping criteria v(x, x̂) ≤ t is fulfilled. In Section 7 we prove that this
algorithm solves (Cε) and (Dε) within O(Mε−1(lnM + ε−1)) iterations (calls to
the block solver). In order to prove this result, we show that

(1) the reduced potential values are monotone increasing from one vector x to
the next vector x′ = (1− τ)x + τx̂ (i.e. φt(f(x)) < φt(f(x′))),

(2) there is an upper bound for the difference φt(f(y)) − φt(f(x)) for any two
vectors x, y ∈ B with λC(f(x)), λC(f(y)) > 0.

The step length τ is chosen as tθ(f(x))v(x,x̂)
2M(pT f(x̂)+pT f(x)) to prove property (1) for the

reduced potential values.
The total number of iterations can be improved by the scaling method used

in [16,30]. The idea is to reduce the parameter t in different phases to the de-
sired accuracy. In the s.th scaling phase we set εs = εs−1/2 and ts = εs/6 and use
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the current approximate point xs−1 as the initial solution. For phase s = 0,
we use the initial point x0 ∈ B. For this point we have pT f(x0) ≥ 1

2MΛ(p) for
each p ∈ P . We set ε0 = (1 − 1/(2M)). The initial solution satisfies fm(x0) ≥

1
2M λ∗C = (1 − 1 + 1

2M )λ∗C = (1 − ε0)λ∗C for each m = 1, . . . ,M . We show that
this scaling implementation computes solutions x and p for (Cε) and (Dε) within
O(M(lnM + ε−2)) iterations. Similar to the min-max problem the root θ(f(x))
can not in general be computed exactly. Therefore, we need a numerical overhead
of O(M ln ln(Mε−1)) arithmetic operations per iteration to compute θ(f(x))
approximatively. For the details of the analysis we refer the reader to Section 7.

4 Scheduling Jobs on Unrelated Machines

In this section we consider now a classical scheduling problem. Let J = {J1, . . . ,
Jn} be a set of n jobs and M = {M1, . . . ,Mm} be a set of m machines. Suppose
that the execution time of job Jj on machine Mi is pij ≥ 0 for i = 1, . . . ,m
and j = 1, . . . , n. The objective is to find a schedule such that each job is
processed by exactly one machine and the makespan (the largest completion
time) is minimized.

Consider an example with 6 jobs and 3 machines and execution times as given
in Table 1. A feasible schedule of length 8 is illustrated in Figure 1.

In the general case the problem is strongly NP-hard, and there is no polynomi-
altime (1+ ε)-approximation algorithm for any ε < 1

2 , unless P=NP [28]. On the
other hand, there is a polynomial-time 2-approximation algorithm proposed by
Lenstra, Shmoys and Tardos [28]. For a fixed number of machines, the situation

Table 1. An example with 6 jobs and 3 machines

job Jj J1 J2 J3 J4 J5 J6

p1j 3 8 4 6 8 3
p2j 5 2 5 6 4 3
p3j 8 2 8 5 8 3

M3

M2

M1

J4

0

J6

2 4 6 8

J2 J5

J1 J3

Fig. 1. A feasible schedule for the example
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is better. Here the scheduling problem is weakly NP-hard (even for m = 2), and
there is a fully polynomial time approximation algorithm (FPTAS) proposed by
Horowitz and Sahni [18] that runs in O(nm(m

ε )m) time. This running time has
been improved by Jansen and Porkolab [19] to O(n(m

ε )O(m)). Recently, Fishkin
et al. [12] found a simpler and faster FPTAS that runs in O(n + ( log m

ε )O(m2))
time. One of the main open problems in scheduling is to close the gap between
the lower bound (the inapproximability result) of 3/2 and the upper bound (the
best known approximation ratio) of 2.

In the next subsection we describe in detail the 2 - approximation algorithm by
Lenstra, Shmoys and Tardos [28]. The algorithm is based on linear programming.
Afterwards, we show how to improve the running time of this algorithm using
the min-max resource sharing framework [30,15].

4.1 A 2 Approximation Algorithm

The above scheduling problem can be described by the following integer linear
program ILP(T ):

Min λ

s.t.
∑n

j=1 pijxij ≤ λ i = 1, . . . ,m∑m
i=1 xij = 1 j = 1, . . . , n

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n

xij = 0 pij > T,

where T is a guessed schedule length (see next paragraph). If a processing time
pij > T we set xij = 0. In any feasible solution of the ILP(T ), xij = 1 indicates
that job Jj is executed on machineMi. The first m constraints are used to bound
the total execution time on each machine by λ, and the next n constraints ensure
that every job gets assigned to exactly one machine. The minimum makespan is
given by the solution of ILP(T ) where T = maxi,j pij .

The algorithm in [28] is based on guessing the schedule length T , solving the
linear program relaxation LP(T ) of the above integer program and rounding
the fractional variables xij ∈ (0, 1) to zero or one. Given a deadline or target
length T , the algorithm either deduces that there is no schedule with length at
most T (i.a. when the objective value λ∗ of the linear program is larger than
T ), or it constructs a schedule with makespan 2T (even if there is no sched-
ule of length T ). Notice that there are only nm different processing times pij .
If T is fixed, variables xij with corresponding processing time pij > T are set
to zero (and eliminated). Therefore the number of choices for T can be re-
stricted to the number of different processing times. Using binary search over
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these choices for T and the rounding procedure described below, we obtain an
algorithm with approximation ratio 2. For the binary search we either sort the
list of processing times in non-decreasing order and store subsequences of the
ordered list or compute stepwise the median of a sublist of processing times. If
the minimum makespan OPT is larger than maxi,j pij then the objective value
of the LP relaxation for T = maxi,j pij gives a lower bound for OPT .

Suppose now that OPT ≤ maxi,j pij . The other case with OPT > maxi,j pij

works in a similar way. In this case the rounding step described gives a schedule
of length at most OPT + T . Given deadline T ≤ maxi,j pij , let Ji(T ) be the set
of jobs with execution time pij ≤ T on machine Mi (i.e. Ji(T ) = {Jj |pij ≤ T })
and let Mj(T ) be the set of machines that can process job Jj in time at most
T (i.e. Mj(T ) = {Mi|pij ≤ T }). Suppose that Mj(T ) �= ∅; otherwise there
is no schedule of length at most T . Consider the following system LP(T ) of
(in-)equalities:∑

Jj∈Ji(T ) pijxij ≤ T i = 1, . . . ,m∑
Mi∈Mj(T ) xij = 1 j = 1, . . . , n

xij ≥ 0 Jj ∈ Ji(T ), i = 1, . . . ,m

Each zero - one assignment corresponding to a schedule with bounded ex-
ecution times pij ≤ T is a feasible solution of this system of (in-)equalities.
Therefore, if there is a schedule of length T , then this system is guaranteed to
be feasible. A vertex of the polytope corresponding to the linear program LP (T )
has the property that the number of strict positive components is at most n+m
(the number of rows in LP (T )). This implies that each basic feasible solution
has at most n + m positive variables xij > 0; the other variables have value
zero. Since each job Jj has at least one positive variable xij > 0, at most m jobs
have been split onto two or more machines. In other words, n−m jobs have an
integral assignment xij ∈ {0, 1} for i = 1, . . . ,m. These jobs are assigned already
to an unique machine.

Givenabasic feasible solution (x∗ij) ofLP(T ),we constructnowabipartite graph
G(x∗) = (V,E) with vertex set V = J ∪M (where J = {J1, . . . , Jn} and M =
{M1, . . . ,Mm}) and edge set E = {(Jj ,Mi)|x∗ij > 0}. By the arguments above,
|E| ≤ |V |. This holds also for each connected component ofG as shown below.

Lemma 1. Let C be a connected component of G(x∗). The number of edges in
C is bounded by the number of vertices in C.

Proof. Let MC and JC be the set of machine and job nodes contained in C,
respectively. Furthermore, let x∗C denote the restriction of x∗ to variables x∗ij
with Mi ∈ MC and Jj ∈ JC , and let x∗

C̄
denote the remaining variables of

x∗. Reorder the variables such that x∗ = (x∗C , x
∗
C̄

). Consider now the following
restricted system of (in-)equalities:
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∑
Jj∈Ji(T )∩JC

pijxij ≤ T Mi ∈MC∑
Mi∈Mj(T )∩MC

xij = 1 Jj ∈ JC

xij ≥ 0 Jj ∈ JC ,Mi ∈MC ,where pij ≤ T.

We prove now that x∗C is a vertex of the polytope corresponding to this system
of linear (in-)equalities. Suppose that this is not the case. Then there exist y1, y2
with x∗C = (y1 + y2)/2 where yi are feasible solutions of the polytope. But then,
x∗ = ((y1/2, x∗C̄/2) + (y2/2, x∗C̄/2)) where (yi, x

∗
C̄

) are feasible solutions of the
original polytope. Since x∗ is a vertex, this gives a contradiction. Therefore, x∗C
is also a vertex of the restricted polytope and the connected component C has
no more edges than vertices.

Since C = G(x∗C) is connected, C is either a tree or a tree plus an additional
edge. The latter graph is called a 1-tree (see also Figure 2) . This implies that
G = G(x∗) is a pseudo forest (i.e. a forest of trees and 1-trees). For the rounding
we delete first all jobs with integral assignments. This generates a pseudo forest
where all leaves correspond to machine nodes. Each remaining fractional job

M

M

M

M

M

J

J

J M

J

Fig. 2. One of the 1-trees in a pseudo forest

M

M

M

M

M

J

J

J M

J

Fig. 3. The orientation along the cycle in the 1-tree
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M

M

J M

J

Fig. 4. The remaining trees and assignment of job to machine nodes

node has at least two incident edges. The next step is to eliminate the cycles in
the remaining graph G′ and to construct a matching in G′ in which every job
node gets matched to an unique machine. Using such a matching, each machine
will have load at most 2T (i.e. a load of at most T by the integral assignment
and at most 1 further job by the matching).

We construct the matching in the following way: for each remaining 1-tree
we determine the unique cycle in it and orient the cycle in one direction (see
also Figure 3). Using this orientation, each job node in the cycle is assigned to
its succeeding machine node. After that we delete all nodes along the cycles. In
this way we obtain a set of trees with at most one job leaf per resulting tree.
Here we use the fact that the original 1-trees have only leaves corresponding to
machine nodes. Finally we root each tree at its unique job leaf or at an arbitrary
job node (if no job leaf exists) and assign each job node to one of its children
(that is always a machine node). An example is given in Figure 4. This gives an
assignment where each machine gets at most one job and each job is matched to
exactly one machine. Since each processing time pij ≤ T for Mi ∈ Mj(T ), the
schedule corresponding to this assignment has length at most T .

4.2 A Faster (2 + ε) Approximation Algorithm

The main bottleneck in the approximation algorithm is the time needed to solve
the linear program LP(T ). Let us consider the min-max resource sharing ap-
proach with coupling constraints:

Min λ
fi(x) =

∑n
j=1 pijxij ≤ λ, i = 1, . . . ,m,

and block B = B1 × . . .×Bn where Bj is a simplex that contains the variables
(xij)i=1,...,m and that is given by the following (in-)equalities:∑m

i=1 xij = 1,

xij = 0 for pij > T

xij ≥ 0 for pij ≤ T.
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In the block optimization we have to compute for a given price vector y =
(y1, . . . , ym) ∈ P :

Λ(y) = min{yTf(x)|x ∈ B}.

Since B = B1 × . . . × Bn, the minimization can be done independently (or
separately) over each Bj , j = 1, . . . , n. For each simplex Bj we have to compute
the minimum modified processing time yipij over machines i with pij ≤ T . Each
block optimization takes O(mn) time. Furthermore, the number of iterations to
find an assignment x̄ with length ≤ (1+ε)T is O(m(lnm+ε−2 ln ε−1)), if one as-
signment of length T exists. The overhead (the numerical calculations to compute
the root θ(f(x)) approximately) in each iteration is at most O(m ln ln(mε−1)).
This gives a running time of at most

O(m2(lnm+ ε−2 ln ε−1)max(n, ln ln(mε−1)))

to approximately solve the linear program. Using the recent result by Jansen
and Zhang [22], the running time can be slightly improved to

O(m2(lnm+ ε−2)max(n, ln ln(mε−1))).

Using other variants of algorithms for the min-max resource sharing problem,
we can achieve other running times (with dependence on n and m). For example,
the number of iterations in the exponential-potential method with K disjoint
blocks and separable coupling constraints is O(K lnM(ε−2 + lnM)) [15]. This
can be used directly for our scheduling problem (where K = n and M = m).
The number of iterations is O(n lnm(ε−2 + lnm)). This would give a running
time of

O(nm lnm(ε−2 + lnm)max(n, ln ln(mε−1))).

This was further improved by Villavicencio and Grigoriadis [35] by simplification
of the block optimization. In their approach, it is sufficient to optimize over only
one block instead over K blocks.

However, in order to apply the rounding procedure, the approximate solution
x̄ = (x̄ij) of the linear program must be converted into a modified solution
x̂ = (x̂ij). For the solution x̄ of LP (T ) we construct again a bipartite graph
G(x̄) as before.

Lemma 2. Let x̄ be a solution of the linear program LP (T ) represented by a
bipartite graph G(x̄) = (V,E) with V = J ∪ M . Then x̄ can be converted in
O(|E|m) = O(nm2) time into another solution x̂ of the same length where the
corresponding bipartite graph G(x̂) is a forest.

Proof. The main idea is to eliminate cycles in the bipartite graph. First consider
the case where G contains of only one cycle e1, . . . , e2r (see also Figure 5). The
idea is to perturb the values along the cycle to force at least one coordinate of
the assignment x̄ to be 0. We can always either increase the coordinate of the
assignment x̄ for each edge e2i and decrease those for each edge e2i−1, or vice
versa. If ei and ei+1 meet at a job node the perturbation must have the same
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J1

M1

J2 J3

M2 M3

e2

e3

e4

e5

e6

e1

Fig. 5. Assignment of job nodes to machine nodes

magnitude. If ei and ei+1 meet at a machine node, the perturbation is linearly
related to the load constraint.

Consider the cycle in Figure 5. Suppose that we add δ1 > 0 on edge e1 =
(J1,M1), δ2 > 0 on edge e3 = (J2,M2) and δ3 > 0 on edge e5 = (J3,M3). In
this case we have to decrease the edge e6 = (J1,M3) by δ1, edge e2 = (J2,M1)
by δ2 and edge e4 = (J3,M2) by δ3. In other words, we add along the cycle
(e1, . . . , e6) the following values (δ1,−δ2, δ2,−δ3, δ3,−δ1). In order to satisfy the
load constraints, the following inequalities must be satisfied:

δ1p11 − δ2p12 ≤ 0

δ2p22 − δ3p23 ≤ 0

δ3p33 − δ1p31 ≤ 0.

These inequalities imply that
δ2 ≥ δ1

p11
p12

δ3 ≥ δ2
p22
p23

δ1 ≥ δ3
p33
p31
.

Such a choice of values for δi is possible, if

δ1 ≥
p33

p31

p22

p23

p11

p12
δ1,

or equivalent if p33
p31

p22
p23

p11
p12
≤ 1. Furthermore, if this condition is satisfied, we can

always define values for δi that satisfy the load constraints (e.g. δ2 = δ1
p11
p12

,
δ3 = δ2

p22
p23

for a given δ1). In this way all constraints are satisfied. Now we
compute a value for δ1 that forces at least one coordinate of x̄ to be 0. Given
the approximate LP-solution x̄ = (x̄ij) we define

δ1 = min{x̄31, x̄12
p12

p11
, x̄23

p12

p11

p23

p22
}.
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By adding the values along the cycle we get

x11 = x̄11 + δ1

x12 = x̄12 − δ1 p11
p12

x22 = x̄22 + δ1
p11
p12

x23 = x̄23 − δ1 p11
p12

p22
p23

x33 = x̄33 + δ1
p11
p12

p22
p23

x31 = x̄31 − δ1.

It is not complicated to check that all variables xij ≥ 0 and xij ≤ x̄ij +x̄i′j where
Mi′ is the other machine corresponding to job Jj in the cycle. For example,
using δ1 ≤ x̄31 we have x31 ≥ 0 and x11 ≤ x̄11 + x̄31. In other words, the new
solution is also a feasible solution of LP (T ). We have xij ≥ 0,

∑M
i=1 xij = 1 and∑n

j=1 pijxij ≤ T . For example consider the constraints corresponding to job J1
and machine M1. We have x11 + x31 = x̄11 + δ1 + x̄31 − δ1 = x̄11 + x̄31 and
p11x11 + p12x12 = p11x̄11 + p11δ1 + p12x̄12 − p12δ1

p11
p12

= p11x̄11 + p12x̄12. This
implies that the same total fraction of job J1 is assigned to machines M1 and
M3 and that the load on machine M1 has not been changed. The same holds for
the other jobs and machines. Furthermore, using the choice of δ1 at least one of
variables x12, x23 or x31 will be zero.

On the other hand, if p33
p31

p22
p23

p11
p12

≥ 1, then we can increase the coordinates
of x̄ for each edge e2, e4, e6 and decrease the others. This means that we will
add (−δ1, δ2,−δ3, δ3, δ1) with δi ≥ 0 along the cycle (e1, . . . , e6). In this case we
compute

δ1 = min{x̄11, x̄12
p12

p11
, x̄22

p22

p23

p33

p31
},

and set δ3 = δ1
p31
p33

and δ2 = δ3
p23
p22

. Similar to the other case, we can compute a
feasible solution xij of LP (T ) and can force at least one coordinate of the cycle
to be 0.

By a modified depth first search we can generalize the above procedure to
generate a solution x̂ where the bipartite graph G(x̂) is a forest. When a cycle
is detected by a back edge, the perturbation is computed for the cycle and the
search is restarted. When we detect that an edge does not belong to any cycle
in G, then we store the information of the edge (i.e. the assignment for the
corresponding job) and delete the edge to avoid repeatedly searching through
this part of the graph. Since the depth of the search tree is at most 2m, after
O(m) steps we either find a cycle or delete an edge that is not in any cycle.
In both cases we delete at least one edge. Therefore, the total search time is
O(|E|m). Furthermore, the time to compute a perturbation along a cycle can
be bounded by O(m). This implies that the total running time of the rounding
procedure is O(|E|m) = O(nm2).
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5 Strip Packing

In this section we consider the problem to pack rectangles into a strip (strip pack-
ing). A rectangle ri is given by its width w(ri) = wi and height h(ri) = hi where
0 ≤ wi, hi ≤ 1. Let L be a list of n rectangles ri = (wi, hi). Given a strip of width
1, the strip packing problem is to find a packing of the rectangles ri ∈ L into the
strip with minimum height such that all rectangles have disjoint interiors. The
height of a strip packing is the uppermost boundary among all rectangles in the
packing. Here rotations of rectangles are not allowed. We suppose that the list
L of rectangles is ordered by non-increasing widths: w1 ≥ w2 ≥ . . . ≥ wn.

A related problem is a scheduling problem with parallel multiprocessor tasks.
Suppose there is given a set of n tasks T = {T1, . . . , Tn} and a set of m identi-
cal processors M = {M1, . . . ,Mm}. Each task Tj has to be processed on sizej

processors (where sizej ∈ {1, . . . ,m}) with execution time pj . Given sizej pro-
cessors allotted to task Tj, these processors are required to execute task Tj in
parallel and without preemption, i.e. they all have to start processing task Tj at
some starting time τj and to complete it at τj +pj. Each processor can execute at
most one job per time. The objective is to find a feasible non-preemptive schedule
that minimizes the overall makespan; i.e. the maximum completion time among
all tasks:

max{τj + pj |j = 1, . . . , n}.
This problem is called non-malleable parallel task scheduling (NPTS). An

example with 7 tasks and size1 = . . . = size4 = size7 = 1, and size5 = size6 = 2
on three processors with processing times p1 = 5, p2 = 2.5, p3 = 1, p4 = 1.5,
p5 = 4, p6 = 4 and p7 = 2 is given in Figure 6. Notice that in general tasks can
be executed on any set of processors with cardinality sizej (i.e. the processor
set do not need to be consecutive). The length or makespan of the schedule in
Figure 6 is 10.5. NPTS is strongly NP-hard even for any constant number m ≥ 5
of processors [11]. Furthermore, 2 is the best known approximation ratio for the
problem [13]. If the number m of processors is fixed, then there is a polynomial
time approximation scheme (PTAS) [20,2].

1

2

3 4
5

6

6

7

2.5 10.510 6.5

Fig. 6. A schedule of parallel tasks
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Notice that the strip packing problem is equivalent to NPTS with consecutive
processor allocation for tasks. Furthermore, there are other versions of NPTS in
which the processors are arranged according to a given network (e.g. a hypercube
or a mesh) [8,29,37] and tasks must be executed on a certain subset (e.g. on a
subcube or a submesh). An example is illustrated in Figure 7 where each submesh
corresponds to a rectangle of processors. In this case the scheduling problem
is equivalent to a 3-dimensional packing problem. For a survey on scheduling
parallel multiprocessor tasks we refer the reader to [10].

For a particular input list L of rectangles, let OPT (L) be the minimum height,
and let A(L) denote the packing height obtained by algorithm A. The absolute
performance ratio of A is supLA(L)/OPT (L). The asymptotic performance ra-
tio of A is

limsupOPT (L)→∞A(L)/OPT (L).

An asymptotical fully polynomial approximation scheme is a family of approx-
imation algorithms Aε with asymptotic performance ratio 1 + ε and running
time polynomial in the length of L and 1

ε . In the following we describe in details
an asymptotical fully polynomial time approximation scheme (AFPTAS) for the
strip packing problem with bounded rectangle heights hj ≤ 1 [25]. The algorithm
computes a packing of height at most (1+ ε)OPT (L)+O(1/ε2). Notice that the
algorithm works also for NPTS with or without consecutive processor allocation
for tasks. For other results on strip packing we refer the reader to [3,7,31,32].

Fig. 7. 2-dimensional mesh of processors

Let hmax denote the maximum height of any rectangle in L. We suppose that
the maximum height hmax ≤ 1. Next we describe the main ingredients of the
AFPTAS, and later we show how the max-min resource sharing approach helps
to improve the running time of this approximation scheme.

The approximation scheme works as follows:

(1) it partitions the list L = (r1, . . . , rn) of rectangles into a set of narrow
rectangles Lnarrow = {ri|w(ri) ≤ ε′} and a set of wide rectangles Lwide =
{ri|w(ri) > ε′} where ε′ = ε/(2 + ε),
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(2) it rounds the set Lwide into a similar instance Lsup that has only O(1/ε2)
different widths,

(3) it solves approximately the fractional strip packing problem (see next sub-
section) for Lsup and constructs a feasible strip packing for Lsup,

(4) it packs the rectangles in Lnarrow using a greedy algorithm into the remain-
ing space.

5.1 Fractional Strip Packing

A fractional strip packing of L is a packing of any list L′ obtained from L
by replacing some of its rectangles ri = (wi, hi) by a sequence of rectangles
(wi, hi1), (wi, hi2), . . ., (wi, hik

) where hi1 , . . . , hik
≥ 0 and

∑k
=1 hi�

= hi. Some
of the ideas below are based on a rounding technique for bin packing [9] and on
other approximation algorithms for rectangle packings [3,7]. In step (3) of the
algorithm we suppose that all n rectangles have only M different widths w′

1 >
w′

2 > . . . > w′
M > ε′. Similar to bin packing we associate a set of configurations

(multisets) that could occur in a fractional strip packing. A configuration is a
multiset {α1j : w′

1,α2j : w′
2, . . . ,αMj : w′

M} where αij denotes the number of
occurrences of width w′

i in configuration Cj such that
∑M

i=1 αijw
′
i ≤ 1. Let q be

the number of different configurations.
For each fractional strip packing P of total height h, we can compute a vector

(x1, . . . , xq) with xi ≥ 0 associated to P . Scan the packing bottom up with a
horizontal sweep line y = a where 0 ≤ a ≤ h. Each line corresponds to one
of the configurations. Therefore, each fractional strip packing can be described
by a sequence of configurations Ci1 , . . . , Cik

with heights hi1 , . . . , hik
such that

i ∈ {1, . . . , q} for � ∈ {1, . . . , k} and
∑k

=1 hi�
= h. For each configuration Cj

let xj =
∑

|Cj=Ci�
hi�

be the total height of Cj in P .

Table 2. The different configurations with rectangles of type A and B

configuration α1j = number of A’s α2j = number of B’s
C1

3
7 , 2

7 , 2
7 1 2

C2
3
7 , 3

7 2 0
C3

2
7 , 2

7 , 2
7 0 3

C4
3
7 , 2

7 1 1
C5

2
7 , 2

7 0 2
C6

3
7 1 0

C7
2
7 0 1

In Figure 8 we have a packing P with rectangles of type A with width 3/7 and
height 1 and rectangles of type B with width 2/7 and height 3/4. The possible
configurations with these types are given in Table 2. The vector corresponding
to the strip packing is: (3/2, 5/4, 0, 0, 0, 0, 0).

In the next part we study the fractional strip packing problem. Let βi be the
total height of all rectangles in the instance with width w′

i. The fractional strip
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A A

BBA

AB B

0

0.75
1

1.75

2.75

Fig. 8. A packing with 4 rectangles of type A and B

packing problem can be solved via linear programming. Use for each configura-
tion Cj a variable xj ≥ 0 that denotes the total height of Cj in the fractional
strip problem. Then, LP(L) is given by

Min
∑q

j=1 xj

s.t.
∑

j αijxj ≥ βi i = 1, . . . ,M

xj ≥ 0 j = 1, . . . , q.

We denote with LIN(L) the minimum objective value of LP(L) for a given
list L. Fractional strip packing is closely related to fractional bin packing where
the vector β in LP (L) is a vector (n1, . . . , nM ) with integer components. In bin
packing we have a list of items of sizes a1 > . . . > aM > ε′ with ni items of size ai,
for i = 1, . . . ,M . A configuration Cj here is a multiset {α1j : a1, . . . ,αMj : aM}
where αij denotes the number of items of size ai in Cj . The fractional bin packing
problem can be solved approximately with additive tolerance t (i.e. obtaining an
objective value LIN(L) + t) in time

O(M6 ln2 Mn

at
+
M5n

t
ln
Mn

at
)

using the algorithm by Karmarkar and Karp [24,26] (where n is the number of
items, M is the number of distinct sizes, and a is the size of the smallest item).
The algorithm is based on linear programming techniques (ellipsoid algorithm
and separation oracle), but does not use the fact that the vector (n1, . . . , nM ) is
integer. Therefore, it can be used for fractional strip packing, too. This means
that the fractional strip packing problem can be solved approximately with addi-
tive tolerance t = 1 in time polynomial in M , n and 1/ε. The number of non-zero
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x1 + x2 + 2hmax

h + Mhmax

x1 + hmax

Fig. 9. Reserving space for wide rectangles

x1 + x2 + 2hmax

h + Mhmax

x1 + hmax

Fig. 10. Packing wide rectangles into the reserved space

variables (that is the number of configurations used) in the solution of LP(L) is
at most M . In the next Lemma we show how to transform a general fractional
solution into an integral solution.
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Lemma 3. Let x = (x1, . . . , xq) be a solution of LP(L) with objective value h
and at most M non-zero variables xj. Then we can transform such a solution
into an integral solution or packing with height at most h+Mhmax ≤ h+M .

Proof. Without loss of generality we assume that x1, . . . , xM > 0 and xM+1 =
. . . = xq = 0. We construct an integral packing of height h+Mhmax ≤ h +M
as follows: First cut the strip into M regions Q1, . . . , QM of heights xj + hmax

between levels �j =
∑j−1

k=1 xk + (j − 1)hmax and �j+1 =
∑j

k=1 xk + jhmax (see
also Figure 9). The region Qj corresponds to configuration Cj . Each region Qj is
divided into αij columns of height xj +hmax and width w′

i, for each i = 1, . . . ,M .
Then we place rectangles of width w′

i by a greedy algorithm into columns
of the same width until the height of a column is larger than xj or the list of
rectangles is exhausted (see also Figure 10). We can pack all rectangles into the
reserved space, since

∑
j αijxj is at least the total height βi of all rectangles of

width w′
i. Suppose that not all rectangles fit into the columns. This implies that

all columns of width w′
i are filled up to a value larger than xj . Counting over all

columns of width w′
i we obtain a total height larger than

∑
j αijxj . Since this

sum is at least βi, we get a contradiction.

The next goal is to obtain a nice layout of the integral packing. Let c1 ≥ c2 ≥
. . . ≥ cM ′ denote the total widths of the wide rectangles configurations Cj , for
j = 1, . . . ,M ′. If each layer [0, 1] × [�j , �j+1] can be divided into three regions
Rj , R

′
j , R

′′
j such that

(i) Rj = [cj , 1] × [�j , �j+1] is completely free and will be used later to place
narrow rectangles,

(ii) R′
j = [0, cj]× [�j, �j+1 − 2] is completely filled by wide rectangles, and

(iii) R′′
j = [0, cj]× [�j+1 − 2, �j+1] is partially filled by wide rectangles and those

free space is not used later for narrow rectangles,

then we call the integral packing nice. Condition (ii) is important for the analysis
of the algorithm.

Lemma 4. Let x = (x1, . . . , xq) be a solution of LP(L) with objective value h
and at most M non-zero variables xj. Then we can transform such a solution
into a nice packing of height at most h + M ′hmax ≤ h + M ′ and with at most
M ′ = 2M configurations.

Proof. Let x = (x1, . . . , xq) be the vector as above. Now we cut the strip into
M regions Q1, . . . , QM of heights x1, . . . , xM . As above, each region Qj (corre-
sponding to configuration Cj) is divided into αij columns of widths w′

i, for all
i = 1, . . . ,M . Then we place the rectangles of width w′

i into the columns until
exactly height xj . In this way, each column contains a sequence of rectangles
that completely fit inside the column and possibly the top part of a rectangle
which had been started in a previous column and the bottom part of a rectangle
which is too tall to fit into this column.

If we have too much space in the columns of width w′
i, then we distribute the

rectangles among the columns and erase the extra part. We split the configu-
ration Cj into two configurations: one configuration of the old type where the
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Cj

C ′
j

Cj

w1 w1 w2 w2 w2

w1

w1 w1

w1

w2 w2 w2

Fig. 11. Splitting a configuration Cj

columns of width w′
i are completely filled and one configuration without columns

of width w′
i (see Figure 11). Such a case can happen at most M times. There-

fore, the total number M ′ of configurations after this transformation is 2M . The
consequence is that all columns are completely used by rectangles. After that we
reserve space for the M ′ configurations with regions Q1, . . . , QM ′ between levels
�j and �j+1 of height xj + hmax.

Each column C of the fractional strip packing of width w′
i and height xj

is associated to a column C+ of width w′
i and height xj + hmax. In C+ we

place all rectangles which fit completely in C (by the previous step) and the
rectangle whose bottom is in C and whose top is another column. By the above
construction, there is at most one rectangle of this type and the total height of
rectangles placed in C+ is at least xj−hmax ≥ xj−1. Therefore, each column C+
is completely filled by wide rectangles until �j + xj − 1 ≥ �j+1 − 2. This implies
that region R′

j is completely filled by wide rectangles. Furthermore, region Rj is
completely free and R′′

j is partially filled by wide rectangles. Therefore, we have
a nice integral packing.

Now we describe the rounding technique for the general case. Remember that
Lnarrow = {ri|wi ≤ ε′} and Lwide = {ri|wi > ε′}. The next goal is to round
the rectangles in Lwide to obtain an instance Lsup with a constant number of
different widths, where the optimum objective function values for the fractional
strip packing instances satisfy LIN(Lsup) ≤ (1 + ε)LIN(Lwide).

Definition 1. Given two sequences L = {r1, . . . , rn} and L′ = {r′1, . . . , r′n} of
rectangles. We say that L ≤ L′ if there is a bijection f : L → L′ such that the
width w(ri) ≤ w(f(ri)) and height h(ri) ≤ h(f(ri)) for i = 1, . . . , n.

The main idea now is to approximate Lwide by a list Lsup such that Lwide ≤
Lsup and that Lsup has only M different rectangle widths. To construct Lsup

we build a stack packing as follows: we stack up all rectangles of Lwide by order
of non-increasing widths on a left-justified stack of height H = h(Lwide) (see
also Figure 12). We suppose that h(Lwide) is larger than a constant O(M) =
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group 1

group 4

group 2

group 3

4H/M

3H/M

2H/M

H/M

0

Fig. 12. The stack packing for Lwide and partition into groups

O(1/ε2); otherwise we can neglect the wide rectangles (i.e. use the standard next
fit decreasing height (NFDH) algorithm for the narrow rectangles and place the
wide rectangles of length at most O(1/ε2) at the end. We specify M rectangles
on the stack as threshold rectangles. A rectangle packed on the stack is called a
threshold rectangle, iff it intersects (either with its interior or at the lower side)
with a horizonal line at height ih(Lwide)/M for i = 0, . . . ,M−1. Since the stack
height h(Lwide) > O(1/ε2), each rectangle on the stack of height at most 1 can
intersect with only one line.

The threshold rectangles are used to separate the wide rectangles into M
groups. The i.th group consists of the threshold rectangle at line ih(Lwide)/M
and rectangles that lie completely between the lines ih(Lwide)/M and (i +
1)h(Lwide)/M . The widths of all rectangles in group i are rounded up to the
width of the threshold rectangle which has the largest width (see Figure 13).
This defines our instance Lsup; it contains now of rectangles with only M dis-
tinct widths. Furthermore, each rectangle’s width is larger than ε′. Next we
apply the fractional strip packing algorithm on the instance Lsup and construct
an integral nice packing for Lsup.

Afterwards, we have to add the rectangles in Lnarrow. This can be done as
follows. First we order these rectangles by non-increasing heights. We place the
narrow rectangles in the M ′ free rectangular regions R1, . . . , RM ′ (with Rj =
[cj , 1] × [�j , �j+1]) according to a modified next fit decreasing height (NFDH)
strategy (see also Figure 14). First we use NFDH to place the rectangles into
R1. In this heuristic the rectangles are packed on a sequence of levels. The
first level is the bottom line in R1. Each subsequent level is the horizontal line
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group 1

group 4

group 2

group 3

0

2H/M

H/M

3H/M

4H/M

Fig. 13. Linear rounding to construct Lsup

above the highest (the leftmost) rectangle on the previous level. The rectangles
are placed in a left-justified manner on a level in R1 until there is not enough
space to the right to pack the next rectangle completely on the level. At such a
moment, a new level is constructed as above and the packing proceeds on the
next level. When a level with the first rectangle does not fit into R1, then we
start a new level at the bottom line of R2 and use NFDH again. The procedure
is iterated until RM ′ (if necessary). When a level with first rectangle does not
fit into RM ′ , then we start a new level at line �M ′+1. In this case we pack the
remaining rectangles in the strip with the usual NFDH heuristic. Notice that no
narrow rectangle is placed in region Rj (on the first level), if the current narrow
rectangle to be placed has width wi with wi +cj > 1. In this case the total width
cj of the wide rectangle is at least 1− ε′.

The algorithm STRIP − PACK can be summarized as follows:

given: list L = (r1, . . . , rn) of rectangles with heights hi, wi ≤ 1,
(0) set ε′ = ε

(2+ε) , and M = ( 1
ε′ )

2,
(1) partition L into Lnarrow and Lwide,
(2) construct Lsup such that Lwide ≤ Lsup and that Lsup has only M distinct

widths,
(3) solve the fractional strip packing problem corresponding to Lsup approxi-

mately using the algorithm by Karp and Karmarkar,
(4) construct an integral nice strip packing for Lsup,
(5) use modified NFDH for the rectangles in Lnarrow and pack them into the

regions R1, . . . , RM ′ and above if necessary.
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ai

ai+1

ai+2

lj+2

lj+1

lj

Fig. 14. Adding narrow rectangles by Modified Next Fit Decreasing Height

Let h′ be the height after step (4) and let hfinal be the final height after adding
the narrow rectangles. Remember that M ′ ≤ 2M . The following Lemmas are
useful for the analysis of the algorithm.

Lemma 5.
LIN(Lsup) ≤ LIN(Lwide)(1 + 1

Mε′ )
SIZE(Lsup) ≤ SIZE(Lwide)(1 + 1

Mε′ )

where LIN(L) is the height of the optimal fractional strip packing and SIZE(L)
is the total area of all rectangles in L.

Proof. Consider the following generalization of the relation ≤. Given any list L
of rectangles, first build a stack packing as described above. Let STACK(L) be
the polygonal region in the plane covered by the stack packing for L. Then we
say L ≤g L

′ iff STACK(L) is contained in STACK(L′). The relation implies
directly that LIN(L) ≤ LIN(L′) and SIZE(L) ≤ SIZE(L′).

We define now two sequences L′
inf and L′

sup of rectangles such that L′
inf ≤g

Lwide ≤g Lsup ≤g L
′
sup. To do this we cut the threshold rectangles that intersect

a line ih(Lwide)/M in two pieces and divide the rectangles into M groups of
exactly height h(Lwide)/M . Group i consists of all rectangles that lie between
line (i − 1)h(Lwide)/M and ih(Lwide)/M . Let ai, bi be the smallest and largest
width of rectangles in group i. Rounding each rectangle in group i up to bi (and
up to 1 for the first group) generates L′

sup. Rounding each rectangle in group i
down to bi+1 (and down to 0 for the last group) generates L′

inf .
Then the STACK(L′

sup) is equal to the STACK(L′
inf) plus one rectangle

with width 1 and height h(Lwide)/M . This implies that

LIN(L′
sup) = LIN(L′

inf ) + h(Lwide)/M

SIZE(L′
sup) = SIZE(L′

inf ) + h(Lwide)/M
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Therefore, LIN(Lsup) ≤ LIN(L′
sup) ≤ LIN(L′

inf)+h(Lwide)/M ≤ LIN(Lwide)
+ h(Lwide)/M . Since all rectangles in Lwide have a width > ε′, we have
h(Lwide)ε′ ≤ SIZE(Lwide) ≤ LIN(Lwide). This gives LIN(Lsup) ≤ LIN(Lwide)
(1 + 1

Mε′ ). In the same way we can prove the bound for SIZE(Lsup).

Lemma 6. Let Laux = Lsup ∪ Lnarrow. If hfinal > h′ then

hfinal ≤ SIZE(Laux)/(1− ε′) + 4M + 1.

Proof. Let (a1 < . . . < ar) be the ordered sequence of levels constructed by
modified NFDH, and let (as1 < . . . < asr′ ) be the subsequence of levels with
at least one rectangle. Furthermore, let bsi (b′si

) be the height of the first (last)
narrow rectangle placed on level asi , i = 1, . . . , r′. A level asi is closed when
the next narrow rectangle does not fit completely on the level. Notice that all
narrow rectangles on level asi have height ≥ b′si

. Let (as̄1 < . . . < as̄r̄ ) be the
subsequence of (as1 < . . . < asr′ ) such that as̄i + b′s̄i

≤ �j+1 − 2 where j is the
layer that contains level as̄i , for i = 1, . . . , r̄. Let lay(k) = j be the layer that
contains level ak. An important fact is that region R′

j = [0, cj]× [�j , �j+1 − 2] is
completely covered by wide rectangles in Lsup. Let us consider three cases:

Case 1: Level ak with at least one narrow rectangle and ak+b′k ≤ �lay(k)+1−2.
In this case k = s̄i for i ∈ {1, . . . , r̄}. The modified NFDH algorithm implies that
interval [ak, ak + b′k] ⊂ [�j, �j+1 − 2]. Therefore, an area of at least b′si

(1 − ε′) is
covered by wide and narrow rectangles in Lsup ∪ Lnarrow.

Case 2: Level ak with at least one narrow rectangle and ak+b′k > �lay(k)+1−2
and ak ≤ �lay(k)+1−2. In this case an area of (�lay(k)+1−2−ak)(1−ε′) is covered
by wide and narrow rectangles.

Case 3: Level ak without any narrow rectangles and ak ≤ �lay(k)+1− 2. This
case may happen, when the wide rectangles have already a total width larger
than 1 − ε′ and the current narrow rectangle to be placed is too wide. In this
case an area of at least (�lay(k)+1 − 2− ak)(1− ε′) is covered by wide rectangles
in Lsup.

Notice that case 2 and 3 can happen only once per layer. Let

X =
∑

k �∈{s̄1,...,s̄r̄},ak≤lay(k)+1−2

(�lay(k)+1 − 2− ak).

Then the total size SIZE(Lsup ∪ Lnarrow) of all wide and narrow rectangles is
at least (1 − ε′)(X +

∑r̄
i=1 b

′
s̄i

). Using b′s̄i
≥ bs̄i+1 for i = 1, . . . , r̄ − 1, we get

SIZE(Lsup ∪ Lnarrow) ≥ (
∑r̄−1

i=1 bs̄i+1 +X)(1− ε′).
On the other hand, the height of the final packing is at most

∑r̄
i=1 bs̄i +X +

2M ′.
This gives

hfinal ≤
∑r̄

i=1 bs̄i +X + 4M
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≤
∑r̄−1

i=1 bs̄i+1 +X + 4M + 1

≤ SIZE(Lsup∪Lnarrow)
(1−ε′) + 4M + 1.

Let OPT (L) be the minimum height used by an optimal algorithm.

Theorem 1. Given a list of rectangles L = (r1, . . . , rn) with wi, ri ≤ 1, algo-
rithm STRIP − PACK produces a packing of total height

hfinal ≤ (1 + ε)OPT (L) +O(1/ε2).

The running time of STRIP − PACK is polynomial in n and 1/ε.

Proof. Lemma 5 implies that

SIZE(Laux) ≤ SIZE(L)(1 +
1
Mε′

).

Suppose that hfinal > h′. In this case using Lemma 6 and SIZE(L) ≤ OPT (L),

hfinal ≤ SIZE(L)
(1+ 1

Mε′ )
(1−ε′) + 4M + 1

≤ OPT (L)
(1+ 1

Mε′ )
(1−ε′) + 4M + 1.

On the other hand using Lemma 5

h′ ≤ LIN(Lsup) + 1 + 2M

≤ LIN(Lwide)(1 + 1
Mε′ ) + 1 + 2M

≤ LIN(L)(1 + 1
Mε′ ) + 1 + 2M

≤ OPT (L)(1 + 1
Mε′ ) + 1 + 2M.

Both cases together and the definition of ε′ and M imply the following bound

hfinal ≤ OPT (L)
(1+ 1

Mε′ )
(1−ε′) + 4M + 1

≤ (1 + ε)OPT (L) + 4(2+ε
ε )2 + 1

≤ (1 + ε)OPT (L) +O( 1
ε2 ).

5.2 Improving the Running Time of the AFPTAS

We can solve the fractional strip packing problem

Min
∑q

j=1 xj

s.t.
∑q

j=1
αij

βi
xj ≥ 1, i = 1, . . . ,M,

xj ≥ 0, j = 1, . . . , q.

(6)



184 K. Jansen

by binary search on the optimum value and testing in each step the feasibility
of a system of (in-) equalities for a given r ∈ [L,U ] where L, U are lower and
upper bounds on the optimum height. A simple upper bound can be computed
using approximation algorithms for strip packing or nonmalleable scheduling
(see [7,33]). Interestingly, the height of the packing can be bounded in these
algorithms by 2

∑M
i=1 βiw

′
i+hmax where hmax = maxRi∈Lwide

hi is the maximum
height over all wide rectangles. Notice that the total area

∑M
i=1 βiw

′
i and hmax

are both lower bounds on the optimum fractional strip packing. Therefore we
can use L = max{

∑M
i=1 βiw

′
i, hmax} and U = 3L.

The system of (in-)equalities is given as follows:

q∑
j=1

αij

βi
xj ≥ 1, i = 1, . . . ,M, (xj) ∈ B,

where

B = {(xj)|
q∑

j=1

xj = r, xj ≥ 0}.

Let us consider the following problem:

λ∗ = Max{λ|
q∑

j=1

αij

βi
xj ≥ λ, i = 1, . . . ,M, (xj) ∈ B}. (7)

This is a max-min resource sharing problem with one block B and M cover-
ing constraints. Let the M coupling (covering) constraints be represented by
Ax ≥ λ. We can compute an (1 − ε̄) - approximate solution for the max-min
resource sharing problem (7) where ε̄ = Θ(ε) in O(M(ε̄−2+lnM)) iterations (see
Section 3), each requiring for a given price vector y = (y1, . . . , yM ) an (1− ε̄/6)
approximate solution of the block problem

Max{yTAx|x ∈ B}. (8)

Since B is just a simplex, the optimum of this linear program is attained at a
vertex x̃ of B that corresponds to a single configuration Cj with x̃j = r and
x̃j′ = 0 for j �= j′. Thus it is sufficient to find a subset of rectangles that can
occur at the same time and has largest associated profit value dj in the profit
vector dT = yTA. This can be described by an integer linear program with
variables zi that give the number of rectangles of width w′

i. We have to solve
approximately for a given M - vector (y1, . . . , yM ):

Max
∑M

i=1
yi

βi
zi

s.t.
∑M

i=1 w
′
izi ≤ 1

zi ≥ 0, integer.

(9)
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This is a classical Knapsack problem with unbounded variables. This problem
can be solved approximately in O(M + (1/ε̄)3) time [27]. The overhead (i.e.
the numerical calculations) per iteration is O(M ln ln(Mε̄−1)). This implies that
the max-min resource sharing problem can be solved approximately with value
(1− ε̄)λ∗. In our case we have λ∗ ≥ 1 for r ≥ OPT .

There are two possible outcomes of the max-min resource sharing procedure:
either we find a solution that covers at least

∑
j

αij

βi
xj ≥ (1 − ε̄) or we can

conclude that there is no solution with
∑

j
αij

βi
xj ≥ 1. In the first case we can

choose in the binary search a smaller value for r, and in the second case OPT > r
and we must choose a higher value for r. By binary search on r in the interval
[L, 3L] we can compute in this way a solution (xj) with

∑q
j=1 xj ≤ (1+δ/4)OPT

and
∑q

j=1(αij/βi)xj ≥ (1− ε̄) where OPT is the height of an optimal fractional
strip packing. Now we can set x̃j = xj(1 + 4ε̄) and obtain

q∑
j=1

αij

βi
x̃j ≥ (1− ε̄)(1 + 4ε̄) ≥ 1

for ε̄ ≤ 3/4. In this case, the length of the generated strip packing is at most

q∑
j=1

x̃j ≤ OPT (1 + 4ε̄)(1 + δ/4) ≤ (1 + δ)OPT

by choosing δ ≤ 1 and ε̄ = 3δ/20. Since the optimum of (6) lies within the
interval [L, 3L], the overall running time of the algorithm is

O(M(
1
δ2

+ lnM) ln(
1
δ
)max(M +

1
δ3
,M ln ln(

M

δ
))).

Interestingly, the binary search can be avoided by computing only a solution for
one value for r (see [23]). This gives a total running time of

O(M(
1
δ2

+ lnM)max(M +
1
δ3
,M ln ln(

M

δ
))).

Using M = O(1/ε2) and δ = Θ(ε), the block solver runs in O(ε−3) time and
the fractional strip packing can be solved in time O(ε−7).

The algorithm above is based on ideas by Plotkin et al. [30] for bin packing
(with a more involved and complicated block optimization) and by Jansen and
Porkolab for general covering problems [21]. Comparing with the approach in
[30], the knapsack problem above has unbounded variables. Plotkin et al. [30]
used a decomposition method to reduce the width ρ in the fractional covering
problem. Using this technique, the block problem becomes more complicated.
In fact the block problem is a knapsack problem with additional constraints on
the variables and the underlying approximation scheme has a slower running
time of O(min(Mε−2,M log ε−1 + ε−4)) = O(ε−4). The number of iterations in
their approach is O(M log2 ρ(log2M + ε−2 log(Mε−1))) where ρ is the width of
fractional covering problem. The width can be bounded by the optimum value



186 K. Jansen

of the fractional strip packing instance or the number of wide rectangles. This
would give a slower running time of O(ε−8 ln(ε−3) ln2(n)).

The number of configurations in the computed solution using the max-min
resource sharing framework is O(M(ε−2 + lnM)) = O(ε−4), since we add one
configuration xj > 0 in each iteration. This number can be reduced to O(ε−2)
by solving several systems of (M + 1) linear equalities with M + 2 variables.
Consider a solution x̃ = (x̃j) of the linear system:∑q

j=1 αij x̃j = bi ≥ βi i = 1, . . . ,M∑q
j=1 x̃j = bM+1 ≤ (1 + δ)OPT

where w.l.o.g. x̃j > 0 for j = 1, . . . , q′ and x̃j = 0 for j = q′+1, . . . , q. Take now a
submatrix B with M +2 columns and M +1 rows and solve the system Bz = 0.
Then there is a nontrivial vector ẑ �= 0 such that Bẑ = 0. We can eliminate
one positive variable x̃j corresponding to one of the M + 2 columns in B (i.e.
by using x̃ = x̃ + z̃δ where z̃ is the vector of dimension q that contains ẑ and
additional zeros and δ is appropriate chosen). Each round for eliminating one
component can be done in O(M(M)) time, where M(n) is the time to solve a
system of equalities with n variables and n constraints. The number of rounds is
O(ε−4). This gives O(ε−4M(ε−2)) time to reduce the number of configurations.

6 Analysis for Min-Max Resource Sharing

In this section we give the details for the analysis of the algorithm by Grigoriadis
and Khachiyan for the min-max resource sharing problem (for the definitions we
refer to Section 2). First we show several properties for the minimum value
θ(f(x)) of the potential function Φt and for the price vector p(f(x)).

Lemma 7.

(a) p(f(x)) ∈ P ,
(b) λP (f(x)) + t

M ≤ θ(f(x)) ≤ λP (f(x)) + t,
(c) p(f(x))T f(x) = − t+ θ(f(x)).

Proof. By (1) we have
∑M

m=1 pm(f(x)) = 1 and pm(f(x)) ≥ 0, since θ(f(x)) >
λP(f(x)) = max{f1(x), . . . , fM (x)} ≥ fm(x). This shows (a).

To show (b) we use the fact that t
M

1
θ(f(x))−fm(x) ≤ 1 for m = 1, . . . ,M . This

implies:
t

M
1

θ(f(x))−λP(f(x)) ≤ 1

=⇒ t
M ≤ θ(f(x)) − λP(f(x))

=⇒ λP(f(x)) + t
M ≤ θ(f(x)).
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For the other inequality we use

1 =
t

M

M

m=1

1
θ(f(x)) − fm(x)

≤ t

M

M

m=1

1
θ(f(x)) − λP(f(x))

=
t

θ(f(x)) − λP(f(x))
.

This gives θ(f(x)) − λP(f(x)) ≤ t or equivalent θ(f(x)) ≤ λP(f(x)) + t.
Finally, (c) is proved by

p(f(x))T f(x) = t
M

∑M
m=1

fm(x)
θ(f(x))−fm(x)

= t
M

∑M
m=1(−1 + θ(f(x))

θ(f(x))−fm(x) )

= −t+ θ(f(x))t
M

∑M
m=1

1
θ(f(x))−fm(x)

= −t+ θ(f(x))
∑M

m=1 pm(f(x)) = −t+ θ(f(x)).

For small t > 0, the minimum value θ(f(x)) approximates the reduced poten-
tial value φt(f(x)) = Φt(θ(f(x)), f(x)) as follows.

