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Abstract. We study computational and coordination efficiency issues of
Nash equilibria in symmetric network congestion games. We first propose
a simple and natural greedy method that computes a pure Nash equi-
librium with respect to traffic congestion in a network. In this algorithm
each user plays only once and allocates her traffic to a path selected via
a shortest path computation. We then show that this algorithm works
for series-parallel networks when users are identical or when users are of
varying demands but have the same best response strategy for any initial
network traffic. We also give constructions where the algorithm fails if
either the above condition is violated (even for series-parallel networks)
or the network is not series-parallel (even for identical users). Thus, we
essentially indicate the limits of the applicability of this greedy approach.

We also study the price of anarchy for the objective of maximum
latency. We prove that for any network of m uniformly related links and
for identical users, the price of anarchy is Θ( log m

log log m
).

1 Introduction

Network congestion games provide a sound model for selfish routing of unsplit-
table traffic and have recently been the subject of intensive research. The prevail-
ing questions in recent work have to do with the performance degradation due
to lack of users’ coordination (e.g., [23,12,10,1,3]) and the efficient computation
of pure Nash equilibria (e.g., [8,11,10]).

A natural greedy approach for computing a pure Nash equilibrium (PNE) is
Greedy Best Response (GBR). Let us consider a dynamic setting with new users
arriving in the network. The users play only once and irrevocably choose their
strategy upon arrival. Each new user routes her traffic on the minimum delay
path given the paths of the users currently in the network. Hopefully the existing
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users are not affected by the new one and the network configuration remains at
a PNE without any defections taking place. This approach is not only intuitive
and computationally efficient, but also resembles how things work in practice.
A natural question is whether there are any interesting classes of networks for
which Greedy Best Response maintains a PNE.

Greedy Best Response can be regarded as a generalization of Graham’s LPT
algorithm [13]. The restriction of GBR to parallel-link networks is known to
maintain a PNE for arbitrary non-decreasing latency functions and weighted
users arriving in non-increasing order of weights [17,9]. In this work, we prove
that GBR maintains a PNE for symmetric congestion games in series-parallel
networks. This result is extended to weighted congestion games with a certain
notion of symmetry, namely that the users have the same best response strategies
for any initial network traffic.

The second important research direction has to do with the inefficiency of
Nash equilibria. The coordination ratio or price of anarchy was introduced in
[16] for measuring the performance degradation due to lack of users’ coordination
in resource sharing. The price of anarchy is the worst-case ratio between the
cost of a Nash equilibrium and the cost of an optimal solution. For network
congestion games, there are two natural notions of cost for defining the price of
anarchy: the total and the maximum latency. As the price of anarchy for non-
atomic congestion games becomes well-understood (e.g., [23,21] for total latency
and [22,4] for maximum latency), the interest moves to the atomic setting (e.g.
[18,12,10,1,3].) In both settings, the case of linear latencies is prominent and has
been the focus of most of the previous work.

In this paper, we study the price of anarchy relative to the objective of max-
imum latency for symmetric network congestion games and latency functions
de(x) = aex, ae ≥ 0. This corresponds to uniformly related links, with the coeffi-
cient ae denoting the inverse speed of link e. We show that the price of anarchy
for any network of m links is Θ( log m

log log m ).

Related Work. Rosenthal [20] initiated the study of congestion games and
proved that their PNE correspond to the local optima of a natural potential
function. Therefore, the best response dynamics converges to a PNE. On the
other hand, it is PLS-complete to find a PNE in symmetric (not necessarily
network) and non-symmetric network congestion games [8]. On the positive side,
[8] shows that in symmetric network congestion games, a PNE can be found
by a min-cost flow computation. For weighted congestion games, [11] considers
the case of identical parallel links and restricted assignments and shows how to
compute a PNE in strongly-polynomial time. [10] shows that weighted congestion
games with linear latencies admit a weighted potential function. Thus, the best
response dynamics converges to a PNE in pseudo-polynomial time.

In a seminal paper, Koutsoupias and Papadimitriou [16] introduce the price
of anarchy and consider the objective of maximum latency for a weighted con-
gestion game on m uniformly related parallel links. The price of anarchy for
that game is Θ( log m

log log m ) if either the users or the links are identical [19,15,5]
and Θ( log m

log log log m ) otherwise [5]. For uniformly related parallel links, identical
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users, and the objective of total latency, the price of anarchy is 2 − o(1) for the
general case of mixed equilibria and 4/3 for pure equilibria [18,12].