Lemma 8.

(a) θ(f(x)) − t ln θ(f(x)) ≤ φt(f(x)) ≤ θ(f(x)) − t ln t for any t ≥ 0,
(b) θ(f(x)) ≤ (φt(f(x)) − t)/(1− t) for any t ∈ (0, 1).

Proof. Using the definition of Φt(θ(f(x)), f(x)) we get

φt(f(x)) = θ(f(x)) − t

M

M∑
m=1

ln(θ(f(x)) − fm(x)).

Suppose that θ = θ(f(x)). Since the functions fm are non-negative,

θ = φt(f(x)) + t
M

∑M
m=1 ln(θ − fm(x))

≤ φt(f(x)) + t
M

∑M
m=1 ln θ

= φt(f(x)) + t ln θ.

This shows the first inequality in (a). To show the second inequality, we use
the following inequality of the harmonic, geometric and arithmetic mean [1]. Let
a1, . . . , aM be positive real numbers, then 1

M

∑M
m=1 am ≥ (

∏M
m=1 am)1/M . By

(1) we obtain

1 =
t

M

M∑
m=1

1
θ − fm(x)

≥ t(
M∏

m=1

1
θ − fm(x)

)1/M .
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This inequality can be transformed into:

1
t ≥ (

∏M
m=1

1
θ−fm(x) )

1/M

=⇒ ln(1
t ) ≥

1
M

∑M
m=1 ln( 1

θ−fm(x))

=⇒ − ln t ≥ − 1
M

∑M
m=1 ln(θ − fm(x))

=⇒ 0 ≥ ln t− 1
M

∑M
m=1 ln(θ − fm(x))

=⇒ 0 ≥ t ln t− t
M

∑M
m=1 ln(θ − fm(x))

=⇒ 0 ≥ t ln t+ φt(f(x)) − θ

=⇒ φt(f(x)) ≤ θ − t ln t.

The inequality in (b) can be proven as follows. Using ln θ ≤ θ−1 and (a) we get:

θ − t(θ − 1) ≤ θ − t ln θ ≤ φt(f(x)).

The property above will be used to bound the difference between two re-
duced potential values. In the next part, we study algorithm AL. First we prove
that if the initial vector x0 satisfies λP (f(x0)) ≤ 1 and the stopping criteria
p(f(x))T f(x̂) ≥ θ(f(x)) − 2t is fulfilled, then the pair x, p(f(x)) is an approxi-
mate solution of the primal and dual problem with absolute error σ.

Lemma 9. For a given x ∈ B, let p(f(x)) ∈ P with pm(f(x)) = t
M

1
θ(f(x))−fm(x)

and x̂ computed by ABS(p(f(x)), t
3 ) where t = 3σ/7. Let λP(f(x0)) ≤ 1, and

σ ∈ (0, 1/3). If p(f(x))T f(x̂) ≥ θ(f(x)) − 2t, then

λP(f(x)) < λ∗P + σ,
Λ(p(f(x))) > λ∗P − σ.

Proof. Let x∗ be an optimal solution of problem (P) with λP(f(x∗)) = λ∗P . The
block solver generates a solution x̂ such that

p(f(x))T f(x̂) ≤ (1 + t/3)Λ(p(f(x))) = (1 + σ/7)Λ(p(f(x)))

= (1 + σ/7)min{p(f(x))T f(y)|y ∈ B} ≤ (1 + σ/7)p(f(x))T f(x∗)

= (1 + σ/7)
∑M

m=1 pm(f(x))fm(x∗)

≤ (1 + σ/7)max1≤≤M f(x∗)
∑M

m=1 pm(f(x))

= (1 + σ/7)λP(f(x∗)) ≤ λ∗P + (σ/7)λP (f(x0))

≤ λ∗P + σ/7.
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If p(f(x))T f(x̂) ≥ θ(f(x)) − 2t then λ∗P + σ/7 ≥ θ(f(x)) − 2t. By Lemma 7 (b)
we have θ(f(x)) > λP(f(x)). Therefore, λP(f(x)) < λ∗P + σ/7 + 2t = λ∗P + σ
(using t = 3σ/7).

Furthermore,
Λ(p(f(x))) ≥ p(f(x))T f(x̂)

1+σ/7

≥ θ(f(x))−2t
1+σ/7

> λP(f(x))−6σ/7
1+σ/7

≥ λ∗
P−6σ/7
1+σ/7

≥ λ∗P − σ.
The last inequality follows, since

λ∗P − 6σ/7 ≥ (1 + σ/7)(λ∗P − σ)

⇐⇒ λ∗P − 6σ/7 ≥ λ∗P + σλ∗P/7− σ − σ2/7

⇐⇒ σ/7 + σ2/7 ≥ σλ∗P/7

⇐⇒ 1 + σ ≥ λ∗P .

In last step we use λ∗P ≤ λP (f(x0)) ≤ 1 and σ ≥ 0.

In order to bound the number of iterations of algorithm AL we use the next
two Lemmas.

Lemma 10. Suppose that φt(f(x)) ≤ φt(f(x0)) for a vector x computed by
algorithm AL and an initial vector x0 with λP(f(x0)) ≤ 1. Then p(f(x))T (f(x)+
f(x̂)) ≤ 5/2.

Proof. First we have p(f(x))T f(x̂) ≤ λ∗P +σ/7 ≤ 1+σ/7 ≤ 1+1/21 = 22/21 us-
ing Lemma 9 and σ ≤ 1/3. Therefore it is sufficient to show that p(f(x))T f(x) ≤
5/2− 22/21 = 61/42. Since p(f(x))T f(x) = −t+ θ(f(x)) (see Lemma 7), let us
test whether

θ(f(x)) − t ≤ 61/42.

By Lemma 8 (b) and the assumption φt(f(x)) ≤ φt(f(x0)),

θ(f(x)) ≤ φt(f(x))− t
1− t ≤ φt(f(x0))− t

1− t .

Furthermore, Lemma 8 (a) implies φt(f(x0)) ≤ θ(f(x0))−t ln t. Since θ(f(x0)) ≤
λP(f(x0)) + t (by Lemma 7 (b)) and λP (f(x0)) ≤ 1,

θ(f(x)) ≤ λP (f(x0))− t ln t
1− t ≤ 1− t ln t

1− t .



190 K. Jansen

This is equivalent to:

θ(f(x)) − t ≤ 1−t ln t
1−t − t(1−t)

1−t

= 1−t
1−t + t2−t ln t

1−t

= 1 + t2−t ln t
1−t .

The function g(t) = t2−t ln t
1−t is monotonically increasing for t ∈ (0, 1). Moreover,

AL uses only values t = 3σ/7 ≤ 1/7. This implies that

θ(f(x)) − t ≤ 1 +
(1/7)2 − (1/7) ln(1/7)

1− 1/7
≤ 61/42.

Lemma 11. For any two consecutive iterations, the vectors x, x′ computed by
algorithm AL are such that

φt(f(x′)) ≤ φt(f(x)) − t3

13M
.

Proof. Let x′ = (1 − τ)x + τx̂. Suppose that θ = θ(f(x)). Since fm is convex
and using the definition of pm(f(x)),

θ − fm(x′) = θ − fm((1 − τ)x + τx̂)

≥ θ − (1 − τ)fm(x) − τfm(x̂)

= (θ − fm(x))(1 + τ fm(x)−fm(x̂)
θ−fm(x) )

= (θ − fm(x))(1 + τM
t pm(f(x))(fm(x)− fm(x̂))).

The last expression (using the fact that fm is non-negative and pm(f(x)) ≥ 0)
can be bounded as follows:

τM
t

pm(f(x))(fm(x) − fm(x̂)) ≥ − τM
t

pm(f(x))fm(x̂) ≥ − τM
t

p(f(x))T f(x̂)

≥ −(λ∗
P + σ/7) τM

t
≥ − 22

21
τM

t
= − 22

21
4t

25+10t
> −1.

The last inequality follows by simple math calculation (equivalent to 21 · 25 +

210t > 88t for any t ≥ 0). Let pm = pm(f(x)) and p = p(f(x)). Combining both
statements above,

Φt(θ(f(x)), f(x′))

= θ(f(x))− t
M

∑M
m=1 ln(θ(f(x)) − fm(x′))

≤ θ(f(x))− t
M

∑M
m=1 ln(θ(f(x)) − fm(x))

− t
M

∑M
m=1 ln(1 + τM

t pm(fm(x)− fm(x̂)))

= φt(f(x)) − t
M

∑M
m=1 ln(1 + τM

t pm(fm(x)− fm(x̂))).



Min-Max and Max-Min Resource Sharing 191

Since Φt(θ′, f(x′)) = +∞ for θ′ ≤ λ′ = λP(f(x′)), we get

φt(f(x′)) = Φt(θ(f(x′)), f(x′)) = minλ′<ξ<∞ Φt(ξ, f(x′))

= min0<ξ′<∞ Φt(ξ′, f(x′)) ≤ Φt(θ(f(x)), f(x′))

≤ φt(f(x)) − t
M

∑M
m=1 ln(1 + τM

t pm(fm(x) − fm(x̂))).

This gives directly the following bound

φt(f(x′))− φt(f(x)) ≤ − t

M

M∑
m=1

ln(1 +
τM

t
pm(fm(x)− fm(x̂))). (10)

By induction on the number of iterations of AL, one can prove that φt(f(x)) ≤
φt(f(x0)) for any vector x ∈ B computed by algorithm AL. If the number of
iterations is zero, the condition is trivial. In the following we show a stronger
inequality φt(f(x′)) ≤ φt(f(x)) − t3

13M for the next vector x′ computed by AL.
Using this inequality, we get directly φt(f(x′)) < φt(f(x)) ≤ φt(f(x0)).

To prove the stronger inequality, let us rewrite the right expression in (10) as
L+R and use Taylor’s formula for ln(1 + x) =

∑∞
i=1(−1)i+1 xi

i to get:

L = −τ
∑M

m=1 pm(fm(x)− fm(x̂))

= −τpT (f(x)− f(x̂)),

R = t
M

∑∞
i=2

1
i (

−τM
t )i

∑M
m=1(pm(fm(x) − fm(x̂)))i

≤ t
M

∑∞
i=2 |1i (

−τM
t )i

∑M
m=1(pm(fm(x)− fm(x̂)))i|

≤ t
M

∑∞
i=2

1
i (

τM
t )i

∑M
m=1(pm(fm(x) + fm(x̂)))i

≤ t
M

∑∞
i=2

1
i (

τM
t

∑M
m=1(pm(fm(x) + fm(x̂))))i

≤ t
M

∑∞
i=2

1
i ((

τM
t )pT (f(x) + f(x̂)))i

where pm = pm(f(x)) and p = p(f(x)). Using φt(f(x)) ≤ φt(f(x0)) by induction
for x and Lemma 10, we get pT (f(x)+ f(x̂)) ≤ 5/2 which can be used to bound

R ≤ t

M

∞∑
i=2

1
i
(
5τM
2t

)i ≤ − t

M
[ln(1− 5τM

2t
) +

5τM
2t

].

Since x does not satisfy the stopping criteria, p(f(x))T f(x̂) < θ(f(x)) − 2t.
Using Lemma 7 (c), p(f(x))T (f(x) − f(x̂)) = θ(f(x)) − t − p(f(x))T f(x̂) > t.
This implies that L < −τt. Combining the bounds for L and R

φt(f(x′))− φt(f(x)) ≤ L+R < −t[τ +
1
M

[ln(1− 5τM
2t

) +
5τM
2t

]].
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Inserting the maximum τ = 4t2

M(10t+25) and math calculation we get

φt(f(x′))− φt(f(x)) < − t

M
[
2t
5
− ln(1 + 2t/5)].

Let g(u) = (u− ln(1+u))/u2. The function g is monotonically decreasing for u >
0. In our case 0 ≤ u ≤ 2/35, since u = 2t/5 ≤ 2/35 for t ≤ 1/7. For these values
g(u) ≥ g(2/35). This implies that (u − ln(1 + u)) ≥ g(2/35)u2 > 4t2

25 g(2/35) >
t2/13. Thus, φt(f(x′)) − φt(f(x)) < − t3

13M . This proves also the induction step
for the next vector x′ computed by algorithm AL: φt(f(x′)) ≤ φt(f(x0)).

The proof above shows that the reduced potential values are decreasing for
consecutive iterations. Now we are able to prove the first main result about the
number of iterations of algorithm AL.

Theorem 2. For any initial x0 ∈ B such that λP (f(x0)) ≤ 1 and any σ ∈
(0, 1/3], algorithm AL halts in

O
(
M
(λP (f(x0))− λ∗P

σ3 +
ln 1

σ

σ2

))
iterations.

Proof. By Lemma 7 (b), θ(f(x0)) ≤ λP (f(x0))+t and by Lemma 8 (a) φt(f(x0))
≤ θ(f(x0))−t ln t ≤ λP (f(x0))+t−t ln t For any vector x produced by algorithm
AL (see Lemma 8 (b)),

φt(f(x)) ≥ t+ (1 − t)θ(f(x)) ≥ t+ (1− t)λP (f(x)) ≥ t+ (1− t)λ∗P ≥ λ∗P .

Combining both inequalities yields

φt(f(x0))− φt(f(x)) ≤ λP (f(x0))− λ∗P + t− t ln t.

Each iteration decreases the reduced potential value φt(f(x0)) by at least t3/13M
(using Lemma 11). Let f(xN ) be the function value after N iterations. Then,
φt(f(xN )) ≤ φt(f(x0))− Nt3

13M or equivalent φt(f(x0))− φt(f(xN )) ≥ Nt3

13M . Fur-
thermore we have φt(f(x0)) − φt(f(xN )) ≤ λP(f(x0)) − λ∗P + t − t ln t. These
inequalities imply λP (f(x0))− λ∗P + t+ t ln(1/t) ≥ Nt3/(13M). In other words
the number N of iterations is bounded by

O(M(
λP (f(x0))− λ∗P

t3
+

1 + ln(1/t)
t2

)) = O(M(
λP (f(x0))− λ∗P

σ3 +
ln(1/σ)
σ2 )).

Remark. The stopping criteria is not used directly for vector xN . But we use
the fact that if the criteria is not fulfilled then the reduced potential value is
decreased (see proof of Lemma 11).

In the next theorem we study the number of iterations of the ternary search
(described in Section 2).
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Theorem 3. For any initial point x0 ∈ B and any accuracy ε ∈ (0, 1), the
ternary search TS procedure halts in

O(M(ε−2 ln ε−1 + ln(λP (f(x0))/λ∗P )))

iterations with an x ∈ B such that λP(f(x)) ≤ (1 + ε)λ∗P and a price vector
p ∈ P such that Λ(p) = min{pT f(x)|x ∈ B} ≥ (1− ε)λ∗P .

Proof. First, the length of the interval is decreased by a factor of 2/3 in each
iteration. To bound the running time of AL, we notice that

vλP (f(x)) − vλ∗P
σ

≤ v(λ− λ∗P )
σ

≤ vδ

σ
= 3.

Since AL works with the scaled function vf , this implies that the second term
O(σ−2 lnσ−1) in the number of iterations of algorithm AL always dominates
the first term (that can be bounded by O(σ−2)). In other words the number of
iterations in AL is at most O(Mσ−2 lnσ−1) where σ ≤ 1/3. To bound the total
number of iterations we count the number of iterations of the repeat loop with
λ = 0 and λ > 0.

Case 1: Let us calculate the number of iterations with λ = 0. In this case
the ending condition δ ≤ 3ελ is never satisfied and σ = 1/3. Consider N steps
where λ is replaced in each step (and λ is unchanged). This is possible only
if λP(f(x0))(2/3)N ≥ λ∗P . This is equivalent to ln(λP (f(x0))/λ∗P) ≥ N ln(3/2)
and shows that N ≤ O(ln(λP (f(x0))/λ∗P)).

Since σ = 1/3, AL needs O(M) steps in each iteration. Therefore, the total
number of iterations is O(M ln(λP (f(x0))/λ∗P )).

Case 2: Let us calculate here the number of iterations with λ > 0. Let
δ0, δ1, . . . be the sequence of interval lengths during these iterations. Furthermore,
let σ0, σ1, . . . and λ0, λ0, λ1, λ1, . . . be the other parameters. Then the following
properties hold:

(1) σi ≤ δi/λi,
(2) δi+1 = (2/3)δi,
(3) λi+1 ≥ λi ≥ . . . ≥ λ0,
(4) λi+1 ≤ λi ≤ . . . ≤ λ0.

The algorithm halts when δN ≤ 3ελN . Using the properties above σi ≤
(2/3)iδ0/λ0 and σi ≥ (2/3)iδ0/(9λ0). In the first iteration with λ0 > 0 we
have λ0 = δ/3 and δ0 = 2δ/3. This gives δ0/λ0 = 2 and δ0/λ0 = 2/3. In the
worst case λ0 is not modified. This implies that δN = (2/3)Nδ0 ≤ 3ελ0. In other
words at most N = O(log(1/ε)) steps are possible.

The total number of iterations in AL is

O(M
log(1/ε)∑

i=1

lnσ−1
i

(σi)2
) = O(M

log(1/ε)∑
i=1

ln(3/2)i

((2/3)i)2
) = O(M

log(1/ε)∑
i=1

i((3/2)i)2)

that can be bounded by O(M
∑log(1/ε)

i=1 i(2i)2).
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All terms O(Mi(2i)2) are dominated by the last term for i = log(1/ε). Thus,
this number is bounded by O(M log(1/ε)(1/ε)2) = O(M ln(1/ε)(1/ε)2). There-
fore, the total number of iterations (the number of block optimizations) is at
most O(M(ε−2 ln ε−1 + ln(λP (f(x0))/λ∗P))).

The algorithm halts when δN ≤ 3ελN ; and the last computed x satisfies
λP(f(x)) ≤ λ∗P + δN/3. Since λN ≤ λ∗P , we have λP (f(x)) ≤ λ∗P + δN/3 ≤
(1 + ε)λ∗P . The last computed price vector p satisfies also Λ(p) ≥ λ∗P − δN/3 ≥
λ∗P − ελN ≥ (1− ε)λ∗P .

An initial solution x0 can be computed by one block optimization step ABS
(e′, 1) where e′ = (1/M, . . . , 1/M)T . The next Lemma implies that we can always
assume that λP(f(x0)) ≤ 2Mλ∗P .

Lemma 12.
λP (f(x0)) ≤ 2Mλ∗P .

Proof. The block solver ABS(e′, 1) generates a solution x0 such that (e′)T f(x0)
≤ (1 + 1)λP(e′). This implies (e′)T f(x0) =

∑M
m=1 fm(x0)/M ≤ 2Λ(e′) and

can be transformed into f(x0) ≤
∑M

m=1 fm(x0) ≤ 2MΛ(e′) ≤ 2Mλ∗P for each
� = 1, . . . ,M . The last inequality Λ(p) ≤ λ∗P holds for any price vector p ∈ P .
Since λP(f(x)) = max{f1(x), . . . , fM (x)}, we get λP(f(x0)) ≤ 2Mλ∗P .

Corollary 1. For any accuracy ε > 0, the algorithm TS halts in

O(M(ε−2 ln ε−1 + lnM))

iterations.

Remark. In the analysis above we have assumed that the root θ(f(x)) can be
computed exactly. Computing θ(f(x)) up to an accuracy of O(ln(M/ε)) bits (or
an absolute error of O(ε2/M)) guarantees that the approximate price vector p̃
has only a relative error of (1 − δ)p ≤ p̃ ≤ (1 + δ)p and we lose at most a
multiplicative factor of (1 + δ) in the block optimization. Such an error in the
block optimization can be neglected. Therefore, the bound on the number of
iterations in Corollary 1 remains valid.

Since Φt(θ, f(x)) is convex, its minimum θ(f(x)) can be computed to this
accuracy by binary search in the interval [λP (f(x)) + t/M, λP(f(x)) + t]. This
requires O(ln(M/ε)) many binary search steps. Since each sum

∑M
m=1 1/(θ −

fm(x)) can be computed in O(M) time, this gives O(M ln(M/ε)) arithmetic
operations per iteration. This bound can be further improved by using Newton’s
method to O(M ln ln(M/ε)).

7 Analysis for Max-Min Resource Sharing

In this section we show the details for the max-min resource sharing problem (for
the definitions we refer to Section 2). First, we prove the following properties for
the price vector p(f(x), the objective function value λC(f(x)) and the maximizer
θ(f(x)):
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Lemma 13.

(a) p(f(x)) ∈ P ,
(b) λC(f(x))

1+t ≤ θ(f(x)) ≤ λC(f(x))
1+t/M ,

(c) p(f(x))T f(x) = (1 + t)θ(f(x)).

Proof. By (3) and (4), we have
∑M

m=1 pm(f(x)) =
∑M

m=1
tθ(f(x))

M
1

fm(x)−θ(f(x)) =
1 and pm(f(x)) ≥ 0 for 0 ≤ θ(f(x)) < λC(f(x)). In other words p(f(x)) ∈ P .
In order to show (b) consider the equality

∑M
m=1

1
fm(x)−θ(f(x)) = M

tθ(f(x)) . Since
λC(f(x)) ≤ fm(x), we have fm(x)− θ(f(x)) ≥ λC(f(x))− θ(f(x)) or equivalent
1/(fm(x)− θ(f(x))) ≤ 1/(λC(f(x))− θ(f(x))). This inequality and the equality
above imply ∑M

m=1
1

λC(f(x))−θ(f(x)) ≥
M

tθ(f(x))

=⇒ 1
λC(f(x))−θ(f(x)) ≥

1
tθ(f(x))

=⇒ λC(f(x))− θ(f(x)) ≤ tθ(f(x))

=⇒ λC(f(x)) ≤ tθ(f(x)) + θ(f(x)) = (1 + t)θ(f(x))

=⇒ λC(f(x))
1+t ≤ θ(f(x)).

To show the upper bound for θ(f(x)) we use (3):
1

λC(f(x))−θ(f(x)) ≤
M

tθ(f(x))

=⇒ λC(f(x)))− θ(f(x)) ≥ t
M θ(f(x))

=⇒ λC(f(x)) ≥ (1 + t
M )θ(f(x))

=⇒ θ(f(x)) ≤ λC(f(x))
1+ t

M

.

This gives the bounds in (b). Furthermore, we obtain for the scalar product

p(f(x))T f(x) = tθ(f(x))
M

∑M
m=1

fm(x)
fm(x)−θ(f(x))

= tθ(f(x))
M

∑M
m=1(1 + θ(f(x))

fm(x)−θ(f(x)))

= tθ(f(x)) + θ(f(x))
∑M

m=1
tθ(f(x))

M(fm(x)−θ(f(x)))

= tθ(f(x)) + θ(f(x))
∑M

m=1 pm(f(x)) = θ(f(x))(t + 1).

Notice that θ(f(x)) < pT f(x̂) + pT f(x) (by Lemma 13), and therefore the
step length

τ =
tθ(f(x))v(x, x̂)

2M(pTf(x̂) + pT f(x))
≤ 1
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where v(x, x̂) = pT f(x̂)−pT f(x)
pT f(x̂)+pT f(x) ≤ 1. Furthermore, v(x, x̂) > t > 0 implies that

τ > 0. Therefore, τ ∈ (0, 1]. The following lemma provides the stopping criteria
corresponding to parameter v(x, x̂).

Lemma 14. Suppose ε ∈ (0, 1) and t = ε/6. For a given x ∈ B, let p(f(x)) ∈ P
as defined in (4) and x̂ computed by ABS(p(f(x)), t). If v(x, x̂) ≤ t, then the
pair x, p(f(x))) solves (Cε) and (Dε), respectively.

Proof. First rewrite condition v(x, x̂) ≤ t by using (5): pT f(x̂)(1 − t) ≤ pT f(x)
(1 + t) where p = p(f(x)). Then use that pT f(x̂) ≥ (1 − t)Λ(p), pT f(x) =
(1 + t)θ(f(x)) and θ(f(x)) < λC(f(x)) by Lemma 13. This gives

Λ(p) ≤ 1
(1−t)p

T f(x̂) ≤ (1+t)
(1−t)2 p

T f(x) = (1+t)2

(1−t)2 θ(f(x))

< (1+t)2

(1−t)2 λC(f(x)) ≤ (1 + ε)λC(f(x)).

The last inequality follows from the definition of t = ε/6. Using λ∗C ≤ Λ(p) ≤
(1 + ε)λC(f(x)), one has λC(f(x)) ≥ 1

(1+ε)λ
∗
C > (1 − ε)λ∗C for any ε > 0, which

gives (Cε). Using λC(f(x)) ≤ λ∗C , one gets Λ(p) ≤ (1 + ε)λC(f(x)) ≤ (1 + ε)λ∗C ,
which is (Dε).

The next Lemma provides a bound for the initial solution x0.

Lemma 15. For each p ∈ P , λ∗C ≤ Λ(p) ≤ 2MpTf(x0). Furthermore, fm(x0) ≥
1

2M λ∗C for each m = 1, . . . ,M .

Proof. The first inequality follows from duality. For the second inequality,

Λ(p) = max{pT f(x) | x ∈ B} = max{
∑M

m=1 pmfm(x) | x ∈ B}

≤
∑M

m=1 pm max{fm(x) | x ∈ B},

where max{fm(x) | x ∈ B} = Λ(em). Since x̂(m) is the solution computed by
ABS(em, 1/2), fm(x̂(m)) ≥ 1

2Λ(em) implies that Λ(em) ≤ 2fm(x̂(m)). Therefore,
Λ(p) ≤ 2

∑M
m=1 pmfm(x̂(m)). Using the concavity and non-negativity of fm we

get

fm(x̂(m)) ≤
M∑

=1

fm(x̂()) ≤ Mfm(1/M
M∑

=1

x̂()) = Mfm(x0).

Combining the two inequalities, we obtain

Λ(p) ≤ 2
M∑

m=1

pmfm(x̂(m)) ≤ 2M
M∑

m=1

pmfm(x0) = 2MpTf(x0).

Finally, fm(x0) ≥ 1
M fm(x̂(m)) ≥ 1

M
1
2Λ(em) ≥ 1

2M λ∗C .
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Remember that the reduced potential value φt(f(x)) = Φt(θ(f(x)), f(x)). The
following two Lemmas are used to bound the number of iterations of the while
loop in algorithm Improve.

Lemma 16. For any two consecutive iterations of algorithm Improve, the vec-
tors x and x′ that it computes satisfy φt(f(x′))− φt(f(x)) ≥ tv(x, x̂)2/(4M).

Proof. Algorithm Improve sets x′ = (1 − τ)x + τx̂. Suppose that θ = θ(f(x)).
Since fm is concave and using the definition of pm(f(x)),

fm(x′)− θ ≥ (1− τ)fm(x) + τfm(x̂)− θ

= (fm(x)− θ)(1 + τ fm(x̂)−fm(x)
fm(x)−θ )

= (fm(x)− θ)(1 + τM
tθ pm(f(x))(fm(x̂)− fm(x))).

Let p = p(f(x)) and pm = pm(f(x)). Using the definition of the step length τ
and the inequality v(x, x̂) ≤ 1, we can bound the last expression by

| τM
tθ pm(fm(x̂)− fm(x))|

≤ τM
tθ pm(fm(x̂) + fm(x))

≤ τM
tθ (pT f(x̂) + pT f(x))

= v(x,x̂)
2 ≤ 1

2 .

Since θ(f(x)) ≤ λC(f(x))
1+t/M < λC(f(x)) = min{f1(x), . . . , fM (x)}, we have fm(x)−

θ(f(x)) > 0. Using the bound for the expression above, this implies fm(x′) −
θ(f(x)) > 0. Now we analyze the potential value φt(f(x′)):

φt(f(x′)) = Φt(θ(f(x′)), f(x′)) ≥ Φt(θ, f(x′)) = ln θ +
t

M

M∑
m=1

ln(fm(x′)− θ),

where θ = θ(f(x)). Using φt(f(x)) = ln θ + t
M

∑M
m=1 ln(fm(x)− θ), we obtain

φt(f(x′)) ≥ φt(f(x)) +
t

M

M∑
m=1

[ln(fm(x′)− θ)− ln(fm(x)− θ)].

Using the bound for fm(x′) − θ and the property that the function ln(x) is
monotone increasing, φt(f(x′)) is at least

≥ φt(f(x)) + t
M

M
m=1[ln[(fm(x) − θ)(1 + τM

tθ
pm(fm(x̂) − fm(x)))] − ln(fm(x) − θ)]

= φt(f(x)) + t
M

M
m=1 ln[1 + τM

tθ
pm(fm(x̂) − fm(x))].
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Now we use τM
tθ pm(fm(x̂) − fm(x)) ∈ [−1/2, 1/2] and ln(1 + z) ≥ z − z2 for

z ≥ −1/2, to get

φt(f(x′))− φt(f(x))

≥ t
M

∑M
m=1[

τM
tθ pm(fm(x̂)− fm(x)) − ( τM

tθ )2p2
m(fm(x̂)− fm(x))2]

= τ pT f(x̂)−pT f(x)
θ − τ2M

tθ2

∑M
m=1(pm(fm(x̂)− fm(x)))2.

Furthermore
∑M

m=1(pmfm(x̂) − pmfm(x))2 ≤
∑M

m=1(pmfm(x̂) + pmfm(x))2 ≤
(
∑M

m=1(pmfm(x̂) + pmfm(x)))2 = (pT f(x̂) + pT f(x))2. Using the definition of

τ = tθv(x,x̂)
2M(pT f(x̂)+pT f(x)) and v(x, x̂) = pT f(x̂)−pT f(x)

pT f(x̂)+pT f(x) , we finally get

φt(f(x′))− φt(f(x)) ≥ τ pT f(x̂)−pT f(x)
θ − τ2M

tθ2 (pT f(x̂) + pT f(x))2

= tv(x,x̂)
2M · pT f(x̂)−pT f(x)

pT f(x̂)+pT f(x) −
tv(x,x̂)2

4M

= tv(x,x̂)2

2M − tv(x,x̂)2

4M = tv(x,x̂)2

4M .

Lemma 17. For any two points x′ ∈ B and x ∈ B with λC(f(x)) > 0 and
λC(f(x′)) > 0,

φt(f(x′))− φt(f(x)) ≤ (1 + t) ln
Λ(p)
pT f(x)

,

where p = p(f(x)) is the price vector defined in (4).

Proof. Let θ = θ(f(x)), θ′ = θ(f(x′)) and Λ(p) = max{pTf(x)|x ∈ B}. Using
the definition of pm(f(x)) and the concavity of ln(x), we get:

φt(f(x′))− φt(f(x)) = ln θ′
θ + t

M

∑M
m=1 ln(fm(x′)−θ′

fm(x)−θ )

= ln θ′
θ + t

M

∑M
m=1 ln(Mpm(f(x))(fm(x′)−θ′)

tθ )

= ln θ′
θ + t ln M

tθ + t
M

∑M
m=1 ln(pm(f(x))(fm(x′)− θ′))

≤ ln θ′
θ + t ln M

tθ + t ln( 1
M

∑M
m=1 pm(f(x))(fm(x′)− θ′))

= ln θ′
θ + t ln 1

tθ + t ln(p(f(x))T (f(x′)− θ′e))

where e = (1, . . . , 1)T . The last equality follows from ln( 1
M

∑M
m=1 pm(f(x))

(fm(x′)−θ′)) = ln(p(f(x))T (f(x′)−θ′e))− ln(M). Now we use p(f(x))T f(x′) ≤
Λ(p(f(x))) (by the definition of Λ(p(f(x))) = maxy∈B p(f(x))T f(y)) and
p(f(x))T (θ′e) =

∑M
m=1 pm(f(x))θ′ = θ′. Using these (in-)equalities we have

φt(f(x′))− φt(f(x)) ≤ ln
θ′

θ
+ t ln

1
tθ

+ t ln(Λ(p(f(x))) − θ′).
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The last expression is well defined, since Λ(p(f(x))) − θ′ ≥ p(f(x))T f(x′) −
p(f(x))T (θ′e) = p(f(x))T (f(x′) − θe) > 0. The last inequality follows from
θ′ < λC(f(x′)) ≤ fm(x′) and f(x′) − θ′e > 0. To bound now the difference
φt(f(x′))− φt(f(x)), we calculate the

max
y∈(0,Λ(p))

[ln
y

θ
+ t ln

1
tθ

+ t ln(Λ(p)− y)]

where p = p(f(x)). This can be done by computing the first derivative of the
function above. We get the maximum value for y = Λ(p)/(1 + t). This implies

φt(f(x′))− φt(f(x)) ≤ ln Λ(p)
(1+t)θ + t ln 1

tθ + t ln(Λ(p) t
1+t )

= ln Λ(p)
(1+t)θ + t ln Λ(p)

(1+t)θ

= (1 + t) ln Λ(p)
(1+t)θ = (1 + t) ln Λ(p)

pT f(x) .

The last equality follows from Lemma 13 (c).

Now we are able to calculate the number of iterations of algorithm Improve.

Theorem 4. Algorithm Improve solves (Cε) and (Dε) in O(Mε−1(lnM + ε−1))
iterations.

Proof. Let N0 be the number of iterations to reach a point x1 with correspond-
ing error v ≤ 1/2 starting from our initial solution x0. For all iterations with
v ≥ 1/2, each iteration increases the potential by at least tv2/4M ≥ t/16M
(see Lemma 16). By Lemma 17, the total increase is bounded by φt(f(x1)) −
φt(f(x0)) ≤ (1 + t) ln Λ(p(f(x0)))

p(f(x0))T f(x0) . Since t = ε/6 and Λ(p(f(x0))) ≤ 2M
p(f(x0))T f(x0) (by Lemma 15), we obtain that

N0 ≤ (1 + ε/6)16M ln(2M)
ε/6

= O(Mε−1 lnM).

Now suppose that the error v = v(x, x̂) ≤ 1/2 for an iteration with com-
puted vector x ∈ B, and let N be the number of iterations to halve this error
(i.e. to obtain a vector x+1 with v(x+1, x̂+1) ≤ v/2). We get φt(f(x+1)) −
φt(f(x)) ≥ N�tv2

�

16M . On the other hand, the definition of v implies p(f(x))T f(x̂)
(1− v) = p(f(x))T f(x)(1 + v). Using ABS(p(f(x)), t), we get a solution x̂

with p(f(x))T f(x̂) ≥ (1 − t)Λ(p(f(x))). Combining the two inequalities,

Λ(p(f(x)))
p(f(x))T f(x)

≤ (1 + v)
(1− t)(1− v)

≤ (1 + v)
(1− v)2

≤ (1 + 10v).

The last two inequalities hold since t ≤ v ≤ 1/2. Lemma 17 implies that

φt(f(x+1))− φt(f(x)) ≤ (1 + t) ln(1 + 10v) ≤ 10(1 + t)v.



200 K. Jansen

This gives now an upper bound

N ≤
160M(1 + t)v

tv2


= O(
M

εv
).

The total number of iterations can be obtained by summing N over all � =
0, 1, . . . , �log(1

t )�. Therefore, the total number of iterations is bounded by

N0 +O(Mε−1
�log( 1

ε )�∑
=1

2) = O(Mε−1(lnM + ε−1)).

Next, we analyze the number of iterations of the scaling implementation with
parameters ε0 = (1 − 1/(2M)) and εs = εs−1/2. The goal in the phase s is to
compute a vector xs with λC(f(xs)) ≥ (1− εs)λ∗C .

Theorem 5. For any accuracy ε > 0, the scaling implementation computes
solutions x and p of (Cε) and (Dε), respectively, in

N = O(M(lnM + ε−2))

iterations.

Proof. To reach the first ε0 ∈ (1/2, 1) in the primal and dual problem we need
O(M lnM) iterations (by Theorem 4). Let Ns be the number of iterations in
phase s to reach εs for s ≥ 1. By Lemma 16, each iteration of phase s increases
the potential function by at least t3s/(4M) = Θ(ε3s/M). Lemma 17 implies that
for x = xs and x′ = xs+1,

φts(f(xs+1))− φts(f(xs)) ≤ (1 + ts) ln
Λ(p(f(xs)))

p(f(xs))T f(xs)
.

Note that xs is a εs−1 = 2εs solution of (Cεs−1), and therefore f(xs) ≥ (1 −
2εs)λ∗Ce. Furthermore, the inequalities Λ(p(f(xs))) ≤ (1+2εs)λ∗C , Λ(p(f(xs))) ≤
1+2εs

1−2εs
λC(f(xs)) ≤ 1+2εs

1−2εs
p(f(xs))T f(xs) imply that

Λ(p(f(xs)))
p(f(xs))T f(xs)

≤ (1 + 8εs).

Using ln(1 + 8α) ≤ 8α one can bound Ns by O(M/ε2s). Then, as before the
overall number of iterations is bounded by

N0 +
∑
s≥1

Ns ≤ O(M lnM) +O(Mε−2) = O(M(lnM + ε−2)).

Remark. The root θ(f(x)) can be computed again only approximately. But an
accuracy of O(ε2/M) for θ(f(x)) is sufficient to generate the above bounds on the
number of iterations. With this required accuracy, the number of evaluations of
the sum

∑M
m=1

1
fm(x)−θ is bounded by O(ln(Mε−1)). This gives O(M ln(Mε−1))

arithmetic operations to determine θ(f(x)) approximately. Again by using New-
ton’s method the overhead can be improved to O(M ln ln(Mε−1)).
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Abstract. We consider the classical problem of scheduling jobs in a
multiprocessor setting in order to minimize the flow time (total time in
the system). The performance of the algorithm, both in offline and on-
line settings, can be significantly improved if we allow preemption: i.e.,
interrupt a job and later continue its execution. Preemption is inher-
ent to make a scheduling algorithm efficient [7,8]. Minimizing the total
flow time on parallel machines with preemption is known to be NP-hard
on m ≥ 2 machines. Leonardi and Raz [8] showed that the well known
heuristic shortest remaining processing time (SRPT) performs within a
logarithmic factor of the optimal offline algorithm on parallel machines.
It is not known if better approximation factors can be reached and thus
SRPT, although it is an online algorithm, becomes the best known algo-
rithm in the off-line setting. In fact, in the on-line setting, Leonardi and
Raz showed that no algorithm can achieve a better bound.

In this work we present a nicer and simpler proof of the approximation
ratio of SRPT. The proof presented in this paper combines techniques
from the original paper of Leonardi and Raz [8] with those presented in
a later paper on approximating total flow time when job preemption but
not job migration is allowed [2] and on approximating total flow time
non-clairvoyantly [3], that is when the processing time of a job is only
known at time of completion.

1 Introduction

One of the most basic performance measures in multiprocessor scheduling prob-
lems is the overall time the jobs are spending in the system. This includes the
delay of waiting for service as well as the actual service time. This measure
captures the overall quality of service of the system. We consider the classical
problem of minimizing the total flow time in a multiprocessor setting with jobs
released over time. More formally, we consider a set of n jobs and m identical
parallel machines. Every job j has processing time pj and release time rj . The
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flow time of a job is the time interval it spends in the system between release and
completion. The total flow time of the set of jobs is the sum of the individual
flow times of the n jobs.

The performance of the algorithm, both in offline and online settings, can
be significantly improved if we allow preemption: i.e., interrupt a job and later
continue its execution, perhaps migrating it to a different machine. As shown
below, preemption is inherent to make a scheduling algorithm efficient. In the
non-preemptive case it is impossible to achieve a ”reasonable” approximation.
Specifically, even for one machine one cannot achieve an approximation factor
of O(n

1
2−ε) unless NP = P [7]. For m > 1 identical parallel machines it is

impossible to achieve an approximation factor of O(n
1
3−ε) unless NP = P [8].

Thus, preemptions really seem to be essential.
Minimizing the flow time on one machine with preemption can be done op-

timally in polynomial time using the natural algorithm shortest remaining pro-
cessing time (SRPT) [4]. For more than one machine the preemptive problem
becomes NP -hard [5]. Only very recently, Leonardi and Raz [8] showed that
SRPT achieves logarithmic approximation for the multiprocessor case, showing
a tight bound of O(log(min{n/m,P})) on m > 1 machines with n jobs, where
P denotes the ratio between the processing time of the longest and the shortest
jobs. In the offline setting, it is not known if better approximation factors can be
reached in polynomial time. In fact, in the on-line setting SRPT is optimal, i.e.,
no algorithm can achieve a better bound up to a constant factor[8]. For the easier
problem of minimizing the total completion time a constant approximation and
even a PTAS can be obtained [6,1]

The analysis of SRPT we report in this paper is still based on the ideas from
the original work of Leonardi and Raz [8]. In a later paper Awerbuch, Azar,
Leonardi and Regev [2] presented an algorithm that achieves an O(logP ) and
an O(log n) approximation factor for the problem of minimizing total flow time
with preemption when job migration is not allowed, i.e. preempted jobs must be
resumed later on the same machine they were run at the time of preemption. The
analysis of the algorithm proposed in [2] borrows several ideas from [8] however
classifyng jobs into classes allows to remove several difficulties from the analysis.
The proof of the O(logP ) approximation for SRPT follows the lines of the proof
in [2].

In a recent paper Becchetti and Leonardi [3] consider non-clairvoyant schedul-
ing algorithms to minimize the total flow time. In the non-clairvoyant scheduling
problem the existence of a job, but not its processing time, is known at time of
release. The processing time of the job is only known when the job is actually
completed. In [3], a randomized variation of the Multi-level-feedback algorithm,
widely used for processor scheduling in time sharing operating system such as
Unix and Windows NT, is proved to achieve a tight O(log n) competitive ratio
for a single machine system and an O(log n log n

m ) competitive ratio for a par-
allel machine system. A remarkable simplification of the proof of the O(log n)
approximation factor for SRPT draws ideas from the techniques introduced in
[3] and from a technical Lemma presented in [2].
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2 The Model

We are given a set J of n jobs and a set of m identical machines. Each job j
is assigned a pair (rj , pj) where rj is the release time of the job and pj is its
processing time. In the preemptive model a job that is running can be preempted
and continued later on any machine. The scheduling algorithm decides which of
the jobs should be executed at each time. Clearly a machine can process at most
one job at any given time and a job cannot be processed before its release time.
For a given schedule define Cj to be the completion time of job j in this schedule.
The flow time of job j for this schedule is Fj = Cj − rj . The total flow time is∑

j∈J Fj . The goal of the scheduling algorithm is to minimize the total flow time
for each given instance of the problem. In the off-line version of the problem all
the jobs are known in advance. In the on-line version of the problem each job
is introduced at its release time and the algorithm bases its decision only upon
the jobs that were already released.

Shortest Remaining Processing Time (SRPT) schedules at any time those jobs
with shortest remaining processing time for a maximum number of m. It follows
that a job preemption happens only when a newly released job has processing
time shorter than the remaining processing time of a job on execution. When
a job is completed, that job with shortest remaining processing time currently
not assigned to any machine, if any, is scheduled. This results in at most n
preemptions operated by SRPT along the execution of the algorithm.

For a given input instance J and a scheduling algorithm S, we denote by
FS(J) the total flow time of the schedule computed by S on input J . Denote
by FOPT (J) the minimum value of the total flow time on input istance J . A
schedule S is c-approximate if for every input instance J , FS(J) ≤ cFOPT (J).
In the following we will omit J when clear from the context.

3 Analysis of SRPT

We denote by A the scheduling algorithm SRPT and by OPT the optimal off-
line algorithm that minimizes the flow time for any given instance. Whenever we
talk about time t we mean the moment after the events of time t happened. A
job is called alive at time t for a given schedule if it has already been released but
has not been completed yet. Our algorithm classifies the jobs that are alive into
classes according to their remaining processing times. A job j whose remaining
processing time is in [2k, 2k+1) is in class k for −∞ < k <∞. Notice that a job
changes its class during its execution. We denote the class of a job upon arrival
as the initial class of a job.

For a given scheduling algorithm S we define V S(t) to be the volume of
a schedule at a certain time t. This volume is the sum of all the remaining
processing times of jobs that are alive. In addition, we define δS(t) to be the
number of jobs that are alive. ΔV (t) is defined to be the volume difference
between our algorithm and the optimal algorithm, i.e., V A(t) − V OPT (t). We
also define by Δδ(t) = δA(t)−δOPT (t) the alive jobs difference at time t between
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A and OPT . For a generic function f (V , ΔV , δ or Δδ) we use f≥h,≤k(t) to
denote the value of f at time t when restricted to jobs of classes between h and
k. Similarly, the notation f=k(t) will represent the value of function f at time t
when restricted to jobs of class precisely k.

Let γS(t) be the number of non-idle machines at time t. We denote by T
the set of times in which γA(t) = m, that is, the set of times in which none of
the machines is idle. We indicate with S also the size

∫
t∈S dt of a set of times

S. Denote by Pmin the processing time of the shortest job and by Pmax the
processing time of the longest job and P = Pmax/Pmin. Denote by kmin =
�logPmin� and kmax = �logPmax� the classes of the shortest and longest jobs
upon their arrival, that is the maximum and the minimum initial class of a job.

We start by observing the simple fact that the flow time is the integral over
time of the number of jobs that are alive (for example, see [8]):

Fact 1. For any scheduler S,

FS =
∫

t

δS(t)dt.

The following is an obvious lower bound on the flow time of any schedule:

Lemma 1. FS ≥
∑

j pj.

Lemma 2. There are at most 2 + logP initial classes for a job.

Proof. The number of initial classes of a job is at most kmax−kmin+1 ≤ 2+logP .

The proof of the following lemma is straightforward since the total time spent
by the m machines processing jobs is excatly

∑
j pj .

Lemma 3.
∫

t γ
A(t)dt =

∑
j pj.

Now, assume that t ∈ T and let t̂ < t be the earliest time for which [t̂, t) ⊂ T .
We denote the last time in which a job of class more than k was processed by
tk. In case such jobs were not processed at all in the time interval [t̂, t) we set
tk = t̂. So, t̂ ≤ tkmax ≤ tkmax−1 ≤ ... ≤ tkmin ≤ t.

Lemma 4. For t ∈ T , ΔV≤k(t) ≤ ΔV≤k(tk).

Proof. Notice that in the time interval [tk, t), algorithm A is constantly process-
ing on all the machines jobs whose class is at most k. The off-line algorithm may
process jobs of higher classes. Moreover, that can cause jobs of class more than
k to actually lower their classes to k and below therefore adding even more to
V OPT
≤k (t). Finally, the release of jobs of class ≤ k in the interval [tk, t) is not af-

fecting ΔV≤k(t). Therefore, the difference in volume between the two algorithms
cannot increase between tk and t.
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Lemma 5. For t ∈ T , ΔV≤k(tk) ≤ m2k+1.

Proof. First we claim that at any moment tk − ε, for any ε > 0 small enough,
the algorithm holds m1 < m jobs whose class is at most k, with total processing
time bounded by m12k+1. In case tk = t̂, at any moment just before tk there is
at least one idle machine. Otherwise, tk > t̂ and by definition we know that a job
of class more than k is processed just before tk. At time tk−ε, m2 ≤ m−m1 jobs
of class k + 1 may change their class to k. Moreover, at time tk jobs of class at
most k might arrive. However, these jobs increase both V OPT

≤k (tk) and V A
≤k(tk)

by the same amount, so jobs that arrive exactly at tk do not change ΔV≤k(tk)
and can be ignored. Altogether, we have ΔV≤k(tk) ≤ (m1 +m2)2k+1 ≤ m2k+1.

Lemma 6. For t ∈ T , ΔV≤k(t) ≤ m2k+1.

Proof. Combining Lemma 4 and 5, we obtain ΔV≤k(t) ≤ ΔV≤k(tk) ≤ m2k+1

The claim of the following lemma states a property that will be used in the
proof of both the O(logP ) and the O(log n

m) approximation results.

Lemma 7. For t ∈ T , for kmin ≤ k1 ≤ k2 ≤ kmax, δA
≥k1,≤k2

(t) ≤ m(k2 − k1 +
2) + 2δOPT

≤k2
(t).

Proof. δA
≥k1,≤k2

(t) can be expressed as:

k2∑
i=k1

δA
=i(t) ≤

k2∑
i=k1

ΔV=i(t) + V OPT
=i (t)

2i

=
k2∑

i=k1

ΔV≤i(t)−ΔV≤i−1(t)
2i

+
k2∑

i=k1

V OPT
=i (t)

2i

≤ ΔV≤k2(t)
2k2

+
k2−1∑
i=k1

ΔV≤i(t)
2i+1 − ΔV≤k1−1(t)

2k1
+ 2δOPT

≥k1,≤k2
(t)

≤ 2m+
k2−1∑
i=k1

m+ δOPT
≤k1−1(t) + 2δOPT

≥k1,≤k2
(t)

≤ m(k2 − k1 + 2) + 2δOPT
≤k2

(t).

The first inequality follows since 2i is the minimum processing time of a job of
class i. The third inequality follows since the processing time of a job of class i is
less than 2i+1. The fourth inequality is derived by applying Lemma 6, observing
that ΔV≤k1−1(t) ≥ −V OPT

≤k1−1(t) and that 2k1 is the maximum processing time of
a job of class at most k1 − 1. The claim of the lemma then follows.

The following corollary of Lemma 7 is used in the proof of the O(logP )
approximation ratio of Theorem 2
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Corollary 1. For t ∈ T , δA(t) ≤ m(4 + logP ) + 2δOPT (t).

Proof. We write

δA(t) = δA
≤kmax,≥kmin

(t) + δA
<kmin

(t)

≤ m(kmax − kmin + 2) + 2δOPT (t) +m

≤ m(4 + logP ) + 2δOPT (t).

The first inequality follows from the claim of Lemma 7 when k2 = kmax and
k1 = kmin, and from the fact that since a job of class less than kmin is never
preempted, there are at any time t at most m jobs of class less than kmin in the
SRPT schedule. The second inequality is obtained since kmax−kmin ≤ logP+1.

Theorem 2. FA ≤ (6+logP )·FOPT , that is, algorithm SRPT has a (6+logP )
approximation factor.

Proof.

FA =
∫

t

δA(t)dt

=
∫

t/∈T
δA(t)dt+

∫
t∈T

δA(t)dt

≤
∫

t/∈T
γA(t)dt+

∫
t∈T

((4 + logP )γA(t) + 2δOPT (t))dt

≤ (4 + logP )
∫

t

γA(t)dt+ 2
∫

t∈T
δOPT (t)dt

≤ (4 + logP )
∑

j

pj + 2
∫

t

δOPT (t)dt

≤ (6 + logP )FOPT

The first equality derives from the definition of FA. The second is obtained by
looking at the time in which none of the machines is idle and the time in which
at least one machine is idle separately. The third inequality uses Corollary 1. The
fifth inequality uses Lemma 3, while the sixth inequality follows from Lemma 1.

We now turn to prove the O(log n
m ) approximation ratio for SRPT . Let k be

the maximum integer such that for some time t ∈ T δA
≥k

(t) ≥ m. If not such

integer exists, fix k = kmin−1. Let Tj ⊆ T , j = kmin +1, .., k, be the set of time
instants when all machines are busy, at least one machine is busy with jobs of
class j and no machine is busy with jobs of class higher than j. Let Tk+1 ⊆ T
be the set of time instants when all machines are busy and at least one machine
is processing a job of class higher than k.

Finally, let Tkmin ⊆ T be the set of time intants when all machines are busy
with jobs of class less than or equal to kmin. Observe that {Tkmin , . . . , Tk+1}
defines a partition of T . We can write the total flow time of SRPT as:
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FA =
∫

t/∈T
δA(t)dt +

∫
t∈T

δA(t)dt

=
∫

t/∈T
γA(t)dt+

k∑
j=kmin

∫
t∈Tj

δA(t)dt+
∫

t∈Tk+1

δA(t)dt

≤
∫

t/∈T
γA(t)dt+

k∑
j=kmin

∫
t∈Tj

(2m+ δA
≥j,≤k

(t))dt +
∫

t∈Tk+1

2mdt

≤
∫

t/∈T
γA(t)dt+

k∑
j=kmin

∫
t∈Tj

(4m+m(k − j) + 2δOPT
≤k

(t))dt (1)

+2
∫

t∈Tk+1

mdt

≤
∫

t/∈T
γA(t)dt+ 4

∫
t∈T

γA(t)dt+
k∑

j=kmin

m(k − j)Tj + 2
∫

t∈T
δOPT (t)dt

≤ 6FOPT +
k∑

j=kmin

m(k − j)Tj (2)

where the T| in the last two lines denotes the total amount of time that is spent
in calTj. The third inequality follows since at any time t ∈ Tj , j = kmin, .., k +1,
by definition of Tj , there are at most m alive jobs of class less than j and, by
definition of k, at most m alive jobs of class bigger than k in the SRPT schedule.
The fourth inequality derives by the application of Lemma 7. Finally, the fifth
and the sixth inequalities use Lemma 3 and Lemma 1.

We are left to bound the term F (n) =
∑k

j=kmin
m(k − j)Tj . We show this in

the following Lemma:

Lemma 8.

F (n) =
k∑

j=kmin

m(k − j)Tj = O(log
n

m
)FOPT .

Proof. We define T l
j for j ≤ kmin + 1 to be the set of time instants in {t ≥ 0},

thus also considering time instants with some machine idle, when machine l is
processing a job of class j. T �

‖�〉\
denotes the time in which machine l is processing

a job of class kmin or less. We first observe that:

F (n) =
k∑

j=kmin

m(k − j)Tj



210 S. Leonardi

≤
k∑

j=kmin

m∑
l=1

(k − j)T l
j , (3)

since every time t ∈ Tj is also part of m sets T l
i with i ≤ j.

Let nj , j = kmin, ...., k−1, be the number of jobs of initial class j in the input
instance. Let nk be the number of jobs of initial class bigger or equal than k
released in the input instance. For sake of simplicity, we will refer in the following
to jobs of initial class higher than k as jobs of initial class k.

Now, observe that a job of initial class j gives a contribution to equation
(3) bounded by 2

∑j−kmin

i=0 (k − j + i)2j−i since each job of initial class j has
been processed for at most 2i time units when in class i = kmin + 1, . . . , j. This
contribution is, by simple algebraic manipulation, at most equal to 2(k − j +
1)2j+1.

We then continue with the following inequalities:

F (n) ≤ 2
k∑

j=kmin

nj(k − j + 1)2j+1

= 4
k∑

j=kmin

nj(k − j)2j + 2
k∑

j=kmin

nj2j+1

≤ 4
k∑

j=kmin

nj2j(k − j) + 4
∑

j

pj , (4)

since a job of initial class j has processing time at least equal to 2j. We exchange
variable number j with i = k − j. Let Ii = nk−i2

k−i, i = 0, . . . , k − kmin. The

first term
k∑

j=kmin

nj2j(k − j) of equation (4) becomes:

k−kmin∑
i=0

iIi. (5)

We can derive an upper bound on F (n) by maximizing function (5) subject
to the two obvious constraints:

k−kmin∑
i=0

Ii ≤
∑

j

pj (6)

k−kmin∑
i=0

Ii

2k−i
≤ n. (7)
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Constraint (7) implies

k−kmin∑
i=0

Ii ≤ n2k. (8)

To complete the proof we need the following simple mathematical lemma
proved in [2]:

Lemma 9. Given a sequence a1, a2, ... of non-negative numbers such that∑
i≥1 ai ≤ A and

∑
i≥1 2iai ≤ B then

∑
i≥1 iai ≤ log(4B/A)A.

Proof. Define a second sequence, bi =
∑

j≥i aj for i ≥ 1. Then it is known that
A ≥ b1 ≥ b2 ≥ .... Also, it is known that

∑
i≥1 2iai =

∑
i≥1 2i(bi − bi+1) =

1
2

∑
i≥1 2ibi + b1. This implies that

∑
i≥1 2ibi ≤ 2B.

The sum we are trying to upper bound is
∑

i≥1 bi. This can be viewed as an
optimization problem where we try to maximize

∑
i≥1 bi subject to

∑
i≥1 2ibi ≤

2B and bi ≤ A for i ≥ 1. This corresponds to the maximization of a continuous
function in a compact domain and any feasible point where bi < A, bi+1 > 0
is dominated by the point we get by replacing bi, bi+1 with bi + 2ε, bi+1 − ε.
Therefore, it is upper bounded by assigning bi = A for 1 ≤ i ≤ k and bi = 0
for i > k where k is large enough such that

∑
i≥1 2ibi ≥ 2B. A choice of k =

�log(2B/A)� is adequate and the sum is upper bounded by kA from which the
result follows.

We apply Lemma 9 to our problem with variables ai = Ii, i = 0, . . . , k−kmin,
A =

∑
j pj by constraint (6), B = n2k by constraint (8), to obtain:

k−kmin∑
i=0

iIi ≤ log(
4n2k∑

j pj
)
∑

j

pj

≤ O(log
n

m
)FOPT , (9)

where the last inequality follows since, by the definition of k, at some time t
there are at least m jobs of class bigger or equal than k, for which

∑
j pj ≥ m2k.

Combining equations (4) and (9) and from
∑

j pj ≤ FOPT , we obtain the
desired bound.

Finally, Lemma 8 together with equation (2) leads to our result:

Theorem 3. Algorithm SRPT has an O(log n
m) approximation factor.

4 Conclusions

In this paper we present a simpler proof of the approximation of SRPT for
preemptive minimization of the total flow time on parallel identical machines.
The proof relies on the original ideas of [8] and on new tools of analysis introduced
in later works [2,3]. A major open problem is to devise a constant approximation
algorithm or even an approximation scheme for the problem.
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Abstract. We consider a general classification problem, also known as
labeling problem, which is strongly related to several standard classifi-
cation frameworks and has applications in various computer science do-
mains. In this chapter, we put together and review known results coming
from application domains as well as recent advances on the approxima-
bility of the problem.

1 Introduction

In several contexts we aim to classify a set of pairwise related objects by assigning
to each of them one of a given set of labels (or classes), taking into account
information we have about:

(i) the relative likelihood of assigning a label to an object,
(ii) the strength of pairwise relationships between objects, and
(iii) the similarity between labels.

The quality of such a classification is based on the trade-off between two
competing facts: each object tends to be labeled with the most likely label,
while strongly related objects tend to be labeled with similar labels. An objective
function that naturally captures this trade-off is one based on the contribution
of two kinds of cost: the cost of labeling each object individually and the cost of
labeling each pair of related objects.

This classification problem and its variants arise in various contexts and are
encountered in the literature under several names, with objects and labels cor-
responding to context related entities. The context independent statement of
the problem we are using in this chapter was first introduced by Kleinberg and
Tardos [58], who also called this the labeling problem.

Formally, the Labeling Problem (LaP) asks for assigning one label, from
a set L of k labels, to each object in a set V of n pairwise related objects.
The relative likelihood of assigning a label to an object is given in terms of an
assignment cost matrix c(u, a), u ∈ V, a ∈ L, with non-negative entries. The
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pairwise relationships between objects are represented by a weighted undirected
graph G = (V,E), where an edge (u, v) ∈ E indicates that objects u and v
are related and a positive weight w(u, v) represents the strength of the their
relationship. In addition, we have a distance function d(·, ·) on the set L of
labels, representing the (un)similarity between labels.

A labeling of V over L is a function f : V → L and the quality of such a
labeling is based on the contribution of two terms of cost:

(i) The assignment cost, A(V ), for labeling individually all objects. Labeling an
object u ∈ V with f(u) contributes a cost c(u, f(u)) to A(V ).
(ii) The separation cost, S(E), for labeling all pairs of related objects. Labeling
two related objects u, v ∈ V, (u, v) ∈ E, with f(u) and f(v), respectively, con-
tributes a cost w(u, v) · d(f(u), f(v)) to S(E).

Thus, the LaP asks for a labeling f that minimizes the total cost given by

C(f) = A(V ) + S(E) =
∑
u∈V

c(u, f(u)) +
∑

(u,v)∈E

w(u, v) · d(f(u), f(v)).

1.1 LaP in Various Contexts

The LaP model has been used, under different names, to formulate classification
problems arising mainly in two computer science domains: distributed software
engineering and image processing. The study of LaP in these contexts gave some
interesting results and established its close relation with well known classifica-
tion frameworks, including the classical quadratic assignment problem and well
known graph partition problems in combinatorial optimization, and the theory
of Markov Random Fields in statistics. In this subsection we present the con-
nections of LaP to these frameworks and its applications.

Historically, LaP was first introduced by Stone [71] in the context of dis-
tributed software engineering, as a task assignment problem. In this context,
objects correspond to the tasks of a modular application and labels correspond
to the processors of a distributed system. Because of different processors’ speeds
and/or resources, the execution time of tasks varies from one processor to another
and the assignment cost matrix c(u, a), u ∈ V, a ∈ L, represent these execution
times. The graph G = (V,E) is known as the task graph. Edges (u, v) ∈ E repre-
sent data communication between tasks and weights w(u, v), (u, v) ∈ E, indicate
the amount of data to be exchanged between tasks u and v. A data exchange
between tasks incurs a communication overhead due to protocols and transmis-
sion delays. Systems’ communication links are, in general, heterogeneous and
distances d(a, b), a, b ∈ L represent the overhead incurred for transferring a unit
of data between processors a and b. Thus, the separation cost, w(u, v)·d(a, b), for
a pair of tasks u and v assigned to processors a and b, respectively, corresponds
to the communication overhead incurred. In this context we aim to assign tasks
to processors in order to minimize the sum of the execution time of all tasks
plus the communication overhead incurred by all pairs of communicating tasks.
The objective function C(f) represents exactly this quantity which can be in-
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terpreted as the total time the application occupies the system resources (both
processors and communication links) [71].

The reader may have already noticed a relation between LaP and the
Quadratic Assignment Problem (QAP), one of the most difficult and extensively
studied combinatorial optimization problems (see for example [13] for a recent
thorough survey). In the context of QAP, the nodes of the graph G = (V,E) tra-
ditionally represent |V | machines and the weights w(u, v), (u, v) ∈ E, represent
flows of some material between machines. The set L represents exactly |L| = |V |
locations, and d(a, b) is the distance between locations a and b. The aim of QAP
is to assign each machine to a distinct location in order to minimize an objec-
tive function consisting, also, of two types of cost: an operating cost c(u, a) for
assigning machine u at location a, and a flow cost w(u, v) · d(a, b) incurred if
machines u and v are assigned to locations a and b respectively. In other words,
QAP asks for the minimization of C(f) over all bijections, while LaP asks for
the minimization of C(f) over all functions f . Clearly, the uncapacitated QAP,
in which more than one machines can be assigned to the same location is equiva-
lent to the LaP variant where |V | = |L|. Note, that both the ucapacitated QAP
and LaP become trivial in the absence of the assignment cost term, while the
QAP is NP-hard whether such a term is included or not. Magirou and Milis [66]
studied the relation between LaP and QAP and used a polynomially solvable
special case of LaP to obtain Lagrangean relaxation lower bounds for QAP.

The LaP is also closely related to the theory of Markov Random Fields
(MRFs) [20,56] in statistics. In this context, assume that we are given a la-
beling f ′(u) for each object u ∈ V obtained from a true labeling f by a pertur-
bation of independent random noise at each object. The question is to decide
the most probable true labeling from the given labeling f ′ and the underlying
MRF. A MRF is defined by a graph on the set of objects, whose edges represent
dependencies between objects, and the assumption made that the conditional
probability of labeling an object by a given label depends only on the labeling
of its neighbors. A standard approach to decide the most probable true label-
ing is to find the labeling f that maximizes the a posteriori probability Pr[f ′|f ]
which by Bayes’ Law is proportional to Pr[f ′|f ]· Pr [f ]. Kleinberg and Tardos
[58] observed that this last problem is equivalent to LaP, if the underlying MRF
satisfies two properties, which, however, match with most applications: (i) pair-
wise interactions among objects and (ii) spatial homogeneity of the MRF. MRFs
have been used as a core analytical framework in several domains including im-
age processing [43], biometric analysis [6], language modeling [29], hypertext
documents categorization [16] and learning [31].

Geman and Geman [43] introduced the theory of MRFs in the field of image
processing. A direct application of this model is the image restoration problem,
where the goal is to restore an image corrupted by noise. We are given the grid of
image pixels, which correspond to objects, and for each pixel we are also given an
observed intensity that is possibly corrupted by noise. The labels correspond to
discretized intensities and the goal is to assign a new intensity to each pixel in or-
der to restore the real image. The quality of such a restoration is also based on the
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trade-off between two competing facts: each pixel tends to be labeled with an in-
tensity close to its original value, while neighboring pixels tend to be labeled with
similar intensities due to smoothness of real images (except in boundary regions
of sharp discontinuity). Besides the image restoration problem, the MRFs model
has been extensively used to model many other problems in the image processing
domain [25,30,61], including the visual correspondence problem [68] which is the
basis of determining the depth and the motion in an image. The LaP applies to
these problems through its equivalence, under certain assumptions, to MRFs.

Problem variants: Several variants of the labeling problem, with respect to
the distance function d on the set L of labels, are encountered in the literature
motivated by both their practical and theoretical interest. In the general problem
d can be any function on L, while other problem variants can be obtained by
restricting d.

We say that (L, d) is a metric iff for every p, q, r ∈ L, d(p, p) = 0, d(p, q) ≥
0, d(p, q) = d(q, p) and d(p, q) + d(q, r) ≥ d(p, r). Moreover, we say that (L, d) is a
uniform metric if d(a, b) = 1, if a �= b, and zero otherwise. In the linear metric case
we consider w.l.o.g. that labels are consecutive integers, i.e. L = {1, 2, ..., k}, and
the distance function is defined as d(a, b) = |a−b|. If the set of labels contains non-
consecutive numbers, i.e. L ⊂ [1, k], then we can consider an infinite assignment
cost for labeling an object by a label a /∈ L. The truncated linear metric function
is defined as d(a, b) = min{M, |a − b|} and it is the most natural (non-uniform)
robust linear metric. It is clear that forM = 1 the truncated linear metric reduces
to the uniform metric and that forM > k it reduces to the liner metric.

Non-metric distance functions are also of practical interest, especially in the
image processing context. A convex linear function is defined as d(a, b) = g(|a−
b|), where g is convex and increasing. In this case, d is a non-metric function, since
(L, d) is a metric iff g is concave and increasing. The quadratic linear function
d(a, b) = |a − b|2 is such a convex linear one. On the other hand, the truncated
quadratic linear function d(a, b) = min{M, |a− b|2} is a non-convex, non-metric
linear function.

In Figure 1, we present the relations between the variants of LaP as well as
their connections to other known frameworks. The multiterminal cut problem
is a generalization of the famous minimum-cut/maximum flow problem. This
problem as well as its generalization known as 0-extension problem, are two
well-studied graph partition problems related to LaP as it is shown in Figure
1. Because of the central role that these two problems play in the study of LaP
they are discussed in details in Section 2. Note, that most of the known results
for LaP are based on its relation to the multiterminal cut problem.

1.2 Approximation Algorithms

A ρ-approximation algorithm computes polynomially a solution within a fac-
tor ρ of the optimum one. In this setting we are interested in designing ρ-
approximation algorithms with ρ as small as possible as well as on finding lower
bounds on ρ. When ρ is a constant, then we say that the approximation algo-
rithm is a constant factor one. We say, however, that we have a Polynomial Time
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Quadratic Assignment Problem (QAP)Markov Random Fields (MRFs)

Labeling Problem (LaP)

Convex linear LaP Truncated linear LaP

Quadratic linear LaP

Truncated quadratic linear LaP

Linear LaP Uniform LaP

0-Extension Problem (0-EP)

Multiterminal Cut Problem (MCP)

Metric LaP

Fig. 1. Relations and variants of LaP (arrows are oriented from general to special
problems

Approximation Scheme (PTAS) if we give an algorithm which, for any fixed value
of ε, can construct an (1 + ε)-approximation solution. If the time complexity of
a PTAS is also polynomial in 1/ε, then it is called Fully Polynomial Time Ap-
proximation Scheme (FPTAS). For negative approximation results, the notion
of NP-hardness is used to prove lower bounds on approximation factors or to
disprove the existence of a FPTAS, unless P=NP. It is well known that, there is
no FPATS for strongly NP-hard problems and that there is no PTAS for Max
SNP-hard problems, unless P=NP.

A general and successful technique of designing approximation algorithms
is based on linear programming (LP) relaxations of a problem. First, an op-
timum fractional solution to such an LP-relaxation is polynomially obtained.
This solution, whose cost is denoted by C̄, is then used to obtain an approxi-
mate solution to the original problem. One method to this end is to round the
fractional solution to an integral feasible one of cost C ≤ ρC̄ (another method is
based on the primal-dual schema). Randomization is often helpful to this round-
ing, giving a solution of expected cost E[CR] ≤ ρC̄. Such a rounding procedure
sometimes can be derandomized obtaining a solution of cost C ≤ E[CR]. Ob-
viously, C (resp. E[CR]) is a deterministic (resp. randomized) ρ-approximate
solution, since C̄ is lower bound of the cost C∗ of an optimum integral solution,
i.e. C̄ ≤ C∗ ≤ C ≤ E[CR].

However, there is a gap between the cost of the optimum (integral) solution
and the cost of a fractional optimum one. This gap is formally defined as the
ratio C∗

C̄
and it is known as integrality gap of the LP-relaxation. Clearly, any

ρ-approximate solution achieved this way inherits this gap and, therefore, it is
quite interesting to determine a lower bound, γ, on the integrality gap, i.e. a
number γ ≤ C∗

C̄
≤ ρ. If γ = ρ, then we say that the integrality gap of an LP-

relaxation is ρ. For a deep and elegant presentation of LP-based approximation
algorithms and techniques the reader is referred to [74].
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1.3 Organization of the Chapter

In the next section we establish the relation between the multiterminal cut prob-
lem, the 0-extension problem and the LaP, and review approximation results for
these two graph partition problems. The techniques used in this context have
been later generalized to offer optimal or approximate solutions for several LaP
variants. In Section 3, we review early results for LaP coming from the dis-
tributed software engineering community. In Section 4 we present local search
approximation algorithms, originated in the image processing context. In Section
5 we review recent LP-based approximation algorithms. Throughout Sections
3-5, the material of this chapter is classified according the problem’s variants
defined above. We conclude in Section 6 with a summary of known results and
open questions.

2 Related Graph Partition Problems

The famous minimum-cut/maximum flow problem is one of the simplest graph
partition problems. Recall that given a graph G = (V,E) with positive edge
weights w(e), e ∈ E and two terminal nodes s, t ∈ V , the problem asks for the
minimum weight set of edges Φ such that the removal of Φ from E disconnects
s from t. The most direct generalization of this classical problem is known as
multiterminal or multiway cut problem (MCP)[28], and it is obtained by
fixing a set T ⊂ V of k terminal nodes:

Find a set of edges Φ ⊆ E such that
(i) the removal of Φ from E disconnects each terminal node from the others,
and
(ii) C(Φ) =

∑
e∈Φ w(e) is minimized.

Obviously, the removal of the edges in Φ from G creates exactly k connected
components, each one containing a terminal node. In other words, Φ implies
naturally an assignment of the non-terminal nodes V \T to the k terminal nodes
T . Thus, MCP can be alternatively rewritten as following:

Find an assignment f : V → T , such that
(i) f(t) = t, for all t ∈ T , and
(ii)

∑
(u,v)∈E w(u, v) ·d(f(u), f(v)) is minimized, where (T, d) is the uniform

metric.

Recall that a metric (T, d) is called uniform if for every a, b ∈ L, d(a, b) = 1,
if a �= b, and zero otherwise. A natural generalization of MCP can be obtained
by allowing (T, d) to be an arbitrary metric, instead of being the uniform met-
ric. This generalization is known as 0-extension problem (0-EP), due to its
alternative statement proposed by Karzanov [54] (see Section 2.2).

Both MCP and 0-EP can be related to LaP by considering that the non-
terminal nodes correspond to objects and the terminal nodes correspond to la-
bels. The statements of these problems differ, however, in two points: (i) The
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labels of LaP are distinct from the nodes of G, while the terminals nodes in
MCP and 0-EP are a subset of the nodes of G, and (ii) The non-terminal nodes
in MCP and 0-EP do not have any labeling preferences like assignment costs in
LaP. Despite these facts, it is easy to see that MCP and 0-EP are special cases
of LaP: Consider a MCP or 0-EP instance on a graph G = (V,E) with positive
edge weights w(e), e ∈ E, a set T ⊂ V of k terminal nodes and (T, d) being the
uniform metric for MCP or an arbitrary metric for 0-EP. Then, a LaP instance
with objects set V \ T and labels set T can be easily constructed by consider
assignment costs

c(u, t) =
∑

t′∈T\{t}
w(u, t′) · d(t, t′), u ∈ V \ T, t ∈ T.

The cost of a solution to this LaP instance is:∑
u∈V \T

c(u, f(u))+
∑

(u,v)∈E
u,v∈V \T

w(u, v) ·d(f(u), f(v)) =
∑

(u,v)∈E
{u,v}⊂/T

w(u, v) ·d(f(u), f(v)).

That is, the cost of a solution to the original MCP or 0-EP instance is equal,
up to an invariant cost due to edges between terminal nodes, to the cost of a
LaP instance.

2.1 Complexity and Approximability Results for the MCP

The study of MCP goes back to a 1983 unpublished but widely circulated pre-
liminary version of [28] by Dahlhaus et al. They shown that MCP for arbitrary
graphs is NP-hard (even for k = 3 and all weights equal to 1) by a reduction
from SIMPLE MAX CUT. For the case of planar graphs, they gave a polynomial
algorithm, for fixed k, and proved that MCP becomes NP-hard if k is part of the
instance (even for all weights equal to 1), by a reduction from PLANAR THREE
SATISFIABILITY. Moreover, they have shown that MCP is Max SNP-hard,
for any fixed k ≥ 3, and, hence, there is no a PTAS for MCP, unless P=NP.
Hence, the NP-hardness and the Max SNP-hardness of both 0-EP and LaP, on
arbitrary graphs, follow from these results.

Chopra and Rao [23] proved that for trees and 2-trees the general MCP can
be solved in linear time by a straightforward dynamic programming algorithm.
In fact, this result can be generalized to graphs of bounded tree-width for any
fixed bound. The facets of the multiterminal cut polyherdron are also studied
in [22,23,26]. Erdös and Székely [32,33] considered the problem of extending a
partial k-coloring of a graph which is equivalent to MCP for general graphs (see
[28] for a discussion on the relation between the two problems). PTASs for MCP
on dense unweighted graphs has been proposed by Arora et al. [2] and Frieze
and Kannan [39].

We contrast here the MCP with other known graph partition problems of
related interest, but incomparable to LaP. In the k-cut problem [45,48,49,53,69],
we are also given G,w and k as in MCP (but not terminal nodes T ) and the
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goal is to find the minimum weight set of edges, whose removal separates the
nodes of the graph G into exactly k nonempty connected components. Garg
et al. in [42] consider a variation of MCP on node-weighted graphs which asks
for the minimum weight set of nodes such that their removal disconnects each
terminal from the others as well as the directed variant of MCP. This last
variant was studied also by Naor and Zosin [67]. Finally, the multipair cut
problem [40,41,57,72], proposed by Hu [50] as an integral dual to maximum
multicommodity flow, can be viewed as another generalization of the MCP.
In this problem we are given a list of pairs of terminals and the goal is to
disconnect each pair in the list. Note, that MCP is a special case of the multi-
pair cut problem in which the nodes in the list of pairs we are given form a clique.

A 2− 2/k-approximation algorithm for the MCP

Dahlhaus et al. [28] presented the following simple combinatorial algorithm, and
derived the first approximation result for the MCP.

Algorithm D+:
for each terminal node t ∈ T do

merge all terminals, but t, into t̄ ; (set w(u, t̄) =
∑

t′∈T\t w(u, t′) )
find a minimum t− t̄ cut ;

output the union of the cheapest k − 1 cuts ;

The removal of the union of the cheapest k − 1 minimum t − t̄ cuts from G
disconnects each terminal from all others and therefore it forms a multiterminal
cut. On the other hand, the removal of an optimal multiterminal cut from G
disconnects, also, each terminal node from the others, but does not induce opti-
mal t − t̄ cuts for each terminal node individually. Let Vt (resp. V ∗

t ), t ∈ T , be
the set of nodes of G that remain connected to the terminal t after the removal
of a minimum t− t̄ cut (resp. a minimum multiterminal cut).

Theorem 1. [28] Algorithm D+ is a tight (2 − 2/k)-approximation algorithm
for the MCP.

Proof. Let C be the cost of the multiterminal cut returned by Algorithm D+,
and Ct, t ∈ T be the cost of a minimum t − t̄ cut. Let also C∗ be the cost of
an optimal multiterminal cut and C∗

t be the cost of t− t̄ cut it induces, i.e. the
cost of edges having exactly one of their endpoints in V ∗

t . We have Ct ≤ C∗
t ,

since Ct is the cost of a minimum cut separating t from all other terminals, and∑
t∈T C

∗
t = 2C∗, since each edge is counted twice in this summation. Thus,

C =
∑
t∈T

Ct −max
t∈T

Ct ≤ (1− 1
k

)
∑
t∈T

Ct ≤ (1− 1
k

)
∑
t∈T

C∗
t ≤ (2− 2

k
)C∗

For the tightness of the 2−2/k approximation factor of Algorithm D+ consider
the graph G = (V,E) with vertices V = {u1, u2, ..., uk, t1, t2, ..., tk}, edges E =
{(ui, ui+1 (mod k))|1 ≤ i ≤ k}

⋃
{(ui, ti)|1 ≤ i ≤ k}, and edge weights w(e) = 1,
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for (ui, ui+1 (mod k)) edges, and w(e) = 2 − ε, ε > 0, for (ui, ti) edges. For each
terminal node ti the minimum weight ti− t̄i cut is unique and consists of the edge
(ui, ti) of weight 2 − ε. The weight of the multiterminal cut constructed by the
algorithm is (2− ε)(k−1). On the other hand, the optimal cut consists of all the
k (ui, ui+1) edges, each of weight 1. Thus the approximation factor for such an
instance is (2− ε)(k−1)/k which matches asymptotically the 2−2/k. Assuming
that the algorithm always breaks ties in the worst possible way (in terms of the
total weight of the cut constructed) and taking ε = 0 the approximation factor
for this instance matches precisely the 2− 2/k.

It is proven in [28] that there exists an optimum multiterminal cut for G that,
for all t ∈ T leaves all nodes in Vt connected to t, i.e. Vt ⊆ V − t∗, t ∈ T . There-
fore, the size of a MCP instance can be reduced by

∑
t∈T (|Vt| − 1) by simply

merging all nodes in each Vt, t ∈ T, into the terminal t, since a minimum multi-
terminal cut for this reduced instance induces an optimal multiterminal cut for
the original one. In order to maximally reduce the size of the original instance it
is enough, for all t ∈ T , to compute the minimum t− t̄ cut such that the induced
set Vt is of maximum cardinality [28]. Such a t− t̄ cut is unique and the Vt set it
induces contains the sets induced by all other minimum t− t̄ cuts. Moreover, it
can be found by a linear time processing of the output a t− t̄ minimum cut com-
putation [37]. Thus, k minimum cut computations suffice to obtain a maximally
reduced instance that still induces an optimal multiterminal cut.

Magirou [63] presents a different idea for applying minimum t− t̄ cuts. Instead
of merging all terminals, except t, into t̄, his method considers t̄ to be, for each
non-terminal node, the most competitive to t terminal node, i.e. the weights
of edges w(u, t̄) are set to w(u, t̄) = mint′∈T\{t} w(u, t′). Everything, discussed
above for Algorithm D+ holds also for this idea. Moreover, if V ′

t is the set
of nodes of G that remain connected to the terminal t after the removal of the
minimum t− t̄ cut obtained this way, it is shown that |V ′

t | ≥ |Vt|. Computational
results reported in [63] show a considerably improved reduction of the instance
size for moderate sized problems.

For the special cases of k = 4 and k = 8, Alon (see [28]) proposed a modifica-
tion of Algorithm D+, obtaining improved approximation factors. In fact, this
modification leads to a 4/3-approximation factor (instead of 3/2) for k = 4 and
12/7 (instead of 7/4) for k = 8. Cunningham [26] reports that this improvement
for k = 4 has been, also, obtained, independently, by Zang. Unfortunately, this
modification does not yield approximation factors better than 2 − 2/k for any
values of k other than 4 and 8.

LP-relaxations of the MCP were also proposed to beat the 2− 2/k approxi-
mation factor, as the MCP can be formulated as an integer program in various
ways. For example, the uniform metric statement of the problem leads directly
to the following integer program, with variables d(u, v), u, v ∈ V, [14]:

(MIP) : Minimize
∑

(u,v)∈E w(u, v) · d(u, v)
subject to (V, d) is a metric (1)

d(t, t′) = 1, ∀t, t′ ∈ T, t �= t′ (2)
d(u, v) ∈ {0, 1}, ∀u, v ∈ V (3)
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Any solution d to (MIP) corresponds to a multiterminal cut: if d(u, v) = 0,
then the nodes u and v belong to the same component; otherwise they belong to
different components. Constraints (2) guarantee that each one of the k terminal
nodes belongs to a different component, and the triangle inequalities implied by
constraints (1) guarantee that each non-terminal node belongs to exactly one
of these k components. An LP-relaxation of MCP can be obtained by replacing
the integer constraints (3) of (MIP) by 0 ≤ d(u, v) ≤ 1, u, v ∈ V . However, the
integrality gap of this LP-relaxation is at least 2 − 2/k. To see this consider a
k-leaf star, with all its leaves being terminals nodes and all edge weights equal to
1. The minimum multiterminal cut of this instance is of cost k−1 (all edges but
one are in the cut) and the optimal fractional solution is of cost k/2 (d(u, v) =
1/2, ∀u, v ∈ V ). Thus, an integrality gap of at least 2− 2/k follows.

Bertsimas et al. [5] presented a nonlinear formulation of the MCP and
proposed several polynomial time solvable LP-relaxations, as well as a simple
randomized rounding technique, obtaining a 2− 2/k approximation factor too.

A 3/2− 1/k-approximation algorithm for the MCP

The 2 − 2/k approximation factor for MCP remained the best known one for
over fifteen years, until a substantial improvement was obtained by Calinesku at
al. [14]. They proposed a novel metric LP-relaxation by transforming MCP to a
geometric problem of mapping the nodes of G into the vertices of the k-simplex

Δk = {x ∈ IRk|(x ≥ 0) and
k∑

i=1

xi = 1}.

Δk is a convex polytope in IRk with k vertices. The vertices of Δk are the
points et, 1 ≤ t ≤ k, where et is the unit k-dimensional vector with et

t = 1 and
all other coordinates 0. To express a multiterminal cut and its cost, every node
u ∈ V is associated with a k-dimensional vector xu in Δk. Then, a multiterminal
cut is viewed as a mapping of the nodes of the graph G into the vertices of Δk,
such that:

(i) every terminal node t ∈ T is mapped to the vertex et of Δk (i.e. xt = et, for
all t ∈ T ), and
(ii) every non-terminal node u ∈ V \ T is mapped to some vertex et of Δk (i.e.
xu = et, for some t ∈ T ).

For the cost of such a mapping (cut) consider the distance between the end-
points of an edge (u, v) ∈ E and denote the L1 norm of a vector x in IRk by
‖ x ‖. Then, it is clear that d(u, v) =‖ xu − xv ‖= 2, if u and v are mapped
to different vertices of Δk (i.e. (u, v) is in the cut), and d(u, v) = 0, otherwise.

Thus, d(u, v) =
1
2
‖ xu − xv ‖= 1

2

k∑
t=1

|xu
t − xv

t |.

By relaxing the constraint of mapping the non-terminal nodes of G into the
vertices of Δk and allowing them to be mapped anywhere in the simplex, the
following LP-relaxation of MCP is obtained.
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(SLP) : Minimize 1
2

∑
(u,v)∈E w(u, v)d(u, v)

subject to d(u, v) = 1
2

∑k
t=1 |xu

t − xv
t |, ∀u, v ∈ V (1)

xu ∈ Δk, ∀u ∈ V (2)
xt = et, ∀t ∈ T (3)

It can be easily verified that (SLP) is linear: Constraints (3) are clearly linear.
Constraints (2), by the definition of the Δk, mean xu

t ≥ 0, ∀u ∈ V, ∀t ∈ T, and∑k
t=1 x

u
t = 1 ∀u ∈ V . Finally, the absolute value |xu

t − xv
t | in constraints (1)

can be expressed by introducing variables xuv
t , ∀u, v ∈ V, ∀t ∈ T , such that

xuv
t ≥ xu

t − xv
t and xuv

t ≥ xv
t − xu

t .
Rounding a fractional solution to (SLP), to an integer one corresponds to

placing all nodes at simplex vertices and thus to a multiterminal cut. The next
lemma, based on the additivity of L1 norm, is the key for obtaining an amenable
to analysis rounding procedure.

Lemma 1. [14] A fractional solution x to (SLP) for a graph G = (V,E) can be
transformed, in O(kn2) time, into a normalized fractional solution x̃ for a graph
G̃ = (Ṽ , Ẽ) such that:

(i) |Ṽ | is O(kn2) and a multiterminal cut of G̃ implies a multiterminal cut of
G.
(ii) the cost of x̃ for G̃ is at most the cost of x for G, and
(iii) for all edges (u, v) ∈ Ẽ, the vectors x̃u and x̃v differ in at most two coordi-
nates.

Given this lemma, let x to be the optimal normalized solution to (SLP). Let
Et ⊆ E be the set of edges whose corresponding vectors xu and xv differ in
coordinate t. Note, that each edge (u, v) ∈ Et appears and in another set Et′ ,
since in a normalized solution the vectors xu and xv either are equal or differ in
exactly two coordinates. Let Wt be the contribution of the edges in Et to the
cost of the solution x, i.e. Wt =

∑
(u,v)∈Et

w(u, v)d(u, v). Using this notation
the rounding procedure given below provides a multiterminal cut in terms of the
sets Vt (the nodes remaining connected to terminal t ∈ T after the removal of a
cut).

Rounding procedure:
rename the terminals such that Wt, t ∈ T is maximized at t = k;
choose at random a permutation σ = 〈σ(1), σ(2), ..., σ(k)〉

from {〈1, 2, ..., k − 1, k〉, 〈k − 1, k − 2, ..., 2, 1, k〉};
choose a real θ uniformly at random from (0,1);
for t = 1 to k − 1 do

B(t, θ) = {u ∈ V |xu
t ≥ θ}; (the set of nodes that are close to terminal t)

Vσ(t) = B(t, θ)−
⋃

j<t Vσ(j);
Vk = V −

⋃
j<k Vj ;
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Theorem 2. [14] There is a deterministic polynomial (3/2 − 1/k)-approxi-
mation algorithm for the MCP.

Proof. It is clear that the rounding procedure produces a feasible solution to
MCP. Let Φ be the set of edges in the multiterminal cut. The proof is based to
the following two facts, proved in [14]:

(i) If (u, v) ∈ E − Ek, then Pr[(u, v) ∈ Φ] ≤ 3
2 d(u, v), and

(ii) If (u, v) ∈ Ek, then Pr[(u, v) ∈ Φ] ≤ d(u, v).

Due to the linearity of expectation, the expected value of the integer solution
CR, obtained by the rounding procedure is:

E[CR] =
∑

(u,v)∈E

w(u, v)Pr[(u, v) ∈ Φ]

=
∑

(u,v)∈E\Ek

w(u, v)Pr[(u, v) ∈ Φ] +
∑

(u,v)∈Ek

w(u, v)Pr[(u, v) ∈ Φ]

=
3
2

∑
(u,v)∈E

w(u, v)d(u, v)− 1
2

∑
(u,v)∈Ek

w(u, v)d(u, v) =
3
2
C̄ − 1

2
Wk,

where C̄ is the cost of the fractional solution. Moreover,
∑k

t=1Wt = 2C̄ (recall
that every edge appeared into two sets Et, t ∈ T ) and since Wt, t ∈ T is
maximized at t = k, it satisfies Wk ≥ 2

k C̄. Therefore,

E[CR] ≤ 3
2
C̄ − 1

k
C̄ = (

3
2
− 1

k
)C̄.

The rounding procedure can be easily implemented in (deterministic) poly-
nomial time, except the step of choosing uniformly θ from (0, 1). However, even
this step can be derandomized as follows: There are two possible choices for
σ. For a given choice (permutation) of σ, two different choices of θ, θ1 < θ2
produce combinatorially distinct mutliterminal cuts only if there is a terminal
t and a node u such that θ1 ≤ xu

t < θ2. These ”interesting” values of θ are at
most k|Ṽ | (recall that the fractional solution is assumed normalized) and they
can be determined by sorting the nodes according to each coordinate separately.
The resulting discrete sample space for (σ, θ) is of size 2k|Ṽ |, that is O(n2k2),
since, by Lemma 1, |Ṽ | is O(kn2). Since there is a choice of σ, θ that gives an
integer solution of value at most (3

2 −
1
k )C̄, it follows that this solution can be

found by searching exhaustively this sample space, instead of choosing θ from a
continuous distribution.

After this seminal result of Călinescu et al. [14], there was also a significant
progress on exploring the (SLP) relaxation in order to derive both better ap-
proximation factors (by improved rounding procedures) and lower bounds on its
integrality gap (by exhibiting certain MCP instances). Note, that the k-leaf star
instance, used above for the LP-relaxation of (MIP), yields an integrality gap of
1 for (SLP).
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For k = 3, Călinescu et al. in [14] gave a MCP instance yielding a 16/15
inegrality gap for (SLP). Cunningham and Tang [27] and Karger et al. [52] pro-
posed, independently, a rounding procedure tailored to the case of k = 3 and
obtained a 12/11-approximation algorithm. Moreover, both groups proved that
this factor matches the integrality gap of (SLP) for this case, by exhibiting a
certain class of graphs. For k > 3, Karger et al. [52], proposed also improved
rounding schemes. For k = 4 and k = 5 they shown approximation factors of
1.1539 and 1.2161 respectively, based on computer constructed and analysed
rounding schemes yielding, while for k > 6, they gave a single algorithm obtain-
ing an (analytic) approximation factor of 1.3438 − εk, εk > 0 which beats the
3/2−1/k factor, for all k > 6. They also evaluated computationally the value of
εk, proving, this way, that 1.3438− εk < 3/2− 1/k, for all k. On the other hand,
Călinescu et al. in [14] gave also an instance of the MCP yielding integrality gap
of 13/12 for k = 4. However, Freund and Karloff [38] gave a family of instances
having a 8/(7 + 1

k−1 ) integrality gap for every k ≥ 3. This lower bound matches
with the 13/12 for k = 4, and it is the only known for k ≥ 5.

The reader can be also referred to the book of V. V. Vazirani [70, Chapters
4 and 19] for an excellent presentation of approximation algorithms for MCP,
related problems and open questions.

2.2 Approximation Results for the 0-EP

The 0-EP is a generalization of the MCP and a special case of the LaP, with its
name coming from its alternative statement based on the next definition.

Definition 1. A metric (V, δ) is an extension of the metric (T, d), T ⊂ V , iff
δ(t, t′) = d(t, t′), for all t, t′ ∈ T .
If, in addition, for every u ∈ V there exists a unique t ∈ T such that δ(u, t) = 0,
then (V, δ) is a 0-extension of (T, d).

Recall that given a graph G = (V,E) with positive edge weights w(e), e ∈ E
and a set T ⊂ V of k terminal nodes, the 0-EP asks for an assignment f : V → T ,
such that

(i) f(t) = t, for all t ∈ T , and
(ii)

∑
(u,v)∈E w(u, v) · d(f(u), f(v)) is minimized, where (T, d) is an arbitrary

metric.

By Definition 1, it is clear that a 0-extension (V, δ) of (T, d) corresponds to
an assignment f : V → T such that f(u) = t if δ(u, t) = 0. Therefore, the 0-EP
can be stated as following:

Find a 0-extension (V, δ) of (T, d) that minimizes
∑

(u,v)∈E w(u, v) · δ(u, v).

Karzanov [54] proposed a relaxation of the above formulation, asking for
the extension (instead of the 0-extension) of (T, d) to (V, δ) that minimizes∑

(u,v)∈E w(u, v) · δ(u, v). This relaxation is known as metric relaxation of the
0-EP:
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(MLP) : Minimize
∑

(u,v)∈E w(u, v)δ(u, v)
subject to (V, δ) is a metric (1)

δ(t, t′) = d(t, t′) ∀t, t′ ∈ T (2)

If an assignment f∗ : V → T defines an optimal solution to the 0-EP, then
putting δ(u, v) = d(f∗(u), f∗(v)) defines a feasible solution to (MLP) of the
same cost with the optimal solution. Therefore, the cost of an optimal solution
to (MLP) is a lower bound on the cost of an optimal solution to 0-EP.

(MLP) relaxation is clearly linear, and was used by Karzanov [54,55] to show
that certain special cases (special metrics) of the 0-EP can be solved optimally in
polynomial time. Recently, Călinescu et al. obtained an O(logk)-approximation
algorithm for 0-EP [15], using this LP-relaxation. In fact, they proposed the
following procedure to round an optimal fractional solution, to (MLP) (i.e. an
extension of (T, d) to (V, δ)) to an integral one (i.e. a 0-extension of (T, d) to
(V, δ)), that is, an assignment f : V → T .

Rounding procedure:
for t = 1 to k do f(t) = t;
for all u ∈ V do Bu = mint∈T δ(u, t);
choose a random permutation σ = 〈σ(1), σ(2), ..., σ(k)〉 of the terminal nodes;
choose a real θ uniformly at random from [1,2);
for t = 1 to k do

for all unassigned nonterminal nodes u do
if δ(u, σ(t)) ≤ θBu then f(u) = σ(t);

Theorem 3. [15] There is a randomized O(log k)-approximation algorithm for
the 0-EP.

Proof. Let u be non-terminal node, t ∈ T be a terminal node with δ(u, t) = Bu,
and choose j such that t = σ(j). If u is not assigned to a terminal in iterations
1, 2, ..., j − 1, it will be assigned to t in iteration j, since θ ≥ 1. Therefore, the
assignment f produced by the rounding procedure is a solution to 0-EP. The
expected cost of this assignment f is

E[CR] =
∑

(u,v)∈E

w(u, v)E[d(f(u), f(v))].

Let δ̄(u, v), u, v ∈ V, be the optimal solution to (MLP). It is proven in [15]
that, for any pair of distinct nodes u, v ∈ V ,

E[d(f(u), f(v))] ≤ 38Hkδ(u, v),

where Hk = 1 + 1
2 + 1

3 + ...+ 1
k is the k-th harmonic number. Therefore,

E[CR] ≤ 38Hk

∑
(u,v)∈E

w(u, v)δ(u, v) ≤ O(log k)C̄ ≤ O(log k)C∗,

where C̄ is the cost of the cost of the optimal solution to (MLP).
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Therefore, there is a choice of σ and θ that produces a solution of cost
O(log k)C̄. For a given choice (permutation) of σ, two different choices of
θ, θ1 > θ2 produce combinatorial distinct assignments (0-extensions) only if
there is a terminal t and a node u such that θ2Bu ≤ θ1Bu. These ”interesting”
values of θ are at most k|V | and they can be determined by sorting the fractions
of δ̄(u, t)/Bu over all nodes u ∈ V with Bu > 0 and over all t ∈ T . Therefore,
a solution of cost O(log k)C̄ can be found in randomized (due to the choice of
σ) polynomial time by searching for θ exhaustively, instead of choosing it from
a continuous distribution.

Moreover, Călinescu et al. [15], proposed an improved rounding procedure of
the optimal solution to (MLP) tailored to the special case of planar graphs. This
improved rounding procedure guarantees an O(r3) approximation factor for the
case of Kr,r−minor free graphs. This becomes a O(1) approximation factor for
the case of planar graphs, since they are K3,3−minor free graphs. Finally, they
also proved a lower bound of O(

√
log k) on the integrality gap of (MLP).

The results of Călinescu et al. [15], and especially their result for the planar
case as well as their lower bound on the integrality gap of (MLP), can be viewed
as a counterpart of results proposed in the context of the multipair cut problem
[40,41,57,72]. Recall that this last problem can be viewed as another generaliza-
tion of MCP, not directly comparable to 0-EP, in the sense that neither problem
is a special case of the other. It is, however, interesting that techniques proposed
in this context, such as region growing and expander graphs, can be adapted in
the case of 0-EP.

3 Early Results for the LaP

The first results for LaP were obtained in the context of distributed software
engineering, where LaP was stated as a task assignment problem. Throughout
this section, this task assignment problem is referred as LaP, tasks are referred
as objects and processors as labels. Although MCP has not been yet stated,
Stone [71] established a close relationship MCP and the uniform metric LaP.
This relationship motivated the study of MCP [28,14] and inspired a large body
of work during the ’80’s. In this section we present the results based on this LaP-
MCP relationship as well as additional results for LaP obtained in this context.
Surprisingly, this LaP-MCP relationship and almost the same results presented
also in the late ’90’s in the context of image processing.

3.1 The k = 2 Case

For the case of k = 2 labels (processors) Stone [71] proposed a simple reduction
to the minimum cut problem by constructing a weighted assignment graph G′ =
(V ′, E′) as follows: Two nodes are added to the original object (task) graph G =
(V,E), corresponding to labels L = {a, b}. Edges are also added from each node
u ∈ V to both a and b. That is, V ′ = V ∪L and E′ = E ∪ {(u, a)|u ∈ V, a ∈ L}.
The weights of the edges of the assignment graph G′ are:
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w′(u, a) = c(u, b), u ∈ V,
w′(u, b) = c(u, a), u ∈ V, and
w′(u, v) = w(u, v), (u, v) ∈ E.

Any a−b cut of G′ is associated to a solution of the original problem such that
the nodes remaining connected to a and b, after the edges in cut are removed, are
assigned the corresponding labels. Given the weights in G′, it is obvious that the
cost of any a− b cut is equal to the cost of the associated labeling. Therefore, an
optimal labeling is associated to a minimum a−b cut of G′ i.e. LaP is polynomial
solvable for k = 2 labels. Note that the same result was, also, obtained, later,
by Besag [7] and Greig et al. [46] in the context of image processing.

3.2 The Uniform Metric Case

Stone [71] tried also to extend his idea to the case of k > 2 labels and established
the relationship between the uniform metric LaP and MCP. Boykov et al. [10]
considered also the connection between the uniform LaP and MCP in the context
of image processing.

Similarly with the k = 2 case, Stone proposed the construction of a k-label
assignment graph G′ = (V ′, E′). Now, k nodes are added to the original object
graph G = (V,E), each one corresponding to a label in L. Edges are also added
from each node u ∈ V to each of the nodes a ∈ L. That is, V ′ = V ∪ L and
E′ = E∪{(u, a)|u ∈ V, a ∈ L}. The weights of the edges of the assignment graph
G′ are:

w′(u, a) =
∑

b∈L c(u, b)
n− 1

− c(u, a), u ∈ V, a ∈ L, and

w′(u, v) = w(u, v), (u, v) ∈ E.

It is easy to verify that the cost of any multiterminal cut of G′, with the L
nodes considered as terminal nodes, is equal to the cost of the labeling associated
to this cut, i.e. the objects remaining connected to node a ∈ L, after the edges
in the cut are removed, are labeled a. After the introduction of the MCP by
Dalhlaus et. al [28], Magirou and Milis [64] have shown formally the polynomial
equivalence of uniform metric LaP and MCP.

Stone [71] has been also proposed the reduction of the size of a LaP instance
based on the same idea which used later by Dahlhaus et al. [28] in the Algorithm
D+ for the MCP (see Section 2.1): He considered an a − ā minimum cut of
G′, where a ∈ L and ā a node formed by lumping together all the remaining
labels b ∈ L, b �= a (i.e. the weights of the edges (u, ā), u ∈ V are w′(u, ā) =∑

b∈L\{a}w
′(u, b)). In fact, he proved that objects labeled a by a minimum a− ā

cut, retain this label in the optimal labeling. Thus the application of this process
for all labels, results in a partial labeling which is consistent with the optimal
one.

One can think that labeling all unlabeled objects by the label a, for which
the a − ā cut has the greatest cost, leads to a (2-2/k)-approximation algo-
rithm for the uniform LaP as the Algorithm D+ for the MCP. Unfortunately, it is
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easy to see that the LaP to MCP reduction is not approximation preserving.
Algorithm D+ requires non-negative edge weights and this does not hold for
the w′(u, a) weights of G′. Making these weights positive is not a problem: since
for each object u ∈ V , the number of edges (u, a), a ∈ L, appearing in any
multiterminal cut is exactly k − 1, this can be done by adding to all of them
an invariant depending on assignment costs c(u, a), u ∈ V, a ∈ L. However, the
2 − 2/k factor obtained by applying Algorithm D+ after this transformation
refers to a LaP instance different than the original one. In fact, the cost of the
LaP solution obtained this way can be arbitrarily far from the optimum solution
of the original instance. Note that the modified idea proposed by Magirou [63]
(see Section 2.1) for MCP suffers, also, from the same drawback.

Although the reduction of size of a LaP instance can not lead to an approxima-
tion algorithm, it was the starting point of the most known heuristic algorithm
for the uniform metric LaP, proposed by Lo [62]. In fact, this algorithm deals
with the labeling of objects that remain unlabeled after an iterative application
of Stone’s procedure. However, computational results reported in [63] show that
for large sized problems both Stone’s and Magirou’s reductions tend to become
useless. Kopidakis et al. [59] and Milis [65] presented different departures from
the basic Stone’s idea and proposed new heuristics, which outperform the Lo’s
one. Fernandez de la Vega and Lamari [36] studied special cases of uniform LaP
(complete object graph and bi-valued assignment costs or constant weights) and
proposed several approximation results.

3.3 The Linear Metric Case

In the linear metric case we consider w.l.o.g. L = {1, 2, ..., k}, i.e. the labels are
the integers 1, 2, ..., k, and d(a, b) = |a− b|. For this case a polynomial time algo-
rithm was first proposed by Lee et al. [60] in the context of distributed software
engineering. Boykov et al. [10,75] as well as Ishikawa and Geiger [51] obtained
also the same result in the context of image processing. We present here the first
algorithm proposed for this case by Lee et al. [60]. We call it Algorithm L+.