Similar results have been obtained recently for network congestion games with
linear latency functions. The price of anarchy for the objective of total latency is
3+

√
5

2 if weighted congestion games and mixed equilibria are considered [1]. This
drops to 5/2 for the special case of identical users and pure equilibria ([1] and
independently in [3]). The price of anarchy for maximum latency is also 5/2 for
pure Nash equilibria and symmetric games (with identical users) and becomes
Θ(

√
n) for non-symmetric games [3].

On the other hand, the price of anarchy for m identical links and the objec-
tive of maximum latency is Ω( log m

log log m ) if mixed Nash equilibria are considered
[16,19]. [10] studies weighted single-commodity congestion games in layered net-
works with m identical links and shows that the price of anarchy for maximum
latency remains Θ( log m

log log m ) for the general case of mixed Nash equilibria.
The bounds above apply to the atomic setting, with users controlling a non-

negligible amount of traffic demand, and consider both pure and mixed equilibria
(with the exception of the results in [3] on maximum latency). Improved bounds
can be obtained in the non-atomic setting, where each user controls a negligible
amount of demand and pure and mixed equilibria are equivalent. [23] initiates
the study of the price of anarchy for the objective of total latency in the non-
atomic setting and shows that the price of anarchy for linear latencies is 4/3.
[21] proves that the price of anarchy depends on the class of latency functions
and not on the network topology and gives a tight bound for every class.

As for the objective of maximum latency in the non-atomic setting, the upper
bounds for total latency also apply to maximum latency in single-commodity
networks [4]. For multi-commodity networks, the price of anarchy is Ω(|V |) even
for linear latencies [4]. On the other hand, the price of anarchy for maximum
latency is at most |V | − 1 in single-commodity networks [22].

Contribution. If the users are identical, GBR behaves as an online algorithm.
For weighted users, GBR is the most natural greedy algorithm since it determines
a fixed order in which the users are considered and each user makes an irrevocable
greedy choice given the choices of the previous users.

In this paper, we essentially characterize the class of network congestion games
for which GBR maintains a PNE. More specifically, we prove that GBR main-
tains a PNE for symmetric congestion games in series-parallel networks. This is
extended to weighted congestion games with the common best response property.
This property requires that the users have the same best response strategies for
any initial network traffic. In addition to symmetric network congestion games,
this class includes weighted congestion games in layered networks with identical
edges (i.e., edge delays are given by a common linear latency function). We also
prove that the restriction to series-parallel networks and games with the common
best response property is essentially necessary for GBR to maintain a PNE.

For the price of anarchy, we focus on the objective of maximum latency. We
consider symmetric network congestion games and linear latencies with no ad-
ditive term, thus extending to arbitrary networks the widely-studied setting of
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identical users and uniformly related parallel links (e.g., [16,9,19,5]). We con-
sider the general case of mixed equilibria and show that the price of anarchy
remains Θ( log m

log log m ) for identical users and networks of m links. The setting of
identical users and arbitrary networks is orthogonal to the setting of [10] where
the network has a notion of symmetry, namely all paths have the same length
and consist of identical edges, and the users have different weights.

The results on the price of anarchy were obtained independently of results
of [1,3]. Our approach is fundamentally different and may be of independent
interest. It is based on a natural correspondence between mixed strategies and
fractional s − t flows (see also [10]). To motivate the approach, we first show
that the optimal solution of a quadratic program corresponds to a symmetric
mixed Nash equilibrium. We use quadratic programming duality and show that
the expected cost of any user in a (pure or mixed) Nash equilibrium is at most 3
times the optimal maximum latency. A Chernoff-Hoeffding bound yields that the
expected maximum latency is O( log m

log log m ) times the optimal maximum latency.

2 Definitions and Preliminaries

The Model. A network congestion game is a tuple (N, G, (de)e∈E), where N =
{1, . . . , n} is the set of users controlling a unit of traffic demand each, G(V, E) is
a directed graph representing the communication network, and de is the latency
function associated with edge e ∈ E. We assume that de’s are non-negative
and non-decreasing functions of the edge loads. If the edge delays are given by a
common linear latency function, we say that the edges are identical. For identical
edges, we assume wlog. that the edge delays are given by the identity function,
i.e. ∀e ∈ E, de(x) = x. We restrict our attention to single-commodity network
congestion games, where the network G has a single source s and destination t
and the set of users’ strategies is the set of s − t paths, denoted P . Wlog. we
assume that G is connected and every vertex of G lies on a directed s − t path.