From the object graph G = (V,E), an assignment graph G′ = (V ′, E′) is
constructed. This is done by copying k−1 times the graph G and adding a source
and a sink node. The a-th copy of G, 1 ≤ a ≤ k−1 is denoted by Ga = (V a, Ea)
and the a-th copy of node u ∈ V is denoted by ua ∈ V a. The source and the sink
nodes are denoted by u0 and uk, respectively, and for notational convenience it is
assumed that the source node uo (resp. and the sink node uk) represents the 0-th
(resp. the k-th copy) of all nodes in V , i.e. v0 ≡ u0 and vk ≡ uk, for all v ∈ V .
Hence, V ′ = {u0, uk} ∪ (∪k−1

a=1)V
a. Edges Hu = {(ua, ua+1)|0 ≤ a ≤ k − 1}, for

all u ∈ V , are also added in G′. Hence, E′ = E
⋃
H, where E =

⋃k−1
a=1 E

a and
H =

⋃
u∈V Hu. Figure 2 shows this construction for an edge (u, v) ∈ E.

Let Φ ⊂ E′ be the set of edges in a u0 − uk cut of graph G′. Such a u0 − uk

cut is called feasible if |Φ
⋂
Hu| = 1, for all u ∈ V (an example of a feasible

u0 − uk cut is shown in Figure 2 by the dotted line). It is clear that a labeling
is associated to any feasible cut, such that f(u) = a+ 1, if Φ

⋂
Hu = (ua, ua+1).
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Fig. 2. The construction for the linear metric case

Theorem 4. [60] If the weights of the edges of G′ are:
w′(ua, va) = w(u, v), u, v ∈ V, 1 ≤ a ≤ k − 1, and
w′(ua, ua+1) = c(u, a+1)+W,u ∈ V, 0 ≤ a ≤ k−1, where W > (n−1)

∑
e∈E

w(e),

then an optimal labeling is associated to a minimum u0 − uk cut.

Proof. Consider first the cost of a feasible u0 − uk cut of the graph G′. The set
Φ of the edges in such a cut can be written as Φ = ΦH

⋃
ΦE , where ΦH = Φ

⋂
H

and ΦE = Φ
⋂
E . Let f be the labeling associated to this cut and A(f) and S(f)

be its assignment and separation costs, respectively.
Since u0 − uk is a feasible cut, it follows that:

(i) For each node u ∈ V , there exists an a, 0 ≤ a ≤ k− 1, such that ΦH
⋂
Hu =

(ua, ua+1), that is w′(ua, ua+1) = c(u, a+ 1) +W = c(u, f(u)) +W . Therefore,
C(ΦH) =

∑
u∈V [c(u, f(u)) + nW ] = nW +

∑
u∈V c(u, f(u)) = A(f) + nW .

(ii) For each edge (u, v) ∈ E, there exist a, b, 0 ≤ a, b ≤ k − 1, such that
(ua, ua+1), (vb, vb+1) ∈ ΦH. Then, it is easy to see that exactly |a− b| copies of
the edge (u, v) (each of weight w(u, v)) belong to ΦE . Since |a−b| = d(f(u), f(v)),
it follows that C(ΦE ) =

∑
(u,v)∈E w(u, v)d(f(u), f(v)) = S(f).

Hence, C(Φ) = C(ΦH) + C(ΦE ) = A(f) + nW + S(f) = C(f) + nW , and
since nW is an invariant for all feasible cuts, a minimum feasible u0 − uk cut is
associated to an optimal labeling.

To complete the proof it is enough to prove that a minimum u0 − uk cut is a
feasible one. Let Φ∗ ⊂ E′ be a minimum u0−uk cut, and assume by contradiction
that it is infeasible. It is |Φ∗

H
⋂
Hu| ≥ 1, for all u ∈ V , for otherwise for some

u ∈ V the path u0, u1, ..., uk is not broken by Φ (recall that Φ is a u0 − uk cut).
Therefore, a feasible cut Φ can be constructed from Φ∗ such that |ΦH

⋂
Hu| = 1,

for all u ∈ V . Clearly ΦH has at least one fewer H-edge than Φ∗
H , and hence,

C(Φ∗
H)− C(ΦH) > W . Moreover,

C(ΦE ) =
∑

(u,v)∈E w(u, v)d(f(u), f(v)) ≤
∑

(u,v)∈E w(u, v)(n− 1) < W.
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Therefore,

C(Φ∗)− C(Φ) = (C(Φ∗
E ) + C(Φ∗

H))− (C(ΦE ) + C(ΦH))
= (C(Φ∗

H)− C(ΦH)) + (C(Φ∗
E )− C(ΦE )

> W + C(Φ∗
E )− C(ΦE ) > W + C(Φ∗

E )−W ≥ 0,

that is, C(Φ∗) > C(Φ), a contradiction.

3.4 The General Case

In the general case of the LaP the distance function, d(·, ·), can be any (possibly
non-metric) function. For this case, dynamic programming polynomial time op-
timal algorithms have been proposed for special classes of the object graph G.
Bokhari [9] presented an O(nk2) algorithm for trees and Towesly [73] an O(nk3)
algorithm for series-parallel graphs. Fernádez-Baca, [35] presented an O(nkr+1)
algorithm for partial r-trees and an O(nk�r/2�+2) algorithm for almost trees
with parameter r. Fernández-Baca’s algorithms cover the former ones, since trees
are either partial 1-trees or almost trees with parameter 0, while series-parallel
graphs are partial 2-trees (recall the analogous results for MCP [23]). Further-
more, a lot of branch-and-bound exact algorithms have been proposed for the
general case LaP on arbitrary object graphs [8,21,64,70].

4 Local Search Approximation Algorithms

Local search is one of the most successful methods of attacking combinatorial
optimization problems. Roughly speaking, local search algorithms start from an
arbitrary initial feasible solution and look for an improved one in its neighbor-
hood (i.e. those solutions that do not differ substantially from the initial one).
As far as an improved solution exists, it is adopted and the search is repeated
from this new solution; otherwise a local optimum is reached (with respect to
the chosen neighborhood). In the case of NP-hard problems we are interested on
local search obtaining a local optimum solution of cost within some guaranteed
factor from the (global) optimum.

Local search approximation algorithms have been also proposed for LaP. Such
a local improvement idea was employed, implicitly, in a polynomial time heuristic
for the uniform metric LaP, proposed by Milis [65], in the context of distributed
software engineering. Boykov et al. [12] proposed, independently, in the context
of image processing, the iterative use of the same idea and obtained the first
algorithm with constant approximation ratio for the uniform metric LaP. Re-
cently, Gupta and Tardos [47] proposed also a local search algorithm for the
truncated linear metric LaP. Note, that both algorithms are based on finding
minimum cuts on appropriately constructed graphs.

4.1 The Uniform Metric Case

Consider an arbitrary initial objects’ labeling f and let Va, a ∈ L be the set of
objects labeled a in f . The neighborhood, Na(f), of a labeling f , with respect
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to a label a, is defined by allowing to any subset of objects to change their labels
to a. That is,

Na(f) = {f ′|f ′(u) = a if u ∈ V ′
a ⊇ Va, and f ′(u) = f(u), otherwise}.

A labeling f ′ ∈ Na(f), is called by Boykov et al. [12] an a-expansion of f .
They also proposed the construction of a appropriate graph Ga such that an
optimal a-expansion of f (i.e. the labeling f ′ ∈ Na(f) of minimum cost) can be
found by a minimum cut computation in Ga. Instead of their construction, we
present here a much simpler one proposed in [65].

The graph Ga = (V ′, E′) is constructed by adding two additional nodes a and
ā to the original object graph, the first representing the label a and the second
the labels L\{a}. Edges are also added between each node u ∈ V and the nodes
a and ā. Thus, V ′ = V ∪ {a, ā} and E′ = E ∪ {(u, a)|u ∈ V } ∪ {(u, ā)|u ∈ V }.
Then, an optimal a-expansion can be found using next theorem.

Theorem 5. If the weights of the edges of Ga are

w′(u, ā) = c(u, a), u ∈ V,

w′(u, a) = c(u, f(u)) +
1
2

∑
(u,v)∈E,

f(u) �=f(v)

w(u, v), u ∈ V, and

w′(u, v) =

⎧⎨⎩
w(u, v), if f(u) = f(v),

(u, v) ∈ E,
1
2w(u, v), otherwise,

then an optimal a-expansion of a given labeling f is the labeling

f ′(u) =

⎧⎨⎩
a, if u ∈ Va ∪ V ′

a ,
u ∈ V,

f(u) otherwise,

where V ′
a is the set of nodes which remain connected to a by the minimum

a− ā cut of Ga.

Proof. Given a labeling f , any a− ā cut of Ga is associated with a labeling f ′

such that f ′(u) = a, if u ∈ V ′
a ∪ Va, and f ′(u) = f(u), otherwise. Any labeling

f ′ (and hence the one associated with a minimum a − ā cut) is clearly an a-
expansion of f . It is, therefore, enough to prove that the cost of any a − ā cut
of Ga is equal to the cost of the associated labeling f ′.

For the sake of simplicity, consider only two related objects u and v, (u, v) ∈
E. There are two cases for the labeling of u and v in f :

(i) u and v have the same label in f , i.e. f(u) = f(v).
(ii) u and v have different labels in f , i.e. f(u) �= f(v).

For each case there are four possible cuts/labelings as it is shown in Figure 3,
where the weights obtained by the equations of the theorem are also indicated.
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w(u,v)

u

aa

   v

c(u, f(u))

c(v, f(v))c(v,a)

(i)   f(u) = f(v)

c(u,a) w(u,v)

u

aa

   v

c(v, f(v))+c(v,a)

(ii)  f(u)  = f(v) 

c(u,a) c(u, f(u))+w(u,v)

w(u,v)
2

22

Fig. 3. The construction for the uniform metric case

It is easy to verify that, in both cases, the cost of all possible a − ā cuts is
equal to the cost of the associated labelings. The case when an object is related
to two or more other objects is captured by the sum in the second equation.

Given Theorem 5 the following local search algorithm follows.

Algorithm BVZ;
choose an initial labeling f ;
repeat

for all labels a ∈ L do
find an optimal a-expansion f ′ of f ;
if C(f ′) < C(f) then f = f ′;

until no improvement is possible for any label;

Boykov et al. [12] proved the next quite interesting theorem. We present here
their proof in a compact form, implied by its generalization in [47].

Theorem 6. [12] The cost of the labeling obtained by algorithm BVZ is within
a factor of 2 of the optimum.

Proof. Let f∗ be an optimum labeling. Let also V ∗
a be the set of nodes labeled

with a in f∗, E∗
a be the set of edges with both of their endpoints in V ∗

a , and E∗
ab

be the set of edges with exactly one of their endpoints in V ∗
a .

It is clear that V =
⋃

a∈L V
∗
a and E = EB

⋃
(
⋃

a∈L E
∗
a), where EB =⋃

a∈LE
∗
ab.

Let f be a labeling and f ′ be an optimal a-expansion of f . A lower bound
on the decrease of the cost C(f) in the movement from f to f ′ can be obtained
by considering the a-expansion fa of f , which labels a all nodes in V ∗

a . That is
C(f)−C(f ′) ≤ C(f)−C(fa). If f is the local optimum labeling obtained by the
algorithm BVZ, then this decrease is clearly non-positive, that is C(f) ≤ C(fa).
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What changes in the cost C(f), in the movement from f to fa, is only the
assignment cost A(Va) of the nodes in V ∗

a and the separation costs S(E∗
a) and

S(E∗
ab) of the edges in E∗

a and E∗
ab, respectively. In particular, in fa:

(i) The assignment cost of the nodes in V ∗
a is Aa(V ∗

a ) = A∗(V ∗
a ) (they are labeled

as in f∗).
(ii) The separation cost of the edges in E∗

a is Sa(E∗
a) = 0 (their both endpoints

are labeled a).
(iii) The separation cost for the edges in E∗

ab is Sa(E∗
ab) ≤ S∗(E∗

ab) (since Va ⊇
V ∗

a ).

Therefore,
A(V ∗

a ) + S(E∗
a) + S(E∗

ab) ≤ A∗(V ∗
a ) + S∗(E∗

ab).
Summing up this inequality, for all a ∈ L, and taking into account that the

separation cost of the edges in E∗
ab is counted twice in this summation, we obtain

A(V ) + S(E)− S(EB) + 2S(EB) ≤ A∗(V ) + 2S∗(EB),
and since S∗(EB) = S∗(E), it follows that

A(V ) + S(E) + S(EB) ≤ A∗(V ) + 2S∗(E), that is C(f) ≤ 2C(f∗).

The complexity of the algorithm BVZ is determined by the number of itera-
tions of its main repeat-until loop. Boykov et al. [12] report that, for applications
they have considered in the context of image processing, the algorithm stopped
after a few iterations. However, no bound on the number of iterations of the
algorithm is known, unless the trivial one of kn. They also report that most of
the labeling improvements were obtained in the first iteration of the algorithm,
and this observation agrees with computational results reported in [65], for the
evaluation of a heuristic algorithm which performs a single iteration of the al-
gorithm BVZ. More positively, Gupta and Tardos [47] observed that the proof
of Theorem 6 can be adapted to show that the algorithm BVZ provides a 2 + ε
approximate solution after O(logC0 + log 1

ε ) iterations of its main loop, where
C0 is the cost of the initial labeling. In fact, the algorithm BVZ can be viewed
as a special case of their analogous result for the truncated linear metric case
(see next subsection).

Boykov et al. [12,75] have also shown that an optimum a-expansion can be
found similarly for any metric distance function. However, in the general metric
case, the approximation factor of an analogous local search algorithm is ρ =

2 · max{d(a, b)}
mina�=b{d(a, b)}

, i.e. the cost of a local optimum solution can be arbitrary far

from the optimum one.

4.2 The Truncated Linear Metric Case

In the truncated linear metric case we consider w.l.o.g. that L = {1, 2, ..., k},
i.e. the labels are the integers 1,2,...,k, and d(a, b) = min{M, |a − b|}. Note,
that this metric is the most natural and robust non-uniform metric and has
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direct applications in problems arising in image processing context. For this case,
the approximation factor proposed by Boykov et al. for the general metric case
becomes ρ = 2M . However, Gupta and Tardos [47], generalizing the ideas pro-
posed for the linear and uniform metric cases, presented a local search algorithm
obtaining a solution of cost within a factor of 4 of the optimum.

The neighborhood of labeling f is now considered with respect to an interval
of the set of labels {1, 2, ..., k}, instead to a single label. Let I ⊆ L be an interval
of the set of labels and VI be the set of objects with their f labels in I. The
neighborhood, NI(f), of a labeling f , with respect to the interval I, is defined
by allowing to any subset of objects to change their labels to a label in I, i.e.

NI(f) = {f ′|f ′(u) ∈ I if u ∈ V ′
a ⊇ Va, and f ′(u) = f(u), otherwise}.

Therefore, a local improvement step results in a labeling f ′, such that each
object either keeps its label or it takes a label in I. Such a labeling f ′ is called
an I-expansion of f .

To determine the length of intervals to be considered recall that the (untrun-
cated) linear metric case is polynomial solvable (see Section 3.2). It is, therefore,
natural to take intervals of length at most M , since for such an interval the
truncated linear metric is reduced to a linear metric. In fact, the length of any
interval I is considered to be exactly M , unless I is an initial or final portion
of L. Such an interval I can be chosen by simply choosing a random integer r,
such that −M < r < k, and setting I to be the part of the interval of length M
starting from r + 1 that lies in L, i.e. I = {r + 1, r+ 2, ..., r+M} ∩ {1, 2, ..., k}.
It is clear that the number of all possible intervals to be considered is k +M .

The choice of a random integer r implies a random partition of L into a set
of intervals S = {I0, I1, ..., IS}, such that each interval Is is starting either from
[r+ s ·M + 1] (modk) or from 1. However, it is easy to see that choosing r from
{1, 2, ...,M} is enough to produce all combinatorial distinct partitions of L.

Given a labeling f and an interval of labels I = {i + 1, i + 2, ..., j}, where
j − i ≤ M , Gupta and Tardos [47] proposed the construction of a graph GI

such that, given two certain terminal nodes s and t of GI , each s − t cut in
GI is associated with a labeling f ′ which is an I-expansion of f . We do not
present here the details of their construction, which puts together and generalizes
the a-expansion idea from the uniform metric case and ideas proposed for the
linear metric case (see Section 3.2). However, the construction proposed does not
guarantee finding an optimal I-expansion. In fact, the cost of a minimum s− t
cut in GI can be greater than the cost of the associated labeling f ′. Fortunately,
the gap between these two costs can be bounded as in the next lemma.

Lemma 2. [47] The gap between the cost of a minimum s − t cut in GI

and the cost of its associated labeling f ′ is due to a possible overestimation
of the separation cost of the labeling f ′. In fact, for the edges (u, v) with ex-
actly one of their endpoints having a f ′ label in I, d(f ′(u), f ′(v)) can be re-
placed by d(f ′(u), i + 1) + d(i + 1, f ′(v)) and it holds that d(f ′(u), f ′(v)) ≤
d(f ′(u), i+ 1) + d(i+ 1, f ′(v)) ≤ 2M.
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Given this lemma, the following local search algorithm becomes of interest.

Algorithm GT;
choose a random partition S of L;
choose an initial labeling;
repeat

for all k +m possible intervals I do
find a minimum cut in GI and the associated labeling f ′;
if C(f ′) < C(f) then f = f ′ ;

until no improvement is possible for any interval I;

Theorem 7. [47] The cost of the labeling obtained by algorithm GT is within
a factor of 4 of the optimum one.

Proof. Let f∗ be the optimum labeling. For an interval I of labels, let V ∗
I be

the set of nodes with their f∗-labels in I, and E∗
I be the set of edges with both

of their endpoints having f∗-labels in I. Let, also, E∗
I− (resp. E∗

I+) be the set of
edges with only the higher (resp. the lower) f∗-label of their endpoints in I.

It is clear that V = ∪I∈SV
∗
I ,
⋃

I∈S E
∗
I+ = ∪I∈SE

∗
I− = ES (ES is used to

denote the set of edges whose endpoints have f∗-labels in different intervals of
the partition S). Hence, E = ES ∪ (∪I∈SEI).

Let f be a labeling and f ′ be its I-expansion found by the algorithm. A lower
bound on the decrease of the cost C(f) in the movement from f to f ′ can be
obtained by considering the I-expansion f I of f , which labels all nodes in V ∗

I by
their f∗-labels. That is C(f)−C(f ′) ≤ C(f)−C(f I). If f is the local optimum
labeling obtained by the algorithm, then this decrease is clearly non-positive,
that is C(f) ≤ C(f I).

What changes in the cost C(f), in the movement from f to f I , is only the
assignment cost A(V ∗

I ) of the nodes in V ∗
I and the separation costs S(E∗

I ),
S(E∗

I+) and S(E∗
I−) of the edges in E∗

I , E∗
I+ and E∗

I− respectively. For the edges
(u, v) ∈ S(E∗

I+) ∪ S(E∗
I−), assume w.l.o.g. that the f∗-label of their u endpoint

is in I. In particular, in f I :

(i) The assignment cost of the nodes in V ∗
I is AI(V ∗

I ) = A∗(V ∗
I ) (they have their

f∗-labels).
(ii) The separation cost of the edges in E∗

I is SI(E∗
I ) = S∗(E∗

I ) (both of their
endpoints have their f∗-labels).
(iii) The separation cost of the edges (u, v) ∈ E∗

I− is, by Lemma 2,

SI(E∗
I−) ≤

∑
(u,v)∈E∗

I−

w(u, v)[d(f∗(u), i+ 1) + d(i+ 1, f(v))].

But, (u, v) ∈ E∗
I− implies f∗(v) ≤ i. Thus,

SI(E∗
I−) ≤

∑
(u,v)∈E∗

I−

w(u, v)[d(f∗(u), f∗(v))+M ] ≤ S∗(E∗
I−)+M

∑
(u,v)∈E∗

I−

w(u, v).
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(iv) The separation cost of the edges (u, v) ∈ E∗
I+ is, by Lemma 2,

SI(E∗
I+) ≤

∑
(u,v)∈E∗

I+

w(u, v)[d(f∗(u), i+1)+d(i+1, f(v))] ≤ 2M
∑

(u,v)∈E+
I

w(u, v).

Therefore,

A(V ∗
I ) + S(E∗

I ) + S(E∗
I−) + S(E∗

I+)

≤ A∗(V ∗
I ) + S∗(E∗

I ) + S∗(E∗
I−) +M

∑
(u,v)∈E∗

I−

w(u, v) + 2M
∑

(u,v)∈E∗
I+

w(u, v)

Summing up last inequality, for all intervals I in the random partition S
of L, and taking into account that the separation cost of the edges in E∗

S is
counted twice in this summation, we obtain

A(V ) + S(E) + S(ES) ≤ A∗(V ) + S∗(E) + 3M
∑

(u,v)∈ES

w(u, v),

that is, C(f) ≤ C(f∗) + 3M
∑

(u,v)∈ES

w(u, v).

Consider now the expected value of
∑

(u,v)∈ES w(u, v). The probability that
an edge (u, v) belongs to ES is equal to the probability that f∗(u) and f∗(v)
lie in different intervals of the partition S, which is exactly d(f∗(u),f∗(v))

M (recall
how a random partition S can be obtained). Hence,

E[M
∑

(u,v)∈ES

w(u, v)] = M
∑

(u,v)∈E

d(f∗(u), f∗(v))
M

w(u, v) = S∗(E).

Therefore, C(f) ≤ C(f∗) + 3S∗(E) ≤ 4C(f∗).

The algorithm KT terminates after an exponential number of iterations of
its main repeat-until loop. However, Gupta and Tardos [47], proved also that
this algorithm provides a 4 + ε approximate solution after O( k

M (logC0 + log 1
ε ))

iterations of its main loop, where C0 is the cost of the initial labeling.
It is easy to see that algorithm GT reduces to the algorithm BVZ in the case of

M = 1, and to algorithm L+ in the case of M ≤ k. In the first case the truncated
linear metric becomes a uniform metric and each interval I of labels consists of
a single label. In the second case the truncated linear metric becomes a linear
metric and a single interval I of labels is considered. However, in both BVZ and
L+ algorithms the cost of a minimum cut in the graphs constructed coincides
with the cost of the associated labeling. Thus, in the first case an optimal local
movement can be found, while in the second case an optimal solution is directly
obtained. It is an interesting open question to construct a graph providing an
optimal I-expansion for the truncated linear metric case LaP too.
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5 LP-Based Approximation Algorithms

Recently, the LP-relaxation method was used to provide approximation algo-
rithms for LaP. Kleinberg and Tardos [58] and Chekuri et al. [19] presented two
different LP-relaxations of the problem and they obtained the best known ap-
proximation results for several LaP variants. In this section we present these
recent results classified according the problem variants.

5.1 The Uniform Metric Case

Kleinberg and Tardos [58] presented an LP-relaxation for the case of uniform
LaP, which is a natural adaptation of the (SLP) relaxation proposed by Călinescu
et al. for the MCP [14] and studied, also, in [27] and [52].

A labeling f can be represented by 0-1 variables x(u, a), u ∈ V, a ∈ L,
such that (i) x(u, a) = 1, if f(u) = a, and x(u, a) = 0, otherwise, and (ii)∑

a∈L x(u, a) = 1, for all u ∈ V . Then, the cost of a labeling can be written as

C(f) =
∑

u∈V,a∈L

c(u, a)x(u, a) +
∑

(u,v)∈E,a∈L

w(u, v)
1
2

∑
a∈L

|x(u, a)− x(v, a)|

Using variables z(e), to express the separation cost due to each edge e = (u, v) ∈
E, and variables z(e, a), to express the absolute value |x(u, a)− x(v, a)| for each
label a ∈ L, the uniform LaP can be formulated as the following linear integer
program.

(UIP) Minimize
∑

u∈V,a∈L c(u, a)x(u, a) +
∑

e∈E w(e)z(e)
subject to

∑
a∈L x(u, a) = 1, ∀v ∈ V (1)

z(e) = 1
2

∑
a∈L z(e, a), ∀e ∈ E (2)

z(e, a) ≥ x(u, a)− x(v, a), ∀e ∈ E, ∀a ∈ L (3)
z(e, a) ≥ x(v, a) − x(u, a), ∀e ∈ E, ∀a ∈ L (4)
x(u, a) ∈ {0, 1}, ∀u ∈ V, ∀a ∈ L (5)

Let (ULP) be the LP-relaxation of (UIP) obtained by replacing the integrality
constraints (5) with x(u, a) ≥ 0, u ∈ V, a ∈ L. Let x̄(u, a), u ∈ V, a ∈ L
be a fractional optimal solution to (ULP). This fractional solution is rounded
to an integer one by the following procedure, where values x̄(u, a) are used as
probabilities that object u is labeled a. In fact, objects are labeled in phases.

Rounding procedure:
repeat

choose a label a uniformly at random from L;
choose a real θ uniformly at random from [0,1];
for all unlabeled objects u ∈ V do

if x̄(u, a) ≥ θ then label u with a;
until all objects are labeled;
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Theorem 8. [58] The above algorithm is a 2-approximation algorithm for the
uniform LaP.

Proof. Consider first the assignment cost for an object u ∈ V . Until object u
is labeled, the probability it is labeled a in a given phase is exactly x̄(u, a)/k.
Thus, the probability that an unlabeled object u is labeled in a single phase is
precisely 1/k. Further, over all phases the probability that an object u is labeled
a is Pr[f(u) = a] = x̄(u, a).

Consider next the separation cost of an edge (u, v) ∈ E. The probability that
objects u and v are labeled with different labels is:

Pr[f(u) �= f(v)] ≤ Pr[exactly one of u, v is labeled in one phase]
Pr [at least one of u, v is labeled in one phase]

≤
1
k

∑
a∈L |x̄(u, a)− x̄(v, a)|

1
k

=
∑
a∈L

z̄(e, a) = 2z̄(e).

Therefore, the expected cost of the integer solution obtained by the rounding
procedure is

E[CR] =
∑

u∈V,a∈L

c(u, a)Pr[f(u) = a] +
∑

(u,v)∈E

w(e)Pr[f(u) �= f(v)]

≤
∑

u∈V,a∈L

c(u, a)x̄(u, a) + 2
∑

(u,v)∈E

w(e)z̄(e) = Ā(V ) + 2S̄(E) ≤ 2C̄.

As it is mentioned in [58], this rounding procedure can be derandomized using
the method of conditional probabilities.

It is easy to see that there is an asymptotic lower bound of 2 on the integrality
gap of (ULP) relaxation. Consider as objects’ graph the complete graph Kk,
with w(e) = 1, for all edges, and all assignment costs equal to 0, except costs
c(i, i), 1 ≤ i ≤ k, which are equal to infinity. The optimum integral solution is:
for some i, label all objects j �= i, by label i and the object i by any other label.
The cost of this solution is k − 1, due to separation cost incurred by the k − 1
edges incident to node i. An optimal fractional solution is x̄(i, j) = 1

k−1 for all
i �= j and x̄(i, j) = 0 for all i = j. The cost of this solution is equal to the
separation cost of all k(k−1)/2 edges of the objects’ graph. The separation cost
for each edge is 1

k−1 , that is, a total cost of k/2. Hence, a lower bound of 2−2/k
on the integrality gap follows.

Although (ULP) relaxation generalizes (SLP) relaxation, proposed by Cali-
nescu et al. for MCP [14], a different rounding scheme is used, due to the presence
of assignment costs c(u, a). This results on an integrality gap of 2 for (ULP) in
contrast with the 1.5 − 1/k approximation factor and the 8/(7 + 1

k−1 ) lower
bound on the integrality gap of (SLP).
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Chekuri et al. [19] proposed another natural integer programming formulation
of the general case LaP. Similarly with (UIP), variables 0-1 variables x(u, a), u ∈
V, a ∈ L, are also used to express a labeling f . However, instead of variables
ze and zea in (UIP), they use 0-1 variables x(u, a, v, b) to express directly the
labeling of the endpoints u, v of an edge (u, v) ∈ E, i.e. x(u, a, v, b) = 1, if
f(u) = a and f(v) = b, and x(u, a, v, b) = 0, otherwise. Thus, the general case
LaP can be formulated as following.

(GIP) Minimize
∑

u∈V,a∈L

c(u, a)x(u, a) +
∑

(u,v)∈E
a,b∈L

w(u, v)d(a, b)x(u, a, v, b)

subject to
∑
a∈L

x(u, a) = 1, ∀u ∈ V (1)

∑
b∈L

x(u, a, v, b)− x(u, a) = 0, ∀u ∈ V, ∀(u, v) ∈ E, ∀a ∈ L (2)

x(u, a, v, b)− x(v, b, u, a) = 0, ∀u, v ∈ V, ∀a, b ∈ L (3)
x(u, a) ∈ {0, 1}, ∀u ∈ V, ∀a ∈ L (4)
x(u, a, v, b) ∈ {0, 1}, ∀u, v ∈ V, ∀a, b ∈ L (5)

Constraints (2) force consistency in the edge variables: if f(u) = a and
f(v) = b, then x(u, a, v, b) is forced to be 1. Constraints (3) express the fact
that x(u, a, v, b) and x(v, b, u, a) refer to the same edge. Let (GLP) be the LP-
relaxation of (GIP) obtained by relaxing the integrality constraints (4) and (5)
and allowing variables x(u, a) and x(u, a, v, b) to take any non-negative value.
Observe that constraints (2) are quite important for this relaxation.

For the rest of this subsection, consider (L, d) in (GLP) to be the uniform
metric. It is clear that variables x(u, a) determine completely the cost of both
(GLP) and (ULP). Let x̄(u, a) be an optimal fractional solution to (GLP) and
consider the cost of both (GLP) and (ULP) on x̄(u, a). The assignment cost
for both (GLP) and (ULP) is clearly the same. The contribution of an edge
(u, v) ∈ E to the separation cost of (ULP) is

1
2

∑
a∈L

w(u, v)|x̄(u, a)− x̄(v, a)| = 1
2

∑
a∈L

w(u, v)|
∑
b∈L

x̄(u, a, v, b)−
∑
b∈L

x̄(v, a, u, b)|

≤ 1
2

∑
a∈L

w(u, v)|
∑

b∈L,b�=a

x̄(u, a, v, b) +
∑

b∈L,b�=a

x̄(v, a, u, b)|

=
1
2

∑
a∈L

∑
b∈L,b�=a

2w(u, v)x̄(u, a, v, b) =
∑
a∈L

∑
b∈L

w(e)d(a, b)x̄(u, a, v, b).

The last term is the contribution of the edge (u, v) ∈ E to the separation
cost of (GLP). Hence, the cost of (ULP) on x̄(u, a) is no more than the cost
of (GLP). Therefore, applying the rounding procedure proposed for (ULP), to
the fractional solution x̄(u, a) to (GLP) yields the same approximation factor.
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Moreover, the Kk graph instance used to show the 2 − 2/k lower bound on
integrality gap of (ULP), can be also used to show the same lower bound on the
integrality gap of (GLP) for the uniform metric LaP.

5.2 The Linear Metric Case

The (GLP) relaxation of Chekuri et al. [19] obtains also another optimal polyno-
mial algorithm for the linear metric case LaP, i.e. the cost of an optimal solution
to (GLP) is equal to the cost of an optimal solution to (GIP). In fact, the fol-
lowing procedure is proposed to round an optimal solution x̄(u, a) to (GLP) to
an integer optimal one for the linear metric LaP.

Rounding procedure:
choose a real θ uniformly at random from [0,1];
for all u ∈ V do

for all a = 1, 2, ..., k do
h(u, a) =

∑a
b=1 x̄(u, b);

if θ ≤ h(u, 1) then f(u) = 1;
for all a = 2, 3, ..., k do

if h(u, a− 1) < θ ≤ h(u, a) then f(u) = a;

It is clear that this rounding procedure (i) labels each object once, since for
each object u a unique label a satisfies h(u, a− 1) < θ ≤ h(u, a), and (ii) labels
all objects, since h(u, k) = 1. In fact, this rounding procedure can be easily
generalized to the case where the labels are arbitrary points on the real line.

Theorem 9. [19] The integrality gap of (GLP) relaxation for the linear metric
case is 1.

Proof. It is enough to prove that the expected cost of the labeling f obtained
by the rounding procedure is no more than the cost of (GLP) on x̄(u, a).

First, it can be readily verified that for an object a ∈ V , Pr[f(u) = a] =
x̄(u, a).

It is, also, proven in [19] that for an edge (u, v) ∈ E,

E[d(f(u), f(v))] =
∑
a∈L

|h(u, a)− h(v, a)| ≤
∑

a,b∈L

d(a, b)x̄(u, a, v, b).

Therefore, the expected cost of the labeling obtained by the rounding
procedure is

E[CR] =
∑

u∈V,a∈L

c(u, a)Pr[f(u) = a] +
∑

(u,v)∈E

w(u, v)E[d(f(u), f(v))]

≤
∑

u∈V,a∈L

c(u, a)x̄(u, a) +
∑

(u,v)∈E,a,b∈L

w(u, v)d(a, b)x̄(u, a, v, b)

= Ā(V ) + S̄(E) ≤ C̄.
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Theorem 9 holds also for any strictly convex distance function d on the labels
1, 2, 3, ..., k, on the integer line [19], that is d(a, b) = g(|a− b|), where g is convex
and increasing. Recall that such a distance function is not a metric ( (L, d) is
a metric iff g is concave and increasing). An example of such a function is the
quadratic linear function d(a, b) = |a−b|2, which is of particular interest in some
image processing applications [51,61]. The same result on convex functions was
also shown by Ishikawa and Geiger [51] in the context of image processing. In
fact, they have shown that the graph construction proposed for the linear metric
case (see Section 3.2) can be extended for convex distance functions to obtain
the optimal solution via minimum cuts.

5.3 The Truncated Linear Metric Case

The (GLP) relaxation of Chekuri et al. [19] obtains also a 2 +
√

2- approxima-
tion algorithm for the truncated linear metric LaP, thus improving the 4 + ε-
approximation algorithm of Kleinberg and Tardos [58] presented in Section 4.2.
For this case they proposed the following rounding procedure which is a natural
generalization of the rounding procedures for the uniform and the linear metric
cases. The fractional solution x̄ is rounded again using only the variables x̄(u, a).
The rounding is carried out in phases, as in the uniform metric case. However,
in each phase, objects are now labeled by labels drawn from an interval of la-
bels rather than labeled by the same label. Moreover, if two objects u and v
are labeled in different phases, then it is assumed that d(f(u), f(v)) = M . Once
an interval of labels is chosen, the rounding within each phase is similar to the
linear case one. An integer parameter M ′ ≥M , is used to determine the starting
point of an interval as well as its length. The analysis guides the choice of M ′

to obtain the best approximation factor.

Rounding procedure:
repeat

choose a real θ uniformly at random from [0,1];
choose an integer l uniformly at random from [−M ′ + 2, k];
for all unlabeled u ∈ V do

for all a ∈ Il = [l, l +M ′ − 1] do

if
a−1∑
b=l

x̄(u, b) < θ ≤
a∑

b=l

x̄(u, b) then f(u) = a;

until all objects are labeled ;

Theorem 10. [19] The above algorithm is a randomized 2+
√

2-approximation
algorithm for the truncated linear metric LaP.

Proof. Consider an iteration of the rounding procedure and an object u not yet
labeled. The probability of labeling u by a in this iteration is exactly x̄(u, a), if
a ∈ Il and zero otherwise. The number of all possible intervals is k +M ′− 1 and
the number of intervals that contain a is M ′. Hence, the probability of labeling
u by a in this iteration is x̄(u, a)M ′/(k + M ′ − 1). Moreover, the probability
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of labeling u by some label in an iteration is M ′/(k + M ′ − 1). Therefore, the
probability that an u is labeled a, over all phases, is Pr[f(u) = a] = x̄(u, a).

It is proven in [19] that the expected value of the distance d(f(u), f(v)) sat-
isfies the inequality

E[d(f(u), f(v))] ≤ (2 + max{2M
M ′ ,

M ′

M
})
∑

a,b∈L

d(a, b)x̄(u, a, v, b).

Hence, the expected cost of the labeling obtained by the rounding procedure
is

E[CR] = Ā(V ) + (2 + max{2M
M ′ ,

M ′

M
})S̄(E) ≤ (2 + max{2M

M ′ ,
M ′

M
})C̄.

The analysis proposed can be generalized for the case of a real number M ′,
and by choosing M ′ =

√
2M , the theorem follows.

As it is mentioned in [19] a similar analysis can be also applied in the case
of the truncated quadratic linear function d(a, b) = min{M, |a − b|2} (which is
not a metric). In fact, by choosing M ′ =

√
M , it can be shown that there is a

randomized O(
√
M)-approximation algorithm for this case.

5.4 The General Metric Case

Kleinberg and Tardos in [58], presented also an O(log k log log k) approximation
algorithm for the general metric case LaP. Their algorithm is based on Bar-
tal’s result [3,4] that a given metric can be probabilistically approximated by
a hierarchically well-separated tree metric (HST metric). Based on this result
they proposed an LP-relaxation for the case of HST metrics. This relaxation,
called (TLP), is a natural generalization of their (ULP) relaxation for the uni-
form metric case. They also proposed a randomized procedure for rounding a
fractional optimal solution to (TLP) yielding an O(1) integrality gap for HST
metrics. Since any general metric can be approximated by an HST metric with
an O(log k log log k) distortion [4,18], their result follows.

Chekuri et al. [19] presented a different way to obtain the same result by
using directly their (GLP) relaxation. First, they use an optimal solution, x̄, to
(GLP) to identify a deterministic HST metric approximation, dT̄ , of the given
metric d, such that the cost of x̄ on dT̄ is bounded. This can be done by using
next proposition of Charikar et al. [17].

Proposition 1. [17] Let d be a metric on L and g be a non-negative function
over L. Then d can be approximated deterministically by an HST metric dT such
that ∑

a,b

g(a, b) · dt(a, b) ≤ O(log k log log k)
∑
a,b

g(a, b) · d(a, b).
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Applying Proposition 1, with g(a, b) =
∑

(a,b)∈Lw(u, v)x̄(u, a, v, b), a, b ∈ L,
results in a HST metric dT̄ . The solution x̄ to (GLP) on d is, also, a feasible
solution to (GLP) on the HST metric dT̄ , since only the metric over the labels
changes. Let CdT̄

and C̄ be the costs of x̄ on d and dT̄ , respectively. Then, by
Proposition 1, it follows that CdT̄

≤ O(log k log log k)C̄.
Therefore, it is enough to round the optimal fractional solution x̄ to (GLP) to

an integral solution, provided that the cost of this integral solution on the HST
metric dT̄ is within an O(1) factor of CdT̄

. Chekuri et al. [19] claim that their
(GLP)-relaxation, for HST metrics, is at least as strong as the (TLP)-relaxation
of Kleinberg and Tardos, i.e. for the fractional solution x̄, the cost of (GLP)
on HST metrics is no more than the cost of (TLP). Therefore, the rounding
procedure proposed by Kleinberg and Tardos for (TLP) [58], can be used to get,
this way, an O(log k log log k)-approximation algorithm.

Theorem 11. [58,19] There is a randomized O(log k log log k)-approximation
algorithm for the general metric LaP.

Recently, Fakcharoenphol et al. [34] showed that any general metric can be
approximated by an HST metric with an O(log k) distortion, improving the
previous bound of O(log k log log k) distortion on which Theorem 11 is based.
Moreover, they showed that their result is existentially tight, i.e. there exist
metrics where any HST metric approximation must have (log n) distortion. Using
this result, the rounding procedure proposed by Kleinberg and Tardos for (TLP)
[58] leads directly to the next theorem.

Theorem 12. [34,58] There is a randomized O(log k)-approximation algorithm
for the general metric LaP.

Moreover, Archer et al. [1] presented an O(log n) approximation algorithm
for the general metric LaP. Their algorithm uses the same (GLP) relaxation of
Chekuri et al. [19] and also approximates the general metric by a HST metric.
Instead of using a special relaxation for tree metrics, as Kleinberg and Tardos
[58], they propose a rounding method which does not increases the solution’s
cost for a tree metric. This rounding method provides also an alternate proof to
the fact that the (GLP) relaxation of Chekuri et al. [19] has an integral solution
for tree metrics (this fact is also mentioned in [19]). However, next theorem
outperforms Theorem 12 only if k % n.

Theorem 13. [1] There is a randomized O(log n)-approximation algorithm for
the general metric LaP.

6 Conclusion

In Table 1 we summarize the known results for the problems studied in this chap-
ter. They are classified into combinatorial results, which are based on minimum
cut algorithms, and LP-based results, which are based on LP-relaxations and
randomized rounding. For the class of combinatorial algorithms we give in Table
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Table 1. Summary of results

Problem Combinatorial LP Intergality Gap
approximation relaxation Upper bound Lower bound

MCP 2-2/k [28] (SLP) [14] 3/2 - 1/k [14] 8/(7 + 1
k−1 ) [38]

1.3438 [52]
0-EP (MLP) [54] O(log k) [15] Ω(

√
log k) [15]

Linear LaP optimal (GLP) [19] 1 [19]
[60, 10, 75, 51]

Quadratic linear LaP optimal [51] (GLP) 1 [19]
Convex linear LaP

Uniform LaP 2∗ [12] [47] (ULP) [58] 2 [58]
2+ε [47] (GLP) 2 [19]

Truncated linear LaP 4∗, 4+ε [47] (GLP) 2 +
√

2 [19]
Truncated quadratic

linear LaP (GLP) O(
√

M) [19]
(TLP) [58] O(log k log log k) [58] see

Metric LaP (GLP) O(log k log log k) [19] point (iii)
(TLP) O(log k) [34] below
(GLP) O(log n) [1]

∗ exponential (local search) algorithm

1 the known approximation factors, while for the class of LP-based algorithms
we give the LP-relaxations used and the known upper bounds (i.e. approxima-
tion factors) and lower bounds on their integrality gap. Recall that all problems
in the table are in the Max SNP-hard class and, hence, there is no PTAS for
any of them, unless P=NP.

Recent activity on the problems included in Table 1 has led to a significant
progress on understanding their approximability though we are still far from
resolving the issue. Many open questions can be picked up by looking any entry
of Table 1 (even the filled ones). These questions can be classified into three
directions.

(i) Closing the gap between the upper and lower bound on the integrality gap
of the LP-relaxations proposed is an open question for most of our problems.
This can be done either by obtaining problem instances yielding stronger lower
bounds (any lower bound if no one is known) or by providing improved rounding
procedures yielding better approximation factors or both.

(ii) LP is in P, but the running time of LP algorithms is very high. Therefore,
it will be nice to have combinatorial algorithms with approximation factors as
close as possible to those of LP-based algorithms. It will be quite interesting
to have such an algorithm for any of the empty entries in the corresponding
column of Table 1 or even algorithms yielding better approximation factors than
the known ones. Note that at least two different 2-approximation algorithms are
known for the uniform LaP: an exponential local search one and an LP-based
one which, moreover, is obtained through two different LP-relaxations. These
results provide a strong evidence that the following conjecture holds.
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Conjecture 1. There is a combinatorial (polynomial) 2-approximation algorithm
for the uniform LaP.

(iii) Resolving either point (i) or (ii) does not close the approximability ques-
tion for some problem, unless the approximation factor achieved meets some
known approximation threshold. A significant progress to this direction is a re-
cent inapproximability result by Chuzhoy and Naor [24] for the general metric
LaP. In fact, they showed that there is no constant factor approximation for
the general metric LaP if P �=NP, and also that the problem is Ω(

√
logn)-hard

to approximate if NP ⊆/ DTIME(npoly(log n)), i.e. if NP has no quasi-polynomial
time algorithms. It will be of great interest to have such a negative result for
any other of our problems. Taking into account again the results for the uniform
LaP in Table 1, what we can possibly expect in this direction is a negative result
like the following.

Conjecture 2. There is no (2− ε)-approximation algorithm for the uniform LaP.
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33. P. Erdös and L. A. Székely, On weigthed multiway cuts in tress, Mathematical
Programming 65 (1994) 93-105.

34. J. Fakcharoenphol, S. Rao and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, In Proc. 35th STOC (2003) 448-455.



248 I. Milis
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Abstract. Many approximation results for single machine scheduling problems
rely on the conversion of preemptive schedules into (preemptive or non-preemp-
tive) solutions. The initial preemptive schedule is usually an optimal solution to
a combinatorial relaxation or a linear programming relaxation of the scheduling
problem under consideration. It therefore provides a lower bound on the optimal
objective function value. However, it also contains structural information which
is useful for the construction of provably good feasible schedules. In this context,
list scheduling in order of so-called α-points has evolved as an important and
successful tool. We give a survey and a uniform presentation of several approxi-
mation results for single machine scheduling with total weighted completion time
objective from the last years which rely on the concept of α-points.

1 Introduction

We consider the following single machine scheduling problem. There is a set of n jobs
J = {1, . . . , n} that must be processed on a single machines. Each job j has a non-
negative integral processing time pj , that is, it must be processed during pj time units.
The machine can process at most one job at a time. Each job j has a non-negative
integral release date rj before which it cannot be processed. In preemptive schedules, a
job may repeatedly be interrupted and continued later. In non-preemptive schedules, a
job must be processed in an uninterrupted fashion. There may be precedence constraints
between jobs. If j ≺ k for j, k ∈ J , it is required that j is completed before k can start.
We denote the completion time of job j by Cj and seek to minimize the total weighted
completion time: A non-negative weight wj is associated with each job j and the goal
is to minimize

∑
j∈J wjCj . In order to keep the presentation simple, we will almost

always assume that the processing times pj are positive integers and that wj > 0, for
all jobs j ∈ J . However, all results can be carried over to the case with zero processing
times and weights.

In scheduling, it is quite convenient to refer to the respective problems using the
standard classification scheme of Graham, Lawler, Lenstra, and Rinnooy Kan [20]. The
problems that we consider are special variants of the single machine scheduling prob-
lem 1| rj , prec (, pmtn) |

∑
wjCj . The entry “1” in the first field indicates that the

scheduling environment provides only one machine. The second field can be empty or
contains some of the job characteristics rj , prec, and pmtn, indicating whether there

E. Bampis et al. (Eds.): Approximation and Online Algorithms, LNCS 3484, pp. 250–291, 2006.
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are nontrivial release dates or precedence constraints, and whether preemption is al-
lowed. We put an item in brackets to indicate that we consider both variants of the
problem, with and without the corresponding feature. The third field refers to the ob-
jective function. We are interested in minimizing the total weighted completion time∑
wjCj or, for the special case of unit weights, the total completion time

∑
Cj .

Scheduling with the total weighted completion time objective has recently achieved
a great deal of attention, partly because of its importance as a fundamental problem in
scheduling, and also because of new applications, for instance, in compiler optimization
[9] and in parallel computing [6]. In the last years, there has been significant progress in
the design of approximation algorithms for various special cases of the general single
machine problems 1| rj , prec (, pmtn) |

∑
wjCj ; see, e.g., [29, 21, 16, 11, 35, 17, 18,

36, 10, 1, 3].
Recall that a ρ-approximation algorithm is a polynomial-time algorithm guaran-

teed to deliver a solution of cost at most ρ times the optimal value; the value ρ is
called performance guarantee or performance ratio of the algorithm. A randomized
ρ-approximation algorithm is a polynomial-time algorithm that produces a feasible so-
lution whose expected objective function value is within a factor of ρ of the optimal
value.

For problems without precedence constraints, we also consider the corresponding
on-line setting where jobs arrive over time and the number of jobs is unknown in ad-
vance. Each job j ∈ J becomes available at its release date, which is not known in
advance; at time rj , we learn both its processing time pj and its weight wj . Even in
the on-line setting, the value of the computed schedule is compared to the optimal (off-
line) schedule. The derived bounds are called competitive ratios. While all randomized
approximation algorithms discussed in this paper can be derandomized in the off-line
setting without loss in the performance guarantee, there is a significant difference in the
on-line setting. It is well-known that randomized on-line algorithms often yield better
competitive ratios than any deterministic on-line algorithm can achieve (see, e. g., the
positive and negative results on the problem 1| rj |

∑
Cj in Table 1).

The conversion of preemptive schedules to nonpreemptive schedules in order to get
approximation algorithms was introduced by Phillips, Stein and Wein [29] and was
subsequently also used in [7, 11], among others. Phillips et al. [29], and Hall, Shmoys,
and Wein [22] introduced the idea of list scheduling in order of α-points to convert
preemptive schedules to non-preemptive ones. Even earlier, de Sousa [46] used this
idea heuristically to turn ‘preemptive’ solutions to a time-indexed linear programming
relaxation into feasible nonpreemptive schedules. For α ∈ (0, 1], the α-point of a job
with respect to a preemptive schedule is the first point in time when an α-fraction of
the job has been completed. Independently from each other, Goemans [16] and Chekuri,
Motwani, Natarajan, and Stein [11] have taken up this idea, and showed that choosing α
randomly leads to better results. Later, α-points with individual values of α for different
jobs have been used by Goemans, Queyranne, Schulz, Skutella, and Wang [17].

Table 1 summarizes approximation and on-line results based on the concept of α-
points which were obtained for the single machine scheduling problems under consid-
eration. These results are compared with the best known approximation and on-line
results and also with corresponding hardness results. In the absence of precedence
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Table 1. Summary of approximation results and non-approximability results. In all cases, ε > 0
can be chosen arbitrarily small. The bounds marked with one and two stars refer to random-
ized and deterministic on-line algorithms, respectively. The second column contains the results
discussed in this paper while the third column gives the best currently known results. The last
column contains the best known lower bounds, that is, results on the hardness of approximation.

Approximation and hardness results for single machine scheduling problems

problem α-points best known lower bounds

1| rj | Cj 1.5820∗ [11]
1 + ε [1]
2∗∗ [29]

1.5820∗ [48, 50]
2∗∗ [23]

1| rj | wjCj
1.6853∗ [17]
2.4143∗∗ [16]

1 + ε [1]
2∗∗ [3]

1.5820∗ [48, 50]
2∗∗ [23]

1| rj , pmtn | wjCj
4
3
∗

[36]
1 + ε [1]
2∗∗ [36]

1.038∗ [14]
1.073∗∗ [14]

1| prec | wjCj 2 + ε [35] 2 [21] ?

1| rj , prec | wjCj e + ε [35] ?

1| rj , prec, pmtn | wjCj 2 + ε [35] 2 [21] ?

constraints, polynomial-time approximation schemes have recently been obtained by
Afrati et al. [1]; however, list scheduling in order of α-points still leads to the best
known randomized on-line algorithms for these problems. For problems with prece-
dence constraints, the concept of α-points either yields the best known approximation
result (for the problem 1| rj , prec |

∑
wjCj) or only slightly worse results. It is one of

the most interesting open problems in the area of machine scheduling to obtain non-
approximability results for these problems [38, 51].

We mention further work in the context of α-points: Schulz and Skutella [37] ap-
ply the idea of list scheduling in order of α-points to scheduling problems on identical
parallel machines, based on a single machine relaxation and random assignments of
jobs to machines. Savelsbergh, Uma, and Wein [32] give an experimental study of ap-
proximation algorithms for the problem 1| rj |

∑
wjCj . In particular, they analyze list

scheduling in order of α-points for one single α and for individual values of α for dif-
ferent jobs. They also test the approximation algorithms within a branch and bound
scheme and apply it to real world scheduling instances arising at BASF AG in Lud-
wigshafen. Uma and Wein [49] extend this evaluation and study the relationship be-
tween several linear programming based lower bounds and combinatorial lower bounds
for the problems 1| rj |

∑
wjCj . The heuristic use of α-points for resource constrained

project scheduling problems was also empirically analyzed by Cavalcante, de Souza,
Savelsbergh, Wang, and Wolsey [5] and by Möhring, Schulz, Stork, and Uetz [26].