We also consider weighted single-commodity network congestion games, where
user i controls wi units of traffic demand1. The users are indexed in non-
increasing order of weights, i.e., w1 ≥ w2 ≥ . . . ≥ wn. Single-commodity network
congestion games are symmetric2. However, weighted games are non-symmetric
in general because the users’ cost functions are different and non-symmetric due
to different user weights.

A vector P = (p1, . . . , pn) consisting of an s − t path pi for each user i is a
pure strategies profile. Let �e(P ) ≡ ∑

i:e∈pi
wi denote the load of edge e in P .

The cost λi
p(P ) of user i for routing her demand on path p in the profile P is

λi
p(P ) ≡ ∑

e∈p∩pi
de(�e(P )) +

∑
e∈p\pi

de(�e(P ) + wi)

The cost λi(P ) of user i in P is λi
pi

(P ), namely the total delay along her path.
1 In (unweighted) congestion games, w1 = w2 = . . . = wn = 1.
2 A game is symmetric if all users have the same strategy set and the users’ costs

are given by identical symmetric functions of other users’ strategies. In congestion
games, the users are identical and a common strategy set implies symmetry.
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A vector Q = (q1, . . . , qn) consisting of a probability distribution qi over P
for each user i is a mixed strategies profile. For each path p, qi(p) denotes the
probability that user i routes her demand on p. Let �p(Q) ≡ ∑n

j=1 qj(p)wj be
the expected load routed on path p in Q, and let �p(Q−i) ≡ �p(Q) − qi(p)wi be
the expected load on p excluding the contribution of user i. Similarly, let �e(Q) ≡∑

p:e∈p �p(Q) and �e(Q−i) ≡ ∑
p:e∈p �p(Q−i) be the expected load on edge e with

and without user i respectively. The cost λi
p(Q) of user i for routing her demand

on path p in the mixed strategies profile Q is the expectation according to Q−i

of λi
p(P

−i ⊕ p) over all pure strategies profiles3 P−i. The cost λi(Q) of user i in
Q is the expectation according to Q of λi(P ) over all pure strategies profiles P .

For a strategies profile Q, let λmax(Q) ≡ maxi∈N{λi(Q)} be the maximum
user cost in Q.

In this paper, we consider mixed strategies profiles only for identical users and
linear latency functions de(x) = aex. Then, simply λi

p(Q) ≡ ∑
e∈p ae(�e(Q−i)+1)

and λi(Q) ≡ ∑
p∈P qi(p)λi

p(Q) by linearity of expectation.
A mixed (in general) strategies profile Q is a Nash equilibrium if for every

user i and every p, p′ ∈ P with qi(p) > 0, λi
p(Q) ≤ λi

p′(Q). Therefore, if Q is a
Nash equilibrium, λi

p(Q) = λi
p′(Q) = λi(Q) for every user i and every p, p′ ∈ P

with both qi(p), qi(p′) > 0.
We evaluate strategies profiles using the objective of maximum latency. The

maximum latency L(P ) of a pure strategies profile P is the maximum user cost
in P , L(P ) ≡ λmax(P ). The maximum latency L(Q) of a mixed strategies profile
Q is the expectation according to Q of L(P ) over all pure strategies profiles P ,
L(Q) ≡ ∑

P∈Pn IP(P, Q)L(P ), where IP(P, Q) =
∏n

i=1 qi(pi) is the occurrence
probability of P in Q. The optimal solution, denoted P ∗, corresponds to a pure
strategies profile and the optimal cost is L(P ∗). The price of anarchy is defined
as worst-case ratio L(Q)/L(P ∗) over all Nash equilibria Q.

Flows. A feasible flow is a function f : P �→ IR≥0 such that
∑

p∈P fp =
∑n

i=1 wi.
We also use f to denote the |P|-dimensional vector corresponding to the flow
f . A flow is unsplittable if each user’s demand is routed on a single path and
splittable otherwise. Let fe ≡ ∑

p:e∈p fp denote the flow on edge e.

Greedy Best Response. GBR considers the users one-by-one in non-increasing
order of weight. Each user adopts her best response strategy given the strategies
of previous users. The choice is irrevocable since no user can change her strategy
in the future. In simple words, each user plays only once and selects its best
response strategy at the moment she is considered by the algorithm.