In this paper, we give a survey and a uniform presentation of the approximation re-
sults listed in the second column of Table 1. We start with a description and analysis
of simple list scheduling heuristics for non-preemptive and preemptive single machine
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scheduling in Section 2. The concept of α-points is introduced in Section 3. In Section 4
we review the result of Chekuri et al. for the problem 1| rj |

∑
Cj . Time-indexed LP

relaxations for general constrained single machine scheduling together with results on
their quality are discussed in Section 5. In Section 6 we review related results of Schulz
[34] and Hall, Schulz, Shmoys, and Wein [21] on list scheduling in order of LP comple-
tion times. The approximation results of Goemans et al. [17] and Schulz and Skutella
[36] for single machine scheduling with release dates are discussed in Section 7. The
results of Schulz and Skutella [35] for the problem with precedence constraints are
presented in Section 8. Finally, the application of these results to the on-line setting is
discussed in Section 9.

2 Non-preemptive and Preemptive List Scheduling

In this section we introduce and analyze non-preemptive and preemptive list scheduling
on a single machine for a given set of jobs with release dates and precedence constraints.
We consider both the non-preemptive and the preemptive variant of the problem and
argue that the class of list schedules always contains an optimal schedule. Finally we
discuss simple approximations based on list scheduling. Many results presented in this
section belong to the folklore in the field of single machine scheduling.

Consider a list representing a total order on the set of jobs which extends the partial
order given by the precedence constraints. A straightforward way to construct a feasible
non-preemptive schedule is to process the jobs in the given order as early as possible
with respect to release dates. This routine is called LIST SCHEDULING and a schedule
constructed in this way is a (non-preemptive) list schedule.

The first result for LIST SCHEDULING in this context was achieved by Smith [45]
for the case without release dates or precedence constraints and is known as Smith’s
ratio rule:

Theorem 1. LIST SCHEDULING in order of non-decreasing ratios pj/wj gives an op-
timal solution for 1| |

∑
wjCj in O(n logn) time.

Proof. Since all release dates are zero, we can restrict to schedules without idle time.
Consider a schedule S with two successive jobs j and k and pj/wj > pk/wk. Exchang-
ing j and k in S leads to a new schedule S′ whose value differs from the value of S by
wjpk − wkpj < 0. Thus, S is not optimal and the result follows. The running time of
LIST SCHEDULING in order of non-decreasing ratios pj/wj is dominated by the time
needed to sort the jobs, and is therefore O(n logn). ��

For the special case of unit weights (wj ≡ 1), Smith’s ratio rule is sometimes also
refered to as the shortest processing time rule (SPT-rule). We always assume that jobs
are numbered such that p1/w1 � · · · � pn/wn; moreover, whenever we talk about
LIST SCHEDULING in order of non-decreasing ratios pj/wj , we refer to this sequence
of jobs.

Depending on the given list and the release dates of jobs, one may have to introduce
idle time when one job is completed but the next job in the list is not yet released. On
the other hand, if preemptions are allowed, it does not make sense to leave the machine
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idle while another job at a later position in the list is already available (released) and
waiting. We would better start this job and preempt it from the machine as soon as the
next job in the list is released. In PREEMPTIVE LIST SCHEDULING we process at any
point in time the first available job in the list. The resulting schedule is called preemptive
list schedule. Special applications of this routine have been considered, e. g., by Hall et
al. [21] and by Goemans [15, 16]. An important property of preemptive list schedules
is that whenever a job is preempted from the machine, it is only continued after all
available jobs with higher priority are finished.

Since we can assume without loss of generality that j ≺ k implies rj � rk , and since
the given list is a linear extension of the precedence order, the preemptive list schedule
respects precedence constraints and is therefore feasible. The following result on the
running time of PREEMPTIVE LIST SCHEDULING has been observed by Goemans [16].

Lemma 1. Given a list of n jobs, the corresponding list schedule can be created in
linear time while PREEMPTIVE LIST SCHEDULING can be implemented to run in
O(n log n) time.

Proof. The first part of the lemma is clear. In order to construct a preemptive list sched-
ule in O(n log n) time we use a priority queue that always contains the currently avail-
able jobs which have not been finished yet; the key of a job is equal to its position in
the given list. At each point in time we process the top element of the priority queue or
leave the machine idle if the priority queue is empty. There are two types of events that
cause an update of the priority queue: Whenever a job is completed on the machine,
we remove it from the priority queue; when a job is released, we add it to the priority
queue. This results in a total of O(n) priority queue operations each of which can be
implemented to run in O(log n) time. ��

As a consequence of the following lemma one can restrict to (preemptive) list
schedules.

Lemma 2. Given a feasible non-preemptive (preemptive) schedule, (PREEMPTIVE)
LIST SCHEDULING in order of non-decreasing completion times does not increase
completion times of jobs.

Proof. The statement for non-preemptive schedules is easy to see. LIST SCHEDULING

in order of non-decreasing completion times coincides with shifting the jobs in the given
non-preemptive schedule one after another in order of non-decreasing completion times
as far as possible to the left (backwards in time).

Let us turn to the preemptive case. We denote the completion time of a job j in
the given schedule by CP

j and in the preemptive list schedule by Cj . By construction,
the new schedule is feasible since no job is processed before its release date. For a
fixed job j, let t � 0 be the earliest point in time such that there is no idle time in the
preemptive list schedule during (t, Cj ] and only jobs k with CP

k � CP
j are processed.

We denote the set of these jobs by K . By the definition of t, we know that rk � t, for
all k ∈ K . Hence, CP

j � t+
∑

k∈K pk. On the other hand, the definition of K implies
Cj = t+

∑
k∈K pk and therefore Cj � CP

j . ��
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In PREEMPTIVE LIST SCHEDULING a job is only preempted if another job is re-
leased at that time. In particular, there are at most n − 1 preemptions in a preemptive
list schedule. Moreover, since all release dates are integral, preemptions only occur at
integral points in time. Therefore we can restrict to schedules meeting this property.
Nevertheless, we will sometimes consider schedules where preemptions can occur at
arbitrary points in time, but we always keep in mind that those scheduled can be con-
verted by PREEMPTIVE LIST SCHEDULING without increasing their value.

2.1 Simple Bounds and Approximations

One of the most important techniques for approximating NP-hard machine scheduling
problems with no preemptions allowed is the conversion of preemptive schedules to
non-preemptive ones. The first result in this direction has been given by Phillips et al.
[29]. It is a 2-approximation algorithm for the problem 1| rj |

∑
Cj .

Lemma 3. Consider LIST SCHEDULING according to a list j1, j2, . . . , jn. Then the
completion time of job ji, 1 � i � n, is bounded from above by

max
k�i

rjk
+
∑
k�i

pjk
.

Proof. For fixed i, modify the given instance by increasing the release date of job j1
to maxk�i rjk

. The completion time of ji in the list schedule corresponding to this
modified instance is equal to maxk�i rjk

+
∑

k�i pjk
. ��

It is well known that the preemptive problem 1| rj , pmtn |
∑
Cj can be solved in

polynomial time by the shortest remaining processing time rule (SRPT-rule) [4]: Sched-
ule at any point in time the job with the shortest remaining processing time. The value
of this optimal preemptive schedule is a lower bound on the value of an optimal non-
preemptive schedule. Together with the following conversion result this yields the 2-
approximation algorithm of Phillips et al. [29] for 1| rj |

∑
Cj .

Theorem 2. Given an arbitrary feasible preemptive schedule P , LIST SCHEDULING

in order of non-decreasing completion times yields a non-preemptive schedule where
the completion time of each job is at most twice its completion time in P .

Proof. The proof follows directly from Lemma 3 since bothmaxk�irjk
and

∑
k�i pjk

are lower bounds on CP
j (we use the notation of Lemma 3). ��

An instance showing that the job-by-job bound given in Theorem 2 is tight can be
found in [29].

2.2 A Generalization of Smith’s Ratio Rule to 1| rj, pmtn |∑wjCj

A natural generalization of Smith’s ratio rule to 1| rj, pmtn |
∑
wjCj is PREEMPTIVE

LIST SCHEDULING in order of non-decreasing ratios pj/wj . Schulz and Skutella [36]
give the following lower bound on the performance of this simple heuristic.
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Lemma 4. The performance guarantee of PREEMPTIVE LIST SCHEDULING in order
of non-decreasing ratios pj/wj is not better than 2, even if wj = 1 for all j ∈ J .

Proof. For an arbitrary n ∈ N, consider the following instance with n jobs. Letwj = 1,
pj = n2 − n + j, and rj = −n + j +

∑n
k=j+1 pk, for 1 � j � n. Preemptive list

scheduling in order of non-decreasing ratios of pj/wj preempts job j at time rj−1, for
j = 2, . . . , n, and finishes it only after all other jobs j − 1, . . . , 1 have been completed.
The value of this schedule is therefore n4 − 1

2n
3 + 1

2n. The SRPT-rule, which solves
instances of 1| rj , pmtn |

∑
Cj optimally, sequences the jobs in order n, . . . , 1. It has

value 1
2n

4 + 1
3n

3 + 1
6n. Consequently, the ratio of the objective function values of the

SPT-rule and the SRPT-rule goes to 2 when n goes to infinity. ��

On the other hand, one can give a matching upper bound of 2 on the performance
of this algorithm. As pointed out in [36], the following observation is due to Goemans,
Wein, and Williamson.

Lemma 5. PREEMPTIVE LIST SCHEDULING in order of non-decreasing ratios pj/wj

is a 2-approximation for 1| rj , pmtn |
∑
wjCj .

Proof. To prove the result we use two different lower bounds on the value of an op-
timal solution Z∗. Since the completion time of a job is always at least as large as
its release date, we get Z∗ �

∑
j wjrj . The second lower bound is the value of an

optimal solution for the relaxed problem where all release dates are zero. This yields
Z∗ �

∑
j

(
wj

∑
k�j pk

)
by Smith’s ratio rule. Let Cj denote the completion time of

job j in the preemptive list schedule. By construction we get Cj � rj +
∑

k�j pk and
thus ∑

j

wjCj �
∑

j

wjrj +
∑

j

(
wj

∑
k�j

pk

)
� 2Z∗ .

This concludes the proof. ��

In spite of the negative result in Lemma 4, Schulz and Skutella [36] present an al-
gorithm that converts the preemptive list schedule (in order of non-decreasing ratios
pj/wj) into another preemptive schedule and achieves performance guarantee 4/3 for
1| rj , pmtn |

∑
wjCj ; see Section 7. The analysis is based on the observation of Goe-

mans [15] that the preemptive list schedule represents an optimal solution to an appro-
priate LP relaxation.

3 The Concept of α-Points

In this section we discuss a more sophisticated technique that converts feasible preemp-
tive schedules into non-preemptive ones and generalizes the routine given in Theorem 2.
The bounds discussed in this section are at the bottom of the approximation results pre-
sented below. Almost all important structural insights are discussed here. We are given
a single machine and a set of jobs with release dates and precedence constraints. Be-
sides, we consider a fixed feasible preemptive schedule P and the completion time of
job j in this schedule is denoted by CP

j .
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For 0 < α � 1 the α-point CP
j (α) of job j with respect to P is the first point in

time when an α-fraction of job j has been completed, i. e., when j has been processed
on the machine for α pj time units. In particular,CP

j (1) = CP
j and for α = 0 we define

CP
j (0) to be the starting time of job j.
The average over all points in time at which job j is being processed on the machine

is called the mean busy time of j. In other words, the mean busy time is the average
over all α-points of j, i. e.,

∫ 1
0 C

P
j (α) dα. This notion has been introduced by Goemans

[16]. If j is being continuously processed between CP
j −pj andCP

j , its mean busy time
is equal to CP

j − 1
2pj . Otherwise, it is bounded from above by CP

j − 1
2pj .

We will also use the following notation: For a fixed job j and 0 � α � 1 we
denote the fraction of job k that is completed by time CP

j (α) by ηk(α); in particu-
lar, ηj(α) = α. The amount of idle time that occurs before time CP

j (α) on the ma-
chine is denoted by tidle(α). The α-point of j can be expressed in terms of tidle(α) and
ηk(α):

Lemma 6. For a fixed job j and 0 � α � 1 the α-point CP
j (α) of job j can be written

as
CP

j (α) = tidle(α) +
∑
k∈J

ηk(α) pk �
∑
k∈J

ηk(α) pk ,

where ηk(α) denotes the fraction of job k that is completed by time CP
j (α).

3.1 List Scheduling in Order of α-Points

In Theorem 2 we have analyzed LIST SCHEDULING in order of non-decreasing com-
pletion times, i. e., in order of non-decreasing 1-points. Phillips et al. [29], and Hall et
al. [22] introduced the idea of LIST SCHEDULING in order of non-decreasing α-points
CP

j (α) for some 0 � α � 1. This is a more general way of capturing the structure
of the given preemptive schedule; it can even be refined by choosing α randomly. We
call the resulting schedule α-schedule and denote the completion time of job j in this
schedule by C α

j .
Goemans et al. [17] have further extended this idea to individual, i. e., job-dependent

αj-points CP
j (αj), for j ∈ J and 0 � αj � 1. We denote the vector consisting of

all αj’s by α = (α1, . . . ,αn). Then, the αj -point CP
j (αj) is also called α-point of j

and the α-schedule is constructed by LIST SCHEDULING in order of non-decreasing
α-points; the completion time of job j in the α-schedule is denoted by C α

j .
For the feasible preemptive schedule P , the sequence of the jobs in order of non-

decreasing α-points respects precedence constraints since j ≺ k implies CP
j (αj) �

CP
j � CP

k (0) � CP
k (αk). Therefore the corresponding α-schedule is feasible.

To analyze the completion times of jobs in an α-schedule, we also consider sched-
ules that are constructed by a slightly different conversion routine which is called
α-CONVERSION [17]. A similar procedure is implicitly contained in [11, proof of
Lemma 2.2].
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α-CONVERSION:
Consider the jobs j ∈ J in order of non-increasing α-points CP

j (αj) and
iteratively change the preemptive schedule P to a non-preemptive schedule by
applying the following steps:

i) remove the αj pj units of job j that are processed beforeCP
j (αj) and leave

the machine idle during the corresponding time intervals; we say that this
idle time is caused by job j;

ii) delay the whole processing that is done later than CP
j (αj) by pj ;

iii) remove the remaining (1 − αj)-fraction of job j from the machine and
shrink the corresponding time intervals; shrinking a time interval means to
discard the interval and move earlier, by the corresponding amount, any
processing that occurs later;

iv) process job j in the released time interval (CP
j (αj), CP

j (αj) + pj].

Figure 1 contains an example illustrating the action of α-CONVERSION. Observe that
in the resulting schedule jobs are processed in non-decreasing order of α-points and
no job j is started before time CP

j (αj) � rj . The latter property will be useful in the
analysis of on-line α-schedules in Section 9.

Lemma 7. The completion time of job j in the schedule computed by α-CONVERSION

is equal to

CP
j (αj) +

∑
k

ηk(αj )�αk

(
1 + αk − ηk(αj)

)
pk .

Proof. Consider the schedule constructed by α-CONVERSION. The completion time of
job j is equal to the idle time before its start plus the sum of processing times of jobs
that start no later than j. Since the jobs are processed in non-decreasing order of their
α-points, the amount of processing before the completion of job j is∑

k
αk�ηk(αj)

pk . (1)

The idle time before the start of job j can be written as the sum of the idle time tidle(αj)
that already existed in the preemptive schedule P before CP

j (αj) plus the idle time
before the start of job j that is caused in steps i) of α-CONVERSION; notice that steps iii)
do not create any additional idle time since we shrink the affected time intervals. Each
job k that is started no later than j, i. e., such that ηk(αj) � αk, contributes αk pk units
of idle time, all other jobs k only contribute ηk(αj) pk units of idle time. As a result,
the total idle time before the start of job j can be written as

tidle(αj) +
∑

k
αk�ηk(αj )

αk pk +
∑

k
αk>ηk(αj)

ηk(αj) pk . (2)

The completion time of job j in the schedule constructed by α-CONVERSION is equal
to the sum of the expressions in (1) and (2); the result then follows from Lemma 6. ��
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Instance:

job j rj pj αj

1 0 2 1
8

2 1 2 5
8

3 2 1 1
4

4 4 2 1
8

ααα–schedule:

preemptive schedule P :

0 1 2 3 4 5 6 7 8 9

C2(α2)

ααα–CONVERSION:

C4(α4)

C3(α3)

C1(α1) idle time caused by job 4

Fig. 1. The conversion of an arbitrary preemptive schedule P to a non-preemptive one by α-
CONVERSION and by LIST SCHEDULING in order of non-decreasing α-points

It follows from Lemma 7 that the completion time Cj of each job j in the non-
preemptive schedule constructed by α-CONVERSION satisfies Cj � CP

j (αj) + pj �
rj + pj , hence is a feasible schedule. We obtain the following corollary.
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Corollary 1. The completion time of job j in an α-schedule can be bounded by

C α
j � CP

j (αj) +
∑

k
ηk(αj)�αk

(
1 + αk − ηk(αj)

)
pk .

Proof. Since the schedule constructed by α-CONVERSION processes the jobs in order
of non-decreasing α-points, the result follows from Lemma 7 and Lemma 2. ��

3.2 Preemptive List Scheduling in Order of α-Points

Up to now we have considered non-preemptive LIST SCHEDULING in order of α-
points. For a vector α we call the schedule that is constructed by PREEMPTIVE LIST

SCHEDULING in order of non-decreasing α-points preemptive α-schedule. The com-
pletion time of job j in the preemptive α-schedule is denoted by C α−pmtn

j .
The reader might wonder why we want to convert a preemptive schedule into another

preemptive schedule. Later we will interpret solutions to time-indexed LP relaxations
as preemptive schedules. However, the value of these schedules can be arbitrarily bad
compared to their LP value. The results derived in this section will help to turn them
into provably good preemptive schedules.

Again, to analyze preemptive α-schedules we consider an alternative conversion
routine which we call PREEMPTIVE α-CONVERSION and which is a modification of α-
CONVERSION. The difference is that there is no need for causing idle time by removing
the αj -fraction of job j from the machine in step i). We rather process αj pj units of
job j. Thus, we have to postpone the whole processing that is done later than CP

j (αj)
only by (1 − αj) pj , because this is the remaining processing time of job j, which is
then scheduled in

(
CP

j (αj), CP
j (αj) + (1− αj) pj

]
.

This conversion technique has been introduced by Goemans, Wein, and Williamson
[18] for a single α. Figure 2 contains an example illustrating the action of PREEMPTIVE

α-CONVERSION. Observe that, as in the non-preemptive case, the order of completion
times in the resulting schedule coincides with the order of α-points in P . Moreover,
since the initial schedule P is feasible, the same holds for the resulting schedule by
construction.

Lemma 8. The completion time of job j in the preemptive α-schedule can be bounded
by

C α−pmtn
j � CP

j (αj) +
∑

k
ηk(αj )�αk

(
1− ηk(αj)

)
pk . (3)

In the absence of nontrivial release dates, the same bound holds for the completion time
C α

j of job j in the non-preemptive α-schedule.

Proof. Using the same ideas as in the proof of Lemma 7 it can be seen that the right
hand side of (3) is equal to the completion time of job j in the schedule constructed by
PREEMPTIVE α-CONVERSION. The only difference to the non-preemptive setting is
that no additional idle time is caused by the jobs. Since the order of completion times
in the schedule constructed by PREEMPTIVE α-CONVERSION coincides with the order
of α-points, the bound in (3) follows from Lemma 2.
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7

preemptive ααα–schedule:

C1(α1)

C3(α3)

C4(α4)

C2(α2)

PREEMPTIVE ααα–CONVERSION:

preemptive schedule P :

0 1 2 3 4 5 6

Fig. 2. The conversion of the preemptive schedule P by PREEMPTIVE α-CONVERSION and by
PREEMPTIVE LIST SCHEDULING in order of non-decreasing α-points for the instance given in
Figure 1

In the absence of nontrivial release dates, PREEMPTIVE LIST SCHEDULING always
constructs a non-preemptive schedule that coincides with the non-preemptive list sched-
ule. In particular, C α

j = C α−pmtn
j and the bound given in (3) holds for C α

j too. ��

Lemma 6, Corollary 1, and Lemma 8 contain all structural insights in (preemptive)
α-schedules that are needed to derive the approximation results presented below.

3.3 Scheduling in Order of α-Points for Only One α

Corollary 1 and Lemma 6 yield the following generalization of Theorem 2 that was first
presented in [11]:
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Theorem 3. For each fixed 0 < α � 1, the completion time of job j in the α-schedule
can be bounded by

C α
j �

(
1 +

1
α

)
CP

j (α) �
(
1 +

1
α

)
CP

j .

Proof. Corollary 1 and Lemma 6 yield

C α
j � CP

j (α) +
∑

k
ηk(α)�α

(
1 + α− ηk(α)

)
pk

� CP
j (α) +

∑
k

ηk(α)�α

pk

� CP
j (α) +

∑
k

ηk(α)�α

ηk(α)
α

pk

�
(
1 +

1
α

)
CP

j (α) .

The second bound in Theorem 3 follows from the definition of α-points. ��

It is shown in [11] that the bound given in Theorem 3 is tight. The following lemma
is an analogue to Theorem 3 for preemptive α-schedules.

Lemma 9. For each fixed 0 < α � 1, the completion time of job j in the preemptive
α-schedule can be bounded by

C α−pmtn
j � 1

α
CP

j (α) � 1
α
CP

j .

In the absence of nontrivial release dates the same bound holds for the completion time
C α

j of job j in the non-preemptive α-schedule.

Proof. Lemma 8 and Lemma 6 yield

C α−pmtn
j � CP

j (α) +
∑

k
ηk(α)�α

(
1− ηk(α)

)
pk

� CP
j (α) + (1− α)

∑
k

ηk(α)�α

pk

� CP
j (α) +

1− α

α

∑
k

ηk(α)�α

ηk(α) pk

� 1
α
CP

j (α) .

In the absence of nontrivial release dates the same bound holds for C α
j since the result

of Lemma 8 can be applied in this case too. ��
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4 An e/(e − 1)-Approximation Algorithm for 1| rj |∑Cj

In this section we present the result of Chekuri et al. [11] on the conversion of pre-
emptive to non-preemptive single machine schedules. Moreover, we discuss a class of
instances found by Goemans et al. [17] which shows that this result is tight, that is, it
yields a tight worst case bound on the value of an optimal non-preemptive schedule in
terms of the optimal value with preemptions allowed.

In Theorem 3 the best choice of α seems to be α = 1 yielding the factor 2 bound that
has already been determined in Theorem 2. The key insight of Chekuri et al. is that one
can get a better (expected) bound by drawing α randomly from [0, 1] instead of using
only one fixed value of α. The underlying intuition is that the completion time C α

j of a
given job j in the α-schedule cannot attain the worst case bound

(
1 + 1

α

)
CP

j (α) for all
possible choices of α. Moreover, although the worst case bound is bad for small values
of α, the overall α-schedule might be good since the total amount of idle time caused
by jobs in the first step of α-CONVERSION is small and the schedule is therefore short.

Theorem 4. For each job j, let αj be chosen from a probability distribution over [0, 1]
with density function f(x) = ex/(e− 1). Then, the expected completion time E[C α

j ] of
job j in the α-schedule can be bounded from above by e

e−1 C
P
j , where CP

j denotes the
completion time of job j in the given preemptive schedule P .

Proof. To simplify notation we denote ηk(1) by ηk. For any fixed α, Corollary 1 and
Lemma 6 yield

C α
j � CP

j (αj) +
∑

k
ηk�αk

(
1 + αk − ηk(αj)

)
pk

= CP
j (αj) +

∑
k

ηk�αk

(
ηk − ηk(αj)

)
pk +

∑
k

ηk�αk

(1 + αk − ηk) pk

� CP
j +

∑
k

ηk�αk

(1 + αk − ηk) pk .

In order to compute a bound on the expected completion time of job j, we integrate
the derived bound on C α

j over all possible choices of the random variables αk, k ∈ J ,
weighted by the given density function f . Since∫ η

0
f(x) (1 + x− η) dx =

η

e− 1

for each η ∈ [0, 1], the expected completion time of job j can be bounded by

E[C α
j ] � CP

j +
∑

k

pk

∫ ηk

0
f(αk) (1 + αk − ηk) dαk

= CP
j +

1
e− 1

∑
k

ηk pk � e

e− 1
CP

j .

This concludes the proof. ��
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Theorem 4 is slightly more general than the original result in [11]. The only condi-
tion on the random choice of the vector α in Theorem 4 is that each of its entries αj has
to be drawn with density function f from the interval [0, 1]. Chekuri et al. only consider
the case where αj = α for each j ∈ J and α is drawn from [0, 1] with density function
f . However, the analysis also works for arbitrary interdependencies between the differ-
ent random variables αj , e. g., for jointly or pairwise independent αj . The advantage
of using only one random variable α for all jobs is that the resulting randomized ap-
proximation algorithm can easily be derandomized. We discuss this issue in more detail
below.

Corollary 2. Suppose that α is chosen as described in Theorem 4. Then, the expected
value of the α-schedule is bounded from above by e

e−1 times the value of the preemptive
schedule P .

Proof. Using Theorem 4 and linearity of expectations yields

E
[∑

j

wjC
α
j

]
=
∑

j

wjE[C α
j ] � e

e− 1

∑
j

wjC
P
j .

This concludes the proof. ��

Since the preemptive problem 1| rj , pmtn |
∑
Cj can be solved in polynomial time

by the shortest remaining processing time rule, computing this optimal solution and
converting it as described in Theorem 4 is a randomized approximation algorithm with
expected performance guarantee e

e−1 for 1| rj |
∑
Cj .

The variant of this randomized algorithm with only one random variable α for all
jobs instead of individual αj’s is of special interest. In fact, starting from a preemptive
list schedule P (e. g., the one constructed by the SRPT-rule), one can efficiently com-
pute an α-schedule of least objective function value over all α between 0 and 1; we
refer to this schedule as the best α-schedule. The following proposition, which can be
found in [17], yields a deterministic e

e−1 -approximation algorithm with running time
O(n2) for the problem 1| rj |

∑
Cj .

Proposition 1. For a fixed preemptive list schedule P , there are at most n different
(preemptive) α-schedules; they can be computed in O(n2) time.

Proof. As α goes from 0 to 1, the α-schedule changes only whenever an α-point, say
for job j, reaches a time at which job j is preempted. Thus, the total number of changes
in the (preemptive) α-schedule is bounded from above by the total number of preemp-
tions. Since a preemption can occur in the preemptive list schedule P only whenever
a job is released, the total number of preemptions is at most n − 1, and the number of
(preemptive) α-schedules is at most n. Since each of these (preemptive) α-schedules
can be computed in O(n) time, the result on the running time follows. ��

For the weighted scheduling problem 1| rj |
∑
wjCj , even the preemptive variant

is strongly NP-hard, see [24]. However, given a ρ-approximation algorithm for one
of the preemptive scheduling problems 1| rj , (prec, ) pmtn |

∑
wjCj , the conversion

technique of Chekuri et al. can be used to design an approximation with performance
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ratio ρ e
e−1 for the corresponding non-preemptive problem. Unfortunately, this does

not directly lead to improved approximation results for these problems. In Section 8,
however, we present a more sophisticated combination of a 2-approximation algorithm
for 1| rj , prec, pmtn |

∑
wjCj with this conversion technique by Schulz and Skutella

[35], which yields performance guarantee e for the resulting algorithm.
Another consequence of Corollary 2 is the following result on the power of preemp-

tion which can be found in [17].

Theorem 5. For single machine scheduling with release dates and precedence con-
straints so as to minimize the weighted sum of completion times, the value of an optimal
non-preemptive schedule is at most e

e−1 times the value of an optimal preemptive sched-
ule and this bound is tight, even in the absence of precedence constraints.

Proof. Suppose that P is an optimal preemptive schedule. Then, the expected value of
an α-schedule, with α chosen as described in Theorem 4, is bounded by e

e−1 times
the value of the optimal preemptive schedule P . In particular, there must exist at least
one fixed choice of the random variable α such that the value of the corresponding
non-preemptive α-schedule can be bounded from above by e

e−1

∑
j wjC

P
j .

To prove the tightness of this bound we consider the following instance with n � 2
jobs. There is one large job, denoted job n, and n−1 small jobs denoted j = 1, . . . , n−
1. The large job has processing time pn = n, weightwn = 1/n and release date rn = 0.
Each of the n − 1 small jobs j has zero processing time, weight wj = 1

n(n−1) (1 +
1

n−1 )n−j , and release date rj = j.
The optimal preemptive schedule has job n start at time 0, preempted by each of the

small jobs; hence its completion times are: Cj = rj for j = 1, . . . , n− 1 and Cn = n.
Its objective function value is (1+ 1

n−1 )n−(1+ 1
n−1 ) and approaches e−1 for large n.

Now consider an optimal non-preemptive schedule C∗ and let k = �C∗
n� − n ≥ 0,

so k is the number of small jobs that can be processed before job n. It is then optimal
to process all these small jobs 1, . . . , k at their release dates, and to start processing
job n at date rk = k just after job k. It is also optimal to process all remaining jobs
k + 1, . . . , n − 1 at date k + n just after job n. Let Ck denote the resulting schedule,
that is, Ck

j = j for all j ≤ k, and Ck
j = k + n otherwise. Its objective function

value is (1 + 1
n−1 )n − 1

n−1 −
k

n(n−1) . Therefore the optimal schedule is Cn−1 with

objective function value (1 + 1
n−1 )n − 1

n−1 −
1
n . Thus, as n grows large, the optimal

non-preemptive cost approaches e. ��

Unfortunately, the result of Theorem 5 cannot be easily extended to the case of unit
weights. The instance discussed in the proof of the theorem relies on the large number
of jobs with processing time zero whose weights are small compared to the weight of
the large job.

5 Time-Indexed LP Relaxations

As already mentioned in the last section, even the preemptive variants of the schedul-
ing problems 1| rj |

∑
wjCj and 1| prec |

∑
wjCj are NP-hard. In order to give ap-

proximation results for these problems, we consider a time-indexed LP relaxation of
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1| rj , prec, pmtn |
∑
wjCj whose optimal value serves as a surrogate for the true op-

timum in our estimations. Moreover, we interpret a solution to this relaxation as a so-
called fractional preemptive schedule which can be converted into a non-preemptive
one using the techniques discussed in the previous sections.

For technical reasons only, we assume in the following that all processing times
of jobs are positive. This is only done to keep the presentation of the techniques and
results as simple as possible. Using additional constraints in the LP relaxation, all results
presented can be carried over to the case with zero processing times.

The following LP relaxation is an immediate extension of a time-indexed LP pro-
posed by Dyer and Wolsey [13] for the problem without precedence constraints. Here,
time is discretized into the periods (t, t+1], t = 0, 1, . . . , T where T+1 is the planning
horizon, say T + 1 := maxj∈J rj +

∑
j∈J pj . We have a variable yjt for every job j

and every time period (t, t + 1] which is set to 1 if j is being processed in that time
period and to 0 otherwise. The LP relaxation is as follows:

minimize
∑
j∈J

wjC
LP
j

subject to
T∑

t=rj

yjt = pj for all j ∈ J , (4)

∑
j∈J

yjt � 1 for t = 0, . . . , T , (5)

(LP )
1
pj

t∑
=rj

yj � 1
pk

t∑
=rk

yk for all j ≺ k and t = 0, . . . , T , (6)

CLP
j =

pj

2
+

1
pj

T∑
t=rj

yjt

(
t+ 1

2

)
for all j ∈ J , (7)

yjt = 0 for all j ∈ J and t = 0, . . . , rj − 1,

yjt � 0 for all j ∈ J and t = rj , . . . , T .

Equations (4) say that all fractions of a job, which are processed in accordance with its
release date, must sum up to the whole job. Since the machine can process only one job
at a time, the machine capacity constraints (5) must be satisfied. Constraints (6) say that
at any point t + 1 in time the completed fraction of job k must not be larger than the
completed fraction of its predecessor j.

Consider an arbitrary feasible schedule P , where job j is being continuously pro-
cessed between CP

j − pj and CP
j on the machine. Then, the expression for CLP

j in
(7) corresponds to the real completion time CP

j of j, if we assign the values to the LP
variables yjt as defined above, that is, yjt = 1 if j is being processed in the time in-
terval (t, t+ 1]. If j is not being continuously processed but preempted once or several
times, the expression for CLP

j in (7) is a lower bound on the real completion time. A
more precise discussion of this matter is given in Lemma 10 a) below. Hence, (LP ) is
a relaxation of the scheduling problem under consideration.
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A feasible solution y to (LP ) does in general not correspond to a feasible preemptive
schedule. Consider the following example:

Example 1. Let J = {1, . . . , n} with pj = 1 for all j ∈ J , wj = 0 for 1 � j � n− 1,
wn = 1 and j ≺ n for 1 � j � n − 1. We get a feasible solution to (LP ) if we set
yjt = 1

n for all j ∈ J and t = 0, . . . , T = n− 1.

In the solution to (LP ) given in Example 1 several jobs share the capacity of the
single machine in each time interval. Moreover, the precedence relations between job n
and all other jobs are not obeyed since fractions of job n are processed on the machine
before its predecessors are completed. However, the solution fulfills constraint (6) such
that at any point in time the completed fraction of job n is not larger than the completed
fraction of each of its predecessors.

Phillips et al. [29] introduced the term fractional preemptive schedule for a schedule
in which a job can share the capacity of one machine with several other jobs. We extend
this notion to the case with precedence constraints and call a fractional preemptive
schedule P feasible if no job is processed before its release date and, at any point in
time, the completed fraction of job j is not larger than the completed fraction of each
of its predecessors. Carrying over the definition of α-points to fractional preemptive
schedules, the latter condition is equivalent to CP

j (α) � CP
k (α) for all j ≺ k and

0 � α � 1.

Corollary 3. The results presented in Section 3, in particular Lemma 6, Corollary 1,
and Lemma 9, still hold if P is a fractional preemptive schedule.

Proof. The proofs of the above-mentioned results can directly be carried over to the
more general setting of fractional preemptive schedules. ��

We always identify a feasible solution to (LP ) with the corresponding feasible
fractional preemptive schedule and vice versa. We mutually use the interpretation that
seems more suitable for our purposes. The expression for CLP

j in (7) is called the LP
completion time of job j.

The following lemma highlights the relation between the LP completion times and
the α-points of jobs in the corresponding fractional preemptive schedule for a feasible
solution to (LP ). The observation in a) is due to Goemans [16]; it says that the LP
completion time of job j is the sum of half its processing time and its mean busy time.
An analogous result to b) was given in [22, Lemma 2.1] for a somewhat different LP.

Lemma 10. Consider a feasible solution y to (LP ) and the corresponding feasible
fractional preemptive schedule P . Then, for each job j:

a) CLP
j =

pj

2
+

1
pj

T∑
t=rj

yjt

(
t+ 1

2

)
=

pj

2
+
∫ 1

0
CP

j (α) dα � CP
j

and equality holds if and only if CP
j = CP

j (0) + pj;

b) CP
j (α) � 1

1− α
CLP

j for any constant α ∈ [0, 1) and this bound is tight.
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Proof. For a job j ∈ J , we denote by ζt
j , t = rj , . . . , T + 1, the fraction of j that is

finished in the fractional preemptive schedule P by time t. Since 0 = ζ
rj

j � ζ
rj+1
j �

· · · � ζT+1
j = 1, we get

∫ 1

0
CP

j (α) dα =
T∑

t=rj

∫ ζt+1
j

ζt
j

CP
j (α) dα

=
T∑

t=rj

(
ζt+1
j − ζt

j

) (
t+ 1

2

)

since CP
j (α) = t+ α−ζt

j

ζt+1
j −ζt

j

for α ∈ (ζt
j , ζ

t+1
j ],

=
T∑

t=rj

yjt

pj

(
t+ 1

2

)
.

The machine capacity constraints (5) yield CP
j (α) � CP

j − (1 − α) pj for α ∈ [0, 1],
thus ∫ 1

0
CP

j (α) dα � CP
j − pj

∫ 1

0
(1 − α) dα = CP

j −
pj

2
.

Equality holds if and only if CP
j (α) = CP

j − (1 − α) pj for 0 � α � 1, which is
equivalent to CP

j (0) = CP
j − pj . This completes the proof of a). As a consequence we

get for α ∈ [0, 1]

(1− α)CP
j (α) �

∫ 1

α

CP
j (x) dx �

∫ 1

0
CP

j (x) dx � CLP
j .

In order to prove the tightness of this bound, we consider a job j with pj = 1, rj = 0
and an LP solution satisfying yj0 = α − ε and yjT = 1 − α + ε, where ε > 0 small.
This yields CLP

j = 1 + (1 − α + ε)T and CP
j (α) � T . Thus, for ε arbitrarily small

and T arbitrarily large, the given bound gets tight. ��

As a result of Lemma 10 b) the value of the fractional preemptive schedule given by
a solution to (LP ) can be arbitrarily bad compared to its LP value. Nevertheless, one
can use the information that is contained in the structure of an LP solution in order to
construct a feasible schedule whose value can be bounded in terms of the LP value, as
will be shown in the following sections.

Notice that we cannot solve (LP ) in polynomial time, but only in pseudo-polyno-
mial time, since T and therefore the number of variables yjt is only pseudo-polynomial
in the input size of the problem. Schulz and Skutella [37] describe a closely related and
only slightly worse LP relaxation of polynomial size in the general context of unrelated
parallel machines. The idea is to change to new variables which are not associated with
exponentially many time intervals of length 1, but rather with a polynomial number of
intervals of geometrically increasing size. We omit the technical details in this survey.
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In the absence of precedence constraints, it was indicated by Dyer and Wolsey [13]
that (LP ) can be solved in O(n log n) time. Goemans [15] developed the following
result (see also [17]).

Theorem 6. For instances of the problems 1| rj (, pmtn) |
∑
wjCj , the linear pro-

gramming relaxation (LP ) can be solved in O(n log n) time and the preemptive list
schedule in order of non-decreasing ratios pj/wj corresponds to an optimal solution.

Proof. In the absence of precedence relations, constraints (6) are missing in (LP ).
Moreover, we can eliminate the variables CLP

j from the relaxation by plugging (7)
into the objective function. What remains is a transportation problem and, as a result,
yjt can be assumed to be integral.

The remaining part of the proof is based on an interchange argument: Consider any
optimal 0/1-solution y to (LP ) and suppose that j < k (such that pj/wj � pk/wk),
rj � t < τ , and ykt = yjτ = 1. Then, replacing ykt = yjτ by 0 and ykτ = yjt by
1 gives another feasible solution to (LP ) with an increase in the objective function of
(τ − t)

(
wk

pk
− wj

pj

)
� 0. Thus, the new solution is also optimal and through iterative

application of this interchange argument we arrive at the solution that corresponds to
the preemptive list schedule in order of non-decreasing ratios pj/wj . ��

It follows from Theorem 6 that in the absence of precedence constraints and release
dates an optimal single machine schedule corresponds to an optimal solution to (LP ).
Moreover, if we allow release dates and preemption, the optimal solution to (LP ) de-
scribed in Theorem 6 is a feasible schedule that minimizes the weighted sum of mean
busy times. It is also shown in [17] that, in the absence of precedence constraints, the
LP relaxation (LP ) is equivalent to an LP in completion time variables which defines
a supermodular polyhedron.

5.1 Another Time-Indexed LP Relaxation

For the non-preemptive problem 1| rj |
∑
wjCj Dyer and Wolsey [13] also proposed

another time-indexed LP relaxation that can easily be extended to the setting with prece-
dence constraints; see Figure 3. Again, for each job j and each integral point in time
t = 0, . . . , T , we introduce a decision variable xjt. However, now the variable is set to
1 if j starts processing at time t and to 0 otherwise. Note that the xjt variables do not
have the preemptive flavor of the yjt variables and therefore lead to an LP relaxation
for non-preemptive single machine scheduling only.

In the absence of precedence constraints, Dyer and Wolsey showed that this relax-
ation is stronger than (LP ). In fact, even for instances with precedence constraints,
every feasible solution to (LP ′) can easily be transformed into a solution to (LP ) of
the same value by assigning

yjt :=
t∑

=max{0,t−pj+1}
xj for j ∈ J and t = 0, . . . , T .

In particular, we can interpret a feasible solution to (LP ′) as a feasible fractional pre-
emptive schedule and the results in Lemma 10 also hold in this case.
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minimize
j∈J

wjC
LP
j

subject to
T

t=rj

xjt = 1 for all j ∈ J ,

j∈J

t

�=max{0,t−pj+1}
xj� � 1 for all t = 0, . . . , T , (8)

(LP ′)
t

�=rj

xj� �
t+pj

�=rk

xk� for all j ≺ k and t = rj , . . . , T − pj , (9)

CLP
j = pj +

T

t=rj

t xjt for all j ∈ J ,

xjt = 0 for all j ∈ J and t = 0, . . . , rj − 1, (10)

xjt � 0 for all j ∈ J and t = rj , . . . , T .

Fig. 3. The time-indexed LP relaxation (LP ′)

5.2 Combinatorial Relaxations

In this subsection we show that the LP relaxation (LP ′) is equivalent to a combinatorial
relaxation of 1| rj , prec |

∑
wjCj . We interpret an instance of this scheduling problem

as a game for one person who is given the set of jobs J and the single machine and
wants to find a feasible schedule of minimum value.

We consider the following relaxation of this game: Assume that there are k players
1, . . . , k instead of only one. Each player i is given one machine and a set of jobs
Ji = J . Moreover, the players are allowed to cooperate by exchanging jobs. To be more
precise, a job of player i can be scheduled on an arbitrary machine rather than only on i’s
machine. However, each player has to respect release dates and precedence constraints
of his jobs. The aim is to minimize the average over all players of the weighted sum of
completion times of their jobs. This relaxation is called k-player relaxation, a feasible
solution is a k-player schedule. Moreover, if k is not fixed but can be chosen, we call
the resulting relaxation multi-player relaxation and a feasible solution is a multi-player
schedule.

As an example, consider the following single machine instance without precedence
constraints consisting of four jobs:

job j rj pj wj

1 6 2 6

2 0 3 3

3 0 2 2

4 0 2 2
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Note that job 1 is the most important job. The instance is constructed such that either at
least one unit of idle time has to be introduced before the start of job 1 or this job has
to be delayed until time 7. Both alternatives are optimal and give a schedule with value
87. However, there exists a 2-player schedule of value 83.5: Both players start their first
job at time 6. Player 1 starts his second job at time 0 and then, at time 3, the second job
of player 2 on his machine. Player 2 processes the four remaining jobs of length 2 in
the intervals (0, 6] and (8, 10] on his machine. Notice that the two players neither delay
their first jobs nor introduce idle time before their start. As a result of this example we
get the following corollary.

Corollary 4. The 2-player relaxation is not better than a 174
167 -relaxation for the prob-

lem 1| rj |
∑
wjCj .

The negative result in Corollary 4 can be slightly improved to a bound of 1 +
1/(2

√
55+9) > 174

167 by increasing the processing time of job 1 to (
√

55− 3)/2 and its
weight to

√
55− 1. The main result of this subsection is the following theorem:

Theorem 7. The LP relaxation (LP ′) of the problem 1| rj , prec |
∑
wjCj is equiva-

lent to the multi-player relaxation.

Proof. We first argue that each k-player schedule corresponds to a feasible solution of
(LP ′) with the same value: For all j ∈ J and t = 0, . . . , T let xjt be the number of
players whose job j ∈ Ji is started at time t divided by k. It follows from the definition
of the relaxation that x satisfies all constraints of (LP ′) and is thus a feasible solution.
To understand that constraints (9) are fulfilled, observe that each player has to respect
the precedence constraints of his jobs. Moreover, the value of x is equal to the value of
the k-player schedule by definition of x.

On the other hand, we can show that for each feasible solution x whose values xjt

are all rational numbers there exists a k such that x corresponds to a feasible solution
of the k-player relaxation. Let k be the least common multiple of the denominators of
the rational values xjt. For each job j ∈ J and each player i = 1, . . . , k, let tji the
smallest integer such that

∑tji

=0 xjt � i
m . The value tji is the starting time of i’s job

j in the k-player schedule that we construct by induction over t = 0, . . . , T : At time
t = 0 start all jobs j ∈ J of players i with tji = 0 on the k machines. Notice that the
number of these job-player pairs is bounded by k since

∑
j∈J xj0 � 1 by constraints

(8). Assume that for all players i all jobs j with tji < t have been started at time tji.
Then, the number of idle machines at time t is equal to

k
(
1−

∑
j∈J

t−1∑
=max{0,t−pj+1}

xj

)
.

Therefore, by constraints (8), there are sufficiently many idle machines at time t such
that all jobs j of players i with tji = t can be started. This k-player schedule respects
release dates by constraints (10). Moreover, for a pair of jobs j ≺ k and each player i
we get tji + pj � tki by the definition of the tji’s and constraints (9). ��
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Similar interpretations of time-indexed LP relaxations have been given by van den
Akker [2, Proof of Theorem 3.1] and Schulz [33]. Chan, Muriel, and Simchi-Levi [8]
used this idea to prove results on the quality of those time-indexed LP relaxations.

It is an interesting direction for future research to investigate how the structure of an
optimal k-player schedule can be used to construct provably good schedules. Another
interesting question is if one can restrict to special values of k in order to get an optimal
multi-player schedule, e. g., k � n or k ∈ O(n), or values of k depending on the given
instance. This would also yield results on the structure of the polyhedron corresponding
to (LP ′), i. e., results on an optimal vertex or on general vertices (like 1

n -integrality
etc.).

Another interesting topic is the complexity of the k-player relaxation for special
values of k. Of course, it is NP-hard for k = 1. We conjecture that it is NP-hard to
find an optimal k-player schedule for each fixed k. We also guess that it is NP-hard
to compute an optimal multi-player schedule when k is not fixed but bounded by the
number of jobs n.

5.3 On the Quality of Time-Indexed LP Relaxations

We conclude this section with negative and positive results on the quality of the relax-
ations (LP ) and (LP ′). The positive results follow from the LP-based approximations
discussed in the following sections. The lower bound for (LP ) and 1| rj |

∑
wjCj is

due to Goemans et al. [17]. A summary of the results is given in Table 2.

Theorem 8.

a) The LP relaxations (LP ) and (LP ′) are 2-relaxations for the scheduling problem
1| prec |

∑
wjCj and this bound is tight.

b) (LP ) is a 2-relaxation for the problem 1| rj , prec, pmtn |
∑
wjCj and this bound

is tight.
c) (LP ) and (LP ′) are e-relaxations for the problem 1| rj , prec |

∑
wjCj and not

better than 2-relaxations.
d) (LP ) is a 4

3 -relaxation and not better than an 8
7 -relaxation for the scheduling prob-

lem 1| rj , pmtn |
∑
wjCj .

e) (LP ) is a 1.6853-relaxation and not better than an e
e−1 -relaxation for the problem

1| rj |
∑
wjCj .

f) (LP ′) is a 1.6853-relaxation and not better than a 174
167 -relaxation for the problem

1| rj |
∑
wjCj

( 174
167 ≈ 1.0419

)
.

Proof. It is shown in Section 8 that (LP ) is a 2-relaxation for 1| prec |
∑
wjCj and

1| rj , prec, pmtn |
∑
wjCj , and an e-relaxation for the problem 1| rj , prec |

∑
wjCj .

Moreover, as mentioned above, (LP ′) is a stronger relaxation than (LP ) for the non-
preemptive problems. To prove the negative results in a), b), and c) we use the instance
given in Example 1 and consider the feasible solutions to (LP ) and (LP ′) given by
yjt = xjt = 1

n for j = 1, . . . , n − 1 and t = 0, . . . , n − 1; moreover, we set ynt =
xnt = 1

n for t = 1, . . . , n. The value of an optimal schedule is n whereas the value
of the given solutions to (LP ) and (LP ′) is n+3

2 . When n goes to infinity, the ratio of
these two values converges to 2.
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Table 2. Summary of results on the quality of the time-indexed LP relaxations (LP ) and (LP ′)
given in Theorem 8

Results on the quality of (LP ) and (LP ′)

(LP ) (LP ′)
problem

lower bound upper bound lower bound upper bound

1| rj | wjCj 1.5820 1.6853 1.0419 1.6853

1| rj , pmtn | wjCj
8
7

4
3 — —

1| prec | wjCj 2 2 2 2

1| rj , prec | wjCj 2 e 2 e

1| rj , prec, pmtn | wjCj 2 2 — —

The positive results in d), e), and f) are derived in Section 7. To prove the negative
result in d), consider the following instance with n jobs where n is assumed to be even.
The processing times of the first n − 1 jobs j = 1, . . . , n − 1 are 1, their common
release date is n

2 , and all weights are 1
n2 . The last job has processing time pn = n,

weight wn = 1
2n , and is released at time 0. This instance is constructed such that every

reasonable preemptive schedule without idle time on the machine has value 2 − 3
2n .

However, an optimal solution to (LP ) given in Theorem 6 has value 7
4 −

5
4n such that

the ratio goes to 8
7 when n gets large.

We use Theorem 5 in order to prove the negative result in e). There we have argued
that the ratio between the value of an optimal non-preemptive schedule and the value of
an optimal preemptive schedule can be arbitrarily close to e

e−1 . The optimal LP value is
a lower bound on the value of an optimal preemptive schedule; this completes the proof
of e).

The negative result in f) follows from Corollary 4 and Theorem 7. ��

It is an open problem and an interesting direction for future research to close the gaps
between the lower and the upper bounds highlighted in Table 2. We conjecture that the
lower bound of e

e−1 for the relaxation (LP ) of the problem 1| rj |
∑
wjCj is not tight.

For the relaxation (LP ′) of the same problem we strongly believe that the precise
ratio is closer to the lower than to the upper bound. We hope that the combinatorial
interpretation given in Subsection 5.2 will lead to improved approximation results and
upper bounds on the quality of the relaxation (LP ′).

Remark 1. For the problem with precedence constraints the relaxation (LP ) can be
slightly strengthened by replacing (6) with the stronger constraints

1
pj

t∑
=rj

yj � 1
pk

t+min{pj ,pk}∑
=rk

yk for all j ≺ k and t = 0, . . . , T −min{pj, pk} .

However, the relaxation is not stronger than (LP ′) by constraints (9), and therefore not
better than a 2-relaxation.
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Potts [30] introduced a linear programming relaxation of 1| prec |
∑
wjCj in linear

ordering variables. Hall et al. [21] showed that this relaxation is a 2-relaxation. Chekuri
and Motwani [10] provided a class of instances showing that this result is tight.

6 Scheduling in Order of LP Completion Times

Schulz [34] (see also [21]) introduced the idea of LIST SCHEDULING in order of LP
completion times and applied it to get approximation algorithms for quite a few prob-
lems to minimize the weighted sum of completion times. In this section we briefly
review his results for the scheduling problems under consideration in order to give the
reader the opportunity to compare the underlying ideas and intuition with the concept
of α-points.

Schulz used a strengthened version of an LP relaxation in completion time variables
that was introduced by Wolsey [52] and Queyranne [31]. However, the technique and
analysis can also be applied to the stronger relaxation (LP ) in time-indexed variables.
The following lemma contains the key insight and is a slightly weaker version of [34,
Lemma 1].

Lemma 11. Consider a feasible solution y to (LP ). Then, for each job j ∈ J∑
k

CLP
k

� CLP
j

pk � 2CLP
j .

Proof. Let K := {k ∈ J |CLP
k � CLP

j } and p(K) :=
∑

k∈K pk. This yields

p(K)CLP
j �

∑
k∈K

pk C
LP
k

�
∑
k∈K

T∑
t=0

ykt

(
t+ 1

2

)
by Lemma 10 a)

=
T∑

t=0

(
t+ 1

2

) ∑
k∈K

ykt ;

using the constraints (5) and (4) the last term can be bounded by

�
p(K)−1∑

t=0

(
t+ 1

2

)
= 1

2 p(K)2 .

Dividing the resulting inequality by p(K) yields the result. ��

With Lemma 11 at hand one can prove the following theorem:

Theorem 9. Given a feasible solution to (LP ), LIST SCHEDULING in order of non-
decreasing LP completion times yields a feasible schedule where the completion time
of each job j is bounded by 2CLP

j in the absence of nontrivial release dates, and by
3CLP

j else.
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Proof. We denote the fractional preemptive schedule corresponding to the given fea-
sible LP solution by P . To check the feasibility of the computed schedule observe
that j ≺ k implies CP

j (α) � CP
k (α) for 0 � α � 1, and thus CLP

j � CLP
k by

Lemma 10 a). Therefore, if ties are broken in accordance with the precedence con-
straints the sequence is feasible.

In the absence of nontrivial release dates, the completion time of each job j is the
sum of the processing times of jobs that start no later than j. Thus, the bound of 2 is a
direct consequence of Lemma 11.

Since maxk:CLP
k �CLP

j
rk is a lower bound on CLP

j , the bound of 3 follows from
Lemma 11 and Lemma 3. ��

The LP relaxation in completion time variables that is used in [34] can be solved
in polynomial time. Therefore, computing an optimal solution to the LP relaxation and
then applying LIST SCHEDULING in order of non-decreasing LP completion times is a
2-approximation algorithm for 1| prec |

∑
wjCj and a 3-approximation algorithm for

1| rj , prec |
∑
wjCj . For the problem without nontrivial release dates, Schulz proves a

slightly better performance guarantee of 2− 2
n+1 .

Hall et al. [21] show that PREEMPTIVE LIST SCHEDULING in order of non-decrea-
sing LP completion times for an appropriate LP relaxation in completion time variables
is a 2-approximation algorithm for the problem 1| rj, prec, pmtn |

∑
wjCj .

Möhring, Schulz, and Uetz [27] study the problem of minimizing the total weighted
completion time in stochastic machine scheduling. Job processing times are not known
in advance, they are realized on-line according to given probability distributions. The
aim is to find a scheduling policy that minimizes the average weighted completion
time in expectation. They generalize results from deterministic scheduling and derive
constant-factor performance guarantees for priority rules which are guided by optimal
LP solutions in completion time variables. Skutella and Uetz [43, 44] generalize this
approach and give approximation algorithms with constant performance guarantee for
precedence-constrained scheduling problems.

7 Approximations for Single Machine Scheduling with Release
Dates

In this section we present approximation algorithms for the problems 1| rj |
∑
wjCj

and its preemptive variant 1| rj , pmtn |
∑
wjCj that have been obtained by Goemans

et al. [17] and Schulz and Skutella [36], respectively. The first constant-factor approxi-
mation algorithms to minimize the total weighted completion time on a single machine
subject to release dates are due to Phillips et al. [29]. They consider an LP relaxation
that is also based on time-indexed variables which have a different meaning however.
Based on an optimal solution to this relaxation they apply an idea which is somehow
related to PREEMPTIVE LIST SCHEDULING in order of α-points for α = 1

2 . This leads
to an approximation algorithm with performance guarantee 8 + ε for the generaliza-
tion of the problem 1| rj , pmtn |

∑
wjCj to the setting of unrelated parallel machines.

Together with the conversion technique described in Theorem 2 this yields a (16 + ε)-
approximation algorithm for 1| rj |

∑
wjCj .
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Hall et al. [22] use LIST SCHEDULING in order of α-points for several problems and
different but fixed values of α based on the LP relaxation (LP ′) in order to compute
provably good schedules. However, their definition of α-points slightly differs from the
one discussed here. Based on a different approach that relies on the results of Shmoys
and Tardos [40] for the generalized assignment problem, they give a 4-approximation
algorithm for 1| rj |

∑
wjCj , which has subsequently been improved to performance

guarantee 3, see Section 6 and [21].
Independently from each other, Chekuri et al. [11] (see Section 4) and Goemans [16]

have taken up the idea of converting preemptive schedules into non-preemptive ones by
LIST SCHEDULING in order of α-points (as introduced in [29, 22]), and enriched it by
the use of randomness. Recently, Afrati et al. [1] gave polynomial-time approximation
schemes for the problems considered in this section and generalizations thereof.

We analyze the following simple randomized algorithm for single machine schedul-
ing with release dates. We consider both the non-preemptive and the preemptive variant
of the algorithm which only differ in the last step:

Algorithm: RANDOM-α
1) Construct the preemptive list schedule P in order of non-decreasing ratios

pj/wj .
2) For each job j ∈ J , draw αj randomly from [0, 1].
3) Output the resulting (preemptive) α-schedule.

Since (PREEMPTIVE) LIST SCHEDULING can be implemented to run in O(n log n)
time by Lemma 1, the running time of Algorithm RANDOM-α is O(n logn). It fol-
lows from Theorem 6 that the first step of Algorithm RANDOM-α implicitly computes
an optimal solution to the relaxation (LP ). This observation is used in the analysis.
Note, however, that the algorithm is purely combinatorial and can be formulated and
implemented without even knowing the LP relaxation.

While the total number of possible orderings of jobs is n! = 2O(n log n), it is shown
in [17] that the maximal number of different α-schedules which can be computed by
Algorithm RANDOM-α is at most 2n−1 and this bound can be attained. In particular,
Algorithm RANDOM-α could also be formulated over a discrete probability space. Due
to the possibly exponential number of different α-schedules, we cannot afford to de-
randomize Algorithm RANDOM-α by enumerating all (αj)-schedules. One can instead
use the method of conditional probabilities [28] and the derandomized version can be
implemented to run in O(n2) time; we refer to [17] for details.

As in Section 4, the variant of Algorithm RANDOM-α with only one random variable
α for all jobs instead of individual αj’s is of special interest. We denote this variant by
RANDOM-α and it follows from Proposition 1 that it can be derandomized yielding a
deterministic algorithm with running timeO(n2). This deterministic algorithm is called
BEST-α. The proof of the following results on the performance of Algorithm RANDOM-
α (and thus of Algorithm BEST-α) can be found in [17].

Theorem 10.

a) For fixed α the performance guarantee of Algorithm RANDOM-α is max
{
1+ 1

α , 1+
2α
}

. In particular, for α = 1/
√

2 the performance guarantee is 1 +
√

2.
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b) If α is drawn uniformly at random from [0, 1], then the expected performance guar-
antee of RANDOM-α is 2.

The same performance ratio of 2 is also achieved by Algorithm RANDOM-α with
independent and uniformly distributed random variables αj . However, in this case the
analysis is noticeably simpler and more general. In particular it does not make use of the
special structure of the preemptive list schedule P but works for an arbitrary fractional
preemptive schedule P corresponding to a feasible solution to (LP ); see Lemma 12
below.

Theorem 11. Let the random variables αj be pairwise independently and uniformly
drawn from [0, 1]. Then, Algorithm RANDOM-α achieves expected performance guar-
antee 2 for the scheduling problems 1| rj |

∑
wjCj and 1| rj , pmtn |

∑
wjCj .

Theorem 11 is a consequence of the stronger result in Lemma 12. Starting with an
arbitrary fractional preemptive schedule in the first step of RANDOM-α we can relate
the value of the schedule computed by the algorithm to the corresponding LP value.

Lemma 12. Let y be a feasible solution to (LP ) and denote the corresponding frac-
tional preemptive schedule by P . Suppose that the random variables αj are pairwise
independently and uniformly drawn from [0, 1]. Then, for each job j ∈ J , its expected
completion time in the corresponding α-schedule is at most 2CLP

j .

Proof. We consider an arbitrary, but fixed job j ∈ J . To analyze the expected comple-
tion time of j, we first keep αj fixed, and consider the conditional expectation Eαj [C α

j ].
Since the random variables αj and αk are independent for each k �= j, Corollary 1 and
Lemma 6 yield

Eαj [C
α
j ] � CP

j (αj) + pj +
∑
k �=j

pk

∫ ηk(αj)

0

(
1 + αk − ηk(αj)

)
dαk

= CP
j (αj) + pj +

∑
k �=j

pk

(
ηk(αj)−

ηk(αj)2

2

)
� CP

j (αj) + pj +
∑
k �=j

pk ηk(αj) � 2
(
CP

j (αj) + 1
2pj

)
.

To get the unconditional expectation E[C α
j ] we integrate over all possible choices of

αj :

E[C α
j ] =

∫ 1

0
Eαj [C

α
j ] dαj � 2

(∫ 1

0
CP

j (αj) dαj +
pj

2

)
= 2CLP

j ;

the last equation follows from Lemma 10 a). ��

Proof (of Theorem 11). Algorithm RANDOM-α starts with an optimal solution to (LP )
whose value is a lower bound on the value of an optimal (preemptive) schedule. We
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compare the expected value of the (preemptive) α-schedule to this lower bound. Using
Lemma 12 and linearity of expectations we get

E
[∑

j

wjC
α
j

]
=
∑

j

wjE[C α
j ] � 2

∑
j

wjC
LP
j .

Since for each fixed α and each job j the completion time of j in the preemptive α-
schedule is always less than or equal to its completion time in the non-preemptive α-
schedule, the preemptive variant of Theorem 11 follows from the result for the non-
preemptive case. We have even shown that the non-preemptive variant of Algorithm
RANDOM-α computes a schedule whose expected value is bounded by twice the value
of an optimal preemptive schedule. Thus, even this algorithm constitutes a randomized
2-approximation algorithm for 1| rj , pmtn |

∑
wjCj . ��

The expected performance guarantee of Algorithm RANDOM-α can be improved
beyond 2 by using more intricate density functions and by exploiting the special struc-
ture of the preemptive list schedule P in the first step of Algorithm RANDOM-α.

We start with an analysis of the structure of the preemptive list schedule P . Consider
any job j, and assume that, in the preemptive schedule P , job j is preempted at time s
and its processing resumes at time t > s. Then all jobs which are processed between s
and t have a smaller index; as a result, these jobs will be completely processed between
times s and t. Thus, in the preemptive list schedule P , between the start time and the
completion time of any job j, the machine is constantly busy, alternating between the
processing of portions of j and the complete processing of groups of jobs with smaller
index. Conversely, any job preempted at the start time CP

j (0) of job j will have to wait
at least until job j is complete before its processing can be resumed.

We capture this structure by partitioning, for a fixed job j, the set of jobs J \ {j}
into two subsets J1 and J2: Let J2 denote the set of all jobs that are processed between
the start and completion of job j. All remaining jobs are put into subset J1. Notice that
the function ηk is constant for jobs k ∈ J1; to simplify notation we write ηk := ηk(αj)
for those jobs. The same holds for the function tidle since no idle time occurs between
the start and the completion of job j in P ; we thus write tidle instead of tidle(αj). For
k ∈ J2, let 0 < μk < 1 denote the fraction of job j that is processed before the start of
job k; the function ηk is then given by

ηk(αj) =

{
0 if αj � μk,

1 if αj > μk,
for k ∈ J2.

We can now rewrite the equation in Lemma 6 as

CP
j (αj) = tidle +

∑
k∈J1

ηkpk +
∑
k∈J2

αj>μk

pk + αj pj = CP
j (0) +

∑
k∈J2

αj>μk

pk + αj pj .

(11)
Plugging (11) into Lemma 10 a) yields

CLP
j = CP

j (0) +
∑
k∈J2

(1 − μk)pk + pj . (12)
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Moreover, Corollary 1 can be rewritten as

C α
j � CP

j (0) +
∑
k∈J1

αk�ηk

(1 + αk − ηk) pk +
∑
k∈J2

αj>μk

(1 + αk) pk + (1 + αj) pj ,

(13)

where, for k ∈ J2, we have used the fact that αk ≤ ηk(αj) is equivalent to αj > μk.
Similarly, Lemma 8 can be rewritten as

C α−pmtn
j � CP

j (0) +
∑
k∈J1

αk�ηk

(1 − ηk) pk +
∑
k∈J2

αj>μk

pk + pj . (14)

The expressions (11), (12), (13), and (14) reflect the structural insights that we need for
proving stronger bounds for α-schedules and preemptive α-schedules in the sequel.

As mentioned above, the second ingredient for an improvement on the bound of 2
in Theorem 11 is a more sophisticated probability distribution of the random variables
αj . In view of the bound on C α

j given in (13), we have to cope with two contrary
phenomena: On the one hand, small values of αk keep the terms of the form (1 + αk −
ηk) and (1+αk) on the right-hand side of (13) small; on the other hand, choosing larger
values decreases the number of terms in the first sum on the right-hand side of (13). The
balancing of these two effects contributes to reducing the bound on the expected value
ofC α

j . Similar considerations can be made for the preemptive case and the bound given
in (14).

7.1 A 1.6853-Approximation Algorithm for 1| rj |∑wjCj

In this subsection, we will prove the following theorem that was achieved by Goemans
et al. [17].

Theorem 12. Let γ ≈ 0.4835 be the unique solution to the equation

γ + ln(2− γ) = e−γ
(
(2 − γ)eγ − 1

)
satisfying 0 < γ < 1. Define δ := γ + ln(2 − γ) ≈ 0.8999 and c := 1 + e−γ/δ <

1.6853. Let the αj’s be chosen pairwise independently from a probability distribution
over [0, 1] with the density function

f(α) =

{
(c− 1)eα if α � δ,

0 otherwise,

see Figure 4. Then, the expected completion time of every job j in the non-preemptive
schedule constructed by Algorithm RANDOM-α is at most cCLP

j and the expected
performance guarantee of Algorithm RANDOM-α is c < 1.6853.
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c − 1

1

c

0 δ

Fig. 4. The density function used for 1| rj | wjCj in Theorem 12

The bound in Theorem 12 yields also a bound on the quality of the relaxations (LP ):

Corollary 5. The relaxation (LP ) is a 1.6853-relaxation of 1| rj |
∑
wjCj .

Before we prove Theorem 12 we state two properties of the density function f that
are crucial for the analysis of the corresponding random α-schedule.

Lemma 13. The function f given in Theorem 12 is a density function with the following
properties:

(i)
∫ η

0
f(α)(1 + α− η) dα � (c− 1) η for all η ∈ [0, 1],

(ii) (1 + Ef)
∫ 1

μ

f(α) dα � c (1− μ) for all μ ∈ [0, 1],

where Ef denotes the expected value of a random variable α that is distributed accord-
ing to f .

Property (i) is used to bound the delay to job j caused by jobs in J1 which corre-
sponds to the first summation on the right-hand side of (13). The second summation
reflects the delay to job j caused by jobs in J2 and will be bounded by property (ii).

Proof (of Lemma 13). A short computation shows that δ = ln c
c−1 . The function f is a

density function since∫ 1

0
f(α) dα = (c− 1)

∫ δ

0
eα dα = (c− 1)

( c

c− 1
− 1
)

= 1 .

In order to prove property (i), observe that for η ∈ [0, δ]∫ η

0
f(α)(1 + α− η) dα = (c− 1)

∫ η

0
eα(1 + α− η) dα = (c− 1) η .
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For η ∈ (δ, 1] we therefore get∫ η

0
f(α)(1 + α− η) dα <

∫ δ

0
f(α)(1 + α− δ) dα = (c− 1) δ < (c− 1) η .

In order to prove property (ii), we first compute

Ef =
∫ 1

0
f(α)α dα = (c− 1)

∫ δ

0
eαα dα = c δ − 1 .

Property (ii) certainly holds for μ ∈ (δ, 1]. For μ ∈ [0, δ] we get

(1 + Ef)
∫ 1

μ

f(α) dα = c δ (c− 1)
∫ δ

μ

eα dα

= c e−γ
(
(2− γ)eγ − eμ

)
= c (2− γ − eμ−γ)

� c
(
2− γ − (1 + μ− γ)

)
= c (1− μ) .

This completes the proof of the lemma. ��

Proof (of Theorem 12). The analysis of the expected completion time of job j in the
random α-schedule follows the line of argument developed in the proof of Theorem 11.
First we consider a fixed choice of αj and bound the corresponding conditional expec-
tation Eαj [C α

j ]. In a second step we bound the unconditional expectation E[C α
j ] by

integrating the product f(αj)Eαj [C α
j ] over the interval [0, 1].

For a fixed job j and a fixed value αj , the bound in (13) and Lemma 13 (i) yield

Eαj [C
α
j ] � CP

j (0) + (c− 1)
∑
k∈J1

ηk pk +
∑
k∈J2

αj>μk

(1 + Ef) pk + (1 + αj)pj

� cCP
j (0) + (1 + Ef )

∑
k∈J2

αj>μk

pk + (1 + αj)pj .

The last inequality follows from (11). Using property (ii) and equation (12) yields

E[C α
j ] � cCP

j (0) + (1 + Ef)
∑
k∈J2

pk

∫ 1

μk

f(αj) dαj + (1 + Ef) pj

� cCP
j (0) + c

∑
k∈J2

(1− μk) pk + c pj = cCLP
j .

The result follows from linearity of expectations. ��

One can further say that Algorithm RANDOM-α actually produces a schedule that
is simultaneously expected to be near-optimal with respect to both the total weighted
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completion time objective and the maximum completion time objective. Bicriteria re-
sults of similar spirit and also other results in this direction have been presented in [7,
11, 47].

Corollary 6. Under the assumptions of Theorem 12, the expected makespan of the
schedule constructed by Algorithm RANDOM-α is at most 1.5166 times the optimal
makespan.

Proof. The makespan of the preemptive list schedule P exactly equals the optimal
makespan. Note that the expected makespan of the schedule constructed by Algorithm
RANDOM-α can be bounded by the sum of the idle time that already existed in the pre-
emptive schedule plus the idle time caused by jobs k ∈ J plus their processing times.
The corollary now immediately follows from the fact that the expected idle time caused
by any job k is bounded by Ef pk � 0.5166 pk. ��

The performance of the 2-approximation algorithm with only one α given in Theo-
rem 10 b) can also be improved through a more intricate density function; details can
be found in [17].

Theorem 13. If α is randomly chosen from [0, 1] according to an appropriate trun-
cated exponential density function, then Algorithm RANDOM-α achieves expected per-
formance guarantee 1.7451. In particular, Algorithm BEST-α has performance ratio
1.7451.

7.2 A 4/3-Approximation Algorithm for 1| rj, pmtn |∑wjCj

In this subsection we prove the following theorem of Schulz and Skutella [36].

Theorem 14. Let the αj’s be chosen from a probability distribution over [0, 1] with the
density function

f(α) =

{
1
3 (1− α)−2 if α ∈ [0, 3

4 ],
0 otherwise,

see Figure 5. Then, the expected completion time of every job j in the preemptive
schedule constructed by the preemptive variant of Algorithm RANDOM-α is at most
4/3CLP

j and the expected performance guarantee of the preemptive variant of Algo-
rithm RANDOM-α is 4/3.

Notice that, in contrast to the non-preemptive case discussed in Theorem 12, we do
not require the random variables αj , j ∈ J , to be independent but allow any correlation
between them. In particular, the performance ratio of 4/3 is achieved by Algorithm
BEST-α and by Algorithm RANDOM-α when α is drawn from [0, 1] with the density
function given in Theorem 14. This result of Schulz and Skutella [36] improves upon
a 1.466-approximation by Goemans, Wein, and Williamson [18]. They also analyzed
Algorithm RANDOM-α with a density function similar to the one given in Theorem 14.

Again, the bound in Theorem 14 yields also a bound on the quality of the relaxations
(LP ):
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16
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0 3
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Fig. 5. The density function used for 1| rj , pmtn | wjCj in Theorem 14

Corollary 7. The relaxation (LP ) is a 4/3-relaxation of 1| rj, pmtn |
∑
wjCj .

Following the lines of the last subsection, we state two properties of the density
function f that are crucial for the analysis of the corresponding preemptive random
α-schedule.

Lemma 14. The function f given in Theorem 14 is a density function with the following
properties:

(i) (1− η)
∫ η

0
f(α) dα � 1

3
η for all η ∈ [0, 1],

(ii)
∫ 1

μ

f(α) dα � 4
3

(1− μ) for all μ ∈ [0, 1].

Similar to the situation in the last subsection, property (i) is used to bound the delay
to job j caused by jobs in J1 which corresponds to the first summation on the right-hand
side of (14). The second summation reflects the delay to job j caused by jobs in J2 and
will be bounded by property (ii).

Proof (of Lemma 14). The function f is a density function since∫ 1

0
f(α) dα =

1
3

∫ 3/4

0

1
(1− α)2

dα = 1 .

In order to prove property (i), observe that for η ∈ [0, 3/4]

(1− η)
∫ η

0
f(α) dα =

1
3

(1− η)
∫ η

0

1
(1− α)2

dα =
1
3
η .

Since f(α) = 0 if α > 3/4, the bound also holds for η > 3/4. For the same reason, (ii)
holds if μ > 3/4. For μ � 3/4 we get∫ 1

μ

f(α) dα =
1
3

∫ 3/4

μ

1
(1− α)2

dα =
4
3
− 1

3
1

1− μ .
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A short computation shows that the latter expression is bounded by 4
3 (1 − μ) which

concludes the proof. ��

Proof (of Theorem 14). For a fixed job j, the bound in (14) and Lemma 14 yield

E[C α−pmtn
j ] � CP

j (0) +
1
3

∑
k∈J1

ηk pk +
4
3

∑
k∈J2

(1− μk) pk + pj

� 4
3
CP

j (0) +
4
3

∑
k∈J2

(1− μk) pk +
4
3
pj =

4
3
CLP

j .

The second inequality follows from (11), the last equation follows from (12). This con-
cludes the proof by linearity of expectations. ��

8 Approximations for Single Machine Scheduling with Precedence
Constraints

In this section we present randomized approximation algorithms developed by Schulz
and Skutella [35] for the scheduling problems 1| (rj , ) prec (, pmtn) |

∑
wjCj . The

first constant-factor approximation algorithms for these problems have been given by
Hall et al. [22]. They presented a (4+ε)-approximation algorithm for 1| prec |

∑
wjCj

and a 5.83-approximation algorithm for 1| rj , prec |
∑
wjCj . Their algorithms are

based on the time-indexed LP relaxation (LP ′) and scheduling in order of α-points
for a fixed value of α. However, their definition of α-points is slightly different from
ours. As already mentioned in Section 6, Schulz [34] and Hall et al. [21] improved upon
these results. Building upon the work of Sidney [41], combinatorial 2-approximation al-
gorithms for 1| prec |

∑
wjCj were given by Chekuri and Motwani [10] and Margot,

Queyranne, and Wang [25] (see also [19]). Correa and Schulz [12] look at the problem
from a polyhedral perspective and uncover a relation between the work of Sidney and
different linear programming relaxations. Woeginger [51] discusses the approximability
of 1| prec |

∑
wjCj and presents approximation preserving reductions to special cases.

A straightforward combination of the 2-approximation algorithm for the preemptive
scheduling problem 1| rj, prec, pmtn |

∑
wjCj [21] with the conversion technique

of Chekuri et al. given in Theorem 4 achieves a performance guarantee of 2e
e−1 . In

particular, it does not improve upon the 3-approximation for the non-preemptive variant
1| rj , prec |

∑
wjCj given by Schulz [34].

For an arbitrary α and a feasible fractional preemptive schedule, the order of α-
points does in general not respect the precedence relations. Therefore, we only use one
α for all jobs instead of individual αj’s. Then, the corresponding α-schedule is feasible
if the fractional preemptive schedule is feasible.

The first result discussed in this section is a (2 + ε)-approximation for the problems
1| prec |

∑
wjCj and 1| rj, prec, pmtn |

∑
wjCj . If we combine this algorithm with

the conversion technique of Chekuri et al. in a somewhat more intricate way, we get a
considerably improved approximation result for 1| rj , prec |

∑
wjCj .

Again, we consider both the non-preemptive and the preemptive version of the
algorithm:
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Algorithm: RANDOM-α
1) Take a feasible solution to (LP ) and the corresponding feasible fractional

preemptive schedule P .
2) Draw α randomly from [0, 1].
3) Output the resulting (preemptive) α-schedule.

The next theorem follows directly from Lemma 9.

Theorem 15. Suppose that α is chosen from a probability distribution over [0, 1] with
density function f(x) = 2x. Then, for instances of 1| rj , prec, pmtn |

∑
wjCj and

1| prec |
∑
wjCj , the expected completion time of every job j ∈ J in the schedule con-

structed by Algorithm RANDOM-α is bounded from above by twice its LP completion
time CLP

j .

Proof. Lemma 9 and Lemma 10 a) yield for the preemptive and the non-preemptive
case

E[C α
j ] =

∫ 1

0
f(α)

1
α
CP

j (α) dα = 2
∫ 1

0
CP

j (α) dα � 2CLP
j .

This concludes the proof. ��

Goemans (personal communication, June 1996) applied the very same technique as
in Theorem 15 to improve the performance guarantee of 4 due to Hall et al. [22] for
1| prec |

∑
wjCj to a performance ratio of 2.

As a result of Theorem 15, (LP ) is a 2-relaxation for the precedence constrained
scheduling problems 1| rj , prec, pmtn |

∑
wjCj and 1| prec |

∑
wjCj , see Table 2.

Combining the idea of Chekuri et al. from Theorem 4 with the technique demon-
strated in the proof of Theorem 15, we can prove the following theorem.

Theorem 16. Suppose that α is chosen from a probability distribution over [0, 1] with
density function f(x) = e − ex, see Figure 6. Then, for instances of the problem
1| rj , prec |

∑
wjCj the expected completion time of every job j ∈ J in the sched-

ule constructed by Algorithm RANDOM-α is bounded from above by eCLP
j .

Proof. Just for the analysis of the randomized algorithm we emulate the random choice
of α in the following way: First draw a new random variable β from [0, 1] with density
function h(x) = e ex−1

ex . Then, for fixed β, choose α from a probability distribution
over the interval [0, 1] with density function

gβ(x) =

{
ex

eβ−1 if x ∈ [0, β],
0 otherwise.

The resulting probability distribution of the random variable α is described by the den-
sity function f since

f(α) = e− eα =
∫ 1

0
h(β) gβ(α) dβ .
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e − 1

0 1

Fig. 6. The density function used for 1| rj , prec | wjCj in Theorem 16

For fixed β ∈ [0, 1] and fixed α ∈ [0, β] Corollary 1 and Lemma 6 yield

C α
j � CP

j (α) +
∑

k
ηk(β)�α

(
1 + α− ηk(α)

)
pk

= CP
j (α) +

∑
k

ηk(β)�α

(
ηk(β)− ηk(α)

)
pk +

∑
k

ηk(β)�α

(
1 + α− ηk(β)

)
pk

� CP
j (β) +

∑
k

ηk(β)�α

(
1 + α− ηk(β)

)
pk .

Since ∫ η

0
gβ(x) (1 + α− η) dα � η

eβ − 1

for each η ∈ [0, 1], the conditional expectation of j’s completion time for fixed β can
be bounded by

Eβ [C α
j ] � CP

j (β) +
∑

k

pk

∫ ηk(β)

0
gβ(α)

(
1 + α− ηk(β)

)
dα

� CP
j (β) +

1
eβ − 1

∑
k

ηk(β) pk � eβ

eβ − 1
CP

j (β) .

(Notice that for β = 1 this is precisely the result of Chekuri et al., see Theorem 4.) This
yields

E[C α
j ] =

∫ 1

0
h(β)Eβ [C α

j ] dβ � e

∫ 1

0
CP

j (β) dβ � eCLP
j

by Lemma 10 a). ��
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As a result of Theorem 16, (LP ) is an e-relaxation for the scheduling problem
1| rj , prec |

∑
wjCj , see Table 2. Unfortunately, the results in Theorem 15 and Theo-

rem 16 do not directly lead to approximation algorithms for the considered scheduling
problems since we cannot solve (LP ) in polynomial time. However, we can overcome
this drawback by introducing new variables which are not associated with exponen-
tially many time intervals of length 1, but rather with a polynomial number of intervals
of geometrically increasing size (see [37] for details). In order to get polynomial-time
approximation algorithms in this way, we have to pay for with a slightly worse perfor-
mance guarantee. For any constant ε > 0 we get randomized approximation algorithms
with performance guarantee 2 + ε respectively e+ ε for the scheduling problems under
consideration. Again, those algorithms can be derandomized. For details we refer to
[42, Chapter 2].

9 On-Line Results

In this section we consider a certain class of on-line scheduling problems. We show that
the Algorithm RANDOM-α, or a slightly modified version, also works in this on-line
setting and the competitive ratios match the performance guarantees proved for the off-
line variants. These observations are always due to the authors which also obtained the
respective off-line approximation results discussed above.

In contrast to the off-line setting, an on-line algorithm does not get its entire input
at one time, but receives it in partial amounts. This notion is intended to formalize the
realistic scenario where we do not have access to the whole information about what
will happen in the future. There are several different on-line paradigms that have been
studied in the area of scheduling, see [39] for a survey. We consider the on-line setting,
where jobs continually arrive over time and, for each time t, we must construct the
schedule until time t without any knowledge of the jobs that will arrive afterwards. In
particular, the characteristics of a job, i. e., processing time and weight are only known
at its release date.

To measure the performance of a (randomized) on-line algorithm we compare the
(expected) value of the schedule computed by the on-line algorithm to the value of an
optimal schedule, i. e., we measure the (expected) performance of the on-line algorithms
by an oblivious adversary, see [28, Chapter 13] for details. The worst case ratio of the
two values is the competitive ratio of the on-line algorithm.

In order to apply RANDOM-α in the on-line setting we should first mention that for
each job j its random variable αj can be drawn immediately when the job is released
since there is no interdependency with any other decisions of the randomized algo-
rithms. Moreover, PREEMPTIVE LIST SCHEDULING also works on-line if a job can be
inserted at the correct position in the list with regard to the jobs that are already known
as soon as it becomes available. In particular, the preemptive list schedule in order of
non-decreasing ratios pj/wj can be constructed on-line in the first step of RANDOM-α
since at any point in time the ratios of all available jobs are known. Unfortunately this
is not true for the α-points of jobs since the future development of the preemptive list
schedule is not known.
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However, the analysis of the non-preemptive variant of RANDOM-α still works if
we schedule the jobs as early as possible in order of non-decreasing α-points, with the
additional constraints that no job may start before its α-point. Notice that the non-
preemptive schedule constructed by α-CONVERSION fulfills these constraints. The
presented analysis of the non-preemptive variant of RANDOM-α in the proof of The-
orem 12 relies on the bound given in Corollary 1 which also holds for the schedule
constructed with α-CONVERSION by Lemma 7. Thus, we get an on-line variant of
RANDOM-α with competitive ratio 1.6853 for 1| rj |

∑
wjCj if we replace the last

step of the algorithm with the list scheduling routine described above.
This competitive ratio beats the deterministic on-line lower bound 2 for the weaker

scheduling problem 1| rj |
∑
Cj [23]. Of course, against an oblivious adversary, a ran-

domized algorithm can attain a substantially better competitiveness than any determin-
istic algorithm. The oblivious adversary cannot guess the random decisions and is there-
fore not able to adapt its own strategy completely to the behavior of the randomized
on-line algorithm.

The deterministic 2-approximation algorithm of Phillips et al. for the scheduling
problem 1| rj |

∑
Cj also works on-line and is therefore optimal. For the same problem

Stougie and Vestjens proved the lower bound e
e−1 for randomized on-line algorithms

[48, 50]. In particular, the on-line version of the algorithm of Chekuri et al. discussed
in Section 4 is optimal. Recently, Anderson and Potts [3] gave a deterministic on-line
algorithm for the problem 1| rj |

∑
wjCj with optimal competitive ratio 2.

The preemptive variant of RANDOM-α works without modifications in the on-line
model. Notice that at any point in time and for an arbitrary pair of already available
jobs we can predict whether Cj(αj) will be smaller than Ck(αk) or not. If one or even
both values are already known we are done. Otherwise, the job with higher priority in
the ratio list of the first step, say j, will win since job k cannot be processed in the
list schedule P before j is finished. This yields a randomized on-line approximation
algorithm with competitive ratio 4

3 for the problem 1| rj , pmtn |
∑
wjCj . Notice that

the (deterministic) list scheduling algorithm discussed in Lemma 5 also works on-line
and has competitive ratio 2. On the other hand, Epstein and van Stee [14] recently
obtained lower bounds of 1.073 and 1.038 for deterministic and randomized on-line
algorithms, respectively.
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Abstract. The k-median problem is a central problem in Operations
Research that has captured the attention of the Algorithms community
in recent years. Despite its importance, a non-trivial approximation al-
gorithm for the problem eluded researchers for a long time. Remarkably,
a succession of papers with ever improved performance ratios have been
written in the last couple of years. We review some of the approaches
that have been used to design approximation algorithms for this prob-
lem, and we also present some of the known results about the hardness
of approximating the optimum solution for the k-median problem.

1 Introduction

The problem of locating a set of facilities so that they can efficiently serve a group
of clients has been extensively studied because of its large number of applications
and interesting algorithmic aspects. Facility location problems find applications
in areas as diverse as Operations Research [18,29], network design [3,19,20], data
mining [9], clustering analysis [40], and web access [32,22,44], among others.
These problems have been studied for over four decades [29], and many different
approaches have been proposed for solving them [5,6,12,14,18,33,42].

Given sets of facilities F and clients D, the cost of servicing a client i by a
facility j, denoted as c(i, j), expresses the effort required to serve i from j. So,
the service cost might represent the distance from a client to a facility, or the
cost of shipping some commodity produced at a facility site to the client site.
The most studied facility location problems are the k-median problem and the
facility location problem.

In the k-median problem the goal is to select or open a set of at most k
facilities (called centers or medians) that serve the clients D at minimum total
cost. Given a set of centers S, a client i is always served by the center j ∈ S for
which the service cost c(i, j) is minimum. The facility location problem assigns
a cost f(j) for opening a facility j ∈ F . The problem is to choose a set of
facilities and assign clients to facilities so that the total service cost plus the
total cost of the facilities is minimized. Numerous variants of these problems
have been proposed in the literature, like the capacitated facility location [15],
the fault tolerant k-center [21,28], bounded facility location [31], capacitated
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facility location with client demands [15], k-capacitated facility location [23,5],
universal facility location [37], and multilevel facility location [10,49].

Let n denote the number of clients plus the number of facilities. The k-median
problem is NP-hard even if the sets of facilities and clients are points on the plane
and the service cost is the Euclidean distance from a client to the nearest center
[26,36,43]. Moreover, the problem cannot be approximated within any factor
α > 1 of the optimum unless P=NP, even if the cost matrix is symmetric [33].
For any given value α > 1 no polynomial time algorithm that chooses up to
o(logn)k centers can approximate the value of the optimum solution for the
k-median problem within a factor α of the optimum, unless P=NP [33].

Due to the difficulty of approximating the solution of the general k-median
problem, many constrained versions have been considered. The most studied
version of the problem is the metric k-median problem. In this version of the
problem we interpret the cost function c as measuring the distance between a
given client i and facility j. Furthermore, the cost function is extended so that
it not only gives the distance between a client and a facility, but it also gives the
distance between two clients or between two facilities. In the metric k-median
problem, the cost function is assumed to be symmetric, i.e. c(i, j) = c(j, i), and it
satisfies the triangle inequality, i.e., c(i, k) ≤ c(i, j)+c(j, k) for any i, j, k,∈ D∪F .
The metric facility location problem is defined analogously, and the best known
algorithm for it achieves a performance ratio of 1.52 [38].

Despite the fact that the k-median problem is a central problem in Operations
Research, a non-trivial approximation algorithm for it eluded researchers for
a long time. The problem restricted to trees, though, has been known to be
polynomially solvable for some time [25,47]. It has been fascinating to see how
in the span of a few years successively better algorithms have been designed for
the problem. The first approximation algorithm for the problem was designed
by Lin and Vitter [33] in 1992. They showed that a (1 + ε)-approximation to
the value of the optimum solution for the k-median problem can be computed in
polynomial time if it is allowed to select up to (1+ 1

ε )(lnn+1)k centers, for any
value ε > 0. This result is best possible, up to constant factors, unless P=NP.
For the metric k-median problem, Lin and Vitter also designed an algorithm
that finds a solution of value at most 2(1+ ε) times the optimum while selecting
at most (1 + 1

ε )k centers.
In 1998, Korupolu, Plaxton, and Rajaraman [30] designed a simple local

search algorithm that, for any value ε > 0, computes a (1+ ε)-approximation to
the value of the optimum solution for the metric k-median problem that selects
no more than (3 + 5/ε)k centers. This algorithm can be modified so that it uses
only (3 + ε)k centers, but by selecting fewer centers, the value of the solution
that it finds can be up to 1 + 5/ε times the optimum.

The first approximation algorithm for the metric k-median problem that pro-
duced a solution with at most k centers was derived in 1996 from the powerful
result of Bartal [7,8], that shows how to approximate any finite metric space by
a tree space. Combining this result with known algorithms for the k-median
problem on trees, Bartal gave a randomized O(log n log logn)-approximation
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algorithm for the metric k-median problem. Shortly after, Charikar, Chekuri,
Goel, and Guha [11] showed how to de-randomize Bartal’s algorithm, and they
also slightly improved it obtaining anO(log k log log k)-approximation algorithm.

The next breakthrough came a few months later, in 1998, when Arora, Ragha-
van, and Rao [4] presented a polynomial time approximation scheme for the
metric k-median problem restricted to two-dimensional Euclidean spaces. This
means that the clients and facilities are points on the plane and the cost c(i, j)
is the Euclidean distance between i and j. A polynomial time approximation
scheme is a family of algorithms A such that for any value ε > 0 an algorithm
Aε ∈ A finds in polynomial time a solution of value at most (1 + ε) times the
optimum.

In 1999, Charikar and Guha, and independently, Tardos and Shmoys, designed
the first constant factor approximation algorithm for the metric k-median prob-
lem. They combined their results and presented a linear programming based
algorithm that finds a solution of value at most 62

3 times larger than the opti-
mum. The same year Jain and Vazirani [23] improved this result by designing a
primal-dual 6-approximation algorithm. Shortly after, Charikar and Guha [12]
refined Jain and Vazirani’s approach to obtain a 4-approximation algorithm for
the problem.

The latest improvement, to the date when this paper was written, came
in 2001, when Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [5]
proposed a very simple local search algorithm that finds a solution of value
(3 + 2

p + O(ε′)) times larger than the optimum, for any value 0 < ε′ = o(n−2)..
The parameter p ≥ 1 is an integer value that guides the local search procedure,
and the time complexity of the algorithm depends exponentially on it.

Another work that deserves mention is the algorithm of Mettu and Plaxton
[39] for a generalization of the k-median problem known as the online metric
median problem. In this problem the centers are selected one at a time and a
facility cannot be de-selected once it has been chosen. Furthermore, the number
of facilities to be selected, k, is not known in advance. The algorithm of Mettu
and Plaxton finds a solution of value at most a constant factor times the value
of an optimum for the k-median problem (also known as the offline k-median
problem), for any value of k.

In this paper we describe in some detail some of the aforementioned works. In
Section 2 we describe some results related to the hardness of approximating the
k-median problem. Then, in Section 3, we present two linear programming based
algorithms. The first one is the algorithm of Lin and Vitter [33] which approx-
imates the solution of the general k-median problem by using up to O(log n)k
centers. The second algorithm, and the rest of the algorithms that we present
here, is for the metric version of the problem. This algorithm by Charikar, Guha,
Tardos, and Shmoys [13] is the first algorithm which achieved constant perfor-
mance ratio (this means that the algorithm approximates the optimum solution
within a constant factor). In Section 4 we describe a very interesting primal dual
algorithm by Jain and Vazirani [23], which exploits the fact that a Lagrangian re-
laxation of the k-median problem yields a special instance of the uncapacitated



Approximation Algorithms for the k-Median Problem 295

facility location problem. Finally, in Section 5 we present a remarkable algo-
rithm by Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [5], which
uses local search heuristics to yield the best known performance ratio for the
problem.

2 Hardness of the k-Median Problem

Any instance of the k-median problem can be modeled with an undirected graph
G = (V,E), where each vertex corresponds to either a client or a facility, and
every edge (i, j) is labelled with the corresponding cost c(i, j). The number of
vertices in V is n and the number of edges in E is m. Using this representation,
we can give a simple proof that the k-median problem is NP-hard. Consider an
instance G = (V,E), k of the problem in which V = F = D, i.e. every vertex
is both a client and a facility. Such an instance has a solution of value n− k if
and only if G has a dominating set of size k. Since the dominating set problem
is NP-hard, the claim follows.

Interestingly, another simple reduction also shows that for any computable
function α(n) > 1, the optimum solution for the k-median problem cannot be
approximated within any factor α(n) of the optimum in polynomial time, unless
P=NP.

Theorem 1. For any computable function α(n) > 1, the optimum solution for
the k-median problem cannot be approximated within factor α(n) in polynomial
time, unless P=NP, even if the cost function is symmetric.

Proof. Consider an instance G = (V,E), k of the k-median problem in which
V = F = D. Build a complete graph G′ = (V,E′) with edge weights defined as
follows:

– c(i, i) = 0 for all i ∈ V ,
– c(i, j) = 1 if (i, j) ∈ E, and
– c(i, j) = α(n)(n− k) + 1, otherwise.

Assume that there is an α(n)-approximation algorithm A for the k-median prob-
lem. If G has a dominating set of size k, then the corresponding instance of the
k-median problem has a solution of value n−k. Note that in this case, algorithm
A would choose a set S of k centers with total service cost at most α(n)(n− k).
Since every edge (i, j) ∈ E′ \ E has cost α(n)(n − k) + 1, set S must be a
dominating set of size k for G.

Interestingly, the problem is also hard to approximate if we allow the selection
of more than k centers. Let S∗ be an optimum solution for the k-median problem
and let c(S∗) be the cost of this solution.

Theorem 2. If for any value ρ > 1 there is a ρ-approximation algorithm A for
the k-median problem that selects a set of at most o(log n)k centers, then P=NP.
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Proof. Using the approximation preserving reduction described in the previous
theorem, it is possible to show that if algorithm A exists, then A is an o(log n)-
approximation algorithm for the minimum dominating set problem. Since Raz
and Safra [45] proved that unless P = NP, the dominating set problem does
not have an o(log n)-approximation algorithm, then the existence of algorithm
A would imply that P = NP.

Since by Theorem 1 an optimum solution for the k-median problem cannot
be approximated within any factor ρ > 1, we mainly focus our attention on
constrained versions of the problem. The most studied version of the problem is
the metric k-median problem, in which the cost function c is symmetric and it
obeys the triangle inequality. This version of the problem is still hard to solve,
even if we allow the election of more than k centers:

Theorem 3. If A is an approximation algorithm for the metric k-median prob-
lem that finds a set S of at most o(log n)k centers that serves the clients D with
total service cost c(S) ≤ c(S∗), then P=NP.

Proof. Given an unweighted graph G = (V,E) with minimum dominating set of
size k, build a complete graph G′ = (V,E′) with cost function c satisfying:

– c(i, j) = 1 if (i, j) ∈ E,
– c(i, j) = length of a shortest path from i to j in G, if (i, j) �∈ E.

Since G has a dominating set of size k, the corresponding instance of the k-
median problem has a solution of value n− k. In this case, algorithm A finds a
set S with at most f(n)k centers and service cost c(S) ≤ n−k, for some function
f(n) = o(log n). We observe that the set S′ of vertices not adjacent to S in G
has size |S′| ≤ f(n)k. To see this, assume that |S′| > f(n)k. Since the vertices
in S′ are at distance at least 2 from S, then the service cost of S would be

c(S) ≥ 2|S′|+ n− |S| − |S′|
≥ n+ |S′| − |S|
≥ n+ f(n)k − f(n)k
= n > n− k.

Hence, set S∪S′ is a dominating set for G of size at most 2f(n)k = o(log n)k and,
thus, A is an o(log n)-approximation algorithm for the minimum dominating set
problem, which by the aforementioned result of Raz and Safra [45], implies that
P=NP.

3 Linear Programming Based Algorithms

A powerful technique that has been successfully applied to design approximation
algorithms for a variety of NP-hard problems consists in formulating a problem
as an integer program, then, solving the linear program obtained by relaxing
the integrality constraints and, finally, rounding this fractional solution to get
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an integer feasible solution for the original problem. In this section we present
two approximation algorithms for the k-median problem that use this technique.
First, we present the algorithm of Lin and Vitter [33] which introduces an elegant
rounding technique known as filtering. This algorithm works for the general k-
median problem (with an arbitrary cost function). It finds, for any value ε > 0, a
solution of value at most (1+ε) times the optimum, but it selects up to (1+ 1

ε ) lnn
centers. Then, in the next section we describe an algorithm by Charikar, Guha,
Tardos, and Shmoys [13], which refines the filtering technique for the metric
version of the problem. This was the first algorithm for the metric k-median
problem that achieved constant performance ratio using at most k centers.

3.1 Integer Program Formulation

To formulate the k-median problem as an integer program, we first need to define
some variables. For each facility j we define a variable yj which takes value 1 if
j is selected as a center, and it takes value 0 otherwise. For every client-facility
pair (i, j) we define a variable xij which takes value 1 if and only if client i
is serviced by center j. The k-median problem can be stated as the following
integer program.

Minimize
∑
j∈F

∑
i∈D

c(i, j)xij (1)

subject to∑
j∈F

xij ≥ 1 for all i ∈ D

∑
j∈F

yj ≤ k (2)

xij ≤ yj for all i ∈ D, j ∈ F
xij , yj ∈ {0, 1} for all i ∈ D, j ∈ F

The linear program relaxation of the above formulation relaxes the last set
of constraints allowing the variables yj and xij to take fractional non-negative
values. This linear program can be solved in polynomial time by using, for exam-
ple, interior point methods [48,27]. Let ŷ = (ŷ1, ŷ2 . . . , ŷ|F |), x̂ = (x̂11, x̂12, . . . ,
x̂|D||F |) be an optimum solution for the linear program. Before showing how to
use x̂, ŷ to find an approximate solution for the k-median problem, we note that
a solution for the linear program is completely characterized by the values of
the ŷ variables, since optimum fractional values for the x̂ variables can be deter-
mined from ŷ [2]. The idea is to (fractionally) assign each client i to its closest
facilities. The algorithm for computing x̂ from ŷ is as follows.

Algorithm AssignClients

1. For each client i consider those facilities i1, i2, . . . , i|F | with values ŷi�
> 0 in

non-decreasing order of service cost: c(i, i1) ≤ c(i, i2) ≤ · · · ≤ c(i, i|F |).
2. Find the first facility ip (in this ordering) for which

∑p
=1 ŷi�

≥ 1.
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3. Set the values of the variables x̂ij in this manner:
– x̂ii�

← ŷi�
for all � = 1, 2, . . . , p− 1, and

– x̂iip ← 1−
∑p−1

=1 ŷi�
.

3.2 Filtering

The algorithm that we describe in this section approximates the value of the
optimum solution for the k-median problem within a factor of (1 + ε), for any
value ε > 0. The precision parameter ε affects the number of centers that the
algorithm chooses, as we describe below.

The idea of filtering is to use the solution of the linear program to discard,
or filter out, some of the possible assignments of clients to centers. This filtering
has to be done in such a way that the problem is simplified by reducing the
possible number of assignments of clients to facilities, but it has to ensure that
at least one good assignment of clients to centers remains.

For each client i let Ĉi =
∑

j∈F c(i, j)x̂ij be the fractional cost of servicing i.
We filter out some possible assignments of i to facilities by allowing client i to
be served only by those facilities j such that c(i, j) ≤ (1 + ε)Ĉi. Let the neigh-
bourhood Vi of a client i be the set of facilities that satisfy the above condition,
i.e. Vi = {j | j ∈ F and c(i, j) ≤ (1 + ε)Ĉi}.

We show that the neighbourhood of every client is non-empty and, therefore,
there is a solution for the k-median problem in which every client is assigned to
some facility in its neighbourhood.

Lemma 1. For every client i, its neighbourhood Vi is non-empty and, further-
more, ∑

j∈Vi

ŷj ≥
ε

1 + ε
.

Proof. We can show that the neighbourhood Vi of a client i is not empty by
using a weighted average argument. If Vi is empty, then for every facility j ∈ F ,
the service cost cij is larger than (1 + ε)Ĉi. Thus, Ĉi =

∑
j∈F c(i, j)x̂ij > (1 +

ε)Ĉi

∑
j∈F x̂ij ≥ (1 + ε)Ĉi, by the first constraint of the integer program.

The second part of the lemma can also be proven by using a weighted average
argument. Assume that

∑
j∈Vi

ŷi ≤ ε/(1+ε). Then, by the third constraint of the
integer program,

∑
j∈Vi

x̂ij ≤ ε/(1 + ε) and
∑

i�∈Vi
x̂ij > 1/(1 + ε). Multiplying

both sides of the last inequality by Ĉi, we get: Ĉi < (1 + ε)Ĉi

∑
j �∈Vi

x̂ij <∑
j �∈Vi

x̂ijcij < Ĉi.

The advantage of assigning each client to a center in its neighbourhood is
that, then, the cost of servicing a client is close to the cost of servicing the client
in an optimum solution for the problem.

Lemma 2. If every client i is served by a center j in its neighbourhood Vi, then
the cost of the solution is at most (1 + ε) times the cost c(S∗) of an optimum
solution for the k-median problem.
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Proof. If it is possible to find a solution x, y for the k-median problem in which
clients are assigned to centers in their neighborhoods, then, for every client i
there is one facility j for which xij = 1. Therefore, the cost of this solution is∑

j∈F

∑
i∈D

c(i, j)xij ≤ (1 + ε)
∑
i∈D

Ĉi ≤ (1 + ε)
∑
j∈F

∑
i∈D

c(i, j)x̂ij ≤ (1 + ε)c(S∗).

According to this lemma, the problem is, then, how to select for each client i a
center j from its neighbourhood Vi so that the total number of centers selected is
small. This latter problem is an instance of the set covering problem in which the
ground set is D, the set of clients, and the family of subsets is {S1, S2, . . . , S|F |},
where Sj = {i | i ∈ D and c(i, j) ≤ (1 + ε)Ĉi}.