Formally, let pi be the path of user i, and let P i = (p1, . . . , pi) be the pure
strategies profile for users 1, . . . , i. Then, the path pi+1 of user i + 1 is

pi+1 = argminp∈P{
∑

e∈p de(�e(P i) + wi+1)} (1)

We say that GBR succeeds if every profile P i is a Nash equilibrium.
3 For a n-dimensional vector X, X−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and X−i ⊕ x ≡

(x1, . . . , xi−1, x, xi+1, . . . , xn).
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Common Best Response. The single-commodity network congestion game
((wi)i∈N , G, (de)e∈E) has the common best response property if for every initial
flow f (not necessarily feasible), all users have the same set of best response
strategies wrt the edge loads induced by f . In other words, if a path p is a best
response wrt f for some user, then the following inequality holds for all users j
and all paths p′:

∑
e∈p′ de(fe + wj) ≥

∑
e∈p de(fe + wj)

Furthermore, every segment π of a best response path p is a best response for
routing the demand of any user between π’s endpoints. We should highlight that
in the definition above, best responses are computed without taking into account
that some users may already contribute to the initial flow f . The common best
response property requires a notion of symmetry between the users, namely that
all of them have the same topmost preferences for any initial traffic conditions.
This notion of symmetry is weaker than that of a symmetric game but still strong
enough to make GBR work in series-parallel networks.

Layered and Series-Parallel Graphs. A directed (multi)graph G(V, E) with
a distinguished source s and destination t is layered if all directed s − t paths
have exactly the same length and each vertex lies on a directed s − t path.
A multigraph is series-parallel with terminals (s, t) if it is either a single edge
(s, t) or can be obtained from two series-parallel graphs with terminals (s1, t1)
and (s2, t2) connected either in series or in parallel. In a series connection, t1 is
identified with s2, s1 becomes s, and t2 becomes t. In a parallel connection, s1

is identified with s2 and becomes s, and t1 is identified with t2 and becomes t.
A directed graph with terminals (s, t) is series-parallel if and only if it does not
contain a θ-graph with degree-2 terminals as a topological minor (Fig. 1.b) [7].

Proposition 1. Let G(V, E) be a series-parallel graph with terminals (s, t), and
let vertices u, v connected by two disjoint paths, denoted π and π′, only sharing
their endpoints. Every s − t path having at least one edge in common with π′

contains both u and v.

3 Greedy Best Response in Series-Parallel Networks

We first show that GBR succeeds if the network is series-parallel and the game
has the common best response property.

Theorem 1. If G is a series-parallel graph with terminals (s, t) and the game
((wi)i∈N , G, (de)e∈E) has the common best response property, GBR succeeds and
computes a pure Nash equilibrium in time O(nm log m).

Proof. The proof is by induction on the number of users considered by the
algorithm. The claim holds for the first user, since she adopts her best response
strategy and is the only user in the network. We inductively assume that after
user i has been considered, P i = (p1, . . . , pi) is a Nash equilibrium. Let pi+1
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be the path chosen by user i + 1 according to (1). To reach a contradiction, we
assume that P i+1 = (p1, . . . , pi, pi+1) is not a Nash equilibrium.

Consequently, there is a user j, j ≤ i, preferring another path p to her path
pj . Let u be a split point where p departs from pj (u may be s). Any pair of
different paths has at least one split point because they have a common source.
Let v be the first merge point after u where p joins pj again (v may be t).
Each split point is followed by a merge point because the paths have a common
destination.

For simplicity of notation, let π and πj denote the segments of p and pj

respectively between u and v. By the definition of v, π and πj are edge disjoint
and have only their endpoints u and v in common.

Since j wants to defect from πj in P i+1 but not in P i, it is pi+1 that shares
some edges with πj and makes it inferior to π for user j. Since pi+1 and πj have
at least one edge in common, pi+1 contains both u and v by Proposition 1. Let
πi+1 be the segment of pi+1 between u and v (Fig. 1.a).

The path pi+1 is a best response for user i+1 wrt the flow induced by P i. Since
the game has the common best response property, pi+1 is also a best response
for user j wrt the flow induced by P i (ignoring that wj already contributes to
the flow). Therefore, the path segment πi+1 is a best response wrt P i for routing
the demand of user j from u to v:

∑

e∈π

de(�e(P i) + wj) ≥
∑

e∈πi+1

de(�e(P i) + wj) (2)

Since j prefers π to πj after user i + 1 routing her traffic on πi+1,
∑

e∈πj\πi+1

de(�e(P i)) +
∑

e∈πj∩πi+1

de(�e(P i) + wi+1) >

∑

e∈π

de(�e(P i) + wj) ≥
∑

e∈πi+1

de(�e(P i) + wj) ≥
∑

e∈πi+1\πj

de(�e(P i) + wj) +
∑

e∈πi+1∩πj

de(�e(P i) + wi+1)

The second inequality follows from Ineq. (2). The last inequality holds because
the latency functions are non-decreasing and wj ≥ wi+1.