The greedy set cover algorithm [16,24,35], can be used to approximately solve
the set covering problem, and it finds a set S of centers of size at most s̄(lnn+1),
where s̄ is the value of a fractional set cover for the above set cover problem. The
value of s̄ can be easily obtained from the solution x̂, ŷ of the linear program
since by Lemma 1, for each client i,

∑
j∈Vi

ŷj > ε/(1 + ε). Therefore, setting
ȳj = (1 + 1

ε )ŷj for every facility j yields a fractional solution for the set cover
problem since, then, for each client i:∑

i∈Sj

ȳj =
∑
j∈Vi

(
1 +

1
ε

)
ŷj > 1.

The value of this fractional set cover ȳ is∑
j∈F

ȳj =
(

1 +
1
ε

)∑
j∈F

ŷj ≤
(

1 +
1
ε

)
k.

The last inequality follows from the second constraint of the integer program.
The algorithm is as follows.

Algorithm Filtering

1. Solve the linear program relaxation of the k-median problem to get a frac-
tional solution ŷ, x̂.

2. For each client i, compute Ĉi =
∑

j∈F c(i, j)x̂ij .
3. Use the greedy set cover algorithm on the instance with ground set D, and

family of subsets {S1, S2, . . . , S|F |}, where each set Sj is formed by the clients
i such that c(i, j) ≤ (1 + ε)Ĉi.

4. Choose as centers those facilities selected by the greedy set cover algorithm
and assign each client i to one of its closest centers.

Theorem 4. For any value ε > 0, the above algorithm finds a solution of value
at most (1+ε) times the value of an optimum solution for the k-median problem,
and this solution has at most (1 + 1

ε )(lnn+ 1)k centers.

Proof. The theorem follows from Lemma 2 and the above discussion on the
greedy set cover algorithm.
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3.3 An Algorithm with Constant Performance Ratio

We describe now an algorithm for the metric k-median problem with constant
performance ratio. This algorithm was designed by Charikar, Guha, Tardos, and
Shmoys [13], and it uses a more sophisticated version of the filtering technique
than that described in the previous section. This algorithm works for the more
general version of the problem where each one of the clients i has a non-negative
demand di, and the objective is to minimize the total service cost weighted by
the demands: min

S⊆F
{
∑
i∈D

di ×min
j∈S
{c(i, j)} | |S| ≤ k}.

We describe here the version of the problem when the set of clients D and
the set of facilities F are the same. Or in other words, we consider that there is
a set N = D ∪ F of locations; each location i has some demand di and in each
location it is possible to build a center. The distance between locations i and j
is c(i, j).

The linear program relaxation of the integer program formulation of this
problem is as follows.

Minimize
∑

i,j∈N

dic(i, j)xij (3)

subject to∑
j∈N

xij ≥ 1 for all i ∈ N

∑
j∈N

yj ≤ k (4)

xij ≤ yj for all i, j ∈ N
0 ≤ xij , yj for all i, j ∈ N

The problem defined by this linear program is known as the fractional k-
median problem with demands. Given an optimum solution x̂, ŷ for this linear
program, the fractional service cost of a location i is Ĉi =

∑
j∈N c(i, j)x̂ij . Let

us assume that the locations are indexed non-decreasingly by fractional service
cost, so Ĉ1 ≤ Ĉ2 ≤ · · · ≤ Ĉ|N |. The algorithm is as follows.

Algorithm Consolidate

1. Find an optimum solution x̂, ŷ for linear program (3).
2. Re-assign demands as follows.

Set d′i ← di for each location i.
For each location i:

If there is a location j with fractional service cost Ĉj < Ĉi and such that
d′j > 0 and c(i, j) ≤ 4Ĉj , then move the demand of i to location j:

d′j ← d′j + d′i,
d′i ← 0.
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3. Let N ′
> = {i ∈ N | d′i > 0}, be the set of locations with positive demand.

We show below that |N ′
>| ≤ 2k. For each location i ∈ N , find the location

s(i) ∈ N ′
> closest to it. In case of ties, choose the location with minimum

index.
4. Set x′ ← x̂ and y′ ← ŷ.

For each location i with y′i > 0 and d′i = 0:
– Set y′s(i) ← min{1, y′i + y′s(i)}, and set y′i ← 0.
– For each location j ∈ N , set x′j s(i) ← x′j s(i) + x′ji, and set x′ji ← 0.

5. Sort the locations i ∈ N ′
> in non-increasing order of value d′i c(i, s(i)).

Set ȳi ← 1 for the first 2k − |N ′
>| locations i ∈ N ′

>.
Set ȳi = 1

2 for the remaining 2(|N ′
>| − k) locations i ∈ N ′

>.
Set ȳi ← 0 for all locations i ∈ N \N ′

>.
For each location i ∈ N :

Set x̄ii ← ȳi, and x̄is(i) ← 1− ȳi.
6. Build a graph H = (VH , EH) having as vertices the locations i ∈ N ′

>.
For every vertex i with ȳi = 1

2 add an edge between s(i) and i. Note that
graph H is a forest.
Find a dominating set I for H containing all vertices i with ȳi = 1, and such
that |I| ≤ k.

7. Select I as the set of centers. Let each client i be served by the center j ∈ I
with minimum service cost c(i, j).

This algorithm first simplifies the problem by moving demands so that there
are at most |N ′

>| ≤ 2k locations with positive demands. These locations are
far away from each other, and this allows the possibility of finding a 1

2 -integral
solution for the problem (a solution in which every variable has value either 0,
1
2 , or 1). This solution can, then, be transformed into an integral solution by
rounding the variables with value 1

2 up to 1 or down to 0. Note that step 4 of the
algorithm is not needed, we include it only to simplify the analysis. We analyze
now the algorithm in more detail.

3.4 Analysis

First, we show that the re-assignment of demands does not increase the cost of
the solution.

Lemma 3. ∑
i,j∈N

d′i c(i, j)x̂ij ≤
∑

i,j∈N

di c(i, j)x̂ij .

Proof. Since
∑

i,j∈N di c(i, j)x̂ij =
∑

i∈N diĈi, and in step 2 demand is moved
from location i to location j only if Ĉj ≤ Ĉi, the claim follows.

Re-assigning centers as described in step 4 increases the value of the fractional
solution by at most a factor of 2.

Lemma 4. ∑
i,j∈N

d′i c(i, j)x
′
ij ≤ 2

∑
i,j∈N

d′i c(i, j)x̂ij .
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Proof. Note that x′, y′ is a feasible solution for linear program (3). Consider
some location i ∈ N ′

> that is (partially) served in solution x̂, ŷ by some location
j �∈ N ′

>. The (fractional) center at j is moved to location s(j) and, hence, the
service cost of i increases to c(i, s(j)) x̂ij ≤ (c(i, j) + c(j, s(j)))x̂ij ≤ 2 c(i, j) x̂ij ,
since by definition of s(j), c(j, s(j)) ≤ c(j, i) = c(i, j). Therefore, the total service
cost is increased by at most a factor of 2.

We show that the solution x′, y′ built in step 4 is such that at least one half
of a center is assigned to each location i ∈ N ′

>, i.e., y′i ≥ 1
2 . By constraint (4) of

the linear program (3), this means that set N ′
> has at most 2k locations.

Lemma 5. For each location i ∈ N ′
>, y′i ≥ 1

2 .

Proof. For any two locations i, j ∈ N ′
>, c(i, j) > 4max {Ĉi, Ĉj} because other-

wise the demands for i and j would have been merged in step 2 of the algorithm.
Hence, after re-assigning demands, for each location i ∈ N ′

> all (fractional) cen-
ters within distance 2 Ĉi of i are moved to i in step 4. Note that for any i ∈ N ′

>,∑
j:c(i,j)>2Ĉi

x̂ij <
1
2

because, otherwise ∑
j:c(i,j)>2Ĉi

c(i, j)x̂ij > 2Ĉi

∑
j:c(i,j)>2Ĉi

x̂ij ≥ Ĉ1

which is a contradiction. Since
∑

j∈N x̂ij ≥ 1 and x̂ij ≤ ŷj for each i ∈ N , then∑
j:c(i,j)≤2Ĉi

ŷj ≥
∑

j:c(i,j)≤2Ĉi

x̂ij ≥
1
2
.

Therefore, in step 4 of the algorithm the value assigned to each variable y′i,
i ∈ N ′

>, is at least 1
2 .

It is easy to verify that the 1
2 -integral solution x̄, ȳ built in step 5 is feasible

for the linear program (3) with demands d′. As for its cost, we show that it is
not larger than the cost of solution x′, y′.

Lemma 6. ∑
i,j∈N

d′ic(i, j)x̄ij ≤
∑

i,j∈N

d′ic(i, j)x
′
ij .

Proof. ∑
i,j∈N

d′ic(i, j)x̄ij =
∑

i∈N ′
>

∑
j∈N ′

>

d′ic(i, j)x̄ij

=
∑

i∈N ′
>

d′ic(i, s(i))(1− ȳi)

≤
∑

i∈N ′
>

d′ic(i, s(i))(1− y′i) (5)



Approximation Algorithms for the k-Median Problem 303

To show that the last inequality is true, let us define N ′
1 as the set of centers

i ∈ N ′
> for which ȳi = 1. Also, let d′c(�, s(�)) = min

i∈N ′
1

{d′ic(i, s(i))}. Because of

the way in which set N ′
1 is chosen in step 5 of the algorithm, we know that

d′c(�, s(�)) ≥ d′ic(i, s(i)) for all i �∈ N ′
1. Finally, recall that y′i ≤ 1 for all i ∈ N .

Hence,∑
i∈N ′

>

d′ic(i, s(i))(1− ȳi − (1− y′i))

=
∑

i∈N ′
>

d′ic(i, s(i))(y
′
i − ȳi)

=
∑
i∈N ′

1

d′ic(i, s(i))(y
′
i − 1) +

∑
i�∈N ′

1

d′ic(i, s(i))(y
′
i −

1
2
)

≤
∑
i∈N ′

1

d′c(�, s(�))(y
′
i − 1) +

∑
i�∈N ′

1

d′c(�, s(�))(y
′
i −

1
2
)

=
∑
i∈N ′

1

d′c(�, s(�))(y
′
i − ȳi) +

∑
i�∈N ′

1

d′c(�, s(�))(y
′
i − ȳi)

= d′c(�, s(�))
∑

i∈N ′
>

(y′i − ȳi)

= 0

The last equation follows from the fact that
∑

i∈N ′
>
y′i =

∑
i∈N ′

>
ȳi = k. To

complete the proof, we note that∑
j∈N′
j �=i

x′ij ≥ 1− x′ii ≥ 1− y′i.

Therefore,∑
i∈N ′

>

d′ic(i, s(i))(1− y′i) ≤
∑

i∈N ′
>

∑
j∈N ′

>

d′ic(i, s(i))x
′
ij ≤

∑
i∈N ′

>

∑
j∈N ′

>

d′ic(i, j)x
′
ij .

Combining this with inequality (5), the claim follows.

Now, we are ready to show that the algorithm has a constant performance
ratio.

Theorem 5. Algorithm Consolidate finds a solution of cost at most 8 times
the cost of an optimum solution for the metric k-median problem.

Proof. It is not hard to see that the graph H built in step 6 is a forest and,
hence, we can efficiently find the required dominating set I as follows. First, add
to I all those vertices i with ȳi = 1 and, then, remove such vertices from H . Any
isolated vertex in the resulting graph H is dominated by at least one vertex in
I and, thus, these vertices are also deleted from H . After these deletions, H is
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a forest in which every tree contains at least 2 vertices, and the total number of
vertices in H is at most |N ′

>| − |I| = 2(|N ′
>| − k). A minimum dominating set

I ′ of H can be easily found and it includes at most half of the vertices in each
tree of H . Thus, |I ′| ≤ |N ′

>| − k. We set I ← I ∪ I ′ to get a dominating set for
the original graph H of size |I| ≤ 2k − |N ′

>|+ |N ′
>| − k = k as desired.

Consider this solution I. Each vertex i ∈ I with ȳi = 1 does not contribute
to the cost of the solution since x̄ii = ȳi = 1 and c(i, i) = 0. For those vertices i
with ȳi = 1

2 , either i ∈ I or s(i) ∈ I. Hence, the contribution of i to the cost of
the solution is at most d′i c(s(i), i) ≤ 2d′i c(s(i), i)x̄i s(i). Therefore, the cost c(I)
of solution I is at most 2 times the cost of the half integral solution x̄, ȳ. By
Lemmas 4 and 6, c(I) is at most 4 times the cost of the fractional solution x̂, ŷ
with demands d′.

To determine the effect of the re-allocation of demands performed in step 2
on the cost of the solution, consider a location j ∈ N which has its demand
moved to another location j′ ∈ N ′. For this location c(j′, j) ≤ 4Ĉj . Let j′ be
served by center i in solution I. If we move back the demand to j and let j
be served by center i, this would increase the cost of the solution by at most
dj c(j′, j) ≤ 4djĈj . Therefore, moving all demands back to the original locations
increases the cost of the solution by at most 4 times the cost of solution x̂, ŷ.

By the above arguments, the cost of solution I is at most 8 times the cost of
an optimum solution for the k-median problem.

By using a more complex rounding algorithm than the one described in step
6 of the algorithm, Charikar et al. [13] are able to show that the performance
ratio of the algorithm can be improved to 6 2

3 .

4 A Primal-Dual Algorithm

In this section we describe another linear programming based approximation
algorithm for the k-median problem. The approach that we present now differs
from the ones presented in the previous section in that it does not need to solve
a linear program, but rather it finds primal and dual solutions for the problem
using combinatorial methods. This results in a faster algorithm, and, as we show,
the performance ratio is better than the performance ratio of the algorithm of
Charikar et al. [13].

The primal-dual algorithm that we present here is due to Jain and Vazirani
[23]. This algorithm is based on an interesting relationship between the k-median
problem and the uncapacitated facility location problem. In order to understand
the algorithm we need first to describe a primal-dual approximation algorithm
for the uncapacitated facility location problem.

4.1 The Uncapacitated Facility Location Problem

The uncapacitated facility location problem differs from the k-median problem
in that facilities have assigned building costs f(j) and there is no bound on the
number of facilities that might be selected as centers. The goal is to minimize
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the total cost for servicing the clients plus the cost of the facilities selected. An
integer program defining the uncapacitated facility location problem is very sim-
ilar to integer program (1), with the differences stated above. A linear program
relaxation of this integer program is given below.

Minimize
∑
j∈F

∑
i∈D

c(i, j)xij +
∑
j∈F

f(j)yj (6)

subject to∑
j∈F

xij ≥ 1 for all i ∈ D

xij ≤ yj for all i ∈ D, j ∈ F
0 ≤ xij , yj for all i ∈ D, j ∈ F

The dual linear program corresponding to this linear program is the following
(for a comprehensive study of linear programming concept the reader is referred
to [17,41,46]).

Maximize
∑
i∈D

αi (7)

subject to
αi − βij ≤ c(i, j) for all i ∈ D, j ∈ F (8)∑

i∈D

βij ≤ f(j) for all j ∈ F

αi, βij ≥ 0 for all i ∈ D, j ∈ F

There is a nice interpretation for the dual variables α, β. Let us think, as it
happens in the real world, that the clients must pay for the service cost and
for the cost of building the selected facilities. If client i is served by facility
j, then the amount αi paid by the client must be at least equal to c(i, j). If
αi > c(i, j), the rest of the money paid by the client, i.e., βij = αi− c(i, j), goes
towards paying for the cost of building facility j. By the complementary slackness
conditions, the second constraint of the dual linear program is tight (which means
that

∑
i∈D βij = f(j)) if facility j is selected. By the above argument, the total

amount
∑

i∈D βij contributed by the clients served by j, has to be exactly equal
to the building cost of facility j.

To solve the dual linear program, we must determine the price that each
client must pay. From the dual solution it is easy to determine which facilities
are selected. Each client is assigned to that facility with smallest service cost.

An instance of the uncapacitated facility location problem can be modeled
with a graph G = (D ∪ F,E) having as vertices the clients and facilities, and
edges connecting every facility to each client. The weight of an edge (i, j) is the
service cost c(i, j). In the above primal-dual context, an edge (i, j) is said to be
tight if αi ≥ c(i, j) (or in other words, if αi = c(i, j) + βij and βij ≥ 0), and a
facility j is said to be paid for if

∑
i∈D βij = f(j). A client i is marked if there
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is a facility j which has been paid for, and edge (i, j) is tight. The algorithm for
approximately solving the uncapacitated facility location problem is as follows.

Algorithm PrimalDual

0. Initially all clients are un-marked. All values αi and βij are initialized to 0.
1. Repeat steps 2 and 3 as long as there are un-marked clients.
2. Simultaneously and uniformly (at the same rate) raise the values of, both,

the dual variables αi for all un-marked clients i and the variables βij for all
tight edges (i, j), until either:
– αi = c(i, j) for some edge (i, j), or
–
∑

i∈D βij = f(j) for some facility j.
In the first case we label edge (i, j) as tight. In the second case we label
facility j as paid for.

3. Every un-marked client i with a tight edge (i, j) connecting it to a paid for
facility j is marked.

4. Build the graph T = (D ∪ F,E′) containing those edges (i, j) for which
βij > 0.

5. Build the square T 2 of graph T by adding an edge between vertices u and v
if there is a path of length at most 2 between u and v in T .

6. Build the subgraph H of T 2 induced by those facilities that are paid for.
7. Find a maximal independent set I of H .
8. Select I as the set of centers and let each client i be served by a center
j ∈ I for which the service cost c(i, j) is minimum. If for a client i there are
2 or more centers with minimum service cost, choose any one of them for
servicing i.

In the solution I produced by this algorithm, we say that a client i is directly
connected to the facility j that serves it if βij > 0. Otherwise client i is said to
be indirectly connected.

4.2 Performance Ratio

We interpret the value of variable αi as the price that client i has to pay for,
both, building a facility and for being serviced by that facility. Let client i be
serviced by facility j. Let αf

i be the price that client i pays for building facility j
and let αs

i be the service cost paid by the client. Clearly, αi = αs
i + αf

i . If client
i is directly connected to j, then αi = c(i, j) + βij , and so we set αs

i ← c(i, j),
and αf

i ← βij . If i is indirectly connected, then we set αs
i ← αi and αf

i ← 0.

Lemma 7. ∑
j∈I

f(j) =
∑
i∈D

αf
i .

Proof. Every facility j ∈ I is paid for, i.e. f(j) =
∑

i∈D βij =
∑

i∈Dj
αf

i , where
Dj is the set of clients directly connected to j. Since sets Dj are disjoint, the
claim follows.



Approximation Algorithms for the k-Median Problem 307

Lemma 8. For every indirectly connected client i, c(i, j) ≤ 3αs
i , where j ∈ I is

the facility that serves i.

Proof. Since the loop in steps 1-3 terminates when all clients are marked, then, i
is marked in step 3 because these is a facility j′ for which αi ≥ c(i, j′). However,
j′ �∈ I since i is indirectly connected. As i is indirectly connected, facility j′

was not selected to be in the final solution I computed in step 7. Note that
since I is a maximal independent set of H , there has to be at least one facility
k ∈ I such that there is an edge from j′ to k in the graph H built in step 6 (see
Figure 1). Because clients are assigned to their nearest centers in step 8, then
c(i, k) ≥ c(i, j).

Observe that k and j′ are facilities and so there is no edge (k, j′) in the
graph G = (D ∪ F,E). Since edge (k, j′) belongs to H , there must be a client h
with edges (h, k) and (h, j′) such that βhk > 0 and βhj′ > 0. This implies that
αh > c(h, k) and αh > c(h, j′).

j

i

j’

h

k

Hedge in 

Fig. 1. Service cost of client i. Centers k and j belong to I , but j′ �∈ I .

The algorithm does not rise the value of αh after facility j′ is paid for (and in
fact it might stop raising the value of αh when k or other neighbouring facility
of h is paid for). Since, as we assumed above, i is marked when αi takes value
c(i, i′), then αi is raised at least until the time when j′ is paid for. Therefore,
αi > αh. By the triangle inequality (see Figure 1), c(i, j) ≤ c(i, k) ≤ c(i, j′) +
c(h, j′) + c(h, k) ≤ αi + 2αh ≤ 3αi.

Using these two lemmas, we can compute the performance ratio of algorithm
PrimalDual.

Theorem 6. The performance ratio of algorithm PrimalDual is 3.

Proof. Let x, y and α, β be the primal and dual solutions produced by the algo-
rithm. Since for a client i directly connected to a facility j, αs

i = c(i, j), and by
Lemma 8, for each indirectly connected client i, c(i, j) ≤ 3αs

i , then∑
j∈F

∑
i∈D

c(i, j)xij ≤ 3
∑
i∈D

αs
i .
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From this inequality and Lemma 7, we get∑
j∈F

∑
i∈D

c(i, j)xij + 3
∑
j∈F

f(j)yj ≤ 3
∑
i∈D

(αs
i + αf

i ) = 3
∑
i∈D

αi. (9)

Since the value of an optimum solution for the k-median problem is at least∑
i∈D αi, the claim follows.

4.3 Running Time

Steps 1-3 are, perhaps, the most difficult steps of the algorithm to implement and
analyze, so we will give some details here as to how these steps can be efficiently
implemented. Note that since the values αi are raised uniformly, the order in
which the edges will become tight is consistent with a non-decreasing ordering
of the edges by cost. Hence, if we store the edges in a list L in non-decreasing
order of cost, we will know the order in which the events αi = c(i, j) of step 2
will take place. To keep track of the second class of events that take place in
step 2, namely

∑
i∈D βij = f(j) for some facility j, we need to maintain for each

facility j the following 3 variables:

– a variable bj giving the number of tight edges currently contributing to
facility j,

– a variable tj giving the time when the value of bj last changed, and
– a variable pj giving the total contribution made by clients to facility j up to

time tj .

To determine the event that will take place during the following iteration of
steps 2-3 we first compute

τ = min
{
c(i, j),min

j∈F

{
f(j)− pj

bj

}}
,

where (i, j) is the first edge in L, if any. If L is empty, we simply ignore the first
term c(i, j). We can efficiently compute τ by using a heap h.

a. If c(i, j) = τ , then edge (i, j) becomes tight in this iteration, so we discard
(i, j) from L.
– If j is not yet paid for, we update pj ← pj + (τ − tj)bj and, then,

increase the value of bj by 1 since in the next iterations the value of βij

will be increased. Finally, we set tj ← τ . These steps can be performed
in constant time and updating the value f(j)−pj

bj
associated with j in the

heap needs O(log nf ) time, where nf is the number of facilities.
– If j is already paid for, then we mark i. Since from this point on the value

αi and the values βij′ for all tight edges (i, j′) will not increase any more,
then, we need to update the values of the variables for such facilities j′.
For each facility j′ such that (i, j′) is tight we set pj′ ← pj′ + bj′(τ −
tj′ ) and, then, we decrease bj′ by 1. Finally, we set tj′ ← τ . The total
amount of time needed to perform these steps is O(degree(i) log nf),
where degree(i) is the degree of client i in the graph G = (D ∪ F,E).
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b. On the other hand, if f(j)−pj

bj
= τ , then facility j will next get paid for, so

we remove this value f(j)−pj

bj
from the heap. Furthermore, all clients i with

tight edges to j will be marked, and so their αi and βij values will stop
increasing. For each one of these clients with tight edges (i, j′) we need to
update the values of pj′ , tj′ , and bj′ as described above. Let Sj be the set
of clients marked in this step. The total time needed to perform the above
steps is O(

∑
i∈Sj

degree(i) lognf ).

Since every client is marked only once, then the total time needed to complete
steps 1-3 is O(

∑
i∈D degree(i) lognf ) = O(m log nf ), where m is the number of

edges in the graph G = (D ∪ F,E).

4.4 Algorithm for the k-Median Problem

By studying the integer program formulations for the k-median and uncapaci-
tated facility location problems, we note that the Lagrangian relaxation of con-
straint (2) in the integer program (1) for the k-median problem gives an instance
of the uncapacitated facility location problem in which all the facilities have the
same cost z, where z is the Lagrange multiplier:

Minimize
∑
j∈F

∑
i∈C

c(i, j)xij +
∑
j∈F

zyj (10)

subject to∑
j∈F

xij ≥ 1 for all i ∈ D

xij ≤ yj for all i ∈ D, j ∈ F
xij , yj ∈ {0, 1} for all i ∈ D, j ∈ F

The value of the Lagrange multiplier z controls the number of facilities se-
lected by the algorithm PrimalDual. As the value of z increases, the number of
facilities selected decreases. If it happens that for some value of z the algorithm
chooses exactly k facilities, then this would be a good solution for the k-median
problem:

Lemma 9. Suppose that for some value z algorithm PrimalDual selects ex-
actly k facilities. The cost of this solution is at most 3 times the cost of an
optimum solution for the k-median problem.

Proof. Let x, y and α, β be the primal and dual solutions constructed by the
algorithm. Then, by equation (9),

∑
j∈F

∑
i∈D

c(i, j)xij ≤ 3

(∑
i∈D

αi − kz

)
(11)
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Observe that x, y is a feasible solution for the k-median problem and α, β, z is a
feasible solution for the dual linear program for the k-median problem:

Maximize
∑
i∈D

αi − zk (12)

subject to
αi − βij ≤ c(i, j) for all i ∈ D, j ∈ F∑

i∈D

βij ≤ z for all j ∈ F

αi, βij ≥ 0 for all i ∈ D, j ∈ F

Therefore, by the weak duality theorem, x, y is a solution for the k-median
problem of cost

∑
j∈F

∑
i∈D c(i, j)xij at most 3 times the cost of an optimum

solution for the problem.

However, there might not be a value z for which algorithm PrimalDual
selects exactly k centers, or it might be the case that finding such a value might
take too long1. What we can do in that case, is to find two “close”values z1 and
z2 for the facility costs, such that for the first value the algorithm will choose
k1 < k and for the second one it will select k2 > k centers, respectively. We
combine these solutions to get a fractional solution with exactly k centers. The
details are as follows.

Algorithm ConvexCombination

1. Compute cmin = min{c(i, j) | i ∈ D, j ∈ F} and cmax = max{c(i, j) | i ∈
D, j ∈ F}.
Set nf ← |F |.

2. Use algorithm PrimalDual and binary search over the interval [0, ncmax]
to find two values, z1 and z2, such that z1 − z2 ≤ cmin/(4n2

f) for which
algorithm PrimalDual finds solutions
– xs, ys,αs, βswith k1 < k centers, and
– x, y,α, β with k2 > k centers, respectively.

Let A be the set of centers chosen in solution xs, ys, and let B be the set of
centers chosen in solution x, y.

3. Let a = k2−k
k2−k1

and b = k−k1
k2−k1

. Combine the two above solutions to get a
new solution (x̂, ŷ) = a(xs, ys)+ b(x, y) that (fractionally) opens exactly k
centers.

4. B′ ← ∅
For each facility j ∈ A do

Remove from B the facility j′ with minimum c(j, j′) value, and include
it into set B′.

1 Recently Archer et al. [1] designed a variant of Jain and Vazirani’s algorithm which
guarantees the existence of a value k for which exactly k centers are selected. Un-
fortunately, this algorithm requires the solution of the maximum independent set
problem, and so it is not guaranteed to run in polynomial time.
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5. Choose a set I of k centers from A ∪B as follows:
– Select all centers in A with probability a and select all centers in B′ with

probability b (note that b = 1− a).
– Randomly select k − k1 centers from B.

6. Select I as the set of centers and let each client i be served by the center
j ∈ I with minimum service cost c(i, j).

Lemma 10. The cost of the fractional solution x̂, ŷ computed in step 3 is at
most (3+ 1

nf
) times the cost of an optimum fractional solution for the k-median

problem.

Proof. Let α = aαs + bα, and β = aβs + bβ. Note that, α, β, z1 is a feasible
solution for the dual linear program (12) and, thus, its value is a lower bound
for the value of the optimum fractional solution for the k-median problem. Let
us compute the value of this dual solution. By equation (9),

3

(∑
i∈D

α
i − z2k2

)
≥
∑
j∈F

∑
i∈D

c(i, j)x
ij ≥ cmin ≥ (3nf + 3)(z1 − z2)k2.

This last inequality follows since k2 ≤ nf , and z1−z2 ≤ cmin/(4n2
f ). Furthermore,

we need to assume that nf ≥ 3. This is a reasonable assumption since if the
number of facilities is less than 3, then the k-median problem can be easily
solved by trying the at most O(n2) subsets of k facilities as possible solutions
for the problem. Hence,

3

(∑
i∈D

α
i − z1k2

)
= 3

(∑
i∈D

α
i − z2k2

)
− 3(z1 − z2)k2 ≥ 3nf (z1 − z2)k2.

So, (z1 − z2)k2 ≤ 1
nf

(∑
i∈D α

i − z1k2
)

and, therefore,

3
i∈D

α�
i − z2k2 = 3

i∈D

α�
i − z1k2 + (z1 − z2)k2 ≤ 3 +

1
nf

i∈D

α�
i − z1k2 .

Combining the above inequalities, we get

∑
j∈F

∑
i∈D

c(i, j)x
ij ≤

(
3 +

1
nf

)(∑
i∈D

α
i − z1k2

)
.

Also, by inequality (9),

∑
j∈F

∑
i∈D

c(i, j)xs
ij ≤ 3

(∑
i∈D

αs
i − z1k1

)
.
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From the last two inequalities, we finally get:

∑
j∈F

∑
i∈D

c(i, j)x̂ij ≤
(

3 +
1
nf

)(
a
∑
i∈D

αs
i + b

∑
i∈D

α
i − z1k

)

=
(

3 +
1
nf

)(∑
i∈D

αi − z1k
)
.

Let xI , yI be the solution for integer program (1) corresponding to the solution
I computed by algorithm ConvexCombination. The expected cost of this
solution is bounded in the following Lemma.

Lemma 11.

E[
∑
j∈F

∑
i∈D

c(i, j)xI
ij ] ≤ (1 + max{a, b})

∑
j∈F

∑
i∈D

c(i, j)x̂ij ,

where x̂ is the fractional solution computed in step 3.

Proof. Consider a client i and the sets of facilities A,B, and B′ constructed by
the algorithm in steps 2 and 4. Let j1 ∈ A and j2 ∈ B be the centers that serve
i in solutions xs, ys and x, y, respectively. We consider two cases.

1. If j2 ∈ B′, then either j1 ∈ I or j2 ∈ I. Hence,

E[
∑
j∈F

c(i, j)xI
ij ] = a c(i, j1) + b c(i, j2) =

∑
j∈F

c(i, j)x̂ij .

2. If j2 �∈ B′, then
– the probability that j2 ∈ I is b,
– the probability that j2 �∈ I and j1 ∈ I is a(1− b) = a2, and
– the probability that j1 �∈ I and j2 �∈ I is (1− a)(1− b) = ab.

Let j3 ∈ B′ be the facility that is paired to j1 in step 4 of the algorithm.
Then,

E[
∑
j∈F

c(i, j)xI
ij ] ≤ b c(i, j2) + a2c(i, j1) + ab c(i, j3).

Since j3 is the center in B closest to j1, then c(j1, j3) ≤ c(j1, j2), and so
c(i, j3) ≤ c(i, j1) + c(j1, j3) ≤ c(i, j1) + c(j1, j2) ≤ 2c(i, j1) + c(i, j2). Using
this last inequality we get:

E[
∑
j∈F

c(i, j)xI
ij ] ≤ (a2 + 2ab)c(i, j1) + (b+ ab)c(i, j2)

= a(a+ 2b)c(i, j1) + b(1 + a)c(i, j2)
= a(1 + b)c(i, j1) + b(1 + a)c(i, j2)
≤ (1 + max{a, b})(c(i, j1)a+ c(i, j2)b)

= (1 + max{a, b})
∑
j∈F

c(i, j)x̂ij
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We are now ready to determine the performance ratio of the algorithm.

Theorem 7. There is a deterministic 6-approximation algorithm for the metric
k-median problem.

Proof. Since algorithm ConvexCombination can be easily de-randomized us-
ing the method of conditional expectations, we only need to show that the ex-
pected cost of the solution xI , yI is at most 6 times the cost of an optimum
solution for the k-median problem.

By the previous two lemmas, the cost of the solution xI , yI is at most (3 +
1

nf
)(1 + max{a, b}) times larger than the optimum. By using basic algebra we

can show that, a = k2−k
k2−k1

≤ nf−k
nf−(k−1) ≤

nf−1
nf

, and b = k−k1
k2−k1

≤ k−1
k . Then

1 + max{a, b} ≤ 1 + nf−1
nf

≤ 2 − 1
nf

. Therefore, the performance ratio of the

algorithm is
(
3 + 1

nf

)(
2− 1

nf

)
≤ 6.

Charikar and Guha [12] proposed a slight variation of the above algorithm,
and using a more complex analysis they were able to show that their algorithm
has a performance ratio of 4.

5 A Local Search Algorithm

Local search heuristics have not been widely used to design approximation al-
gorithms, mainly because of the difficulty of proving that a locally optimal so-
lution is within a certain factor of the globally optimal one. Hence, it is sur-
prising that a local search algorithm yields the best known performance ra-
tio for the metric k-median problem. In this section we describe the algorithm
of Arya et al. [5] which for any value ε > 0, achieves a performance ratio of
(3 + 2/p)/(1− εn2) ≤ 3 + 2/p+ ε′ for ε′ = 10εn2, if ε ≤ 1 and n ≥ 2. This algo-
rithm repeatedly improves a solution by swapping p of the centers in the current
solution with p facilities not in the solution, where the value of the parameter p
is not larger than k.

Given a set S of at most k centers we define the cost of S, denoted as c(S), as
the total service costs of the clients, i.e. c(S) =

∑
d∈D c(d, S), where c(d, S) =

min{c(d, f) | f ∈ S} is the smallest cost of servicing d by one of the centers in
S. Let ε be a constant value and 0 < ε < 1. The algorithm of Arya et al. is the
following.

Algorithm LocalSearch (p, ε)

1. S ← an arbitrary set of k centers
2. while there are sets T ⊆ F \ S and T ′ ⊆ S such that |T | = |T ′| ≤ p

and c((S \ T ′) ∪ T ) ≤ (1− ε)c(S), do
S ← (S \ T ′) ∪ T

3. return S.

Let S∗ be an optimum solution for the k-median problem. If p and ε are con-
stant values, a straightforward implementation of the algorithm checks in every
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iteration of the while loop all subsets of F \S and S of size at most p. Since there
are O(np) subsets of F \S (and of S) of size at most p, and since the condition
c((S\T ′)∪T ) ≤ (1−ε)c(S) can be easily tested inO(n) time, then each iteration
of the while loop can be implemented to run in O(n2p+1) time. In every iteration
of the while loop the value of the solution decreases by at least a factor of 1− ε,
and so the maximum number of iterations is log 1

1−ε

c(S0)
c(S∗) , where S0 is the initial

solution. Hence, the algorithm runs in time O(n2p+1 log(c(S0)/c(S∗))/ log( 1
1−ε)).

Theorem 8. Algorithm LocalSearch has a performance ratio of (3 + 2/p)/
(1− ε).

In order to ensure that the above algorithm has polynomial running time, we
must guarantee that each iteration of the while loop decreases the value of the
current solution by at least a factor of 1 − ε. Therefore, the algorithm is not
guaranteed to find a locally optimal solution. To prove Theorem 8 we first need
to show some properties of the solution S computed by the algorithm. For any
sets T ⊆ S and T ′ ⊆ F \ S such that |T | = |T ′| ≤ p,

c((S \ T ) ∪ T ′) > (1− ε)c(S). (13)

Given a feasible solution S for the k-median problem, we denote the set of clients
serviced by some subset of centers A ⊆ S as NS(A). Given a center s ∈ S, the
set of clients served by s is denoted as NS(s).

Given a set of centers A ⊆ S, we say that A captures a center o belonging to
the optimum solution S∗, if A serves at least half of the clients served by o, or
in other words, if |NS�(A) ∩NS∗(o)| ≥ |NS∗(o)|/2. We define capture(A) as the
set of centers o ∈ S∗ captured by A. For any two sets X,Y ⊆ S, the following
properties hold.

Lemma 12. If X and Y are disjoint, then capture(X) and capture(Y ) are dis-
joint. Furthermore, if X ⊆ Y then capture(X) ⊆ capture(Y ).

Proof. To prove the first property we show that every center o ∈ S∗ can be
captured by at most one of the sets X,Y . If a center o ∈ S∗ is captured by, say,
X then more than half of the clients served by o in the optimum solution are
served by centers in X . Therefore, the centers in Y cannot capture o.

The second property is easy to show since every center o ∈ S∗ captured by X
has more than half of its clients served also by Y in S.

We call a center s ∈ S bad if it captures at least one center in S∗, and good
otherwise.

Lemma 13. The solutions S and S∗ can be partitioned into sets A1, A2, . . . , Ar

and B1, B2, . . . , Br, respectively, where r− 1 is the number of bad centers in S.
This partition is such that for all i = 1, . . . , r− 1, |Ai| = |Bi|, Bi =capture(Ai),
and Ai has one bad center. Furthermore, |Ar| = |Br| and Ar has only good
centers.
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Fig. 2. Service cost of client j after reassigning clients to centers

Proof. We prove the lemma by induction on the number of bad centers. The
basis is trivial because if the number of bad centers is 0 then we simply set
A1 = S and B1 = S∗. For the induction step, let us assume that the partitions
exist when the number of bad centers in S is b, b ≥ 0, and prove that such a
partition exists when the number of bad centers is b + 1. Choose a bad center
s ∈ S, and set A1 = {s}. Note that capture(A1) ≥ 1. If |capture(A1)| > |A1|,
then repeatedly add good centers to A1 until the size of A1 is equal to the size
of capture(A1). We can always do this since every bad center in S captures at
least one center in S∗ and, hence, if |capture(A1)| > |A1| there must be at least
one good center in S \A1.

Set B1 ←capture(A1). To complete the proof, we note that by the induc-
tion hypothesis it is possible to partition S \ A1 and S∗\capture(A1) into sets
A2, . . . , Ak+2 and B2, . . . , Bk+2 as described in the statement of the lemma. By
Lemma 12, the sets Bi are disjoint, so the sets Ai and Bi are partitions of S

and S∗, respectively. Finally, since |S| = |S∗|, then |Ar| = |Br|.

For each client j let ρS�(j) be the center that serves j in solution S and let
ρS∗(j) be the center that serves j in S∗. Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let {A1, A2, . . . , Ar}, {B1, B2, . . . , Br} be partitions
of S and S∗ as described above. To compute the performance ratio of the
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algorithm, let us consider the following sets of swaps involving all the centers in
the optimum solution S∗.

i. For each set Ai such that |Ai| = |Bi| ≤ p, swap the centers in Ai with those
in Bi. By inequality (13) we know that

c((S \Ai) ∪Bi) > (1− ε)c(S).

We can bound the value of the left hand side of this inequality by reassigning
the clients served by S to centers in (S \ Ai) ∪ Bi as follows. All clients
in NS∗(Bi) are assigned to the centers in Bi. For all other clients that are
served by Ai we proceed as follows. Consider all clients j served by Ai that
are served in S∗ by some center o′ = ρS∗(i) �∈ Bi. Since o′ �∈ Bi, then Ai does
not capture o′ and, hence, |NS�(Ai) ∩NS∗(o′)| < 1

2 |NS∗(o′)|. Thus, for each
one of these clients j we can associate a unique client πj ∈ NS∗(o′)\NS�(Ai)
(see Figure 2). Let πj be served in S by some center s′ = ρS�(πj) �∈ Ai.
Then, by the triangle inequality, reassigning client j to center s′ incurs a cost
at most c(ρS�(πj), j) ≤ c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j). Hence,

(1− ε)c(S) < c((S \Ai) ∪Bi)

≤
∑

j∈NS∗ (Bi)

c(ρS∗(j), j) +

∑
j∈N

S� (Ai)
j �∈NS∗ (Bi)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j)) +

∑
j∈D

j �∈NS∗ (Bi)∪N
S�(Ai)

c(ρS�(j), j)

≤
∑
j∈D

c(ρS�(j), j) +
∑

j∈NS∗(Bi)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

∑
j∈N

S� (Ai)

(c(ρS�(πj), πj) +

c(ρS∗(j), πj) + c(ρS∗(j), j)− c(ρS�(j), j)) (14)

ii. For each set Ai such that |Ai| = |Bi| = q > p, we first select a set of q − 1
good centers from Ai. Then, we swap every center o ∈ Bi with each one of
the q− 1 selected good centers s from Ai. Proceeding similarly as above, we
can show that

(1− ε)c(S) < c((S \ {s}) ∪ {o})
≤
∑
j∈D

c(ρS�(j), j) +
∑

j∈NS∗ (o)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

∑
j∈N

S� (s)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j))
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By adding all inequalities for a center o ∈ Bi, and then dividing the sum by
q − 1 we get

(1 − ε)c(S) <
∑
j∈D

c(ρS�(j), j) +
∑

j∈NS∗(o)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

1
q − 1

∑
j∈N

S� (Ai)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j)) (15)

Next, we add the inequalities (15) for the q centers o ∈ Bi:

q(1− ε)c(S) < q
∑
j∈D

c(ρS�(j), j) +
∑

j∈NS∗(Bi)

(c(ρS∗(j), j)− c(ρS�(j), j)) +

q

q − 1

∑
j∈N

S� (Ai)

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j) − c(ρS�(j), j)) (16)

Add the inequalities (14) and (16) for all sets Ai, Bi. Let r1 be the number of
pairs Ai, Bi for which |Ai| = |Bi| ≤ p. Since

⋃
Ai
NS�(Ai) =

⋃
Bi
NS∗(Bi) = D,

then by adding the inequalities we get

(r1 + q(r − r1))(1− ε)c(S) < (r1 + q(r − r1))
∑
j∈D

c(ρS�(j), j) +

∑
j∈D

(c(ρS∗(j), j) − c(ρS�(j), j)) +

q

q − 1

∑
j∈D

(c(ρS�(πj), πj) + c(ρS∗(j), πj) +

c(ρS∗(j), j)− c(ρS�(j), j)) (17)

Because of the way in which the mapping π has been defined, it is not hard to
see that∑

j∈D

(c(ρS�(πj), πj) + c(ρS∗(j), πj) + c(ρS∗(j), j)− c(ρS�(j), j)) ≤ 2c(S∗).

By using this last inequality in (17), we get

(r1 + q(r − r1))(1− ε)c(S) < (r1 + q(r − r1))c(S) +

(c(S∗)− c(S)) +
q

q − 1
(2c(S∗))

≤
(

3 +
2
p

)
c(S∗) + (r1 + q(r − r1)− 1)c(S)
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The last inequality follows from q/(q− 1) ≤ (p+1)/p. Since r1 + q(r− r1) < n2,
then

(1 − εn2)c(S) < (1− ε(r1 + q(r − r1)))c(S) <
(

3 +
2
p

)
c(S∗).

Thus, c(S) ≤ (3 + 2
p )/(1 − εn2)c(S∗). ��
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Abstract. Probabilistic methods have advanced the design of algo-
rithms in algorithmic discrete mathematics and theoretical computer sci-
ence. Many notoriously hard algorithmic problems have been solved with
randomized algorithms or probabilistic methods, either optimally or in
a satisfactory approximative way. One of the powerful tools in analyz-
ing randomized approximation algorithms is the Lovász-Local-Lemma,
a sieve method with many nice applications. In this article we show its
impact on job shop scheduling and resource constrained scheduling.

1 Preliminaries

1.1 Graphs and Hypergraphs

We use the standard notion of graphs and hypergraphs. A graph G = (V,E)
is a pair consisting of a finite set V (the set of vertices or nodes) and a subset
E ⊆

(
V
2

)
, where

(
V
2

)
denotes the set of all 2−element subsets of V . The elements

of E are called edges. For a set X let P(X) be the powerset of X . A hypergraph
or set system H = (V, E) is a pair of a finite set V and a subset E ⊆ P(V ). The
elements of E are called hyperedges. The degree of a vertex v ∈ V in H, denoted
by deg(v), is the number of hyperedges containing v, and deg(H) = max

v∈V
deg(v)

is the (vertex-)degree ofH.H is called r-regular resp. k-uniform, if deg(v) = r for
all v ∈ V resp. |E| = k for all E ∈ E . For convenience we write V = {v1, . . . , vn}
and E = {E1, . . . , Em}, and sometimes identify vertices and edges with their
indices. The vertex-hyperedge incidence matrix of a hypergraph H = (V, E) is a
matrix A = (aij) ∈ {0, 1}n×m, where aij = 1 if vi ∈ Ej , and 0 otherwise. For a
modern treatment of graph theory, we refer to the books of Berge [9], Bollobás
[12], Diestel [17] and West [42].

1.2 Large Deviations

Suppose a randomized approximation algorithm for an optimization problem
produces a solution with real objective function value C. Quite often it is possible
to compute the expectation [C], and if we are lucky, we even can prove that

[C] is close to the optimal value OPT, say with relative error ε > 0: 1

1 ε can be a constant, but in many cases it is a function ε = ε(|I |), depending on the
size of the input.
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| (C) −OPT| ≤ εOPT. (1)

To be on the critics’ side, the inequality (1) does not say too much! It can
happen that C is “badly” distributed around [C], meaning that C may deviate
significantly from [C], thus destroying the nice approximation suggested by (1).
If the randomized algorithm is well-designed, then of course C should stay close
to [C] with high probability. Such concentration phenomena are usually proved
by bounding the deviation from the expectation with large deviation inequalities.
Throughout this article we consider only finite probability spaces (Ω, ), where
Ω is a finite set and is a probability measure with respect to the powerset P(Ω)
as the sigma field. Let u1, . . . , un and v1, . . . , vn be integers, and let X1, . . . , Xn

be mutually independent (briefly independent) random variables, whereXj takes
the values uj or vj with probability

[Xj = uj] = pj , [Xj = vj ] = 1− pj

for real valued pj , 1 ≤ j ≤ n. For 1 ≤ j ≤ n let wj denote rational weights with

0 ≤ wj ≤ 1

and let

ψ =
n∑

j=1

wjXj

be the weighted sum. For uj = 1, vj = 0, wj = 1 and pj = p for all j =
1, . . . , n, ψ =

∑n
j=1Xj is the well-known binomially distributed random variable

with mean np. The inequalities given below and their proofs can be found in the
books of Alon, Spencer and Erdős [6], Habib, McDiarmid, Ramirez-Alfonsin and
Reed [23], and Janson, �Luczak, Ruciński [26].

Theorem 1. (Markov Inequality) Let (Ω, ) be a probability space and X :
Ω −→ + a random variable with expectation [X ] <∞. Then for any λ ∈ +

[X ≥ λ] ≤ [X ]
λ

.

A sharper bound is the well-known inequality of Chebyshev:

Theorem 2. (Chebyshev Inequality) Let (Ω, ) be a probability space and X :
Ω −→ a random variable with expectation [X ] and variance Var[X ]. Then
for any λ ∈ +

[|X − [X ]| ≥ λ
√

Var[X ]] ≤ 1
λ2 .

The following basic large deviation inequality is implicitly given in Chernoff
[14] in the Binomial case. In explicit form it can be found in Okamoto [32]. Its
generalization to arbitrary weights is due to Hoeffding [25]:

Theorem 3. (Hoeffding 1963) Let uj = 1, vj = 0, 0 ≤ wj ≤ 1, 0 ≤ pj ≤ 1 for
all j = 1, . . . , n and let λ > 0. Then
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(a) [ψ ≥ [ψ] + λ] ≤ exp(− 2λ2

n )
(b) [ψ ≤ [ψ]− λ] ≤ exp(− 2λ2

n ).

In the literature Theorem 3 is well-known as the Chernoff bound. Another
useful form is given in the following theorem (see [36] for a proof).

Theorem 4. Let uj = 1, vj = 0, 0 ≤ wj ≤ 1, 0 ≤ pj ≤ 1 for all j = 1, . . . , n and
let μ = [ψ]. Then

(i) For any β > 0, [ψ ≥ μ(1 + β)] ≤ G(μ, β) where

G(μ, β) =
(

eβ

(1+β)(1+β)

)μ

.

(ii) ∀μ > 0 and ∀p ∈ (0, 1), there exists β = H(μ, p) > 0 such that �μβ� ·
G(μ, β) ≤ p and

H(μ, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ

(√
log(p−1+μ)

μ

)
if μ > log p−1

2 ;

Θ
(

log p−1

μ log(log(p−1)/μ)

)
otherwise .

For random variables with zero expectation we have an inequality due to
Hoeffding [25]:

Theorem 5. (Hoeffding 1963) Let uj = 1, vj = −1, wj = 1, pj = 1/2 for all
j = 1, . . . , n. For λ > 0 we have

(a) [ψ > λ] ≤ exp(−λ2

2n )
(b) [ψ < −λ] ≤ exp(−λ2

2n ).

For small expectations, i.e., [ψ] ≤ n
6 , the following inequalities due to Angluin

and Valiant [7] give sharper bounds than Chernoff’s inequality.

Theorem 6. (Angluin, Valiant 1979) Let uj = 1, vj = 0, 0 ≤ wj ≤ 1, 0 ≤ pj ≤ 1
for all j = 1, . . . , n and let 0 < β ≤ 1. Then

(a) [ψ > [ψ](1 + β)] ≤ exp(−β2 [ψ]
3 )

(b) [ψ < [ψ](1− β)] ≤ exp(−β2 [ψ]
2 ).

2 The Lovász-Local-Lemma

The Lovász-Local-Lemma was introduced by Erdős and Lovász [18] in the study
of 2-colorings of hypergraphs with forbidden monochromatic edges. Let H =
(V, E) be a hypergraph. Let the degree of an edge E ∈ E be the number of
edges intersecting E and let the edge-degree of the hypergraph be the maximum
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edge-degree. As usual, the size of H is the number of edges. Let us assume that
this size is m. A 2-coloring is a mapping from V to a set of two colors 2, say red
and blue. It is convenient to represent the colors either by {−1, 1} or {0, 1}. A
2-coloring of V is called non-monochromatic, if no hyperedge is monochromatic
with respect to the coloring.

Definition 1. A hypergraph H = (V, E) has property B if there is a 2-coloring
of V such that no hyperedge of H is monochromatic.

In 1975, Erdős and Lovász [18] showed that a k-uniform hypergraph with edge
degree at most 2k−3 has property B. The remarkable conclusion of this theo-
rem is that without any assumption on the size of the hypergraph a merely
local condition suffices to guarantee property B. The key in the proof is a sieve
method, today known as the Lovász-Local-Lemma (LLL), with many applica-
tions in combinatorial optimization, graph theory, and combinatorics (for exam-
ple to k-coloring of real numbers, Ramsey theory [18], linear and star arboricity
of graphs [2,4], acyclic colorings of graphs [5], and construction of edge disjoint
paths in expander graphs [13]).

Theorem 7. (Lovász-Local-Lemma; Symmetric Case) Let A1, . . . , An be events
with [Ai] ≤ p for all i. Suppose that each event Ai is mutually independent of
all but at most d > 1 other events Aj. If ep(d+ 1) ≤ 1 then

[
n∧

i=1

Ac
i ] ≥

(
1− 1

d+ 1

)n

.