If πj = πi+1, the contradiction is immediate. If πj 
= πi+1, user j prefers the
path segment πi+1 \ πj to the path segment πj \ πi+1 even in P i:

λj
πj\πi+1

(P i) =
∑

e∈πj\πi+1

de(�e(P i)) >
∑

e∈πi+1\πj

de(�e(P i) + wj) = λj
πi+1\πj

(P i)

This contradicts to the inductive hypothesis that P i is a Nash equilibrium.
Therefore, p and pj does not have any split points and p coincides with pj .
Consequently, P i+1 is a Nash equilibrium.

GBR performs n s− t shortest path computations in a graph of m edges. This
can be done in time O(nm log m) using Dijkstra’s algorithm. ��
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Single-commodity network congestion games with identical users have the com-
mon best response property because the users’ cost functions are identical func-
tions of the edge loads. We are also aware of a class of weighted single-commodity
network congestion games with the common best response property.

Proposition 2. A weighted single-commodity congestion game in a layered net-
work with identical edges has the common best response property for any set of
user weights.

Corollary 1. GBR succeeds for single-commodity congestion games in series-
parallel networks:

1. if the users are identical (for arbitrary non-decreasing edge delays).
2. if the graph is layered and the edges are identical (for arbitrary user weights).

GBR has a natural distributed implementation based on a leader election al-
gorithm. There is a process corresponding to each player. We assume that the
processes know the network and the edge latency functions. We also assume a
message passing subsystem and an underlying synchronization mechanism (e.g.
logical timestamps) allowing a distributed algorithm to proceed in logical rounds.

Initially, all processes are active. In each round, they run a leader election
algorithm and determine the active process of largest weight. This process routes
its demand on its best response path, announces its strategy to the remaining
active processes, and becomes passive. Notice that all processes can compute
their best responses locally. In the offline setting, the algorithm terminates as
soon as there are no active processes. In the online setting, new users/processes
may enter the system at any point in time.

We conclude the study of GBR by providing some simple examples demon-
strating that GBR may not succeed in maintaining a PNE if either the network is
not series-parallel or the game does not have the common best response property.
Hence both conditions of Theorem 1 are necessary for GBR to succeed.

If the network is not series-parallel, the simplest symmetric game for which
GBR fails consists of two identical users and the 3-layered equivalent of the θ-
graph with identical edges (Fig. 1.b). The pure Nash equilibrium assigns one
user to π1 and the other to π3. If GBR assigns the first user to π2, there is no
strategy for the second user that yields a Nash equilibrium. We can force GBR
to assign the first user to π2 by slightly decreasing the latency function of the
second edge to (1 − ε)x, where ε is a small positive constant.

The common best response property is also necessary for series-parallel net-
works other than a sequence of parallel-link graphs connected in series4. For
example, let us consider the 2-layered series-parallel graph of Fig. 1.c and three
users of weights w1 = 100, w2 = 10, and w3 = 4. The corresponding congestion
game does not have the common best response property. GBR assigns the first
user to the path π1, the second user to π2, and the third user to π3, while in
every pure Nash equilibrium the first two users are assigned to π1.
4 If the network consists of bunches of parallel-link connected in series, a pure Nash

equilibrium can be computed by independently applying GBR to each bunch of
parallel links.
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Fig. 1. (a) The graph in the proof of Theorem 1. GBR may fail if (b) the network is
not series-parallel (even if the game is symmetric) and (c) the game does not have the
common best response property (even if the network is series-parallel).

4 The Price of Anarchy in Networks of Uniformly
Related Links

We proceed to bound the price of anarchy in symmetric network congestion
games with uniformly related links. We consider n identical users routing their
(unit) traffic demands on a directed graph G(V, E) with a unique source s and
destination t, and m ≡ |E| edges. There is a linear latency function de(x) = aex,
ae ≥ 0, associated with each edge e. We regard ae as the inverse speed of edge
e. For each path p ∈ P , let ap ≡ ∑

e∈p ae denote the inverse speed of p.

Flows and Mixed Strategies Profiles. A feasible flow is a function f : P �→
IR≥0 such that

∑
p∈P fp = n. Let θp(f) ≡ ∑

e∈p aefe denote the total delay along
the path p wrt f . We map a mixed (in general) strategies profile Q = (q1, . . . , qn)
to a feasible flow fQ as follows: For each s− t path p ∈ P , fQ

p ≡ �p(Q). In other
words, we handle the expected load routed on p in Q as a splittable flow, where
user i routes a fraction qi(p) of her demand on p. If Q is a pure strategies profile,
the corresponding flow is unsplittable.

We say that a feasible flow fQ corresponding to a strategies profile Q is at
Nash equilibrium with the understanding that actually Q is a Nash equilibrium.
For every Nash equilibrium Q and the corresponding flow fQ,

λmax(Q) ≤ min
p∈P

{θp(fQ) + ap} ≡ δmin(fQ) (3)

Otherwise, a user of cost λmax(Q) in Q could improve her cost by switching to
the path minimizing θp(fQ)+ap. Furthermore, for any path p ∈ P with fQ

p > 0,

max{θp(fQ), ap} ≤ λmax(Q) ≤ δmin(fQ) (4)

For simplicity, we drop the superscript of Q from its corresponding flow fQ

when the strategies profile is clear from the context.

Total Latency and Total Load. A flow f can be evaluated by its total latency
defined as

C(f) ≡ ∑
p∈P fpθp(f) =

∑
e∈E aef

2
e
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In addition, a flow f can be evaluated by its total load defined as

W (f) ≡ ∑
e∈E aefe =

∑
e∈E ae

∑
p:e∈p fp =

∑
p∈P apfp

We sometimes use W (P ∗) to denote the total load of the flow corresponding to
the optimal solution P ∗.

Proposition 3. Let f be a feasible flow at Nash equilibrium. Then
C(f) ≤ n δmin(f).

Proof. By Ineq. (4), for every path p ∈ P , fp θp(f) ≤ fp δmin(f). Summing over
all paths, we conclude that C(f) ≤ n δmin(f). ��
Let M be the |P| × |P| square matrix defined as M [p, p′] ≡ ∑

e∈p∩p′ ae for each
pair of paths p, p′ ∈ P . By definition, M is a symmetric matrix. For every flow f ,
Mf is the |P|-dimensional vector with coordinates θp(f). Thus, the total latency
of f can be expressed as C(f) = fT Mf . Since C(f) = fT Mf =

∑
e∈E aef

2
e the

matrix M is positive semi-definite5.
Let A be the |P|-dimensional vector with A[p] ≡ ap for each path p ∈ P . The

total load of every flow f can be expressed as W (f) = AT f .
The maximum latency of an unsplittable flow f is L(f) ≡ maxp:fp>0{θp(f)}.

Notice that for every pure strategies profile P and its corresponding unsplittable
flow fP , L(P ) = L(fP ).

4.1 Computing a Symmetric Nash Equilibrium

We next prove that the flow minimizing n−1
2n C(f) + W (f) corresponds to a

symmetric Nash equilibrium. Formally, let f̂ be the optimal fractional solution
to the following quadratic program min{n−1

2n fT Mf + AT f : 1T f ≥ n, f ≥ 0},
where 1 (resp. 0) denotes the |P|-dimensional vector with 1 (resp. 0) in each
coordinate. We observe that f̂ is a splittable flow of value n.

Lemma 1. Let Q be the mixed strategies profile where each user i routes its
demand on every path p with probability qi(p) = f̂(p)/n. Then, Q is a symmetric
Nash equilibrium.

Proof. The mixed strategies profile Q is symmetric by definition. We only have
to show that Q is a Nash equilibrium. By construction, for every user i and
every path p, �p(Q−i) = n−1

n f̂p. Therefore, for every user i and every edge e,
�e(Q−i) = n−1

n f̂e. Thus, the cost of a user i routing her demand on a path p in
the mixed strategies profile Q is

λi
p(Q) =

∑

e∈p

ae(�e(Q−i) + 1) =
∑

e∈p

ae(n−1
n f̂e + 1) = n−1

n θp(f̂) + ap

5 A n × n matrix M is positive semi-definite if for every vector x ∈ IRn, xT Mx ≥ 0.
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The flow f̂ minimizes the convex function
∑

e∈E(n−1
2n aef

2
e +aefe). Therefore,

for every p, p′ ∈ P with f̂p > 0, the following inequality holds (e.g., [2], [23,
Lemma 2.5]):

n−1
n θp(f̂) + ap =

∑

e∈p

(n−1
n aef̂e + ae) ≤

∑

e∈p′
(n−1

n aef̂e + ae) = n−1
n θp′(f̂) + ap′

Consequently, for every user i and every p, p′ ∈ P with qi(p) = f̂p/n > 0,

λi
p(Q) = n−1

n θp(f̂) + ap ≤ n−1
n θp′(f̂) + ap′ = λi

p′ (Q)

and the mixed strategies profile Q is a Nash equilibrium. ��
Remark. If the network consists of m uniformly related parallel links, the equi-
librium of Lemma 1 is identical to the generalized fully mixed Nash equilibrium
of [9, Theorem 5].