Proof. Suppose, we have already shown that for each S ⊂ {1, . . . , n} and any
i ∈ {1, . . . , n} \ S,

[Ai |
∧
j∈S

Ac
j ] ≤

1
d+ 1

. (2)

Then

[
n∧

i=1

Ac
i ] =

n∏
i=1

(1− [Ai |
i−1∧
j=1

Ac
j ]) ≥

(
1− 1

d+ 1

)n

,

as claimed. We will prove (2) by induction on |S|. If S = ∅, (2) follows from the
fact that p ≤ 1

e(d+1) <
1

d+1 . Now assume that (2) holds for all S′ ⊂ S. For the
induction step we fix i ∈ S and let T ⊂ S consist of the indices of all events
that are not mutually independent of Ai. We renumber the events such that
T = {1, . . . , t}, t ≤ d. Observe that

[Ai |
∧
j∈S

Ac
j ] =

[Ai ∧
∧

j∈T A
c
j |
∧

j∈S\T A
c
j ]

[
∧

j∈T A
c
j |
∧

j∈S\T A
c
j ]

.

2 Our notion of a coloring does not require that adjacent vertices have different colors.
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We can bound the numerator from above by

[Ai |
∧

j∈S\T

Ac
j ],

and since Ai is mutually independent of the events {Aj | j ∈ S \ T } we have

[Ai|
∧

j∈S\T

Ac
j ] = [Ai] = p.

The denominator satisfies

[
∧
j∈T

Ac
j |

∧
j∈S\T

Ac
j ] =

t∏
j=1

(1 − [Aj |
j−1∧
k=1

Ac
k ∧

∧
l∈S\T

Ac
l ]),

which is at least
∏t

j=1

(
1− 1

d+1

)
=
(
1− 1

d+1

)t

by the induction assumption.
Hence we obtain

[Ai |
∧
j∈S

Ac
i ] ≤

p(
1− 1

d+1

)t ≤
p(

1− 1
d+1

)d
≤ ep ≤ 1

d+ 1
,

completing the induction. ��

As a very simple application which demonstrates the strength of the LLL we de-
rive a lower bound on the van der Waerden numbers W (k). Recall that W (k) de-
notes the minimal integer n so that every 2-coloring of the set {1, . . . , n} contains
a monochromatic arithmetic progression of length k. Let us first prove a lower
bound from a standard probabilistic argument. We consider a random 2-coloring
where each i ∈ {1, . . . , n} has probability 1/2 of being colored red or blue, inde-
pendently of all j �= i. For each arithmetic progression S of length k let AS be the
event that S is monochromatic. If the event

∧
S A

c
S has nonzero probability we

know that there exists a 2-coloring of {1, . . . , n} containing no monochromatic k-
term arithmetic progression. Hence W (k) > n as long as [

∧
S A

c
S ] > 0. Clearly,

[AS ] = 21−k, and since there are n2

2k (1 − o(1)) k-term arithmetic progressions
in {1, . . . , n}, 3 we have

[
∧
S

Ac
S ] = 1− [

∨
S

AS ] ≥ 1−
∑
S

[AS ] = 1− n2

2k
(1− o(1)) · 21−k.

The last term is positive as long as n ≤
√

k · 2k/2(1 + o(1)), giving W (k) =
Ω(
√

k2k/2). The LLL yields a considerable improvement.

3 A k-term arithmetic progression in {1, . . . , n} can start with any i ∈ {1, . . . , n−k+1}
and for a fixed start term i we have n−i+1

k
possible distances between consecutive

terms. Since start term and distance uniquely determine an arithmetic progression,
their overall number amounts to n−k+1

i=1
n−i+1

k
= n2

2k
(1 − o(1)).
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Corollary 1.

W (k) = Ω

(
2k−1

k

)
Proof. Consider a random 2-coloring and events AS as above. Since AS is mutu-
ally independent of all AS′ with S ∩S′ = ∅, we can apply the LLL with d = nk2

k−1
(for S′ with S∩S′ �= ∅ there are at most k possibilities for an element s ∈ S∩S′;
we have at most k possibilities for the position of s within S′, and at most n

k−1
choices for the step size of the arithmetic progression S′). Hence,

∧
S A

c
S has

non-zero probability as long as e · 21−k( nk2

k−1 + 1) ≤ 1, which implies the claim.
��

Let A1, . . . , An be events in a probability space. A graph on {A1, . . . , An} is
called dependency graph of the events A1, . . . , An if, for all i, the event Ai is mu-
tually independent of {Aj | {i, j} /∈ E(G)}. In a similar manner the dependency
graph D(H) of a hypergraph H = (X, E) is defined.

Definition 2. Let H = (X, E) be a hypergraph. The dependency graph D(H)
is the graph with E as the vertex set, where E,F ∈ E form an edge {E,F} iff
E ∩ F �= ∅.

The notion of dependency graphs will be useful later. For property B we get:

Corollary 2. A hypergraph H = (V, E) with maximum edge degree 0 < d ≤ 2k−3

in which each edge has at least k ≥ 5 vertices has property B.

Proof. We randomly and independently color the nodes of H with two colors,
say red and blue, with probability 1/2. Let us denote this random 2-coloring
by χ. For an edge E ∈ E let AE be the event that E is monochromatic with
respect to χ. Put p = 2−k+1. We have [AE ] = 2 · 2−|E| ≤ p. Furthermore
ep(d + 1) ≤ e2−k+1(2k−3 + 1) ≤ 5e

16 < 1 for k ≥ 5. By the Local-Lemma
(Theorem 7) [ ∧

E∈E
Ac

E

]
≥ (1− 1

d+ 1
)m > 0, (3)

where m = |E|. Hence with non-zero probability, χ is a non-monochromatic 2-
coloring, and H has property B. ��

According to (3), it may happen that the probability of χ being non-mono-
chromatic is exponentially small. Thus an attempt to find a non-monochromatic
2-coloring is in the words of Beck “the search for a needle in a haystack”. For
arbitrary hypergraphs this is even hopeless, since the problem to decide whether
a hypergraph has property B is NP-complete (Lovász [18]). In 1991 Beck [8]
gave the first algorithmic polynomial-time search version of the Local-Lemma.
We will present Beck’s method, its extensions and applications in Section 7.

Now we are ready to discuss some applications of the Lovász-Local-Lemma
to integer programming resp. scheduling due to Srinivasan [36], resp. Leighton,
Maggs and Rao [27] and Ahuja, Srivastav [1].
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3 Basic Randomized Rounding – A Warming-Up Exercise

Many times a combinatorial optimization problem can be formulated as an inte-
ger linear program (ILP). Dropping the integrality constraints, we obtain a linear
programming relaxation (LP) which can be solved in polynomial-time. The LP-
optimum, also called fractional optimum, does not only provide a bound on the
integral optimum, but it often can serve as a basis for finding an integral so-
lution that is “nearly” optimal. The key idea is to “round” each variable x∗i of
a fractional optimal solution up or down, where the probability of rounding up
is given by the non-integral part x∗i − �x∗i �. This guarantees that – in expec-
tation – the rounded solution equals the fractional optimum. We would like to
ensure that the deviation from the expected value is small. Let us demonstrate
this “randomized rounding”4 technique by considering the problem of finding a
maximum independent set in a k-uniform hypergraph.

Definition 3. Let H = (V, E) be a k-uniform hypergraph. A subset S of V is
called independent if no edge is entirely contained in S, that is if P(S)∩ E = ∅.

Recall, that the vertex-hyperedge incidence matrix A = (aij)1≤i≤n
1≤j≤m

of a k-

uniform hypergraphH = (V, E) with n vertices v1, . . . , vn andm edgesE1,. . . ,Em

is defined by

aij =

{
1, if vi ∈ Ej

0 otherwise.

With the help of n zero/one variables xi indicating whether or not the vertices vi

are chosen for the independent set, we can characterize an independent set in H
of maximum cardinality as the solution to the following integer linear program:

max
n∑

i=1

xi

subject to

n∑
i=1

aijxi ≤ k − 1 for all j ∈ {1, . . .m}

xi ∈ {0, 1} for all i ∈ {1, . . . n}.

If we relax the condition “xi ∈ {0, 1}” to “xi ∈ [0, 1]” for all i ∈ {1, . . . , n},
the problem can be solved in polynomial-time. Let x1

∗, . . . , xn
∗ be a solution

and denote by OPT∗ the value of the objective function. Suppose, we fix ε > 0
and independently round each xi

∗ to 1 or 0 with probability (1 − ε
2 )xi

∗ resp.
1 − (1 − ε

2 )xi
∗. We get a vector (x1, . . . , xn) ∈ {0, 1}n which is a candidate for

4 In its concise form, the randomized rounding method in integer programming was
introduced by Raghavan and Thompson [33].
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an independent set in H. For every i let Xi be the random variable indicating if
x∗i has been rounded to 1:

Xi =

{
1, if xi = 1
0 otherwise.

If the events

B0 :
n∑

i=1

Xi ≥ (1− ε)OPT∗

and Bj :
n∑

i=1

aijXi ≤ k − 1, j ∈ {1, . . .m}

simultaneously happen with positive probability, we know that H contains an
independent set of size at least (1−ε)OPT∗. On account of randomized rounding,
the xi have the nice property that their expected value is x∗i (scaled down by(
1− ε

2

)
to boost the probability for the “good” events Bj). We can now use the

Angluin-Valiant inequality (Theorem 2.6) to bound the probability of the “bad”
events Bc

j . With β := ε
2−ε we obtain

[Bc
j ] ≤ e−

ε2(k−1)
12−6ε for all j ∈ {0, . . . ,m}.

Hence

(
m∧

j=0

Bj) ≥ 1− (m+ 1) · e−
ε2(k−1)
12−6ε ,

which is at least 1/2 for k ≥ 12
ε2 ln(2(m + 1)). So we have proved the following

theorem.

Theorem 8. For a k-uniform hypergraph with k > 12
ε2 ln(2(m+ 1)) we can find

an independent set of size (1− ε)OPT∗, where OPT∗ is the optimal value of the
relaxed problem formulation, in randomized polynomial-time with probability at
least 1/2.

Note that an independent set of the claimed size can be constructed in deter-
ministic polynomial-time with the method of conditional expectations [6].

Bibliography and Remarks: We can get rid of the condition on k (on cost of a
weaker approximation guarantee) by taking advantage of positive correlations among
the events Bj , which can be stated by the inequality

[
m

j=0

Bj ] ≥ 1 −
m

j=1

(1 − [Bc
j ]) + [Bc

0].

Srinivasan’s [37] analysis of randomized rounding for integer packing and covering
programs using positive correlations yields a deterministic polynomial-time algorithm
for computing an independent set of size

Ω OPT∗ · k OPT∗

m
.
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By applying Janson’s inequality and an extended version of the Lovász-Local-Lemma,
Srinivasan [36] obtained a randomized approximation guarantee of

Ω
OPT∗

k deg(H)
.

The best lower bound on the maximum size α(H) of an independent set in terms of n,
m and the average degree tk−1 := km

n
is

α(H) ≥ 1 − 1
k

n

t
.

The proof relies on the analysis of a simple random sampling strategy of Alon and
Spencer [6]. For uncrowded hypergraphs (i.e., hypergraphs containing no cycles of length
2,3 or 4) Ajtai, Komlós, Pintz, Spencer, and Szémeredi were able to improve this bound
by a factor of (ln t)1/(k−1). Polynomial-time derandomization of this result has been
given by Fundia [20] and Bertram-Kretzberg and Lefmann [11].

4 Job Shop Scheduling

An instance of the shop scheduling problem consists of

– n jobs J1, . . . , Jn

– m machines M1, . . . ,Mm

– K operations O1, . . . , OK .

Each operation Ok belongs to some job Jj and must be processed on a specific
machine Mi. The processing of the operations cannot overlap in time (non-
interference condition).

Open shop is a shop problem in which the operations of a job can be processed
in any order. In a job shop problem the operations must be processed in a job-
dependent order. A flow shop problem is a special job shop problem in which
each job has exactly m operations, one for every machine, and the order in
which the operations have to be processed is the same for all jobs. The following
notations are needed:

– pk is the processing time of operation Ok, and pmax := maxk pk.
– Pj is the total processing time of job Jj , and Pmax := maxj Pj is the maxi-

mum job-load.
– Πi is the total processing time that is spent on machine Mi and Πmax :=

maxiΠi is the maximum machine-load.
– μj is the number of operations for job Jj , and μ := maxj μj .

The goal is to minimize the makespan of a feasible schedule, defined as the
time at which all operations are completely processed. All of the described shop
problems are NP−hard. For a detailed discussion of approximation algorithms
for scheduling we refer to the survey article of Hall [24]. Here we only review
the impact of the Lovász-Local-Lemma on the job shop problem. Let us consider
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a job shop problem in which all operations have unit length and each job has
at most one operation per machine. One of the most remarkable and surprising
results for this job shop problem was proved by Leighton, Maggs and Rao [27].

Theorem 9. (Leighton, Maggs, Rao 1994) There exists a schedule whose make-
span is at most O(Πmax + Pmax).

The proof relies on the Lovász-Local-Lemma (Theorem 7). One important con-
cept is the notion of random delays: let us schedule the jobs in a greedy manner,
where every job starts at time zero and is processed until completion. We expect
such a schedule to be infeasible, violating the non-interference condition. Now
we choose for every job’s greedy schedule a time t ∈ {0, 1, 2, . . . , Δ} and delay
the job’s starting time by t. Let us call such a schedule a greedy pseudo-schedule
with {0, Δ}-delay. Note that the makespan of such a delayed pseudo-schedule
is at most Pmax + Δ. Randomization comes in by selecting t randomly from
{0, . . . , Δ}.
The analysis of such a scheduling strategy consists of two steps :

1.) First we show with the Lovász-Local-Lemma that a pseudo-schedule with
{0, O(Πmax)} delay exists such that for each machine, the number of jobs per-
formed per time interval of length Θ(logΠmax) is at most one. This is the key
step. The makespan of the pseudo-schedule is O(Pmax +Πmax).
2.) In the second step we transform the pseudo-schedule into a feasible schedule
of makespan O(2O(log∗(Πmax+Pmax))(Pmax +Πmax)).
More technical work is needed to conceal the O(log∗(Πmax + Pmax)) factor and
to obtain Theorem 9.

Here we concentrate on step 1. For simplicity, we assume μ = 1 and Πmax ≥
Pmax. Let us consider a time interval I of length T in a random {0,αΠmax}-
delayed schedule and let C be the largest number of operations performed on
any of the machines over I. We say that the relative congestion of that time
interval is C/T . We would like to choose T in a way that:

(a) C ≤ T ,
(b) T is small,
(c) α is a constant.

Of course, if α is large we do not expect to have problems in order to meet
(a) and (b) simultaneously. The Local-Lemma proves that α and T can be kept
simultaneously small proving 1).

Lemma 1. There exists a greedy {0, 2Πmax}-delayed pseudo-schedule such that
the relative congestion of any time interval of length T ≥ 36 ln(2Πmax) is at
most 1.

Proof. The “bad” event is that the relative congestion is greater than 1. This
means that more than T operations get assigned to machine Mi, for some inter-
val I of length T ≥ 36 ln(2Πmax). Let Ai be this bad event. Thus the good event
is
∧m

i=1A
c
i and we wish to bound its probability away from 0.
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Claim: (i) Let d be the dependency among the events A1, . . . , Am. Then

d ≤ PmaxΠmax.

(ii) [Ai] ≤ 1
21

1
Π4

max

The claim immediately completes the proof: the Local-Lemma condition reads

ep(d+ 1) ≤
(i),(ii)

e

21 ·Π4
max

· (PmaxΠmax + 1) ≤ Π2
max + 1
7Π4

max
≤ 1,

since Πmax ≥ 1, and the Lemma is proven.
It remains to prove the Claim.

To (i): We consider a machine Mi and the event Ai. For any machine Ml that
does not have a job in common with machine Mi, Al is independent of Ai. The
number of machines that do have a job in common with Mi is bounded by the
number of jobs running on Mi (which is at most Πmax) times the number of
operations per job (which is at most Pmax), so d ≤ ΠmaxPmax.
To (ii): We consider an arbitrary, but fixed time interval of length T ,

36 ln(2Πmax) ≤ T ≤ Πmax,

and denote by q the probability that more than T operations are performed
in this time interval. Let k be the number of operations that use machine Mi.
Clearly k ≤ Πmax. By assumption each of these operations belongs to a different
job. Thus, assigning to each of these operations a 0/1 random variable Xj, j =
1, . . . , k, which is 1 iff operation j falls in the time interval I and 0 otherwise,
the variables Xj are independent! Moreover,

[Xj = 1] ≤ T

2Πmax
=: p∗

for all j. Now, X :=
∑k

j=1Xj is the number of operations falling into I, and

[X ] ≤ kp∗ ≤ T

2Πmax
·Πmax =

T

2

W.l.o.g. we may assume that [X ] = T
2 . We get:

q = [X > T ]

=
[
X >

T

2
(1 + β)

]
(with β = 1)

= [X > [X ](1 + β)]

≤ e
− [X ] · β2

3 (with Theorem 6, Angluin-Valiant inequality)

= e−
T
6

≤
(

1
2 ·Πmax

)6

(since T ≥ 36 ln(2 ·Πmax)). (4)
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Pmax + 2Πmax ≤ 3Πmax is the absolute upper bound on the makespan. The
number of time intervals of a certain size T , T ≥ 1, thus is at most 3Πmax. Now
with (4):

[Ai] ≤
Πmax∑
T=1

(3Πmax) q ≤
3Π2

max

(2 ·Πmax)6
≤ 1

21
· 1
Π4

max
. ��

For general job-shop scheduling Shmoys, Stein and Wein [35] gave a de-
terministic polynomial-time algorithm which delivers a schedule of makespan
O(ρ · (Πmax + Pmax)) with

ρ =
log(mμ)

log log(mμ)
log(min{mμ, pmax}).

The presently best algorithm for job-shop scheduling is due to Goldberg, Pater-
son, Srinivasan, Sweedyk [22], improving the above by a factor of 1/ log log(mμ).

Theorem 10. (Goldberg, Paterson, Srinivasan, Sweedyk 2001) There is a de-
randomized ρ-approximation for job-shop scheduling with

ρ =
log(mμ)

log log(mμ)

⌈
log(min{mμ, pmax})

log log(mμ)

⌉
.

For m = n it can be parallelized.

Bibliography and Remarks: Czumai and Scheideler [15,16] have provided an ap-
proach to design polynomial-time algorithms for problems that require the Lovász Local
Lemma in its general unsymmetric form. In particular, they proved for the acyclic job
shop problem, where no job has more than one operation on the same machine, that
for every constant ε > 0, a legal schedule can be computed in polynomial-time with
makespan bounded by

O (Πmax + Pmax(log log pmax)1+ε · log pmax

log min{pmax,
Πmax
Pmax

+ (log log pmax)1+ε} .

5 Resource Constrained Scheduling

5.1 Problem and History

An instance of resource constrained scheduling consists of:

– a set J = {J1, . . . , Jn} of independent jobs. Each job Jj needs one time unit
for its completion and cannot be scheduled before its start time rj ∈ 0.

– a set P = {P1, . . . , Pm} of identical processors. Each job needs one processor.
– a set R = {R1, . . . , Rs, Rs+1} of limited resources. This means that at any

time all resources are available, but the available amount per time step for
each resource Ri is bounded by bi ∈ , i = 1, . . . , s. The set of processors is
considered as resource Rs+1 with bound bs+1 = m.5

5 The problem remains interesting if the processor constraint Rs+1 is omitted. We will
consider this variant in Section 5.3.
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– For i = 1, . . . , s + 1, j = 1 . . . , n let Ri(j) be 0/1 resource requirements
indicating whether or not Jj needs resource Ri during its processing time.
For a job Jj ∈ J and a time z ∈ 0 let xjz be the 0/1 variable which is 1
iff job Jj is scheduled at time z.

– Given a valid schedule let Cmax be the latest completion time defined by
Cmax = max{z | xjz > 0, j = 1, . . . , n}.

The combinatorial optimization problem is to find a schedule, that is a 0/1
assignment for all variables xjz , subject to the start time, processor and resource
constraints such that

∑
z∈ 0

xjz = 1 for all jobs Jj and Cmax is minimum. Let
Copt denote this minimum.6

A fractional schedule is an assignment of a rational number in the closed
interval [0, 1] to each xjz subject to the start times, processor and resource
constraints so that

∑
z∈ 0

xjz = 1 for all jobs Jj and Cmax is minimum. Let C
denote this minimum. We call Copt the (integral) optimal and C the fractional
optimal schedule.

The integral problem is NP-hard even if rj = 0 for all j = 1, . . . , n, s = 1 and
m = 3 [21], while the fractional problem can be solved by linear programming in
polynomial-time. Polynomial-time approximation algorithms for resource con-
strained scheduling with zero start times (problem class P |res ···, rj = 0, pj =
1|Cmax ) are due to Garey, Graham, Johnson, Yao [21] and Röck and Schmidt
[34]. Garey et al. constructed with the First-Fit-Decreasing heuristic a schedule of
length CFFD which asymptotically is an (s+ 1

3 )-factor approximation, i.e., there
is a non-negative integer C0 such that CFFD ≤ Copt(s+ 1

3 ) for all instances with
Copt ≥ C0. De la Vega and Lueker [41] improved this result presenting for every
ε > 0 a linear-time algorithm which achieves an asymptotic approximation factor
of s+ ε. Röck and Schmidt showed, employing the polynomial-time solvability of
the simpler problem with two processors, 7 an �m

2 �-factor polynomial-time ap-
proximation algorithm. Thus for problems with small optimal schedules or many
resource constraints resp. processors these algorithms have a weak performance.
Note that all of these results are based on the assumption that the start-times
of all jobs are zero. For example, Röck and Schmidt’s algorithm cannot be used,
when non-zero start-times are given. 8

5.2 The First Approximation

With randomized rounding and derandomization an approximation guarantee
independent of the number of resources can by proved [40]:
6 According to the standard notation of scheduling problems the integral problem can

be formalized as P |res · · 1, rj , pj = 1|Cmax . This notation means: the number of
identical processors is part of the input (P |), resources are involved (res), the number
of resources and the amount of every resource are part of the input (res · · ), every
job needs at most 1 unit of a resource (res · ·1), start times are involved (rj), the
processing time of all jobs is equal to 1 (pj = 1) and the optimization problem is to
schedule the jobs as soon as possible (|Cmax).

7 Problem class P2|res · · ·, rj = 0, pj = 1|Cmax .
8 This is due to the NP-completeness of the problem P2|res · · 1, rj , pj = 1|Cmax .
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Theorem 11. (Srivastav, Stangier 1997) Let ε > 0 with (1/ε) ∈ . For the
resource constrained scheduling problem with given start times a valid integral
schedule of size at most �(1 + ε)C� can be found in polynomial-time, provided
that m, bi ≥ 3(1+ε)

ε2 �log(8Cs)� for all i = 1, . . . , s.

Here we give the proof of the randomized approximation guarantee, and its
improvement by the LLL. For the derandomization we have to refer to [39]. The
randomized algorithm behind Theorem 11 consists of 3 steps.

First, we compute a fractional schedule and the number C.
Secondly, the fractional schedule is enlarged to �(1 + ε)�C. In the enlarged
schedule a fraction x̃jz of job j is assigned to time z for all j and z.
Finally, in the enlarged schedule each job is independently assigned a ran-
dom start time z with probability roughly proportional to x̃jz . The x̃jz are
computed with the following algorithm.

Algorithm RandomSchedule

Step 1: Let us assume that Copt ≤ n (this assumption can be made w.l.o.g.).
Start with an integer C̃ ≤ n and check whether the LP∑n

j=1 Ri(j)xjz ≤ bi ∀ Ri ∈ R,
z ∈ {1, . . . , n}∑n

z=1 xjz = 1 ∀ Jj ∈ J
xjz = 0 ∀ Jj ∈ J , z < rj and

∀ Jj ∈ J , z > C̃
xjz ∈ [0, 1] ∀ Jj ∈ J ∀z ∈ {1, . . . , n}

(5)

has a solution. Using binary search we can find C along with fractional assign-
ments (x̃jz) by solving at most logn such LPs. Hence C can be computed in
polynomial-time with standard polynomial-time LP algorithms.

Step 2: Consider the time interval {1, . . . , �(1 + ε)C�} and put

δ =
1

1 + ε
and α =

εδ

�εC� .

Set

x̂jl :=

⎧⎨⎩
δx̃jl for l ∈ {1, . . . , C}
C∑

t=1
αx̃jt for l ∈ {C + 1, . . . , C + �εC�}.

Step 3:
Schedule the jobs at times selected by the following randomized procedure:

(a) Cast n mutually independent dice each having N = �(1 + ε)C� faces where
the z-th face of the j-th die corresponding to job j appears with probability
x̂jz . (The faces stand for the scheduling times)

(b) For each j ∈ {1, . . . , n} schedule the job Jj at the time selected in (a).

It is straightforward to prove:
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Lemma 2. The variables x̂jl define a valid fractional schedule with makespan
�(1 + ε)C�.

Proof (of Theorem 11 - Randomized Version).

Let N = �(1 + ε)C�. The randomized algorithm RandomSchedule casts for
every job Jj independently a dice with N faces, where the z-th face appears with
probability x̂jz for z ∈ {1, . . . , �(1 + ε)C�}.

For each pair (j, z), j ∈ {1, . . . , n} and z ∈ {1, . . . , N} let Xjz be the 0/1
random variable which is 1, if the j-th dice assigns time z to job Jj and 0
otherwise. Then by definition [Xjz = 1] = x̂jz .

Let Aiz be the event that at a time z ∈ {1, . . . , N} the i-th resource constraint
bi is satisfied:

“
n∑

j=1

Ri(j)Xjz ≤ bi”.

The sum of units of resource Ri used at time z is a sum of independent Bernoulli-
trials. Hence we can apply the Angluin-Valiant-inequality (Theorem 6):

[Ac
iz ] =

⎡⎣ n∑
j=1

Ri(j)Xjz > bi

⎤⎦ =

⎡⎣ n∑
j=1

Ri(j)Xjz > (1 + β)δbi

⎤⎦
≤ exp

(
−β

2δbi
3

)
≤ 1

4C(s+ 1)
,

where δ = 1
1+ε and β = 1−δ

δ = ε. The last inequality follows from the resource

and processor bounds bi ≥ 3(1+ε)
ε2 �log(8Cs)� for all i. Now, the probability that

any of the events Ac
iz hold is at most the sum of their probability bounds. In

view of the estimate above this is at most 1/2. Thus with probability at least
1/2 at any time no resource constraint is violated. ��

Interestingly the approximation guarantee of Theorem 11 is best possible:

Theorem 12. (Srivastav, Stangier 1997) Under the assumption that there exists
a fractional schedule of size C ≥ 3, and an integral schedule of size C + 1
(C fixed), bi = Ω(log(Cs)), Ri(j) ∈ {0, 1} for all i ∈ {1, . . . , s} and all j ∈
{1, . . . , n} it is NP-complete to decide whether or not there exists an integral
schedule of size C.

Proof. We give the basic argument for bi = 1 for all i (the main work is its
extension to large bounds bi = Ω(log(Cs))). We use a reduction to the NP-
complete problem of determining the chromatic index of a graph. Let G = (V,E)
be a graph with |V | = s, |E| = m and deg(v) ≤ Δ for all v ∈ V . We construct an
instance of resource constrained scheduling as follows. Introduce for every edge
e ∈ E exactly one job Je and consider m = |E| identical processors. For every
node v ∈ V define a resource Rv with bound 1 and resource/job requirements

Rv(e) =
{

1 if v ∈ e
0 if v /∈ e.
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It is straightforward to verify that there exists an edge coloring that usesΔ colors
if and only if there is a feasible integral schedule of size Δ. Furthermore, there is
a fractional schedule of size C = Δ: simply set xez = 1

Δ for all z = 1, . . . , Δ. ��

We give a better analysis of RandomSchedule covering a wider range of in-
stances.

5.3 Improvement by the LLL

Let us study in this section the variant of resource constrained scheduling, where
we omit the processor requirement and just consider the problem of finding
a schedule with minimum makespan with respect to the resource constraints
R1, . . . , Rs. This is a special case of them problem considered in Section 5.2.
Suppose we have already applied algorithm RandomSchedule and obtained
an integral solution with makespan at most N = �(1 + ε)C�.

Resource constrained scheduling induces the hypergraph H = (V, E) with
V = J and E = {E1, . . . , Es} such that

Ei = {Jj ∈ J | Ri(j) = 1}

for all i = 1, . . . , s.
So Ei contains all jobs which require resource Ri. Let Δ be the edge degree

of H, that is
Δ = max

1≤i≤s
|{Ek ∈ E ; Ek ∩ Ei �= ∅}|.

The crucial point here is that for sparse hypergraphs, Δ can be much smaller
than s. Define sN events by

ξi,z ≡ “
n∑

j=1

Ri(j)Xjz ≥ bi(1 + ε)−1(1 + δi)“ (6)

for 1 ≤ i ≤ s, 1 ≤ z ≤ N and some constant δi > 0 to be fixed later. The
dependency among these events is affected by the following two factors: each job
Jj scheduled at time z

(i) will not contribute to events corresponding to times 1, . . . , z−1, z+1, . . . , N
and

(ii) will contribute to at most Δ events occurring at time z.

So the dependency d is at most ΔN .

Theorem 13. Let 0 < ε < 1. If bi = Ω
(

(1+ε) log(d)
ε2

)
for all i = 1, . . . , s, then

with positive probability RandomSchedule generates a feasible schedule having
makespan at most N = �(1 + ε)C�.

Proof. After Step 2 of RandomSchedule we obtain a fractional solution sat-
isfying

∑n
j=1 Ri(j)x̂jl ≤ bi(1 + ε)−1 for all i = 1, . . . , s and l = 1, . . . , N . Step 3

of the algorithm then proceeds with the rounding. Event ξi,z occurs when after
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rounding, the number of units of resource Ri being used by jobs scheduled at
time instance z deviates from the mean μ = bi(1+ε)−1 by a multiplicative factor
of at least 1 + δi. We invoke Theorem 4: If bi(1 + ε)−1 ≥ log(eγ(d+ 1))/2 then
for

δi = Θ

(√
log(eγ(d+ 1))
bi/(1 + ε)

)
(7)

we get for all 1 ≤ i ≤ s, 1 ≤ z ≤ N

[ξi,z] ≤ G(bi(1 + ε)−1, δi) ≤
1

(eγ(d+ 1))
=: p ,

where γ ≥ 1 is a constant. Since ep(d+ 1) = γ−1 ≤ 1, we satisfy the conditions
of LLL and prove that (

∧s
i=1
∧N

z=1 ξ
c
i,z ] > 0.

We now know that there exist vectors such that no event ξi,z occurs. But we want
to satisfy the original constraints. Therefore, we require bi(1+ε)−1(1+δi) ≤ bi ∀i,
which is true for any ε ∈ (0, 1) if

bi = Ω

(
(1 + ε) log(eγ(d+ 1))

ε2

)
, (8)

for all i.
Notice that rounding does not affect the schedule length, and for Δ ' s we

beat the lower bound on bi in Theorem 11. ��

At the moment it is an open problem whether the algorithm Random Schedule
can be derandomized.

6 Inapproximability

In case bi = 1 for all i, the algorithm of de la Vega and Lueker [41] gives a
(1 + ε)s approximation. We show in the following that for bi = O(1) for all i,
the approximation ratio cannot be independent of s. Let G = (V,E) be a simple
graph. The problem of properly coloringG with minimum colors can be viewed as
an RCS problem with |V | jobs and |E| resources where each resource is required
by exactly two jobs and exactly one unit of each resource is available. Feige and
Kilian [19] showed that if NP �⊆ ZPP , then it is impossible to approximate the
chromatic number of an n vertex graph within a factor of n1−ε, for any fixed
ε > 0, in time polynomial in n. Therefore, the same applies for the RCS problem.
Since s ≤ n2 in simple graphs, the following holds.

Theorem 14. For the resource constrained scheduling problem considered in
this section with n jobs and s resources, there is no polynomial time approxi-
mation algorithm with approximation ratio at most s

1
2−ε, for any fixed ε > 0,

unless NP ⊆ ZPP .
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Bibliography and Remarks: Applying Berger/Rompel’s [10] extension of the
method of logc n-wise independence to multi-valued random variables, a paralleliza-
tion has been given in [40]. For τ ≥ 1

log n
there is an NC-algorithm which guarantees

for every constant α > 1, a 2�log αC�/C ≤ 2α-factor approximation, under the condi-
tions m, bi ≥ α(α−1)−1n

1
2+τlog 3n(s+1)�1/2 for all i = 1, . . . , s. Ahuja and Srivastav

[1] obtained improved results with the Lovász-Local-Lemma.
For scheduling on unrelated parallel machines, results of similar flavor have been

achieved by Lenstra, Shmoys and Tardos [29] and Lin and Vitter [30]. Lenstra, Shmoys
and Tardos [29] gave a 2-factor approximation algorithm for the problem of schedul-
ing independent jobs with different processing times on unrelated processors and also
proved that there is no ρ-approximation algorithm for ρ < 1.5, unless P = NP . Lin
and Vitter [30] considered the generalized assignment problem and the problem of
scheduling of unrelated parallel machines. For the generalized assignment problem with
resource constraint vector b they could show for every ε > 0 a 1 + ε approximation of
the minimum assignment cost, which is feasible within the enlarged packing constraint
(2 + 1

ε
)b.

7 Algorithmic Versions of the LLL

7.1 The Base: 0/1 Random Variables

In the applications in Section 5 and 6 we proved approximation guarantees with
the LLL. Per se it is not clear how an LLL-based existence proof can be turned
into a polynomial-time algorithm. The breakthrough for this problem was made
by Beck [8] in 1991.

Theorem 15. (Beck 1991) Let H = (V, E) be a k-uniform hypergraph with m :=
|E| and edge degree at most d. Suppose that d ≤ 2

k
48 . Then a non-monochromatic

2-coloring of H can be constructed in O(mconst.) time.

This result is the basis of all algorithmic versions of the LLL in more general
settings. We will give a sketch of the proof of Theorem 15. Before we describe
Beck’s algorithm let us briefly fix a class of hypergraphs for which a 2-coloring
with property B can be constructed directly with the conditional probability
method. This construction will be used as a sub-procedure in Beck’s algorithm.
We give a proof of Theorem 15 for sufficiently large k and m, i.e k ≥ 400 and
m ≥ 210.

Theorem 16. (Probabilistic Coloring Theorem)Let H = (V, E) be a hypergraph.
Let l ∈ be an integer such that |E| ≥ l for all E ∈ E and |E| < 2l−1. Then a
non–monochromatic 2-coloring of H exists with positive probability.

Proof. Let χ be a random 2-coloring of V , i.e., [χ(i) = 1] = [χ(i) = 0] = 1
2

independently for all i ∈ V . For E ∈ E we define χ(E) :=
∑

i∈E χ(i). Let AE be
the event that E is monochromatic. Then,
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[AE ] = 2 ·
(

1
2

)−|E|
= 21−|E|,

and consequently,

[∃ E ∈ E , AE ] ≤
∑
E∈E

[AE ] ≤ |E| · 21−|E| < 2l−1 · 21−l = 1.

Hence there exists a non-monochromatic 2-coloring. ��
We wish to transform the probabilistic coloring theorem into a polynomial-time,
deterministic algorithm. This algorithm should also be extended to a partial
coloring procedure where we would like to have the freedom not to color some
vertices.

This can be accomplished by a modification of the conditional probability
method. Let H = (V, E) be a hypergraph and let F1, . . . , FL ⊆ V be some
subsets. We assume that L ≤ 2l−1. Let S ⊆ V be an arbitrary set which we
would like to color with 2 colors and let ξ be the event that there is some
monochromatic Fi with |Fi ∩ S| ≥ l. Suppose S = {v1, . . . , vs} and the vertices
v1, . . . , vj , 1 ≤ j ≤ s have colors x1, . . . , xj ∈ {0, 1}. Let [ξ|x1, . . . , xj ] be the
conditional probability that ξ occurs under the condition that v1, . . . , vj have
been colored with colors x1, . . . , xj .

Algorithm Partial-Color

Input : Hypergraph H = (V, E), F1, . . . , FL, S and l as above.

For j = 1, . . . , n do
Suppose that v1, . . . , vj have been colored with colors x1, . . . , xj .

1) If vj+1 ∈ S, choose the color of vj+1 to be xj+1 ∈ {0, 1} such that xj+1 is
the minimum of the function ω → [ξ|x1, . . . , xj , ω].

2) If vj+1 /∈ S and there is Fi ∈ {F1, . . . , FL} with vj+1 ∈ Fi, let Wj := Fi \ S
and update V :
a) V := V \Wj , n := n− |Wj |.
b) Renumber the vertices such that V = {v1, . . . , vj , vj+1, . . . , vn}.
c) Go to 1).

Note that without step 2, the algorithm is nothing but the basic conditional
probability method which gives a non-monochromatic coloring of F1, . . . , FL.

The reason why the incorporation of partial coloring works is simple: If we do
not color some vertices, then this can never increase the conditional probability
of producing a monochromatic hyperedge. In other words, the conditional prob-
ability [ξ|x1, . . . , xj ] under a partial coloring is at most [ξ|x1, . . . , xj ] under
a full coloring.

Theorem 17. (Basic Coloring Theorem)Let H = (V, E) be a hypergraph and
F1, . . . , FL be subsets of V . Let l ∈ with L ≤ 2l−1. Then Partial-Color
builds in polynomial-time a 2-colored subset S ⊆ V such that no Fi with |Fi∩S| ≥
l is monochromatic.
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The conditional probabilities can be computed, but for the sake of simplic-
ity, we omit this computation.. We only note that the conditional probability

[ξ|x1, . . . , xj ]

(a) depends on l, L and x1, . . . , xj ,
(b) does not depend on vj+1, . . . , vn.

The deterministic algorithm of Beck starts with a partial coloring and iterates
until a complete coloring is obtained. A partial coloring of H = (V, E) is a
mapping χ : V → {−1, 0, 1}, and we identify 1,−1 with colors, say red and blue,
and 0 with a non-color. Let a partial coloring be given and let γ ≥ 2. An edge
E ∈ E is called dangerous, with respect to this partial coloring if it has �k/γ�
points in one color class. �k/γ� is called a threshold value.

In the following we describe Beck’s algorithm along with its analysis, leading
to a proof of Theorem 7.1. For simplicity we assume k to be divisible by 2, 4 and
6 and consider in Theorem 7.1 the stronger degree condition d ≤ 2

k
96 .

Algorithm H−Color

1. First Pass. Threshold value is k/2.

a) Partial Coloring. Choose L, l and a set F of subsets F1, . . . , FL ⊆ V for all
i = 1, . . . , L. This gives a hypergraph G = (V,F). We run Partial-Color
on the hypergraph G with parameters l and L, and sequentially color the
points of V in the following way: If we reach an uncolored point v ∈ V,
such that some E ∈ E containing v is dangerous, then we remove v and all
uncolored vertices in dangerous hyperedges of H = (V, E), and proceed to
the next uncolored vertex. Let S ⊆ V be the set of the colored points at the
end of the first pass.

b) Truncation. All bicolored edges of H will never become monochromatic, and
we may remove them from E . Furthermore, we remove the colored points
from V . Let H(1) = (V (1), E(1)) be the so obtained new hypergraph (where
V (1) = V \S, E(1) = (E\{bichromatic edges})|V (1)). Observe that every edge
in H(1) has at least k/2 points.

Before we proceed with the algorithm let us examine H(1) more closely. We ex-
pect that H(1) is sparser than H in the sense that it has fewer vertices and edges.
But not only that.H(1) has a less congested dependency structure compared with
H. The whole analysis is based on the following fundamental observation about
the structure of the truncated hypergraph.

Lemma 3 (Main Lemma). Every connected component of D(H(1)) has size
at most β log m

k · 24αk, where α, β are constants chosen such that

1 + 6αβ + 8β/k ≤ β/2.

Proof (Sketch). Let D(H(1)) resp. D(H) be the dependency graph of H(1) resp.
H (see Definition 2). For any two vertices i and j, i �= j, in the vertex set
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V (D(H)) of D(H) let δ(i, j) be the length of the shortest path between them.
Let D(H)(a,b) = (V , E) be a graph with V = V (D(H)) and E = {(i, j) | i, j ∈
V , i �= j and a ≤ δ(i, j) ≤ b}. We call T ⊆ V an (a, b)-tree if the subgraph
induced by T in D(H)(a,b) is connected.

Let L be the number of (2, 6)-trees of size β logm/k. Every (2, 6)-tree forms
a set F ⊆ V . Let F = {F1, . . . , FL} be the set of these subsets of V . Let
l = 1 + β logm/2 and consider the hypergraph G = (V,F). The partial coloring
algorithm is applied to G with parameters L and l to build a colored set S ⊆
V . By the basic coloring theorem (Theorem 17) every F ∩ S, F ∈ F is non-
monochromatic, provided that |F ∩ S| ≥ l and L ≤ 2l−1. In order to satisfy this
condition we bound L. The number of (2, 6)-trees of size β logm/k in a graph
with m vertices is at most 2(1+6αβ+8β

k ) log m [8]. Now, if we choose β in a way
that

L ≤ 2(1+6αβ+8β
k ) log m ≤ 2

β log m
2 = 2l−1, (9)

i.e 1 + 6αβ + 8β
k ≤ β logm/2, then the conditions of the basic coloring theorem

are satisfied.
To finish the proof, let us assume for a moment that there is a connected

component of D(H(1)) of size at least 24αk(β logm/k), where α = 1/48. It can be
shown that there exists a (2, 6)-tree of size β logm/k such that its corresponding
set F ∗ ∈ F satisfies |F ∗ ∩ S| ≥ l, but F ∗ is monochromatic contradicting the
just proved fact that such sets are non-monochromatic. ��

Now we may continue the coloring of H(1).

c) Colorability Test. By the main lemma, taking α = 1/48 and β = 4, D(H(1))
(and therefore H(1)) breaks into components, say C1, . . . , Cr of size at most

f1 :=
4 logm

k
· 2 k

12 .

Let C ∈ {C1, . . . , Cr} and let H(1)
C = (V1,C , E(1)

C ) be the subhypergraph of
H(1) having only the hyperedges from C.

Case 1: f1 ≤ 2
k
4 . Then |E(1)

C | ≤ f1 ≤ 2
k
4 , and since every hyperedge from E(1)

C

has at least k/2 vertices, by Theorem 17 we can find a non-monochromatic
coloring for all H(1)

C , C ∈ {C1, . . . , Cr}
Case 2: f1 > 2

k
4 . In this case the size of the connected components of D(H(1))

is even smaller: 4 log m
k · 2 k

12 > 2
k
4 implies 4 log m

k > 2
k
6 . Hence

|E(1)
C | < 4 logm

k

(
4 logm

k

) 1
2

=
(

4 logm
k

) 3
2

≤ (logm)
3
2

for k ≥ 4. We enter the second pass of the algorithm.

2. Second Pass. Threshold value is k
4 . With H(1) we go through steps a) and b) of

the first pass. LetH(2) = (V (2), E(2)) be the hypergraph after the truncation step.
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Let us consider D(H(2)). We apply the main lemma to D(H(2)) choosing α = 1
96

and β = 6: Every connected component of D(H(2)) has size at most

6 log[(logm)
3
2 ]

k/2
· 2 k

24 ≤ 18 log logm
k

· 2 k
24︸ ︷︷ ︸

:=f2

.

d) Colorability Test. Each hyperedge of D(H(2)) has size at least k/4.

Case 1: If f2 < 2
k
12 = 2

k/6
2 , we color all points of H(2) with Theorem 17.

Case 2: If f2 ≥ 2
k
12 , then 18 log log m

k ≥ 2
k
24 , so the size of the components of

D(H(2)) is at most

18 log logm
k

· 2 k
24 ≤

(
18 log logm

k

)2

≤ logm
k

, (10)

since k ≥ 400 and logm ≥ 210.

e) Brute-Force Coloring.

Let C be a component of D(H(2)), let E(2)
C be the set of all hyperedges cor-

responding to C and let V (2)
C ⊆ V (2) be the set of all points from the hyperedges

of E(2)
C . By (10) we have

|V (2)
C | ≤ k · logm

k
= logm. (11)

Hence, the number of 2-colorings of H(2)
C is 2O(log m) = mO(1). Now we can test

in polynomial-time mO(1) whether or not there is a non-monochromatic coloring
among them. But is there such a coloring? Fortunately, the Local-Lemma proves
the existence of at least one non-monochromatic coloring, because

deg(H(2)) ≤ deg(H) ≤ 2
k
96 ≤ 2

k
4−3.

This finishes the proof of Theorem 7.1. ��

7.2 Extension I: General Random Variables – Small Domains

Molloy and Reed [31] generalized Beck’s algorithm and gave new applications.
Their main result can be formulated as follows.

Let f1, . . . , fm be independent random variables where each fi takes values
in some domain of cardinality at most γ. Suppose furthermore that we are given
n “bad” events A1, . . . , An where Ai is determined by the random variables in
some set Fi ⊆ {f1, . . . , fm}, and let w ≥ max

i=1,...,m
|Fi|. We say, A1 depends on Aj

iff Fi ∩ Fj �= ∅. Let di be the number of Aj ’s on which Ai depends and let

d = max
1≤i≤n

di and p = max
1≤i≤n

[Ai].
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Some assumption on the computation time of the probabilities is necessary. Let
t1 be the time to carry out the random trial fi, 1 ≤ i ≤ m and let t2 the
time to compute the conditional probabilities [Ai|fj1 = w1, . . . , fjk

= wk] for
fj1 , . . . , fjk

∈ Fi and w1, . . . , wk in the domains of the fj1 , . . . , fjk
.

Theorem 18. (Molloy, Reed 1998) If pd9 < 1/8, then an assignment of all the
fi can be found with a randomized O(md(t1+t2)+mγwd log log m)−time algorithm

such that
[

n⋂
i=1

Ac
i

]
> 0.

Roughly speaking the result says that whenever the stronger condition
8pd9 < 1 instead of the Local-Lemma condition 4pd ≤ 1 holds, at least a ran-
domized algorithmic version of the Local Lemma in a more general framework
can be given. The proof is based on a variant of Beck’s algorithm.

Among the various striking applications of the Local Lemma is certainly
acyclic edge coloring. A proper edge coloring of a graph is acyclic if the union
of two color classes is a forest in the graph. Alon [3] proved:

Theorem 19. ( Alon 1991) If G is a graph with maximum vertex degree Δ,
then G has an acyclic edge coloring using at most 16Δ colors.

Molloy and Reed showed with their method how this result can be made con-
structive.

7.3 Extension II: General Random Variables – Large Domains

The algorithm of Molloy and Reed does not run in polynomial-time, if γ, the
size of the domains of the random variables is large, say γ = (m + n)c, c > 0
a constant. Here Leighton, Lu, Rao and Srinivasan [28] gave constructive and
efficient extensions and covered new applications like the disjoint path problem
in expander graphs, hypergraphs partitioning and routing with low congestion.
The last two problems can be formulated as integer linear programs, sometimes
called Minmax Integer Program(MIP) in literature.

Given positive integers k and li , i = 1, . . . , k, let N =
∑k

i=1 li. An MIP aims
to minimize a variable W ∈ such that

(i) Ax ≤ �W , where A ∈ [0, 1]m×N , x is an N -dimensional vector consisting of
variables xi,j , i = 1, . . . , k , j = 1, . . . , li and �W is an m-dimensional vector
having W as each of its components,

(ii)
∑li

j=1 xi,j = 1 ∀i = 1, . . . , k and
(iii) xi,j ∈ {0, 1} ∀i, j.

MIPs are NP-hard, so our aim is to relax the integrality constraints to xi,j ∈
[0, 1] ∀i, j and then solve the LP-relaxation in polynomial-time. Let W ∗ ∈
be the optimum value of the objective function of our LP-relaxation, �W ∗ the
m-dimensional vector having W ∗ as its components and let x∗ ∈ [0, 1]N be an
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optimal solution. The idea now is to round the fractional solution to obtain
an integral solution and verify the quality of this integral solution. For each
i = 1, . . . , k randomly and independently round exactly one x∗i,1, . . . , x

∗
i,li

out
of the li variables to 1, i.e., for each i, j we have [xi,j = 1] = x∗i,j . If xi0,j0

is rounded to 1, then because of constraint (ii) of the integer program xi0,j =
0, ∀j ∈ {1, . . . , li0} − {j0}.

There are four important parameters which have to be taken into considera-
tion :

(a) d, the maximum number of nonzero entries in any column of matrix A,
(b) τ ≥ 1, the inverse of the minimum nonzero entry of A,
(c) l = maxi∈{1,...,k} |{x∗i,j | 0 < x∗i,j < 1 , j = 1, . . . , li}| and
(d) t, the maximum number of variables to be rounded in a row of the constraints

Ax ≤ �W ∗.

Notice that a row r ∈ {1, . . . ,m} of the constraints in (i) depends on another row
s if there exist i ∈ {1, . . . , k} and j1, j2 ∈ {1, . . . , li} such that Ar,(i,j1), As,(i,j2) �=
0 and x∗i,j1 , x

∗
i,j2

/∈ {0, 1}. So each row can be affected by at most dlt other
rows. Let α = H(W ∗, 1/dlt) (recall Theorem 4) and let ξ1, . . . , ξm be the events
“(Ax)i > W ∗(1 + cα)”, i = 1, . . . ,m, and let c > 0 be a constant. With the LLL
we can show that randomized rounding works:

Proposition 1. For a sufficiently large constant c > 0, we have

[
m⋂

r=1

ξ̄r] > 0,

thus the vector x ∈ {0, 1}N generated by randomized rounding satisfies the MIP
with constraint (i) replaced by the weaker inequality Ax ≤ �W ∗(1 + cα).

Observe thatH(x, y) ≥ H(x, z) if y ≥ z. Leighton et al. [28] succeed in decreasing
l and t to poly(W ∗, d, τ) at the cost of a marginal increase in W ∗ by performing
rounding in several iterations leading to the improved result:

Theorem 20. There exists a deterministic polynomial-time algorithm for find-
ing a solution x ∈ {0, 1}N with Ax ≤ �W ∗(1 + c′α′) +O(1), where

α′ = H

(
W ∗,

1
poly(W ∗, d, τ)

)
≤ α ,

and c′ > 0 is a constant.

Observe that the parameter γ (the cardinality of the domain of independent
random variables) in the approach of Molloy and Reed can be m, thus the
running time there can be subexponential for this problem.
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7.4 Resource Constrained Scheduling Revisited

For RCS we cannot use Theorem 20 directly as we have to deal with packing
constraints of the type “Ax ≤ b” with a fixed vector b. Nevertheless, a similar
approach [1], can be used to prove the following derandomized counterpart of
Theorem 13.

Theorem 21. Let a resource constrained scheduling problem as in Section 5.3
be given. For any ε ∈ (0, 1), a feasible schedule with makespan at most N =
�(1 + ε)C� can be found in polynomial-time provided that bi = Ω

(
(1+ε) log(dN)

ε2

)
for all i = 1, . . . , s.

On the one hand we have the (1 + ε)s approximation of de la Vega and Lueker
[41] when bi = 1 for all i, and on the other hand we have our (1 + ε) ap-
proximation for bi = Ω((1 + ε)ε−2 log d) (Theorem 13). However, we do not
know the approximation quality for all values of bi. The most challenging open
question here seems to be the following: how does the approximation ratio
behave when bi ∈ (1, log d] for all i?
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