4.2 Bounding the Price of Anarchy

We first apply the Chernoff-Hoeffding bound and prove that for every Nash
equilibrium Q with λmax(Q) ≤ α L(P ∗) for some constant α ≥ 1, L(Q) =
α O( log m

log log m )L(P ∗) (Lemma 2). We then prove that for every Nash equilibrium
Q, λmax(Q) ≤ L(P ∗)+ 2

n W (P ∗) (Theorem 2). The proof is based on Dorn’s The-
orem [6] establishing strong duality in quadratic programming. As an immediate
consequence, we obtain that for every Nash equilibrium Q, λmax(Q) ≤ 3 L(P ∗)
(Corollary 2). The results in this section can be extended to symmetric (not nec-
essarily network) congestion games with identical users, resource set E, strategy
set P , and resource costs de(x) = aex, ae ≥ 0.

Lemma 2. Let Q be any strategies profile at Nash equilibrium. If there exists
some constant α ≥ 1 such that λmax(Q) ≤ α L(P ∗), L(Q) ≤ α O( log m

log log m )L(P ∗).

Proof. For every edge e and every user i, let Xe,i be the random variable de-
scribing the actual load routed on e by i. The random variable Xe,i is 1 if i
routes its demand on a path containing e and 0 otherwise. The expectation of
Xe,i is IE[Xe,i] =

∑
p:e∈p qi(p) . Since the users select their paths independently,

for every edge e, the random variables {Xe,i, i ∈ N} are mutually independent.
For each edge e, let Xe = ae

∑n
i=1 Xe,i be the random variable that describes

the actual delay incurred by any user traversing e. Multiplying each Xe,i by ae,
we can regard Xe as the sum of n independent random variables with values in
{0, ae}. By linearity of expectation,

IE[Xe] = ae

n∑

i=1

IE[Xe,i] = ae

∑

p:e∈p

n∑

i=1

qi(p) = ae

∑

p:e∈p

�p(Q) = ae�e(Q)
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The Hoeffding bound6 for w = ae and t = e κ ae max{�e(Q), 1}, yields that for
every κ ≥ 1,

IP[Xe ≥ e κ ae max{�e(Q), 1}] ≤ κ−e κ

Applying the union bound, we conclude that

IP[∃e ∈ E : Xe ≥ e κ ae max{�e(Q), 1}] ≤ mκ−e κ (5)

For every path p ∈ P with �p(Q) > 0, we define the random variable
Xp =

∑
e∈p Xe describing the actual delay along p. The maximum latency of Q

cannot exceed the expected maximum delay among paths p with �p(Q) > 0.
Formally,

L(Q) ≤ IE[ max
p:�p(Q)>0

{Xp}]

Let us assume that for all edges e ∈ E, Xe < e κ ae max{�e(Q), 1}. Let p be any
path with �p(Q) > 0, and let i be any user with qi(p) > 0. Then,

Xp =
∑

e∈p Xe < e κ
∑

e∈p ae max{�e(Q), 1} ≤ e κ
∑

e∈p ae(�e(Q−i) + 1)

= e κ λi(Q) ≤ e κ λmax(Q) ≤ e κ α L(P ∗)

The second inequality follows from max{�e(Q), 1} ≤ �e(Q−i)+1 which holds for
every edge e ∈ p and every user i with qi(p) > 0. Since qi(p) > 0 and Q is a Nash
equilibrium, λi(Q) =

∑
e∈p ae(�e(Q−i) + 1) and the next equality follows. The

third inequality follows from the definition of λmax(Q) and the last inequality
by hypothesis. Therefore, using Ineq. (5), we conclude that

IP[ max
p:�p(Q)>0

{Xp} ≥ e κ α L(P ∗)] ≤ mκ−e κ

In words, the probability that the actual maximum delay caused by Q exceeds
the optimal maximum delay by a factor greater than e κ α is at most mκ−e κ.
Therefore, for every κ0 ≥ 2,

L(Q) ≤ IE[ max
p:�p(Q)>0

{Xp}] ≤ e α L(P ∗)
(
κ0 +

∑∞
k=κ0

mk−e k
)

≤ e α L(P ∗)
(
κ0 + 2mκ−e κ0

0

)

For κ0 = 2 log m
log log m , we obtain that L(Q) ≤ 2 e α ( log m

log log m + 1)L(P ∗) . ��

Theorem 2. For every strategies profile Q at Nash equilibrium,
λmax(Q) ≤ L(P ∗) + 2

n W (P ∗).

6 We use the standard version of Hoeffding bound [14]: Let X1, X2, . . . , Xn be inde-
pendent random variables with values in the interval [0, w]. Let X =

�n
i=1 Xi and

let IE[X] denote its expectation. Then, ∀t > 0, IP[X ≥ t] ≤ ( e IE[X]
t

)t/w.
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Proof. Let f denote the optimal fractional solution of the following quadratic
program: QP ≡ min{fT (1

2M)f + AT f : 1T f ≥ n, f ≥ 0}. Notice that f is a
splittable flow of value n. We first prove that nλmax(Q) ≤ C(f) + 2 W (f).

We use Dorn’s Theorem [6], which establishes strong duality in quadratic
programming7, and prove that for every flow f ,

n δmin(f) − 1
2C(f) ≤ 1

2C(f) + W (f) (6)

The quadratic program QP ≡ min{fT (1
2M)f + AT f : 1T f ≥ n, f ≥ 0}

is always feasible and its optimal value is 1
2C(f) + W (f). The Dorn’s dual of

QP is DP ≡ max{z · n − fT (1
2M)f : Mf + A ≥ 1z, z ≥ 0} (e.g., [6], [2,

Chapter 6]). Every flow f becomes a feasible solution to DP by setting z =
minp∈P{θp(f) + ap} ≡ δmin(f). Hence, both the primal and the dual programs
are feasible. Since the matrix M is symmetric and positive semi-definite, by
Dorn’s Theorem, the objective value of the optimal dual solution is exactly
1
2C(f) + W (f)8.

Consequently, for every flow f , (f, δmin(f)) is a feasible solution to DP and

n δmin(f) − 1
2C(f) ≤ 1

2C(f) + W (f)

Let fQ be the flow corresponding to the strategies profile Q. Since Q is a Nash
equilibrium, C(fQ) ≤ n δmin(fQ) by Proposition 3. Hence, n δmin(fQ) ≤ C(f)+
2 W (f). Using λmax(Q) ≤ δmin(fQ) by Ineq. (3), we obtain that nλmax(Q) ≤
C(f) + 2 W (f).

To conclude the proof, let f∗ be the unsplittable flow corresponding to the
pure strategies profile P ∗, namely the optimal solution wrt. the objective of
maximum latency. Then,

nλmax(Q) ≤ 2 [12C(f) + W (f)] ≤ 2 [12C(f∗) + W (f∗)]
≤ nL(f∗) + 2W (f∗) = nL(P ∗) + 2W (P ∗)

The second inequality holds because f∗ is a feasible solution to QP. The third
inequality holds because the average latency of f∗ cannot exceed its maximum
latency. For the last equality, since P ∗ is a pure strategies profile, its maximum
latency and total load coincide with those of f∗. ��
7 Let min{xT Mx + cT x : Ax ≥ b, x ≥ 0} be the primal quadratic program. The

Dorn’s dual of this program is max{−yT My + bT u : AT u − 2My ≤ c, u ≥ 0}. Dorn
[6] proved strong duality when the matrix M is symmetric and positive semi-definite.
Thus, if M is symmetric and positive semi-definite and both the primal and the dual
programs are feasible, their optimal solutions have the same objective value.

8 The optimal dual solution is obtained from f by setting z = δmin(f). Since f is an
optimal solution to the primal program, we can use Karush-Kuhn-Tucker optimality
conditions (e.g. [2]) and prove that for any s − t path p with fp > 0, θp(f) + ap =

δmin(f). Multiplying this equality by fp and summing over all p ∈ P , we obtain that

z · n = δmin(f)
�

p∈P fp =
�

p∈P fp(θp(f) + ap) = C(f) + W (f)

Therefore, the dual objective value of (f, δmin(f)) is exactly 1
2
C(f) + W (f).
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Corollary 2. For every strategies profile Q at Nash equilibrium, λmax(Q) ≤
3 L(P ∗).

Proof. We observe that W (P ∗) ≤ n L(P ∗) because P ∗ is a pure strategies profile.
The corollary follows from Theorem 2. ��
Theorem 3. The price of anarchy for single-commodity network congestion
games with identical users and latencies de(x) = aex is at most 6 e ( log m

log log m +1).

Acknowledgements. We wish to thank Burkhard Monien for suggesting the
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